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ABSTRACT  

Among numerous foam applications in a wide range of disciplines, foam flow in porous 

media has been spotlighted for improved/enhanced oil recovery processes in petroleum-bearing 

geological formations and shallow subsurface in-situ NAPL (non-aqueous phase liquid) 

environmental remediation in contaminated soils and aquifers. In those applications, foams are 

known to reduce the mobility of gas phase by increasing effective gas viscosity and improve sweep 

efficiency by mitigating subsurface heterogeneity.  

This study investigates how surfactant/foam process works fundamentally for 

environmental remediation purpose by using MoC (Method of Characteristics) based foam 

modeling and simulation techniques. It consists of two main parts: Part 1, developing foam model 

using three-phase fractional flow theory accounting for foam flow rheology such as foam strength 

and stability at different phase saturations; and Part 2, extending the model to investigate the 

mechanisms of surfactant/foam displacement in multi-layer systems. 

Part 1 investigates six scenarios such as different levels of foam strength (i.e., gas mobility 

reduction factors), different initial conditions (i.e., initially oil/water or oil/water/gas present), 

foam stability affected by water saturation (Sw), oil saturation (So), and both together, and uniform 

vs. non-uniform initial saturations. The process is analyzed by using ternary diagrams, fractional 

flow curves, effluent histories, saturation profiles, time-distance diagrams, and pressure and 

recovery histories. The results show that the three-phase fractional flow analysis presented in this 

study is robust enough to analyze foam-oil displacements in various conditions, as validated by an 

in-house numerical simulator built in this study. The use of numerical simulation seems crucial 

when the foam modeling becomes complicated and faces multiple possible solutions. 
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Part 2 first shows how to interpret theoretically the injection of surfactant preflush and 

following foams into a single-layer system at pre-specified rock and fluid properties, and then 

extends the knowledge gained into multi-layer systems where the properties vary in different 

layers. The results in general show that the mechanisms of foam displacement strongly depend on 

foam properties such as gas-phase mobility reduction factors (MRF), limiting water saturation 

(Sw*), critical oil saturation (So*), and so on as well as petrophysical properties of individual layers 

such as porosity (φ), permeability (k), relative permeability and so on. The overall sweep 

efficiency in a multi-layer system is very difficult to predict because of the complexity, but the 

mathematical framework presented in this study is shown to be still reliable. The in-house foam 

simulator is also extended to compare with modeling results.
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CHAPTER 1 

INTRODUCTION 

1.1 Background  

 Subsurface contamination has been a significant concern as the number of 

surface/subsurface storage tanks increases. The use of storage tanks is a common method to 

manage liquid-based chemicals and wastes. Those tanks may fail over the years, however, causing 

a leakage of contaminants and resulting in soil and ground water pollution above and/or below 

water table. Hydrocarbon liquid-based contaminants, often called NAPLs (non-aqueous phase 

liquids), are most typical, consisting of various types of oils such as gasoline, diesel, TCE 

(trichloroethylene), and PCE (tetrachloroethylene or perchloroethylene). Depending on the 

density, NAPLs can be further classified into LNAPLs (light non-aqueous phase liquids) and 

DNAPLs (dense non-aqueous phase liquids). Figure 1.1 and Figure 1.2 schematically show 

different types of contaminant sources encountered and their mechanisms of subsurface trapping 

and migration.  

A number of different types of remedial methods have been developed to resolve these 

subsurface environmental issues: pump and treat, soil vacuum extraction, soil flushing, surfactant 

flooding, and foam injection to name a few (U.S. EPA, 1990 and 2004; Rothmel et al., 1998). Each 

remediation technique has its own difficulties and limitations, however.   

 This study is a part of collaborative research with Rural Research Institute (RRI), a research 

organization under Korea Rural Community Corporation, which handles the majority of the in-

situ subsurface remediation projects in South Korea. Initially dealing with shallow contaminated 

area mainly using ex-situ excavation remediation method, RRI moves into in-situ remediation 
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methods which can be applicable to deeper formations and zones under existing structures 

(residential and commercial buildings, roads, levies, and so on). Overcoming subsurface 

heterogeneity during in-situ remediation treatments using foam/surfactant injection is regarded as 

a potential and promising solution in actual field-scale applications. 

 

Figure 1.1: A schematic diagram of subsurface contamination (www.afcee.af.mil) 

 

The entire scope of this collaborative work with RRI is made up of three major components: (1) 

understanding the mechanisms of surfactant/foam processes in the presence of NAPL 

contaminants; (2) extending the foam model and simulation techniques developed into the 

geological system with heterogeneity (i.e., a systems with non-communicating layers with 

different permeability); and (3) applying the gained knowledge into the field-scale multi-

dimensional remediation treatments. As a first step, this study focuses on the first two components 

dealing with fundamentals of surfactant/foam processes as described more in the following section. 
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Figure 1.2: A typical migration and distribution of DNAPL (Jackson, 1993) 

 

1.2 Objectives of this study 

The objectives of this study are aligned with the first two components of the RRI’s scope 

as explained earlier. More specifically, there are two main tasks: (1) Task 1, establishing the 

mathematical framework about how surfactants and foams propagate in porous media interacting 

with contaminants with different properties and evaluating the displacement performance of the 

process in one-dimensional space, in order to investigate the wide range of interactions between 

foams and NAPLs in remediation treatments, and (2) Task 2, developing models to describe how 

such a process works in a system with non-communicating multiple geological layers, in order to 
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evaluate foam/surfactant flow experiments in the similar conditions within the RRI’s field-scale 

laboratory. In all these tasks, a mathematical tool called Method of Characteristics (MoC) is 

applied, and its analytical solutions are compared with the results from in-house developed foam 

simulator written in Fortran language. 

Modeling and simulation of surfactant/foam processes require a wide range of input 

parameters: initial conditions in terms of phase saturations, injection conditions in terms of flowing 

phase fractions, foam properties (i.e., mobility reduction factor (MRF), limiting water saturation 

(Sw*), and critical oil saturation (So*)) and other rock and fluid properties (i.e., porosity, 

permeability, relative permeability, surfactant adsorption, etc.). Analyzing the displacement 

mechanism can be carried out by using three-phase fractional flow analysis based on Method of 

Characteristics (MoC).  The results are present in terms of saturation paths in ternary diagram and 

so-called Walsh diagram consisting of fractional flow curves, effluent history, saturation profile, 

and time-distance diagram.  

1.3 Chapter description 

 The contents of this study are summarized as follows: 

Chapter 1 describes an introduction of the problem investigated in this study followed by 

objectives. 

Chapter 2 provides the background and previous studies related to foam flow in porous 

media, especially those associated with surfactant/foam remediation techniques. 

Chapter 3 presents the first main part of this study, that is, analytical and numerical 

solutions developed for foam flow in porous media in presence of NAPLs. A significant portion 
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in the chapter is dedicated to understanding the roles of foam characteristic on displacement 

process. Chapter 4 presents the second main part of the study, that is, foam flow in a non-

communicating multi-layered system where subsurface heterogeneity is represented by a 

combination of multiple horizontal layers with differing properties. The focus of this chapter is 

made on how fluid injectivity into each layer changes with time during surfactant preflush and 

subsequent foam injection.   

Chapter 5 covers a sensitivity study for some of the modeling and simulation parameters, 

including relative permeabilities and foam stability. 

Chapter 6 provides major conclusions from this study and recommendations for future 

studies. 
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CHAPTER 2 

LITERATURE REVIEW 

Foams have been used in a wide range of applications. Among those, foam propagation in 

complex pore structures has been of great interest for decades to improve and enhance oil recovery 

in petroleum industry (Schramm, 1994; Prud’Homme and Khan, 1996; Rossen, 1996). An 

extension of such a technique can also be found in subsurface environmental remediation. Once 

present in porous media, foams are shown to effectively clean up the media with reduced gas 

mobility and improved sweep efficiency. 

 Previous studies show that numerous subsurface contaminants can be originated from 

various sources, for example, a leakage from pipelines, failure of surface and underground storage 

tanks, an inappropriate disposal of wastes and so on (Mackay and Cherry, 1989, Londergan et al., 

2001). Many different types of contaminants are reported such as gasoline, diesel, 

trichloroethylene (TCE), perchloroethene (PCE), benzene, metals, radioactive wastes, to name a 

few, which should be treated or removed properly. These liquid types of contaminants are 

categorized into two groups: light non-aqueous phase liquids (LNAPLs), such as gasoline and 

diesel, and dense non-aqueous phase liquids (DNAPLs), such as chlorinated solvents, wood 

preservative wastes, coal tar wastes and pesticides. The chemical structure of chlorine-containing 

compounds helps them to dissolve organic materials efficiently and to be used as raw materials or 

intermediates in the production of other chemicals. Therefore, majority of DNAPL contaminants 

is those chlorinated solvents.  
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In order to clean up the contaminated soils and groundwater by those NAPLs, many 

different types of techniques have been developed and used. Typically, these methods could be 

largely grouped into two types: ex-situ and in-situ remediation methods. 

An ex-situ method is usually considered if contaminated area is relatively small or shallow 

and easy to access, and if the concentration of the contaminants is high. This method takes the 

soils out of the contaminated area and then transports them to the processing facilities or sites for 

physical and chemical treatments. The transported soils are flushed with cleaning chemicals to 

wash them by chemical reaction or physical disturbance. Mulligans et al. (2001) showed that ex-

situ remediation is better for sands with less amount of clay-mineral and organic substance, 

typically 10 to 20%. Ex-situ remediation techniques can be very inefficient and challenging, 

however, if the contaminated area is large or deep or the contaminants with low concentration 

covers a relatively wide area. These limitations of ex-situ methods have led the development and 

application of in-situ remediation methods. 

In general, in-situ methods are categorized by three types: volatilization techniques, 

flushing methods, and thermal processes (U.S. EPA., 1990; Fountain, 1998). Since thermal 

techniques such as steam injection, electrical heating or in-situ vitrification involve modification 

of formation temperature, only volatilization and flushing methods are described in this study.  

First, typical volatilization methods are soil vapor extraction (SVE), air sparging and in-

well stripping (Staudinger et al., 1997; Lundergard and LaBrecque, 1995; Miller, 1996). Crow et 

al. (1987) evaluated soil vapor extraction (SVE) to control and remove hydrocarbon vapors from 

a subsurface formation. This method uses vacuum pumps at extraction well to withdraw air from 

wells so that it allows atmospheric air to enter the subsurface formation. Air may, or may not, be 
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injected in other wells.  A combination with thermal enhancement or biodegradation can improve 

the process. Also, it is noted that this technique may be used for conventional liquid recovery. Air 

sparging is simply air injection below water table and typically cooperated with SVE to clean both 

vadose and saturated zones. In-well stripping involves pumping of contaminated water from the 

target area into a well, and then pumping atmospheric air from the surface to sparge the water in 

the well. Therefore, the contaminants are cleaned by volatilization within the well casing, then the 

water is pumped back out of the well through screens. 

Second, flushing technology includes water injection (so-called pump-and-treat), alcohol 

or cosolvent injection, surfactant injection and in-situ oxidation (Fountain, 1998). Pump-and-treat 

is the most widely applied method for in-situ subsurface remediation because it simply injects 

water to displace subsurface contaminants. It is now known, however, that remediation of 

contaminated areas by pump-and-treat may take a significant amount of time, as much as decades 

to centuries, because NAPLs are trapped by capillary forces in porous media with often negligible 

solubility to water (NRC, 1994; Taber, 1969; Haley et al., 1991). Such a limitation of pump-and-

treat can be greatly enhanced by using surfactant injection, so-called surfactant-enhanced aquifer 

remediation (SEAR), which reduces residual contaminants by lowering capillary force and 

improving NAPL’s solubility (Jackson, 1993; Oolman et al., 1995; Londergan et al., 2001). For 

example, Oolman et al. (1995) considered a pump-and-treat system with surfactant solution to 

clean up a pool of DNAPL containing TCE and other chlorinated solvents from the subsurface at 

Hill Air Force Base, Utah. Their coreflooding experiments, however, showed that approximately 

one-third of the DNAPL initially present was not recovered by water injection. With 2 pore volume 

of subsequent surfactant injection, the remaining oil saturation was reduced down to one order of 

magnitude less. Their field test was reported to be successful by recovering more than 23,000 
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gallons of DNAPL in one million gallons of contaminated ground water by using both pump-and-

treat and SEAR. Cosolvent/alcohol flooding is similar to SEAR. It lowers interfacial tension with 

DNAPL and provides efficient recovery. In-situ oxidation can be applicable for those contaminants 

readily oxidized such as chlorinated solvents and gasoline-related compounds, but its performance 

may be limited by the difficulties of handling acids and by the presence of oxidation-resistant 

contaminants. 

 
Figure 2.1: A schematic design of a surfactant enhanced aquifer remediation (SEAR) operation 

(Jackson, 1993) 

 

Figure 2.1 shows a schematic of SEAR operation showing a single surfactant injection well 

and a single extraction well. A similar design can equally be accommodated for cosolvent/alcohol 

flooding as well as pump-and-treat. These various in-situ remediation methods unfortunately have 

been shown to be applied with limited success in actual field treatments. Among many, subsurface 

heterogeneity has been regarded as a major impediment, because it hinders the injected fluids from 

contacting the contaminants in less permeable areas.  

A literature review reveals successful foam-assisted remediation treatments for both 

LNAPLs and DNAPLs (Peters et al., 1996; Hirasaki et al., 1997; Hirasaki et al., 2000; Mamum et 
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al., 2002) even in the presence of permeability contrasts. The benefit of using foams for NAPL 

remediation comes from its versatility (Lee and Kam, 2013): first, by mixing both gas phase and 

surfactant-laden aqueous phase, the resulting mixture forms dispersed bubbles isolated by thin 

foam films, essentially alleviating gravity segregation (i.e., the gas phase that tends to migrate 

upward is blocked); second, although aqueous phase flows into smaller pores and gas phase flows 

into large pores, as is the case of conventional two-phase flow, the gas phase moving together with 

foam films experiences a dramatic increase in viscosity due to the drag of films at the pore wall. 

This increase in effective gas viscosity (or, decrease in gas mobility, equivalently) greatly enhances 

the stability of the displacement front preventing viscous fingering; third, although foam flows 

into the high-permeability region preferentially at the beginning of foam injection, the low 

capillary pressure environment contributes to the formation of more stable foams, diverting 

subsequent foams into the low permeability region where capillary pressure is high. In other words, 

foam diversion into the low permeability regions is endowed by foam’s sensitivity to capillary 

pressure which counteracts with permeability. 

Hirasaki et al. (1997) demonstrated field application of surfactant/foam for DNAPL 

remediation in heterogeneous formation at Hill Air Force Base in Utah. The injected surfactant 

solution was intended to mobilize and solubilize the contaminants at the bottom of aquifer, and 

subsequently injected foam was designed to divert following surfactant solution to low 

permeability zones by blocking high permeability zones. After surfactant/foam process, the 

average DNAPL saturation in the field was reduced from 0.3% down to 0.03%. Figure 2.2 shows 

a similar example from foam deep-vadose-zone remediation showing how foam works in the 

presence of high permeability streaks in highly heterogeneous porous media. 
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Figure 2.2: In-situ foam-assisted remediation operations in deep-vadose zones (www.pnl.gov) 

 

It is necessary to define what foam is in order to understand what foam does and how foam 

flows in porous media. Foam is a dispersion of gas bubbles in a continuous liquid phase while gas 

bubbles are disconnected by thin liquid films, so-called lamellae (Rossen, 1996). Therefore, thin 

liquid films, or foam films, are surrounded by gas from both sides and surfactant molecules in the 

liquid help those films to be stable. Typically, foam film thickness ranges from only few nano 

meters to micro meters (Bergeron et al., 1993; Farajzadeh et al., 2008). Unlike “bulk” foam in 

open space (e.g., within a pipe, in a cup, etc.), foam in “porous media” has a gas-bubble size 

smaller than the characteristic length of the flow conduits (i.e., pore body size). In water-wet 

system, the surfactant-dissolved liquid phase tends to coat grain surfaces and be connected as 

wetting films, while the gas phase tends to be dispersed and isolated by the liquid films, as 

schematically shown in Figure 2.3. 
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Figure 2.3: A schematic of foam structure in porous media (Kovscek and Radke, 1994) 

 

While flowing in porous media, foam films may generate and collapse, which is, often to 

be referred as dynamic in-situ mechanisms of lamella creation and coalescence. Typically, foams 

are created by snap-off, lamella division and leave-behind mechanisms (Kovscek and Radke, 

1994). Roof (1970) first identified snap-off, a repetitive bubble generation process that depends 

on the level of fluctuation in capillary pressure. It happens when gas phase first enters a narrow 

pore throat initially filled with water and subsequently the gas phase comes out of the pore throat 

(i.e., an increase in capillary pressure first, followed by a sufficient decrease in capillary pressure). 

Lamella division takes place when existing foam films are mobilized by enough pressure gradient 

and divided into multiple films at the downstream pore junctions. Leave-behind mechanism 

describes liquid lenses (which may thin down to foam films in the presence of surfactant molecules 

when capillary pressure rises) left behind when non-wetting gas phase is introduced into initially 

water-saturated media. 
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On the other hand, among many, foams are destructed by capillary-suction force. Capillary 

suction causes foam film to become thinner and the two surfaces of the film to interact each other 

more. The concept of capillary-suction for foam coalescence was firstly introduced by Derjaguin 

and coworkers (1936, 1939a, 1939b) by using disjoining pressure which is a combination of 

electrostatic repulsive force and van der Waals attractive force.  

 
 

Figure 2.4: Foam stability across Pc* or Sw*  (Khatib et al., 1988) 

 

How active lamella creation and coalescence mechanisms are within porous media depends 

on numerous factors such as surfactant chemistry and concentration, salt type and concentration, 

adsorption kinetics, interfacial tension, capillary pressure, rock mineralogy and so on (Aronson et 

al., 1994), and they all affect foam rheological properties. Putting lamella creation and coalescence 
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mechanisms together, the resulting steady-state foam texture (often unknown) can be related to 

apparent foam viscosity or gas phase mobility reduction in foam modeling. 

The sensitivity of foam stability to capillary pressure is related to water saturation (Sw) 

within porous media. As Khatib et al. (1988) observed, there exists a threshold Pc value, called 

“limiting capillary pressure (Pc*)”, above which foams cannot sustain in the media, and this 

capillary pressure value can be translated into “limiting water saturation (Sw*)”, a threshold Sw 

value below which foams cannot survive. This abrupt change in foam stability across Pc* or Sw*, 

as shown in Figure 2.4, has been well supported by following studies (Jimenez and Radke, 1989; 

Aronson et al., 1994; Rossen and Zhou, 1995). A small value of Sw* means that the particular 

surfactant solution in use is a good former creating relatively stable foams even at lower water 

saturation. 

 
 

Figure 2.5: Effect of rock permeability on limiting water saturation (Lee and Kam, 2013) 
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The fact that foam’s sensitivity is related to Pc* (or Sw*) enables foam to overcome 

subsurface heterogeneity. It is because foam films are more stable in the high-permeability zone 

due to smaller Sw* than in the low-permeability zone, and therefore the subsequent fluid can be 

diverted into the low-permeability zone, if Pc* are comparable as shown in Figure 2.5. Of course, 

how effectively this diversion process takes place depends on medium properties as well as foam 

characteristics. 

 
 

Figure 2.6: Effect of rock permeability on apparent foam viscosity (Lee et al., 1991) 

 

The capability of foams to overcome formation heterogeneity has been proved by many 

experimental studies. Lee et al. (1991) studied the relationship between apparent viscosity of foam 

and rock permeability. As shown in Figure 2.6, foam tends to have higher apparent viscosity as 

rock permeability increases. Bertin et al. (1999) investigated foam diversion using a sandstone 

core inserted in sandpack system with permeability contrast of 67. Li et al. (2010) carried out foam 

flooding in two-layered system with permeability contrast 19. During both experiments, foam 

swept the heterogeneous system evenly by overcoming permeability contrasts.  
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Foam stability is also shown to be sensitive to oil saturation (So), because oil phase can 

enter the interface between gas and surfactant solution and spread, resulting in a significant 

reduction in limiting capillary pressure (Nikolov et al., 1986; Koczo et al., 1992; Svorstøl et al., 

1996). Experimental data from difference sources (Law et al., 1992; Mannhardt and Svorstøl, 

1999) show that foam is not created easily, or once present, foam breaks down abruptly, if So is 

higher than a “critical oil saturation (So*)” as shown in Figure 2.7. This implies that those oils 

deteriorating foam stability to a higher degree tend to have a smaller value of So*. 

 
Figure 2.7: Foam apparent viscosity as a function of oil saturation (Svorstøl et al., 1996) 

 

To analyze and model multiphase flow in porous media with foams, understanding the role 

of foam films or bubble population is a must. Previous studies show that the relative permeability 

to liquid phase (i.e., water and oil) is not affected while the relative permeability to gas phase is. 

The presence of foams is also shown to affect gas viscosity significantly due to the drag of foam 
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films at the rock surface (Bernard et al., 1965; Kovscek et al., 1997). Separating these two 

components (i.e., change in gas relative permeability vs. change in gas viscosity), however, is 

complex.  

In general, two types of foam modeling techniques are widely used: bubble-population-

balance model and local-equilibrium (or local-steady-state) model. Bubble-population-balance 

model explicitly describes the dynamics of lamella generation and coalescence to obtain the 

number of foam films (or foam texture) and  model foam flow in porous media (Falls et al., 1988; 

Friemann et al., 1991; Kovscek et al., 1995; Myers and Radke, 2000; Kam and Rossen, 2003; Chen 

et al., 2010; Zitha and Du, 2010), while  local-equilibrium model uses a pre-defined local steady-

state foam resistance, in terms of apparent gas viscosity or gas mobility, which may change as a 

function of water and oil saturations (Patzek and Myhill, 1989; Mohammadi et al., 1993; Lau and 

Coombe, 1994; Surguchev et al., 1995; Shrivastava et al., 1999; Rossen et al., 1999; Cheng et al., 

2000).  

 The local-equilibrium modeling can be combined with fractional flow theory to analyze 

how foam migrates in porous media. Buckley and Leverett (1942) first developed fractional-flow 

theory for two phases (water and oil). Helfferich (1981) extended this theory to multi-component, 

multi-phase displacement in porous media with coherence theory, which is later followed by other 

studies such as Pope (1980), Lake (1989), and Falls and Schulte (1992a, b) for chemical enhanced 

oil recovery (EOR). For foam transport in porous media, Mayberry et al. (2008) applied three-

phase fractional flow theory to foam displacement in presence of oil, where the effective gas 

viscosity is kept constant irrespective of phase saturations. A similar model with two phases (gas 

and water) was developed for deep vadose zone remediation (Roostapour and Kam, 2012), a 
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layered geological system (Rosman and Kam, 2009), miscible CO2 foam floods (Ashoori et al., 

2010), and three-phase immiscible foam EOR (Zanganeh et al., 2011; Lee et al., 2013). Although 

it is more complicated, bubble-population-balance modeling technique can also be combined with 

fractional flow analysis, if dynamic mechanisms of lamella creation and coalescence are of 

importance (Kam and Rossen, 2003; Dholkawala et al., 2007; Afshapoor et al., 2010; Roostapour 

and Kam, 2013). 

 Foams can be introduced into the media by injecting gas and surfactant solution together 

(so-called “co-injection”) or by alternating surfactant and gas in multiple cycles (so-called 

“surfactant-alternating-gas (SAG)”). In either case, the use of surfactant preflush (i.e., injecting 

slugs of surfactant solution prior to foam injection) is a common practice to satisfy surfactant 

adsorption. Unless surfactant adsorption is satisfied prior to foam injection, the loss of surfactant 

molecules from the injected foams limits foam propagation in porous media. The adsorption rate 

of surfactant molecules onto the rock surface depends on the properties of surfactant and rock/soils. 

Generally, a Langmuir-type isotherm model is used to describe the adsorption rate (Grigg and Bai, 

2005; Goloub et al., 1996; Trogus et al., 1977). In multi-dimensional systems, several physical 

mechanisms such as diffusion, tortuosity, and mechanical dispersion also affect the transport of a 

surfactant through porous media. Diffusion is a spreading of solutes (or surfactant molecules in 

this case) due to the concentration gradient within aqueous phase, while mechanical dispersion is 

a mixing that occurs due to local variations in velocity. The dispersion coefficient (or dispersivity) 

to quantify these mechanisms can be determined by coreflooding experiments (Ramirez et al., 

1980). 
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CHAPTER 3 

MODELING OF FOAM FLOW IN ONE-DIMENSIONAL POROUS MEDIA 

BY USING METHOD OF CHARACTERISTICS (MoC) 

This chapter is devoted to the development of foam model which can analyze how foam 

propagates in a one-dimensional medium initially saturated with different phases such as water, 

gas and oil. The nature of displacement is investigated in  terms of initial conditions as well as 

other input parameters associated with injection conditions, foam strength, sensitivity of foams to 

water and oil saturations, etc. 

3.1 Methodology 

3.1.1 Formulation of MoC for foam fractional flow analysis 

Three-phase fractional flow theory, which is a subset of Method of Characteristics (MoC) 

for the flow of three immiscible phases in porous media, is employed as a major modeling tool in 

this study (see Dake (1978) and Lake (1989) for more details about mathematical background and 

derivation procedures). Assuming that the flow is horizontal and one-dimensional with negligible 

capillary pressure gradient, gravity, and mass exchange between different phases, the governing 

partial differential equation from material balance is 
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where   is porosity, Sj is saturation of phase j, t is time, ut is the total superficial velocity, fj is the 

fractional flow of phase j, and x is distance or length. In dimensionless differential equation form,  



20 

 

 ,0









D

j

D

j

x

f

t

S
  j = w, o, or g (3.2) 

where the dimensionless time (tD) and the dimensionless distance (xD) are given by 
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respectively, where q represents flow rate, and A and L represent the cross-sectional area and 

length of the medium. 

The fractional flow of phase j (fj) during conventional three phase flow (water, oil and gas) 

can be written as 

 ,

































g

rg

o

ro

w

rw

j

rj

gow

j

t

j

j

kkkk

uuu

u

u

u
f


  j = w, o, or g (3.4) 

where uj, μj are the superficial velocity and viscosity of phase j, krj is the relative permeability to 

phase j, and subscripts w, o, and g represent phase j such as aqueous phase (water with surfactant 

chemicals), oleic phase (oil), and gaseous phase (gas). Note that ut = uw + uo + ug, and Darcy’s law 

is applied for transport equation, i.e.,  
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for water, oil and gas, where qj is the flow rate of phase j, k is absolute permeability of the medium, 

and the pressure gradient, ∇P, is the pressure drop (ΔP) across the medium over the length of L. 

One common technique to accommodate the presence of foams is to reduce gas mobility 

by a certain magnitude in gas transport equation, often called mobility reduction factor (MRF), 

without altering the transport equations for water and oil. For example,   
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Note that MRF = 1 for conventional three phase flow (i.e., no foams), and MRF > 1 for the flow 

with foams. Although there are no clear cuts, MRF is typically greater than thousands, or as high 

as hundreds of thousands, for fine-textured low-mobility foams (so called “strong foams”), and is 

less than tens or hundreds for coarse-textured high-mobility foams (so called “weak foams”). The 

fractional flow of phase j (fj) in the presence of foams is then expressed by  
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 The solutions obtained from MoC by solving Eq. (3.2) have the nature that the condition 

inside the medium is changing from one constant state (so called “initial condition (I)”) to another 

constant state (so called “injection condition (J)”) over time during which the waves representing 

different saturation values are propagating from the inlet to the outlet. The saturation velocity of 

phase j, given by dfj/dSj, represents the dimensionless velocity (xD/tD) of a particular saturation of 



22 

 

interest (i.e., dfj/dSj = xD/tD for any arbitrary Sj). Based on the coherence theory (Helfferich and 

Klein, 1970), the saturation velocity along the path from I to J must be the same for all three phases 

and thus can be expressed by σ, i.e., 

 


g

g

o

o

w

w

dS

df

dS

df

dS

df
 (3.10) 

Note that σ is not a fixed value but varies as a function of xD and tD along the saturation path. 

Although there are three governing equations (cf. Eq. (3.2)), one for each phase, the displacement 

problem has only two degrees of freedom because of the material balance equations as follows: 

 1 gow SSS  and 1 gow fff  (3.11) 

which lead to the following eigenvalue problem (Helfferich and Klein 1970; Lake 1989): 
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where fww=dfw/dSw, fwo=dfw/dSo, fow=dfo/dSw and foo=dfo/dSo. The two resulting eigenvalues are 

      5.02
45.0 owwooowwooww ffffff   (3.13) 

where σ+ and σ- are fast and slow moving saturation waves, respectively. Resulting eigenvectors, 

which can be calculated by putting Eqs. (3.12) and (3.13) together, do not play a major role in the 

problem-solving process. The two terms in Eq. (3.10), dSw and dSo, can be obtained by rearranging 

the above equations: 
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 In general, fractional flow solutions can be spreading waves, shock waves, or a 

combination of both. The dimensionless velocity (vD) for a spreading wave is expressed by 
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and for a shock wave,  
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where ∆ denotes the difference across the shock wave. The shock, or the discontinuity in saturation, 

occurs when the saturation velocity cannot increase monotonically from injection condition (J) to 

initial condition (I) (Buckley and Leverett, 1942). 

3.1.2 Construction of solution paths in ternary diagram and fractional flow curve 

Finding fractional flow solutions to MoC equations, as demonstrated by the eigenvalue 

problem (Eq. (3.12) to (3.14)), is equivalent to obtaining the saturation velocities of all saturations 

involved. An example is shown in Figure 3.1 by using a ternary diagram (Figure 3.1(a)) and three 

fractional flow curves (Figure 3.1(b)), where the initial condition (I) is given by I:(Sw, So, Sg) = 

(0.8, 0.2, 0) and the injection condition is given by J:(fw, fo, fg) = (0.2, 0, 0.8). Note that this J in 

terms of injection fractions (i.e., J:(fw, fo, fg)) is then converted into J in terms of phase saturations 

(i.e., J:(Sw, So, Sg)) by using Eq. (3.9) for all three phases involved. 
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Figure 3.1: Three-phase displacement solution from fractional flow theory with: I(Sw,So,Sg) = 

(0.8,0.2,0) and J(fw,fo,fg) = (0.2,0,0.8) 

 

Once I and J are decided, the next step is to determine how to go from I to J. In general, 

there are two possible paths from I to J based on two calculated eigenvalues (σ+ and σ- in Eq. 

(3.13)) with two intersection points in between (i.e., one intersection point for each path). These 

intersection points, so-called intermediate state and denoted by IJ in Figure 3.1(a), together with 
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two different saturation paths are represented by Path 1 and Path 2 in Figure 3.1(a). The presence 

of IJ is always guaranteed because of two different mobility values associated at that single point, 

and furthermore the size of IJ increases with time proportionally. Between the two paths (i.e., σ+ 

followed by σ-, or σ- followed by σ+), the final solution is the one which satisfies the velocity 

constraint (i.e., saturation velocity must increase from J to I monotonically), that is, Path 1 in this 

particular case. Path 1 and Path 2 are also shown in the domain of fj vs. Sj in Figure 3.1(b), by 

thick solid lines and thin dashed lines respectively, for individual phases. It should be noted that 

each of three phases has its own three constant states (I, J and IJ) and saturation paths (eg. for 

aqueous water phase, the path connects Sw
I, Sw

IJ, and Sw
J); one can use the fractional flow curve 

of any of those three phases to solve for wave propagation, however, because the solutions are 

guaranteed to be the same as defined by coherence theorem explained earlier.  The change in 

saturation velocity can be checked more conveniently with Figure 3.1(b) because saturation 

velocity is no other than the slope at the saturation of interest.   

More details on the construction of saturation path during three-phase flow are available 

elsewhere (Lake, 1989; Mayberry et al., 2008; Zanganeh et al., 2011). 

3.1.3 Modeling foam sensitivity to water and oil saturations 

Although the easiest way of handling the reduction in gas mobility is to apply a fixed value 

of MRF (Mayberry et al., 2008), it is obviously an oversimplification because MRF is a function 

of Sw and So. A better way to deal with it is, first, to identify the full-strength MRF value 

corresponding to the fine-textured foams (MRFfull) when there is a sufficient amount of water and 

a negligible amount of oil (i.e., MRF = MRFfull for Sw > Sw* and So < So*), which typically comes 

from laboratory flow experiments. Then, the next step is to assign a reduced value for MRF (for 
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example, MRF = 1 if foam completely collapses down), if the medium is too dry (Sw < Sw*) or 

contains too much oil (So > So*). Because such a discontinuity at Sw* or So* cannot be handled 

easily in numerical calculations, incorporating a transition from full-strength foams to no foams 

over the length of 2εw (for Sw) or 2εo (for So) is helpful for modeling and simulation purpose. 

Therefore, if Sw* is considered 

MRF  = MRFfull (full strength foam)  if Sw ≥ (Sw*+εw),  

 = 1 (no foam)    if Sw ≤ (Sw*-εw),  

 =   1
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 if (Sw*-εw) < Sw < (Sw*+εw),  

and if So* is considered 

MRF  = MRFfull (full strength foam)  if So ≤ (So*-εo),       

 = 1 (no foam)    if So ≥ (So*+εo),       
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 if (So*-εo) < So < (So*+εo) 

as illustrated in Figure 3.2. The effect of Sw* and So* can be expressed as Fw and Fo, respectively. 

If MRF changes sharply around Sw* and So*, solving for the saturation paths may suffer from 

convergence and instability issues.  

Therefore, if both Sw* and So* are considered 

 owfull FFMRFMRF  )1(1  (3.17) 
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Figure 3.2: Foam model with effect of water and oil saturation 

 

 The transport equations (cf. Eqs. (3.5), (3.6), and (3.7)) require relative permeability 

functions. This study assumes the simplest forms as follows: 
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where krw
o, kro

o, and krg
o are the end-point relative permeability values for water, oil and gas 

respectively; Swr, Sor, and Sgr the residual saturations; and nw, no, ng the exponents. The parameter 
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and viscosity values are summarized in Table 3.1. These simple shapes of relative permeability 

functions allow the interpretation of the outputs easier, numerical calculations more stable, and 

convergence improved. Note that the aqueous phase in this study is assumed to always have 

surfactant chemicals because of surfactant pre-flush. 

 

Table 3.1: Parameters for foam model study 

Input Parameters 

μw = 1 krw
o = 1 Swr = 0.1 nw = 1 

μo = 0.8 kro
o = 1 Sor = 0 no = 1 

μg = 0.02 krg
o = 1 Sgr = 0 ng = 1 

 

 All calculations to solve MoC equations and saturation velocities are conducted by using 

Microsoft Excel Visual Basic for Applications (VBA). The simulator developed for comparison is 

based on 1D finite difference method, implicit in time and forward difference in space. Similar 

versions are available elsewhere (Mayberry et al., 2008; Afsharpoor et al., 2010). 

3.2 Results 

Six different cases are presented in this study. In first two cases (Case 3.1 and Case 3.2), 

foam is assumed to be at its full strength irrespective of water and oil saturations, i.e., MRF = 

MRFfull. Case 3.1 has an initial condition with water and oil only, without gas (mimicking DNAPL 

below the groundwater level), whereas Case 3.2 has an initial condition with all three phases 

(mimicking LNAPL above the groundwater level). Various MRF values, ranging from 1 to 1000, 

are examined.   
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In the next two cases, the effects of Sw* and So* are investigated individually (not together) 

for Case 3.3 and Case 3.4 respectively, by keeping other conditions the same. Note that a low Sw* 

means a strong foamer which creates and maintains stable and low-mobility foams, while a high 

Sw* means a poor foamer which has a hard time in creating, or maintaining if created already, fine-

textured foams. Sw* does not only reflect surfactant formulations and concentrations, but also 

many other parameters affecting foam stability such as medium wettability, water composition, 

temperature, pore structures, and so on. Similarly, a low So* means a foam very sensitive to even 

a small amount of oil, while a high So* means a foam tolerating oil saturation to some degree.  

The last two cases demonstrate how foam simulator guided by fractional flow analysis, as 

shown in and verified by Case 3.1 through Case 3.4, can deal with more realistic situations. More 

precisely, Case 3.5 shows both modeling and simulation results when Sw* and So* are imposed 

together, and Case 3.6 shows the case where the initial saturation is not uniform but varies such 

that oil saturation is relatively high in the middle and diminishes towards the inlet and outlet 

progressively. In both cases, fractional flow analysis cannot be applied easily because of the 

complexities (i.e., two discontinuities caused by Sw* and So* in Case 3.5, and possible collisions 

of saturation waves caused by non-uniform saturations in Case 3.6) where foam simulation can be 

of great help.  

In all cases examined in this study, the injection condition (J) is set at 80% foam quality 

(i.e., fg = 0.8 and fw = 0.2), and the initial condition (I) is either (Sw, So, Sg) = (0.8, 0.2, 0.0) or (Sw, 

So, Sg) = (0.3, 0.2, 0.5). For those calculations requiring transitions near Sw* and So* (Case 3.3 

through Case 3.6), εw and εo are set at 0.05. The medium has a linear geometry with the cross 

sectional area of 0.5 m2 and the length of 5 m (Except for pressure calculations, actual medium 
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length does not play a role in this study because of the use of dimensionless variables and 

parameters). 

The selection of model parameters, initial conditions, and injection conditions in Case 3.1 

through Case 3.6 is somewhat arbitrary at this point, but intends to cover the range that one can 

observe in actual field applications. For example, MRF value of 1 represents a simple air-water 

injection with no foam; MRF value of 10 to 100 represents coarsely-textured weak foam; and MRF 

value of 1000 represents fine-textured strong foams. In addition, Sw* values of 0.0, 0.4, and 0.6 

represent three types of foam stability to water saturation such as high stability (insensitive to Sw), 

moderate stability (moderately sensitive to Sw), and low stability (very sensitive to Sw), while So* 

values of 0.0 (should it be 1.0 rather than 0.0??) and 0.1 represent two types of foam stability to 

oil saturation such as high stability (insensitive to So) and low stability (very sensitive to So). The 

ranges of these parameters, of course, can be narrowed down further, as the conditions in field 

treatments become available. 

3.2.1 Translation of injection condition from fractional flow to saturation 

The use of MoC for multiphase flow analysis specifies initial conditions (I) with phase 

saturations and injection conditions (J) with flowing fractional flows. As a result, the use of ternary 

diagram for multiphase flow analysis (cf. Figure 3.1(a)) requires that the injection conditions given 

by fractional flows be translated into saturation domain. 

An example is shown in Figure 3.3 which illustrates how gas-water two-phase fractional 

flow curve changes as a function of full-strength foam MRF, MRFfull, (Figure 3.3(a)) and how the 

injection condition locates in the ternary diagram in terms of injection saturations (Figure 3.3(b)). 

As expected, as MRF increases from MRFfull = 1 to MRFfull = 1000, the fractional flow curve shifts  
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Figure 3.3: Effect of MRF on two-phase fractional flow (injection condition) with 80% foam 

quality 

 

to the upper left corner (Figure 3.3(a)) and the resulting injection water saturation (Sw
J) in response 

to 80 % injection foam quality (fw
J=0.2 or fg

J=0.8) decreases dramatically from about 0.93 (for 

MRFfull = 1) to 0.11 (for MRFfull = 1000) (see those filled circle marks in Figure 3.3(a)). These Sw
J 

values can also be mapped in the ternary diagram lined up at the value of So = Sor (see filled square 
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marks along the side line in the left-hand side of the ternary diagram in Figure 3.3(b)) where the 

position of Sw
J varies significantly depending on MRFfull values. 

 
 

 
 

Figure 3.4: Effect of Sw* on injection condition with 80% foam quality (MRFfull = 100 and εw = 

0.05) 

 

Determination of injection saturation (Sw
J) becomes more complicated if Sw* is applied. 

Figure 3.4 shows an example illustrating how Sw* impacts the fractional flow curve when MRFfull 
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= 100 and how Sw
J values are influenced accordingly in the ternary diagram at the Sw* value of 

0.2, 0.4, 0.6, and 0.8. As expected, for any value of Sw*, MRF value for Sw > Sw*+εw is the same 

as MRFfull (meaning full-strength foams), MRF value for Sw < Sw*-εw is the unity (meaning no 

foams), and liner interpolation in between. In general, the injection condition of fw
J = 0.2 coincides 

with Sw range between Sw*-εw and Sw*+εw (i.e., within the very steep portion of the curves) in all 

cases of Sw* = 0.2, 0.4, 0.6, and 0.8 (Figure 3.4(a)). Figure 3.4(b) shows the position of Sw
J values 

in the ternary diagram. Although MRFfull values are all the same (MRFfull = 100), Sw
J for a larger 

value of Sw* has a significantly lower MRF at the injection condition (for example, Sw
J = 0.23 

when Sw* = 0.2 vs. Sw
J = 0.75 when Sw* = 0.8) and is therefore positioned closer to the lower and 

left-hand side corner of the ternary diagram. Physically, this happens because a poor foamer (large 

Sw*) does not effectively reduce gas mobility, leading to a relatively low gas saturation and high 

water saturation. 

3.2.2 Case 3.1: Full strength foams (MRF = MRFfull) with water and oil initially 

Figure 3.5 shows ternary diagrams at MRF = 1, 10, 100 and 1000 when 80% quality foams 

are injected into the medium initially at (Sw, So, Sg) = (0.8, 0.2, 0.0). As discussed earlier, although 

the initial conditions remain at the same locations, the injection conditions vary significantly – Sg
J 

increases dramatically (or Sw
J decreases dramatically, equivalently) as MRF increases and thus 

more gas phase becomes trapped due to the increase in gas viscosity. The intermediate state (IJ) is 

positioned within the diagram when MRF values are 1 and 10, while it is located at the corner 

when MRF values are 100 and 1000. Note that as shown in Figure 3.5, the direction of the solution 

paths is distinctly different between the first two cases and the second two cases, which is solely 

caused by MRF. The details of these differences are described in the following figures. 
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Figure 3.5: Case 3.1: effect of MRF on foam displacement paths with I:(Sw,So,Sg) = (0.8,0.2,0) 

and J:(fw,fg) = (0.2, 0.8) 

 

Figure 3.6 shows a comprehensive analysis of the system when MRF = 1 (no foam case) 

by using fractional flow curves, effluent history, saturation profile, and time-distance diagram all 

together, with the initial condition of (Sw
I, So

I, Sg
I) = (0.8, 0.2, 0.0) and the injection condition of 

(fw
J, fo

J, fg
J) = (0.2, 0.0, 0.8). Because there is no mobility control in this case, the injection water 

saturation is relatively high (Sw
J = 0.93), and the entire process is dominated by very fast moving 

spreading waves, especially those near Sw
I, and by very slow shock wave between Sw

IJ and Sw
J. 

Note that the analysis of saturation velocities would be exactly the same, no matter which phases 
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are used for velocity interpretation, as described by coherence theory. Because of a dramatic 

change in wave velocity at IJ (i.e., σ+ and σ-), there exists a wide intermediate state. 

  

  

Figure 3.6: Case 3.1: foam displacement at MRF = 1 with I:(Sw,So,Sg) = (0.8,0.2,0) and J:(fw,fg) 

= (0.2, 0.8) 

 

Figures 3.7 through 3.9 show the results with MRF = 10, 100, and 1000, respectively. As 

MRF increases (or, as the effective gas viscosity increases, equivalently), the injection water 

saturation decreases (Sw
J = 0.60, 0.20 and 0.11 for MRF = 10, 100, and 1000, respectively). 

Although there are spreading waves between Sw
I and Sw

IJ at MRF =10 (Figure 3.7), the velocity 

of the fastest spreading wave (near Sw
I) is reduced significantly compared to MRF = 1. This implies  
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Figure. 3.7: Case 3.1: foam displacement at MRF = 10 with I:(Sw,So,Sg) = (0.8,0.2,0) and J:(fw,fg) 

= (0.2, 0.8) 

 

that even with a modest increase in MRF (i.e., from MRF = 1 to MRF = 10), the breakthrough 

time is improved significantly (almost immediate when MRF = 1 vs. 0.20 PV when MRF = 10). 

When MRF = 100 and 1000 (Figures 3.8 and 3.9), the position of Sw
IJ is located in the other side 

of fractional flow curve, and the displacement becomes governed by two saturation shocks (a fast 

moving shock between Sw
I and Sw

IJ, followed by a slow moving shock between Sw
IJ and Sw

J). This 

proves why the formation and propagation of strong foams are important for improved sweep 

efficiency – strong foams with relatively high effective foam viscosity sweep the medium better  
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Figure 3.8: Case 3.1: foam displacement at MRF = 100 with I:(Sw,So,Sg) = (0.8,0.2,0) and 

J:(fw,fg) = (0.2, 0.8) 

 

by achieving a piston-like displacement. It should be noted that other than a slight difference in 

Sw
J, there is almost no difference between the two cases of MRF = 100 and MRF = 1000. Although 

not shown here, the cases with MRF more than 1000 makes almost no difference in terms of 

displacement compared with MRF = 100. 

Figure 3.10 shows pressure profile within the system at tD = 0.4 and inlet pressure during 

foam injection, assuming that total injection rate (qt) = 0.0001 m3/s, system length (L) = 5 m, cross-

sectional area (A) = 0.5 m2, absolute permeability (k) = 10-12 m2, and outlet pressure (Pout) = 
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101325 Pa (1 atm). As expected, higher pressure gradient is observed at higher MRF, which makes 

a dramatic difference in terms of inlet pressure. For the cases of MRF = 100 and 1000, there is a 

huge difference in pressure while their displacement processes are similar. 

 

  

  

Figure 3.9: Case 3.1: foam displacement at MRF = 1000 with I:(Sw,So,Sg) = (0.8,0.2,0) and 

J:(fw,fg) = (0.2, 0.8) 

 

The recovery factor in Figure 3.11 shows that the displacement efficiency is improved 

significantly with higher MRF values, but there is not much difference between MRF = 100 and 

1000. For shallow subsurface remediation, the steady-state inlet pressure buildup observed with  
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Figure 3.10: Case 3.1: effect of MRF on pressure 

 

 

Figure 3.11: Case 3.1: comparison of recovery factor varying MRF  

 

MRF = 100 and 1000 may not be allowed due to the concerns about disturbing the underground 

system and/or displacing the contaminants out of the area of interest. It is interesting to find, 

however, that even with MRF = 10, it takes only about 2.1 PV of foam injected to reach near 100 
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% recovery, which is a significant improvement compared to 3.5 PV required for no foam case 

(MRF = 1). 

3.2.3 Case 3.2: Full strength foams (MRF = MRFfull) with water, oil, and gas initially 

  

  

Figure 3.12: Case 3.2: effect of MRF on foam displacement paths with I:(Sw,So,Sg) = 

(0.5,0.2,0.3) and J:(fw,fg) = (0.2, 0.8) 

 

Figure 3.12 shows ternary diagrams when 80% quality foams are injected into the medium, 

initially at (Sw, So, Sg) = (0.5, 0.2, 0.3) with various MRF values (MRF = 1, 10, 100 and 1000). 

Even with some amount of gas phase present to represent LNAPL above water table, the injection 

water saturations are identical to the ones in Figure 3. 6. At low MRF values (MRF = 1 and 10), 
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the intermediate state IJ moves up in the ternary diagram as the injection water saturation (Sw
J) 

decreases (or, injection gas saturation (Sg
J) increases, equivalently). At high MRF values (MRF = 

100 and 1000), the IJ point is not within the ternary diagram any longer – rather, the IJ point is 

positioned at the side of the ternary diagram where only water and gas phases exist, and the general 

path from I to IJ and from IJ to J does not seem to vary significantly with MRF.  

  

  

Figure 3.13: Case 3.2: foam displacement at MRF = 1 with I:(Sw,So,Sg) = (0.5,0.2,0.3) and 

J:(fw,fg) = (0.2, 0.8) 

 

Figures 3.13 through 3.16 show the results with MRF = 1, 10, 100, and 1000, respectively. 

In all cases except the case with MRF of 10, two shocks between I and IJ and between IJ and J 
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govern the entire displacement process. With higher MRF, however, two shock fronts are 

propagating faster, and the displacement of oil is more efficient. Similar to Case 3.1, there is no 

significant difference between MRF = 100 and MRF = 1000. 

  

  

Figure 3.14: Case 3.2: foam displacement at MRF = 10 with I:(Sw,So,Sg) = (0.5,0.2,0.3) and 

J:(fw,fg) = (0.2, 0.8) 
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Figure 3.15: Case 3.2: foam displacement at MRF = 100 with I:(Sw,So,Sg) = (0.5,0.2,0.3) and 

J:(fw,fg) = (0.2, 0.8) 

 

Figure 3.17 shows corresponding pressure responses in terms of pressure profile at tD = 0.4 and 

change in inlet pressure during foam injection. Similar to Case 3.1, the pressure gradient during 

foam propagation is primarily affected by MRF values as shown by the steep slope of the pressure 

profile in the first half of the system. Figure 3.18 shows the recovery factor. As expected, the oil 

recovery is faster and more efficient with higher MRF. 
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Figure 3.16: Case 3.2: foam displacement at MRF = 1000 with I:(Sw,So,Sg) = (0.5,0.2,0.3) and 

J:(fw,fg) = (0.2, 0.8) 

 

  

Figure 3.17: Case 3.2: effect of MRF on pressure 
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Figure 3.18: Case 3.2: comparison of recovery factor varying MRF 

 

3.2.4 Comparison between fractional flow solutions and simulation results (Case 3.1 and Case 3.2) 

In order to confirm the accuracy of foam fractional flow solutions and foam simulation 

results, two cases of (Sw, So, Sg) = (0.8, 0.2, 0.0) with MRF = 10 and (Sw, So, Sg) = (0.5, 0.2, 0.3) 

with MRF = 100 are selected. Figures 3.19 and 3.20 show the comparison in terms of saturation 

profile and effluent history. The solid lines show the results from fractional flow theory and the 

dotted lines show the results from 1D numerical simulation with 100 grid blocks. Although a slight 

numerical dispersion is observed near shock waves, they are in good agreement and the numerical 

dispersion can be significantly reduced by increasing the number of grid blocks. In fact, the results 

of all other cases in Case 1 and Case 2 also agree well with simulation, even though not shown 

here.  
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Figure 3.19: Case 3.1: comparison between fractional flow solutions and simulation results in 

the case of I:(Sw, So, Sg) = (0.8, 0.2, 0.0) with MRF = 10 

 

  

Figure 3.20: Case 3.2: comparison between fractional flow solutions and simulation results in 

the case of I:(Sw, So, Sg) = (0.5, 0.2, 0.3) with MRF = 100 

 

3.2.5 Case 3.3: Foam strength adjusted by limiting water saturation (Sw*) 

The effect of limiting water saturation (Sw*) is examined at the Sw* values of 0.4 and 0.6, 

when the initial condition is (Sw, So, Sg) = (0.5, 0.2, 0.3) and MRFfull = 100. Although the selection 

of Sw* is somewhat arbitrary in this modeling study, it is made primarily because Sw* = 0.4 
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intersects the original path between IJ and J (see IJ and J in Figure 3.12 (c)), and Sw* = 0.6 

intersects original paths between IJ and J and between I and IJ (see I, IJ, and J in Figure 3.12 (c)). 

The new paths after applying Sw* values are shown in the ternary diagram of Figure 3.21. In 

contrast with the original path with no Sw* effect (Figure 3.12(c)), the MRF values at the injection 

water saturation (Sw
J) are 28.1 and 11.9 for Sw*=0.4 and 0.6, respectively (see Figure 3.4(b)), even 

though MRFfull = 100. Since Sw* value alters the saturations and MRFs at the injection condition, 

the different values of Sw* may produce very different displacement paths as shown in Figure 3.21. 

 

  

Figure 3.21: Case 3.3: foam displacement at MRFfull=100 with I:(Sw,So,Sg) = (0.5,0.2,0.3), 

J:(fw,fg) = (0.2, 0.8) and Sw* 

 

Figure 3.22 shows the detailed results for Sw* = 0.4. The dotted lines in saturation profile 

and effluent history are calculated by foam simulation with 1000 grid blocks. As expected, by 

placing Sw* between J and IJ, the injection saturation (Sw
J) moves closer to Sw* and therefore the 

location of IJ and the velocity of the shock wave are also affected. Because of sharply changing 

MRF around Sw = Sw*, a slight discrepancy in saturation profile and effluent history may occur 
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between fractional flow solutions and foam simulations, which essentially disappears with an 

increasing number of grid blocks. 

  

  

Figure 3.22: Case 3.3: Foam displacement at MRFfull=100 with I:(Sw,So,Sg) = (0.5,0.2,0.3), 

J:(fw,fg) = (0.2, 0.8), Sw* = 0.4 and So* = 1 

 

Figure 3.23 shows similar results for Sw* = 0.6. Because of higher Sw*, MRF values along 

I, IJ, and J are further reduced compared with those at Sw* = 0.4. This results in a higher gas 

mobility, which leads to a higher gas fractional flow and a lower gas saturation at the injection 

condition. Relatively low MRF at Sw* = 0.6 causes the displacement efficiency less favorable 
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compared with Sw* = 0.4. Both fractional flow solutions and foam simulation results with 1000 

grid blocks are in good agreement. 

  

  

Figure 3.23: Case 3.3: foam displacement at MRFfull=100 with I:(Sw,So,Sg) = (0.5,0.2,0.3), 

J:(fw,fg) = (0.2, 0.8), Sw* = 0.6 and So* = 1 

 

It should be noticed that because of Sw* = 0.4 and 0.6 with εw = 0.05, sharp corners are 

expected in factional flow curves at Sw = 0.35 - 0.45 in Fig 23 and at Sw = 0.55 - 0.65 in Figure 

3.23. Such a sharp corner is shown clearly at Sw = Sw* - εw = 0.55 in water fractional flow curve 

and at the corresponding points in oil and gas fractional flow curves in Figure 3.23(a).  
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3.2.6 Case 3.4: Foam strength adjusted by critical oil saturation (So*) 

 

  

  

Figure 3.24: Case 3.4: foam displacement at MRFfull = 100 with I:(Sw,So,Sg) = (0.5,0.2,0.3), 

J:(fw,fg) = (0.2, 0.8), Sw* = 0 and So* = 0.1 
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The effect of critical oil saturation (So*) is examined at the So* value of 0.1, when the initial 

condition is (Sw, So, Sg) = (0.5, 0.2, 0.3) and MRFfull = 100. As presented by the ternary diagram 

with no So* accounted for, this value of So* intersects the original path between I and IJ (Figure 

3.12(c)). Because the initial condition has oil saturation (So
I = 0.2)) higher than So* + εo (So = So* 

+ εo = 0.15) and the injection condition has oil saturation (So
J = Sor = 0.0)) lower than So* - εo (So 

= So* - εo = 0.05), MRF values change from MRF = MRFfull = 100 to MRF = 1 from J to I due to 

the imposed So*. Figure 3.24 shows detailed results for So* = 0.1. The displacement path from 

fractional flow theory is described in the ternary diagram. As shown in the fractional flow curve, 

there are three different shock waves; in this case, forming two different constant states (IJ2 is the 

constant state between σ+ and σ- while IJ1 is a new constant state created by So* = 0.1). The 

fractional flow solutions and foam simulation results with 1000 grid blocks match well when the 

effluent history and the saturation profile are contrasted. 

3.2.7 Case 3.5: Foam strength adjusted by limiting water saturation (Sw*) and critical oil saturation 

(So*) 

If both Sw* and So* are applied, the calculation becomes more complicated because a larger 

portion of the ternary diagram falls within Sw* - εw < Sw < Sw* + εw and So* - εo < So < So* + εo, 

where MRF changes from its full value (MRF = MRFfull) to the unity (MRF = 1). Dealing with 

these two discontinuities implies two things within the context of this study: (i) due to the presence 

of multiple sharp corners in the fractional flow curves as explained in Figures 3.23 and 3.24 which 

result in a wide range of possible solution paths, one cannot solve foam fractional flow curves 

easily; and (ii) because of this difficulty, it is convenient to rely on foam simulations at first in 

order to identify the paths ahead of fractional flow calculations - a good combination of time step  
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Figure 3.25: Case 3.5: Expected foam displacement at MRFfull = 100 with I:(Sw,So,Sg) = 

(0.5,0.2,0.3), J:(fw,fg) = (0.2, 0.8), Sw* = 0.4 and So* = 0.1 
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size and grid block size is required, however, to make the simulation stable and convergent.  

One example of such a case is shown in Figure 3.25 where Sw* = 0.4 and So* = 0.1 are 

imposed together and finding the saturation paths satisfying coherence theory is thus complicated. 

The task can still be done, even though it is slow, time-consuming, and labor-intensive (see 

numerous possible paths between J and IJ2 in Figure 3.25(a) for example). There exist three 

constant states - IJ2 between σ+ and σ-, IJ1 due to So* = 0.1 and IJ3 due to Sw* = 0.4. Again, the 

fractional flow solutions and foam simulation results with 1000 grid blocks show good agreements.  

3.2.8 Case 3.6: Non-uniform initial condition with Sw* and So* 

 

Figure 3.26: Case 3.6: Initial condition of MRFfull = 100 with non-uniform initial condition, 

J:(fw,fg) = (0.2, 0.8), Sw* = 0.4 and So* = 0.1 

 

The uniform initial conditions applied in all previous cases are not necessarily valid in 

actual field conditions. In fact, the typical distribution of contaminants is likely that the 

concentration is the highest near the center of the plume and decreases away from the center 
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gradually. Unfortunately such a non-uniform initial condition has been beyond the interest of 

fractional flow analysis because of complexity caused by the collision of numerous saturation 

waves. For those complex problems, foam simulation validated and guided by foam fractional 

flow analysis can be used. Figure 3.26 shows an example of non-uniform initial condition where 

the center of the plume has oil saturation as high as 0.3, and decreasing down to 0.2 and zero step 

by step, with no gas present.  

  

Figure 3.27: Case 3.6: Saturation profile and effluent history at MRFfull = 100 with non-uniform 

initial condition, J:(fw,fg) = (0.2, 0.8), Sw* = 0.4 and So* = 0.1 (100 grid blocks) 

 

Figures 3.27 and 3.28 show the saturation profile and effluent history constructed by foam 

simulation (not by the fractional flow analysis) at two different dimensionless times of 0.2 PV and 

0.4 PV with 100 and 500 grid blocks, respectively, where MRFfull = 100, Sw* = 0.4, and So* = 0.1. 

The results show that the stable foam injected at the inlet displaces oil plume efficiently. Enough 

resolution is needed, however, in order to see the change in saturations accurately – a numerical 

dispersion may significantly smear out the initial distribution of oil when 100 grid blocks are used, 

while such a symptom is improved somewhat at 500 grid blocks. Figures 3.27 and 3.28 
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demonstrate the strength of foam numerical simulation, which is ready to solve foam displacement 

in practical field applications once finely validated and tuned with analytical solutions from the 

MoC-based fractional flow solutions.  

  

Figure 3.28. Case 6: Saturation profile and effluent history at MRFfull = 100 with non-uniform 

initial condition, J:(fw,fg) = (0.2, 0.8), Sw* = 0.4 and So* = 0.1 (500 grid blocks) 

 

In contrast with Figure 3.28, one more case (Fig 3.29) is simulated when the non-uniform 

initial saturation profile is positioned at the inlet rather than at the center of the medium (cf. Fig 

3.26). The results in Figures 3.30 and 3.31 show that the solution in this case can be much more 

complicated because the injected foams interact with the oil initially present. Therefore, the effect 

of oil saturation on foam stability is inevitable. Except the position of oil bank, other conditions 

are the same as the case of Figures 3.26 through 3.28. Figures 3.30 and 3.31 show the saturation 

profile and effluent history at 0.2 PV and 0.4 PV with 100 and 500 grid blocks. Although some of 

injected gas passes through the oil bank because of the effect of oil, it propagates as a small foam 

bank just ahead of the oil bank with almost same velocity of injected foam. Since surfactant pre-

flush is assumed prior to foam injection, the bypassed gas makes a strong foam again after passing 
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through the oil bank. Not only analytical methods but also simulations should be used together to 

have a good insight in such complicated cases. 

 

Figure 3.29: Case 3.6: Initial condition of MRFfull = 100 with non-uniform initial condition, 

J:(fw,fg) = (0.2, 0.8), Sw* = 0.4, So* = 0.1 and εw = εo = 0.05 

 

  

Figure 3.30: Case 3.6: Saturation profile and effluent history at MRFfull = 100 with non-uniform 

initial condition, J:(fw,fg) = (0.2, 0.8), Sw* = 0.4, So* = 0.1 and εw = εo = 0.05 (100 grid blocks) 
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Figure 3.31: Case 6: Saturation profile and effluent history at MRFfull = 100 with non-uniform 

initial condition, J:(fw,fg) = (0.2, 0.8), Sw* = 0.4 and So* = 0.1 (500 grid blocks) 
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CHAPTER 4 

EXTENSION OF THE MODEL FOR MULTI-LAYER SYSTEMS 

WITH SUBSURFACE HETEROGENEITY 

This chapter investigates how the foam model developed in the previous chapter can be 

extended and utilized for a complex subsurface system – multiple horizontal layers with differing 

properties in the absence of vertical communications. Results are analyzed in terms of 

displacement efficiency in individual layers as well as fluid injectivity into each layer. This is a 

step necessary to match laboratory experimental data to understand foam diversion process, which 

can then be followed by full field-scale foam applications in the presence of vertical 

communications. 

4.1 Methodology 

 For the extension of the model developed in Chapter 3 into multi-layer systems, additional 

features should be added.  

First, the process of surfactant injection prior to foam injection (so-called surfactant pre-

flush) needs to be included in the calculation. This requires surfactant adsorption during surfactant 

pre-flush be considered in the model. (This can be carried out by using a surfactant adsorption 

parameter, Dsf,; see more in the following Methodology section.) In fractional flow theory, no 

dispersion and diffusion of components, uniform adsorption of polymer on rock, continuous 

injection of polymer at fixed concentration, no chemical reactions, surfactant only in aqueous 

phase (does not partition to oil) and local equilibrium adsorption of polymer on rock are assumed.  

 Second, by taking surfactant pre-flush into account, the process of surfactant and foam 

injection now deals with three phases with four different components. In other words, the gas and 
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oil phases consist of only one component while the aqueous phase may consist of either surfactant-

free water or surfactant solution. In conjunction with surfactant adsorption, this implies that the 

fractional flow solution should incorporate not only saturations waves but also chemical waves 

too. How to deal with chemical shock in such a case can be found in other studies (Roostapour and 

Kam, 2012 and 2013). 

4.1.1 Extension of the Model with Surfactant Component 

In order to incorporate surfactant preflush into foam modeling, the Method of 

Characteristics (MoC) based model should be extended with surfactant component. With similar 

assumptions for the MoC analysis described in the previous chapter, the surfactant component in 

the aqueous phase can be expressed as 

 𝜙
𝜕(𝑆𝑤𝐶𝑠𝑓,𝑤)

𝜕𝑡
+ 𝜙

𝜕�̂�𝑠𝑓

𝜕𝑡
+ 𝑢𝑡𝑓𝑤

𝜕𝐶𝑠𝑓,𝑤

𝜕𝑥
= 0 (4.1) 

 

by using material balance where, φ is porosity, Sw is water saturation, Csf,w is surfactant 

concentration in the aqueous phase, Ĉsf is surfactant concentration in the solid phase per unit pore 

volume of rock, ut is total velocity, and fw is water fractional flow. In equation (4.1), the surfactant 

adsorption term, Ĉsf, is defined as 

 �̂�𝑠𝑓 =  
(1 − 𝜙)𝜌𝑠𝐴𝑠𝑓

𝜙
 (4.2) 

where ρs is the grain density of rock (or matrix) and Asf is adsorption of surfactant per unit mass 

of rock. Because surfactant molecules exist only within bulk aqueous phase or onto rock surface, 

this equation could be written as 
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 𝜙
𝜕𝐶𝑠𝑓,𝑤

𝜕𝑡
(𝑆𝑤 +

𝜕�̂�𝑠𝑓

𝜕𝐶𝑠𝑓,𝑤
) + 𝑢𝑡𝑓𝑤

𝜕𝐶𝑠𝑓,𝑤

𝜕𝑥
= 0 (4.3) 

 

If the adsorption coefficient for surfactant molecules, Dsf, is defined as 

 𝐷𝑠𝑓 =
𝜕�̂�𝑠𝑓

𝜕𝐶𝑠𝑓,𝑤
 (4.4) 

 

and if the definitions of dimensionless distance, xD, and time, tD, are applied, equation (4.3) 

becomes 

 
𝜕𝐶𝑠𝑓,𝑤

𝜕𝑡𝐷
(𝑆𝑤 + 𝐷𝑠𝑓) + 𝑓𝑤

𝜕𝐶𝑠𝑓,𝑤

𝜕𝑥𝐷
= 0 (4.5) 

 

As a result, the characteristic velocity of surfactant component in aqueous phase in 

dimensionless form (or, dimensionless velocity of surfactant chemical shock) becomes 

  
𝑑𝑥𝐷

𝑑𝑡𝐷
= (

𝑓𝑤

𝑆𝑤 + 𝐷𝑠𝑓
)

𝐽

 (4.6) 

 

See Pope (1980) and Lake (1989) for more details about derivation procedures. 

4.1.2 Surfactant/Foam Displacement in Multi-layer Systems 

The solution scheme required for a single-layer system (i.e., identifying saturation paths, 

constructing saturation velocities in a manner consistent with velocity constraints, and determining 

saturation profile, effluent history, time-distance diagram, and pressure profile and history) is 

extended to a system with non-communicating multiple layers in this study in order to investigate 

how surfactant and foam propagate in such a composite system. 
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Figure 4.1: A schematic for two-layer system sharing the same inlet and outlet pressures (Pin1 

= Pin2 and Pout1 = Pout2) and material balance (qt = qt1 + qt2) 

 

Figure 4.1 defines a system used in this study: each layer is specified with its own 

petrophysical and fluid properties such as porosity, permeability, relative permeability, residual 

saturations, initial conditions, foam properties (mobility reduction factor (MRF), limiting water 

saturation (Sw*), and critical oil saturation (So*)), and so on. Surfactant solution or foam is injected 

at the fixed flow rate of qt, at the injection foam quality of 80%, but the fraction of flow into each 

layer (qt1, qt2) changes with time depending on the resistance of each layer. During fluid injection, 

the inlet pressure for each layer is identical but changes with time, while the outlet pressure for 

each layer is fixed at a constant value (i.e., not changing with time) as a backpressure. It is further 

assumed that the layers do not communicate in the vertical direction, meaning that there is no cross 

flow between the layers. (A vertical communication between the layers can be important in field 

cases, but this assumption allows the model to investigate how foam works in more idealized 

system, as a first step, without dealing with complicated nature of flow in multi-dimensional 

space.) 
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4.2 Results 

This study first presents the results of a series of surfactant and foam injection into a single-

layer system (Case 4.1), and then moves into a two-layer system with MRF values invariant (Case 

4.2); MRF values as a function of absolute permeability (k) (Case 4.3), as a function of Sw (or, Sw* 

effect,  Case 4.4), as a function of initial condition (three phases, Case 4.5), and as a function of 

So (or, So* effect, Case 4.6); and lastly, a three-layer system with all those complexities combined 

(Case 4.7).  

Table 4.1: Model parameters for construction of fractional flow curves 

End-point relative permeability: k0
rw = k0

ro = k0
rg = 1 

Relative permeability exponents: nw,= no = ng = 1 

Residual saturation: water (Swr) = 0.1, oil (Sor) = 0,  gas (Sgr) = 0 

Surfactant adsorption parameter (Dsf) = 0.2 

Water viscosity (µw) = 1 cp 
Oil viscosity (µo) = 0.89 cp 

(5 cp for Case 6 and 7) 
Gas viscosity (µg) = 0.02 cp 

 

 

Table 4.2. Model parameters for pressure and injectivity calculations  

Total injection rate (qt) = 6000 ml/min Cross-sectional area of each layer (A) = 0.5 m2 

Outlet pressure = 101,425 Pa (1 atm) Length of each layer (L) = 5 m 

 

Table 4.1 shows the parameters for petrophysical properties used in the calculations, and 

Table 4.2 shows dimensional parameters for the calculation of pressures and injectivity into each 

layer as a function of time. In addition, Table 4.3 and Table 4.4 show related input parameters for 
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Case 4.2 through Case 4.6 and Case 4.7, respectively, associated with initial conditions, injection 

conditions, and foam properties. 

Table 4.3. Initial and injection conditions for a two-layer system (Case 4.2 through 4.6) 

 
High-permeability layer 

(1 darcy) 

Low-permeability layer 

(0.5 darcy) 

I:(Sw, So, Sg) 
I:(0.7, 0.3, 0) 

(I:(0.5, 0.3, 0.2) for Case 4.5) 

I:(0.3, 0.7, 0) 

(I:(0.2, 0.5, 0.3) for Case 4.5) 

J1:(fw) J1:(1) 

J2:(fw, fg) J2:(0.2, 0.8) 

 

Table 4.4. Initial and injection conditions for a three-layer system (Case 4.7) 

 
High-permeability 

layer (2 darcy) 

Intermediate-

permeability layer 

(1 darcy) 

Low-permeability layer 

(0.5 darcy) 

I:(Sw, So, Sg) I:(0.7, 0.2, 0.1) I:(0.4, 0.4, 0.2) I:(0.2, 0.6, 0.2) 

J1: (fw, fg) J1:(1.0, 0.0) 

J2:(fw, fg) J2:(0.2, 0.8) 

MRFfull 400 200 100 

Sw* 0.2 0.3 0.8 

So* 0.2 0.2 0.2 

 

4.2.1 Case 4.1: displacement in a single-layer system with surfactant adsorption 

Figure 4.2 shows the process where surfactant preflush and foams are injected into a medium 

initially with 70 % water saturation and 30 % oil saturation (i.e., I: (Sw, So, Sg) = (0.7, 0.3, 0.0)). 

The injection of surfactant solution is denoted by J1 where only the aqueous phase is injected (i.e., 

J1: (fw, fo, fg) = (1.0, 0.0, 0.0)) and the subsequent foam injection is denoted by J2 where 80 % 
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quality foams are injected (i.e., J2: (fw, fo, fg) = (0.2, 0.0, 0.8)). Therefore, the solution to the entire 

process is a combination of “injection condition of J1 into a medium with initial condition I” and 

“injection condition of J2 into a medium with initial condition (I) and the first injection condition 

(J1)”.  In this case, 0.3 PV of surfactant solution is considered prior to foam injection for 

demonstration purpose, and furthermore all mobile oils are assumed to be displaced by surfactant 

injection (i.e., residual oil saturation (Sor) after surfactant flooding = 0.0), for simplicity, so that 

the injected foams do not interact with oils. More complicated situations where the injected foams 

interact with oil follow in the later cases. 

 

 

Figure 4.2: A schematic of Case 4.1: surfactant injection (process 1) followed by foam 

injection (process 2) 

 

Figures. 4.3(a) through 4.3(d) show the displacement process during surfactant preflush 

and foam injection, consisting of fractional flow curves, effluent history, saturation profile, and 

time-distance diagram (a set of these four plots is sometimes referred to as Walsh diagram). As 
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shown in Fig. 4.3(a), the initial condition is given by I: (Sw, So) = (0.7, 0.3) on the water-oil 

fractional flow curve, and the injection conditions for surfactant preflush and foam injection are 

given by J1: (fw, fg) = (1.0, 0.0)  on the surfactant-oil fractional flow curve and J2: (fw, fg) = (0.2, 

0.8) on the surfactant-gas fractional flow curve, respectively. Note that the water-oil and 

surfactant-oil fractional flow curves are placed on the top of each other because viscosity and 

density of surfactant solution are assumed to be the same as surfactant-free water, for simplicity. 

The level of surfactant adsorption is shown by Dsf: (-0.2, 0.0). The MRF value of foams is set to 

be 100. 

  

  

Figure 4.3: Case 4.1: displacement in a single layer system at MRF = 100 with I:(Sw, So, Sg) = 

(0.7, 0.3, 0), J1: (fw,fg) = (1.0, 0.0) and J2:(fw, fg) = (0.2, 0.8) 
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Following the velocity constraint (in this case, saturation velocity must increase from J1 to 

I and J2 to J1), two shock waves govern the entire displacement process – the first traveling at the 

dimensionless velocity equivalent to the slope of the line I and J1 (vD = dfw/dSw = 1.2); and the 

second at the dimensionless velocity equivalent to the slope of the line J1 and J2 (vD = dfw/dSw = 

1.0).  The velocity of chemical shock can be determined by connecting Dsf and J1, i.e., vs = 0.83, 

which is somewhat slower than other saturation shocks.  

Figures. 4.3(b) and 4.3(c) show effluent history (i.e., fractional flow at the outlet as a 

function of dimensionless time tD in PV) and saturation profile (i.e., saturations as a function of 

dimensionless distance, xD = x/L) at tD = 0.6. In both plots, the presence of three constant states (I, 

J1, and J2) and saturation velocities are well captured, and the analytical solutions in solid lines are 

in good agreement with simulation results in dotted lines with symbols. Note that the surfactant 

chemical front, represented by dashed lines, show a delay in surfactant propagation because of 

surfactant adsorption.  

Figure 4.3(d) shows time-distance diagram to present wave propagation. The plot shows 

consistency with Figures 4.3(a) through 4.3(c) in that there exist a fast shock between I and J1, a 

slow shock between J1 and J2, and a surfactant chemical shock lagging behind the fast shock. 

Because of 0.3 PV of surfactant pre-flush, the presence of surfactant is always guaranteed during 

foam injection. During tD from 0.3 PV to 0.834 PV, all three conditions (I, J1, and J2) are present 

in the medium, but foams do not interact directly with the initial condition. The results show that 

injection of surfactant pre-flush less than 0.2 PV causes foam front to catch up and interact with 

the initial condition, which may reduce sweep efficiency significantly. Such a complicated 

situation is discussed later. 
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4.2.2 Case 4.2: displacement in a two-layer system with permeability contrast 

  

  

Figure 4.4: Case 4.2: displacement in a two-layer system with permeability contrast of 2 (kH:kL 

= 1 darcy:0.5 darcy) and the same MRF of 100 for both layers 

 

Figures 4.4(a) and 4.4(b) show fractional flow curves for a two-layer system with different 

permeabilities - 1 darcy to represent high-permeability layer and 0.5 darcy for low-permeability 

layer, respectively, keeping other properties the same. This example assumes higher oil saturation 

in the high-permeability layer (IH: (Sw, So) = (0.7, 0.3)) than the low-permeability layer (IL: (Sw, 

So) = (0.3, 0.7)), as is often the case in the field. The injection conditions are the same as Case 4.1, 

which is surfactant preflush (J1: (fw, fg) = (1.0, 0.0)) followed by foam injection (J2: (fw, fg) = (0.2, 
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0.8)) with MRF = 100 in both layers. The level of surfactant adsorption is also given by Dsf: (-0.2, 

0.0). Irrespective of the difference in terms of initial conditions, the nature of displacement in both 

layers is almost identical – two saturation shocks and one chemical shock, similar to Case 4.1. In 

addition, the velocity from IH to J1 and the velocity from IL to J1 are the almost same.  

How the injected surfactant solution and foam propagate into each layer is shown in Figure 

4.4(c), with foam injection starting with 0.4 PV delay (Note that this PV is the pore volume of the 

entire system). As expected, both surfactant and foam fronts in the high-permeability layer 

propagate faster primarily because of permeability difference. Figure 4.4(d) shows the fraction of 

injected flow into each layer with time. Overall, about two-thirds of fluids are injected into the 

high-permeability layer (or, one-third into the low-permeability layer, equivalently) during both 

surfactant and foam injections. This is expected because the permeability contrast between two 

layers is two (i.e., kH/kL = 2.0) and the MRF values are identical, meaning that foam does not play 

a role to modify injectivity into each layer. 

4.2.3 Case 4.3: displacement in a two-layer system with MRF effect 

 Case 4.3 investigates the case with different MRF values – higher MRF at lower capillary 

pressure environment (or more stable foams at higher permeability) and lower MRF at higher 

capillary pressure environment (or less stable foams at lower permeability). More specifically, the 

MRF values for high-permeability and low-permeability layers are set to be 200 and 100, 

respectively, keeping all other conditions the same as Case 4.2. Note that the MRF ratio between 

the two layers is 2 (i.e., MRFH/MRFL = 2.0) which is identical to be the permeability contrast of 2 

(i.e., kH/kL = 2.0). 
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Figure 4.5: Case 4.3: displacement in a two-layer system with MRF compensating heterogeneity 

(MRFH:MRFL = 200:100 ; kH:kL = 1 darcy:0.5 darcy) 

 

Figures 4.5(a) and 4.5(b) show the fractional flow curves for the high-permeability layer 

(kH = 1 darcy, MRFH = 200) and low-permeability layer (kL = 0.5 darcy and MRFL = 100), 

respectively. Note that the foam fractional flow curve in Figure 4.5(a) is curved more due to higher 

MRF (200 rather than 100), but all others remain the same compared to Case 4.2 (Figures 4.4(a) 

and 4.4(b)). When the time-distance diagram in Figure 4.5(c) is compared, the response prior to 

foam injection (i.e., tD < 0.4 PV) is in fact identical to that in Figure 4.4(c) due to the same inputs, 

while as foam is injected (i.e., tD > 0.4 PV), the surfactant and foam fronts slightly curve down in 
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the high-permeability layer and curve up in the low-permeability layer. This is because as foam 

moves into the system, the high MRF in the high-permeability tends to block the layer and divert 

the following foams into the low-permeability more and more with time. Figure 4.5(d) confirms 

this process more in detail. During surfactant pre-flush, about two-thirds and one-third of 

surfactant solution are admitted into the high-permeability and low-permeability layers, 

respectively, following the permeability ratio (similar to Case 4.2). As foams move into the system, 

however, the MRF ratio (MRFH:MRFL = 200:100) cancels out the permeability ratio (kH:kL = 1 

darcy:0.5 darcy) and thus almost the same amount of injected foam is distributed into the two 

layers. 

 

Figure 4.6: Effect of different MRF ratios (Case 4.3) for flowing fractions in a two-layer system  

(MRFH:MRFL is shown) 

 

Figure 4.6 shows how the flowing fraction (or, injectivity) into the high-permeability layer 

changes with time in different scenarios of MRF ratios (MRFH:MRFL) ranging from 100:100 to 

400:100. Note that when MRFH:MRFL = 100:100 (Figure 4.4 in Case 4.2), foam does not distort 
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the injectivity significantly from the permeability ratio as discussed earlier. On the other hand, 

when MRFH:MRFL = 200:100 (Figure 4.5 in Case 4.3), foam cancels out  the permeability ratio. 

For the ratio of MRFH:MRFL = 300:100 and 400:100, the flowing fraction of following foam is in 

fact higher into the lower-permeability layer, which may significantly improve sweep efficiency. 

This example shows quantitatively how important foam stability is at different capillary pressure 

environment. 

4.2.4 Case 4.4: displacement in a two-layer system with Sw* effect 

 Figures. 4.7 and 4.8 show the effect of Sw* on foam displacement, more specifically Figure 

4.7 with SwH*:SwL* = 0.2:0.8 to examine the role of Sw*, and Figure 4.8 with SwH*:SwL* = 0.6:0.8 

to investigate the sensitivity of the ratio to the results. Figures 4.7(a) and 4.7(b) show fractional 

flow curves for the high-permeability and low-permeability layers, respectively.  Note that higher 

SwL* in the low-permeability layer means foams are less stable in that layer, and as a result a large 

portion of the foam fractional flow curve in Figure 4.7(b) (i.e., Sw < Sw*-εw) is near the x axis due 

to the low effective gas viscosity. Although MRFfull values for both layers are set to be 100, the 

MRF values at the injection conditions are MRFH = 76.56 and MRFL = 4.71 due to the effect of 

Sw*. As shown in Figure 4.7(c), as foam is injected after 1.4 PV of surfactant pre-flush, it is 

interesting to find that foams are diverted more into the lower-permeability layer. Such a symptom 

is also well demonstrated in Figure 4.7(d) where the flowing fractions, proportional to the 

permeability ratio initially, cross over each other during foam injection so that the low-

permeability layer has more fluid intake essentially. This result shows how significantly Sw* affect 

the overall sweep efficiency.    
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Figure 4.7: Case 4.4 (a): displacement in a two-layer system with Sw* effect (SwH* = 0.2 and 

SwL* = 0.8) 

 

Figure 4.8 shows the results when SwH* = 0.6 while keeping all other parameters the same 

as those in Figure 4.7. The MRF values at the injection conditions are MRFH = 11.9 and MRFL = 

4.71, respectively. Overall, the injectivity improves somewhat, but the high-permeability layer still 

receives more than the low-permeability layer (about 0.59 and 0.41 as shown in Figure 4.8(d). As 

a result, foam propagates in both layers at the comparable velocities.  
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Figure 4.8: Case 4.4(b): displacement in a two-layer system with Sw* effect (SwH* = 0.6 and 

SwL* = 0.8) 

 

 Figure 4.9 shows the effect of Sw* ratio in this system, such as SwH*:SwL* = 0.2:0.8 (Figure 

4.7), 0.4:0.8, 0.6:0.8 (Figure 4.8), and 0.8:0.8. By setting SwL* = 0.8, foams in the low-permeability 

layer is assumed to be unstable. As foam becomes more stable in the high-permeability layer (i.e., 

SwH* moves from 0.8 to 0.2), more and more foams are introduced into the low-permeability layer 

as expected. When SwH* = SwL* = 0.8, the injectivity into each layer is similar to the permeability 

ratio. The fluctuation between tD = 1.2 and 1.9 occurs as injected foams displace I and J1, before it 

reaches a steady state. The MRFH values are 4.71 and 76.56 at SwH* = 0.8 and 0.2, respectively. 
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Figure 4.9: Effect of different Sw* values (Case 4) on flowing fractions in a two-layer system 

(SwH*:SwL* is shown) 

 

4.2.5 Case 4.5: displacement in a two-layer system with three phases present initially 

 Once three phases interact during the flow, the analysis for the displacement becomes more 

complicated and the use of ternary diagram is very helpful. Figure 4.10 shows the initial conditions 

for both high-permeability and low-permeability layers - more specifically, IH:(Sw, So, Sg) = (0.5, 

0.3, 0.2) and IL:(Sw, So, Sg) = (0.2, 0.5, 0.3). Except the initial condition, other parameters are the 

same as Case 4.2 (MRF = 100 for both layer). Note that in general there are paths from I to J1 and 

then to J2, and in addition there is one more constant state IJ because the paths suddenly change 

the direction by reaching the base of the diagram. The same paths can be represented by fractional 

flow curves as shown in Figure 4.10 where not only the positions of constant state (I, IJ, J1, and 

J2) but also the saturation velocities are specified. Following the velocity constraint, there are three 

saturation shocks governing the displacement in both high-permeability and low-permeability 

layers – I to IJ, IJ to J1 and J1 to J2 in Figures 4.10(a) through 4.10(d). 
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Figure 4.10: Case 4.5: displacement in a two-layer system with IH:(Sw, So, Sg) = (0.5, 0.3, 0.2) 

and IL:(Sw, So, Sg) = (0.2, 0.5, 0.3) 
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Time-distance diagram and flowing fractions are shown in Figures 4.10(e) and 4.10(f). 

After surfactant pre-flush of 0.3 PV is applied, foam starts to invade the high-permeability layer 

faster making the front in the high-permeability layer curves upward slightly (Figure 4.10(e)). The 

flowing fraction shows similar responses (Figure 4.10(f)). Note that during surfactant injection, 

the flowing fraction is not proportional to permeability contrast in this case because the initial 

conditions are not the same and the pressure drop during three-phase flow is path-dependent.   

4.2.6 Case 4.6: displacement in a two-layer system with So* effect 

  

  

Figure 4.11: Case 4.6 (a): displacement in a two-layer system with So* of 0.1 for both layer 
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An example to see the effect of So* is somewhat tricky because in all previous cases, post-

surfactant residual oil saturation is assumed to be zero. In order to make this investigation 

meaningful, oil viscosity is assumed to be 5 cp – this high oil viscosity makes oil displacement by 

surfactant less efficient with slow spreading waves, and thus the injected foam has a chance to 

interact with oil during foam injection. The two layers of interest have MRFfull,H = 200 and So* = 

0.1 for the high-permeability layer and MRFfull,L = 100 and So* = 0.1 for the low-permeability 

layer. The initial and injection conditions (injection of surfactant pre-flush and following foam) 

are the same as Case 2, that is, IH: (Sw, So, Sg) = (0.7, 0.3, 0) for the high-permeability layer, IL: 

(Sw, So, Sg) = (0.3, 0.7, 0) for the low- permeability layer, J1L: (fw, fg) = (1.0, 0.0)for surfactant pre-

flush, and J2L: (fw, fg) = (0.2, 0.8) for foam injection.  

Figures 4.11(a) and 4.11(b) show the case of low-permeability layer where J1 and J2 are 

applied as injection conditions consecutively and So* =0.1 and εo = 0.05 are chosen. The two-

phase fractional flow curve in Figure 4.11(a) represents the initial phase of surfactant injection 

where the process is governed by spreading waves between I and J1 when μo = 5 cp (such spreading 

waves do not exist when μo = 0.89 cp as shown). Note that the saturation velocity at low oil 

saturation (or, at high water saturation) can be significantly lower, which dramatically increases 

the possibility of wave collision with following foam front. These numerous spreading waves serve 

as new initial conditions for foam injection. Because the initial condition for foam injection is not 

a constant state, a series of possible initial conditions can be mapped out in the ternary diagram 

with time as shown in Figure 4.11(b) from numerical calculations. Note that (i) if there are no 

interactions between oil and foam, the path goes all the way to the left-hand-side corner of the 

ternary diagram and (ii) if there are interactions between oil and foam, the path moves inside the 

ternary diagram – this happens because the foam front is in touch with oil bank ahead, and exactly 



78 

 

which path to follow in the ternary diagram depends on oil saturation ahead of foam front and the 

size of oil bank.   

Solving such a case analytically is very complicated, but the simulation can provide reliable 

results as shown by saturation profiles for the low-permeability and high-permeability layers in 

Figures 4.11(c) and 4.11(d), respectively, when 1 PV of surfactant solution is injected followed by 

0.6 PV of foam injection. As expected, where the front of injected foam is in contact with oil phase 

with So > So* + εo (or, So > 0.15), foam quickly collapses and therefore gas saturation is reduced 

significantly (i.e., no foam) as shown in Figure 4.11(c). In the meantime, where the front of injected 

foam is in contact with oil phase with So* - εo < So < So* + εo (or, 0.05 < So < 0.15), foam 

experiences a transition in which foam becomes weakening before collapsing completely as shown 

by the reduced gas saturation zone (xD = 0.52 to 0.6 PV) in Figure 4.11(d). 

  

Figure 4.12: Case 4.6(b): displacement in a two-layer system with So* of 1.0 for both layer 

 

Figures 4.12(a) and 4.12(b) repeat the same  case as shown in Figure 4.11 but with So *= 

1.0 (i.e., foam always stable even with oils). Because stable foam displaces high-viscosity oil in 

this case, gas and oil saturations change progressively at the foam front (xD = 0.63 to 0.80 in Figure 
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4.12(a) and xD = 0.19 to 0.50 in Figure 4.12(b)). This is obviously different from Figure 4.11 where 

there are sharp and drastic changes at the foam front due to collapsing foams. The results therefore 

clearly demonstrate that how foam’s sensitivity to oil affects the displacement and sweep 

efficiency. 

  

Figure 4.13: Case 4.6: Comparison of flowing fraction vs time with varying So*: (a) So* = 0.1 

and (b) So* = 1.0 

 

Figure 4.13 compares flowing fraction into each layer with time to compare these two 

cases. The results show that if foam is sensitive to oil (Figure 4.13(a); cf. Figure 4.11), more foams 

can be introduced into the low-permeability layer where the high oil saturation destabilizes foam 

more. 

4.2.7 Case 4.7: displacement in a three-layer system with all effects (MRF, Sw* and So*) combined 

This is the most complicated case in presence of multiple layers. The number of layers can 

be any, but is selected to be three arbitrarily for demonstration purpose. Each layer is allowed to 

have its own rock and fluid properties as well as foam properties, for example, MRFfull,H = 400, 

Sw,H* = 0.2, and kH = 2 darcy for the high-permeability layer; MRFfull,I = 200, Sw,I* = 0.3, and kI = 
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1 darcy for the intermediate-permeability layer; and MRFfull,L = 100, Sw,L* = 0.8, and kL = 0.5 

darcy for the low-permeability layer. So* is fixed as 0.1 for all layers. The initial conditions are 

slightly different for each layer (IH:(Sw,So,Sg) = (0.7,0.2,0.1) for the high-permeability layer; 

II:(Sw,So,Sg) = (0.4,0.4,0.2) for the intermediate-permeability layer; and IL:(Sw,So,Sg) = 

(0.2,0.6,0.2) for the low-permeability layer; see Table 4.4 for more details), while the same 

injection condition (surfactant pre-flush followed by foam) is applied. Note that the mobility 

reduction factor corresponding to the injection conditions are MRFH = 125.88, MRFI = 51.63, and 

MRFL = 4.71 for the high-permeability, intermediate-permeability, and low-permeability layers. 

Figure 4.14 shows saturation profile in each layer at two different dimensionless times such 

as 1.2 PV (Figure 4.14(a)) and 1.6 PV (Fig. 4.14(b)) of fluid injections (both including 1.0 PV of 

surfactant pre-flush). The results show that the injected foams break down in the low-permeability 

layer because foam collapses as it contacts oil and therefore early gas breakthrough occurs. In 

addition, low MRF causes poor displacement efficiency. On the other hand, by the similar token 

but the other way around, foam breakthrough is delayed with favorable displacement efficiency in 

the high-permeability layer. The intermediate-permeability layer has responses in between. 

By combining all these together, Figure 4.15 shows the flowing fraction into each layer. 

As expected from Figure 4.14, fluids tend to be distributed into the layers evenly because of higher 

foam strength in the higher-permeability layer. It should be noted, however, that the overall 

performance should be evaluated based on both saturation profile and flowing fraction combined 

together. For example, that fact that the low-permeability layer admits more fluid (Figure 4.15) 

does not necessarily mean that the diversion process is successful because the saturation profile in 

the low-permeability layer exhibits poor displacement efficiency (Figure 4.14)). Put it differently, 
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although diversion into the low-permeability layer occurs, it does not contribute to improving 

sweep due to relatively high gas mobility. 

 

 

Figure 4.14: Case 4.7: displacement in a three-layer system with all effects combined 
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Figure 4.15: Case 4.7: flowing fraction into each layer vs. time 

 

This example shows that the model developed in this study is capable of handling 

complicated cases where the applicability of foams for diversion process is not obvious at the first 

sight. To improve both diversion and sweep efficiency of injected fluids in heterogeneous systems, 

foam properties such as injection condition, MRF, Sw* and So* should be optimized at given initial 

conditions and petrophysical and formation properties. 
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CHAPTER 5 

SENSITIVITY OF RESULTS TO MODEL INPUT PARAMETERS 

 This chapter deals with the sensitivity of modeling and simulation results to input 

parameters applied in the previous chapters.  

5.1 Non-linear relative permeability functions (Case 5.1) 

There are two issues involved in relative permeability functions used in the previous 

chapters: (i) the use of relative permeability which is only a function of that particular phase 

saturation; and (ii) the use of simple parameter values for Corey-type relative permeability (i.e., 

coefficient and exponent set to be 1). The former is an important issue because it essentially defines 

how easily different phases would migrate interacting each other. The latter is focused here, 

however, because the main question to be asked is how sensitively the results are affected by using 

non-linear relative permeability functions.  

Table 5.1: Parameters for non-linear relative permeability 

Input Parameters 

krw
o = 0.2 nw = 4.2 

kro
o = 0.94 no = 1.3 

krg
o = 0.94 ng = 1.3 

 

In order to test the effect of non-linear relative permeability functions, this study borrows 

the relative permeability parameters from Ashoori et al. (2010) as summarized in Table 5.1 (cf. 

Table 3.1) where the functions are convex (i.e., the exponents (nw, no, and ng) greater than one) 

and the end-point relative permeability values (krw
o, kro

o, and krg
o) are less than one.. Except those  
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Figure 5.1: Relative permeability to water, oil and gas phases 

 

  

  

Figure 5.2: Case 5.1 with non-linear relative permeability functions: foam displacement at MRF 

= 100 with I:(Sw,So,Sg) = (0.8,0.2,0), J:(fw,fg) = (0.2, 0.8) and realistic relative permeability 

parameters from simulation results only 
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parameters, other inputs remain the same as those in Case 3.1 with MRF = 100 (cf. Figure 3.8). 

Figure 5.1 shows relative permeability values mapped in a ternary diagram. 

  

  

Figure 5.3: Results with linear relative permeability functions (identical to Case 3.1, Figure 3.8) 

 

Figure 5.2 shows the results of Case 5.1 from numerical simulations compared to the 

similar case with linear relative permeability functions in Figure 5.3 (note that Figure 5.3 is 

identical to Figure 3.8 in Case 3.1). Unlike the displacement process with only two shock waves 

in Figure 5.3, the solution with non-linear relative permeability seems more complicated, 

consisting of shock waves and spreading waves. In addition, the flowing fraction of a phase may 

change significantly because the fractional flow is a direct function of relative permeability 
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functions. In spite of these differences, the nature of displacement process during three phase flow 

is well captured in both cases. This example shows that how much deviation one should expect by 

incorporating more realistic relative permeability is, in fact, case-specific.     

5.2 Size of transition zone (εw and εo) 

  

  

Figure 5.4: Case 5.2 with εw = 0.005: Foam displacement at MRFfull=100 with I:(Sw,So,Sg) = 

(0.5,0.2,0.3), J:(fw,fg) = (0.2, 0.8), Sw* = 0.4, So* = 1, and εw = 0.005 

 

In all modeling and simulation attempts, the size of transition zone for foam sensitivity to 

water and oil saturations (εw and εo) has been set to be 0.05 arbitrarily. In order to investigate the 

effect of this transition length, another case with εw = 0.005 (more sharply changing MRF near 



87 

 

Sw*) is tried as shown in Figure 5.4, in comparison with Figure 5.5 with εw = 0.05 (Note that Figure 

5.5 is identical to Figure 3.22 in Case 3.3). The results show that the size of εw may impact 

modeling and simulation results somewhat because the size of transition length affects phase 

mobility values near the discontinuity and thus distorts the wave velocities and saturation values.  

Figure 5.3 shows the results from both analytical solution and numerical simulation. The dotted 

lines in Figure 5.4(b) and 5.4(c) are obtained from simulation results. 

  

  

Figure 5.5: Results with εw = 0.05 (identical to Case 3.3, Figure 3.22) 

 

As shown above, the results are similar to Case 3.3. However, small discrepancy occurs in 

the saturation at intermediate state, IJ. The constant state is (Sw, So, Sg) = (0.397, 0.158, 0.444) 
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from analytical solution while it is (Sw, So, Sg) = (0.397, 0.131, 0.472) from numerical simulation. 

Therefore, different characteristic velocities are observed between I and IJ. However, it does not 

affect the shock velocity at injection condition.  As a result, slower breakthrough of IJ is observed 

from the result of numerical simulation (Figure 5.3(b)). 

5.3 Effect of thickness and porosity on the flow in multi-layer system 

  

Figure 5.6: Base case with the same thickness and porosity (identical to Case 4.2, Figure 4.4) 

 

In Chapter 4, the effect of foam properties such as MRF, Sw* and So* in a multi-layer 

system is covered by using the same thickness and porosity in each layer. Additional cases are 

presented here to see how injected fluids propagate where the layers have different void volumes 

by varying thickness and porosity values. For comparison, Case 4.2 is used as a base case as shown 

in Figure 5.6. Since the change in thickness and porosity does not affect fractional flow solutions 

expressed in dimensionless variables, only the results of time-distance diagram and flowing phase 

fractions are shown in this section. 
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Figure 5.7: Results with varying thickness values (0.75 m for high k layer; 0.25 m for low k layer) 

 

  

Figure 5.8: Results with varying porosity values (0.3 for high k layer; 0.1 for low k layer) 

 

Figure 5.7 shows the case where the thickness of the high- and low-permeability layers are 

set to be 0.75 m and 0.25 m, respectively (cf. 0.5 m for both layers in Case 4.2). Because the pore 

volume of the high-permeability layer is three time higher than that of the low-permeability layer, 

more surfactant solutions are accepted by the high-permeability layer in general. The response 

does not seem to change significantly during foam injection either. This implies that the diversion 

process using foam becomes more difficult where there is a severe thief zone. Note that the 
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pressure gradient calculation in this case is caused by the change in cross-sectional area (cf. 

Darcy’s equation), which essentially distorts injectivity into each layer.  

Figure 5.8 shows the effect of porosity (i.e., porosity of 0.3 for the high permeability layer 

and porosity of 0.1 for the low permeability; cf. 0.2 for both layers in Case 4.2). Because porosity 

does not play any role in pressure gradient (cf. Darcy’s equation) – this may not be necessarily 

correct in the real world because porosity and permeability are related – the steady-state injectivity 

during foam injection is almost the same as that in the base.  

These two examples show how sensitively the outcome of foam-surfactant diversion 

processes can change in various occasions.  
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CHAPTER 6 

CONCLUSIONS AND RECOMMENDATIONS 

 This chapter describes major conclusions obtained from Chapter 3 and Chapter 4. Possible 

recommendations for future study is also accompanied. 

6.1 Conclusions 

Foam displacement mechanisms in foam-assisted NAPL (non-aqueous phase liquid) 

remediation processes by using MoC (Method of Characteristics)-based three-phase fractional 

flow analysis are investigated in Chapter 3. The displacement mechanisms are shown to be 

strongly affected by effective foam viscosity represented by gas-phase mobility reduction factor 

(MRF), the phase saturations initially present in the media, and foam’s sensitivity to oil and water 

represented by critical oil saturation (So*) and limiting water saturation (Sw*). The results from 

fractional flow solutions are compared with those from foam simulations for validation purposes. 

This first part of study can be summarized as follows: 

 When different levels of MRF values are tried such as MRF = 1 (no foam), 10, 100, and 

1000 to represent various injection foam strengths, the fractional flow solutions show that 

even a slight decrease in gas mobility (i.e., from MRF = 1 to MRF = 10) can improve sweep 

efficiency significantly, delaying the breakthrough of the injected gas phase. This seems to 

be great news because for successful foam-assisted remediation processes, creating very 

fine-textured and low-mobility foams may not be required necessarily. Comparing the 

results at MRF = 100 and 1000, the results show that although a higher MRF is more 

favorable in general, there is no significant benefits once the MRF is beyond a certain level.  
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 When it comes to foam-oil displacements, the effects of Sw* and So* are shown to be so 

crucial that they cannot be neglected. The results show that, in general, the more sensitive 

the foams are to water and oil saturations, the less effective the foam-assisted NAPL 

remediation processes are. Fractional flow analysis is able to show the quantitative 

interpretation if detailed design parameters are given. 

 For the cases when the effects of both Sw* and So* are applied together, the displacement 

paths become very complicated and, as a results, the fractional flow analysis alone may not 

be able to find the solutions. In such cases, foam simulations based on the same material 

balance equations could be used to guide the analysis. Although time-consuming and labor-

intensive, the tasks dealing with both Sw* and So* are doable. This study demonstrates how 

both fractional flow analysis and simulations can work together for complex displacement 

problems. Once confirmed, this model can be built into a multi-dimensional model for 

field-scale simulations. 

Foam’s ability to overcome subsurface heterogeneity is investigated in Chapter 4. The 

model deals with a horizontal multi-layered system in the absence of inter-layer vertical 

communications, which shares the same inlet pressure (varying with time) and fixed outlet 

pressure. Surfactant pre-flush and following foams are allowed to be distributed into each layer 

depending on the resistance of individual layers. Foam properties are characterized by mobility 

reduction factor (MRF), limiting water saturation (Sw*), and critical oil saturation (So*), while rock 

and fluid properties are characterized by porosity (φ), absolute permeability (k), relative 

permeabilities (kr), and surfactant adsorption (Dsf). This study can be summarized as follows: 
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 If foam’s sensitivity to water and oil saturations are not considered, foam can overcome 

permeability contrast only when the ratio of mobility reduction factors compensates the 

ratio of absolute permeabilities. If mobility reduction factors are almost the same for 

different layers, then injected foams are likely to be distributed primarily following the 

permeability ratio. The fact that foams tend to be more stable in the higher-permeability 

layers due to lower capillary pressure environment is a favorable condition.  

 If foam’s sensitivity to water saturation is taken into consideration, foam has a better 

chance to overcome the heterogeneity when the higher-permeability layers are more 

sensitive to water saturations (i.e., when Sw,H*is lower than Sw,L*, equivalently). Because 

higher-permeability layers tend to have lower Sw*, foam’s sensitivity to water saturation 

works favorably for overcoming heterogeneity. Also, it causes faster saturation velocity of 

injected foam. 

 Foam’s sensitivity to oil also plays an important role. If lower-permeability layers have 

higher oil saturation and destabilize foams, it is likely to help following foams diverted 

more into the lower-permeability layers.  

 If the system consists of multiple layers, it is complicated to understand exactly how much 

fluid will be introduced into each layer and what type of displacement efficiency will be 

achieved during surfactant and foam injection. The overall performance is obviously very 

specific to foam characteristics as well as rock and fluid fluids. The methodology 

introduced in this study can be applied to such complex cases successfully.   
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6.2 Recommendations 

 Based on the tasks performed in this study, the following topics can be recommended for 

future study: 

 Experimental verifications (Chapter 3): Coreflood experiments can be conducted to verify 

modeling and simulation results presented in this study. If so, additional experiments 

should be performed in order to measure mobility reduction factor, foam’s sensitivity to 

water and oil saturations, surfactant adsorption, three-phase relative permeability, and so 

on. Because how foam migrates in presence of oil is very difficult to measure, the use of 

high-tech equipment such as CT scanning and NMR imaging is believed to be helpful. 

 Parallel coreflood experiments (Chapter 4): Modeling and simulation results in non-

communicating multilayer systems can be compared with the results from parallel 

coreflood experiments. Because foam does not reach its steady-state texture immediately, 

the length of cores should be long enough to see the diversion effect more clearly.   

 Field application of surfactant/foam processes and history matching: Because the ultimate 

goal of this study is to make surfactant/foam process successful for subsurface 

environmental remediation, any impediments to reach the goal is worth investigating. 

There are many issues involved including, not limited to, foam rheological properties in 

multi-dimensional space, quantifying the interactions between foams and different types 

of oils, field-scale simulation and matching the history of field trial, optimizing foam 

injection strategy such as foam injection velocity, foam quality, and surfactant pre-flush, 

to name a few. 

  



95 

 

REFERENCES 

Afsharpoor, A., Lee, G. S., and Kam, S. I. (2010). Mechanistic simulation of continuous gas 

injection period during surfactant-alternating-gas (SAG) processes using foam catastrophe 

theory. Chemical Engineering Science, 65(11), 3615–3631. 

Aronson, A. S., Bergeron, V., Fagan, M. E., and Radke, C. J. (1994). The influence of disjoining 

pressure on foam stability and flow in porous media. Colloids and Surfaces A: 

Physicochemical and Engineering Aspects, 83(2), 109–120. 

Ashoori, E., Heijden, T. L. M. V. D., and Rossen, W. R. (2010). Fractional-Flow Theory of Foam 

Displacements With Oil. SPE, 15(2), 260-273. 

Bikerman, J. J. (1973). Foams. Springer-Verlag. Berlin, Germany. pp 33-64, 184-213. 

Bergeron, V., Fagan, M. E., and Radke, C. J. (1993). Generalized entering coefficients: a criterion 

for foam stability against oil in porous media. Langmuir, 9(7), 1704–1713. 

Bernard, G. G., Holm, L. W., and Jacobs, W. L. (1965). Effect of Foam on Trapped Gas Saturation 

and on Permeability of Porous Media to Water. SPEJ. 5(4), 295-300. 

Buckley, S. E. and Leverett, M. C. (1942). Mechanism of Fluid Displacement in Sands. Trans., 

AIME, 146, 107-116. 

Chambers, K. T. and Radke, C. J. (1991). Capillary Phenomena in Foam Flow Through Porous 

Media In Interfacial Phenomena in Petroleum Recovery. ed. Morrow, N .R., Marcel 

Dekker, NewYork. 

Chen, Q., Gerritsen, M. G., and Kovscek, A. R. (2010). Modeling Foam Displacement With the 

Local-Equilibrium Approximation: Theory and Experimental Verification. SPEJ, 15(1), 

21–24. 

Cheng, L., Reme, A. B., Shan, D., Coombe, D. A., and Rossen, W. R. (2000). Simulating Foam 

Processes at High and Low Foam Qualities. SPE/DOE Improved Oil Recovery 

Symposium, 3-5 April, Tulsa, Oklahoma. 

Crow, W. L, Anderson, E. P., and Minugh, E. M. (1987). Subsurface Venting of Vapors Emanating 

from Hydrocarbon Product on Ground Water. Ground Water Monitoring & Remediation, 

7(1), 51-57. 

Dake, L. P. (1978). Fundamentals of Reservoir Engineering. New York: Elsevier Scientific 

Publishing Company. 



96 

 

Derjaguin, B. V. and Obukhov, E. V. (1936). Anomalien dünner Flüssigkeitsschichten III. Acta 

Physicochim. URSS, 5(1), 1-22. 

Derjaguin, B. V. and Kussakov, M. M. (1939a). Anomalous Properties of Thin Polymolecular 

Films V. Acta Physicochim. URSS, 10(1), 25-44. 

Derjaguin, B. V. and Kussakov, M. M. (1939b). Anomalous Properties of Thin Polymolecular 

Films V. Acta Physicochim. URSS, 10(2), 153-174. 

Dholkawala, Z.F., Sarma, H.K., and Kam, S.I. (2007). Application of Fractional Flow Theory to 

Foams in Porous Media. SPEJ, 57(1-2), 152-165. 

Falls, A. H., and Schulte, W. M. (1992a). Theory of Three-Component, Three-Phase Displacement 

in Porous Media. SPE, 7(3), 377–384. 

Falls, A. H., and Schulte, W. M. (1992b). Features of Three-Component, Three-Phase 

Displacement in Porous Media. SPE, 7(4), 426–432. 

Falls, A. H., Hlrasakl, G. J., Patzek, T. W., Gauglltz, D. A., Miller, D. D., and Ratulowskl, T. 

(1988). Development of a Mechanistic Foam Simulator: The Population Balance and 

Generation by Snap-Off. SPERE, 3, 884-893 

Farajzadeh, R., Krastev, R., and Zitha, P. L. J. (2008). Properties of Foam Films Stabilized by 

AOS Surfactant. Colloids and Surfaces A: Engineering Aspects, 324, 35-40 

Foundain, J. C. (1998) Technologies for Dense Nonaqueous Phase Liquid Source Zone 

Remediation, GWRTAC Technoloty Evaluation Report, TE-98-02. 

Friedmann, F., Chen, W. H., and Gaugntz, P. A. (1991). Experimental and Simulation Study of 

High-Temperature Foam Displacement in Porous Media. SPERE, 6(1), 37-45. 

Goloub, T.P., Koopal, L.K., Bijsterbosch, B.H., and Sidorova, M.P. (1996). Adsorption of Cationic 

Surfactants on Silica. Surface Charge Effects, Langmuir (12) 3188-3194. 

Grigg, R.B., and Bai, B. (2005). Sorption of Surfactant Used in CO2 Flooding onto Five Minerals 

and Three Porous Media, Presented at the SPE International Symposium on Oilfield 

Chemistry, 2-4 February. 

Haley, J. L., Hanson B., Enfield C., and Glass, J. (1991). Evaluating the Effectiveness of Ground 

Water Extraction Systems, Ground Water Monitoring & Remediation, 11(3), 119-124. 

Helfferich, F. G. and Klein, G. ed. (1970). Multicomponent Chromatography: Theory of 

Interference. New York City: Marcel Dekker. 



97 

 

Helfferich, F. G. (1981). Theory of Multicomponent, Multiphase Displacement in Porous Media. 

SPE, 21(1), 51-62. 

Hirasaki, G. J., Miller, C. A., Szafranski, R., Lawson, J. B., and Akiya, N. (1997). Surfactant/Foam 

Process for Aquifer Remediation. SPE International Symposium on Oilfield Chemistry, 

18-21 February, Houston, Texas. 

Hirasaki G. J., Jackson, R. E., Jin, M., Lawson, J. B., Londergan, J., Meinardus, H., Miller, C. A., 

Pope, G. A., Szafranski, R., and Tanzil, D. (2000). Field Demonstration of the 

Surfactant/Foam Preocess for Remediation of a Heterogeneous Aquifer Contaminated with 

DNAPL. In NAPL Removeal: Surfactant, Foams, and Microemulstions, ed. Fiorenza, S., 

Miller, C. A., Oubre, C. L. and Ward, C. H. Boca Raton: Lewis Publishers. 

Jackson, R. E. (1993). Surfactant-enhanced remediation of DNAPL zones in granular aquifer 

systems. Remediation Journal, 4(1), 77-91. 

Jimenez, A. I. and Radke, C. J. (1989). Dynamic stability of foam lamellae flowing through a 

periodically constricted pore In Oil Field Chemistry: Enhanced Recovery and Production 

Stimulation, ed. Borchardt, J. K. and Yen, T. F., 396, 460-479. Washington, DC: 

Symposium Series, ACS. 

Kam, S. I. and Rossen, W. R. (2003). A Model for Foam Generation in Homogeneous Media. 

SPEJ, 8, 417-425. 

Khatib, Z. I., Hlrasaki, G. J., and Falls, A. H. (1988). Effects of Capillary Pressure on Coalescence 

and Phase Mobilities in Foams Flowing Through Porous Media. SPEJ, 3(3), 919–926. 

Koczo, K., Lobo, L. A., and Wasan, D. T. (1992). Effect of Oil on Foam Stability: Aqueous Foams 

Stabilized by Emulsions. Journal of Colloid and Interface Science, 150(2), 492–506. 

Kovscek, A. R. and Radke, C. J. (1994). Fundamentals of foam transport in porous media, In 

Foams: Fundamentals and applications in the Petroleum Industry. ed. Schramm, L. L., 

ACS Advances in Chemistry Series, N. 242, ACS. 

Kovscek, a. R., Patzek, T. W., and Radke, C. J. (1995). A mechanistic population balance model 

for transient and steady-state foam flow in Boise sandstone. Chemical Engineering 

Science, 50(23), 3783–3799 

Kovsek, A. R., Patzek, T. W., and Radke, C. J. (1997). Mechanistic Foam Flow Simulation in 

Heterogeneous and Multidimensional Porous Media. SPEJ. 2(4): 511-526. 

Lake, L. (1989). Enhanced Oil Recovery. Englewood Cliffs, New Jersey: Prentice Hall 



98 

 

Lau, E. C. and Coombe, D. A. (1994). History Matching the Steam/Foam Injecton Process in a 

Thick Athabasca Tar Sand Reservoir, J. Can. Pet. Tech., 33(1), 56-63. 

Law, D. H.-S., Yang, Z. M., and Stone, T. W. (1992). Effect of the Presence of Oil on Foam 

Performance: A Field Simulation Study. SPEJ, 7(2): 228-236. 

Lee, H. O., Heller, J. P., and Hoefer, A. M. W. (1991). Change in Apparent Viscosity of CO2 

Foam With Rock Permeability. SPE. 6(4): 421-428. 

Lee, S and Kam, S. I. (2013). Enhanced Oil Recovery by Using CO2 Foams: Fundamentals and 

Field Applications In Enhanced Oil Recovery Field Case Studies. ed. Sheng, J., Elsevier. 

Londergan, J. T., Meinardus, H. W., Mariner, P. E., Jackson, R. E., Brown, C. L., Dwarakanath, 

V., Pope, G. A., and Taffinder, S. (2001). DNAPL Removal from a Heterogeneous Alluvial 

Aquifer by Surfactant-Enhanced Aquifer Remediation. Ground Water Monitoring & 

Remediation, 21(4), 57–67. 

Lundegard, P. D., and LaBrecque, D. (1995). Air sparging in a sandy aquifer (Florence, Oregon, 

U.S.A.): Actual and apparent radius of influence. Journal of Contaminant Hydrology, 19, 

1-27. 

Ma, K., Lopez-salinas, J. L., Puerto, M. C., Miller, C. A., Biswal, S. L., and Hirasaki, G. J. (2013). 

Estimation of Parameters for the Simulation of Foam Flow through Porous Media. Part 1: 

The Dry-Out Effect. Energy & Fuels, 27, 2363–2375. 

Mackay, D. M. and Cherry, J. A. (1989). Groundwater contamination: pump-and-treat remediation. 

Environmental Science & Technology, 23(6), 630–636. 

Mamun, C. K., Rong, J. G., Kam, S. I., Liljestrand, H. M., and Rossen, W. R. (2002). Extending 

Foam Technology from Improved Oil Recovery to Environmental Remediation. SPE 

Annual Technical Conference and Exhibition, 29 September-2 October, San Antonio, 

Texas. 

Mannhardt, K., and Svorstøl, I. (1999). Effect of oil saturation on foam propagation in Snorre 

reservoir core. Journal of Petroleum Science and Engineering, 23(3), 189–200. 

Mayberry, D. J., Afsharpoor, A., and Kam, S. I. (2008). The Use of Fractional-Flow Theory for 

Foam Displacement in Presence of Oil. SPE, 11(4), 707-718. 

Miller, R. (1996). Report: In-well Vapor Stripping – Technology Overview Source: GWRTAC, 

TO-97-01. 

Mohammadi, S. S., Coombe, D. A., and Stevenson, V. M. (1993). Test of Steam Foam Process for 

Mobility Control in South Casper Creek Reservoir, J. Can. Pet. Tech., 32(10), 49-54. 



99 

 

Mulligan, C.N., Yong, R.N. and Gibbs, B.F. (2001). Remediation Technologies for Metal-

Contaminated Soils and Groundwater: an evaluation, Engineering Geology, 60(1-4), 193-

207. 

Myers, T. J. and Radke, C. J. (2000). Transient Foam Displacement in the Presence of Residual 

Oil: Experiment and Simulation Using a Population-Balance Model. Ind. Eng. Chem. Res., 

39, 2725-2741. 

Nikolov, A. D., Wasan, D. T., Huang, D. W., and Edwards, D. A. (1986). The Effect of Oil on 

Foam Stability: Mechanisms and Implications for Oil Displacement by Foam in Porous 

Media. SPE Annual Technical Conference and Exhibition, 5-8 October, New Orleans, 

Louisiana. 

NRC. (1994). Alternatives for Ground-water Cleanup, National Academy Press, Washington D.C.  

Oolman, T., Godard, S. T., Pope, G. A., Jin, M., & Kirchner, K. (1995). DNAPL Flow Behavior 

in a Contaminated Aquifer: Evaluation of Field Data. Ground Water Monitoring & 

Remediation, 15(4), 125–137. 

Pankow, J. F. and Cherry, J. A. (1996). Dense Chlorinated Solvents and other DNAPLs in 

Groundwater: History, Behavior, and Remediation, Waterloo Press, Portland, Oregon. 

Patzek, T. W. and Myhill, N. A. (1989) Simulation of the Bishop Steam Foam Pilot. SPE California 

Regional Meeting, 5-7 April, Bakersfield, California. 

Peters, R. W., Enzien, M. V., Michelsen, D. L. and Frand, J. R. (1996). Solubilization of NAPLs 

in Foam Enhanced Remediation. Proc., Fourth Great Lakes Geotechnical and 

Geoenvironmental Conference on In-Situ Remediation of Contaminated Sites, ed. Reddy, 

K. R., 255-261. Chicago: University of Illinois at Chacago. 

Pope, G. A. (1980). The Application of Fractional Flow Theory to Enhanced Oil Recovery. SPE, 

20(3), 191-205. 

Prud’Homme, R. K. and Khan, S. (Eds.) (1996). Foams: Theory, Measurements and Applications. 

New York: Marcel Dekker. 

Ramirez, W. F., Shuler, P. J., and Friedman, F. (1980). Convection, Dispersion, and Adsorption 

of Surfactants in Porous Media. SPEJ, 20(6), 430-438. 

Roof, J.G. (1970). Snap-Off of Oil Droplets in Water-Wet Pores. SPEJ, 10(1), 85-90. 

Rosman, A., and Kam, S. I. (2009). Modeling Foam-diversion Process Using Three-phase 

Fractional Flow Analysis in a Layered System. Energy Sources, Part A, 936–955. 



100 

 

Rossen, W. R., and Zhou, Z. H. (1995). Modeling Foam Mobility at the “Limiting Capillary 

Pressure.” SPE Adv. Technol., 3(1).  146-153. 

Rossen, W. R. (1996), Foams in Enhanced Oil Recovery. In Foams: Theory, Measurements and 

Application, ed. Prud’Homme, R. K. and Khan, S. New York: Marcel Dekker. 

Rossen, W. R., Zeilinger, S. C., Shi, J.-X., and Lim, M. T. (1999). Simplified Mechanistic 

Simulation of Foam Processes in Porous Media. SPEJ, 4(3), 279-287. 

Rothmel, R. K., Peters, R. W., Martin, E. ST., and Deflaun, M. F. (1998). Surfactant 

Foam/Bioaugmentation Technology for In-Situ Treatment of TCE-DNAPLs. Envirion. 

Sci. Technol., 32(11), 1667-1675. 

Roostapour, A. and Kam, S.I. (2012). Modeling foam delivery mechanisms in deep vadose-zone 

remediation using method of characteristics. Journal of Hazardous Materials. 243, 37-51. 

Roostapour, A. and Kam, S.I. (2013). Anomalous Foam-Fractional-Flow Solutions at High-

Injection Foam Quality. SPEREE, 16(1), 40-50. 

Schwille, F. (1988). Dense Chlorinated Solvents in Porous and Fractured Media: Model 

Experiments. Lewis Publishers, Chelsea, Michigan. 

Schramm, L.L. (Ed.) (1994). Foams: Fundamentals and Applications in the Petroleum Industry. 

242. Washington, DC: Advances in Chemistry Series, ACS. 

Shrivastava, V. K., Coombe, D. A., Singhal, A. K., and Belgrave, J. D. M. (1999). Numerical 

Simulation of Foam Flooding For Sweep Improvement. J. Can. Pet. Tech., 38(13), 1-12 

Staudinger, J., Roberts, P. V., and Hartley J. D. (1997). A Simplified Approach for Preliminary 

Design and Process Performance Modeling of Soil Vapor Extraction Systems. 

Environmental Progress, 16(3), 215-227. 

Surguchev, L. M., Coombe, D. A., Hanssen, J. E., and Svorstøl, I. (1995). Simulation of WAG and 

Gas Injection with Potential Sweep Improvement by Application of Foam, 8th European 

IOR Symposium, Vienna, Austria. 

Svorstøl, I., Vassenden, F., and Mannhardt, K. (1996). Laboratory Studies for Design of a Foam 

Pilot in the Snorre Field. SPE/DOE Improved Oil Recovery Symposium, 21-24 April, 

Tulsa, Oklahoma. 

Taber, J.J. (1969). Dynamic and Static Forces Required to Remove a Discontinuous Oil Phase 

from Porous Media Containing Both Oil and Water, SPEJ, 9(1), 3-12. 



101 

 

Trogus, F.J., Sophany, T., Schechter, R.S., and Wade, W.H. (1977). Static and Dynamic 

Adsorption of Anionic and Nonionic Surfactants, SPEJ, 337-344. 

U.S. EPA. 1990. Subsurface Contamination Reference Guide. EPA/540/2-90/011. 

U.S. EPA. 2004. DNAPL Remediation: Selected Projects Approaching Regulatory Closure. EPA 

542-R-04-016. 

Zanganeh, M. N., Kam, S. I., LaForce, T. C., and Rossen, W. R. (2011). The Method of 

Characteristics Applied to Oil Displacement by Foam. SPE, 16(1), 8-23. 

Zitha, P. L. J. and Du, D. X. (2010). A New Stochastic Bubble Population Model for Foam Flow 

in Porous Media. Transp. Porous Med., 83, 603-621. 



102 

 

APPENDIX: LETTERS OF PERMISSION 

JOHN WILEY AND SONS LICENSE 

TERMS AND CONDITIONS 

Apr 07, 2014 

 

 
 

This is a License Agreement between Seungjun Lee ("You") and John Wiley and Sons 

("John Wiley and Sons") provided by Copyright Clearance Center ("CCC"). The license 

consists of your order details, the terms and conditions provided by John Wiley and Sons, 

and the payment terms and conditions. 

All payments must be made in full to CCC. For payment instructions, please see information 
listed at the bottom of this form. 

License Number 3363820679523 

License date Apr 07, 2014 

Licensed content publisher John Wiley and Sons 

Licensed content 

publication 

Remediation 

Licensed content title Surfactant-enhanced remediation of DNAPL zones in granular 
aquifer systems 

Licensed copyright line Copyright ©  1993 Wiley Periodicals, Inc., A Wiley Company 

Licensed content author Richard E. Jackson 

Licensed content date Dec 12, 2006 

Start page 77 

End page 91 

Type of use Dissertation/Thesis  

Requestor type University/Academic 

Format Print and electronic 

Portion Figure/table 

Number of figures/tables 2 

Original Wiley figure/table 
number(s) 

Figure 1 and 4 

Will you be translating? No 

Title of your thesis / 
dissertation 

MODELING OF FOAM FLOW IN POROUS MEDIA FOR SUBSURFACE 
ENVIRONMETAL REMEDIATION 

Expected completion date Aug 2014 

Expected size (number of 
pages) 

120 



103 

 

Total 0.00 USD  

Terms and Conditions  

Terms and Conditions are not available at this time.  

If you would like to pay for this license now, please remit this license along with your payment 
made payable to "COPYRIGHT CLEARANCE CENTER" otherwise you will be invoiced within 48 
hours of the license date. Payment should be in the form of a check or money order referencing 
your account number and this invoice number RLNK501271933. 

Once you receive your invoice for this order, you may pay your invoice by credit card. Please 
follow instructions provided at that time. 

 

Make Payment To: 
Copyright Clearance Center 
Dept 001 
P.O. Box 843006 

Boston, MA 02284-3006 
 

For suggestions or comments regarding this order, contact RightsLink Customer 
Support:customercare@copyright.com or +1-877-622-5543 (toll free in the US) or +1-978-
646-2777. 

 

Gratis licenses (referencing $0 in the Total field) are free. Please retain this printable license 
for your reference. No payment is required. 

 

 

 
 

 

  

mailto:customercare@copyright.com


104 

 

 

 

Book: Foams: Fundamentals and 
Applications in the Petroleum 
Industry 

Chapter: Fundamentals of Foam Transport in 
Porous Media 

Author: Kovscek A. R., Radke C. J. 

Publisher: American Chemical Society 

Date: Oct 15, 1994 

Copyright ©  1994, American Chemical Society 
 

 

 
  Logged in as: 
 
  Seungjun Lee 
 

 

 

 

  

 
 

 

PERMISSION/LICENSE IS GRANTED FOR YOUR ORDER AT NO CHARGE 

This type of permission/license, instead of the standard Terms & Conditions, is sent to you because 

no fee is being charged for your order. Please note the following: 

 Permission is granted for your request in both print and electronic formats, and 

translations. 

 If figures and/or tables were requested, they may be adapted or used in part. 

 Please print this page for your records and send a copy of it to your publisher/graduate 

school. 

 Appropriate credit for the requested material should be given as follows: "Reprinted 

(adapted) with permission from (COMPLETE REFERENCE CITATION). Copyright 

(YEAR) American Chemical Society." Insert appropriate information in place of the 

capitalized words. 

 One-time permission is granted only for the use specified in your request. No additional 

uses are granted (such as derivative works or other editions). For any other uses, please 

submit a new request. 

 

If credit is given to another source for the material you requested, permission must be obtained 

from that source. 

  

 

  

javascript:doLogout();


105 

 

SOCIETY OF PETROLEUM ENGINEERS LICENSE 

TERMS AND CONDITIONS 

Apr 07, 2014 

 

 
 

This is a License Agreement between Seungjun Lee ("You") and Society of Petroleum 

Engineers ("Society of Petroleum Engineers") provided by Copyright Clearance Center 

("CCC"). The license consists of your order details, the terms and conditions provided by 

Society of Petroleum Engineers, and the payment terms and conditions. 

License Number 3363830006033 

License date Apr 07, 2014 

Licensed content publisher Society of Petroleum Engineers 

Licensed content publication SPE Reservoir Engineering 

Licensed content title Effects of Capillary Pressure on Coalescence and Phase 
Mobilities in Foams Flowing Through Porous Media 

Licensed content author Z.I. Khatib, Shell Development Co.;G.J. Hirasaki, Shell 

Development Co.;A.H. Falls, Shell Development Co. et al 

Licensed content date 1988 

Volume number 3 

Issue number 03 

Type of Use Thesis/Dissertation  

Requestor type non-commercial/non-profit 

SPE member yes 

SPE member number 3526890 

Format print and electronic 

Portion figures/tables/images 

Number of figures/tables/images 1 

Will you be translating? no 

Distribution 10 

Order reference number  

Title of your thesis / dissertation MODELING OF FOAM FLOW IN POROUS MEDIA FOR 
SUBSURFACE ENVIRONMETAL REMEDIATION 

Expected completion date Aug 2014 

Estimated size (number of pages) 120 

Billing Type Credit Card  

Credit card info Visa ending in 2574  

Credit card expiration 02/2015  



106 

 

Total 12.00 USD  

Terms and Conditions  

STANDARD TERMS AND CONDITIONS FOR REPRODUCTION OF MATERIAL 

1. The Society of Petroleum Engineers, Inc. (“SPE”) holds the copyright for this material. 

By clicking "accept" in connection with completing this licensing transaction, you agree that 

the following terms and conditions apply to this transaction (along with the Billing and 

Payment terms and conditions established by Copyright Clearance Center, Inc. ("CCC"), at 

the time that you opened your RightsLink account and that are available at any time at ). 

2. SPE hereby grants to you a non-exclusive license to use this material. Licenses are for 

one-time use only with a maximum distribution equal to the number that you identified in 

the licensing process; any form of republication must be completed within six months from 

the date hereof (although copies prepared before then may be distributed thereafter); and any 

electronic posting is limited to the period identified in the licensing process. 

3. You may not alter or modify the material in any manner (except that you may use, within 

the scope of the license granted, one or more excerpts from the copyrighted material, 

provided that the process of excerpting does not alter the meaning of the material or in any 

way reflect negatively on SPE or any writer of the material or their employer), nor may you 

translate the material into another language. 

4. Total excerpts from the license material may not exceed thirty percent (30%) of the total 

text. Not more than five (5) excerpts, figures, tables, or images may be used from any given 

paper. Multiple permission requests may not be used to exceed these limits. 

5. SPE reserves all rights not specifically granted in the combination of (i) the license details 

provided by you and accepted in the course of this licensing transaction, (ii) these terms and 

conditions and (iii) CCC's Billing and Payment terms and conditions. 

6. While you may exercise the rights licensed immediately upon issuance of the license at 

the end of the licensing process for the transaction, provided that you have disclosed 

complete and accurate details of your proposed use, no license is finally effective unless and 

until full payment is received from you (either by SPE or by CCC) as provided in CCC's 

Billing and Payment terms and conditions. If full payment is not received on a timely basis, 

then any license preliminarily granted shall be deemed automatically revoked and shall be 

void as if never granted. Further, in the event that you breach any of these terms and 

conditions or any of CCC's Billing and Payment terms and conditions, the license is 

automatically revoked and shall be void as if never granted. Use of materials as described in 

a revoked license, as well as any use of the materials beyond the scope of an unrevoked 

license, may constitute copyright infringement and SPE reserves the right to take any and all 

action to protect its copyright in the materials 

 



107 

 

7. You must include the appropriate copyright and permission notice and disclaimer in 

connection with any reproduction of the licensed material.The copyright information is 

found on the front page of the paper immediately under the title and author. This statement 

will then be followed with the disclaimer, “Further reproduction prohibited without 

permission.” Examples:1) Copyright 1990, Society of Petroleum Engineers Inc.Copyright 

1990, SPE. Reproduced with permission of SPE. Further reproduction prohibited without 

permission.2) Copyright 2010, IADC/SPE Drilling Conference and ExhibitionCopyright 

2010, IADC/SPE Drilling Conference and Exhibition. Reproduced with permission of SPE. 

Further reproduction prohibited without permission.3) Copyright 2008, Offshore 

Technology ConferenceCopyright 2008, Offshore Technology Conference. Reproduced 

with permission of OTC. Further reproduction prohibited without permission.4) Copyright 

2005, International Petroleum Technology ConferenceCopyright 2005, International 

Petroleum Technology Conference. Reproduced with permission of IPTC. Further 

reproduction prohibited without permission.If for any reason, the copyright on the paper is 

missing or unclear, please follow Example 1 above, using SPE as the default copyright 

holder. SPE administers copyright for OTC, IPTC and other joint events on behalf of all 

parties in those events. 

8. SPE makes no representations or warranties with respect to the licensed material and 

adopts on its own behalf the limitations and disclaimers established by CCC on its behalf in 

its Billing and Payment terms and conditions for this licensing transaction. 

9. You hereby indemnify and agree to hold harmless SPE and CCC, and their respective 

officers, directors, employees and agents, from and against any and all claims arising out of 

your use of the licensed material other than as specifically authorized pursuant to this license. 

10. This license is personal to you, but may be assigned or transferred by you to a business 

associate (or to your employer) if you give prompt written notice of the assignment or 

transfer to SPE. No such assignment or transfer shall relieve you of the obligation to pay the 

designated license fee on a timely basis (although payment by the identified assignee can 

fulfill your obligation). 

11. This license may not be amended except in a writing signed by both parties (or, in the 

case of SPE, by CCC on SPE's behalf). 

12. SPE hereby objects to any terms contained in any purchase order, acknowledgment, 

check endorsement or other writing prepared by you, which terms are inconsistent with these 

terms and conditions or CCC's Billing and Payment terms and conditions. These terms and 

conditions, together with CCC's Billing and Payment terms and conditions (which are 

incorporated herein), comprise the entire agreement between you and SPE (and CCC) 

concerning this licensing transaction. In the event of any conflict between your obligations 

established by these terms and conditions and those established by CCC's Billing and 

Payment terms and conditions, these terms and conditions shall control. 



108 

 

13. This Agreement shall be governed and interpreted by the laws of the State of Texas, 

United States of America. Regardless of the place of performance or otherwise, the 

Agreement, and all schedules, amendments, modifications, alterations, or supplements 

thereto, will be governed by the laws of the State of Texas, United States of America. If any 

provisions of the Agreement are unenforceable under applicable law, the remaining 

provisions shall continue in full force and effect. 

Other Terms and Conditions: None 

v1.1 

If you would like to pay for this license now, please remit this license along with your payment 
made payable to "COPYRIGHT CLEARANCE CENTER" otherwise you will be invoiced within 48 

hours of the license date. Payment should be in the form of a check or money order referencing 
your account number and this invoice number RLNK501271945. 

Once you receive your invoice for this order, you may pay your invoice by credit card. Please 
follow instructions provided at that time. 
 
Make Payment To: 
Copyright Clearance Center 
Dept 001 
P.O. Box 843006 

Boston, MA 02284-3006 
 

For suggestions or comments regarding this order, contact RightsLink Customer 
Support:customercare@copyright.com or +1-877-622-5543 (toll free in the US) or +1-978-646-
2777. 

 

Gratis licenses (referencing $0 in the Total field) are free. Please retain this printable license for 
your reference. No payment is required. 

 

 

 
 

 

  

mailto:customercare@copyright.com


109 

 

ELSEVIER LICENSE 

TERMS AND CONDITIONS 

Apr 07, 2014 

 

 
 

This is a License Agreement between Seungjun Lee ("You") and Elsevier ("Elsevier") 

provided by Copyright Clearance Center ("CCC"). The license consists of your order 

details, the terms and conditions provided by Elsevier, and the payment terms and 

conditions. 

All payments must be made in full to CCC. For payment instructions, please see information 

listed at the bottom of this form. 

Supplier Elsevier Limited 
The Boulevard,Langford Lane 
Kidlington,Oxford,OX5 1GB,UK 

Registered Company Number 1982084 

Customer name Seungjun Lee 

Customer address 1826 S Brightside View Dr APT B 

  Baton Rouge, LA 70820 

License number 3363830238714 

License date Apr 07, 2014 

Licensed content publisher Elsevier 

Licensed content publication Elsevier Books 

Licensed content title Enhanced Oil Recovery Field Case Studies 

Licensed content author S. Lee,S.I. Kam 

Licensed content date 2013 

Number of pages 39 

Start Page 23 

End Page 61 

Type of Use reuse in a thesis/dissertation  

Intended publisher of new work other  

Portion figures/tables/illustrations  

Number of 

figures/tables/illustrations 

1 
 

Format both print and electronic  

Are you the author of this Elsevier 
chapter? 

Yes 
 

How many pages did you author in 
this Elsevier book? 

35 
 



110 

 

Will you be translating? No  

Title of your thesis/dissertation MODELING OF FOAM FLOW IN POROUS MEDIA FOR 

SUBSURFACE ENVIRONMETAL REMEDIATION 
 

Expected completion date Aug 2014  

Estimated size (number of pages) 120  

Elsevier VAT number GB 494 6272 12 

Permissions price 0.00 USD  

VAT/Local Sales Tax 0.00 USD / 0.00 GBP 

Total 0.00 USD   

Terms and Conditions   

INTRODUCTION 

1. The publisher for this copyrighted material is Elsevier.  Byclicking "accept" in 

connection with completing this licensingtransaction, you agree that the following terms 

and conditions apply to thistransaction (along with the Billing and Payment terms and 

conditionsestablished by Copyright Clearance Center, Inc. ("CCC"), at the timethat you 

opened your Rightslink account and that are available at any time 

at http://myaccount.copyright.com). 

Licensing material from an Elsevier book: A hyper-text link must be includedto the Elsevier 

homepage at http://www.elsevier.com . Allcontent posted to the web site must maintain the 

copyright information line onthe bottom of each image. 

 

Posting licensed content on Electronic reserve:  In addition to the above the following 

clausesare applicable: The web site must be password-protected and made available onlyto 

bona fide students registered on a relevant course. This permission isgranted for 1 year 

only. You may obtain a new license for future websiteposting. 

For journal authors:  the following clauses are applicable inaddition to the above: 

Permission granted is limited to the author acceptedmanuscript version* of your paper. 

*Accepted Author Manuscript (AAM) Definition: An accepted authormanuscript (AAM) 

is the author’s version of the manuscript of an article thathas been accepted for publication 

and which may include any author-incorporatedchanges suggested through the processes 

of submission processing, peer review,and editor-author communications. AAMs do not 

include other publishervalue-added contributions such as copy-editing, formatting, 

technicalenhancements and (if relevant) pagination. 

  

  

http://www.elsevier.com/


111 

 

21. Other Conditions: 

  

v1.7 

If you would like to pay for this license now, please remit this license along with your payment 
made payable to "COPYRIGHT CLEARANCE CENTER" otherwise you will be invoiced within 48 
hours of the license date. Payment should be in the form of a check or money order referencing 
your account number and this invoice number RLNK501271952. 

Once you receive your invoice for this order, you may pay your invoice by credit card. Please 
follow instructions provided at that time. 

 

Make Payment To: 
Copyright Clearance Center 
Dept 001 
P.O. Box 843006 
Boston, MA 02284-3006 
 

For suggestions or comments regarding this order, contact RightsLink Customer 
Support:customercare@copyright.com or +1-877-622-5543 (toll free in the US) or +1-978-
646-2777. 

  

Gratis licenses (referencing $0 in the Total field) are free. Please retain this printable license 
for your reference. No payment is required. 

  

 

 
  

 

  

mailto:customercare@copyright.com


112 

 

SOCIETY OF PETROLEUM ENGINEERS LICENSE 

TERMS AND CONDITIONS 

Apr 07, 2014 

 

 
 

This is a License Agreement between Seungjun Lee ("You") and Society of Petroleum 

Engineers ("Society of Petroleum Engineers") provided by Copyright Clearance Center 

("CCC"). The license consists of your order details, the terms and conditions provided by 

Society of Petroleum Engineers, and the payment terms and conditions. 

License Number 3363830537135 

License date Apr 07, 2014 

Licensed content publisher Society of Petroleum Engineers 

Licensed content publication SPE Reservoir Engineering 

Licensed content title Change in Apparent Viscosity of CO2 Foam With Rock 
Permeability 

Licensed content author H.O. Lee, New Mexico Petroleum Recovery Research 

Center;J.P. Heller, New Mexico Petroleum Recovery 
Research Center;A.M.W. Hoefer, New Mexico Petroleum 
Recovery Research Center et al 

Licensed content date 1991 

Volume number 6 

Issue number 04 

Type of Use Thesis/Dissertation  

Requestor type academic/educational 

SPE member yes 

SPE member number 3526890 

Format print and electronic 

Portion figures/tables/images 

Number of figures/tables/images 1 

Will you be translating? no 

Distribution 10 

Order reference number  

Title of your thesis / dissertation MODELING OF FOAM FLOW IN POROUS MEDIA FOR 
SUBSURFACE ENVIRONMETAL REMEDIATION 

Expected completion date Aug 2014 

Estimated size (number of pages) 120 

Billing Type Credit Card  

Credit card info Visa ending in 2574  



113 

 

Credit card expiration 02/2015  

Total 12.00 USD  

Terms and Conditions  

STANDARD TERMS AND CONDITIONS FOR REPRODUCTION OF MATERIAL 

1. The Society of Petroleum Engineers, Inc. (“SPE”) holds the copyright for this material. 

By clicking "accept" in connection with completing this licensing transaction, you agree that 

the following terms and conditions apply to this transaction (along with the Billing and 

Payment terms and conditions established by Copyright Clearance Center, Inc. ("CCC"), at 

the time that you opened your RightsLink account and that are available at any time at ). 

2. SPE hereby grants to you a non-exclusive license to use this material. Licenses are for 

one-time use only with a maximum distribution equal to the number that you identified in 

the licensing process; any form of republication must be completed within six months from 

the date hereof (although copies prepared before then may be distributed thereafter); and any 

electronic posting is limited to the period identified in the licensing process. 

3. You may not alter or modify the material in any manner (except that you may use, within 

the scope of the license granted, one or more excerpts from the copyrighted material, 

provided that the process of excerpting does not alter the meaning of the material or in any 

way reflect negatively on SPE or any writer of the material or their employer), nor may you 

translate the material into another language. 

4. Total excerpts from the license material may not exceed thirty percent (30%) of the total 

text. Not more than five (5) excerpts, figures, tables, or images may be used from any given 

paper. Multiple permission requests may not be used to exceed these limits. 

5. SPE reserves all rights not specifically granted in the combination of (i) the license details 

provided by you and accepted in the course of this licensing transaction, (ii) these terms and 

conditions and (iii) CCC's Billing and Payment terms and conditions. 

6. While you may exercise the rights licensed immediately upon issuance of the license at 

the end of the licensing process for the transaction, provided that you have disclosed 

complete and accurate details of your proposed use, no license is finally effective unless and 

until full payment is received from you (either by SPE or by CCC) as provided in CCC's 

Billing and Payment terms and conditions. If full payment is not received on a timely basis, 

then any license preliminarily granted shall be deemed automatically revoked and shall be 

void as if never granted. Further, in the event that you breach any of these terms and 

conditions or any of CCC's Billing and Payment terms and conditions, the license is 

automatically revoked and shall be void as if never granted. Use of materials as described in 

a revoked license, as well as any use of the materials beyond the scope of an unrevoked 

license, may constitute copyright infringement and SPE reserves the right to take any and all 

action to protect its copyright in the materials 

 



114 

 

7. You must include the appropriate copyright and permission notice and disclaimer in 

connection with any reproduction of the licensed material.The copyright information is 

found on the front page of the paper immediately under the title and author. This statement 

will then be followed with the disclaimer, “Further reproduction prohibited without 

permission.” Examples:1) Copyright 1990, Society of Petroleum Engineers Inc.Copyright 

1990, SPE. Reproduced with permission of SPE. Further reproduction prohibited without 

permission.2) Copyright 2010, IADC/SPE Drilling Conference and ExhibitionCopyright 

2010, IADC/SPE Drilling Conference and Exhibition. Reproduced with permission of SPE. 

Further reproduction prohibited without permission.3) Copyright 2008, Offshore 

Technology ConferenceCopyright 2008, Offshore Technology Conference. Reproduced 

with permission of OTC. Further reproduction prohibited without permission.4) Copyright 

2005, International Petroleum Technology ConferenceCopyright 2005, International 

Petroleum Technology Conference. Reproduced with permission of IPTC. Further 

reproduction prohibited without permission.If for any reason, the copyright on the paper is 

missing or unclear, please follow Example 1 above, using SPE as the default copyright 

holder. SPE administers copyright for OTC, IPTC and other joint events on behalf of all 

parties in those events. 

8. SPE makes no representations or warranties with respect to the licensed material and 

adopts on its own behalf the limitations and disclaimers established by CCC on its behalf in 

its Billing and Payment terms and conditions for this licensing transaction. 

9. You hereby indemnify and agree to hold harmless SPE and CCC, and their respective 

officers, directors, employees and agents, from and against any and all claims arising out of 

your use of the licensed material other than as specifically authorized pursuant to this license. 

10. This license is personal to you, but may be assigned or transferred by you to a business 

associate (or to your employer) if you give prompt written notice of the assignment or 

transfer to SPE. No such assignment or transfer shall relieve you of the obligation to pay the 

designated license fee on a timely basis (although payment by the identified assignee can 

fulfill your obligation). 

11. This license may not be amended except in a writing signed by both parties (or, in the 

case of SPE, by CCC on SPE's behalf). 

12. SPE hereby objects to any terms contained in any purchase order, acknowledgment, 

check endorsement or other writing prepared by you, which terms are inconsistent with these 

terms and conditions or CCC's Billing and Payment terms and conditions. These terms and 

conditions, together with CCC's Billing and Payment terms and conditions (which are 

incorporated herein), comprise the entire agreement between you and SPE (and CCC) 

concerning this licensing transaction. In the event of any conflict between your obligations 

established by these terms and conditions and those established by CCC's Billing and 

Payment terms and conditions, these terms and conditions shall control. 



115 

 

13. This Agreement shall be governed and interpreted by the laws of the State of Texas, 

United States of America. Regardless of the place of performance or otherwise, the 

Agreement, and all schedules, amendments, modifications, alterations, or supplements 

thereto, will be governed by the laws of the State of Texas, United States of America. If any 

provisions of the Agreement are unenforceable under applicable law, the remaining 

provisions shall continue in full force and effect. 

Other Terms and Conditions: None 

v1.1 

If you would like to pay for this license now, please remit this license along with your payment 
made payable to "COPYRIGHT CLEARANCE CENTER" otherwise you will be invoiced within 48 

hours of the license date. Payment should be in the form of a check or money order referencing 
your account number and this invoice number RLNK501271955. 

Once you receive your invoice for this order, you may pay your invoice by credit card. Please 
follow instructions provided at that time. 
 
Make Payment To: 
Copyright Clearance Center 
Dept 001 
P.O. Box 843006 

Boston, MA 02284-3006 
 

For suggestions or comments regarding this order, contact RightsLink Customer 
Support:customercare@copyright.com or +1-877-622-5543 (toll free in the US) or +1-978-646-
2777. 

 

Gratis licenses (referencing $0 in the Total field) are free. Please retain this printable license for 
your reference. No payment is required. 

 

 

 
 

 

  

mailto:customercare@copyright.com


116 

 

SOCIETY OF PETROLEUM ENGINEERS LICENSE 

TERMS AND CONDITIONS 

Apr 07, 2014 

 

 
 

This is a License Agreement between Seungjun Lee ("You") and Society of Petroleum 

Engineers ("Society of Petroleum Engineers") provided by Copyright Clearance Center 

("CCC"). The license consists of your order details, the terms and conditions provided by 

Society of Petroleum Engineers, and the payment terms and conditions. 

License Number 3363830684010 

License date Apr 07, 2014 

Licensed content publisher Society of Petroleum Engineers 

Licensed content publication SPE Proceedings 

Licensed content title Laboratory Studies for Design of a Foam Pilot in the Snorre 
Field 

Licensed content author I. Svorstol, I. Svorstol;F. Vassenden, F. Vassenden;K. 

Mannhardt, K. Mannhardt et al 

Licensed content date 1996 

Type of Use Thesis/Dissertation 

Requestor type academic/educational 

SPE member yes 

SPE member number 3526890 

Format print and electronic 

Portion figures/tables/images 

Number of figures/tables/images 1 

Will you be translating? no 

Distribution 10 

Order reference number  

Title of your thesis / dissertation MODELING OF FOAM FLOW IN POROUS MEDIA FOR 

SUBSURFACE ENVIRONMETAL REMEDIATION 

Expected completion date Aug 2014 

Estimated size (number of pages) 120 

Billing Type Credit Card  

Credit card info Visa ending in 2574  

Credit card expiration 02/2015  

Total 12.00 USD  

Terms and Conditions  



117 

 

STANDARD TERMS AND CONDITIONS FOR REPRODUCTION OF MATERIAL 

1. The Society of Petroleum Engineers, Inc. (“SPE”) holds the copyright for this material. 

By clicking "accept" in connection with completing this licensing transaction, you agree that 

the following terms and conditions apply to this transaction (along with the Billing and 

Payment terms and conditions established by Copyright Clearance Center, Inc. ("CCC"), at 

the time that you opened your RightsLink account and that are available at any time at ). 

2. SPE hereby grants to you a non-exclusive license to use this material. Licenses are for 

one-time use only with a maximum distribution equal to the number that you identified in 

the licensing process; any form of republication must be completed within six months from 

the date hereof (although copies prepared before then may be distributed thereafter); and any 

electronic posting is limited to the period identified in the licensing process. 

3. You may not alter or modify the material in any manner (except that you may use, within 

the scope of the license granted, one or more excerpts from the copyrighted material, 

provided that the process of excerpting does not alter the meaning of the material or in any 

way reflect negatively on SPE or any writer of the material or their employer), nor may you 

translate the material into another language. 

4. Total excerpts from the license material may not exceed thirty percent (30%) of the total 

text. Not more than five (5) excerpts, figures, tables, or images may be used from any given 

paper. Multiple permission requests may not be used to exceed these limits. 

5. SPE reserves all rights not specifically granted in the combination of (i) the license details 

provided by you and accepted in the course of this licensing transaction, (ii) these terms and 

conditions and (iii) CCC's Billing and Payment terms and conditions. 

6. While you may exercise the rights licensed immediately upon issuance of the license at 

the end of the licensing process for the transaction, provided that you have disclosed 

complete and accurate details of your proposed use, no license is finally effective unless and 

until full payment is received from you (either by SPE or by CCC) as provided in CCC's 

Billing and Payment terms and conditions. If full payment is not received on a timely basis, 

then any license preliminarily granted shall be deemed automatically revoked and shall be 

void as if never granted. Further, in the event that you breach any of these terms and 

conditions or any of CCC's Billing and Payment terms and conditions, the license is 

automatically revoked and shall be void as if never granted. Use of materials as described in 

a revoked license, as well as any use of the materials beyond the scope of an unrevoked 

license, may constitute copyright infringement and SPE reserves the right to take any and all 

action to protect its copyright in the materials 

7. You must include the appropriate copyright and permission notice and disclaimer in 

connection with any reproduction of the licensed material.The copyright information is 

found on the front page of the paper immediately under the title and author. This statement 

will then be followed with the disclaimer, “Further reproduction prohibited without 

 



118 

 

permission.” Examples:1) Copyright 1990, Society of Petroleum Engineers Inc.Copyright 

1990, SPE. Reproduced with permission of SPE. Further reproduction prohibited without 

permission.2) Copyright 2010, IADC/SPE Drilling Conference and ExhibitionCopyright 

2010, IADC/SPE Drilling Conference and Exhibition. Reproduced with permission of SPE. 

Further reproduction prohibited without permission.3) Copyright 2008, Offshore 

Technology ConferenceCopyright 2008, Offshore Technology Conference. Reproduced 

with permission of OTC. Further reproduction prohibited without permission.4) Copyright 

2005, International Petroleum Technology ConferenceCopyright 2005, International 

Petroleum Technology Conference. Reproduced with permission of IPTC. Further 

reproduction prohibited without permission.If for any reason, the copyright on the paper is 

missing or unclear, please follow Example 1 above, using SPE as the default copyright 

holder. SPE administers copyright for OTC, IPTC and other joint events on behalf of all 

parties in those events. 

8. SPE makes no representations or warranties with respect to the licensed material and 

adopts on its own behalf the limitations and disclaimers established by CCC on its behalf in 

its Billing and Payment terms and conditions for this licensing transaction. 

9. You hereby indemnify and agree to hold harmless SPE and CCC, and their respective 

officers, directors, employees and agents, from and against any and all claims arising out of 

your use of the licensed material other than as specifically authorized pursuant to this license. 

10. This license is personal to you, but may be assigned or transferred by you to a business 

associate (or to your employer) if you give prompt written notice of the assignment or 

transfer to SPE. No such assignment or transfer shall relieve you of the obligation to pay the 

designated license fee on a timely basis (although payment by the identified assignee can 

fulfill your obligation). 

11. This license may not be amended except in a writing signed by both parties (or, in the 

case of SPE, by CCC on SPE's behalf). 

12. SPE hereby objects to any terms contained in any purchase order, acknowledgment, 

check endorsement or other writing prepared by you, which terms are inconsistent with these 

terms and conditions or CCC's Billing and Payment terms and conditions. These terms and 

conditions, together with CCC's Billing and Payment terms and conditions (which are 

incorporated herein), comprise the entire agreement between you and SPE (and CCC) 

concerning this licensing transaction. In the event of any conflict between your obligations 

established by these terms and conditions and those established by CCC's Billing and 

Payment terms and conditions, these terms and conditions shall control. 

13. This Agreement shall be governed and interpreted by the laws of the State of Texas, 

United States of America. Regardless of the place of performance or otherwise, the 

Agreement, and all schedules, amendments, modifications, alterations, or supplements 

thereto, will be governed by the laws of the State of Texas, United States of America. If any 



119 

 

provisions of the Agreement are unenforceable under applicable law, the remaining 

provisions shall continue in full force and effect. 

Other Terms and Conditions: None 

v1.1 

If you would like to pay for this license now, please remit this license along with your payment 
made payable to "COPYRIGHT CLEARANCE CENTER" otherwise you will be invoiced within 48 

hours of the license date. Payment should be in the form of a check or money order referencing 
your account number and this invoice number RLNK501271958. 

Once you receive your invoice for this order, you may pay your invoice by credit card. Please 
follow instructions provided at that time. 
 

Make Payment To: 
Copyright Clearance Center 
Dept 001 
P.O. Box 843006 

Boston, MA 02284-3006 
 

For suggestions or comments regarding this order, contact RightsLink Customer 
Support:customercare@copyright.com or +1-877-622-5543 (toll free in the US) or +1-978-646-
2777. 

 

Gratis licenses (referencing $0 in the Total field) are free. Please retain this printable license for 
your reference. No payment is required. 

 

 

 
 

 

  

mailto:customercare@copyright.com


120 

 

VITA 

Seungjun Lee was born in August 1980 in Seoul, South Korea, as the son of Gwangwon 

Lee and Younghee Kwon. He received his B.S. degree from the Department of Geo-environment 

Engineering at Han Yang University, South Korea, in 2006 and M.S. degree in the Department of 

Petroleum Engineering at the University of Texas at Austin in December 2009. He joined the Craft 

and Hawkins Department of Petroleum Engineering at Louisiana State University for PhD study 

in 2010. His research interests are EOR and subsurface remediation using chemicals such as 

surfactants, polymers and foams. He had two years of military service (2001-2003) as an 

administrator at an armored company in the 32nd division, and has been married to Minjung Kim 

since 2008. 

 


