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Abstract

Limited data availability and poor data quality make it difficult to characterize many reservoirs. For

reservoirs that have undergone waterflooding, production and injection data are a reliable source

of information from which injector-to-producer connections can be inferred. In this research, we

use well locations, injection and production rate data and well fractional flow values to develop a

reservoir-scale network model.

A Voronoi mesh divides the reservoir into a number of node volumes each of which contains

a well. Bonds connect each of the nodes with conductance values that must be inferred from the

rate data. An inverse problem is formulated where the mean-squared difference between the mod-

eled and actual production data are minimized and the conductance values between each node

are the unknowns. A derivative free optimization algorithm is utilized to minimize the objective

function. Knowing the conductivity of each of the bonds, a two phase problem is formulated and

solved in this work to obtain the fractional flow at node interfaces and at each producer. The set

of cross-sectional areas open to flow and time-of-flight Dykstra-Parsons coefficients that minimize

the simulated and actual producer fractional flow values is the solution to this problem.

This work is primarily for secondary and tertiary floods with limited geological data. The solu-

tion parameters are directly proportional to formation properties. In addition, they help to evaluate

the degree of sweep between wells. This approach has been successfully tested for different syn-

thetic permeability distribution cases and field injection scenarios. The main advantages of the

proposed method are:

• It can model changes in flow pattern caused by adding new wells or shutting in producers.

• It uses conventional history matching methods to solve a simplified inverse problem using

only production and injection data. It uses a small number of nodes and converges to a better

posed solution than statistical approaches. Convergence to a solution for higher frequency

data only decreases the speed of the method slightly.
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• The shape of the fractional flow curve is determined by the time-of-flight Dykstra-Parsons

coefficients and cross-sectional areas open to flow which can be related to reservoir proper-

ties.
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Chapter 1
Introduction

Studying the changes in well production rates as injection rates fluctuate, gives insight about inter-

well formation characteristics. Local permeability values along with the potential gradient, controls

the direction of fluid flow in a reservoir. History matching is the most common way of inferring the

permeability distribution in a reservoir. History matching involves a cumbersome task of gathering

and adjusting numerous data (permeability, porosity, saturation, seismic parameters . . . ) to match

observed and simulated production rates and pressures. Because of the uncertainties associated

with the data, detailed output models may not be realistic. Permeability distribution and barriers

positions are two examples of reservoir properties and features that are always estimated with un-

certainty, unless, there are enough core and well test data available. The simulation model behaves

differently in terms of pressure and production response under different realizations of the model

data. Therefore, in cases where knowledge of reservoir properties and conditions are limited, mod-

els with fewer, well understood parameters may answer questions more confidently than models

with many uncertain parameters. For example, the resistance to flow between two points in the

medium caused by 1000 block permeability values in a detailed model may be represented by a

single parameter in the simple model. Such a parameter may help to reduce the uncertainties of

complex models. Even for cases with enough certain data, a detailed answer may not always be

necessary and a quick solution may sometimes suffice. In order to obtain such a solution, a simpli-

fied model is needed which can be easily set up for different cases. The input to the model should

be reliable with limited data processing and the output must have physical meaning.

In this study, simplified models are grouped into two main categories: The first category of

models analyze total fluid production and its correlation with injected water. These models usually

have a statistical basis and we term these single phase models. The second group of models inspect

water-oil-ratio and fractional flow to evaluate waterflood performance and are referred to as two-
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phase models. The dissertation describes new advances in both types and suggests robust methods

to analyze single-phase and two-phase production data to infer reservoir heterogeneity.

1.1 Single-phase models

Models that are based on the statistical correlation between injection and production rates have

been shown to be practically useful to quantify reservoirs that have undergone waterflooding. Many

methods have been proposed in this area. Refunjol and Lake (1997) used Spearman analysis and

Panda and Chopra (1998) trained an artificial neural network to estimate injector- producer in-

teraction. Albertoni and Lake (2003) implemented multivariate linear regression and diffusivity

filters to describe connectivity between injection and production wells. In their model, produc-

tion rates at a producing well were assumed to be a linear combination of the injection rates of

every injector. Diffusivity filters were applied to injection rates to account for potential time lags

between injection and the resulting production. In this work this will be referred to as a “resis-

tance model”. In order to resolve limitations of the Albertoni and Lake (2003) model, Yousef et al.

(2006) proposed a more complex model, named the capacitance model (CM). They incorporated

compressibility into this model in addition to transmissibility to quantify the degree of fluid storage

between wells. This approach requires bottomhole pressure information in addition to rate data. To

improve the CM, Kaviani et al. (2008) proposed a segmented CM for the cases where bottom hole

pressure (BHP) data are unknown and a compensated capacitance model when a producer is added

or shut-in. Sayarpour (2008) introduced capacitance-resistance models (CRM) in which he solved

the fundamental differential equation of the capacitance model based on superposition in time. He

used insights gained from performing CRM to reduce the range of input parameters in numerical

reservoir simulators.

CRM has been extensively used by authors on many field examples for different purposes. Izgec

and Kabir (2009) mentioned the benefits of using CRM compared to solving a transient flow prob-

lem. They showed that CRM is applicable even before breakthrough happens and in cases with low

injection signal quality. Izgec and Kabir (2010) coupled the CRM and an analytical aquifer model
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to determine the aquifer influx each well receives. Parekh and Kabir (2011) showed that there is

agreement between CRM results and interwell tracer data. They also attempted to use CRM and

rate-transient analysis to predict connectivity before breakthrough. Wang et al. (2011) used CRM

and satellite images of surface subsidence to explain the performance of a waterflood and sug-

ges reasons for the subsidence. They provided a surface subsidence model to predict the average

surface subsidence based on the injection and production rates. Bansal and Sayarpour (2012) im-

plemented CRM to estimate fault-block transmissibility. Based on the result, they determined the

interaction between compartments.

Dinh and Tiab (2008) also implemented multivariate linear regression, but they used fluctuation

of bottomhole pressure of both injectors and producers to calculate inter-well connectivity. Lee

et al. (2009) estimated finite-impulse-response (FIR) curves corresponding to the fluid flow be-

tween all injector-producer pairs to calculate connectivity between them. In this model, production

rates are partly determined by the linear combination of surrounding FIR filtered injection rates.

The recent correlation-based methods generally have the form

q j(n) =
I

∑
i=1

λi, ji′i, j (1.1)

where λi, j is termed the connectivity and is an indicator of the relative contribution that injector

i has on production well j. The i′i, j term is a filtered injection rate. The dissipation of pressure

between the injector-producer pair is included in the i′i, j term. One of the major deficiencies of

such methods is their inability to handle changes in flow pattern (Sayarpour 2008). Change in flow

pattern may be a consequence of a long shut-in period for producers or conversion of producers

to injectors. Even abrupt changes in injection rates that lead to overpressurizing a region in the

reservoir may affect flooding patterns. In these cases the connectivity coefficients are no longer

valid. To address this issue, Satter et al. (2007) and Thiele and Batycky (2006) used well allocation

factors (WAFs). A well allocation factor is assigned to each injector and is the ratio of the injected

fluid volume to the total volume of fluid produced at offset wells (Satter et al. 2007). Thiele and
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Batycky (2006) state that the well allocation factor is a dynamic value, and it changes with injection

rate.

Fig. 1.1 shows streamlines generated by FrontSim R© software at different times from a simu-

lation of an example problem used by several authors and described in Albertoni (2002). It is a

synthetic field where injection rates in 5 wells fluctuate to study connectivity to the 4 producers in

the reservoir. Although the flooding pattern is fixed, the influence of each injector on the producers

varies as injection rates fluctuate. In the left figure, a high-pressure region forms around injector

1 (I1) caused by a large amount of injection. This causes the streamlines that are launched from

injector I3 to avoid this region when flowing towards producers P1 and P2. In the right figure, the

region around I2 is now the high pressure region and the streamlines again avoid the high pressure

area when flowing towards producers P1 and P3. In each case, injection and production rates in

the entire domain and not an individual well, determine the pressure field and the resulting fluid

flow direction. Therefore the claim of independency of correlation coefficients from rate may not

be appropriate. In addition, parameters estimated by these methods do not have physical meaning,

and they cannot be directly used to infer reservoir properties.

Figure 1.1: An example of changes to streamlines as the direction of pressure gradients change.
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In this research, a tool is developed that uses inverse techniques from automatic history match-

ing, which are simplified such that the numerous grid-block parameters and property characteristics

from detailed reservoir characterization are avoided. The amount of input data is reduced to injec-

tion and production rates and well positions. Such a parsimonious approach can be applied on

reservoirs with minimum data.

The ability to handle changes in flow direction is another characteristic of the model that in-

creases the range of cases that can be studied. Changes in flow direction may be the result of

pressurizing certain regions in a reservoir, adding new wells, or shutting-in producers. Permeabil-

ity and pressure gradient determine flow direction in a reservoir. Since the approach is based on a

simulation flow equation, permeability and pressure gradients are included. Therefore it can handle

changes in flow direction.

The method is capable of matching one or selected time intervals of production history for

an entire field or group of wells. It estimates parameters that can be used to infer permeability

variations and geological features in the reservoir. In addition, once parameters are estimated the

model can be converted to a predictive tool to estimate total production rates in each producer

using injection data as input. Different case studies with different permeability distributions and/or

injection-production scenarios are considered to test the performance of the method under different

conditions.

1.2 Two-phase models

The importance of characterizing heterogeneity in the reservoir cannot be overstated since good

sweep efficiency and as a result, success of the displacement is obtained when there is a good un-

derstanding of the heterogeneity in the reservoir. Although conductance values give an indication

of the direction of fluid flow, seals and high permeable pathways, they are incapable of demonstrat-

ing the spatial variations of physical parameters in the reservoir. This is one of the weak points of

the connectivity values in the statistical methods as well. Having the heterogeneity knowledge and

implementing flood-optimization techniques will help to improve volumetric sweep efficiency.
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There are many analytical and semi-analytical methods in the literature to analyze and forecast

flood performance. These methods usually use the well fractional flow values and do not deal with

reservoir heterogeneity. Plotting the water-oil ratio (WOR) versus cumulative-oil production (Np)

on a semi-log scale was proposed by Arps (1945), and a crossplot technique proposed by Ershaghi

and Abdassah (1984) are two of these methods. The crossplot is based on the linear relationship

between the logarithm of the relative permeability ratio and water saturation and the Buckley-

Leverett equation. Yang (2009) used the same assumption of a semi-log relationship between the

oil-water relative permeability ratio and water saturation and derived an analytic solution that re-

lates oil fractional flow and volumetric sweep efficiency. Can and Kabir (2012) improved on Yang’s

model by correcting its performance at high WOR.

Kabir and Izgec (2009) tried to identify high conductivity layers or channels between injector

and producer pairs using a modified-Hall analysis. The modified-Hall plot uses an improved Hall

integral curve and two derivative curves. Normally, the derivative curves match the integral curve

during matrix injection, but fall lower when fracturing occurs. Kabir and Izgec (2009) transformed

the separation distance between the derivative curves and the integral curve into a permeability-

thickness product.

To enhance inference about reservoir heterogeneity, Yousef et al. (2009) realized that hetero-

geneity cannot be inferred from the resistance and capacitance parameters in the CM model indi-

vidually. They combined both sets of parameters to redefine a flow capacity plot and a Lorenz plot.

Then, they used the plots to identify whether the connectivity of an injector-producer well pair was

through fractures, a high permeability layer, multiple layers, or through a partially completed well.

Lee et al. (2008) tried to identify high-permeability channels based on signal-processing tech-

niques applied to only injection and production rates. Like Yousef et al. (2009), they used flow

capacity plots. They obtain their flow capacity plots from finite-impulse-response (FIR) curves

corresponding to the fluid flow between an injector-producer pair.

Although reservoir heterogeneity has higher influence on two-phase flow behavior like fractional

flow and breakthrough time compared to total production, neither Yousef et al. (2009) nor Lee et al.
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(2008) looked at individual phase production. Liang et al. (2007) and Sayarpour et al. (2007) tried

to optimize waterflood performance using an empirical oil fractional flow model. The model is

based on a power-law relationship between the instantaneous water-oil ratio and the cumulative

water injected. The model has two parameters, a and b, which are used to match oil fractional flow

but are not reservoir parameters.

In this thesis, individual phase rates will be analyzed in addition to the total rates to reveal more

information about interwell characteristics. More specifically, the water fractional flow that each

injector brings to a producer needs to be determined. This should provide an idea of the degree

of heterogeneity and sweep between the well pairs, since the shape of the fractional flow curve

is a function of the heterogeneity between wells. This requires having an oil-production model

that matches average fractional flow that each injector brings to the producer with the observed

fractional flow. In a reservoir with multiple injection wells, it would be difficult to obtain a realistic

fraction of the flow from each injector. What is observed at a producer is one fractional flow

function. There may be many combinations of cases that provide the observed fractional flow

behavior at the producer.

The two-phase flow model that is proposed in this study is a conventional two-phase flow model

that is implemented on a network representing the reservoir. In two-phase flow models, front po-

sition and saturation distribution are functions of permeability and reservoir heterogeneity. These

are key parameters when it comes to matching the fractional flow at producers and are typically

determined by changing grid properties in traditional history matching techniques. In this thesis,

the assumption is that the geological information is limited, and therefor there is no underlying

geologic model to match to. Instead, ideas from streamline simulation and saturation mapping are

used to track fronts and obtain saturation values between injector-producer pairs. Unlike streamline

simulation, where an underlying grid dictates the front and saturation along each streamline, in this

work, a cross-sectional area open to flow and a “Dykstra-Parson” coefficient are used to charac-

terize the fluid movement. The cross-sectional area open to flow gives an average time of flight in

a diamond-shaped bond that connects each injector-producer pair. Within this bond “streamlines”
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are launched from the injector, and a factor similar to a Dykstra-Parsons coefficient is used to rep-

resent the heterogeneity between the injector and the producer and determines the distance that

fronts advance in each streamline.

Another difference between traditional streamline simulation and the network model is the sat-

uration assignment to the domain. Both methods are Implicit in Pressure, Explicit in Saturation

methods (IMPES). That means both solve a pressure equation and then a saturation equation. In

both, a 3D saturation equation is transformed into a 1D equation along a flow direction. In stream-

line simulation, the saturation of the grid blocks in the system are calculated by averaging the

saturation in the streamlines that pass through the blocks. In the network model, a fractional flow

value between node volumes is used to find a representative relative conductivity of each phase

between node volumes. These relative conductivity values are used in the saturation equation to

find the saturation of the node volumes. Therefore, there are two saturation equations: one is a

pseudo-1D equation within each bond that finds the relative conductivity values and the second

is a saturation equation that updates the node volume saturations. The reason for doing this is to

assign consistent saturations to the node volumes and allow an estimation of the unswept volume

in each node.

1.3 Outline of the dissertation

The dissertation consists of seven chapters. Chapter 1 explains the motivation for this study and

reviews previous attempts to characterize reservoirs through rate analysis.

Chapter 2 discusses network modeling basics and how it is applied to a larger scale. The single-

phase flow equation and the optimization method are discussed in Chapter 3.

In Chapter 4, the method is applied to synthetic cases to test the ability of the method to find

reservoir features that control fluid flow.

Application of the method to field data is presented in Chapter 5. In this chapter, the problems

associated with application of the method to field data are discussed.
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Chapter 6 presents the extension of the method to analyze multiphase production and gain more

insight about reservoir heterogeneity.

Chapter 7 gives the summary and conclusions that follow from this dissertation and provides

recommendations for future research work in this area.
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Chapter 2
Network Model

In the approach developed in this work, the reservoir is viewed as a network model consisting

of sites and bonds. In standard pore-network modeling, sites are equivalent to pore bodies and

bonds to pore throats. In this work, the sites correspond to the volumes assigned to each well, and

bonds to the connection between wells. This assignment is different from how Samier et al. (2001)

associated pore volume to each well. They used a streamline simulator and detailed reservoir char-

acterization and found the geometric influence zone around each injector and producer based on

the generated streamlines. The influence zone of injectors and producers may overlap but may not

cover the whole reservoir.

To construct the model presented in this work, the macro-scale geometry of the reservoir and

well positions are required. The relative distance between the wells and the distance to any of the

boundaries determine the volume size rather than flow characteristics of the domain. In addition,

the model covers the whole reservoir. First, characteristics of the model are discussed. Then a flow

equation and an optimization method will be developed to find the unknowns in the model.

2.1 Network Model Construction

This network model, as other network models, is characterized by three properties:

• Sites (the node volume or the volume assigned to each well)

• The network coordination number (the number of bonds attached to each site)

• Bonds (conductance)

2.1.1 Sites (Node Volume)

The principal objective here is to represent the domain of a reservoir by a set of tiles each of which

contains a well. Each tile has a known surface area and a thickness corresponding to the thickness
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of the reservoir in the neighborhood of the well. Each tile then represents a node volume and is

referred to as Vb in the calculations (Figure 2.1). Later, it will be explained that if the reservoir

structure is available, it can be used to find the tile thicknesses. The summation of volumes should

be equal to the estimated volume of the reservoir. Since the intention is to work with the commu-

nicating parts of the reservoir, multiplying the tile areas by net pay results in more realistic node

volumes. This volume is constant during the study period and is not a function of rate variations.

Therefore it is the true drainage volume of the well only in the case of a homogeneous system with

homogeneous rate variations.

In this work, Voronoi tessellation is used to divide the reservoir area into convex polygons. The

tiles have a property that any point in the interior of the tile is closer to the well at the center of

the tile than to any other well (Farrashkhalvat and Miles 2003). Voronoi cell generation requires a

background grid that is generated by the Delaunay method. The area of the reservoir is the triangu-

lation domain, and well positions are input nodes. Tiles are formed by connecting the circumcenters

of the Delaunay triangles. As shown in Figure 2.2, Voronoi cells that are generated only using well

positions cannot cover the entire area of the reservoir. The boundaries of the reservoir that are not

covered by the triangles must be included in order to calculate realistic node volumes. To include

Figure 2.1: Schematic of volume assignment to injectors and producers.
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the uncovered areas, the edges of the Voronoi grid are extended to intersect the boundaries. The

area surrounded by the boundary of the reservoir and the Voronoi edges are used to calculated node

volumes for boundary nodes (Figure 2.3).

2.1.2 Coordination Numbers

In porous media, fluid flows along various throats that are connected to each pore. The number of

throats connected to each site is called the coordination number Z. With different values of Z, the

topology of the porous media can be well defined.

In this work, the coordination number is defined by the number of production wells connected

to an injection well. It is the number of production wells that are influenced by an injector well. In

Figure 2.2: Background grid and Voronoi formed by connecting the center of triangles.

Figure 2.3: Node volumes formed by extending Voronoi edges
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this portion of the work injector-injector and producer-producer connections were initially ignored.

The question was, which producing wells are influenced by which injection wells? Obviously,

producers likely receive larger volumes from close injectors in homogeneous formations.

Producers that do not have a bond with an injection well are not affected by it. So the more

bonds an injection well has, the more likely it will be that distant injector-producer connections

that may occur in heterogeneous reservoirs will be seen. Increasing the number of bonds increases

the number of unknowns, which consequently increases computational time in the optimization.

So there is a tradeoff between the number of bonds and the speed with which a solution is obtained.

To determine the coordination number of an injector, an influence radius can be assigned to it.

Then, those producing wells that fall within a circle with that radius of influence centered on the

injection well are assigned bonds with the injector. For problems with a small number of wells,

all injectors are connected to producers. For larger problems, this radius should be determined and

may be directional.

Permeability and porosity of the rock and compressibility of the fluid are the main properties

that control the radius of influence (Lee 1982); since these terms are initially unknown, distance

between an injector and a producer is the only parameter that can be used to determine the ap-

propriate radius of influence distance for each connection. Kaviani et al. (2010) adressed a model

reduction approach called windowing, which is very similar to what is being done in this work.

They used the location of wells to define the window.

2.1.3 Bonds (Conductance)

Like the role of a throat in pore network modeling, a bond connects node volumes and controls

transmissibility between the nodes. In other words, they act as the conduits for fluid flow between

injection and production wells. In the pore network modeling literature, this conduit is designated

as the conductance between the centers of pore bodies and is denoted gIJ (Bakke and Øren 1997).

The subscripts denote node volumes I and J. The volumetric flow rate between two connected
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nodes I and J, qIJ is given by

qIJ = gIJ(pI− pJ) (2.1)

In this approach qIJ represents the flow rate between the connected injector and producer, i and j.

For Darcy flow between wells, gIJ will be:

gIJ =
kIJAcsIJ

µLIJ
(2.2)

Where kIJ , AcsIJ , and LIJ are the average permeability, area open to flow, and conductance path

distance between nodes (wells), respectively, and are all properties of the domain. µ is the viscosity

and is a fluid property. Since the problem considered here is a two-phase flow system, µ will be

the average viscosity of the two phases. Note also that capillary pressure and gravity are ignored

in this formulation.

Although distance between wells is a reasonable value for the L in the conductance formula, it

may not be representative of the actual path that streamlines travel since it would be the shortest

streamline distance between wells. For homogeneous cases this may be a good approximation, but

for cases with complex features it likely underestimates the distance.

In this work, it is assumed that Acs, or the cross-sectional area open to flow, is obtained by

multiplying the length of the “common edge” of Voronoi cells between adjacent injectors and

producers by their average thickness values. This area is not a good representative of the area

open to flow. First of all, there is no “common edge” between nonadjacent cells (wells), despite

the fact that there may be connection between them. For homogeneous cases, cross-sectional area

open to flow depends on the flux between wells, and the flux varies with fluctuations in rate. For

nonhomogeneous cases with geologic complexity, the area term may be far different from what is

assumed. The impact of these formulation “errors” will be shown to be minimal to the evaluation

of interwell connectivity.

In this way, properties between an injector-producer well pair are assigned to the bond that

connects corresponding nodes in the network model.
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Chapter 3
Single-Phase Model

In this network model, a volume is assigned to each well, and the summation of these volumes

is equal to the total volume of the reservoir. Conductance values of bonds that control flow in the

domain are unknowns and need to be determined. Given proper values of conductance the model

response due to the stimulus would be the same as that of the real case, where the stimulus is the

change in injection rate, and the response is the consequent change in production. In other words,

optimal values of conductance minimize the squared difference between model and observed pro-

duction rates. In this chapter, flow equation and problem set up for a single phase model will be

discussed, and then the approach will be verified be several synthetic examples.

3.1 Flow equation

The continuity and Darcy equations are combined, as suggested by Ertekin et al. (2001), to obtain

flow equations for the network model. For producer and injector flow, these equaitons may be

written as:

Z j

∑
I=1

βc
kIJ

Bµ
5pIJAcsIJ +qsc = (

Vbφc
αcB0

∂p
∂t

)J (3.1)

Zi

∑
J=1

βc
kIJ

Bµ
5pIJAcsIJ +qsc = (

Vbφc
αcB0

∂p
∂t

)I (3.2)

I represents the node volume containing injector i, and J represents the node volume containing

producer j. Porosity, φ, is assumed constant, but B, the formation volume factor (FVF), c, the

compressibility, and µ, the viscosity, are pressure dependent. Z j and Zi are the producer and injector

coordination number, αc and βc are volumetric and transmissibility unit conversion factors, and B0

is the FVF at a reference pressure. Vb is the bulk volume of the node and is obtained by multiplying

the node (tile) area by its average thickness. AcsIJ is the cross-sectional area open to flow between
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nodes (wells) I and J and is different from the node or tile area.5pIJ is the pressure gradient, and

kIJ is the average permeability between injector i and producer j that correspond to nodes I and J.

For a particular time discussed as n+1, the pressure gradient is estimated by

pn+1
J − pn+1

I
LIJ

(3.3)

P is the node pressure and L is assumed to be the distance between the wells. Substituting the

pressure gradients into the flow equations gives:

Z j

∑
I=1

βc(
1

Bnµn )(
AcsIJ

LIJ
)kIJ(pn+1

J − pn+1
I )+qsc = (

Vbφcn

αcB0 )J
pn+1

J − pn
J

∆t
(3.4)

for producers and

Zi

∑
I=1

βc(
1

Bnµn )(
AcsIJ

LIJ
)kIJ(pn+1

J − pn+1
I )+qsc = (

Vbφcn

αcB0 )I
pn+1

I − pn
I

∆t
(3.5)

for injectors. After substituting gIJ in Eq. 3.4 and Eq. 3.5 they become:

Z j

∑
I=1

βc(
gIJ

Bn )(pn+1
J − pn+1

I )+qsc = (
Vbφcn

αcB0 )J
pn+1

J − pn
J

∆t
(3.6)

Zi

∑
I=1

βc(
gIJ

Bn )(pn+1
J − pn+1

I )+qsc = (
Vbφcn

αcB0 )I
pn+1

I − pn
I

∆t
(3.7)

The superscript n indicates the time step at which parameters are evaluated. qsc is a source when

the equation is written for a producer and a sink when it is written for an injector. In conventional

reservoir simulation, qsc is related to the well index, Jw, and the difference between average block

pressures and flowing sandface pressures, pw f . In the network model, injection rates are provided

and fixed, and production rates are unknowns to be determined by an optimization procedure. The

injectivity and bottomhole pressure response of injectors is dampened by the node volumes. Thus

the well index for injectors is of minor importance compared to those of producers that control the

fluctuating production rates in the producers. Production is a match parameter and is related to the

bottomhole pressure in a well by:

qsc =−Jw(pJ− pw f ) (3.8)
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For a case of unknown well index and bottomhole pressure, a large value can be assigned to Jw

to reduce the effect of the well, and average reservoir pressure is used for pw f . It is also assumed

that for production wells, pw f values are constant. If pw f values are known at various times, these

values can be used as additional constraints in the optimization procedure.

3.2 Optimization

In its most general form, an inverse problem refers to the determination of the plausible physical

properties of a system, or information about those properties, given the observed response of the

system to some stimulus (Oliver et al. 2008). For this work, the inverse problem is the problem

of determining the connectivity between wells from production data measured at producing wells.

Connectivity is the model parameter. The choice of model parameter refers to parameterization

of the system (Oliver et al. 2008). For the network model, injection well rates provide the stimu-

lus, and producing well rates represent observed data. The model is the relationship between the

observed data and the model parameters.

Inverse problems are typically ill posed; many good solutions exist that are consistent with

the observed data and constraints of the system. For the network model problem, production and

injection measurements are subject to noise, so measured data may not be exact. The model also

may not be exact, since model assumptions may not be consistent with reality. In such cases several

solutions may be considered a good solution. In this case prior information for the model may be

helpful. As mentioned above, a solution to the problem should be consistent with the observed data

and constraints of the system. To obtain a good solution the difference between observed data and

the modeled response must be minimized. In this case, one has to minimize the difference between

the observed production and the modeled production response using estimated connectivity values.

This goal is obtained by minimizing the objective function:

F(g) =
1
2
(qmod(g)−qobs)

TC−1
D (qmod(g)−qobs) (3.9)
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where qmod is an assumed theoretical model for predicting production for a given g, qobs is a ND

dimensional column vector containing measured production values, CD is a ND×ND covariance

matrix for data measurement and modeling errors, and g is an Nm-dimensional collumn vector of

model variables. Nm and ND are the number of model variables and the number of observations,

respectively.

To minimize Eq. 3.9 a derivative-free alogorithm is implemented. The derivative free algorithm

used in this context is designed for least-square problems of the form:

minF =
1
2

ND

∑
n=1

f n2 (3.10)

where f n, n = 1, · · · ,ND are generally nonlinear functions. If the CD matrix is defined as a diagonal

matrix, f n can be written as:

f n = qmod
n−qobs

n n = 1, · · · ,ND (3.11)

For the nework model, f n is the difference between observed and model production rates, at time

n, and the function value is extracted from simulation. Eq. 3.11 is written based on the assumption

that the components of the data error vector are independent Gaussian random variables with all

means equal to zero and variance σd .

The difficulties associated with calculating a sensitivity matrix makes it difficult to compute

first- and second-order derivatives of the objective function and it is more desirable to treat the

function as a “black box”, necessitating that derivative-free algorithms be used. In addition, since

the objective function value may be computed with some noise, the finite difference estimation of

the derivative may not be accurate. The goal of these algorithms is to solve Eq. 3.10 with the least

possible number of function evaluations (Zhang et al. 2010).

In this work, a class of the derivative-free method that requires the sequential minimizations of

models is implemented. The minimizations are quadratic or linear and are based upon evaluations

of the objective function at sample sets (Zhang et al. 2010).
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3.3 Application to synthetic fields

This section examines the application of the technique on a numerically simulated synthetic field.

This case was presented by Albertoni and Lake (2003) and has been used by many authors to study

well connectivity relationships. The domain is a single-layered reservoir with a closed boundary.

A five-spot injection pattern is used to investigate the performance of the method. The case has 5

injectors, 4 at the ”corners” of the domain and one in the middle. The 4 producers on the top, bot-

tom, left, and right sides of the domain establish the injection pattern. Oil and water compressibility

values are both set to 5× 10−6 psi−1, and rock compressibility is ignored. All wells are vertical,

and adjacent wells are distanced 800 ft apart. The injection data from Albertoni and Lake (2003)

are used, as stimulus and production is controlled by the injection rates, since BHPs are equal and

fixed at 500 psi. The numerical simulator runs for 100 months with ∆n = 1 month. Different per-

meability distributions and injection senarios are applied to the domain to test the performance of

the method under different interwell connection cases.

3.3.1 Homogenous reservoir

The first case is a homogenous system with an isotropic permeability of 40 md. The numerical

values of conductance and fluid flow between injector-productor well pairs are shown in Table 3.1

and Table 3.2 respectively. Fluid flow between the well pairs is the amount of injection from an

injector that influences production in a producer. Once conductance values are calculated, fluid

flow is computed by multiplying values of the conductance times the pressue gradient between

the wells. Conductance and flow values are shown in Figure 3.1. Conductance is represented by

the thickness, and flow by darkness of the bonds. The thicker the bond, the larger the value of

conductance, and the darker the bond, the larger the volume of fluid that has flowed through the

bond.

Figure 3.1 indicates both reservoir and flow properties. Thicker bonds between closer well pairs

indicates higher conductance between them. That makes sense, since conductance is inversely

related to the distance between wells when permeability is homogeneous. For those wells that are
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Table 3.1: Homogenous Reservoir: Conductance (d. f t/cp)

P1 P2 P3 P4

I1 0.271 0.273 0.130 0.124

I2 0.254 0.134 0.266 0.159

I3 0.201 0.182 0.202 0.196

I4 0.159 0.289 0.152 0.272

I5 0.123 0.121 0.240 0.239

Table 3.2: Homogenous Reservoir: Cumulative flow between wells (bbl)

P1 P2 P3 P4

I1 58676 59401 28364 27086

I2 42021 22315 44361 26713

I3 23838 21769 24240 23726

I4 14560 26793 14135 25535

I5 17535 17393 34493 34581

Figure 3.1: Illustration of the Conductance and flow shown in Table 3.1 and 3.2
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equally distanced apart, thicker shapes correspond to a higher kAcs value. From Figure 3.1 it can

be inferred that flow is directly related to g, since the thicker the bond, the darker it becomes. That

makes sense also, since flow is directly proportional to g. This explains why the closer the wells

are, the larger amount of fluid flow between them. The darkness of bonds connected to an injector

also depends on the amount of water injected, which in this case is the darkness is consistent with

injection rates.

Table 3.3 shows kAcs values, which are obtained by dividing the conductance by the distance

between wells. Average well allocation factors are presented in Table 3.4. The average well alloca-

tion factors are the fractions of water injected that influence production in a producing well (Thiele

and Batycky 2006). In other words, it is obtained by dividing values of each row of Table 3.2 by

the sum of values of that row.

Table 3.3: Homogenous Reservoir: kAcs values (d. f t2)

P1 P2 P3 P4

I1 216.9 218.6 233.1 221.7

I2 203.1 239.7 212.8 285.0

I3 160.5 145.4 161.5 156.9

I4 283.9 231.1 272.0 217.6

I5 220.4 217.0 192.2 191.5

Table 3.4: Homogenous Reservoir: Average well allocation factors

P1 P2 P3 P4

I1 0.338 0.342 0.163 0.156

I2 0.310 0.165 0.328 0.197

I3 0.255 0.233 0.259 0.254

I4 0.180 0.331 0.174 0.315

I5 0.169 0.167 0.332 0.333
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One of the important characteristics of Albertoni and Lake (2003) and Yousef et al. (2006), as

they pointed out in their papers, is the estimation of symmetric values for connectivity. They con-

cluded that symmetry indicates that weights do not depend on injection rate. In their work, con-

nectivity weight, which is the fraction of injection rate that goes to a producer, shows a symmetric

behavior, but the time constant, which includes productivity and pore volume of the producer, is

not as perfectly symmetric. In this work, the well allocation factors obtained are symmetric, but

conductivity values are not as symmetric as well allocation factors. Thus it can be concluded that

conductance values depend on injection rates. Since k is constant and homogeneous and the wells

are equally spaced (L values are constant), the only property that the calculated rate depends on

should be Acs. Acs is defined to be the area open to flow, or in other words, a cross section of the

reservoir between the injector and producer well pair. One can compare Acs values with the num-

ber of streamlines between well pairs. In a homogeneous case the number of streamlines between

a well pair and the area covered by them is proportional to the flow between the wells. When

injection rates fluctuate, the flow between the wells and the number and area covered by stream-

lines change as well. Therefore, one may conclude that Acs values are proportional to the flow and

change as the rate fluctuates. As a result, one expects that conductance values between injector I1

and producers to be larger than conductance values of injector I4 that has lower injection rates. But

the values of Table 3.2 do not confirm this hypothesis. Values of kAcs for injection I4 are relatively

higher than other injectors, in spite of higher injection rates in injector I1. The smaller pressure gra-

dient between injector I4 and producers may be the reason for higher conductance values around

I4. Table 3.4 also shows good symmetry. Injector I2 shows an asymmetric behavior, since injection

in injector I1 is comparatively higher than in I4. Therefore flow goes toward the producers with

less support.

3.3.2 Presence of barriers

The method can recognize the introduction of a sealing fault into the model. A sealing fault in the

Albertoni and Lake (2003) homogeneous system was modeled. The sealing fault was created by
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setting the transmissibility multiplier to 0 between certain grid cells. Albertoni and Lake (2003)

obtained negative connectivity values for injector-producer pairs on different sides of a similarly

simulated fault. The results of the network model for this system are shown in Figure 3.2. The

sealing fault can be inferred either from values of conductance and kAcs (Tables 3.5 and 3.6) or flow

between wells (Tables 3.7 and 3.8). Conductance values corresponding to pairs of wells located on

each side of the fault are zero. The volume of fluid flowing between them is very small compared to

flow between other well-pairs. This shows no conduction between injection wells and production

wells that are separated by the fault.

Figure 3.2: Illustration of the conductance and flux shown in Tables 3.5 and 3.7

3.3.3 Anisotropy

In this case, permeability in the y direction for each grid cell was set to 1
10 the permeability in the

x direction. Conductance, kAcs, flow, and WAF between wells are shown in Tables 3.9, 3.10, 3.11,

and 3.12 respectively. Figure 3.3 shows that both conductance and flux are larger in the x direction,

indicating that permeability is higher in that specific direction. Unlike the homogenous case, the
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Table 3.5: Presence of barrier: Conductance (d. f t/cp)

P1 P2 P3 P4

I1 0.342 0.315 0.001 0.166

I2 0.000 0.000 0.553 0.004

I3 0.266 0.262 0.000 0.288

I4 0.171 0.281 0.007 0.323

I5 0.000 0.000 0.522 0.000

Table 3.6: Presence of barrier: kAcs values (d. f t2)

P1 P2 P3 P4

I1 273 251 2 297

I2 0.007 0.007 442 6

I3 212 209 0.008 230

I4 305 224 12 258

I5 0.007 0.007 417 0.05

Table 3.7: Presence of barrier: Cumulative flow between wells (bbl)

P1 P2 P3 P4

I1 71894 66074 295 35276

I2 2 1 134295 969

I3 30360 29809 1 33416

I4 17624 28848 632 33913

I5 1 1 103929 13

Table 3.8: Presence of barrier: Average well allocation factors

P1 P2 P3 P4

I1 0.414 0.381 0.002 0.203

I2 0.000 0.000 0.993 0.007

I3 0.324 0.319 0.000 0.357

I4 0.218 0.356 0.008 0.419

I5 0.000 0.000 1.000 0.000
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Table 3.9: Anisotropy: Conductance (d. f t/cp)

P1 P2 P3 P4

I1 0.750 0.180 0.148 0.054

I2 0.690 0.201 0.210 0.027

I3 0.150 0.420 0.420 0.180

I4 0.107 0.120 0.067 0.660

I5 0.067 0.134 0.150 0.630

Table 3.10: Anisotropy: kAcs values (d. f t2)

P1 P2 P3 P4

I1 600 144 264 96

I2 552 360 168 48

I3 120 336 336 144

I4 192 96 120 528

I5 120 240 120 504

effect of injection rate on kAcs values is more tangible. The largest volume of fluid has flowed

between pairs I1-P1 and I2-P1.

3.3.4 Flow paths that act as barriers

In addition to faults and low permeablity geologic features, a high-flow path may block flow be-

tween injector-producer pairs on opposite sides of the flow path. The pressure field might act as a

barrier and block the flow from an injector to a producer when there is no physical barrier. To show

an example of this case, a high-flow path was introduced by multiplying the y-direction transmis-

sibility of a region of a reservoir by 100. This region connects injector 3 to producers 1 and 4. To

make a stronger flow path, injection in injector 3 is increased, and the BHP constraint of producers

1 and 4 is reduced to direct the injection to those producers. It would be expected that injector-

producer pairs that are on different sides of the high-flow path show weaker connections compared

with a homogeneous equal BHP case (Figure 3.1).
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Table 3.11: Anisotropy: Cumulative flow between wells (bbl)

P1 P2 P3 P4

I1 107818 30035 26170 9511

I2 74879 27383 29870 3281

I3 7722 35610 37518 12887

I4 7196 10950 6960 55884

I5 5700 15367 18067 64894

Table 3.12: Anisotropy: Average well allocation factors

P1 P2 P3 P4

I1 0.621 0.173 0.151 0.055

I2 0.553 0.202 0.221 0.024

I3 0.082 0.380 0.400 0.137

I4 0.089 0.135 0.086 0.690

I5 0.055 0.148 0.174 0.624

Figure 3.3: Illustration of the conductance and flux shown in Table 3.9 and 3.11
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(a) Transmissibility map with a high value in the
middle

(b) Conductance values

Figure 3.4: Flow paths that act as barriers.

To show this, conductance values are plotted next to a transmissibility map in Figure 3.4 a and

b. High conductance values between injector 3 and producers 1 and 4 reflect the high y-direction

transmissibility region, and low value for wells on different sides of the region means they do

not have connections. Well allocation factors also indicate that the effects of injector 1 and 4 on

producer 3 and injectors 2 and 5 on producer 2 are dramatically reduced. While in the base case, 13

percent of injection in injector 2 goes to producer 2, in this case the effect is reduced to 2 percent.

This shows that the network model approach can see the effect of pressure barriers in addition to

permeability barriers.

3.3.5 Conductance and permeability

In Eq. 2.2, it was shown that conductance is directly proportional to permeability. Here, we are

trying to show how results from the network model reflect changes in the system’s average per-

meability in spite of the nonuinque nature of the process. Conductance values obtained from five

homogeneous cases with 20 md, 30 md, 40 md, 60 md, and 80 md were compared to check if
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changes in conductivity values are proportional to the permeability change in the synthetic mod-

els. To make such a comparison, the distance element of conductance is removed, which gives kAcs

(product of permeability and cross-section area open to flow). Then kAcs values are averaged for

each case and compared with avarage permeability of the synthetic models. Figure 3.5 shows that

avarage kAcs increases linearly with average reservoir permeability. This shows that although an

inverse problem is being solved and the result is not unique kAcs values and as a result conductance

values reflect the system’s average permeability.
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Figure 3.5: Change in kAcs as permeability changes in sythetic model

Figure 3.6 is another example to show proportionality of the obtained conductance values to the

field average pressure. The field has two permeability regions and permeability in one half of the

reservoir is twice that of the other half (Figure 3.6 a). Producers 1 and 2 are in the low-permeability

region, and producers 3 and 4 are in the high-permeability region. Conductance values that relate

injector 3 to producers 1 and 2 are half the conductance values that relate this injector to producers

3 and 4. The result confirms the doubled average permeability between injector 3 and producers 3

and 4 by maintaining this proportionality.

28



(a) Permeability distribution in the domain (b) Conductance

Figure 3.6: Two permeability regions in the domain.

3.3.6 Complex geological features

Complex geologic features are very common in reservoir studies. Because of these features, stream-

lines may travel different paths that are not the straight line that connects injection to production

wells. Therefore conductance values should be interpreted with more consideration. In this ex-

ample, a channel structure with permeabiliy that is 10 times larger than the rest of the reservoir

model connects injection well 2 to production well 2. Since production well 2 is placed in a highly

permeable region, it has higher productive capabilities. Figure 3.7 is plotted using the FrontSim R©

software with simulation parameters set up as discussed in section 3.3.1 and using the permeabil-

ity distribution of Figure 3.8. As shown in Figure 3.7, more streamlines end at production well 2,

and nonadjacent wells have considerable contribution. Figure 3.9 shows the network model result

for this case. Although one cannot infer the shape of the channel from the conductance values,

the existance of some anomaly around production well 2 is noticable. In comparison to Figure

3.1, all the injection wells have much stronger influence on production well 2 than in the homo-

geneous case. All of the other producers are receiving significently less support, which indicates

29



the heterogeneity is more widespread that just in the region around producer 2 and is a “regional

trend”.

Figure 3.7: Distribution of streamlines in the domain

3.4 Prediction and comparison

One of the challenges of simplified methods like correlation-based methods is their inability to

handle certain cases and scenarios. Shutting-in injectors and producers, changing flow pattern and

non-fluctuating injection are examples of cases that challenge available methods. In this section,

the network model was used to see how it performs in each of these cases.

3.4.1 Closed Well

Shutting in a producer or adding a new well to the system is fairly routine in waterflooding. Coef-

ficients calculated by currently available methods are only valid when a fixed number of producers

and injectors is being studied. Once a well is added or removed from the system, coefficents are

no longer valid and need to be redetermined. This limits the current methods to cases where there

are sufficient continuous data from the active wells. In the situation where all wells are producing,
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Figure 3.8: Permeability distribution in the domain

all nodes have a sink representing the producing well. Once a production well is shut in, the sink

is removed but the node is still interacting with other nodes through the bonds. This helps to study

broader time intervals and includes those times when wells are shut in.

This methodology can be shown using the homogeneous case of example 1. Production well

1 was added to the system after 30 months of field production and was produced for the next 20

months. Then production data during the first 50 months were used to predict production for the

next 50 months. Taking advantage of the whole production period, the network model predicts

production better than other methods.

In the current method, the production data during 50 timesteps including the first 30 timesteps

when 3 producers were active are studied to predict the next 50 timesteps when 4 producers are

active. The CM and RM method are unable to use the first 30 timesteps and are limited to the 20

timesteps when all 4 producers were active. Therefore, this method gives the opportunity to study
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Figure 3.9: High permeable channel: Conductance values

a broader time inerval, which results in a more robust prediction. Table 3.13 shows the correlation

coefficient (R-Squared) values for production prediction for the 50 time-step interval.

Table 3.13: Yield R-Squared for production prediction when one well is added to the system

P1 P2 P3 P4

RM 0.893 0.924 0.965 0.957

CM 0.996 0.990 0.956 0.979

Network 0.999 0.998 0.993 0.998

3.4.2 Injection fluctuation

In the network model, the number of equations is equal to the number of observations. If injection

rate doesn’t fluctuate, the equations won’t be independent. A case was tested with all injecting

wells having equal constant rates. For this case, the number of observations is less than the num-

ber of variables, and therefore it is an underdetermined problem, and similar to correlation-based

approaches, there is no consistant solution to this problem.
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Conductance values are plotted in the Figure 3.10, which doesn’t agree with previous results.

What is shown in Figure 3.10 a also depends on starting point in the optimization routine because

of the unstable nature of the system.

(a) Constant injection rate (b) Injection with one fluctuation

Figure 3.10: Injection fluctuation.

If one injection rate changes slightly, this causes changes in the production data in at least one

timestep (the effect of this fluctuation may continue in subsequent timesteps), the number of ob-

servations increase, and the problem changes from an underdetermined case to an overdetermined

one and a reliable solution results (3.10 b). An increase in the number of fluctuations will assure

an overdetermined problem.

3.4.3 Changing flow pattern

Once conductance values are known, one can predict perfomance of the system under different

injection senarios. To test the prediction potential of the method, the homogenous example system

of section 3.3.1 was chosen. Injection rates from the first 65 time steps of this example were used to

determine the conductance values. Then these conductance values were used to predict production

for the next 35 time steps. In the next 35 timesteps, the injection rates in the finite-difference
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Table 3.14: Yield R-squared values of production match for RM, CM and Network model

P1 P2 P3 P4

Albertoni 0.862 0.933 0.906 0.954

Yousef 0.983 0.996 0.967 0.990

Network 0.997 0.999 0.999 0.997

simulation used to generate the problem were manipulated to change the direction of the pressure

gradient and the direction of flow in the model.

During the first 65 time steps, the average injection rate at injector 4, which is at the lower left

corner, was less than the average injection rate in injector 2, which is at the upper right corner. This

results in a lower pressure region south of injector 1, which is at the upper left corner, and more

flow from injector 1 towards the bottom of the system. A change in flow direction was attempted

by increasing the average injection rate at injector 4 and decreasing the average injection rate at

injector 2. This should cause a lower pressure region to the right of injector 1 and more flow from

injector 1 toward the right side of the model. The goal was to find out how good the network model

approach can predict production in the next 35 timesteps by comparing the result with the RM and

CM approaches. The R-squared values of the matches of production rate using the RM, the CM,

and the Network model approach for four production wells are presented in Table 3.14.

In the network model, the direction of flow is determnined by the pressure gradient, which leads

to a good match, as is shown in Table 3.14. The RM and CM results also show satisfactory but

slightly lower R2 values for their predictions.

3.5 Including additional data

The output from the method can be improved significently by using better quality data and adding

more data to the system. For example, more accurate values for thickness and boundary distance

help to obtain more realistic results. The addition of fault positions and more accurate well indices

for producing wells also improve the result. Including fault positions in the process of assigning

volume to a well results in estimation of more realistic node volumes. Including more accurate
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well indices helps to infer communication between the node and the well and improves the result.

For the homogeneous case, using well index values from the simulation software used to generate

the rate profile reduces the difference between observed and model production by 30% over the

result obtained using very large well index values. From this point, conductance values are com-

pared with conductance values of Table 3.15, assuming production well indices are known. The

new conductance values are twice those found with the large well indices presented in Table 3.1.

Well allocation factors (Table 3.16) show that injectors have a higher influence on adjacent wells

compared to a case when large well index values were used. In the next section, the importance

of input parameters and the effect of using incorrect parameters on conductance values will be

studied.

Table 3.15: Conductance values for a model with known WI (d. f t/cp)

P1 P2 P3 P4

I1 0.771 0.773 0.244 0.242

I2 0.815 0.259 0.814 0.260

I3 0.577 0.582 0.584 0.589

I4 0.284 0.877 0.284 0.875

I5 0.227 0.231 0.724 0.732

Table 3.16: Well allocation factors for a model with known WI

P1 P2 P3 P4

I1 0.371 0.381 0.123 0.125

I2 0.364 0.122 0.386 0.129

I3 0.229 0.245 0.255 0.271

I4 0.113 0.363 0.124 0.400

I5 0.109 0.117 0.377 0.397
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3.5.1 Well index and bottomhole pressure

Bottomhole pressure (BHP) and well index (WI) are two important sources of uncertainty in the

network model, which the latter is related to near-well permeability. Low WI and higher BHP

values reduce and high WI and low BHP increase the amount of fluid flow to producers. Both

parameters influence the connectivity value calculation and therefore near-well permeability inter-

pretation. To investigate the effect of each parameter on conductance and well allocation factor,

four cases were studied.

In all cases, the same simulated injection scenario was applied. In the first and second cases, the

permeability field is homogeneous, but a different BHP value is assigned to one of the producers.

All producers are producing under a 500 psi BHP constraint, except producer 2, which is producing

with a 600 psi BHP constraint. The difference is that in case one, the BHP difference is considered

known in the network model, but in case two it is assumed that all producers are producing at

the 500 psi BHP. In cases three and four the BHP values are held constant at 500 psi, but the

permeability is lowered to 20 md around well 2, as shown in Figure 3.11. Again, the difference

in the cases is that knowledge of the permeability variation is reflected in the well index used for

producer 2 in case three, but in case four, equal values of the WI for all producers are used.

For case one, well allocation factors are smaller for producer 2 (Table 3.17 a and b). Conductance

values do not show heterogeneity, which is a good indication of a homogenous field and different

buttomhole pressure (Figure 3.12 a and b). For a homogeneous case, if an incorrect BHP is used

(case two), depending on whether a higher or a lower pressure is used, larger or smaller conduc-

tance values are obtained for that specific well (Table 3.18 a and b). Smaller or larger conductance

values are the response of the model to compensate for the higher or lower pressure difference

between injector-producer pairs. For example in case two, the BHP that is assigned to producer

2 is less than the actual BHP of the well (Figure 3.13 a and b). The obtained conductance values

for producer 2 are smaller compared to conductance values in case one to reduce the effect of the

incorrect higher pressure difference between well and the block.

36



Table 3.17: Different BHP at producer 2.

(a) Conductance (d. f t/cp)

P1 P2 P3 P4

I1 0.792 0.789 0.242 0.239

I2 0.857 0.253 0.840 0.267

I3 0.658 0.650 0.659 0.671

I4 0.325 0.973 0.315 1.002

I5 0.219 0.218 0.718 0.731

(b) Average well allocation factors

P1 P2 P3 P4

I1 0.386 0.366 0.124 0.124

I2 0.372 0.106 0.394 0.129

I3 0.239 0.208 0.268 0.285

I4 0.120 0.311 0.131 0.437

I5 0.108 0.099 0.386 0.406

In case three, the decreased permeability value for producer 2 is reflected in the conductance

values of Table 3.19 a. Well allocation factors in Table 3.19 b also confirm this difference. In case

four, where a higher WI is used for producer 2, smaller values of conductance are obtained to

compensate for the incorrect higher communication between the well and the node (Table 3.20 a

and b).

Figure 3.11: Permeability distribution in the domain
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(a) Different BHP (b) Wrong BHP

Figure 3.12: Effect of BHP on conductance values.

Table 3.18: Incorrect BHP at producer 2.

(a) Conductance (d. f t/cp)

P1 P2 P3 P4

I1 0.779 0.708 0.255 0.257

I2 0.785 0.152 0.769 0.269

I3 0.568 0.448 0.563 0.580

I4 0.342 0.594 0.320 0.889

I5 0.229 0.209 0.713 0.727

(b) Average well allocation factors

P1 P2 P3 P4

I1 0.372 0.370 0.128 0.131

I2 0.379 0.083 0.395 0.143

I3 0.237 0.226 0.259 0.278

I4 0.140 0.296 0.144 0.420

I5 0.111 0.119 0.375 0.395

This comparison shows that using incorrect values of BHP and WI still provide correct values of

WAFs. However, the error in estimation of these input parameters for a producer results in similar

error in the obtained conductance values for that well.

3.5.2 Node volume and compressibility

Like BHP and WI, node volumes and fluid compressibility influence the calculated parameters. In

this section, two cases were studied. In the first case, node volumes are underestimated by 30%,

and in the second, the assumed compressibility in the model is 30% lower that actual reservoir
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(a) Different WI (b) Wrong WI

Figure 3.13: Effect of WI on conductance values.

Table 3.19: Different WI at producer 2.

(a) Conductance (d. f t/cp)

P1 P2 P3 P4

I1 0.758 0.405 0.241 0.224

I2 0.816 0.151 0.787 0.274

I3 0.570 0.301 0.557 0.584

I4 0.267 0.458 0.286 0.866

I5 0.267 0.458 0.286 0.866

(b) Average well allocation factors

P1 P2 P3 P4

I1 0.457 0.245 0.154 0.144

I2 0.381 0.073 0.402 0.144

I3 0.260 0.138 0.290 0.311

I4 0.130 0.222 0.158 0.490

I5 0.120 0.068 0.393 0.420

compressibility. The results are shown in Table 3.21 and Table 3.22 compared with conductance

values and WAFs presented in Table 3.15 and Table 3.16. Underestimating reservoir volume and

compressibility results in lower computed conductance values. Both situations speed up the move-

ment of the pulse generated by injection fluctuations to the producers, and computed conductance

values are lowered to delay this process. WAFs also show less adjacent injector-producer support.

The results show that conductance values and WAFs are sensitive to node volume and compress-

ibility, and misestimating these inputs influence the set of obtained parameters.
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Table 3.20: Incorrect WI at producer 2.

(a) Conductance (d. f t/cp)

P1 P2 P3 P4

I1 0.684 0.263 0.237 0.229

I2 0.770 0.110 0.741 0.274

I3 0.521 0.201 0.506 0.534

I4 0.266 0.295 0.275 0.768

I5 0.236 0.097 0.652 0.686

(b) Average well allocation factors

P1 P2 P3 P4

I1 0.456 0.215 0.167 0.162

I2 0.377 0.076 0.396 0.151

I3 0.257 0.157 0.282 0.304

I4 0.138 0.244 0.161 0.457

I5 0.125 0.078 0.385 0.412

Table 3.21: Incorrect node volume.

(a) Conductance (d. f t/cp)

P1 P2 P3 P4

I1 0.360 0.361 0.148 0.148

I2 0.382 0.158 0.382 0.158

I3 0.271 0.274 0.275 0.278

I4 0.174 0.408 0.174 0.407

I5 0.139 0.143 0.341 0.345

(b) Average well allocation factors

P1 P2 P3 P4

I1 0.350 0.354 0.147 0.149

I2 0.346 0.147 0.356 0.151

I3 0.238 0.247 0.253 0.262

I4 0.143 0.345 0.150 0.362

I5 0.139 0.145 0.352 0.364

3.6 Pressure and saturation dependent properties

Average reservoir pressure in a waterflood is a function of the total injection and production. It

increases or decreases in nonlinear ways. Differences in properties of water and reservoir fluids

cause this nonlinearity. Viscosity and compressibility differences and the shapes of relative perme-

ability curves are factors that influence the average reservoir pressure. These factors may increase

or reduce the resistance to flow between injectors and producers. High resistance to flow increases

and low resistance to flow decreases the average reservoir pressure.

As noted previously, in order to simplify the problem, it was assumed that fluids with identical

properties are injected and produced in the previous examples. The compressibility and viscosity

of both fluids were equal (1 cp viscosity and 5× 10−6 psi−1 compressibility), and linear relative
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Table 3.22: Incorrect compressibility.

(a) Conductance (d. f t/cp)

P1 P2 P3 P4

I1 0.360 0.361 0.148 0.148

I2 0.382 0.158 0.382 0.158

I3 0.272 0.275 0.276 0.279

I4 0.174 0.408 0.174 0.407

I5 0.139 0.143 0.341 0.345

(b) Average well allocation factors

P1 P2 P3 P4

I1 0.350 0.354 0.147 0.149

I2 0.346 0.147 0.356 0.151

I3 0.238 0.247 0.253 0.262

I4 0.143 0.345 0.150 0.362

I5 0.139 0.145 0.352 0.364

permeability curves were implemented to model the displacement. In a linear relative permeability

curve, relative permeability is a linear function of saturation (krw = Sw,krnw = Snw).

Once these conditions hold, one can assume that resistance to flow is constant, and average reser-

voir pressure is only a function of total fluid throughput and withdrawal. But in practice, saturation-

dependent properties like relative permeability are changing as the saturation distribution changes.

Relative permeabilty alteration influences effective permeabilty, injectivity, and productivity of

wells. This changes resistance to flow, and as a result average reservoir pressure. When resistance

to flow is constantly changing, one set of conductance values should not be expected to model the

whole study period. Changing average reservoir pressure also will change the compressibility and

viscosity, which are assumed to be constant in the network model.

The effects of a realistic relative permeability curve on conductance value determination is stud-

ied by using the relative permeability relationship from model 2 of the SPE comparative solution

project (SPECSP) by Christie and Blunt (2001). Other properties are held constant. Figure 3.14

shows changes in average reservoir pressure and watercut with total injection and time for both

linear and SPECSP relative permeability curves. In the linear relative permeability case, the aver-

age reservoir pressure is proportional to the total injection rate. Although the SPECSP case follows

the same pressure trend at the beginning of the time period, it increases gradually as water satu-

ration increases. This increase accelerates at breakthrough, but the reservoir pressure curve moves

closer to the linear curve average reservoir pressure at the end of study period. The reason behind
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this difference is that the sum of the relative permeability of water and oil is less than 1 (the sum of

the effective permeability of the fluids is less than when using linear relative permeability curves).

This causes more resistance to flow as compared to the linear relative permeability case. Identical

injection histories were used, so the higher resistance to flow in the non-linear system increases the

average reservoir pressure.

Figure 3.14: Pressure difference for different relative permeability table.

Reduction in effective permeability should decrease the conductance values. To test this hypoth-

esis, a case with linear relative permeability curve is compared with a case that uses the SPECSP

relative permeability values. All other input parameters are the same as the ones that are used in

the example presented in section 3.5.

Comparing values in Table 3.23 with those in Table 3.15 shows that there was a 100% reduction

in conductance due to the reduction of k to account for relative permeability effects. This decline

varies, depending on the shape of the relative permeability curves, since k is a function of satura-
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tion, and saturation changes through time. What is calculated in the network model as conductance

is then an average effective permeability during the study period.

Table 3.23: Conductance for single phase homogenous reservoir with SPECSP relative permeabil-
ity (d. f t/cp)

P1 P2 P3 P4

I1 0.323 0.304 0.132 0.080

I2 0.293 0.144 0.324 0.184

I3 0.241 0.226 0.237 0.250

I4 0.178 0.328 0.171 0.358

I5 0.100 0.107 0.248 0.286

Injecting a different-viscosity fluid was also studied by using fluid viscosities from model 2 of

the SPECSP (Christie and Blunt 2001) while other properties were held constant. Water viscosity

is 0.3 cp, and oil viscosity is pressure dependent and varies between 2.85 cp and 3 cp. Figure

3.15 shows changes in average reservoir pressure and watercut with total injection and time for

both equal viscosity and the SPECSP viscosity values. Figure 3.15 shows that average reservoir

pressure is higher for the SPECSP viscosity values compared to equal values (1 cp) at the start of

injection. This is because higher oil viscosity causes more resistance to flow. But as water injection

continues, the average pressure drops rapidly and falls below the average reservoir pressure of the

equal-viscosity case, which is because of the lower water viscosity.

Conductance values obtained from a simulation model that uses the SPECSP viscosity values are

shown in Table 3.24. In this table all injector connections except injector 5 show high conductance

values. Water breakthrough at producers creates a low resistance conduit for fluid flow between

well pairs due to the low viscosity of the water. That results in higher conductance values com-

pared to values in Table 3.15. For injector 5, which has lower average injection rate, breakthrough

happens later in the study period, and results in a lower conductance value for that injector.

Relative permeability and viscosity are both part of the conductance term, and variations of these

two parameters change the computed conductance value. Relative permeability and viscosity are
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Figure 3.15: Pressure difference for different oil viscosity.

functions of phase saturation. That means conductance values are also functions of phase saturation

and change as water saturations change. In the network model, one set of conductance values is

obtained for the entire study period.

The influence of relative permeability and viscosity on average reservoir pressure varies with

position of flood fronts. Figure 3.14 and Figure 3.15 show that right after breakthrough the effect

is more severe, and it reduces towards the end of the study period. To minimize these effects,

one needs to find a period in which pressure and saturation vary linearly with injection. That is

why mature waterfloods are considered better candidates for the application of these low data

requirement tools.

Unlike relative permeability and viscosity, compressibility is not a part of the set of matched

parameters. It appears on both sides of the flow equation (formation volume factor, which is a

compressibility-dependent parameter, appears on the left-hand side, and compressibility appears

on the right) and represent compressibility of all the fluids present in the reservoir. Therefore, an
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Table 3.24: Conductance for single phase homogenous reservoir with SPECSP viscosity (d. f t/cp)

P1 P2 P3 P4

I1 1.237 1.308 0.270 0.213

I2 1.342 0.358 1.371 0.339

I3 1.383 1.312 1.261 1.302

I4 0.553 1.023 0.398 1.171

I5 0.205 0.164 0.614 0.572

incorrect estimation of the compressibility dramatically influences the parameter estimation (sec-

tion 3.5.2). When there is a slight difference between compressibility of the fluids in the reservoir,

one can use compressibility of one of the fluids. When there is a considerable compressibility dif-

ference, total compressibility should be calculated. In well test literature total compressibility is

obtained as: (Chaudhry 2004):

ct = Soco +Swcw +Sgcg + c f (3.12)

The co, cw, cg and c f terms are the compressibility values for oil, water, gas, and formation,

respectively, and So, Sw, and Sg are oil, water, and gas saturation. Sw and Sg are obtained by material

balance. In an oil-water system, water saturation at each step is obtained from:

Sn+1
w = Sn

w +
(Qn+1

in j −Qn+1
prod f n+1

w )

Vreservoirφ
(3.13)

where fw is water cut.

3.7 16×25 Synthetic Example

To test the performance of the network model on a larger scale, a homogenous field with a larger

number of wells was studied. This case has 16 production and 25 injection wells. Wells are posi-

tioned on a 5-spot pattern, and the distance between injector-producer well-pairs is 890 f t. Injectors

are shown by triangles, and producers are represented by circles and are numbered from the top
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left. A history of 65 months, which consists of 1040 data points was generated using the injec-

tion history of the example presented in section 3.3.1. Other input parameters are the sames as

values used in Section 3.3.1. Tables 3.25 and 3.26 show conductance values and WAFs for the 41

wells in the system. Conductance values shown in Table 3.25 for injectors I7, I8, I14, I17, and

I19 are much higher than the rest of the values. Injectors at the corners also demonstrate higher

conductance values (Figure 3.16).

Table 3.25: 16×25 Wells: Conductance (d. f t/cp)

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16

I1 0.48 0.13 0.00 0.00 0.14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

I2 0.38 0.38 0.10 0.00 0.07 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

I3 0.03 0.14 0.13 0.02 0.00 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

I4 0.00 0.05 0.17 0.19 0.00 0.00 0.03 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

I5 0.00 0.00 0.14 0.36 0.00 0.00 0.00 0.13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

I6 0.14 0.03 0.00 0.00 0.12 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00

I7 8.77 7.85 0.21 0.00 6.90 6.98 1.38 0.00 3.13 1.08 0.00 0.00 0.00 0.00 0.00 0.00

I8 1.70 8.64 8.58 3.70 0.85 7.80 8.74 2.00 0.00 2.22 0.43 0.00 0.00 0.00 0.00 0.00

I9 0.00 0.02 0.17 0.20 0.00 0.02 0.18 0.18 0.00 0.00 0.03 0.03 0.00 0.00 0.00 0.00

I10 0.00 0.00 0.09 0.39 0.00 0.00 0.05 0.37 0.00 0.00 0.00 0.09 0.00 0.00 0.00 0.00

I11 0.09 0.00 0.00 0.00 0.27 0.03 0.00 0.00 0.26 0.04 0.00 0.00 0.09 0.00 0.00 0.00

I12 0.01 0.01 0.00 0.00 0.10 0.14 0.01 0.00 0.09 0.13 0.04 0.00 0.02 0.01 0.00 0.00

I13 0.00 0.00 0.00 0.00 0.02 0.06 0.07 0.02 0.01 0.07 0.09 0.00 0.00 0.01 0.02 0.00

I14 0.00 0.00 2.46 3.54 0.00 1.39 8.77 8.77 0.00 0.34 6.93 8.77 0.00 0.00 0.11 3.02

I15 0.00 0.00 0.00 0.06 0.00 0.00 0.03 0.20 0.00 0.00 0.02 0.24 0.00 0.00 0.00 0.03

I16 0.00 0.00 0.00 0.00 0.08 0.00 0.00 0.00 0.30 0.06 0.00 0.00 0.34 0.07 0.00 0.00

I17 0.00 0.00 0.00 0.00 2.94 2.49 0.00 0.00 8.75 8.41 2.15 0.00 8.77 7.87 2.21 0.00

I18 0.00 0.00 0.00 0.00 0.00 0.02 0.02 0.00 0.02 0.15 0.16 0.01 0.07 0.18 0.15 0.01

I19 0.00 0.00 0.00 0.00 0.00 0.00 0.12 0.75 0.00 2.16 6.53 7.53 0.00 3.66 8.48 8.77

I20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.01 0.12 0.00 0.00 0.03 0.13

I21 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.00 0.00 0.00 0.19 0.08 0.00 0.00

I22 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.01 0.00 0.00 0.20 0.15 0.06 0.00

I23 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.04 0.00 0.07 0.23 0.22 0.08

I24 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.06 0.00 0.06 0.28 0.36

I25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.13 0.00 0.00 0.11 0.45
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Table 3.26: 16×25 Wells: Average well allocation factors

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16

I1 0.64 0.18 0.00 0.00 0.18 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

I2 0.40 0.40 0.11 0.00 0.07 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

I3 0.09 0.39 0.37 0.07 0.00 0.05 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

I4 0.00 0.11 0.36 0.39 0.00 0.00 0.06 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

I5 0.00 0.00 0.22 0.57 0.00 0.00 0.00 0.21 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

I6 0.44 0.08 0.00 0.00 0.37 0.02 0.00 0.00 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00

I7 0.07 0.19 0.00 0.00 0.20 0.34 0.06 0.00 0.09 0.05 0.00 0.00 0.00 0.00 0.00 0.00

I8 0.01 0.13 0.08 0.01 0.02 0.30 0.31 0.03 0.00 0.08 0.02 0.00 0.00 0.00 0.00 0.00

I9 0.00 0.02 0.21 0.23 0.00 0.03 0.22 0.21 0.00 0.00 0.03 0.04 0.00 0.00 0.00 0.00

I10 0.00 0.00 0.09 0.39 0.00 0.00 0.06 0.37 0.00 0.00 0.00 0.09 0.00 0.00 0.00 0.00

I11 0.11 0.00 0.00 0.00 0.35 0.04 0.00 0.00 0.34 0.05 0.00 0.00 0.11 0.00 0.00 0.00

I12 0.01 0.01 0.00 0.00 0.17 0.26 0.02 0.00 0.17 0.23 0.07 0.00 0.03 0.02 0.00 0.00

I13 0.00 0.00 0.01 0.00 0.05 0.17 0.20 0.05 0.03 0.18 0.23 0.01 0.00 0.02 0.04 0.00

I14 0.00 0.00 0.03 0.01 0.00 0.05 0.32 0.11 0.00 0.01 0.27 0.18 0.00 0.00 0.00 0.02

I15 0.00 0.00 0.00 0.11 0.00 0.00 0.05 0.35 0.00 0.00 0.03 0.41 0.00 0.00 0.00 0.05

I16 0.00 0.00 0.00 0.00 0.10 0.00 0.00 0.00 0.36 0.07 0.00 0.00 0.40 0.08 0.00 0.00

I17 0.00 0.00 0.00 0.00 0.07 0.09 0.00 0.00 0.19 0.28 0.07 0.00 0.10 0.16 0.05 0.00

I18 0.00 0.00 0.00 0.00 0.00 0.03 0.02 0.00 0.03 0.20 0.21 0.01 0.09 0.22 0.19 0.01

I19 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.00 0.09 0.29 0.20 0.00 0.10 0.21 0.08

I20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.09 0.00 0.00 0.04 0.38 0.00 0.00 0.08 0.41

I21 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.18 0.00 0.00 0.00 0.59 0.23 0.00 0.00

I22 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.03 0.00 0.00 0.43 0.32 0.13 0.00

I23 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.06 0.00 0.10 0.35 0.34 0.12

I24 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.08 0.00 0.07 0.35 0.46

I25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.19 0.00 0.00 0.16 0.65

3.8 Conclusion

In this research reservoirs are modeled as a number of nodes containing a well. Flow between nodes

is through bonds or throats, which are controlled by conductance between nodes. Conductance is

directly proportional to effective permeability and cross-sectional area open to flow between wells

and inversely related to the distance between them. To obtain conductance values, three classes

of data are required. The first and main group is production and injection data and well position,
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Figure 3.16: 16× 25 wells: Conductance and flux

which are usually available with some degree of certainty. The second group are those data for

which rough estimates of the actual values suffice. They include the location of the boundary of

the reservoir, average porosity, bottomhole pressures, and productivity indicies of the wells. The

third group are those that are not necessary, but considering them improves the quality of the result.

For example, including the fault position in the process of assigning volume to each well helps to

obtain more realistic node volumes. Adding this information improves the result.

The network model was validated by showing that conductance values obtained are proportional

to average reservoir permeability. It also was validated by application to synthetic fields by showing
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that the network model captures barriers, flow paths, and permeability trends. The technique was

tested in cases like shutting in wells, and changing flow pattern and solutions to handle each case

was provided. It also was tested for situations in which incorrect input parameters are used. The

results show that incorrect values of BHP and WI give correct values of WAFs, but the error will be

reflected in local values of conductance. Errors in estimating reservoir volume and compressibility

will be more widespread and influence the entire set of conductance values and WAFs.

The method was also tested to see if it handles changes in pressure and saturation properties,

like relative permeability and viscosity. These properties alter resistance to flow. Their influence is

reflected in the obtained conductance values.

The method is fast and can be easily set up. It resolves some of the limitations that currently

available methods have. It calculates conductance values, which have a physical meaning that still

must be interpreted. This approach considers changes in flow pattern due to shuting-in a producer

for a long time, adding or removing wells, or changing well rates. This allows the method to study

a broader time span. It also allows testing a wider range of injection-production scenarios in the

prediction phase.
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Chapter 4
Single Phase Model with Injector-Injector
Interactions

Incompatibility between results from connectivity models on the one hand and streamline ap-

proaches and tracer tests on the other hand has been addressed by Albertoni and Lake (2003) and

Shahvali et al. (2012). Usually connectivity models show a stronger connection between nonadja-

cent injector-producer pairs than streamline approaches do. Albertoni and Lake (2003) simulated

a tracer test on the homogeneous case shown in Section 3.3.1 and obtained the fraction of tracer

injected in the ith injector that was produced in the jth producer. They found that none of the tracer

injected in I4 was produced by P1, but connectivity weights show 17% influence of I4 on P1. They

stated that tracer tests show which producer produces the injected water, so tracer weights depend

on injection rates. On the other hand, connectivity coefficients demonstrate the influence of injec-

tors on each producer. The result of a streamline simulation with FrontSim R© software also shows

tracer results and show a 0 allocation fraction for non-adjacent injector-producer pairs for this ex-

ample. Shahvali et al. (2012) evaluated Capacitance-Resistance Model (CRM) and streamline (SL)

approaches on a sector model representing a mature waterflood. They compared injection alloca-

tion factors of both approaches over three years of history. When injector-producer pairs show a

very low or very high connection, there is good agreement between the results of both methods.

But for an intermediate range of allocation factors, there is a conflict between results of CRM and

SL.

In addition to the degree of influence of injectors on producers, there is another discrepancy

in the results of the network model approach that indicate a need for modification. As was noted

previously, the synthetic homogeneous model that was studied in Section 3.3.1 is a single layer

system. In this model, injection fluctuates but does not stop in any well; therefore there is a con-

stant flow from injectors to producers. If one traces streamlines between wells, adjacent injectors
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and producers are always connected by streamlines, although their density changes as rates fluctu-

ate. Flow between wells is shown in Figure 3.1 where there apears to be a substantial amount of

fluid flowing between non-adjacent injector-producer pairs. The impression that a graphic like this

presents is that flow paths between injectors and producers seem to cross. This seems to require the

fluid to be moving past strongly connected injector-producer pairs (the flow seems to be crossing

streamlines). This should not happen in a single-layered system. For instance, in Figure 3.1 there

is a considerable amount of flow between nonadjacent I4 and P1. But I3 and P2 are connected by

a stronger connection, and flow between P1-I4 requires crossing this strong connection.

From this example, one can infer that there may be an influence between nonadjacent injection-

production pairs, but this influence should not be represented by flow between them, because it

is inconsistent with the streamlines that are present. The missing part of this influence chain is

injector-injector interactions. As the rate of injector i fluctuates, the pressure field around injector i

changes. This change influences the pressure field around both producers and injectors adjacent to

injector i. This leads to changes in flow from adjacent injectors to connected producers, since flow

is proportional to pressure gradient. This means injector i indirectly influences producers connected

to adjacent injectors, and this influence is imposed by the pressure field.

This chapter proposes to include injector interactions in obtaining conductance values. Cases

that were evaluated in the previous chapter are evaluated again to see whether adding these new

connections helps to obtain a more viable solution. In addition, some new cases with different

permeability trends are tested with the modified approach.

4.1 Including injector-injector intraction in the network model

The simplest way to include injector interactions in the network model is to connect volumes

containing injectors. In other words, bonds are considered between source volumes in addition to

bonds between source and sink volumes. The injector-injector bonds, have the same properties

as injector-producer bonds but a smaller radius of investigation is used, and as a result a smaller

coordination number is considered for injector-injector connections. It is expected that these new
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bonds would help to make a more realistic representation of flow in the reservoir. That is how they

were supposed to work: when injection rate at injector i fluctuates, the pressure of node volume

i changes, which influences flux from injector i not only to connected producers but also to con-

nected injectors. Flow from injector i to connected injectors changes the associated node volume

pressures of those injectors which, consequently change flow from those injectors to connected

producers. Therefore injector i influences producers connected to other injectors through injector-

injector bonds.

4.2 Application of the model with injector-injector interaction

4.2.1 Homogeneous case

The first candidate to test the modified model on is the homogeneous case described in Section

3.5. Four additional bonds were added to the 20 original bonds, which increased the number of

unknowns to 24. These new bonds connect I3 to I1, I2, I4 and I5. The same injection history is

applied, and output of the model is matched with the synthetic model total fluid production.

In the conductance values table, new parameters are added to account for the injector-injector

interactions. Table 4.1 shows the conductance values obtained for the homogeneous case. Con-

ductance values are plotted in Figure 4.1 a. Gray diamonds represent bonds connecting injectors.

They are comparatively larger than injector-producer conductance values. One explanation could

be that since the pressure differences between injector-injector pairs are comparatively smaller

than injector-producer pairs, a larger conductance value is required for fluid flow between those

pairs. It could also be the effect of factors that influence the flow but are ignored in the model such

as producer-producer interaction. kAcs and flow between wells are shown in Tables 4.2 and 4.3.

Well allocation factors, which are the fraction of the flow from injectors to connected volumes, are

given in Table 4.4, and Figure 4.1 b illustrates these values. Flow between injector-producer pairs

is depicted by complete diamonds, and flow between injector-injector pairs by half diamonds. For

example, there are two half diamonds between I1 and I3; one starts from I1, and the other starts

from I3. The first one, which is thicker shows flow from I1 to I3, and the latter shows flow from
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Table 4.1: Homogenous Reservoir: Conductance values (d. f t/cp)

P1 P2 P3 P4 I1 I2 I3 I4 I5

I1 0.995 0.997 0.001 0.000 0.000 0.000 2.295 0.000 0.000

I2 0.890 0.000 0.887 0.001 0.000 0.000 2.030 0.000 0.000

I3 0.399 0.369 0.433 0.403 2.295 2.030 0.000 2.198 2.186

I4 0.001 0.943 0.001 0.938 0.000 0.000 2.198 0.000 0.000

I5 0.001 0.001 0.939 0.942 0.000 0.000 2.186 0.000 0.000

Table 4.2: Homogenous Reservoir: kA values (d. f t2)

P1 P2 P3 P4 I1 I2 I3 I4 I5

I1 795.9 797.9 2 0.3 0 0 2596.9 0 0

I2 712.3 0.2 709.8 1.4 0 0 2296.4 0 0

I3 319.1 294.9 346.7 322.7 2596.9 2296.4 0 2486.5 2473

I4 1 754 1.8 750.6 0 0 2486.5 0 0

I5 1.4 1.1 750.9 753.8 0 0 2473 0 0

I3 to I1. Once again, flow occurs between the volumes containing injectors but not between the

injectors. From Figure 4.1 b one can infer that the northern part of the system is more pressurized

due to higher injection since the diamonds are thicker in the downward direction.

Table 4.3: Homogenous Reservoir: Cumulative flow between Wells (bbl)

P1 P2 P3 P4 I1 I2 I3 I4 I5

I1 67522 69650 81 12 0 0 29609 0 0

I2 54182 9 57058 53 0 0 21641 0 0

I3 22194 21240 25613 24630 1554 11064 0 24994 17348

I4 27 46574 51 49602 0 0 6977 0 0

I5 40 32 49850 51897 0 0 4263 0 0
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(a) Conductance values. (b) Well allocation factor.

Figure 4.1: Model parameters for a homogeneous reservoir.

Table 4.4: Homogenous Reservoir: Average well allocation factors

P1 P2 P3 P4 I1 I2 I3 I4 I5

I1 0.405 0.417 0.000 0.000 0.000 0.000 0.177 0.000 0.000

I2 0.408 0.000 0.429 0.000 0.000 0.000 0.163 0.000 0.000

I3 0.149 0.143 0.172 0.166 0.010 0.074 0.000 0.168 0.117

I4 0.000 0.451 0.000 0.480 0.000 0.000 0.068 0.000 0.000

I5 0.000 0.000 0.470 0.489 0.000 0.000 0.040 0.000 0.000

4.2.2 Directional permeability trend

In this section, cases with different directional permeability trends are evaluated to test the modified

approach with heterogeneous cases. The permeability distributions were generated by using the

GSLIB software package (Deutsch and Journal 1998). Horizontal and vertical permeability trends

were generated using sequential Gaussian simulation with 1240-ft correlation length (about 1
2 the

model distance) in the primary direction and 120-ft correlation length in the opposite direction.

The mean permeability in all cases and the injection history and input parameters were the same

as the parameters used in section 3.5.
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The first two cases show X-direction and Y-direction permeability trends. Permeability distribu-

tions are depicted in Figure 4.2 and Figure 4.3. In the X-direction permeability trend case (Figure

4.2), conductance values and WAFs (Figure 4.4 a and b) are large for connections that connect

injector 3 to producers 2 and 3. Producers 1 and 4 are positioned in lower permeability regions,

and that is why there isn’t much flow from adjacent injectors to these wells. Conductance values

and WAFs that are shown in Figure 4.5 a and b show very strong connections in the Y-direction

which is consistant with the assumed Y-direction permeability trend (Figure 4.3).

Figure 4.2: X-direction permeability trend

Figure 4.6 and 4.7 show the permeability distribution for cases with NW-SE and SW-NE per-

meability trends. What differentiates the conductance values and WAFs shown in Figure 4.8 a and

b and Figure 4.9 a and b from vertical and horizontal permeability trend cases is the influence

of the injectors. In both cases injector-injector connections that are in the direction of the perme-

ability trend are highlighted. The last case has an omni-direction permeability trend (Figure 4.10).

Conductance values and WAFs shown in Figure 4.11 a and b do not demonstrate any specific

permeability trend.
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Figure 4.3: Y-direction permeability trend

(a) Conductance values. (b) Well allocation factor.

Figure 4.4: Model parameters for X-direction permeability trend.

4.2.3 Complex geological features

In section 3.3.6 the network model was tested on a system with a high permeablility channel. The

goal was to see if conductance values reflect the high permeablility channel. In this section, the
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(a) Conductance values. (b) Well allocation factor.

Figure 4.5: Model parameters for Y-direction permeability trend.

same example is used to find out if considering injector-injector interaction reveals more informa-

tion about the system.

Obtained conductance values and WAFs are illustrated in Figure 4.12 a and b. All adjacent

injectors, injectors 1, 3, and 4, have strong connections with producer 2, which is located in the

high permeablility channel. The non-adjacent injector 2, which is connected to producer 2 through

the channel, also has a strong connection. On the other hand, the distant injector 5 has a strong

influence on injector 3. Since all the diamonds are pointed toward the producer 2, it is easy to

infer that injectors are supporting that specific producer. It is also obvious that injectors 2 and 5

are communicating with producers in a different way. Direct connection between injector 2 and

producer 2 can be through a high-permeability flow path. But there is no such direct connection

for injector 5, and it contributes indirectly.

Unlike the result in section 3.3.6, which did not differentiate between the way that injector 2

and 5 communicate with producer 2, considering injection-injection interaction distinguishes the

connection through the high-permeablility channel. This shows that considering injector-injector

interaction helps to reveal more information about reservoir features.
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Figure 4.6: NW-SE permeability trend

Figure 4.7: SW-NE permeability trend

4.2.4 16×25 Synthetic Field

In section 3.7 a case with 16 producers and 25 injectors was evaluated to test the performance of

the model for a larger number of wells. Symmetric conductance values were obtained for each
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(a) Conductance values. (b) Well allocation factor.

Figure 4.8: Model parameters for NE-SW permeability trend.

(a) Conductance values. (b) Well allocation factor.

Figure 4.9: Model parameters for SW-NE permeability trend.

injector, although values of conductance were different from injector to injector. In addition, some

injectors showed very large conductance values. In this section, the same example is evaluated

with the network model that considers injector-injector interaction to see if the result reflects the

homogeneous nature of the system. The conductance values and WAFs are presented in Figure 4.13
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Figure 4.10: Omni-direction permeability trend

(a) Conductance values. (b) Well allocation factor.

Figure 4.11: Model parameters for omni-direction permeability trend.

and 4.14. In addition to symmetry of the conductance values, values are almost equal from injector

to injector. Like other examples in this chapter, there is a strong connection between injectors and

adjacent producers. Injector-injector conductance values are not plotted in Figure 4.13 but their
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(a) Conductance values. (b) Well allocation factor.

Figure 4.12: Model parameters for a high permeable channel with injector-injector interaction.

influence is shown in 4.14 where, there are more injector-injector influences for injectors at the

corners.

The approach was also tested for a heterogeneous system, where the same number of wells and

injection history has been applied. The permeability distribution is shown in Figure 4.15, where a

NW-SE permeability trend is noticeable. The conductance values (Figure 4.16) and WAFs (Figure

4.17) agree with the direction of permeability trend, and stronger connections are obtained in this

direction.

For a large number of wells, considering injector-injector interaction increases the variables of

the system, because injector-injector connections are added to the injector-producer connections.

However, this modification improves the result and gives conductance values that agree with prop-

erties of the domain.
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Figure 4.13: Conductance values for the nhomogeneous 16×25 Synfield.

Figure 4.14: Well allocation factor for the homogeneous 16×25 Synfield.
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Figure 4.15: NW-SE direction permeability trend in 16×25 Synfield

Figure 4.16: Conductance values for NW-SE direction permeability trend in the 16×25 Synfield.
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Figure 4.17: Well allocation factor for NW-SE direction permeability trend in the 16×25 Synfield.

4.3 Conclusion

Well allocation factors obtained from streamline simulation and tracer tests are different from what

is obtained from connectivity models. Now the question is: do the allocation values obtained from

streamline simulation have different meaning from connectivity models, or are they effectively the

same and just a matter of using different methods?

One assumption is that rate fluctuations change the pressure field, and there are intervals in

which nonadjacent wells may be connected. In addition, fluctuation in the injection rate of one

injector may affect the interaction between other injectors and producers. This means that produc-

ers are sensitive to fluctuations in distant injectors. Since there isn’t a direct connection between

injection wells, this effect may be accounted for by an effect from the distant injector to the pro-

ducer. However, in a streamline model, the pressure field around the injectors reacts to injection
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rate fluctuations and may be reflected by a change in the number or path of streamlines between

injectors and producers.

In this section, this interaction was modeled by considering a bond between injectors. The first

impact of this modification is an increase in adjacent injector-producer influence, and as a result

a decreases in the influence of non-adjacent wells. This behavior agrees with the result of stream-

line simulation and tracer tests. In addition, obtained conductance values and WAFs represent the

domain better than a model in which injector-injector connections are ignored. For example, more

uniform values are obtained in cases of a homogeneous system. Finally, this modification gives

more details about the reservoir features and makes it easier to infer such reservoir properties.
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Chapter 5
Application to Field Data

The network model technique was applied to the northwestern region of a reservoir provided by an

operating company for which daily injection and production data were available for 96 producers

and 66 injectors over 900 days. The problem was broken into smaller problems, since smaller ones

have fewer unknowns and are easier to handle and because the company was mainly interested in

the region selected. The following technical criteria were considered to determine the boundary of

the region:

1. Total injection rate should be higher than total production rate for the region.

2. All high-rate wells should be included and any off-center low-rate injectors/producers may

be excluded

3. Some portion of the reservoir should have a boundary

Using these criteria means that the inside injectors are the main sources of influence, and any

boundary injectors should not significantly influence producers inside the region. The resulting

region included 28 producers and 22 injectors. Fig. 5.1 shows the boundary of the region and well

locations.

Knowing boundary and well positions and implementing Delaunay triangulation results in the

Voronoi tiles depicted in Fig. 5.2. There are 49 Voronoi tiles for the 49 wells in the region. The

number of tiles is less than the sum of the injectors and producers, since one producer was con-

verted to an injector, and one tile was assigned to account for this change. To calculate the node

volumes, each tile area was multiplied by an assumed reservoir thickness at each well.

Once node volumes were determined, connected volumes needed to be determined. In other

words, one has to find out which producers are influenced by which injectors. This is done by

assigning a radius of influence for every injector and connecting those producers that fall within
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Figure 5.1: The study region in which, only the wells inside are studied. Injectors are shown by
large and producers by small icons.

that radius. Sensitivity of the match to radius of influence is investigated in Fig. 5.3. Fig. 5.3 shows

that increasing radius of investigation from 4000 ft to 8000 ft decreases the difference between

observed and modeled production by a cumulative value of 15%. This was considered to be a

relatively minor influence, and 8000- f t value was chosen, since distant injector/producers pairs

needed to be considered, and the 8000 f t results in less than 250 connections, a value that can be

handled by the chosen optimization method.

Before showing history match results and conductance values, it is worth mentioning some of

the difficulties associated with applying the method to real data as opposed to synthetic data.
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Figure 5.2: Voronoi tiles assigned to the wells inside the study region

5.1 Open Boundary

While the left side of the study region coincides with a reservoir boundary, and it can be assumed

there is no flow across that boundary, the right side communicates with the rest of the reservoir and

surrounding wells.

Fig. 5.4 shows the normalized (relative to the mean injection and production rates) total injec-

tion and production rates plus the average measured bottomhole pressures of the producers in the

region. For most of the study period, total injection exceeds total production. Therefore, one can

assume that fluid flows from inside to outside the region. To handle this outward flow, all injec-
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Figure 5.3: Sensitivity analysis on the radius of influence of injectors

tors are connected to a constant low-pressure sink. In other words, a constant-pressure boundary

condition is defined, and all the injectors are connected to the sink through a bond, which has an

unknown conductance value. Therefore, conductance values that connect injectors to this constant

pressure boundary need to be estimated in addition to the injector-producer conductance value.

Once these values are found, one can estimate what percentage of injection leaves through the

boundary.

5.2 Converting a producer to an injector

When producers are converted to injectors, the number of injectors and producers changes, and the

set of conductance values that connects the converted producer to injectors is no longer applicable.

Instead, a new set of conductance values needs to be defined that connects the new injector to

producers. If producer J is converted to an injector at time t, the same node volume can be used.

But after time t, all conductance values that connect producer J to injectors are set to zero, and

conductance values from the new injector to producers that were set to 0 before time t become

new optimization parameters. This approach is also applicable when injector-injector interaction

is considered in the model.
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Figure 5.4: Production and injection rates and bottomhole pressure for 900 days study period

5.3 Change in productivity

As was discussed in section 3.1, well index and the difference between node-volume pressure and

bottom-hole pressure determine well rate. Node volume pressure usually is the shut-in pressure or

average reservoir pressure when shut-in pressure is not available. If bottomhole pressure is known,

productivity is calculated using rate and node volume pressure. When BHP is not available, the

well index value is assigned using the well average production rate and a correlation that relates

this average to the well index. Such a correlation is shown in Fig. 5.5, where each point represents

the well index for each well at times where pressure data are known. At least two data points should

be available to generate what is shown in Fig. 5.5.

What is assigned to the producers is an average well index, since it is based on the average

production rate. Damage and stimulation may change well productivity during the study period. A

model with one average well index may not match observed production in these cases. To handle

variable productivity, well index values at each time step can be calculated or be external inputs to

the model.
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Figure 5.5: Productivity index vs average daily production rate

5.4 Part-time injection/production

Part-time injection or production conveys the fact that the well is partially opened during the in-

tervals of data collecting. For example, a well may produce half a day and then be shut-in for the

next half if the interval of data-collecting is one day. This issue is ignored for injectors, because

the amount of injection into the node volume is the primary influence variable. For producers, pro-

duction time should be included in the model, since the longer the producer is on, the more fluid

it produces. To handle part-time production, the ratio of time-on production to the data collection

interval time is calculated. A 0 value means no production occurs during that interval, and a value

of 1 means production occured throughout the interval. Values between 0 and 1 show part-time

production. This ratio is multiplied by the productivity in the well model equation:

qsc =−RpJw(pJ− pw f ) (5.1)

The Rp term is the ratio of production time to the interval of data-collecting time. When the value

of Rp changes from 0 to 1, production varies from 0 to Jw(pJ− pw f ).
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5.5 Results

In this section, conductance values are estimated by matching model response with observed pro-

duction rates. Like any history matching problem, uncertainty associated with input data make the

matches non-unique, because different sets of uncertain reservoir parameters can match observed

production. Although the network model has reduced the number of variables, uncertainty still

plays a role in conductance value estimation. Even individual well production values may not be

certain and have some inherent error compared to total field production. Sayarpour et al. (2011)

mentions the allocation issue as a reason for this discrepency and they assume a 10% error.

In the network model, node volume is one of the main sources of uncertainty. Both area and

thicknesses of the node may vary, depending on the method and assumptions that are implemented.

Fig. 5.6 and Fig. 5.7 show allocation factors for two different sets of node volumes. In Fig. 5.6,

tile areas are averaged, and constant values for the assumed reservoir thickness at wells are used

to calculate the node volumes. In Fig. 5.7, Voronoi tile areas are multiplied by an assumed net pay

thickness at each well to obtain the node volumes. Thickness of the bonds shows the percentage of

flux that goes from injector to producers (similar to an allocation factor), and the darkness of the

bonds show the amount of flux.

Bubbles in Fig. 5.8 and Fig. 5.9 show injection that leaves the boundary of the region. The larger

the bubble, the larger the amount of injection that leaves the boundary. Fig. 5.10 and Fig. 5.11 show

the same type of graphs, but this time injector-injector interactions are considered in the model.

Thin bonds in Fig. 5.11 represent the injector-injector connections.

The way injector 36 in the north-east of the study region communicates with surrounding in-

jectors and producers is a good example to show the effect of considering the injector-injector

interactions. In Fig. 5.6 and 5.7 injector 36 is connected to the producer 16 through a direct con-

nection (flux connected). In the model in which injector-injector interactions are included, injector

36 is connected to injector 35 (Fig. 5.11), and injector 35 is connected to producer 16 (Fig. 5.10). In

other words, injector 36 is indirectly connected to producer 16 through injector 35 (pressure con-
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nected). On the other hand, connection between injector 40 on the west with producer 1 appears to

be a direct connection. This connection is noticeable in all the well allocation plots (Figures 5.6,

5.7, and 5.10). If tracer is injected in injector 40, it should be seen in producer 1.

Figure 5.6: Well allocation factor for equal thickness and equal tile areas
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Figure 5.7: Well allocation factor for pay thickness and Voronoi tile areas

5.6 Conclusions

Uncertainty in the network model comes from node volume, fluid compressibility, radius of influ-

ence, and well indices. In previous chapters it was mentioned that it is safer to use a large enough

radius of influence to include all affected producers. It was also mentioned that in the case of using

incorrect well indices, the computed conductance values adjust to respond to the assumed well
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Figure 5.8: Out of boundary flow for equal thickness and equal tile areas

indices. Fluid compressibility is also somewhat known, and rough estimates of the saturation of

each phase provide an average fluid saturation for each node. The same applies for node volume,

which means the model is more reliable if the sum of the identical estimates of each node volume

is approximately equal to the actual total reservoir volume. A rough estimation of reservoir vol-

ume would be the sum of the net pay thicknesses at each well times the Voronoi tile areas. If net

pay data are not available (as in this case), using equal thickness and equal tile areas would be a
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Figure 5.9: Out of boundary flow for pay thickness and Voronoi tile areas

reasonable first estimate. One can also use a correction factor to adjust the reservoir volume in this

case. This factor can be set up as a match parameter and will be multiplied by all node volumes.

In addition, the influence of each of the above factors on production should be compared with

errors in production rates. That is why Sayarpour et al. (2009) emphasize that data with noticeable

pulses in injectors and producers are better candidates for using these methods. Again, production

rate changes as a result of these pulses should be more than errors in the production data.
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Figure 5.10: Well allocation factor for equal thickness and equal tile areas with injector-injector
connection

For cases like the one studied here, where there are no noticeable pulses and there are many

equally probable solutions, the question becomes: which is the more reliable solution? Would

adding more data really help? The answer is that more reliable data should lead to a better decision.

But there are only a few ways to test the decision, since these methods are usually applied to fields

where detailed reservoir models are not available.
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Figure 5.11: Out of boundary flux and injector-injector allocation factor for equal thickness and
equal tile areas with injector-injector connection

For now, we suggest comparing the conductance values and outflowing injectors and downgrad-

ing the results that do not make physical sense. For example, comparing results for the case where

node volumes are calculated by Voronoi tiles and the assumed net pay map ( Fig. 5.7 and Fig. 5.9)

and the case with equal area and thickness values (Fig. 5.6 and Fig. 5.8), one notices that connec-

tions for wells near the boundaries are not as strong in the Voronoi tile/net pay map case, there is
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more uniformity, there are fewer crossing connections, and there are stronger northwest-southeast

connections, which could then be compared to any direction of correlated permeability. In addition,

in comparing the amount of flow out of the region, the Voronoi tile/net pay results (Fig. 5.9) appear

to make more sense than the equal-pay results (Fig. 5.8), since outflowing injectors are closer to

the boundary in Fig. 5.9 than Fig. 5.8.
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Chapter 6
Two Phase Modeling

Improving waterflooding efficiency is one of the main challenges in mature waterflooded fields.

The single-phase network model approach matches total production and finds principal features

of the reservoir similar to correlation-based models; however, to further improve the flood an oil

production model is needed. A two-phase network model approach is proposed, which uses con-

ventional two-phase flow equations. In this model, in addition to conductance of the bonds, the

ability of fluids to flow in the presence of each other through the bonds should be determined. This

is analogous to the concept of relative permeability. In this chapter a method to determine these

two-phase flow parameters is presented.

6.1 Two-Phase Flow Equations

Neglecting capillary pressure, flow equations for oil and water may be written as:
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∑
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One can group the variables to reduce the complexity of the equations:

T RANSOIJ = βc(
1

Bo
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)kro (6.5)
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Multiplying Eq. 6.4 by A = Bw
n+1

Bo
n+1 and adding Eq. 6.3 and Eq. 6.4 yields the pressure equation:
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Knowing pressure values, saturation may obtained from:
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A well model relates production to well bottomhole pressure and node volume pressure:

Qw
sc =−Jw fp(PJ−Pw f ) (6.14)

Qo
sc =−Jw(1− fp)(PJ−Pw f ) (6.15)

The krw and kro terms in these equations are the network model water and oil relative permeabil-

ity values at the node interfaces (bonds), and fp in the well model is the water fractional flow at
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the producer. The value of kAcs is determined from the single-phase network model; therefore, the

network model relative conductivity at the node interfaces and the fractional flow values at each

well are the only unknown parameters of this model that need to be determined. This chapter ex-

plains how these parameters are obtained using concepts from streamline fractional flow between

injectors and producers.

6.2 Streamlines

In conventional streamline simulation, single-phase flow equations are solved to obtain a pressure

field throughout the domain. After this pressure field has been determined, a velocity field is ob-

tained based on the pressure field. Once the velocity field has been defined, one can trace streamline

paths within a grid block. The method that is developed in this chapter is similar to mapping satu-

ration values along streamlines and finding fractional flow at different distances from injectors. It

is different from the conventional streamline simulation, since it does not need a geologic grid to

trace the streamlines.

Instead of tracing streamlines on grid blocks from injectors to producers (Figure 6.1a), a large

bond is defined between each injector-producer pair (Figure 6.1b). This bond shares volume frac-

tion of the injector-producer pair that contribute to the flow. Knowing the volume of each bond,

it is possible to relate each bond to at least one streamline, the streamline that passes through the

center of the bond. In order to simplify the bond volume calculation, the bond is represented by a

diamond shape as shown in Figure 6.1c. The volume of the bond is then a function of the distance

between the injector and the producer, and the largest cross sectional area of the bond. In addition

to simplicity, the velocity profile is closer to reality in a homogeneous system with this bond shape.

6.3 Time of Flight

Having an area open to flow along the bond and the flow rates through the bond, an incremental

velocity along the bond can be obtained from:
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(a) Tubes and streamlines between an injector and a
producer in a homogeneous medium.

(b) Replacing bond with one large bond.

(c) The diamond shape tube.

Figure 6.1: Replacing bonds with a diamond shape bonds.

ut(s) =
q
As

(6.16)

As is the area open to flow and is a function of the distance between wells and the largest area

open to flow (Figure 6.2). q is the flow between each injector-producer pair. Then the incremental
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Figure 6.2: Representation of the area open to flow and ∆s along the central streamline path.

time of flight along the central streamline within the bond can be calculated by:

∆te,i =
φ∆s
ut(s)

(6.17)

where ut(s) is velocity and φ is porosity. Batycky (1997) says that: “the time of flight (TOF) is

the time required to reach a distance s along a streamline based on the velocity field along the

streamline” and he defined this as:

τ(s) =
∫ s

0

φ(ζ)

ut(ζ)
dζ (6.18)

In this work, the time of flight is the summation of incremental times of flight using Eq. 6.17,

which is:

τ =
n

∑
i=1

∆te,i (6.19)

The time of flight of the central streamline is a function of the volume of the associated bond.

Integration over a distance s along the central streamline gives the volume of the bond, Vst(s):

Vst(s) =
∫ s

0
φ(ζ)A(ζ)dζ (6.20)

84



where ζ is a coordinate defined along the central streamline, and A(ζ) is the cross-sectional area of

the tube. Using the definition of time of flight and knowledge of constant flux along the tube, Eq.

6.20 may be written as:

Vst(s) =
∫ s

0
φ(ζ)A(ζ)dζ =

∫ s

0
qst

φ(ζ)

u(ζ)
= qstτ(s) (6.21)

Now a value of flux, qst , can be assigned to the central streamline and this streamline can be used

instead of the bond. Upcoming sections show the advantages of working with this streamline as

opposed to the bonds and the simplicity of using time of flight instead of the volume of the bond.

6.4 Mapping Saturation along Streamline and Fractional Flow

In the two-phase network model, fluid flows in a single bond from the injector to the producer.

The relation between bond volume and the central streamline time of flight was discussed in the

previous section. For homogeneous cases with constant flux between injector-producer pairs, a

larger bond volume results in a longer time of flight, and a smaller volume results in shorter time

of flight. Velocity of the front between the displacing and displaced fluid and breakthrough time of

the displacing fluid differs in different cases. Figure 6.3 illustrates the effect of a narrower cross-

section and shorter time of flight on front position. With the same flux, the front has advanced more

in the narrower case.

To find the saturation profile between an injector-producer pair, a saturation solution is mapped

along a streamline. To do so, Batycky (1997) transformed the governing 3D saturation equation

into a pseudo-1D equation:

∂Si

∂t
+

∂ f j

∂τ
= 0 (6.22)

Eq. 6.22 may be solved either analytically or numerically. The numerical solution to Eq. 6.22

is generally the preferred solution due to its ability to adapt to existing saturation conditions when

streamlines are updated during the simulation.
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Figure 6.3: Flood front has advanced to different distance from injector in different cross-section
tubes.

The procedure to map a 1D numerical solution along a streamline is explained in detail by

Batycky (1997). Steps are briefly discussed here with minor modifications.

1. Pick up saturation values from the underlying grid system and assign saturation values to the

streamline path

2. Assign a time-of-flight grid onto the streamline path and obtain saturation at each time-of-

flight grid block (Figure 6.4b)

3. Transform the irregular time-of-flight grid in step 2 to a regular-time grid (Figure 6.4c)

4. Solve 1D numerical equation on the regular-time grid and move saturations forward by ∆t

5. Transform the regular-time grid back to the irregular time-of-flight grid (Figure 6.4e)

6. Assign new saturation value to the streamline path and to the underlying grid

In conventional streamline simulation, a streamline moves through different grid blocks to reach

the producer. The grid blocks have different saturation values and times of flight. For example, the
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Figure 6.4: Moving the saturation forward along streamline by ∆t step.
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time of flight is smaller in the grid blocks near injectors and producers where the velocity is higher.

Therefore there will be smaller τ grid cells in higher flow velocity regions and larger τ grid cells in

lower flow velocity regions.

In the network model, the maximum bond cross-section area open to flow (corresponding to the

widest point in the diamond shape) is assumed, and streamlines within this area are launched. Sat-

uration and time of flight are assigned to equally distanced grid points along the center streamline

path between injectors and producers (Figure 6.2). Although the points are equally distanced, there

is a lower resolution in τ space near injectors and producers. Therefore, S versus τ information is

defined on irregular grids. Using regular τ grids makes it much easier to use Eq. 6.22. The same

number of grid points is used for both regular and irregular grids. In order to make sure that mass

is conserved in the transformation process, Eq. 6.23 needs to hold between regular and irregular

grids (Batycky 1997):

∫ s

0
S j dτ|regular =

∫ s

0
S j dτ|irregular (6.23)

The time derivative of the hyperbolic PDE in Eq. 6.22 is approximated by:

∂S
∂t
∼ Sn+1−Sn

∆t
(6.24)

In τ space, the derivative is approximated by a forward difference method as shown below:

∂ f
∂τ
∼

f n+1
i − f n

i
∆τ

(6.25)

Discretization of Eq. 6.24 using Eq. 6.25 and Eq. 6.22 yields:

Sn+1
i = Sn

i −
∆tsl

∆τ
( f n+1

i − f n
i ) (6.26)

Where ∆tsl is the current time step size along a stramline and ∆τ is the time-of-flight distance

between nodes for a given streamline.
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It is worth mentioning that the streamline time step, ∆tsl , is different from the network model

time step, ∆t. In the network model, the time step is the time interval in which production and

injection data are recorded. The streamline time step should be less than or equal to the network

model time step, and equation Eq. 6.26 is solved n times where n is:

n =
∆t

∆tsl
(6.27)

In addition, stability analysis of the finite difference equation shows the scheme is unstable if the

diffusion coefficient is negative (Mattax and Dalton 1990). The diffusion coefficient is a function

of ∆τ and ∆tsl an written as:

D =
f ′

2
(∆τ− f ′∆t) (6.28)

where f represent the fastest saturation velocity, which is the saturation of front. Therefore, the

maximum time step for Eq. 6.26 is defined as:

∆tsl

∆τ
≤ 1

f ′
(6.29)

This condition does not let the fastest saturation velocity travel more than one τ node per time

step.

6.5 Two-Phase Flow Parameters

By mapping saturation on streamlines one can determine the fractional flow values along stream-

line paths that connect an injector to a producer. The fractional flow values are directly used in

the well model and determine the relative permeability between node volumes. Figure 6.5 shows

the desirable fractional flow values and their importance. In this figure, injector A, producer B, and

the volume associated with one is illustrated. The diamond represents the bond associated with the

center streamline that connects injector A to producer B. The fractional flow at the producer is the

fractional flow value of the last point on the streamline path (point B). In addition, it is assumed

that the fractional flow at the interface between the two node volumes is equal to the fractional flow

89



Figure 6.5: Node volume associated with injector A and producer B and the bond between them.
Point C is the interface between two volumes.

of the mid-point of the center streamline (point C). Knowing the fractional flow at the interface,

one can obtain the fractional water and oil flow between nodes from:

q fp = T RANSw(PA−PB) (6.30)

q(1− fp) = T RANSo(PA−PB) (6.31)

T RANSw and T RANSo are functions of phase conductivities. By knowing the fractional flow of

water at each step, they can be easily calculated.

6.6 Limitations of Single Streamline Method

The problem that is solved here is similar to the Buckley-Leverett fractional flow theory. In this sys-

tem there is a varying cross-sectional area instead of a constant one. Thus a numerical method is re-

quired to solve the equation. The numerical solution, like the analytical one, produces a sharp front

where low saturation values are swept by the front (Welge 1952). This produces a sudden sharp
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rise in the water fractional flow on breakthrough. In multi-dimensional systems, breakthrough cor-

responds to the shock front reaching the producer through the fastest streamline. In these cases,

instead of a sharp rise in fractional flow, a more gradual rise in fractional flow is usually observed

(Malik 1988).

Figure 6.6 compares field data fractional flow and model fractional flow on a similar case. Unlike

the gradual increase in water cut in field data, a sharp increase in water cut in fractional flow

is observed. This comparison implies that matching water fractional flow with frontal advance

theory would be very difficult. It will be even harder if the media is heterogeneous, like a layered

reservoir. In order to resolve this issue, another parameter is added to reduce the effect of the shock

in homogeneous media and enable the method to handle heterogeneous cases.
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Figure 6.6: Difference between observed fractional flow and model fractional flow.

6.7 Dykstra-Parsons Method

The Dykstra-Parsons method was described for waterflooding in a stratified porous media. Dykstra

and Parsons (1950) assumed that a reservoir is composed of a number of non-communicative

homogenous layers and that each layer has different properties from other layers. Water displaces
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oil in a piston-like manner in each layer, and both fluids are incompressible. In addition, they

characterized permeability by a log-normal distribution by assuming permeability to be a random

function with a known mean, variance, and spatial correlation. Based on these assumptions, they

introduced a method for describing the distribution of absolute permeability of reservoir rocks

determined from core data. The Dykstra-Parsons, VDP, is equal to

VDP =
k50− k84.1

k50
(6.32)

where k50 is the median permeability, and k84.1 is the permeability value one standard deviation

lower than the median. Figure 6.7 is a plot of the logarithm of permeability versus the percentage

of permeability larger than that particular permeability value. Another application of the Dykstra-

Parsons coefficient is to obtain permeability of layers when the Dykstra-Parsons coefficient is

known (Zemel 1995). Pande et al. (1987) used the Dykstra-Parsons model to determine a perme-

ability distribution from displacement data.

This method is generally applied to the property of permeability but can be extended to treat

other rock properties (Ahmed 2010). Here this concept is applied to the time of flight. It is assumed
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Dykstra  and Parsons (1950) took advantage of these properties of a normal distri- 
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ation is defined as" 
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Figure 6.7: Dykstra-Parsons cumulative probability plot (Zemel 1995).
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that the saturation is moving along streamlines inside the network model bond with different times

of flight. This is a valid assumption for both homogeneous and heterogeneous reservoirs. In addi-

tion, it is assumed that these times of flight can be characterized by a log-normal distribution, and

therefore the probability that the time of flight is equal to that of ln(τ) is given by the probability

density function for a log-normal distribution:

p(z = ln(τ)) =
1√
2πσ

exp{−(ln(τ)− ln(τ50))
2

2σ2 } (6.33)

Where

σ = ln(τ50)− ln(τ84.1) =−ln{ τ84.1

(τ50)
}=−ln(1−Vτ) (6.34)

τ50 is the median time of flight, which is the time of flight of the central streamline that connects

an injector to a producer and Vτ is a time-of-flight Dykstra-Parsons coefficient that characterizes

flow in the bond. The probability that the time of flight is larger than the value of ln(τ) is obtained

from the cumulative distribution function:

p(z > ln(τ)) =
1
2
{1− er f (−

ln τ

lnτ50

ln(1−Vτ)
)} (6.35)

If flow from the injector to the producer is represented by n streamlines inside each tube, and

the probability that the time of flight of streamline j is greater than τ is:

p =
j
n

(6.36)

Therefore from Eq. 6.35 the time of flight of streamline j would be:

τ j

τ50
= (1−Vτ)

−
√

2er f−1(1−2p j) (6.37)

Where er f−1 is the inverse of the error function. Knowing τ50 and p terms, the time of n stream-

line are calculated from Eq. 6.37.
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6.8 Average Fractional Flow at Producers and Interfaces

In each tube of the network model there are multiple fractional flow values that pass across inter-

faces and arrive at producers. Flux carried by each streamline within each tube is used to calculate

the average fractional flow values (Batycky 1997). Fractional flow at the interface and at the pro-

ducer, finter and fp, are given by:

fp =
∑

n
i=1 qsl

i f sl
pi

∑
n
i=1 qsl

i
(6.38)

finter =
∑

n
i=1 qsl

i f sl
interi

∑
n
i=1 qsl

i
(6.39)

Where finteri and fpi are the fractional flow of the ith streamline at the interface and the producer,

respectively. qsl
i is the flux carried by each streamline and is given by:

qsl =
qIJ

n
(6.40)

qIJ represents flux between injector I and producer J, and n is the number of streamlines between

them. The number of streamlines between each injector-producer pair is assumed to be constant

in the network model and is not a function of the flux between them. In addition, the number of

streamlines that launch from injectors is equal and not a function of injection rates. The number of

streamlines between injector-producer pairs will be discussed in the upcoming sections.

6.9 Verification

To verify, the model’s saturation distribution is compared with that of a Buckley-Leverett problem.

The test case is a linear bed with a throughput of 95 bbl/day at the injector side and production at

the opposite side, which is 800 f t apart. The cross-sectional area is the product of width 25 f t, and

the formation thickness, 10 f t.

The dimensionless form of the Buckley-Leverett equation may be written as:
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xD

tD
=

(
∂ fw

∂Sw

)
Sw

(6.41)

Where xD and tD, dimensionless length and dimensionless time, are defined as (Thiele et al.

1996):

xD =
∫ s

0

φ(ζ)A(ζ)dζ

V̄p
(6.42)

and

tD =
∫ t

0

qdt
V̄p

(6.43)

By starting from equation Eq. 6.41 and using Eq. 6.42 and Eq. 6.42 one obtains (Thiele et al.

1996),

xD

tD
=

∫ s
0 φ(ζ)A(ζ)dζ

qt
=

1
t

∫ s

0

φ(ζ)A(ζ)dζ

υ(ζ)φ(ζ)A(ζ)
=

1
t

∫ s

0

dζ

υ(ζ)
=

τ(s)
t

(6.44)

Therefore the Buckley-Leverett equation may be written as:

τ

t
=

(
∂ fw

∂Sw

)
Sw

(6.45)

Each point on the distance between an injector-producer pair corresponds to a τ

t . The equation

below is used to assign a saturation value to each point.

Sw =


Swir if τ

t >
(

∂ fw
∂Sw

)
Sw f ront

f ′−1
w ( τ

t ) if τ

t <
(

∂ fw
∂Sw

)
Sw f ront

(6.46)

where f ′−1
w is the inverse of derivative fractional flow.

Saturation is mapped on a single center streamline connecting the injector to the producer, and

the result is shown in Figure 6.8. Figure 6.8 shows the agreement in front position for both Buckley-

Leverett method and saturation mapping.

95



Figure 6.8: Verification of the model with Buckley-Leverett.

6.10 Application

In Chapter 3, the total fluid production was matched with the observed synthetic data to obtain

kAcs, the permeability and area product. In this section, individual phase production is matched

with observed synthetic data to determine the average time of flight between well-pairs and het-

erogeneity of the reservoir. More specifically, the cross-sectional area open to flow, Acs, and the

time-of-flight Dykstra-Parsons coefficient are matched to fulfill this goal. The first step is a prelim-

inarily step to the second step. Therefore, for each case in this study, a single-phase network model

is run to find kAcs values. kAcs values are substituted into the two-phase network model, where the

unknowns then are phase conductivity values at the node interfaces and at the producers. Values of

the cross-sectional area open to flow and the time-of-flight Dykstra-Parsons coefficient give phase

conductivity values that match individual phase production.

To start, the method is applied on two linear bed models with one injector and one producer.

Rate fluctuates at the injector, and bottomhole pressure is kept constant at the producer. The cross-

sectional area of the model is 880 f t by 60 f t, and it is 1680 f t long. The permeability is a constant

40 md in the first model. The permeability in the second case has 40 md everywhere except the

center set of grid cells, which have 400 md. The wells are placed in a 400 md set of blocks (Figure
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6.9). Table 6.1 shows obtained values of kAcs, Acs, and Vτ and Figures 6.10 and 6.11 compare

obtained fractional flow with observed data for each case.

Figure 6.9: 1D Model with highly permeable channel.

Table 6.1: Comparisons of two homogeneous and hetrogeneous linear cases

kAcs Acs Vτ

Homogeneous Model 20 1455 0.48

Heterogeneous Model 42 410 0.97

Values for kAsc are obtained from the single phase-network model and show that the heteroge-

neous model has a kAsc values twice that of the homogeneous one. This result was expected, since

the dimensions of the model were kept constant, while average permeability was increased. The

conductivity comparison does not tell anything about the nature of the heterogeneity. But values of

the Acs and Vτ demonstrate the difference between the two models very well. Acs is much smaller

comparatively, reflecting the fact that fluid flows through the channel, and Vτ is double the value of

the homogeneous case, showing the heterogeneity of the model. One may ask why Vτ is not zero

in the homogeneous case. The answer is that a 0 value corresponds to piston-like displacement,

and flow, even in a homogeneous model, is not piston-like. In addition, this study is more a relative

comparison of similar cases, and a single value by itself may not say much.
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Figure 6.10: Fractional flow at producer versus dimensionless time for homogeneous case.

Figure 6.11: Fractional flow at producer versus dimensionless time for the case with channel.

To show the effect of heterogeneity on the Vτ and Acs more clearly, heterogeneity is represented

by variance of layer permeability values. In the next comparison, the same 1D example was ex-

tended to include permeability variations in the vertical direction. Nine equal thickness layers,

with thicknesses adding up to 60 f t, have different permeability values that represent vertical het-

erogeneity. Variances of layer permeability values show the degree of heterogeneity. Figure 6.12

shows the structure of the model for the highest permeability variance. Both injector and producer
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are perforated through all layers. Unlike the assumptions of the Dykstra-Parsons coefficient, layers

are communicating, and vertical permeability is 4 md.

Figure 6.12: 9 layers case: Heterogeneity in vertical direction.

Table 6.3 shows the obtained values of Acs and Vτ for the different values of permeability vari-

ance. The result shows that when permeability variance increases, Acs decreases, and Vτ increases.

Higher Vτ for higher heterogeneity was expected. Reduction of Acs reflects the fact that smaller

portions of the model are flooded. In other words, a reduction of Acs means low sweep efficiency.

In Table 6.3, sweep efficiency is represented by the field average water saturation. This is a valid

assumption, since lower efficiency floods leave more oil behind, and average water saturation is

lower. The field average water saturation decreases with increased reservoir heterogeneity and

reduction of Acs. Therefore Acs may be a good representative of the sweep efficiency between

injector-producer well-pairs. Figure 6.13 and Figure 6.14 illustrate the effect of heterogeneity on

Vτ and Acs respectively.

The second pair of models are two-dimensional 1240 f t by 1240 f t models with one injector

in the middle and 4 producers at the corners. The difference between them is the more permeable

diagonal region that passes from the injector and producer 1 and producer 4 in the second model

(Figure 6.15). The permeability in that region is double that in the rest of the model. Table 6.3 and
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Table 6.2: Obtained parameter values for heterogeneous 2D model

Variance kAcs Acs Vτ Swave

5 20.4 1463 0.495 0.588

22 20.6 1464 0.496 0.587

154 22.2 1446 0.524 0.582

795 29.1 1349 0.612 0.557

7373 1179 978 0.708 0.474

1924911 12811 444 0.798 0.336

Table 6.4 show the obtained single-phase and multi-phase parameter values. Figure 6.16 shows

that the model matches the fractional flow at the producers.

Table 6.3: Obtained parameter values for homogeneous model with an injector and 4 producers.

kAcs Acs Vτ

P1 8.1 1029 0.378

P2 8.1 1026 0.371

P3 8.1 1027 0.375

P4 8.1 1028 0.376

Table 6.4: Obtained parameter values for heterogeneous model with an injector and 4 producers.

kAcs Acs Vτ

P1 26.1 1026 0.503

P2 12.4 917 0.331

P3 12.4 921 0.337

P4 26.1 1024 0.503

The values in Table 6.3 reflect the homogeneity of the system and symmetry of the well place-

ment. Values in Table 6.4 also show symmetry with respect to the diagonal axes. The values of kAcs

in Table 6.4 are two times larger for producer 1 and producer 4, showing the fact that those wells

are connected to the injector with a more permeable region. Vτ values are also larger, showing that
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Figure 6.13: Increase in time-of-flight Dykstra-Parsons coefficient with increase in heterogeneity

Figure 6.14: Reduction of cross section area open to flow with increase in heterogeneity

fluid flows through a more heterogeneous path to reach producer 1 and producer 4. By comparing

Table 6.3 and Table 6.4, one can notice that KAcs values for producer 2 and producer 3 are larger
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Figure 6.15: 2D Model with diagonal more permeabile region.

Figure 6.16: Fractional flow at producers versus dimensionless time for 2D model with different
permeability regions.
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in the heterogeneous case because the more permeable region probably has influenced those wells

as well. But Vτ for producer 2 and 3 are the same in both models.

Fractional flow observations in all 1D and 2D examples that are studied in this chapter thus

far comes from one injector. The problem becomes more complicated when there are multiple

injectors in the system. In this case, observed fractional flow at the producer is the combination of

multiple fractional flows from different injectors. This problem is set up by placing two injectors

at both sides of the producer, as is shown in Figure 6.17. While injector 1 is connected to the

producer through a highly permeable channel, the medium between injector 2 and the producer is

homogeneous. Values of kAcs in table 6.5 show a higher permeability between injector 1 and the

producer. Values of Vτ and Acs reflect more heterogeneity and less sweep between that injector-

producer pair.

Figure 6.17: Model with two injector and a high permeability channel.

Table 6.5: Obtained parameter values for 2D model with two injectors and a high permeable chan-
nel

kAcs Acs Vτ

I1 42.6 301 0.919

I2 22.1 1410 0.387
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In the next case, a model with multiple injectors and producers is tested. The test case is the ho-

mogeneous reservoir described in Section 3.3.1. It has 4 producers and 5 injectors and an isotropic

permeability of 40 md. Two sets of conductivity values are obtained using two different assump-

tions: no injector-injector interaction and with injector-injector interaction. The conductivity val-

ues and well allocation factors for the model in which injector-injector interaction is neglected is

shown in Table 3.1 and Table 3.4. Table 4.1 and Table 4.4 give the conductivity and well alloca-

tion factors in a model that considers injector-injector interaction. In addition to injector-injector

conductivity, the influence of injectors on non-adjacent producers is a fact that differentiates the

two models. Values of Vτ and a normalized values for Acs for the two assumptions are obtained

and given in Table 6.6 and Table 6.7 for no injector-injector interaction and in Table 6.8 and Table

6.9 for injector-injector interaction. The normalized values for Acs are obtained by dividing the Acs

values from the optimization routine by the average thickness of the bond. This is done to allow a

more sensitive view of the Acs differences.

Table 6.6: Time-of-flight Dykstra-Parsons coefficients for the homogenous model from 3.3.1

P1 P2 P3 P4

I1 0.421 0.393 0.287 0.156

I2 0.546 0.317 0.376 0.364

I3 0.238 0.222 0.249 0.398

I4 0.352 0.290 0.245 0.373

I5 0.233 0.325 0.309 0.343

Both assumptions give symmetric values and reflect the isotropy of the system and symmetry

of well placement, although each one tells a different story when well conductivity values and

well allocation factors are compared. Based on obtained well allocation factors for the no injector-

injector interaction assumption, 15% of injection goes to each non-adjacent producer. The value

of normalized Acs is very small for non-adjacent connections, which means that a relatively high

amount of flow occurs through a narrow path and should result in an early breakthrough. But in
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Table 6.7: Normalized cross-section area open to flow for the homogenous model from 3.3.1
( f t2/ f t)

P1 P2 P3 P4

I1 779 700 211 160

I2 709 100 816 207

I3 255 533 144 274

I4 90 639 115 780

I5 44 43 537 564

Table 6.8: Time-of-flight Dykstra-Parsons coefficients for the homogenous model from 4.2.1

P1 P2 P3 P4 I1 I2 I3 I4 I5

I1 0.294 0.488 0.249 0.077 0.000 0.000 0.159 0.000 0.000

I2 0.373 0.257 0.463 0.169 0.000 0.000 0.170 0.000 0.000

I3 0.283 0.193 0.250 0.222 0.159 0.170 0.000 0.144 0.132

I4 0.175 0.407 0.151 0.296 0.000 0.000 0.144 0.000 0.000

I5 0.163 0.205 0.415 0.350 0.000 0.000 0.132 0.000 0.000

Table 6.9: Normalized cross-section area open to flow for the homogenous model from 4.2.1
( f t2/ f t)

P1 P2 P3 P4 I1 I2 I3 I4 I5

I1 830 771 1023 446 0 0 923 0 0

I2 590 335 807 263 0 0 780 0 0

I3 2120 295 616 727 923 780 0 849 446

I4 525 1143 168 970 0 0 849 0 0

I5 680 603 709 677 0 0 446 0 0

reality, water injection in adjacent wells causes breakthrough in producers. Well allocation factors

for the model that considers injector-injector interaction is zero. This means that matching each

phase production is not sensitive to values of Vτ and Acs, and these parameters do not affect the

model. Therefore, one can say the well allocation factor determines the sensitivity of the model to
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the two-phase flow model parameters. Because this is an inverse problem, parameters that do not

influence the model can take any values, but their values are of minor importance.

In addition to non-adjacent well connections, the model that considers injector-injector inter-

action results in 40% more reduction in the difference between observed and modeled individual

phase production. In other words, it matched observed production better. Therefore, the compari-

son shows the importance of including injector-injector interaction.

The next candidate to try the two-phase network model on is a heterogeneous system with Y -

directional permeability trend. This case is discussed in section 4.2.2. Conductance values and

WAFs that are shown in Figure 4.5 a and b depict the strong influence from injectors 1 and 4 on

producer 2 and from injectors 2 and 4 on producer 3. Injector 3 also supports producer 1 and 4

more than the other two producers. All the mentioned connections are on vertical lines in the map

view of the system. This reflects the Y -direction permeability trend.

Values of Vτ and Normalized Acs are given in Table 6.10 and Table 6.11. The highest value of

Vτ for each injector is obtained for a producer in the vertical direction which is the same direction

that is mentioned above. This is a good indication of heterogeneity in the Y direction.

The case with a high permeability channel was first introduced in section 3.3.6. Conductance

values and WAFs for the model that considers injector-injector interaction were obtained in section

4.2.3 and are shown in Figure 4.12 a and b. Values of Vτ and Normalized Acs are given in Table

6.12 and Table 6.13. All injectors except injector 5 demonstrate higher Vτ with producer 2, which

means they are connected to producer 2 through a heterogeneous feature. In addition, the fact the

Normalized Acs value between injector 2 and producer 2 is very small means that flow between

this well-pair occurs through a narrow area, which agrees with the existence of high-permeability

channel between them.

6.11 Conclusion

In order to solve the two-phase network model, two-phase flow parameters like phase conductivity

need to be known. The goal here is to obtain the saturation distribution to determine phase con-
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Table 6.10: Time-of-flight Dykstra-Parsons coefficients for Y -direction permeability trend from
4.2.2

P1 P2 P3 P4 I1 I2 I3 I4 I5

I1 0.196 0.569 0.429 0.167 0.000 0.000 0.211 0.000 0.000

I2 0.303 0.139 0.519 0.057 0.000 0.000 0.161 0.000 0.000

I3 0.299 0.016 0.125 0.570 0.211 0.161 0.000 0.298 0.305

I4 0.165 0.381 0.117 0.020 0.000 0.000 0.298 0.000 0.000

I5 0.441 0.380 0.545 0.272 0.000 0.000 0.305 0.000 0.000

Table 6.11: Normalized cross-section area open to flow for Y -direction permeability trend from
4.2.2 ( f t2/ f t)

P1 P2 P3 P4 I1 I2 I3 I4 I5

I1 730 581 649 196 0 0 144 0 0

I2 622 348 743 537 0 0 172 0 0

I3 295 860 179 660 144 172 0 185 774

I4 414 1037 346 1575 0 0 185 0 0

I5 1719 591 393 684 0 0 774 0 0

ductivity at any distance from the injectors. The saturation distribution is specifically needed at

node interfaces (bonds) and producers. It is important at the interface, since it defines the phase

conductivity of the bond to the fluids that flow from the injector node to the producer node. It is

also important at the producer since, it controls the fractional flow of fluids at the producer. To

obtain the fluid distribution between injector-producer pairs, saturation is mapped on hypothetical

streamlines between the injector and producer. The average time of flight of the center stream-

line and the time-of-flight Dykstra-Parson coefficient characterize a set of streamlines between the

injector-producer pair. The average time of flight is the mean value of time of flight between the

pair. It is a function of the total flow rate between the pair, distance between the pair, and the cross

section area open to flow (Acs). All the parameters that define average time of flight are known

except Acs, which is a match parameter. Now one may ask, why is the average time of flight not a
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Table 6.12: Time-of-flight Dykstra-Parsons coefficients for high permeability channel from 4.2.3

P1 P2 P3 P4 I1 I2 I3 I4 I5

I1 0.218 0.500 0.207 0.142 0.000 0.000 0.243 0.000 0.000

I2 0.240 0.444 0.271 0.225 0.000 0.000 0.325 0.000 0.000

I3 0.052 0.275 0.167 0.269 0.243 0.325 0.000 0.144 0.153

I4 0.212 0.570 0.206 0.232 0.000 0.000 0.144 0.000 0.000

I5 0.212 0.102 0.104 0.278 0.000 0.000 0.153 0.000 0.000

Table 6.13: Cross-section area open to flow for high permeability channel from 4.2.3 ( f t2/ f t)

P1 P2 P3 P4 I1 I2 I3 I4 I5

I1 163 860 1819 214 0 0 264 0 0

I2 599 191 245 136 0 0 365 0 0

I3 290 825 43 123 264 365 0 167 130

I4 308 493 553 291 0 0 167 0 0

I5 108 215 241 206 0 0 130 0 0

match parameter instead of the Acs, since the average time of flight is the parameter that character-

izes the streamline? The answer is, in addition to the time of flight from injector to the producer, the

time of flight of the points between the well pairs should be determined. So a bond-shape domain

is needed to obtain the velocity profile and the time of flight at each point between a pair. This

shape will help capture the characteristics of the fractional flow behavior better than simply some

average. Heterogeneity between a pair is incorporated into the system through the time-of-flight

Dykstra-Parson coefficient. The Vτ value varies between 0 and 1, and a value closer to 1 means a

more heterogeneous system.

As was discussed earlier, fractional flow models have difficulty matching the water production

values from the field. Using fractional flow models correspond to using one streamline between

each well-pair. That is why in this model, a set of streamlines leaves the injector to mimic the

field behavior. But there is a tradeoff between the number of streamlines between a well-pair and

computational time. In Figure 6.18, an attempt to find an optimum number of streamlines is illus-
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Figure 6.18: The optimum number of streamlines between injector-producer pairs is the smallest
number of streamlines that matches simulation curve.

trated. In this figure, the fractional flow at the producer is plotted versus dimensionless time for

the homogeneous case discussed in section 6.10. Each line represents a case in which a different

number of streamlines connect the injector-producer pair. One can notice that whenever the front

in one of the streamlines reaches the producer, the fractional flow curve jumps. For example, in the

case that there are five streamlines between an injector-producer pair, there are five jumps in the

fractional flow curve. After increasing the number of streamlines to 20, it would be difficult to see

the jumps, and a smooth curve is obtained. It also matched the simulation fractional flow curve.

One of the limitations of this method is obtaining unrealistic saturation values in injector nodes.

Table 6.14 shows the node saturation at the end of the study period. Although a simple calculation

shows that the average saturation matches the model saturation, individual node saturations are not

real and sometimes don’t have physical meaning. There are two reasons for this behavior. First

of all, the focus has been on matching the fractional flow at producers, and not enough attention

has been paid to other aspects of the model, especially properties of the injector nodes. Secondly,

the diamond shape that is used to obtain the velocity profile may not be representative of the
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Table 6.14: Obtained Saturation in five blocks in the model

Producer 1 Producer 2 Producer 3 Producer 4 Injector 1

Saturation 0.33 0.34 0.34 0.34 1.93

velocity behavior of the streamlines connecting the injector and the producer. The diamond results

in a linear velocity profile (Figure 6.4a), but in practice velocity profiles are tortuous and may be

characterized better by a parabolic velocity profile.

To test this hypothesis, an ellipse-shaped tube was used to obtain the velocity profile (Figure

6.19). Cross-sectional area at any point between an injector-producer pair is obtained from:

y =±
√

a2b2−a2x2

a2 (6.47)

where 2a is the distance between well-pairs, 2b is the cross-sectional area open to flow, and 2y

Figure 6.19: Ellipse-shape tube.

is the cross-sectional area at distance x from the injector. This gives a parabolic-shaped velocity

profile. The velocity changes very rapidly around the wells and very slowly away from the wells.

This gives a longer average time of flight compared to the diamond shape streamtube for a specific

area open to flow. As a result, the optimization program gives a smaller area open to flow for an

ellipse-shaped tube, although the saturation values are the same. Therefore, the ellipse-shaped tube

doesn’t help in obtaining realistic saturation distributions.
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A second hypothesis is that the wrong node volumes were used. Node volume sizes are a func-

tion of distance between wells, and with equal distances between wells, equal size node volume

will be calculated. But by looking at the cases where saturation values larger than 1 were obtained,

one finds that cumulative rate plays an important role. For example, for the 1D case with 1 injec-

tor and 1 producer, the computed saturation distribution is 70% for the injector and 46% for the

producer. This makes sense, and its average equals 58%, which is equal to the model average satu-

ration obtained from the finite difference simulator used to generate the case. But in the case with 1

injector and 4 producers, injection rate is four times larger than each production rate, although the

same node volume sizes are assigned to all injectors. In the case with 4 injectors and 5 producers,

cumulative injection rates are larger in injector 1 and injector 2 compared to other injectors, and

those are the wells that obtained saturation values larger that 1.

By assuming that the L term in the conductance formula is equal to the shortest distance between

wells, one could extract kAcs from conductance. This chapter proposed a method to obtain Acs. Now

that all elements of conductance except k are available, the question is, would it be possible to back-

calculate the permeability used in the original simulation model used to generate the data for the

homogeneous case. Dividing average kAcs between adjacent injector-producer pairs in Table 4.2

by average Acs between adjacent injector-producer pairs in Table 6.9 gives a permeability of 22

md, which is less than the 40 md permeability of the homogeneous system. This underestimation

is the consequence of the assumptions that was made to obtain L and Acs. L is assumed to be

the shortest distance between an injector-producer pair; however, the actual path that a particle

travels to reach the producer is longer than the shortest distance between the well-pair (in the finite

difference simulator, fluid flows from grid cell to grid cell). Therefore, the actual L is longer than

the shortest distance between an injector-producer well-pair. In addition, the cross-sectional area

open to flow is assumed to be the largest section of the diamond shape streamtube between an

injector-producer pair, although average cross-sectional area open to flow should be narrower than

the assumed value. For a value of conductance, a longer L and a narrower Acs both result in a larger

111



k. Therefore, the expectation would be that obtaining the 40 md permeability would be achieved if

the actual values of L and Acs were known and used.

In this chapter a tool was developed that provides a degree of heterogeneity between the injector-

producer pairs. In addition, it provides the cross-sectional area open to flow, which gives insight

into the area swept between well-pairs. But most importantly, it computes the fractional flow of

water that flows from the injector node to the producer node and to the production well. Injection

may be reallocated to decrease the high water fraction flow and increase low water fractional

flow. This shows the ability of the method to be a waterflood optimization tool in addition to be a

reservoir characterization tool.

112



Chapter 7
Summary, conclusions and future work
7.1 Summary

In this work, a two-step approach to find the conductance between injector-producer pairs and

characterize heterogeneity between well-pairs is proposed. The first step is a single-phase model

that gives conductance between injector- producer pairs similar to existing approaches. The second

step is a two-phase model that determines time-of-flight Dykstra-Parson coefficients and cross-

sectional areas open to flow between well-pairs.

To obtain conductance values, injection and production rates and well positions are required.

To find the time-of-flight Dykstra-Parsons coefficients and cross-sectional areas open to flow, frac-

tional flow at the producers is needed in addition to well rates and well positions. The conductance

values obtained from the first step are also required to run the two-phase model.

Interaction between injectors was modeled by considering a bond between injectors. This mod-

ification resulted in an increase in adjacent injector-producer influence and a decrease in influence

of non-adjacent wells. In addition, obtained conductance values and well allocation factors repre-

sent the domain better than a model in which injector-injector connections are ignored.

The method was applied on a portion of a waterflood field case with 22 injectors and 27 pro-

ducers. Bottomhole pressure information was available for most of the producers in the system.

The method was adapted for the case of an open boundary, in which there is flow into and out of

the system. In addition to converting a producer to an injector, changes in the productivity of the

producers and part-time injection and production were modeled.

Fractional flow was matched at the producers in the two-phase network model to obtain time-

of-flight Dykstra-Parsons coefficients and cross-sectional areas open to flow for each bond in the

system. The method was applied to many synthetic fields, with different reservoir features like
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directional permeability and high permeability cannel to see if obtained parameters reflect the

reservoir features.

7.2 Conclusions

The following conclusions stem from this dissertation:

1. The method is fast and can be easily set up. It resolves some of the limitations that the

currently available methods have. It calculates conductance values, which have a physical

meaning that still must be interpreted. This approach considers changes in flow pattern due

to shuting-in a producer for a long time, adding or removing wells or changes in well rate.

This allows the method to study a broader time span. It also allows testing a wider range of

injection-production scenarios in the prediction phase.

2. The model needs a rough estimate of bottomhole pressures and well indices. Incorrect values

of bottomhole pressure and well indices still gives correct values of well allocation factors,

but errors in BHP and/or well indicies will be reflected in compensating errors in local values

of conductance. Accurate values of conductance are needed when one tries to extract actual

reservoir parameters from the conductance. When the focus is on improving the flood effi-

ciency the errors in the numerical value of the conductance values are of minor importance

and well allocation factors become important.

3. Errors in estimating reservoir volume and fluid compressibility will be more widespread

than errors in bottomhole pressure and well indices and influence the entire set of conduc-

tance values and well allocation factors. Since percent error in estimating reservoir boundary,

reservoir thickness, porosity, and displacing and displaced fluid compressibility is typically

not very large, errors in these values should not have a great influence on the result.

4. In spite of errors and uncertainties in the input parameters of the network model, which is a

part of every reservoir study project and previous connectivity models, results are useful and
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can be relied on. What differentiates a reliable network model is whether it leads to better

decisions. All of the equally probable solutions that are obtained by using different sets of

uncertain parameters, in spite of minor difference in degree of influence between well pairs,

show the same connections and lead to the consistent decisions.

5. By considering interaction between adjacent injectors, the influence of injectors on non-

adjacent producers was explained. The obtained parameters differentiate between the indi-

rect influence a non-adjacent injector may have on a producer through another injector and

the direct influence the same injector may have on a producer through a direct flow path.

Both cases were interpreted simply as a connection between non-adjacent injector-producer

pairs before including injector-injector interactions.

6. Although the approach can be applied to water injection cases, the results may not be rea-

sonable for all of injection cases. One of the requirements to obtain a reliable solution is that

data have noticeable pulses in injectors and producers. Production rate changes as a result of

these pulses should be larger than errors in the production data.

7. Two-phase flow model results show that including injector-injector interactions provide more

reasonable values of the time-of-flight Dykstra-Parsons coefficients and cross-sectional ar-

eas open to flow than when these interactions are not included. In the network model, chan-

nels are characterized by large time-of-flight Dykstra-Parsons coefficients and narrow cross-

sectional areas open to flow. The obtained parameters are good indications of the degree of

sweep between injector-producer pairs.

7.3 Future work

In the proposed large-scale network model, it was assumed that conductance of bonds represent

reservoir properties between injector-producer well pairs. The first goal was to infer physical prop-

erties like permeability from conductance. But there are a number of concerns in extracting per-

meability from conductance.
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First is the uncertainty associated with the values of the other parameters in the conductance

term. If one traces streamlines, streamline geometries can change due to injection and production

rate fluctuations (Thiele 2001). The number of streamlines, the area covered by them, and the

paths they travel define streamline geometry, all of which depend on the pressure gradient and

permeability field. In chapter 6, the cross-sectional area covered by streamlines and the average

length of the streamlines were related to the area open to flow and length in the network model

for an injector-producer pair. But area open to flow and length for bonds in the network model

is a function of rate changes, and the shortest distance between well pairs may not be a good

representation of the actual path that fluids travel. Thus the role of Acs and L should be studied

before trying to evaluate a particular value of k for each bond.

A second concern is the applicability of relating the calculated parameters to something ”real”.

Values of conductance between specific injectors and associated producers reflect the relative dis-

tance and permeability between them. For another injection well in the same homogeneous reser-

voir with the same specification, we should expect the same values of conductance. But when

applying the network model to a few large test cases, values differ significantly from one injector

to another when large well indices are assumed for the injectors. Therefore, estimated values of

conductance should be improved in order to infer properties from them if it appears that assumed

well indices play a significant role.

This approach is based on the idea that injection fluctuations change production rates in produc-

ers surrounding the injector. The more noticeable the changes are, the easier to find the degree of

influence of injector on each producer. This influence may be large enough to cover the error in the

data. For example, if changes in production rates as a result of injection fluctuations are larger than

errors generated by production rate measurements, using the network model approach is reason-

able. Another example is a case in which BHP data are not available. If changes in production rates

due to injection fluctuations are greater than the change in production as BHP changes, then one

can still use the method, even when BHP data are not available. On the other hand, if injection rates

are almost constant and other factors like changes in BHP are sources of production rate changes,
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then using the method would not be recommended. Therefore, before trying to apply the network

model to field data, an evaluation of the data and reservoir and fluid properties like permeability

and compressibility should be performed to see if using the method is feasible.

At each step during the course of obtaining conductance values one has the ability to check the

difference between observed and modeled production rates. It is recommended that the problem

set up be checked to see if the difference between observed and modeled production is very large.

The initial guess is important since it has a great impact on the difference. When the difference

is very large, then it wouldn’t be sensitive to the variation in the conductance values, and the

optimization may not converge, or it may converge to a local minimum. Therefore, it is better to

check the difference between observed and modeled production rates for each well to find if there

is discrepancy in the input data.

In addition to reservoir properties used in the single-phase network model, one needs an estima-

tion of irreducible water and residual oil saturation in the two-phase network model. If the method

is being applied on mature waterfloods, some initial estimate of water saturation at the time being

modeled is also needed. Like BHP and WI, a good estimation of irreducible water and residual

oil saturation leads to obtaining more physically viable results. One can also use the approach ap-

plied by Sayarpour et al. (2011). They used several equally probable sets of uncertain reservoir

parameters to match a production history with CRM. They then developed the consequent cumula-

tive distribution functions for the uncertain variables. These cumulative distribution functions were

compared to that of finite difference simulation to evaluate the reliability of the method.

Chapter 6 explained that two saturation equations are being solved in two-phase network model.

One is a pseudo-1D equation along the streamlines that finds the relative conductivity values,

and the second is a saturation equation that updates the node volume saturation. Obtaining node-

volume saturation is of minor importance, and it doesn’t give any information about reservoir

properties. One can still match oil and water production and obtain interwell properties without

calculating node-volumes saturation. This is possible just by using single-phase flow equations

and pseudo-1D equation along the streamlines. In other words, the set up may change in a way
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that the second saturation equation that updates node-volume saturation would not be required.

This modification may provide the opportunity to match water and oil production for one producer

at a time instead of considering all producers collectively. This helps to study certain regions of

interest without the requirement to evaluate the entire study area, and as result could increase the

speed and performance of the method. To increase the performance, one can also group adjacent

injectors to decrease the number of injector-producer connections and as result the number of

variables. Grouping the producers is not recommended, since they have different productivity and

BHP, and each one should be treated separately.

The next step after calibrating the network model parameters with the historical production/injection

data is to predict future performance and optimize oil production. These are the ultimate goals

of any waterflood performance study technique. The optimization function could maximize the

amount of oil produced or one can step further and include economic variables to maximize net

present value (NPV). Reallocating water injection is the first optimization plan that should be con-

sidered. If one can control production rate, then adjusting BHP or total production rate would be

another choice.
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Appendix A: Nomenclature

Roman Symbols

AcsIJ area open to flow between two connected nodes I and J ( f t2)
B formation volume factor (RB/ST B)
c comressibility (1/psi)
CD Nm×Nm covariance matrix for the data measurement
D diffusion coefficient
fp water fractional flow
gIJ conductance between two connected nodes I and J (d. f t/cp)
Jw productivity index (ST B/day/psi)
kIJ permeability between two connected nodes I and J (d)
kr relative permeability
LIJ distance between two connected nodes I and J ( f t)
ND number of observations
Nm number of variables
p pressure (psi)
qIJ volumetric flow rate between two connected nodes I and J (bbl)
qmod assumed theoretical model for predicting data measurement (ST B)
qobs ND dimensional column vector containing measured data (ST B)
Rp ratio of time on production to the data collection interval time
S saturation
u velocity ( f t/sec)
Vb bulk volume of the node ( f t3)
Vτ time-of-flight Dykstra-Parsons coefficient
Vsl volume of the bond ( f t3)
Z coordination number

Greek Symbols

αc volumetric conversion factor (5.615)
βc transmissibility conversion factor (1.127)
µIJ viscosity between two connected nodes I and J (cp)
φ porosity
σ standard deviation
τ time of flight (days)

123



Indices and Special Subscripts

I = node volume containing injector i
J = node volume containing producer j
i = injector index
j = producer index
o = oil
w = water
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Appendix B: Underdetermined and
Overdetermined Problems
Although a reservoir produces continuously, discrete inverse problems are considered to represent
it. In a discrete problem, a physical system like a reservoir is defined by a finite number of model
variables.

The Nm model variables are represented by a vector m

m = [m1,m2, ...,mM]T (B.1)

The Nd calculated data values can be represented by a vector d

d = [d1,d2, ...,dNd ]
T (B.2)

If we study a linear system, a discerte inverse problem can be represented by

d = Gm (B.3)

where G is an Nd×Nm matrix representing the sensitivity of the data to the model variables. Ob-
served data can be represented by a vector dobs. If the measured data are exact (zero measurement
error) and m is the true (actual) physical model, then d will be identical to measured data (Oliver
et al. 2008) which means:

dobs = Gm (B.4)

It can also be shown that Eq.B.4 has a unique solution for every dobs in the data space if all of
the rows of G are independent and the number of model variables Nm is equal to the number of
data Nd (Oliver et al. 2008). On the other hand, if Nm > Nd then the problem is underdetermined.

For the case where the number of independent rows or columns (the rank of the Nd×Nm matrix
G) is less than Nd , there exist vectors dobs in the data space which are not in the range of G. Such
problems are overdetermined.
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Appendix C: Flowcharts
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Figure C.1: Flowchart showing how single phase network model works.
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Figure C.2: Flowchart showing how two phase network model works.
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