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ABSTRACT 

A numerous laboratory and field tests revealed that foam can effectively control gas 

mobility, improve sweep efficiency, and increase oil production, if correctly designed. It is 

believed that there is a significant gap between small laboratory-scale experiments and large 

field-scale tests because of two main reasons: (i) typical laboratory flow tests are conducted in 

linear systems, while field-scale foam EOR processes are performed in radial (or spherical partly) 

systems in general; and (ii) through the complicated in-situ lamella creation and coalescence 

mechanisms and non-Newtonian behavior, foam rheology is thought to depend on geometry and 

dimensionality and, as a result, it is often not clear how to translate laboratory-measured data to 

field-scale applications.  

Therefore, this study for the first time investigates how foam rheological properties 

change in different dimensions and geometries and how such dimensionality-dependent 

properties are affected by different foam flowing conditions by using mechanistic foam fractional 

flow analysis. Complex foam characteristics such as three foam states (weak-foam, strong-foam, 

and intermediate state; sometimes referred to as foam catastrophe theory) and two steady-state 

strong-foam regimes (high-quality regime and low-quality regime) lie in the heart of this analysis.   

The calculation results from a small radial or spherical system showed that (i) for strong 

foams in the low-quality regime injected, foam mobility decreased (or mobility reduction factor 

increased) significantly with distance which improved sweep efficiency; (ii) for strong foams in 

the high-quality regime, the situation became more complicated – near the well foam mobility 

decreased, but away from the well foam mobility increased with distance, which eventually gave 

lower sweep efficiency; and (iii) for weak foams injected, foam mobility increased with distance 
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which lowered sweep efficiency. The results also implied that the use of fixed value of mobility 

reduction factor, which is common practice in reservoir simulations, might lead to a significant 

error, especially for strong foams in the low-quality regime.  When the method was applied to 

the large field-scale applications, it was first shown why strong foams would eventually turn into 

weak foams. Then additional results showed that strong foams could propagate deeper into the 

reservoir at higher injection rate, higher injection pressure, and at lower injection foam quality. 

Foam propagation distance was very sensitive to these injection conditions for foams in the high-

quality regime, but much less sensitive for foams in the low-quality regime.   

This study uses a mechanistic foam model similar to Afsharpoor et al. (2010) which is an 

updated version of Kam and Rossen (2003), Kam et al. (2007), and Kam (2008). In all calculations, 

gas and liquid phases are assumed to be incompressible and the presence of oil is not considered 

at this stage. 
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CHAPTER 1. INTRODUCTION 

1.1 Background of This Study 

Even though foam has been applied into many pilot-scale and reservoir-scale EOR 

processes successfully (see examples in Siggins field, Illinois (Holm, 1970); Dome-Tumbador, 

Midway-Sunset field, California (Mohammadi et al., 1989); 26C, Midway-Sunset field, California 

(Friedmann et al., 1994); SACROC field, Texas (Sanders et al., 2012); EVGSAU field, New Mexico 

(Harpole et al., 1994); Tapis field, Malaysia (Wan-Mohamad et al., 2005) and so on), how foam 

propagates in a large multi-dimensional scale still remains unclear. It is because the high pressure 

gradient, often needed to create fine-textured strong foams in 1D coreflood experiments, does 

not happen easily in multi-dimensional spaces such as radial and spherical geometries. 

Although limited, there exist experimental studies which investigated how foam behaves 

in a system where the cross-sectional area changes. Friedmann et al. (1994) claimed from their 

2-ft-long cone-shaped (3D) Ottawa sandpack foam flood experiments that strong foams, first 

created near the injection well where the pressure gradient is relatively high due to small cross-

sectional area, may propagate deep into the reservoir towards production wells. By conducting 

foam flood experiments in a 1-ft long 1D sandpack column and in a 2 ft x 2 ft x 2.5 ft (height) 

sandpack, Li et al. (2006) showed that the resistance during foam flow in a 3D spherical geometry 

is about 5 times less than that in a 1D linear geometry. Kovscek et al. (1997) simulated foam 

propagation into 1-m thick, 71.5 m radius, and 1.3 darcy radial homogeneous porous medium. 

They confirmed fine texture close to the injector but falls off quickly with foam movements.    
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1.2 Motivation and Objectives of This Study 

Even with these pioneering studies, fundamentals of dimensionality-dependent foam 

behaviors seem not understood well. This is why planning and design of field-scale foam EOR 

processes, where the cross-sectional area changes drastically in radial or spherical geometries, 

have been a major challenge.   

Therefore, the objective of this study is to investigate the dimensionality-dependent or 

geometry-dependent foam rheology where the total velocity decreases as foam moves into the 

system by using mechanistic foam modeling technique. It is assumed at this stage that there is 

no oil present in the system and phases are incompressible. 

1.3 Chapter Description 

This study consists of five main chapters as follows: 

Chapter 1 introduces the background, motivation, and objectives of this study. 

Chapter 2 covers the fundamentals of foam flow in porous media, which are the 

foundation of this study, as well as recent advances in foam research including three different 

foam states relevant to foam catastrophe theory and two steady-state strong-foam regimes.  

Chapter 3 describes mathematical background for the mechanistic modeling techniques 

implemented in this study and the system of interest to be investigated in this study. 

Chapter 4 presents details of research outcomes with discussions, first foam propagation 

in small systems to examine fundamental behaviors of foam characteristics and second the 

implication of such results in large field-scale applications. 

Chapter 5 summarizes this study with conclusions and future research topics. 
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CHAPTER 2. LITERATURE REVIEW 

2.1 Introduction of Foams   

Although gas injection is popular to enhance oil recovery from petroleum reservoirs, its 

efficiency is significantly diminished because gas phase tends to flow through high-permeability 

layers (channeling), segregate from liquid phase (gravity segregation), and finger through low-

mobility fluids ahead (viscous fingering) (Lake, 1989). These aspects make it difficult for the 

injected gas to invade zones with high oil saturations in field applications. Foaming the gas phase 

to mitigate these problems has been recognized as a potentially promising solution even in early 

days as shown by Bond and Holbrook (1958) in their experiments with glass tubes filled with 

sands and Bernard and Holm (1964) in their experiments with Berea sandstone cores. 

The effectiveness of foam application to improve sweep efficiency and oil recovery has 

been proved through field pilot tests since 1970. For example, Holm (1970) showed from foam 

pilot tests in Siggins field in Illinois that by injecting 0.02 PV and 0.06 PV of 1 percent foaming 

agent into the formation, both water mobility and gas mobility were reduced more than 50 % 

and 70 % respectively, resulting in a large reduction in water production. Mohammadi et al. (1989) 

presented a field pilot test in Dome-Tumbador, Midway-Sunset field, California that by injecting 

continuous steam foams for two years, 207,000 bbl of incremental oil was produced. Friedmann 

et al. (1994) also showed a foam field trial in Section 26C of the Midway-Sunset field. Over one 

and half year of steam-foam injection, a substantial improvement in vertical and areal sweep of 

the reservoir was observed and 27,000 bbl of incremental oil was produced. In order to 

propagate deep into the reservoir, foam should not only be created in-situ as it travels, but should 

also resist to the possible disturbances causing instability.   
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A reduction in gas mobility during foam flow has also been observed in laboratory 

experiments. For example, Falls et al. (1988), conducting flow experiments by using pre-

generated foams and glass tubes (internal diameters of 1.4, 1.1, and 0.95 cm, length of 60 cm; 

filled with equal-size glass beads (0.23 and 0.3 cm in diameter)), concluded that foams with both 

low and high viscosities can reduce gas mobility by affecting relative permeability and apparent 

gas viscosity.  

Ransohoff et al. (1988) investigated mechanisms of creation of foam films in porous 

media (often referred to as lamella creation) in a 6 x 25 x 165 mm glass bead pack filled with 

beads, mostly diameters of 1 mm or smaller. Their study visually identified three different in-situ 

lamella creation mechanisms: lamella leave-behind, gas-bubble snap-off, and lamella division as 

illustrated in Fig. 2.1. 

 Lamella leave-behind mechanism occurs when gas phase passes through the liquid-filled 

pores during drainage process. The injected gas phase “leaves” liquid collars “behind” at the 

adjacent pore throats in the direction parallel to the flow. These liquid collars, unstable in the 

absence of surfactant, can thin out and form lamellae.  

Snap-off mechanism occurs when there is enough fluctuation in capillary pressure (Pc) as 

non-wetting gas phase intrudes into the liquid-filled pores. During this event, the capillary 

pressure at the leading edge of gas-water interface first rises above capillary entry pressure (Pc
e) 

as the interface passes through the pore throat, and then subsequently the capillary pressure 

falls below a capillary pressure value required for snap-off, so-called snap-off capillary pressure 

(Pc
sn). Pc

sn is shown to be geometry-dependent and about a half of Pc
e in converging-and-diverging 

conical pore geometry (Fall et al., 1988).  
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Lamella division mechanism (or, often called lamella mobilization-and-division 

mechanism in full), first requires a pre-existing lamella which can subsequently be mobilized by 

a sufficient pressure gradient called the minimum pressure gradient for mobilization (∇Pmin). The 

mobilized lamella can be multiplied at the downstream junctions.  

Snap-off is regarded as a major lamella-creation mechanism in heterogeneous media 

where the average pore sizes change dramatically, while lamella division is regarded as a major 

mechanism in homogeneous media (Gauglitz et al, 2002; Kam and Rossen, 2003). 

On the other hand, lamella coalescence is governed by disjoining pressure () (or, 

capillary pressure, equivalently) - lamella thins down and breaks down if the situation exceeds 

the maximum value of disjoining pressure (max), so-called limiting capillary pressure (Pc*), which 

is an outcome of combining electrostatic repulsive and Van der Waals attractive forces shown in 

Fig. 2.2 (Miller and Neogi, 1985). Note that this max or Pc* corresponds to a threshold value of 

foam film thickness (hcr) below which the film cannot sustain. For a population of bubbles in 

porous media, this concept of Pc* is also valid, and the use of Pc* to evaluate the stability of 

lamellae can be translated well in terms of limiting water saturation (Sw*). For example, Pc < Pc*, 

the condition for existing foams to be stable, is equivalent to Sw > Sw* because capillary pressure 

is related to water saturation. Once in motion along the pores, lamellae tend to be stretched out 

and may break if the transport of aqueous phase does not take place quickly enough (Jimenez 

and Radke, 1996). 
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Fig. 2.1 Three in-situ lamella-creation mechanisms (from Ransohoff et al. (1988)) 
 

 

 

Fig. 2.2 Disjoining pressure curve () as a function of foam film thickness (h), demonstrating 

minimum film thickness for stability (hcr) and corresponding maximum disjoining pressure ( max) 
(from Miller and Neogi (1985)) 
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Foam texture, or the number of lamellae in unit volume, is a resulting outcome of these 

various mechanisms of lamella creation and coalescence within porous media. Based on how 

foam texture is determined, there exist largely two different foam modeling techniques in the 

literature. A technique called “local-steady-state” modeling uses pre-determined steady-state 

foam mobility or a factor which compares foam mobility to gas-phase mobility (so-called mobility 

reduction factor). This mobility reduction factor (MRF) depends on various experimental 

conditions including surfactant concentration, oil and water saturations, and capillary number 

and so on (Ma et al., 2013). Another technique called “bubble-population-balance” modeling 

uses foam texture as a function of rates of lamella creation and coalescence in situ which vary in 

space and time, and foam mobility is determined accordingly in response to foam texture and 

other foam properties (Falls et al., 1988; Friedmann et al., 1991; Kovscek et al., 1995).  

 A fine-textured foam exhibiting low water saturation and high gas viscosity (or, high 

pressure gradient equivalently), so-called “strong foam”, can be obtained if the rate of lamella 

creation prevails the rate of lamella coalescence. On the other hand, a coarse-textured foam 

exhibiting high water saturation and low gas viscosity (or, low pressure gradient equivalently), 

so-called “weak foam”, can be obtained if the rate of lamella coalescence prevails the rate of 

lamella creation  (Falls et al., 1988; Friedmann et al., 1991). A sudden and abrupt shift from weak 

foam to strong foam, accompanied by a significant increase in pressure gradient (often as much 

as a few orders of magnitude), is called “foam generation”.  

 Foam quality, representing a volume fraction of gas phase in the whole gas and liquid 

(surfactant solution) mixture, is another important parameter to describe foam properties. For 
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example, foam quality of 80% (or 0.8 in terms of fraction) means that the mixture consists of 80% 

gas and 20% liquid. 

2.2 Recent Developments: “two steady-state foam-flow regimes” and “three foam states” 

When it comes to foam rheological properties in porous media, two recent findings such 

as “two steady-state foam-flow regimes” and “three foam states” should be highlighted and are 

thus used as a basis for this study. 

If strong foams are created through the process called foam generation, they are shown 

to exhibit two distinct foam-flow regimes so called high-quality regime and low-quality regime as 

shown by pressure contours as functions of gas and liquid velocities in Fig. 2.3 (Osterloh and Jante, 

1992), where those two regimes are divided by a threshold value of foam quality called fg*. Note 

that, in the high-quality regime, the steady-state pressure gradient is primarily dependent upon 

liquid velocity and very insensitive to gas velocity due to almost vertical pressure contours, while 

the opposite happens in the low-quality regime. Foam rheology is typically near-Newtonian or 

slightly shear-thickening in the high-quality regime, but highly shear-thinning in the low-quality 

regime. These two regimes are shown to be governed by different mechanisms such as limiting 

capillary pressure in the high-quality regime and bubble trapping and mobilization in the low-

quality regime (Alvarez et al., 2001; Rossen and Wang, 1999). Note that the curve representing 

fg* tends to be concave due to different foam rheological properties in the two regimes. More 

in-depth discussions about these two flow regime concept are thoroughly given in Alvarez et al. 

(2001). 

By conducting foam coreflood experiments with three different types of constraints 

(controlling the pressure drop, flow rates, or a combination of both) in a wide range of 
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experimental conditions, Gauglitz et al. (2002) presented a new way of describing the process of 

foam generation in a three-dimensional space as shown in Fig. 2.4: a strong-foam state 

represented by the top surface, a weak-foam state represented by the bottom surface, and an 

intermediate state connecting those two surfaces in between. Their study experimentally 

confirmed that an injection condition with fixed injection gas and liquid rates may have multiple 

solutions while an injection condition with fixed injection pressure is guaranteed to have a single 

solution. This means that a slice of the surface in a vertical direction leads to an S-shaped curve, 

as represented by Fig. 2.5, consisting of the three foam states. The presence of such an S-shaped 

foam-generation surface, later referred to as foam catastrophe theory (Kam and Rossen, 2003; 

Kam 2008), implies that lamella mobilization and division is the main lamella creation mechanism 

in homogeneous porous media.  

Based on the earlier versions of bubble population foam modeling and simulation 

(Friedmann et al., 1991; Falls et al., 1988; Kovscek et al., 1995), Kam and Rossen (2003) proposed 

a new population balance model that incorporated the concept of minimum pressure gradient 

for mobilization. Their results successfully reproduced three different foam states and two 

steady-state strong foam regimes as shown in Figs. 2.5 (solids line) and 2.6. An extension of Kam 

and Rossen’ model can be found in the follow-up studies to improve foam simulations in the low-

quality regime (Kam et al., 2007), in the high-quality regime (Kam, 2008), and in the process of 

gas-liquid co-injection (Afsharpoor et al., 2010).  

In addition, such a foam rheological model can be combined with fractional flow analysis 

(referred to as mechanistic foam fractional flow analysis) in order to understand velocity-
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dependent fractional flow curves and displacement efficiency (Dholkawala et al., 2007; Ashoori 

et al., 2012).  

 

 
Fig. 2.3 A contour map showing two distinct foam flow regimes obtained from laboratory flow 
experiments (from Osterloh and Jante (1992)) 
 

 

 

 

Fig. 2.4 A schematic figure showing three different foam states such as weak-foam (or coarse-
foam), strong-foam and intermediate states (from Gauglitz et al. (2002)) 
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Fig. 2.5 An S-shaped foam-generation curve showing three different foam states (from Kam and 
Rossen (2003)) 
 

 

 

Fig. 2.6 A contour map showing two steady-state strong-foam regimes reconstructed by Kam and 
Rossen (2003) by using mobilization pressure gradient concept 
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CHAPTER 3. METHODOLOGY 

3.1 Mechanistic foam model and model parameters 

By and large, this study uses the mechanistic bubble-population-balance model of 

Afsharpoor et al. (2010) as a basis, combined with mass balance equation. The mass balance with 

assumptions of no absorption and no mass transfer between two immiscible phases is given by 

Buckley and Leverett (1942), i.e.,  

∂

∂t
(∅𝜌𝑗𝑆𝑗) + ∇ ∙ (𝜌𝑗𝑢𝑗⃑⃑  ⃑) = 𝐺, 𝑗 = 𝑤 𝑜𝑟 𝑔                        (3.1)                                                                     

where ∅  is porosity, t is time, and 𝜌𝑗 , 𝑆𝑗 , and 𝑢𝑗  are the density, saturation, and superficial 

velocity of phase j (j = w for water, and j = g for gas) respectively. Note that the superficial velocity 

(uj) is no other than flow rate (qj) over a cross-sectional area (A) (i.e., uj = qj/A). For one-

dimensional incompressible flow without a sink or source term (𝐺) at fixed total injection velocity 

(𝑢𝑡), Eq. (3.1) can be simplified to an equation commonly called fractional flow equation in one-

dimensional space, that is, 

∂

∂t
(𝑆𝑗) +

𝑢𝑡

∅

∂

∂𝑥
(𝑓𝑗) = 0, 𝑗 = 𝑤 𝑜𝑟 𝑔   (3.2) 

Note that porosity ø is assumed to be uniform and constant irrespective of location (x) and time 

(t), and ut is the sum of gas superficial velocity (ug) and liquid superficial velocity (uw). The 

fractional flow of water (fw) in horizontal flow direction with negligible capillary pressure gradient 

is expressed by 

𝑓𝑤 = 1 − 𝑓𝑔 =
𝑢𝑤

𝑢𝑡
=

𝑢𝑤

𝑢𝑤+𝑢𝑔
= (1 +

𝑘𝑟𝑔(𝑆𝑤)/𝜇𝑔

𝑘𝑟𝑤(𝑆𝑤)/𝜇𝑤
)
−1

   (3.3) 

where 𝜇𝑗and 𝑘𝑟𝑗 are viscosity and relative permeability of phase j.  
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Bubble population balance in the gas phase is obtained in a similar way (Falls et at., 1988; 

Freidmann et al., 1991; Kovscek et al., 1995), i.e.,  

∅
∂

∂t
(𝑆𝑔𝑛𝑓) +

∂

∂𝑥
(𝑛𝑓𝑢𝑔) = ∅𝑆𝑔𝑅   (3.4) 

where 𝑛𝑓 is foam texture (or, bubble population density, equivalently) and R is the net rate of 

bubble population change in  time. The net rate (R) is a combination of the rate of lamella creation 

(Rg) and the rate of lamella coalescence (Rc), i.e.,   

𝑅 = 𝑅𝑔 − 𝑅𝐶   if 𝑆𝑤 > 𝑆𝑤
∗                                                                                               (3.5) 

Notice that if 𝑆𝑤 is less than or equal to the limiting water saturation (𝑆𝑤
∗ ), the net rate is zero 

and no foam film exists. 𝑅𝑔 and 𝑅𝑐 are defined as 

𝑅𝑔 =
𝐶𝑔

2
[𝑒𝑟𝑓 (

∇P+∇P0

√2
) − 𝑒𝑟𝑓 (

−∇P0

√2
)]      and                                                                           (3.6) 

𝑅𝑐 = 𝐶𝑐𝑛𝑓 (
𝑆𝑤

𝑆𝑤−𝑆𝑤
∗ )

𝑛

 if 𝑆𝑤 > 𝑆𝑤
∗                                                                                                  (3.7) 

where 𝐶𝑔and ∇P0 are two model parameters required for lamella creation, 𝐶𝑐 and 𝑛  are two 

model parameters required for lamella coalescence, and erf is the error function (Acton, 1990). 

∇P0 is related to the minimum pressure gradient for lamella mobilization and division (Rossen 

and Gauglitz, 1990; Kam and Rossen, 2003). According to Kam (2008) and Afsharpoor et al. (2010), 

these Rg and Rc functions are expected to capture the change in bubble population in 

homogeneous media as illustrated by Fig. 3.1: Rg increases and accelerates with ∇P0 at low 

pressure gradient; Rg decelerates and levels off with ∇P0 at low pressure gradient; and Rc 

increases dramatically as Sw approaches down to Sw
*.  



14 
 

                        

Fig. 3.1 The rate of lamella creation (from Kam, 2008) and the rate of lamella coalescence (from 
Afsharpoor et al., 2010) used in this study 
 

Foam texture (𝑛𝑓 ) at local steady state can be determined by making 𝑅𝑔 and 𝑅𝑐 equal to 

each other, therefore,     

𝑛𝑓 =
𝐶𝑔

2𝐶𝑐
(

S𝑤

S𝑤−𝑆𝑤
∗ )

𝑛

[𝑒𝑟𝑓 (
∇P+∇P0

√2
) − 𝑒𝑟𝑓 (

−∇P0

√2
)]  if 𝑛𝑓  < 𝑛𝑓𝑚𝑎𝑥             (3.8) 

where nfmax is the maximum foam texture (corresponding to the maximum number of foam films 

in unit volume) that is related to the minimum bubble size. Note that the bubble size cannot be 

smaller than average pore size due to diffusion (Rossen and Wang, 1999).  

A significant amount of gas saturation is shown to be trapped during foam flow 

(Friedmann et al., 1991; Kovscek and Radke, 1994). Such a concept can be described by using 

flowing gas saturation (Sgf) and trapped gas saturation (Sgt). The fraction of trapped gas saturation 

(Xt) from Kovscek et al. (1995), which suggests use of an expression similar to Langmuir isotherm, 

is employed in this study, i.e.,   

𝑋𝑡 = 𝑋𝑡𝑚𝑎𝑥 (
𝛽𝑛𝑓

1+𝛽𝑛𝑓
)                                                                                                                       (3.9) 
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where Xtmax is the maximum fraction of trapped gas saturation, typically ranging from 0.70 to 

0.95, and β is a parameter defining how quickly the equilibrium state is obtained. Note that the 

fraction of flowing gas saturation (Xf) is simply 1 – Xt. Gas saturation is related to these 

parameters as follows:  

𝑆𝑔 = 𝑆𝑔𝑡 + 𝑆𝑔𝑓   and                                                         (3.10) 

𝑆𝑔 = 𝑋𝑡𝑆𝑔 + 𝑋𝑓𝑆𝑔 = 𝑋𝑡𝑆𝑔 + (1 − 𝑋𝑡)𝑆𝑔            
(3.11) 

 Because the presence of foam does not affect liquid relative permeability function 

(Friedmann et al., 1991; Kovscek et al., 1995), Darcy’s equation for liquid velocity (uw) and gas 

velocity (𝑢𝑔) can be expressed as follows: 

𝑢𝑤 =
𝑘𝑘𝑟𝑤

𝑓 (𝑆𝑤)

𝜇𝑤
∇𝑃 ,                                                                                                (3.12) 

𝑢𝑔 =
𝑘𝑘𝑟𝑔

0 (𝑆𝑤)

𝜇𝑔
0 ∇𝑃 , and                      (3.13) 

𝑢𝑔 =
𝑘𝑘𝑟𝑔

𝑓 (𝑆𝑤)

𝜇𝑔
𝑓 ∇𝑃

 

                                                    (3.14) 

where superscript “o” and “f” represents a condition without foam and with foam. The effective 

foam viscosity (𝜇𝑔
𝑓

) is given by Hirasaki and Lawson (1985), i.e., 

𝜇𝑔
𝑓

= 𝜇𝑔
𝑜 +

𝐶𝑓𝑛𝑓

{𝑢𝑔/(∅𝑠𝑔𝑋𝑓)}
1/3                                                                                                        (3.15) 

where 𝐶𝑓 is a model parameter accounting for the resistance exerted by foams. Liquid relative 

permeability (𝑘𝑟𝑤), gas relative permeability without foam (𝜇𝑔
𝑜), and gas relative permeability 

with foam (𝜇𝑔
𝑓

) for the model used in this study are given as follows: 
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   𝑘𝑟𝑤 = 0.7888 (
𝑆𝑤−𝑆𝑤𝑐

1−𝑆𝑤𝑐−𝑆𝑔𝑟
)
1.9575

                                                                                          (3.16) 

𝑘𝑟𝑔
𝑜 = (

1−𝑆𝑤−𝑆𝑔𝑟

1−𝑆𝑤𝑐−𝑆𝑔𝑟
)
2.2868

                                                                                                         (3.17) 

𝑘𝑟𝑔
𝑓

= (𝑋𝑓
1−𝑆𝑤−𝑆𝑔𝑟

1−𝑆𝑤𝑐−𝑆𝑔𝑟
)
2.2868

                                                                                                (3.18) 

where 𝑆𝑤𝑐 and 𝑆𝑔𝑟 are connate water saturation and residual gas saturation.  

A reduction in gas mobility in the presence of foam is sometimes expressed by using 

mobility reduction factor (MRF). If so, the fractional flow of liquid phase in Eq. (3.3) can be 

modified to be   

 𝑓𝑤 = (1 +
𝑘𝑜

𝑟𝑔(𝑆𝑤)/(𝜇𝑜
𝑔𝑀𝑅𝐹)

𝑘𝑟𝑤(𝑆𝑤)/𝜇𝑤
)
−1

 .          (3.19) 

If MRF = 1, no foam is present, and this equation becomes conventional fractional flow equation 

for gas-water two phases. If MRF > 1, gas mobility is reduced by foam and it leads to a reduction 

in water saturation. Eq. (3.19) can be rewritten for MRF as follows by using Eqs. (3.13) and (3.14): 

𝑀𝑅𝐹 =
𝑘𝑜

𝑟𝑔(𝑆𝑤)𝜇𝑔
𝑓

𝑘𝑟𝑔
𝑓 (𝑆𝑤)𝜇𝑜

𝑔

                    (3.20) 

As a recap, there are nine parameters for the foam mechanistic model used in this study: 

𝐶𝑔and ∇P0 are parameters for lamella creation, 𝐶𝑐, 𝑛, and Sw
* for lamella coalescence, Cf for 

apparent foam viscosity, Xtmax and 𝛽 for trapped gas saturation and nfmax for average pore size 

and minimum bubble size. These parameters can be obtained by fitting experimental data 

showing two strong-foam flow regimes, three foam states, and gas trapping.   
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3.2 Discretization of the system  

This study first considers how foam rheology changes as it propagates in a radial geometry 

and then extends the same logic to a spherical geometry – the first being a typical reservoir shape 

in field EOR operations and the second being a typical flow pattern before the reservoir top and 

bottom boundaries are felt.  

Fig. 3.2 shows how a system with radial geometry is defined and how such a system is 

discretized in this study as an example. The system, initially saturated with water at its residual 

gas saturation ((Sw, Sg) = (1-Sgr, Sgr)), has the wellbore radius of rw and the external radius of re. At 

the inlet, both gas and water are injected at the pre-determined injection quality (fg) and total 

injection rate (qt), while at the outlet fluids are produced at the pre-specified backpressure (Pout).  

Then the total superficial velocity (ut) at the center of i-th segment is given by  

𝑢𝑡𝑖 =
𝑞𝑡

2𝜋ℎ[𝑟𝑤+∆𝑟(𝑖−
1

2
)]

         i = 1, 2, …, n                                                                                         (3.21) 

The total superficial velocity at the inlet face (utin) and at the outlet (utout) are, respectively,  

𝑢𝑡𝑖𝑛 =
𝑞𝑡

2𝜋𝑟𝑤ℎ
   and                                                                                                     (3.22) 

𝑢𝑡𝑜𝑢𝑡 =
𝑞𝑡

2𝜋𝑟𝑒ℎ
                           (3.23) 

In case of spherical geometry, Eqs. (3.21) through (3.23) become as follows: 

 𝑢𝑡𝑖 =
𝑞𝑡

4𝜋[𝑟𝑤+∆𝑟(𝑖−
1

2
)]

2        i = 1, 2, …, n                                                                                       (3.24) 

 𝑢𝑡𝑖𝑛 =
𝑞𝑡

4𝜋𝑟𝑤
2                                                                                                                   (3.25) 

 𝑢𝑡𝑜𝑢𝑡 =
𝑞𝑡

4𝜋𝑟𝑒
2                                            (3.26) 
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Fig. 3.2 A schematic of radial system of interest (only a quarter is shown for simplicity)  
The system can be approximated by a series of one-dimensional blocks (i = 1, 2, …, n) with the 
segment length of ∆r and thickness of h.  
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CHAPTER 4. RESULTS AND DISCUSSIONS 

Before moving into the dimensionality-dependent foam rheological properties, an effort 

has been made to reproduce an S-shaped curve (∇P vs. ug at fixed uw) and a two-flow-regime 

pressure-contour map. Fig. 4.1 shows the results using the basic rock and fluid properties as well 

as foam parameters as shown in Table 4.1, which is the same as those in Afsharpoor et al. (2010). 

The S-shaped curve in Fig. 4.1(a) represents a slice of the 3D surface at uw = 1.0x10-6 m/s. Note 

that fg
* separating two flow regimes in Fig. 4.1(b) increases as ut increases (i.e., fg is close to 0.80 

at low velocity but goes slightly more than 0.90 at high velocity). 

The model is then applied to obtain a series of S-shaped curves at different foam qualities 

(i.e., ∇P vs. ut at fixed fg; fg ranging from 0.575 to 0.99) as shown in Fig. 4.2. This plot is helpful in 

order to grasp the actual shape of three-dimensional foam-rheology surface and estimate foam 

rheology when foam is injected at a fixed injection quality. Fig. 4.3 shows the same plot but in a 

two-dimensional format. Within the range of ut in this plot (roughly 3 x 10-6 m/s – 4 x 10-4 m/s), 

fg
* varies around 0.80 - 0.92 (cf. Fig. 4.1). This means that the top of the S-shaped curves at fg ≥ 

0.92 (i.e., fg = 0.95, 0.98, and 0.99) corresponds to foam rheology of strong-foam in the high-

quality regime, that at fg ≤ 0.80 (i.e., fg = 0.80, 0.725, 0.65, and 0.575) corresponds to foam 

rheology of strong-foam in the low-quality regime, and that in between falls the transition being 

near fg * value. It is interesting to find that those curves at fg ≤ 0.80 (or, strong foams in the low-

quality regime) look very similar, showing the transition from one state to another taking place 

all at the similar locations (i.e., the transition from strong-foam state to weak-foam state at 

reducing ut takes place at around (ut, ∇P) = (3.0 x 10-6 m/s, 2 psi/ft)); the same transition takes 

place at higher ut as fg increases (or as the condition moves toward strong foams in the high-
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quality regime), however (e.g., the transition takes place at around (ut, ∇P) = (5.79 x 10-6 m/s, 2 

psi/ft ), (1.36 x 10-5 m/s, 2 psi/ft), and (2.92 x 10-5 m/s, 2 psi/ft), and (5.44 x 10-5 m/s, 2 psi/ft) for 

fg = 0.875, 0.95, 0.98, and 0.99 respectively.). This tendency has an important implication when 

foam is applied in the field applications as discussed below (the velocity at which this transition 

occurs is called utsf later).     

Table 4.1 Model parameters and properties used in this study (following Afsharpoor et al., 2010) 

 Rock properties Basic foam properties Foam parameters 

k(m2) 3x10-11 nfmax (m-3) 8x1013 𝛻𝑝0(psi/ft) 4.2 

Ф 0.3 S*
w 0.0585 n 1.0 

μw(Pa s) 0.001 Xtmax 0.8 Cg/Cc (m-3) 3.60x1016 

μ0
g(Pa s) 2x10-5 β 5x10-11 Cf (kg m7/3s-4/3) 6.62x10-18 

Sgr 0.00     

Swc 0.04     

 

 

    

 (a)                                                                                        (b) 

Fig. 4.1 Foam rheology plots reproduced by the model using model inputs in Table 4.1: (a) S-
shaped curve (∇P vs. ug) at fixed uw = 1.0x10-6 m/s and (b) two-flow-regime map  
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Fig. 4.2 Three-dimensional foam-rheology surface constructed by a series of S-shaped curves (∇P 
vs. ut at fixed fg) at various injection foam qualities  
 

 

 

Fig. 4.3 Two-dimensional view of 3D plot shown in Fig. 4.2 (∇P vs. ut at fixed fg) 
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4.1 Base case and its extension 

As a base case, this study first investigates how foam process works in a small radial 

geometry. Fig. 4.4 shows the system of interest with general descriptions given in Table 4.2: a 

homogeneous radial system with wellbore radius (rw) = 2 inches, external radius (re) = 14 inches, 

and a uniform thickness (h) = 4 inches; foam injected at the center of the system at the total flow 

rate (qt) = 1.33 x 10-5 m3/s and injection foam quality (fg) = 0.80; the system initially saturated 

with water at its residual gas saturation (Sw = 1.0 initially at Sg = Sgr = 0.0). This means that a 

segment size (∆r) of 2 inches discretizes the system with 6 grid blocks (i.e., n = (re – rw)/∆r). The 

system length of 1 ft is selected in this modeling study because it is a typical core length used in 

core flood experiments. 

  From Eq. (3.21), the superficial velocity at the center of each grid block (i.e., ut values for 

i = 1 through 6 (or, ut1, ut2, …, ut6)) can be determined as shown by filled square symbols in Fig. 

4.5 together with ut values at the inlet and outlet (utin and utout) by X symbols. The superficial 

velocity decreases inversely proportional to radial distance (r) as expected. Fig. 4.6 illustrates how 

those ut values can be mapped on the S-shaped curves by using the same symbols. It should be 

noted that because all data points fall on the top of the curve and the injection foam quality is 

less than fg
*, this is the case of propagation of strong foams in the low-quality regime. 

Since total velocity (ut) decreases with radial distance and foam rheology is velocity-

dependent, it is necessary to keep track of how mechanistic foam fractional flow curves change 

along with radial direction. Fig. 4.7 shows mechanistic foam fractional flow curves constructed 

for the 6 segments representing the system. It can then be realized that the solution to foam 
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injection in a radial system is no other than the combination of each of those 6 solutions 

represented by Fig. 4.7.  

 

Table 4.2 Description of a radial system for base-case calculation 

Injection condition 
Total injection flow rate (qt) = 1.33x10-5 m3/s (or,7.3 bbl/day) 

Fixed injection foam quality (fg) = 0.80 

Initial condition Fully saturated with water at residual gas saturation (Sgr = 0),  or Sw = 1 

Discretized radial 

geometry 

Thickness (h) = 4 in 

Wellbore radius (rw) = 2 in; External radius (re) = 14 in 

Number of segments (n) =6; segment size (∆r) = 2 in 

 

 

 

Fig. 4.4 A small-scale radial system investigated as a base case 
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Fig. 4.5 Change in total injection velocity (ut) as a function of radial distance (r)  
 
 

 

 

Fig. 4.6 S-shape curve at fg = 0.80 representing six segments of the base case  
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Once these mechanistic foam fractional flow curves are constructed, they can be used to 

extract mobility reduction factors (MRF) for foams in individual grid blocks (cf. Eq. (3.20)). Fig. 4.8 

shows one example at ut = 6.33 x 10-5 m/s and fg = 0.80 which represents the injection condition 

for the last 6th grid block. The mechanistic foam fractional flow curve is expressed by a thick solid 

curve with symbols, and the injection condition is given by a horizontal line. In addition, a series 

of fractional flow curves at different MRF values are shown. It is the MRF value of interest that 

intersects the mechanistic fractional flow curve at given injection condition (shown by a circle in 

the figure), which is about MRF = 10858. A similar procedure can be followed for other 5 grid 

blocks.  

 

 

Fig. 4.7 Mechanistic foam fractional flow curves at 6 different grid blocks represented by Fig. 4.4 
(total injection rate (qt) = 1.33 x 10-5m3/s and injection foam quality = 0.80) 
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Fig. 4.8 How to find MRF values to fit foam mobility obtained by mechanistic foam fractional flow 
curve at ut = 6.33 x 10-5 m/s and fg = 0.80 
 

 

Figs. 4.9 and 4.10 show the calculation results when the system reaches the steady state 

after foam sweeps the entire system (consisting of (a) water saturation (Sw), (b) pressure (P and 

∇P), (c) mobility (kf
rg /µf

g), and (d) mobility reduction factor (MRF) for Fig. 4.9;  and  (a) fraction 

of trapped gas saturation (Xt), (b) foam texture (nf),  (c) gas relative permeability when foam is 

present (kf
rg), and (d) gas viscosity when foam is present (µf

g) for Fig. 4.10).  

There are a few interesting aspects to point out for the propagation of strong foams in 

the low-quality regime. First, foam texture is kept at its maximum (nf = nfmax = 8x1013 m-3; Fig. 

4.10(b)) because bubble size is maintained at its minimum, very close to the average pore size. 

As a result, the fraction of trapped gas saturation (Xt) is uniform and kept at its maximum (Fig. 

4.10(a)). Second, even though the velocity decreases away from the well, water saturation 
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decreases (Fig. 4.9(a)) and the sweep efficiency is improved away from the well. The observation 

is consistent with the plots of foam mobility (Fig. 4.9(c)) and MRF (Fig. 4.9(d)) which make foam 

less mobile as a function of distance. (This may seem contour-intuitive because higher velocity is 

believed to make foams more viscous leading to lower water saturation; the result indeed is 

reasonable because strong foam in the low-quality regime is highly shear thinning, however.)  

Third and last, pressure decreases with radial distance, as expected, but the decrement is less 

than that of constant-MRF case in radial geometry, because of more viscous foams away from 

the well (Fig. 4.9(b)).  

      

(a)      (b) 

       

   (c)        (d) 

Fig. 4.9 Base-case calculation results showing the steady state after foam flooding (strong foams 
in the low-quality regime injected): (a) water saturation (Sw); (b) pressure (P and ∇P); (c) mobility 
(kf

rg/µf
g); and (d) mobility reduction factor (MRF)   
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The base-case example is extended to the case of strong foam in the high-quality regime, 

which requires the injection foam quality (fg) greater than fg
*. Figs. 4.11 and 4.12 show the results 

of high-quality strong-foam case when fg is set to be 0.99 (instead of fg = 0.80 in the base case) 

keeping all other parameters the same (note that fg = 0.99 falls in the high-quality regime as 

shown in Fig. 4.1).  

      

(a)                                                                                     (b) 

      

(c)                                                                                     (d) 

Fig. 4.10 Base-case calculation results showing the steady state after foam flooding (strong foams 
in the low-quality regime injected): (a) trapped gas fraction (Xt); (b) foam texture (nf); (c) foam 
relative permeability (kf

rg); and (d) foam viscosity (µf
g)  
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(a)                                                                                     (b) 

       

(c)                                                                                     (d) 

Fig. 4.11 Extension of base case calculation results showing the steady state after foam flooding 
(strong foams in the high-quality regime injected): (a) water saturation (Sw); (b) pressure (P and 
∇P); (c) mobility (kf

rg/µf
g); and (d) mobility reduction factor (MRF)   

 
 

 

 

 

 



30 
 

 

          

(a)                                                                                     (b) 

    

(c)                                                                                     (d) 

Fig. 4.12 Extension of base case calculation results showing the steady state after foam flooding 
(strong foams in the high-quality regime injected (a) trapped gas fraction (Xt); (b) foam texture 
(nf); (c) foam relative permeability (kf

rg); and (d) foam viscosity (µf
g) 

 
 

 

 

 



31 
 

A few interesting observations can also be made for the propagation of strong foams in 

the high-quality regime. First, foam texture is significantly lower than nfmax and declines with 

radial distance (Fig. 4.12(b)), meaning that foam becomes coarser away from the well and, as a 

result, the fraction of trapped gas saturation (Xt) also declines with distance (Fig. 4.12(a)). Second, 

foam viscosity increases with distance near the well, but decreases away from the well. This 

behavior is a combined outcome of foam texture and velocity primarily (Eq. 3.15). As a result, 

such a behavior can also be found in other plots such as foam mobility, MRF, and water saturation 

(for example, MRF slightly goes up near the well but goes down away from the well with distance). 

Third and last, pressure decreases with radial distance, as expected, but the decrement is less 

rapid near the well (because of increasing MRF) and more rapid away from the well (because of 

decreasing MRF) than that of constant-MRF case in radial geometry (Fig. 4.11(b)).  

The base-case example is extended to the case of weak foam by using qt = 6.58 x 10-7 m3/s 

(rather than qt = 1.33 x 10-5 m3/s of the base case) and injection foam quality of fg = 0.80. This qt 

value provides ut values of 1.35 x 10-5, 8.12 x 10-6, 5.80 x 10-6, 4.51 x 10-6, 3.69 x 10-6, and 3.12 x 

10-6 m/s for ut1 through ut6 for the 6 grid block system (Fig. 4.4). Note that these six points are 

positioned in the bottom part of the S-shaped curve (cf. Fig. 4.6).  

Figs. 4.13 and 4.14 show the results of weak-foam case, keeping all other parameters the 

same as the base case except for qt and fg. The response of weak-foam propagation can be 

summarized as follows: foam texture becomes coarser away from the well, and thus water 

saturation and foam mobility increase but MRF and trapped gas saturation decrease with radial 

distance. 
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It should be noted that in all calculations, the grid block size (∆r) of 2 inches is used. 

Additional calculations are performed by using the grid block size (∆r) of 0.5 and 1.0 inches and, 

as shown in Fig. 4.15, the results are shown to be almost the same for the base case with ∆r = 2 

inches. This confirms that the use of ∆r = 2 inches in this study is reasonable.  

 

     

(a)                                                                                     (b) 

     

(c)                                                                                     (d) 

Fig. 4.13 Extension of base case calculation results showing the steady state after foam flooding 
(weak foams injected): (a) water saturation (Sw); (b) pressure (P and ∇P); (c) mobility (kf

rg/µf
g); 

and (d) mobility reduction factor (MRF)   
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(a)                                                                                     (b) 

     

(c)                                                                                     (d) 

Fig. 4.14 Extension of base case calculation results showing the steady state after foam flooding 
(weak foams injected): (a) trapped gas fraction (Xt); (b) foam texture (nf); (c) foam relative 
permeability (kf

rg); and (d) foam viscosity (µf
g)  
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(a)                                                                                     (b) 

Fig. 4.15 Calculation results comparing three grid block sizes (∆r = 0.5, 1, and 2 inches): (a) water 
saturation and (b) mobility reduction factor (∆r = 2 inch is selected in this study) 
    
 
4.2. Effect of input parameters 

Injection foam quality is an important parameter to decide in foam applications. In 

addition to those two foam qualities investigated earlier for strong foam propagation (fg = 0.80 

and fg = 0.99), other injection foam quality values are also considered such as fg = 0.98 and 0.65 

at qt = 1.33 x 10-5 m3/s. Note that fg
* is about 0.80 - 0.92 in this case (see Fig. 4.3). 

Fig. 4.16 shows the results in terms of water saturation (Sw), pressure (P and ∇P), mobility 

reduction factor (MRF), and foam texture (nf). One can find a few interesting aspects. First, water 

saturation for strong foams in the high-quality regime (fg = 0.98 and fg = 0.99) stays almost the 

same near the limiting water saturation (Sw
* = 0.0585) as expected. On the other hand, water 

saturation for strong foams in the low-quality regime (fg = 0.65 and fg = 0.80) decreases with 

distance (as expected from the base case) showing higher water saturation at wetter injection 

condition. Second, foam texture stays at the maximum foam texture for foams in the low-quality 

regime, but becomes lower at drier injection conditions. Third and last, pressure and mobility 
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reduction factor change more for foams in the high-quality regime because foam texture varies 

significantly to get adjusted to the injection condition. Note that the pattern observed in the base 

case still exists – mobility reduction factor increases with distance for foams in the low-quality 

regime, but decreases for foams in the high-quality regime.  

 

     

(a)                                                                                     (b) 

    

(c)                                                                                     (d) 

Fig. 4.16 Calculation results showing the steady state after foam flooding (strong foams injected) 
at various foam qualities: (a) water saturation (Sw); (b) pressure gradient (∇P); (3) MRF; and (4) 
foam texture (nf) 
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Another important parameter to be decided in the field is total injection rate (qt), because 

it should be high enough to create and migrate fine-textured foams deep into the reservoir but 

should be low enough not to fracture the wellbore region. In addition to the base case where qt 

= 1.33 x 10-5 m3/s and fg = 0.80, two other qt values of 1.33 x 10-4 m3/s and 1.33 x 10-3 m3/s are 

selected at the same fg to check how the response changes as shown in Fig. 4.17. The results 

show that as long as strong foams in the same low-quality regime are obtained, the general trend 

seems pretty consistent. As expected, higher rate induces higher pressure gradient and lower 

MRF.  Fig. 4.18 shows similar calculations for foams in the high-quality regime, comparing the 

cases of qt = 1.33 x 10-5, 1.33 x 10-4, and 1.33 x 10-3 m3/s all at the same fg of 0.99. The results 

show that similar to strong foam in the low-quality regime, higher rate induces higher pressure 

gradient but does not affect Sw and MRF significantly.  

During earlier foam injection in a thick reservoir, the flow pattern can be spherical rather 

than radial. The difference between these two cases within the context of this modeling study is 

that the velocity declines more rapidly with distance in a spherical system compared to a radial 

system. This implies that the foam characteristic observed in a radial geometry compared to a 

linear geometry becomes more pronounced. Figs. 4.19 and 4.20 show the results comparing both 

cases at qt = 1.33 x 10-5 m3/s for fg = 0.80 and fg = 0.95, respectively. As expected the trends in 

both radial and spherical cases are similar, but the magnitude of the change is more significant 

in a spherical geometry (The last data point representing the 6th grid block is off the trend because 

it falls into the weak-foam state, and therefore is ignored in this analysis). For fg = 0.80, the 

pressure drops in linear and spherical geometries are 62.8 psi and 14.1 psi from mechanistic 

calculations, respectively, over the distance of 12 inches at qt = 1.33 x 10-5 m3/s, which gives the 
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ratio of 4.5 (i.e., 62.8/14.1). For fg = 0.95, the ratio is 5.3 because the pressure drops are 67.0 psi 

and 12.7 psi in linear and spherical geometries. These ratio values are similar to that measured 

by Li et al. (2006), which was 5, in their one- and three-dimensional foam displacement 

experiments with gas injection into surfactant filled sand pack and tank.  

 

          

(a)                                                                                     (b) 

        
(c)                                                                                     (d) 

Fig. 4.17 Calculation results showing the steady state after foam flooding (strong foams in the 
low-quality regime injected; fg = 0.80) at various injection rates: (a) total injection velocity (ut); 
(b) water saturation (Sw); (c) pressure gradient (∇P); and (d) MRF 
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(a)                                                                                     (b) 

        

(c)                                                                                     (d) 

Fig. 4.18 Calculation results showing the steady state after foam flooding (strong foams in the 
high-quality regime injected; fg = 0.99) at various injection rates: (a) total injection velocity (ut); 
(b) water saturation (Sw); (c) pressure gradient (∇P); and (d) MRF 
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(a)                                                                                     (b) 

     

(c)                                                                                     (d) 

Fig. 4.19 Calculation results showing the steady state after foam flooding (strong foams injected; 
qt = 1.33x10-5 m3/s and fg = 0.80) at different systems: (a) total injection velocity (ut); (b) water 
saturation (Sw); (c) pressure gradient (∇P); and (d) MRF 
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(a)                                                                                     (b) 

     

(c)                                                                                     (d) 

Fig. 4.20 Calculation results showing the steady state after foam flooding (strong foams injected; 
qt = 1.33x10-5 m3/s and fg = 0.95) at different systems: (a) total injection velocity (ut, m/s); (b) 
water saturation (Sw); (c) pressure gradient (∇P); and (d) MRF  
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4.3. Implications in field-scale foam processes   

The example base-case calculations assuming a strong-foam state throughout the system 

may not be necessarily true in field treatments, because strong foam injected at the wellbore 

essentially turns into weak-foam state as it propagates. Therefore, it is crucial to estimate how 

far injected strong foam can propagate in foam EOR processes. A literatfure review is first 

conducted, as summarized in Table 4.3, showing the range of injection rate and injection foam 

quality in field applications. This study chooses model input parameters similar to the conditions 

Egiven by Rangely Weber Sand Unit (Jonas et al., 1990) which has wellbore radius (rw) of 5 in, 

external radius (re) of 330 ft, total injection rate (qt) of 5.89 x 10-3 m3/s, injection foam quality (fg) 

of 0.77. For modeling purpose, the reservoir is assumed to have a perfectly radial geometry with 

the uniform thickness of 27.5 ft. (This is 10 times thinner than the average reservoir thickness of 

275 ft in order to consider only radial flow). Each grid block size is chosen to be 2 ft. 

Table 4.3 Foam field tests with injection condition  

(*: foam quality was not provided, but steam quality was 0.5 in both cases.) 

Field Year Injection method 
Injection rate 

(m3/s) 
Foam 

quality 

Midway sunset, CA 1989-90 
Steam with surfactant 

&N2 
5.82 x 10-3 N.A.* 

Kern river, CA 
1980-85, 
1982-86 

Steam with surfactant 
&N2 

4.59 x 10-4 N.A.* 

North ward-estate, TX 1990- 91 Sufractant-CO2 Alternate 1.56 x 10-3 0.5-0.8 

Siggins, IL 1964- 66 Foam-air 1.54 x 10-2 0.9 

Rangely Weber Sand Unit, CO 1989 CO2-foam co-injection 5.89  x 10-3 0.77 

East Vacuum Grayburg/San 
Andres Unit, NM 

1993 CO2-foam injection 1.84 x 10-3 0.75 
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The transition from strong-foam state to weak-foam state in field-scale applications is 

conceptually shown in Fig. 4.21. Suppose an S-shaped curve (∇P vs. ut at given fg) showing three 

foam states is determined by laboratory experiments (Fig. 4.21(a)). As foams injected at the 

wellbore propagate into the reservoir, the velocity and pressure gradient decrease gradually 

(following ①). When the velocity reaches the threshold velocity (usf), the condition abruptly 

shifts from strong-foam to weak-foam state (②) and further beyond foam propagates deeper 

into the reservoir in a weak-foam state (③). The same concept is shown in Fig. 4.21(b) where 

the presence of threshold velocity (usf) is translated into the threshold radial distance (rsf). This 

rsf value can be determined by  

𝑟𝑠𝑓 =
𝑞𝑡

2𝜋𝑢𝑠𝑓ℎ
       .          (4.1)  

 

    

                       (a)                                                                               (b) 

Fig. 4.21 A schematic showing the transition from strong-foam to weak-foam state at the 
threshold velocity of usf and threshold distance of rsf  
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For fg = 0.99, 0.98, 0.95, 0.875, 0.80, 0.725, 0.60, and 0.525 at qt = 5.89 x 10-3 m3/s (base 

case), the usf values are 5.00 x 10-5, 2.50 x 10-5, 1.36 x 10-5, 5.79 x 10-6, 3.20 x 10-6, 3.00 x 10-5, 3.00 

x 10-5 , and 3.00 x 10-5 m/s respectively, which correspond to the rsf values of 7.5, 15.4, 27.0, 60.0, 

93.4, 95.4, 103.4, and 105.4 ft. This result implies that rsf for strong foam with low fg does not 

vary significantly (95.4 to 105.4) but rsf for strong foam with high fg does (7.5 to 60.0).  

In order to check foam characteristics over the reservoir scale, three foam qualities are 

considered at the same qt of 5.89 x 10-3 m3/s: fg = 0.80, 0.875, and 0.95. Fig. 4.22 shows the paths 

for each of those three injection conditions. Note that X symbols represent the conditions at the 

wellbore and O symbols represent the points where strong foams turn into weak foams. It should 

be pointed out that fg = 0.80 is the case where there is only strong foams in the low-quality regime 

before turning into weak foams. Similarly, fg = 0.95 is the case where there is only strong foams 

in the high-quality regime, while fg = 0.875 is the case where strong foams are initially in the low-

quality regime but moves into the high-quality regime before turning into weak foams. 

Figs. 4.23 through 4.25 compare the results of these three cases. A few interesting aspects 

are observed. First, the distance to travel before turning into weak foam (rsf) is about 93, 60, and 

27 ft for fg = 0.80, 0.875, and 0.95, respectively, implying that strong foams in the low-quality 

regime can travel farther compared to other cases. Second, MRF of strong foams increases with 

radial distance for fg = 0.80, but stays almost the same (or slight increase followed by slight 

decrease) for fg = 0.95. The case of for fg = 0.875 shows a combination of both. This is consistent 

with the results with the base case. Third, the change in MRF is much more significant for fg = 

0.80 (MRF = 6781 at rw to MRF = 27478 at rsf) compared to fg = 0.95 (MRF = 6456 at rw to MRF = 

7208 (maximum) at r = 13ft). This implies that the current practice of using a constant MRF in 
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foam simulation can lead to significant errors, especially, for strong foams in the low-quality 

regime.  

 

(a) 

 

(b) 

Fig. 4.22 Three different injection foam qualities to test foam characteristics in field-scale 
applications: (a) contour map showing injection conditions; and (b) contour map showing the 
positions corresponding to rsf 
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Fig. 4.23 Pressure and MRF profile along the reservoir at fg =0.80 
 

          
Fig. 4.24 Pressure and MRF profile along the reservoir at fg = 0.95    
 

            
Fig. 4.25 Pressure and MRF profile along the reservoir at fg = 0.875 
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In order to check the effect of grid-block size in calculations, 10 times smaller grid block 

size (0.2 ft rather than 2 ft) is applied. The results in Figs. 4.26(a) through 4.26(c) showing pressure 

and MRF profiles along the reservoir at fg = 0.80 fg = 0.95, and fg=0.875 (cf, Fig. 4.23, 4.24, and 

4.25 respectively). They reveal that inlet pressures for 0.2 ft grid-block size are 652, 573, and 311 

psi, which compare with 643, 558, and 300 psi for 2 ft grid-block size, showing 1.4, 2.4, and 3.5% 

difference. The distances of strong foam propagation at the three fg values for 2 ft and 0.2 ft are 

the same. Both conclude that the use of 2 ft grid block is reasonable for rsf calculation.   

Thinking of the fact that usf stays almost the same for strong foams in the low-quality 

regime and increases with fg for strong foams in the high-quality regime (Fig. 4.3), the results in 

Fig. 4.23 through 4.25 imply that the distance to travel before turning into weak foam (rsf) is 

insensitive to fg as long as the injection condition falls into the low-quality regime, while 

decreases sensitively to fg once the injection condition is in the high-quality regime. Fig. 4.27 

shows the plot illustrating how rsf changes as a function of fg at qt = 5.89 x 10-3 m3/s (Figs. 4.23- 

4.25), 1.18 x 10-2 m3/s (2 times higher), and 2.95 x 10-3 m3/s (2 time lower). Such a plot seems to 

be very helpful for the design of field foam applications.  

How much difference would it make in terms of pressure profile if a constant value of 

MRF is applied compared to mechanistic modeling? Fig. 4.28 shows the comparison between the 

mechanistic model (this study) and a local-steady-state foam model using constant MRF. Two 

MRF values are selected at r = rw and r = rsf (taken from Figs. 4.23 and 4.24). The results show that 

the use of constant MRF value can lead to as much as -47 to 109 % error for foams in the low-

quality regime, and as much as -10 to 12 % error for foams in the high-quality regime.  This plot 

reveals why the use of varying MRF should be carefully considered in field-scale foam simulations. 
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Fig. 4.26(a) Pressure and MRF profiles along the reservoir at fg =0.80 (grid block size 0.2 ft rather 
than 2 ft) 
 

    

Fig. 4.26(b) Pressure and MRF profiles along the reservoir at fg = 0.95 (grid block size 0.2 ft rather 
than 2 ft) 
 

    
Fig. 4.26(c) Pressure and MRF profiles along the reservoir at fg = 0.875 (grid block size 0.2 ft rather 
than 2 ft) 
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Fig. 4.27 The distance for strong foams to travel before turning into weak foams (rsf) as a function 
of foam quality (fg) and injection rates (qt) 
 

Similar to Figs. 4.23 through 4.28 where foams are injected at a pre-specified 

injection rate (qt and fg fixed), the same calculations can be performed for foam injection at 

a pre-specified injection pressure (P in and fg fixed). Fig. 4.29(a) shows the results at various 

inlet pressure ranging from 2060 to 8660 psia at fg = 0.80 (low-quality regime), rw = 5 ft, re = 

330 ft, and Pout = 2000 psia. The results show that higher injection pressure corresponds to 

higher injection rate and longer distance for strong foams to travel. Fig. 4.29(b) shows more 

details about rsf at different injection fg values (fg = 0.80, 0.725, and 0.65). Irrespective of fg 

values, rsf increases dramatically as injection rate or pressure increases. In fact, the use of 

injection pressure of 4600 psia can make strong foams propagate throughout the system (r sf 

= re). The responses at the three fg values look quite similar, once again, showing how 

insensitive rsf is for foams in the low-quality regime.   
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(a) 

 

(b) 

Fig. 4.28 Pressure profile comparing mechanistic model and constant-MRF model: (a) strong 
foams in the low-quality regime (fg = 0.80) and (b) strong foams in the high-quality regime (fg = 
0.95)   

 

The same calculations are carried out in Fig. 4.30(a) at fg = 0.95 (high-quality regime). 

The results show a similar pattern as in Fig. 4.29(a), but it looks more difficult to make strong 

foams in the high-quality regime to propagate deep into the reservoir. That aspect is shown 
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more clearly in Fig. 4.30(b) at fg = 0.98 and 0.99 where foams do not reach the end of the 

reservoir even at 8000 psia injection pressure.  Figs. 4.29 and 4.30 are believed to provide a 

useful guideline for fixed-pressure foam injection processes in the field. 

 

 

(a)  

 

(b) 

Fig. 4.29 Foam propagation at fixed injection pressure and foam quality (fg  = 0.80, rw = 5 in , re = 
330 ft , Pout = 2000 psia): (a) pressure profile at various inlet pressure (2060 to 8660 psia) and (b) 
the distance for strong foams to travel before turning into weak foams (rsf) 
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(a) 

 

(b) 

Fig. 4.30 Foam propagation at fixed injection pressure and foam quality (fg = 0.95, rw = 5 in , re = 
330 ft , Pout = 2000 psia): (a) pressure profile at various injection pressure (2020 to 7700 psia) and 
(b) distance for strong foams to travel before turning into weak foams (rsf) vs. injection pressure 
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CHAPTER 5. CONCLUSIONS 

It has been an open question how foam rheology measured in one-dimensional linear 

system could be translated into that in different geometries and dimensionalities. This study 

investigated how foam would propagate in non-linear geometries (such as radial and 

spherical), compared to linear geometry, by using a mechanistic foam model that could deal 

with three foam states (weak-foam, intermediate, and strong-foam states) and two steady-

state strong-foam regimes (high-quality and low-quality regimes). This study first examined 

foam propagation in a small-scale system, and then moved on to field-scale applications.  

1. When the propagation of strong foams was investigated in a small-scale radial 

system, the results were quite different depending on which flow regime the 

conditions fall in. For strong foams in the low-quality regime, foam mobility 

decreased with radial distance (or mobility reduction factor (MRF) increased with 

radial distance, equivalently), while for strong foams in the high-quality regime, 

foam mobility decreased with radial distance only near the well, but increased 

with radial distance away from the well. The results for weak-foam propagation 

showed that foam mobility increased with radial distance. These findings imply 

that the use of a fixed MRF may not be appropriate for foam EOR modeling (which 

is a common practice currently), especially for strong foams in the low-quality 

regime. 

2. When the results in a small-scale spherical system were analyzed, the general 

trend was shown to be similar to those in a small-scale radial system, but the 

effect was more pronounced. The model showed that the resistance during foam 
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flow in about 1 ft long spherical system was about 4.5 to 5.3 times less, compared 

to that in 1 ft long linear system, which is similar to the ratio measured by Li et al. 

(2006) in their cubic sandpack experiments showing the ratio around 5.  

3. In large field-scale modeling, it was necessary to estimate upfront the radial 

distance for injected strong foams to propagate before turning into weak foams 

(rsf) that essentially impacted pressure profile and sweep efficiency. Strong foams 

were shown to always propagate more at higher injection rates no matter what 

injection foam qualities were applied. If injection rate was kept constant, foams 

in the lower injection foam quality led to deeper foam propagation; the effect was 

significant for foams in the high-quality regime while negligible for foams in the 

low-quality regime, however.  

4. As far as strong-foam propagation distance (rsf) is concerned, an example case 

taken from a field case (reservoir radius 330 ft, reservoir thickness 27.5 ft) showed 

that foam could propagate throughout the reservoir with a reasonable injection 

pressure. For foams in the high-quality regime, much higher injection pressure 

was shown to be needed to improve strong foam propagation. If all conditions 

kept the same, foams could propagate more for thinner system. 

5. This study does not consider the presence of oil in the reservoir, nor does it take 

the effect of compressibility into account. These remain as future research topics.  
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