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Abstract

The continuous researvoir model updating is widely used to calibrate reservoir

simulation models to production data, but many challenges remain. First, few real

field data are available to test the new history matching method, and most of the

data sets are synthetic cases. Second, computational cost may be high when using

non-Gaussian priors or nonlinear models. Third, with large complex models, the

simulation runs and history matching method require huge memory allocations.

This dissertation achieves a continuous reservoir model updating workflow with

a meter–scale , two–phase flow experiment. Both production and seismic data are

collected in the experiment. Because the data are high–frequency sequential data

with noise, the EnKF method is used to efficiently integrate them.

To better understand the problem, scaling analysis is done on the capillary

transition zone. Two new dimensionless numbers are introduced—capillary time

and capillary length. We found that for different models, if their capillary time

and gravity number are equal, the capillary length would be the same. The scaling

analysis results help us find a proper flow rate for the sand tank experiment.

Two experiments are conducted to test the workflow and the EnKF method.

In the first one, both the production and seismic data are collected and analyzed.

The production data have large errors in the flow rate and they are integrated to

improve reservoir models using EnKF method. The history matching results are

in an acceptable range which demonstrate that even if the observation data has

large error, the EnKF method still works. In the second experiment, the errors of

flow rate are reduced by measuring manually with a graduated cylinder. Because

the data quality are much better in the second experiment, the observations can

be matched easily.
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Chapter 1
Introduction

1.1 Background

Reservoir history matching is the calibration of a reservoir model to dynamic data

using numerical simulators. It has been one of the longstanding challenges of fore-

casting (Alpak et al., 2009).

Reservoir modeling is one of the key components needed to: 1) understand the ge-

ologic and reservoir model; and 2) forecast reservoir behavior with a known degree

of confidence. Traditionally, history matching is done by varying a few reservoir

parameters manually until a satisfactory match is achieved. It is time–consuming

and only lead to a single, so called, “best” history-matched model (Tavassoli et al,

2004). Because reservoir models have a large number of model parameters (e.g.,

106) and fewer observed data (e.g., 102), history matching problems are undercon-

strained and their results are nonunique. One “best” model cannot capture the

uncertainties of reservoir forecasts.

A Bayesian framework has been considered in reservoir history matching (Taran-

tola, 1997), and constitutes a statistically consistent way of updating a set of mod-

els subject to observed data. In recent years, the development of automatic history

matching methods and increased computational capacity allows us to achieve more

than one “best” model to analyze the uncertainty. Reservoir engineers reduce the

uncertainty of reservoir models by integrating different types of data when they

are available. For example, production data, core analysis results and seismic data

can all be included. Reservoir development teams can then optmize the reservoir

development strategy in the presence of uncertainty. Sometimes we simply aim to
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assess the uncertainty, even when there are not new or abundant data to reduce

uncertainty. Assessment is valuable, even if it is rarely done.

1.2 Problem Statement

The performance of oil and gas reservoirs must be predicted to plan their devel-

opment profitably and efficiently. However, prediction is difficult because fluid and

especially rock properties are uncertain, and the equations used to describe flows

in reservoirs are nonlinear (Oliver, 2008). In this dissertation, these problems are

addressed by using a commercial reservoir simulator to solve the flow equations

and by using an ensemble inversion method to integrate the observation data and

estimate uncertain properties. Systematic statement of observation errors and a

priori probability of models allows statistically and physically correct propaga-

tion of uncertainty, and provides estimates of uncertainties in both properties and

predictions.

Automatic history matching methods have been well developed, and the Ensem-

ble Kalman Filter (EnKF) method and its variants are among the most promising

contemporary methods (Watanabe et al., 2009; Schulze-Riegert et al., 2009; Li et

al., 2008). The main challenges when using the EnKF to update reservoir simu-

lation models are related to the low rank representation of the model covariance

matrix, non-Gaussian prior models, strong nonlinearities in the forward model and

the application to large scale field models (Aaninsen, 2008). Solving these chal-

lenges increases the computational cost, especially in strongly nonlinear models.

Meanwhile, as reservoir models becoming consistently larger over time, computa-

tional cost must be considered when using an EnKF method. Computational cost

can be reduced by solving the strong nonlinearities more efficiently, or by par-

allelizing the reservoir simulation runs and the calculations of Kalman gain (Li,

2008).
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Another challenge is the data integration to calibrate the models. Commonly

the history matching results are poor when only production data are integrated.

Because there are too few wells, and the wells are typically clustered in high–

quality or updip areas, which leaves the other regions unconstrained (Dong, 2005).

Seismic data can be integrated with production data to improve the estimation.

Dong (2005) proposed an approach to integrate seismic data, but the seismic data

first has to be inverted to seismic impedance values, which are also nonunique

(Saltzer and Finn, 2006). Integrating seismic data without a separate inversion

step is a promising approach.

1.3 Current Approaches
1.3.1 Traditional History Matching Algorithms

History matching algorithms can be classified into two main categories, gradient–

free and gradient–based. Gradient–free methods require no modification of the sim-

ulation software, and can be formulated to avoid local optima. Some well known

examples of gradient–free methods include simulated annealing (Ouenes et al.,

1993; Deutsch and Journel, 1994), genetic algorithms (Sen et al., 1995) and neigh-

borhood algorithm (Sambridge, 1999). Although nongradient methods can be used

to find the global minimization point, they may require millions of simulations to

converge. When model size becomes large, the computational cost tends to be

prohibitive.

Among gradient–based methods, the Gauss-Newton and the Levenberg-Marquardt

methods (Li et al., 2003) are widely used because of their quadratic convergence

rate. However, it becomes impractically expensive to store the matrix when the

model size is large, or to compute sensitivity coefficients and the Hessian matrix

(second derivative) of the objective function when the number of data is large. In

contrast, Newton type methods, which are also gradient–based, require only the
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gradient of the objective function because the Hessian is approximated by a prod-

uct of the components of the gradient. Gradient–based methods include steepest

descent, conjugate gradient and the Limited Memory Broyden-Fletcher-Goldfarb-

Shanno (LBFGS) method (Chen, 2008). In gradient based methods, an efficient

method to compute the gradient of the objective function is the adjoint method

(Zhang and Reynolds, 2002; Zhang et al., 2005).

Although automatic history matching can integrate observation data using the

adjoint method and LBFGS method, these methods have drawbacks. First, the

adjoint equations require modifying the source code of the reservoir simulator; this

is difficult to do with commercial simulators. Secondly, the adjoint method and

LBFGS method are good at finding local minima, but commonly fail to find the

global optimum. Thirdly, the observed data become dense in the time domain and

it is impractical to incorporate all the data simultaneously. Finally, for uncertainty

analysis, it is necessary to have a set of history-matched models. Considering the

time used to achieve one minimization, it may not be feasible to obtain an ensem-

ble of estimated reservoir simulation models to analyze uncertainty (Zhang and

Reynolds, 2002; Gao and Reynolds, 2006). Therefore, an investigation of alterna-

tive automatic history matching methods is worthwhile. For large scale nonlinear

systems, the Ensemble Kalman Filter is promising.

1.3.2 Ensemble Kalman Filter

The Ensemble Kalman Filter is a Bayesian approach; the EnKF is initialized by

generating an ensemble of plausible reservoir models using a priori geostatistical

assumptions (Wen and Chen, 2007). Initialization commonly uses a conditional

simulation (Goovaerts, 1997), although more sophisticated approaches such as mul-

tipoint geostatistics (Strebelle, 2002) or stratal modeling (Pyrcz, 2004; Kalla et

al., 2008) may be used. The EnKF continuously updates the ensemble of reser-
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voir models whenever new observations are available. The EnKF yields a group of

history–matched models, which are suitable for uncertainty analysis. The EnKF

method does not require adjoint equations and is loosely coupled to the forward

model (the reservoir simulator). The updated variables are static fields, dynamic

fields, and additional parameters (such as permeability multipliers and fault trans-

missibility multipliers). That is, the dependent variables (such as saturation and

pressure) are updated along with the history match parameters (such as perme-

ability). This raises questions about model consistency, which have been addressed

in the literature (Wen and Chen, 2007) and will be discussed in this dissertation.

The EnKF was introduced by Evensen (1994) as a modification of the Kalman fil-

ter for nonlinear problems. The EnKF has been applied in oceanography (Echevin

et al., 2000) and meteorology (Madsen and Canizares,1999). The EnKF was in-

troduced to reservoir history matching by Lorentzen et al. (2001). Nævdal et al.

(2002) applied the EnKF to estimate the permeability on a 2D field–like synthetic

example.

Because the EnKF assumes Gaussian priors and linear model dynamics, the

EnKF may not work properly when the posterior distribution is non-Gaussian

or the relationships between model parameters, state variables, and observations

are strongly nonlinear. Variants of EnKF have been developed to address these

problems. Anderson (2001), Houtekamer and Mitchell (2001) and Evensen (2004)

presented the square root algorithm which updates the ensemble perturbations;

they also derived a new covariance update. Gu and Oliver (2005) showed that it

is possible to generate nonphysical values during the update steps of the EnKF;

they suggested a change of variables or iteration. Reynolds et al. (2006) present an

Iterative EnKF (IEnKF) method to solve the nonlinear and non-Gaussian prob-
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lems. Wen and Chen (2007) introduced a confirming option in EnKF to keep the

updated static and dynamic variables consistent.

Li (2008) compared the EnKF with reparameterization and the EnKF with

truncation, and concluded that they have similar estimation results; EnKF with

truncation requires less computational time and storage space. Chen et al. (2009)

applied an EnKF with reparameterization to address the non-Gaussian effect and

obtained a realistic water saturation distribution.

In the past two years, hybrid methods have become popular in the application

of EnKF method. Hybrid methods couple EnKF methods and another method to

address the nonlinear and non-Gaussian effects (Watanabe et al., 2009; Schulze-

Riegert et al., 2009; Li et al., 2008), but hybrid methods require more computation.

Because the problem addressed in this dissertation is not strongly nonlinear or

non-Gaussian, the standard EnKF will be used as the history matching method in

this dissertation and the formulas will be introduced in Chapter six.

1.3.3 Integrated Data

Improved modeling has helped to optimize reservoir development. To reduce the

inherent uncertainty of the models and obtain more predictive simulations, more

data should be integrated into the geomodels. Production data, such as bottom hole

pressure, gas oil ratio and water oil ratio have been widely used in history matching.

Interwell tracer tests, well testing and seismic data also provide additional sources

of data. Thulin et al. (2007) show that when production data are integrated into

reservoir models with the standard EnKF method, it is relatively easy to account

for uncertainty in the depths of the initial fluid contacts and provide estimates

of these depths in addition to the traditional estimates of rock properties fields.

Li et al. (2009) applied the EnKF method to the integration of well test data

into heterogeneous reservoir models. They concluded that better data matches
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are obtained after integrating pressure transient data. Valestrand et al. (2010)

coupled the EnKF methodology with chemical tracer data. The permeability and

the fault transmissibility multiplier in a 2D test example are successfully estimated

by including tracer data in the EnKF estimation. Moreover, they show that the

tracer data improve inversion overestimations.

Although production data, well testing data and tracer data can provide high

resolution estimation around well locations, properties in regions far from wells

remain poorly constrained. To reduce uncertainty in estimation, seismic data can

be integrated with production data to provide denser information across whole

field. Many investigators have addressed seismic data integration and proved that

seismic data can help improve the reservoir models. Gosselin et al. (2003) have pre-

sented the development of software that includes production and inverted seismic

data in the history matching process. They used a case to show the improvement

of matched models by integrating 4D seismic data. Dong (2005) integrated seismic

impedance changes with the production data using the adjoint method and LBFGS

method. The results showed that the integration of seismic impedance changes can

improve predictions. Emerick et al. (2007) integrated time–lapse seismic attributes

into a derivative-based assisted history matching tool; their optimization algorithm

was based on a trust-region quasi-Newton method to minimize the mismatch be-

tween observed and simulated data from production and seismic. Dong (2005)

applied the EnKF method to rapidly update the estimation of the model variables

in a small synthetic case which shows that it is possible to integrate both time–

lapse seismic impedance data and production data using the EnKF. A method

based on the combination of EnKF and EnKS (Skjervheim et al., 2007) used a

combination of production data and 4D seismic data. Their method was tested on

a synthetic case and a real North Sea field case. For both the synthetic and field
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case, a better permeability estimate was obtained by including both seismic data

and production data. For the 2D synthetic problem, better estimates of the per-

meability were obtained by integrating inverted seismic data at the time they were

measured instead of using 4D data. Zhao et al. (2008) proposed integrating seismic

data (acoustic impedance data) at two separate times together with production

data. They gave an ensemble of facies maps closer to the “true model” and better

estimates of future performance than the ones obtained from the models updated

by production data only.

In conclusion, seismic data can be integrated to improve the reservoir mod-

els. However, the integration of seismic data still has several drawbacks. First,

for time–lapse seismic data integration, some reservoirs may not express enough

changes in seismic properties. Second, the time–lapse method generally assumes

that the source and receiver do not change over time. Third, seismic inversion

is nonunique (Gunning and Glinsky, 2004). For example, using the same seismic

data, many different seismic impedance datasets can be obtained, all of which are

plausible. Finally, seismic data are indirect sources of formation velocities. The

velocities of the formation depend on the density and elastic moduli of the rock–

fluid system, both of which are influenced by water saturation, especially when

the water saturation approaches one. Understanding the saturation distribution is

very important in determining the velocity model.

1.3.4 Sand Tank Experiment

Modeling is used to obtain a better understanding of problems. There are two cate-

gories of modeling – physical modeling and numerical modeling. Physical modeling

is based on actual observations whereas numerical modeling uses partial differen-

tial equations that are simplified and discretized expressions of the real world. Al-

though numerical modeling has been used widely, physical modeling is still needed
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to validate mathematical models (Vinsome and Westerveld, 1980) and study the

physical world (Ahner and Sufi, 1994). It should be emphasized that the validated

model can address the right problem and provide accurate information about the

system being modeled, but it does not mean that the validated models represent

the actual processes in the real-world system accurately (Oreskes et al., 1994).

The problem addressed in this dissertation is air displacing water (or vice versa)

in a meter–scale physical flow model. This physical model, the “sand tank”, is

equipped with accelerometers for seismic refraction surveys, pressure and temper-

ature sensors, and a flow meter for water production rate. Also some saturation

sensors will be placed in future to validate history matching results or provide

more observation data for integration. This diverse data set poses challenges for

data integration, but will provide a meaningful, repeatable experiment to examine

algorithm performance and assess the value of data. This air–water system is an

analog of gas–oil displacements in an exploration and production setting (Smolkin,

2011). Chapter two will introduce the sand tank experiment and the calculation

of flow and seismic properties.

The sand tank experiment provides production rate, bottom hole pressure and

seismic first arrival data which will be integrated using the EnKF method. The

production data will be integrated in the traditional way. For the first arrival time

of seismic data, both the synthetic, computed first arrival time and the observed

first arrival times are needed. The seismic raytracing result is obtained using FAST

(Zelt, 1988), a 2-D seismic tomography program. The velocity models are computed

from reservoir simulation results by the Hertz–Mindlin method (Bachrach et al.,

1998b). The observed first arrival time is picked from the seismic data of the

experiment by a first arrival auto-picking program in Seismic Unix (Center for

Wave Phenomena, 2012). For the water and air system, the velocity is impacted

9



by the capillary transition zone, thus the inspectional analysis is used to summarize

the transition behavior.

1.3.5 Scaling Analysis of Transition Zones

In an air-water system, saturation varies in the transition zone, which is controlled

by capillary pressures and flow rates. In Chapter three, scaling analysis help us

have a better understanding of the behavior of the capillary transition zone and

predict the saturation distribution.

Scaling analysis characterizes similar behavior at different length and time scales,

and for different system properties or states(e.g., velocity and viscosity). Scaling

analysis reduces the number of parameters of a model to several dimensionless

numbers. For two reservoirs, when their dimensionless numbers are equal, their

dimensionless-dependent variables will be the same. Based on scaling analysis, we

can translate the results obtained from one scale to another, usually from a small–

scale laboratory observation to a large–scale process.

There are two ways to obtain dimensionless groups used in scaling: dimensional

analysis (Buckingham, 1914) and inspectional analysis (Ruark, 1935). Dimensional

analysis is the analysis of the relationships between different physical parameters,

and the dimension of any physical parameters can be expressed by a combination of

basic physical dimensions which can be used for scaling analysis without honoring

the governing equation. Inspectional analysis is an extension of dimensional analy-

sis since it considers the governing equations. Inspectional analysis is based on the

underlying mathematical–physical laws expressed by partial differential equations

and boundary conditions. Inspectional analysis is preferred in petroleum related

literature, such as the work by Shook et al. (1992).

The capillary transition zone in the water-air system is located between the

water-air contact and the level where irreducible water is present. The water-air
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contact occurs at a single elevation, zaw, typically chosen such that Pc (S(zaw)) = 0,

where Pc is capillary pressure, S(zaw) is the saturation at zaw (Ahmed, 2010). The

transition zone is an interval, Sw(z) ∈ (Swi, 1−Sar), where Swi is irreducible water

saturation and Sar is residual air saturation. The transition zone is very important

for modeling, and is usually named as “capillary transition zone” – it is also defined

as the mixing zone that occurs between two phases due to the capillary pressure

generated when the fluids are immiscible.

If the dimensionless groups and independent variables are matched at different

scales, dimensionless dependent variables such as the recovery efficiencies will have

equal values to each other. Shook et al. (1992) investigated how the breakthrough

recovery efficiency changes with the buoyancy number and gravity number, but

the dimensionless mixing zone behavior in time was not discussed.

Eigestad and Larsen (2000) incorporate hysteresis for a capillary pressure and

relative permeability in a simulator and present test cases with vertical fluid flow in

a homogeneous reservoir at different injection and production rates. Although they

have shown how the transition zone changes with different production or injection

rates, there was no quantitive analysis.

1.3.6 Seismic Resolvability of Transition Zones

Seismology is the study of earthquakes and earth structures through both natural

and artificially generated seismic waves, which penetrate through formations and

return to the surface as reflections and refractions. The seismic signals received on

the surface help estimate the properties of the formation, such as the density of

rock and fluid, saturation, porosity and effective pressure.

Water saturation varies with depth in the capillary transition zone, and influ-

ences both seismic reflections and refractions. Based on the Hertz–Mindlin model,

wave velocities increase sharply when water saturation approaches one. This phe-
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nomenon can be used to locate the lower boundary of capillary transition zones.

Bachrach et al. (1998b) concluded that for monitoring water table changes during

pumping, the seismic response is controlled by both the saturation profile and the

water table.

Chapter four will focus on using first arrival time of seismic data to locate the

capillary transition zone. The seismic first arrival is the first signal detected by

the geophone. Its path depends on the spatial variation of acoustic velocity in the

vicinity of the source and geophone. Generally, acoustic rays are refracted across

interfaces where velocity changes. Because the earliest portion of the seismic record

is often dominated by source generated noise, first–arrival data are more accurate

and can be more clearly identified than reflected wave data. The first arrival of

seismic data has been used for mapping depth of landfills, the thickness of the

overburden and the topography of ground water (Yilmaz, 2001).

1.4 Objectives and Research Scope

The main objectives of this dissertation are to 1) apply the Ensemble Kalman

Filter (EnKF) to the sand tank experiment data integration and 2) demonstrate

the feasibility of integrating the seismic first arrivals into reservoir models. To

better understand the problem, sand tank transport and acoustic properties are

calculated, and scaling analysis and seismic resolvability have been done for the

capillary transition zone.

There are eight chapters in this dissertation. Chapter 2 introduces the sand

tank experiment and shows the property estimation of its flow model (for reser-

voir simulations) and acoustic model (for seismic ray tracing); these properties are

needed for building the reservoir simulation models and seismic ray tracing mod-

els. Chapter 3 mainly includes the definition of capillary transition zone length

and the results obtained from scaling analysis of the capillary transition zone; two

12



new dimensionless numbers are introduced, capillary number and dimensionless

capillary length; the scaling analysis results help us find a proper flow rate for

the sand tank experiment. Chapter 4 discusses how the capillary transition zone

affects the first arrival of seismic data and shows how to improve the reservoir

model by integrating first arrival of seismic data. Chapter 5 gives detailed descrip-

tion of Ensemble Kalman Filer method and the workflow of history matching by

using production data and first arrivals of seismic data. Chapter 6 analyzes the

production and seismic data from the first sand tank experiment and integrates

the production data into the sand tank models to get a better understanding of

EnKF behaviors. Chapter 7 introduces the experiment setup, sensor calibrations

and data collections in the second sand tank experiment and shows the result of

production data integration. Chapter 8 presents the conclusions and further work.
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Chapter 2
Sand Tank Transport and Acoustic
Properties

Although well logging, well testing and seismic data can be used to estimate for-

mation and fluid properties (Thulin et al., 2007; Li et al., 2009; Valestrand et al.,

2010; Dong, 2005), it is still hard to know what the properties of the subsurface are

exactly. Theoretical models and reservoir simulators are widely used to simulate

the fluid flow in porous media, but there are few data that can be used as a bench-

mark to verify these models and simulators. Many methods have been advanced

to optimize reservoir management, but few of them have been verified with real

case studies. The sand tank experiment is a mid-scale experiment which is flexible,

repeatable and easy to manage. The data that the “sand tank” produces can be

used to verify simulators and optimization methods (Lorenzo et al., 2013).

For the reservoir simulation, the sand tank mass transport properties are re-

quired. For seismic ray tracing, the sand tank acoustic properties are required.

This chapter mainly discusses how to calculate these properties and what values

should be used. A brief introduction to the sand tank experiment is also presented.

2.1 Sand Tank Experiment Description

A flow and seismic experiment is being conducted at the wave tank facility (Coastal

Studies Institute of Louisiana State University), here known as the “sand tank”.

The tank measures approximately 9 m × 6 m on the sides and 0.65 m in height

and can be filled up to the desired depth with water and sand. The tank contains

a slightly heterogeneous sand pack (two layers of well-sorted, medium-size grains;

Table 2.1) that acts as a reservoir. The sand pack in the tank has a trapezoidal

cross–section. The top of the trapezoid is two meters long and the bottom is six

14



TABLE 2.1. Measurement results of sand tank grain size (Smolkin, 2011). The first three
samples were collected from upper layer, and the others were collected from the lower
layer.

No. Krumbein Phi Scale Mean Diameter (mm) Sorting

Sample 1 1.39 0.38 0.47
Sample 2 1.19 0.43 0.38
Sample 3 1.55 0.35 0.47
Sample 4 1.71 0.31 0.43
Sample 5 1.71 0.31 0.43
Sample 6 1.69 0.31 0.47

meters long. The sand tank is configured with five wells, a production well and four

monitoring wells (Figure 2.1). The production well also serves as a monitoring

well. Each well is lived with a slotted PVC pipe, so that liquid can pass through

and be pumped out of the sand tank, but the sand can not. A large volume of

liquid is needed in the experiment. Water is the preferred liquid, because it is safe,

inexpensive, and has stable properties at ambient conditions (Smolkin, 2011).

The water table of the sand tank is stabilized at our designed depth (18 cm

deep below the surface of the sand) before the experiment. As the water is re-

moved from the sand tank by the production well, the water table falls, and causes

changes in the bottom hole pressure of all wells and in the seismic velocity distri-

bution affecting the seismic data collection. This experiment provides observations

of production and seismic data from a repeatable, two – phase, meter scale “un-

consolidated sand reservoir” for continuous reservoir model updating (Fig. 2.2).

Six sand samples in different parts of the sand tank were selected to calculate

the mean and standard deviation of the grain sizes. The first three were from the

upper part of sand tank, and the other three were from the lower part of sand

tank. They were analyzed by Amy Spaziani of the Coastal Studies Department at

LSU for grain sizes (Smolkin, 2011). The grain analysis result (Table 2.1) shows

that the grain sizes of lower layer are finer than the ones of upper layer and the

15



F
IG

U
R

E
2
.1

.
S

an
d

ta
n

k
ex

p
er

im
en

t
si

te
(C

h
ol

le
tt

,
20

12
).

P
re

ss
u

re
an

d
te

m
p

er
at

u
re

se
n

so
rs

ar
e

p
la

ce
d

at
th

e
b

ot
to

m
of

ea
ch

w
el

l
(A

,
B

,
C

,
D

an
d

E
).

P
re

ss
u

re
is

al
so

m
on

it
or

ed
in

th
e

op
en

–w
at

er
re

gi
on

of
th

e
w

av
e

ta
n

k
;

th
is

p
ro

v
id

es
th

e
b

ou
n

d
ar

y
co

n
d

it
io

n
at

th
e

se
d

im
en

t–
w

a
te

r
in

te
rf

ac
e.

A
fl
ow

m
et

er
m

ea
su

re
s

th
e

ra
te

fr
om

th
e

p
ro

d
u

ct
io

n
w

el
l

(C
).

A
se

is
m

ic
so

u
rc

e
(H

)
w

it
h

ei
gh

t
ac

ce
le

ro
m

et
er

re
ce

iv
er

s
(I

)
is

se
t

u
p

on
th

e
to

p
of

th
e

sa
n

d
to

p
ro

v
id

e
se

is
m

ic
d

at
a.

A
ll

d
at

a
ar

e
sa

v
ed

in
tw

o
n

ea
rb

y
co

m
p

u
te

rs
(F

an
d

G
)

an
d

th
en

fo
rw

a
rd

ed
to

h
ig

h
p

er
fo

rm
a
n

ce
co

m
p

u
te

rs
fo

r
d

at
a

p
ro

ce
ss

in
g

an
d

re
se

rv
oi

r
h

is
to

ry
m

at
ch

in
g.

16



FIGURE 2.2. Sand tank experiment production data (Chollett, 2012). The blue curve
marks production rate, and the red one marks bottom hole pressure of the production
well. All the other curves indicate the bottom hole pressures of monitor wells. Sensor
outputs are converted from volts to p, T , and q in the data acquisition software.

mean grain sizes of upper layer vary by up to 20% while the mean grain sizes of

lower layer do not vary by more than 2%. The relation between the Krumbein ϕ

scale (Krumbein and Aberdeen, 1937) and particle diameters are expressed by the

following equation:

ϕ = − log2 d. (2.1)

where ϕ is the Krumbein Phi scale and d is the diameter of the particle (units in

mm).

For the sand tank flow model, capillary pressure curve, absolute permeability

and relative permeability curve are derived based on the grain sizes.

2.2 Flow Model Properties

For the flow simulation of the sand tank experiment, we need to assign sand and

fluid properties. Some properties have constant values and are well documented,

such as viscosity, density and compressibility. Some are not, such as capillary pres-
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sures and permeabilities; their values are calculated by empirical formulas or as-

signed by using results from experiments on similar sands.

2.2.1 Capillary Pressure Curve

The capillary pressure curve is important in models for the sand tank; it is used to

calculate the initial water saturation under the assumption of equilibrium between

capillary forces and gravity. Relative permeability can be derived from capillary

pressure curve also. During production, the capillary pressure also affects the well

performance.

The experiment performed by Engle et al. (2005) used the Hostun Sand, which

has d̄g=0.355 mm (Lauer and Engel, 2005). Because the average grain size in our

experiment is similar to Hostun Sand (0.35 mm; Table 2.1), their measurement of

the capillary pressure is used in the sand tank model.

The relative permeability and water saturation can be linked by simple, concep-

tual capillary models. The van Genuchten model (Genuchten, 1980) is used here to

fit the capillary pressure data, which can be used to derive the relative permeability

curve. The van Genuchten equation is

S ′ = [1 + (αPc)n]−l , (2.2)

where α, n, l are constant values determined by curve fitting, and Pc is the capillary

pressure. S ′ is the effective saturation and it is defined by,

S ′ =
S − Swi
1− Swi

, (2.3)

where S is the water saturation and Swi is irreducible water saturation. The least–

squares fit of the Hostun sand capillary pressure with the van Genuchten equation

yields parameter estimates l = 0.65, α = 4.56 psi−1 and n = 5.69 (Fig. 2.3). The
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coefficient of determination (R2) is 0.9975 which provides an acceptable initial

specification for the flow model.

FIGURE 2.3. Measurement and fitting results of the capillary pressure curve. The black
solid curve shows the best fitting result according to the van Genuchten equation and
the blue circles indicate the experiment data. The dash lines are the 95% confidence
interval. The curve fitting is done for the saturation because the pressure goes to infinity
when saturation approaches to zero.

For a given type of rock or sediment, the capillary pressure curve changes with

varying permeability, porosity and wetting properties. The Leverett J-function is

widely used to scale capillary pressure. The Leverett J-function is a dimensionless

function describing the relation between water saturation and capillary pressure

(Leverett, 1941). Leverett originally attempted to convert all capillary pressure

data to a universal one for all k, φ, and γ, but that is generally not possible if

the rocks or sediment (e.g., sand) have different structures (i.e., are different fa-

cies). However, the Leverett J-function has proven valuable for correlating capillary

pressure data within one rock type (Collins, 1976). The Leverett J-function is

J(Sw) =
Pc(Sw)

γ cos θ

√
K

φ
. (2.4)
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where γ is surface tension and θ is the contact angle. Based on this J-function, we

can calculate the capillary pressure curve of similar porous materials with different

grain size and porosity. The Leverett J-function will be used in Chapter 3 for

scaling analysis.

For the sand tank flow model, the initial saturation distribution is determined

by the capillary pressure curve and the water table level (Fig. 2.4, the depth of

free water level is 18 cm).

2.2.2 Permeability

Permeability is the capacity of a porous medium (such as rock, sediment or soil)

to transmit a fluid. There are three types: absolute permeability, effective per-

meability and relative permeability (Ahmed, 2010). Absolute permeability is the

permeability measured at 100 percent saturation of that fluid; effective permeabil-

ity is the permeability measured at a partial saturation with that fluid; relative

permeability is the ratio of effective permeability and absolute permeability.

Absolute permeability can be calculated by the Carman–Kozeny equation (Dul-

lien, 1979),

k =
d2
gφ

3

72τ(1− φ)2 , (2.5)

where k is the absolute permeability, dg is the grain size, τ is the tortuosity of the

medium and φ is the porosity. The Carman–Kozeny equation is valid for both rock

and sediment (Sprunt et al., 1993).

According to Panda and Lake (1994), the tortuosity is between 2 and 3 in most

permeable media with a relatively large permeability, so a tortuosity of 2.5 is used

here for the sand tank model. From the Equation 2.5 we know k is inversely pro-

portional to τ and permeability increases with porosity (Figure 2.5) when porosity

is in the range of [0.2, 0.4].
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FIGURE 2.5. Absolute permeability changes with different porosities and particle diam-
eters (Assuming τ = 0.15). The intersections of the black dashed line and the other lines
show the permeability values of 0.35 mm particle diameters.

Various of models have been used for predicting the relative permeability curve,

and they can be separated into two main groups (Mualem, 1976). In the first group,

relative permeability is a power function of the effective saturation S ′. In the second

group, the capillary pressure curve is used to derive relative permeability. Since no

measured relative permeability data are available for the sand tank but a capillary

pressure curve has been obtained, and Burdine’s equations (Amyx et al., 1960) (in

the second group) are used to model relative permeability in this study.

krw =

(
Sw − Swi
1− Swi

)2
∫ S=Sw

S=0
dS/P 2

c∫ S=1

S=0
dS/P 2

c

, (2.6)

and

krg =

(
1− Sw − Srg
1− Swi − Srg

)2
∫ S=1

S=Sw
dS/P 2

c∫ S=1

S=0
dS/P 2

c

, (2.7)

where krw and krg are the relative permeability to water and to air, and Sw, Swi and

Srg are water saturation, irreducible water saturation and the lowest gas saturation

at which the gas phase does not flow.
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If van Genuchten’s equation is used to relate capillary pressure and water satu-

ration, assuming Srg = 0 and n = 2/(1− l), Burdine’s equation can be simplified

to:

krw = S ′2[1− (1− S ′1/l)l], (2.8)

and

krg = (1− S ′)2(1− S ′1/l)l. (2.9)

For the relative permeability curve used in the sand tank reservoir model (Figure

2.6), m, n and α are needed; the values of them are derived by fitting the capillary

pressure curve. Srg and Swi are 0 and 0.06 respectively, both of which are read

from the capillary curve.

FIGURE 2.6. Relative permeability curves of the sand tank model. They are calculated
by Genuchten’s equation.

2.3 Acoustic Model Properties

Ray tracing is used to simulate seismic wave propagation, which depends on the

medium velocities. Density and elastic moduli are used to calculate the velocity

which is affected by the minerals in the grains, the number of grain–to–grain con-
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tacts (coordination number), degree of compaction, Poisson’s ratio and the satura-

tion. In the sand tank experiment, all these parameters are considered as constants

except saturation. The saturation dependence may allow inference of fluid content

from seismic responses.

2.3.1 Gassmann Equation

Elastic wave velocity can be expressed as:

Vp =

√
K̄ + 4

3
Ḡ

ρ̄
, (2.10)

Vs =

√
Ḡ

ρ̄
, (2.11)

where Vp is the compressional wave, Vs is the shear wave, K̄ and Ḡ are the effective

material bulk and shear moduli respectively, and ρ̄ is its bulk density. The general

linear stress-strain relations for a porous elastic solid with fluid were derived by Biot

(1956a, 1956b). At its low–frequency limit, Biot’s theory relates saturated elastic

constants to the material properties as given by Gassmann equation (Gassmann,

1951):

Ksat

K0 −Ksat

=
Kdry

K0 −Kdry

+
Kfl

φ(K0 −Kfl)
, (2.12)

Gsat = Gdry, (2.13)

in which Gdry and Kdry are the dry framework shear and bulk moduli, respectively,

K0 is the mineral bulk modulus, Kfl is the pore fluid bulk modulus, and Gsat and

Ksat are the saturated effective bulk moduli, respectively. Some assumptions are

involved in the derivation and application of Gassmann’s equation (Wang, 2001;

Dong, 2005):

1. The rock is homogeneous and isotropic.
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2. The pores are well connected.

3. Wave frequency is low (close to zero).

4. Viscosities of the fluids are negligible.

5. There is no chemical reaction between the fluid and rock frame.

The assumptions above are generally fullfilled in the sand tank experiment.

The sands are unconsolidated and have similar grain sizes, high permeability and

porosity. The fluid used here is water, so assumptions 1, 2 and 4 are satisfied; for

assumption 3, the frequencies applied in the experiment are not low, but they are

less than the high frequency limit (Mavko et al., 1998), and in the seismic data

we collect, no dispersion is found, so here we consider assumption 3 is satisfied as

well. Assumption 5 is satisfied, because the quartz is not reactive with these fluids

at the experimental temperature and pressure. For rocks packed with water and

air, the effective bulk modulus of the pore fluid is the harmonic average of the air

bulk modulus Kair and the water bulk modulus Kwater (Bachrach et al., 1998b),

1

Kfl

=
Sw

Kwater

+
1− Sw
Kair

, (2.14)

where Sw is water saturation of the pore space.

The bulk density is related to saturation and porosity,

ρ̄ = φ [Swρwater + (1− Sw)ρair] + (1− φ)ρg. (2.15)

ρ̄ = φ [Swρwater + (1− Sw)ρair] + (1− φ)ρg. (2.16)

in which ρair and ρwater are the gas and the liquid densities, respectively, and ρg is

the grain density. By using the formulas above, seismic properties for ray tracing

can be derived from the saturation information of flow simulation results. The

following shows the steps to calculate the velocities:
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• calculate Kfl based on equation 2.14

• calculate ρ̄ based on equation 2.15

• calculate Kdry and Gdry based on Hertz-Mindlin Theory

• calculate Ksat and Gsat based on equation 2.12 and 2.13

• calculate Vp based on equation 2.10

2.3.2 Hertz-Mindlin Method

The Hertz-Mindlin method (Bachrach et al., 1998a) is widely used to calculate

elastic velocities of sand. It gives the relationships between the effective bulk and

shear moduli for a dry, dense, random pack of identical spherical grains subject to

effective stress, and includes the effect of coordination number, and the radius of

contact.

KHM =

[
z2(1− φ)2G2

18π2(1− ν)2
peff

] 1
3

, (2.17)

and

GHM =
5− 4ν

5(2− ν)

[
3z2(1− φ)2G2

2π2(1− ν)2
peff

] 1
3

, (2.18)

where KHM and GHM are the Hertz-Mindlin effective bulk modulus and shear

modulus, z is the coordination number, φ is the porosity, G is the shear modulus

of grains, ν is Poisson’s ratio and peff is the effective stress. Bachrach et al. (2000)

report Poisson’s ratio and coordination number of 0.25 and 5 from measurements

and interpretations of seismic experiments on a beach. These values will be used to

compute the initial guess of acoustic properties in the sand tank experiment, then

we will adjust these data to match our observations. Figures 2.7 and 2.8 show the

relationship between velocity and saturation based on the Hertz-Mindlin method

and the Biot-Gassmann theory, assuming that other parameters are constant. For
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low saturations, the velocity decreases as saturation increases. Above a water satu-

ration of 96 percent, the velocity begins to increase. The velocity increases sharply

when the saturation is higher than 99 percent.

FIGURE 2.7. Saturation versus velocity by Gassmann theory, Biot equation and Hertz–
Mindlin method. The velocity is calculated when the saturation is in the range between
0.06 and 0.99, and all the other parameters, such as coordination number and porosity,
are constant.

In general, the effective stress is defined as

peff = ptotal − αbppore. (2.19)

where ptotal is the total overburden pressure, αb is the Biot coefficent, and ppore is

the pore fluid pressure, assuming that hydrostatic pressure equals the overburden

pressure. For the dry sand, we use peff = (ρg − ρ̄)gZ, where Z is the depth.

The velocity increases with depth because the effective stress increases, but the

influence of effective stress on velocity decreases with depth (Figure 2.9).
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FIGURE 2.8. Saturation versus velocity calculated by Gassmann theory, Biot equation
and Hertz-Mindlin method. The velocity is calculated when the saturation is in the range
between 0.06 and 1. Compared with figure 2.7, the velocity increases rapidly after the
saturation hits 0.99. The lavender rectangle in the background indicates the saturation
range for the previous figure (Figure 2.7).

FIGURE 2.9. Velocity versus depth in dry sand by Hertz-Mindlin theory. All parameters
are constants except the effective stress on the grains, which increases with the depth.
The velocity also increases with the depth.



Chapter 3
Scaling Analysis for Transition Zones

This chapter presents scaling analysis to examine how the thicknesses of capil-

lary transition zones changes during production. Fluid is constrained to flow in a

vertical one–dimensional water–air system in a homogeneous porous media (uncon-

solidated sand), in which the models have sufficient thickness so that the capillary

transition zone is small in comparison to the reservoir. The definitions of low and

high saturation boundaries are given in this chapter. Thirty models are run for the

scaling analysis, and their results allow (1) prediction of the transition zone thick-

ness in large scale (more than 10 m thick) aquifers and (2) selection of a proper

flow rate for the sand tank experiment, which will be discussed in the last part of

this chapter.

3.1 Dimensionless Formulas

Scaling analysis reduces the number of model parameters to several dimensionless

groups, and is used to characterize similar behavior among different models when

their dimensionless groups are the same. For experiments and simulations, and

can reduce the number of runs and for an actual field study, it can avoid unit

conversion (such as, between SI and Field units; Shook et al., 1992).

Shook et al. (1992) defined the gravity number as

Ng =
kzk

max
rw ∆ρgcosα

µwuT

h

L
, (3.1)

and the capillary number as

NPc =
kmax
rw γcosθ

µwLfuT

√
φkz, (3.2)
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In the above equations, uT is superficial velocity, which equals the injection or

production rate divided by the area; h is the total reservoir thickness; L is the

reservoir length; kz is the vertical permeability; kmax
rw is the maximum relative

permeability of water; ∆ρ is the density difference between water and air or water

and oil; g is the gravitational acceleration; α is the reservoir dip angle; µw is the

water viscosity; γ is the water/air interfacial tension; θ is the contact angle; φ is

the reservoir porosity and Lf will be defined later.

Because we only consider the vertical flow in our scaling analysis, h/L is ne-

glected, and the new formula for the gravity number is:

Ng =
kzk

max
rw ∆ρg

µwuT
, (3.3)

The capillary length (dimensionless transition zone length) is defined as:

`D =
`

`C
, (3.4)

where `D is the capillary length, ` is the transition length during flow and `C is

the transition zone length for the static condition.

In unconsolidated sand, the absolute permeability can be calculated by Carman-

Kozeny equation (Eq. 2.5). Because the length of the capillary transition zone

changes with time, here the time t is introduced into the capillary number formula

by defining:

Lf = uT t, (3.5)

where t is the cumulative time since flow began. The new expressions of gravity

and capillary numbers are:

Ng =
kmax
rw ∆ρgφ3

72τµw(1− φ)2

d2
g

uT
, (3.6)

and

NPc =
kmax
rw γφ2

√
72τµw(1− φ)

dg
u2
T t
, (3.7)
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here it is assumed that kmax
rw , φ, ∆ρ, g, α and µw are constants, and their values

are provided in Table 3.1.

Because the length of capillary transition zone changes with time, a new term

tD is introduced and defined as capillary time, which equals to the reciprocal of

the capillary number:

tD =
1

NPc

. (3.8)

Capillary time will be analyzed in the following sections which will show how the

capillary lengths change with capillary time and gravity number.

3.2 Definition of the Transition Zone Boundaries

The capillary transition zone in the water–air system is defined as the interval

between the water–air contact (where Pc = 0) and the level where irreducible

water saturation is present. Both water and air may flow in the transition zone

(Ahmed, 2010).

In many reservoirs, the capillary transition zone is important for reserve estima-

tion and connate water distribution modeling. However, the boundaries of the cap-

illary transition zone are not well defined – especially for transient (time–varying)

transition zones. Larsen et al. (2000) explained that because the function of the

capillary pressure curve is asymptotic towards the irreducible water saturation, it is

difficult both theoretically and practically to define the low–saturation boundaries

of transition zone. Their research also provided a definition of the transition zone

boundaries for the oil–water system, which can be extended to a water-air system.

They specified a value ε for the derivative of saturation with pressure; the high-

est point with dS
dPc

> ε is defined as the low–saturation boundary of the capillary

transition zone. Because the high–saturation boundary (in exploration and pro-

duction, the oil–water contact or OWC) is diffuse, this boundary of the transition

zone is commonly defined by the free water level (FWL) where the capillary pres-
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sure is zero. However, this definition is inaccurate, because in a water-wet reservoir

the high–saturation boundary is above the FWL, and in an oil–wet reservoir the

high–saturation boundary is below the FWL. In this chapter, for the scaling anal-

ysis, a new definition of the low-saturation and high–saturation boundaries of the

capillary transition zone is introduced.

3.2.1 Low–Saturation Boundary

For the water–air system, gas is distributed unevenly as it enters the pore space. If

the capillary pressure increases, more gas will enter the pores. When the capillary

pressure reaches a certain level, the gas will be broadly distributed in the pore

space and large pores that dominate fluid flow will become interconnected. In

other words, most gas can flow at this saturation, which is defined as the low-

saturation boundary of transition zone. Moreover, there is a consistent way to find

this low–saturation boundary from the capillary pressure curve based on Swanson

(1981)’s paper.

In Fig 3.1, the air–liquid residual–initial saturation (CCI) curve increases almost

“linearly” first, and begins to “bend” when the initial saturation reaches 40 percent.

At nonwetting saturations less than the “bend” value, the nonwetting phase is

easily trapped because it is discontinuous (Snwr = Snwi). Trapped saturation falls

below the initial saturation for nonwetting saturations greater than the “bend”

point, because the nonwetting phase is more continous. The first “bend” is therefore

a sensible, nonarbitrary choice for the low–saturation boundary of the capillary

transition zone. Upon examination of many CCI and capillary pressure curves,

Swanson (1981) stated that the tangent point of a 45–degree line on log–log plot

(point A, Fig. 3.2) has the same saturation as the first “bend” point. According

to Swanson’s conclusion, the low–saturation boundaries can be found easily on

capillary pressure curves.
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FIGURE 3.1. The two curves shown are (1) hypothetical capillary pressure curve and
(2) CCI curve (Swanson, 1981). The blue line is a straight line through the origin with a
slope near unity, and helps locate the first bend point. The solid black circle marks the
first bend point and the saturation is defined as the low saturation bound.

3.2.2 High-Saturation Boundary

The average water saturation at the breakthrough is used as the high-saturation

boundary of the capillary transition zone. This saturation can be found by using

Welge’s method. Leverett (1941) formalized the analysis of fractional flow. For

horizontal flow, and neglecting capillary pressure, the fractional flow of water in a

gas-water system is,

fw =
1

1 + µw
µg

krg
krw

. (3.9)

where fw is the fraction flow of water; µw and µg are the water viscosity and gas

viscosity; krg and krw are the relative permeability of gas and water.

Welge (1952) showed that the average saturation after breakthrough can be

obtained by laying a tangent line on the fraction flow curve (Figure 3.3); this is a

graphical material balance.
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FIGURE 3.2. Low-saturation boundary is located by using the Swanson method. The
capillary pressure curve is drawn in log–log scale. The 45–degree line (red) is the tangent
line to the capillary pressure curve (blue) and A (black) is the point of tangency. The
saturation at point A is used as the low-saturation boundary.

3.3 Description of Flow Models

Numerical simulations are used to find the relationship between capillary length,

capillary time and gravity number. Fluid flow simulations are performed in a ver-

tical homogeneous model. In this dissertation, flow simulations are separated into

two groups—downward flow and upward flow, because different flow directions

have different effects on the capillary transition zone. Downward flow compresses

the transition zone and upward flow elongates it.

In downward flow models, air is injected at constant pressure at the top of the

model, and water is removed at a constant rate from the bottom of the model.

In upward flow models, water is injected at a constant rate at the bottom of the

model, and air is produced at constant pressure from the top of the model. Models

also have different grain sizes and flow velocities. Three different grain sizes and
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FIGURE 3.3. The high–saturation boundary is located by using the Welge method. A
tangent line is drawn from Swc (point A, connate water saturation) to the fractional flow
curve (blue line), and the saturation value at the tangent point (point B) is the water
front saturation. Extrapolation of this tangent line to fw = 1, intersects point C, which
is the average water saturation at breakthrough (Craig, 1975).

five different flow rates are considered (Eqs. 3.10 and 3.11), giving 15 upward flow

models and 15 downward flow models for this numerical experiment.

dg ∈ {0.15, 0.3, 0.6} mm, and (3.10)

uT ∈ {0.25, 0.5, 1, 2, 4} cm/min . (3.11)

These thirty models are used to confirm that different models (various dg and uT )

with the same capillary time and gravity number have the same capillary length.

In these models, permeability and capillary pressure curves are calculated based

on the grain size using the equations in Chapter 2. Other parameters, such as

viscosity will be held constant(Table 3.1).

The simulation models are initialized by assuming equilibrium between capillary

and gravitational forces and no flow. For each simulation, the transition zone length

is recorded at the end of each time step, then capillary lengths, capillary times and

gravity numbers are calculated.
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TABLE 3.1. Grid and fluid data for the simulations

Grid Count, x× y × z 1× 1× 5000
Grid Size, x× y × z 5 cm × 5 cm × 2 cm
Porosity (φ) 0.35
Water Density (ρw) 995 kg m−3

Air Density (ρg) 1.16 kg m−3

Water Viscosity (µw) 1 mPa·s
Air Viscosity (µg) 0.01 mPa·s
Standard Gravity (g) 9.8 m s−2

Dip Angle (α) 0◦

3.4 Results and Discussion

In upward flow, the capillary transition zone is compressed and moves upward.

In the downward flow, it is elongated and moves downward. At different capillary

time, the saturation profiles of the capillary transition zone are different (Figure

3.4). For both upward flow and downward flow, the capillary transition zone is

compressed or elongated at lower saturations.

Figure 3.5 shows the scaling analysis results of the capillary transition zone;

several features are noteworthy:

• For Ng > 1, `D deviates from 1 at approximately the same tD in both down-

ward and upward flow.

• For downward flow with Ng > 1, after a certain time `D > 1 is inversely re-

lated to the gravity number. Eventually,d`D
dtd

becomes constant and the tran-

sition zone grows linearly for Ng ≥ 1.

• If Ng < 1, downward flow behavior appears to change, but this may be caused

by numerical instabilities at high viscous pressure drops or by countercurrent

imbibition.

• For upward flow, behavior is similar for all gravity numbers. The capillary

length `D compresses from its static value of 1 over time, and all cases sta-
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FIGURE 3.4. Saturation profiles for upward and downward flow. The gravity numbers
in these two cases are the same, NG = 100. In the downward flow (left), the capillary
transition zone is extended and moves downward with production water and in the
upward flow (right), it is compressed and moves upward with injecting water.

bilize at some `D < 1; the transition occurs later and compression is greater

for larger gravity numbers.

In the sand tank experiment, the flow rate is less than 1 gal min−1 (6.3× 10−5

m3 s−1). Based on Equation 3.1, the gravity number of the sand tank experiment

is larger than 260, which is much higher than one. For analysis of the capillary

transition zone in the sand tank experiment, results with gravity numbers less
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FIGURE 3.5. Dimensionless transition zone length for various capillary and gravity num-
bers for upward (red) and downward flow (blue). The curves have different gravity num-
bers and the capillary length changes with the capillary time. The capillary transition
zones are compressed in upward flow and extended in the downward flow.

than ten can be neglected. Thus, Figure 3.5 can be simplified to Figure 3.6 and

some characteristics are easy to identify for the flows with Ng > 10:

• Each curve can be divided into three sections: an initial linear section (`D =

1), transition section (d`D
dtd
6= constant) and final linear section (`D = constant

or d`D
dtd

= constant). With increasing Ng, the transition section becomes

shorter and the flow enters the final linear section with smaller capillary

time.

• For the downward flows with different Ng, the final linear sections are parallel

with the same separation distances and the unit slope is close to 1.

• For the upward flows with different Ng, `D are different constants at the final

linear sections, and the compressed length (1 − `D) is nearly halved if Ng
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FIGURE 3.6. Dimensionless transition zone length for gravity numbers 10, 100, 1000 of
upward and downward flow. The water saturation distributions at the three large points
are used to calculate the velocity for seismic raytracing in Chapter 4. One case is taken
at static conditions, one in stabilized upward flow, and one in pseudostable downward
flow.

increases ten times. The curve fitting result shows the relationship between

the gravity number and the compressed length,

Ng = −0.084 ln(1− `D) + 0.838. (3.12)

the R2 is 0.9953

These scaling analysis results provide guidelines for selecting rates and times

for the sand tank experiment. First, during the experiment we can estimate the

capillary transition zone size using capillary time and gravity number without

running a numerical simulation. Second, the scaling analysis results can help us

select a suitable flow rate for the sand tank experiment. Because the sand tank

has a limited vertical extent compared to the scaling simulations and the capillary

transition zone cannot grow or compress to very large or very small values, the

39



suitable flow rate should keep the transition zone size unchanged for the duration

of the experiment. Figure 3.6 shows that the capillary transition zone size does

not change when the capillary time is less than 10−6. Using the Equations 3.7 and

3.8, the result shows that a flow rate less than 0.9 gal/min will keep the transition

zone size unchanged if the sand tank experiment runs ten hours. At last, the

scaling analysis results can be verified by sand tank experiments after setting up

the saturation meters.
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Chapter 4
Seismic Resolvability of Transition Zones

For a water–air system, the transition zone (water saturation distribution) changes

during the production of water and leads to the changes of the velocity distribution,

and ultimately affects the seismic arrival times. The effective stress also affects

the velocity distribution and seismic arrival times, because effective stress affects

the effective bulk modulus and shear modulus. In this chapter, velocity models are

calculated at different conditions and seismic rays are traced through these velocity

models. The results show that water saturations and effective stresses affect the

first arrival times of seismic data.

4.1 Velocity Models

The Hertz-Mindlin and Gassmann equations for calculating velocities have been

shown in Chapter 2, and effects of water saturation and effective stress also have

been discussed in Chapter 2. The conclusion was that velocity increases with in-

creasing effective stress where velocity decreases with increasing saturation up to

0.99, then the velocity increases sharply at water saturation larger than 0.99 (Fig-

ures 2.7 to 2.9). In fact, the water saturation and effective stress both change with

depth, and in this chapter effects of that joint variation are assessed, including

examples. Parameters used to calculate velocities are given in Table A.2.

In the velocity calculation, effective stress is derived by the formula σeff =

σob−pw (Chapter 2) to calculate the effective dry bulk modulus and shear modulus

(Eqs.2.17 and 2.18). In the sand tank experiment, because σob is much larger than

pw, σeff approximately equals to σob. Two velocity profiles are calculated by using

σeff = σob − pw and σeff = σob separately. The results (Figure 4.1) show that the
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pw is negligible in the velocity calculations for the sand tank models. The benefit is

that dry frame bulk and shear modulus do not need to be recalculated each time,

and when the number of grid blocks is large, calculation times can be reduced.

However, pw still can be considered to increase the accuracy.

FIGURE 4.1. The velocity profiles for static condition by using two different effective
stress formulas. In one case, velocity (veff) is calculated assuming σeff = σob− pw (black
curve). In the other case, velocity (vob) is calculated using σob (blue circles). The two
velocity profiles are almost the same. The red curve indicates saturation distribution
versus the depth.

The effective stress is dominated by the overburden stress, so if the capillary

transition zones are at different depths, the effective stresss and velocity profiles will

also be different. Figure 4.2 shows the velocity profiles if the same transition zones

are at different depths and implies the following conclusions: First, the overburden

stress increases the velocity in the transition zone. Secondly, if the effective stress

starts from zero (i.e., the section of interest begins at atmospheric pressure, as it

does here), a marked velocity increase will be apparent in the shallow part; if not,

the velocity profile will remain almost constant until the saturation approaches 1.

Thirdly, the saturation dominates as S → 1. The cases examined have different

effective stressses, but the velocities change sharply to similar values (1.7 km/s).
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FIGURE 4.2. The comparison of the velocity profiles at static condition with zero, 50 cm
and 100 cm of thick dry sand above transition zone. The red curve marks the saturation
profile; the green, blue and black curves mark the velocity profile at different conditions.
Velocities change sharply to 1.7 km/s when saturation changes from 0.98 to 1 in all
three conditions. When saturation is less than 0.98, the velocities are between 0.2 and
0.6 km/s.

Figure 4.3 shows the saturation and velocity profiles under 1) static conditions, 2)

condition of upward flow and 3) condition of downward flow for the given capillary

times (large points in Figure 3.6). In these three models, it is assumed that the

top of capillary transition zone is at the ground surface, so S = Swi and σeff = 0

at the top and both of them increase with depth. For these cases, there are two

parts where velocity gradient is largest: (1) near the surface (dimensionless depth

less than 0.02), because the effective stress starts from zero; and (2) in the vicinity

of the water table (dimensionless depth between 0.82 and 0.85) because the water

saturation approaches to 1. In the middle part of the transition zone (dimensionless

depth between 0.02 and 0.82), with both saturation and effective stress increasing,

their opposing effects on velocity cause the velocities to increase only slightly with

depth. For the downward flow condition, with the depth increasing and elongated

transition zones, the saturation affects velocity more than effective stress does: in
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this case, there is an interval of dimensionless depth (0.83 to 0.85) in which velocity

decreases.

(a) Saturation profiles (b) Velocity profiles

FIGURE 4.3. The saturation and velocity profiles under different conditions. The black
curves indicate a static condition, the red curves indicate the upward flow and the blue
curves indicate the downward flow. The dimensionless depth is defined by the actual
depth divided by its transition zone size. (a) Upward flow compresses the saturation
transition, and downward flow elongates the transition. (b) The velocity profiles are
calculated based on their corresponding saturation profiles.

4.2 Raytracing Results

To test the seismic resolvability of the capillary transition zone, seismic ray are

traced through the different velocity models (Figure 4.3). Because these velocity

models are only in one dimension (vertical), and the raytracing has to run in a 2-D

model, the velocities are assumed to be constant horizontally. In the raytracing,

the seismic source was placed at the left side on the surface and the receivers were

put in a line to the right side of seismic source. The raytracing software used here

is the open source program RAYINVR (Zelt, 1988) and it assumes that the wave

frequency is infinite.

Figure 4.4 shows the wave paths of raytracing results, saturation and velocity

profiles. The 2-D velocity models are discretized into several constant–velocity
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layers as indicated by the dashed horizontal lines. Because the velocity gradient is

larger near the surface and near the water table, these regions are discretized more

densely than other regions. The three raytracing results have several similarities.

Because the velocity variation is large in the region near the surface and the region

near the water table, most of the waves are refracted from these two regions.

The refracted waves from the near surface region can be received by most of the

receivers because the waves get refracted without traveling a long distance. The

refracted waves from the near water table region cannot be received by the receivers

close to source because the waves must travel a long distance with a small incidence

angle to get refracted. In the intermediate region (between near–surface region and

water table), few waves are refracted, because the velocity variation is small in this

region and only waves with large incidence angles can be refracted. A comparison

the three wave paths in Figure 4.4, if the water table is deeper, the receivers should

be placed further from the source to detect the refracted waves. This conclusion

can help with seismic experiment design.

Raytracing (Figure 4.5) computes the arrival times of the waves. If the water

table is deep enough, the first arrivals of waves are waves refracted from all regions

(near–surface region, intermediate region and water table). If the water table is

shallower, then first arrivals are mainly waves refracted from regions near the

surface and water table. There is a crossover point at which the first arrival waves

change from near–surface waves to ones that travel near the water table. This point

moves toward the seismic source when the water table moves up. With different

water table levels, the seismic first arrival times are very different.

4.3 Conclusions

In this chapter, the Hertz-Mindlin theory and Gassmann equations are used to

calculate the velocity models under different conditions (static, upward flow, and
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downward flow). The results show that: 1) there are two regions in the sand tank

model where that velocity gradient increases sharply. One is near the surface and

caused by low effective pressure; the other one is near the water table and caused

by water saturation approaching to 1. 2) Effective stress affects the velocity profile,

but its influence becomes weaker as effective stress increases.

Seismic raytracing based on velocity models for three saturation profiles (static,

upward flow, and downward flow), indicates that the water table is the main factor

affecting first arrival times by affecting the water saturation distribution. With a

shallower water table level, first arrival times will be earlier. When the water table

level is shallow, most of the seismic first arrivals are refracted wave from the regions

near the surface and water table. With the water table getting deeper, some seismic

first arrivals are refracted waves from the intermediate region. In another word, the

velocity profiles in the intermediate region also affect the seismic first arrival times.

Since the velocity is determined by water saturations and effective pressures, we

can conclude the seismic first arrival times are affected by water saturations and

effective pressures, so it is reasonable to attempt to integrate them to decrease flow

model uncertainty.
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(a) Refracted wave arrival time of the model in static condition

(b) Refracted wave arrival time of the model in upward flow condition

(c) Refracted wave arrival time of the model in downward flow condition

FIGURE 4.5. Raytracing estimates the time that the refracted waves arrive at different
receivers. In the static condition and upward flow condition, the first arrivals are the
waves refracted by the regions near surface and water table. In the downward flow con-
dition, some of first arrivals are the waves refracted by the intermediate regions because
the water table is far away from the surface. The red points are the crossover points of
shallow versus deep waves.



Chapter 5
Workflow for Integration of Sand Tank
Experimental Data via the EnKF
method
Reservoir history matching is a process to minimize the differences between ob-

served data and simulation results. In this work, the ensemble Kalman Filter

method is selected as the history matching method to integrate the production

data of sand tank experiment. For a better understanding of the EnKF method,

its advantages and formulas will be described in this chapter, and a continuous

reservoir model updating workflow to integrate the sand tank experiment data

will also be described including the extra steps for integrating seismic first arrival

data. Then, methods to include capillary pressure, relative permeability and com-

pressibility in the history matching process are discussed. Finally, unconditional

simulation is introduced to initialize the ensemble of models.

5.1 Ensemble Kalman Filter

The Ensemble Kalman Filter method is a Monte Carlo implementation based on

Bayesian theory. It is initialized by generating an ensemble of models based on

prior information. The models are typically evolved through time using numerical

methods and are updated whenever new observations are available. The updat-

ing step is based on Bayesian theory to balance deviations from the prior model

with residuals versus predicted simulation results, and obtain improved estimates

of model parameters (Oliverbook et al., 2008). The EnKF method has following

advantages compared with other methods:

• The formula of the EnKF method is straightforward and easy to apply, so

that there is no need to do complicated coding.
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• The EnKF method uses the reservoir simulator as a black box, and only

requires the output of simulator. Thus it does not need to access the reservoir

simulator code to calculate gradients for history matching.

• The EnKF method allows updating reservoir models sequentially; new data

are integrated as they are measured, and earlier data does not need to be

matched again. This feature enables continuous reservoir model updating.

• The EnKF method provides uncertainty estimates, because in each updating

step the whole ensemble of models is updated and all the models honor the

new data.

• The EnKF method can be readily parallelized, because the forward steps in

the EnKF method are independent for each member of the ensemble.

To apply the EnKF method, one must first generate an ensemble of reservoir

models which is consistent with prior knowledge of the reservoir. We denote a

state vector for each reservoir model which combines the following variables and

is expressed as,

yj = [(mj), (fj), (dj)]
T , j ∈ {1, 2, . . . , Ne} (5.1)

In the above equation, m is a row vector and denotes the static parameters, such

as permeability and porosity; f is a row vector and denotes the dynamic vari-

ables, such as saturation and pressure; d is a row vector and denotes the predicted

production observations, such as production rate and bottom hole pressure; j is

the index of ensemble members and Ne is the number of reservoir models in the

ensemble.

The EnKF method consists of two steps: the predicting step and the updating

step. In the predicting step, the reservoir simulations are run and the state vectors
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(yj) change from time i− 1 to the next time step i:

ypi,j = F (yi−1,j), (5.2)

in which F () represents running the reservoir simulations. The superscript p in-

dicates predicted results, and i is the time step. The differences between ypi,j and

yi−1,j are the residuals with respect to the dynamic variables and the predicted

production.

The second step is to update the parameter values of the ensemble members by

using,

yui,j = ypi,j +Ke(dobs,i,j −Hypi,j), (5.3)

where the superscript u indicates update. H is a measurement operator which

extracts the simulated data from the state vector and only contains 0 and 1. dobs,i,j

is a perturbed observation and Ke is the ensemble Kalman gain, both of which will

be explained in the following.

The observations dobs,i are obtained at different time steps i. Because using

the same observations for all ensemble members will cause the updated ensemble

variance to be very low (Oliver et al., 2008), a random perturbation is added:

dobs,i,j = dobs,i + ξi,j, (5.4)

where ξi,j is the observation error at time step i, and it is assumed to follow a

Gaussian distribution with expected value 〈ξi,j〉 = 0 and covariance 〈ξi,jξTi,j〉 = Ci,D.

Ki,e is the ensemble Kalman gain which can be expressed as,

Ki,e = Ci,YH
T (HCi,YH

T + Ci,D)−1, (5.5)

where Ci,Y is the covariance matrix of the state vector. It is hard to calculate Ci,Y

directly, but it can be approximated by using the ensemble,

Ci,Y ≈
1

Ne − 1

Ne∑
j=1

(ypi,j − ȳ
p
i )(y

p
i,j − ȳ

p
i )
T , (5.6)
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where ȳpi is the mean of the state vector at time step i before the updating step.

ȳpi =
1

Ne − 1

Ne∑
j=1

ypi,j. (5.7)

5.2 Workflow of Integrating Sand Tank Experiment Data

According to Eqs. 5.2 to 5.7, a complete workflow (Figure 5.1) for integrating sand

tank experiment data is formed as shown:

1. Initialize the ensemble of reservoir models. Because porosity and permeability

are the two parameters to be calibrated, all the reservoir models have the

same parameters except porosity and permeability. The porosities and grain

size distribution of each reservoir model are different, and they are generated

using unconditional simulation method (White, 2010). Next, the permeability

distribution is calculated based on the Carman-Kozeny equation. The initial

pressure and saturation distribution are calculated based on the hydrostatic

equilibrium and capillary/gravity equilibrium (Chapter 3).

2. Run the ensemble of reservoir models. Meanwhile, wait for observation data

from sensors.

3. Start the sand tank experiment. Turn on sensors and computers to collect

the experimental data (bottom–hole pressures, flow rates and seismic arrival

times) and the pump to produce the water.

4. When new experiment data are recorded by the sensors and sent to high

performance computers, recognize the data type (seismic or production data).

If the observation is seismic, an algorithm will will estimate the first arrival

time. If it is production data, no algorithm will be applied and the data will

be passed directly to the Kalman gain calculation.
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5. Extract the saturations (for computing first seismic arrivals), or well pro-

duction rates and pressures (for production data). If the data are seismic,

calculate the velocity model based on the saturation field (Chapter 3), then

run a seismic ray tracing simulation and compute the first arrival time.

6. Based on the mismatch between observations and simulated results, update

the ensemble of models by using the EnKF method and then go to step 4.

First arrival times of seismic refraction data are included in this workflow. The

approach is innovative in that it integrates the seismic data without a separate

seismic inversion, as required in some other data integration approaches (e.g., Kalla

et al., 2008; Kalla et al., 2009). The first arrivals are picked from the observed

amplitude versus time traces by an automated pick algorithm in Seismic Unix

(Center for Wave Phenomena 2012). Meanwhile, velocity models use the Hertz–

Mindlin method based on the saturations predicted by the reservoir simulation.

Next, the velocity models are used for seismic ray tracing (FAST; Zelt, 1988) to

provide the simulated first arrival times .

The observed and simulated first arrival times are sent (along with rate and

pressure observations) to the EnKF program to update the reservoir models. A

localization method is used to improve the stability of the EnKF method (Li,

2008). This method is tested on the sand tank experiment which provides pressure,

production rate, and seismic observations.

5.3 Software and Hardware Tools

• Reservoir simulator: IMEX is the reservoir simulator used in this work, and

is provided by Computer Modeling Group (CMG). IMEX is a conventional

black oil reservoir simulator and can be used to simulate the primary, sec-

ondary and enhanced or improved oil recovery processes where changing fluid
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composition and reservoir temperature have little effects on accurate model-

ing of hydrocarbon recovery processes (CMG, 2009).

• Seismic ray tracing: FAST is a program package for 2D and 3D first arrival

traveltime tomography. The velocity model and the location of source and

receivers are the input, and the output is the first arrival time (Zelt, 1988).

The velocity model represents the physical space by an array of discrete cells

and only one velocity value is assigned to each cell. The rays travel in straight

lines in each cell and are refracted or reflected at the cell’s boundary.

• History matching (EnKF) program: see Appendix B.

• All the reservoir simulations, seismic ray tracings and history matchings are

run on the supercomputers in LSU. Tezpur is a 360-node cluster with 15.3

TFlops Peak Performance running the Red Hat Enterprise Linux 4 operating

system. Each node contains two Dual Core Xeon 64-bit processors operating

at a core frequency of 2.66 GHz. Tezpur was delivered to LSU on November

3, 2006 and is open for general use to LSU users (Tezpur, 2013).

5.4 Calibration of Other Fluid Properties in the History Matching
Process

To simplify the data integration process in the sand tank experiment, only per-

meability, porosity, saturation and pressure are calibrated. Other properties such

as capillary pressure, relative permeability and compressibility are assumed to be

known. However, in some reservoirs, these properties significantly affect the simula-

tion results (Tanaka et al., 2010; Shams et al., 2013; Ghamdi and Ayala, 2010), and

some research (Reynolds et al., 2004) has been done to consider relative permeabil-

ity in reservoir history matching. Additionally, when seismic data are integrated,

some rock properties that affect the results are assumed to be known (Dong, 2005),
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such as the bulk modulus, shear modulus and coordination number. This section

will show how to incorporate the capillary pressure, relative permeability and rock

properties into the EnKF formula.

In the section 5.2, the Eq. 5.1 defines the state vector as,

yj = [(mj), (fj), (dj)]
T , j ∈ {1, 2, . . . , Ne}, (5.8)

where m is a row vector that denotes the static parameters. Generally, only per-

meability, porosity, saturation and pressure (Oliver et al., 2008) are considered, so

m is defined as,

mj = [ln(kj), φj, pj, (Sw)j], j ∈ {1, 2, . . . , Ne}, (5.9)

where ln(k) is a row vector of the logarithm of permeability; φ is a row vector

of porosity; p is a row vector of the pressure and Sw is a row vector of water

saturation; If capillary pressure, relative permeability, compressibility and rock

properties for seismic data integration are incorporated, the m term will be defined

as,

mj = [ln(kj), φj, pj, (Sw)j, (pc)j, (kr)j, (cr)j, (Rsi)j], j ∈ {1, 2, . . . , Ne}, (5.10)

where pc and kr are the row vectors for the capillary pressure curve and relative

permeability curve; cr is the rock compressibility. Rsi is a row vector for rock

properties that affect seismic data integration.

For example, in sand tank model, the capillary pressure curve is defined as,

S − Swi
1− Swi

= [1 + (αPc)
n]−l , (5.11)

where Pc is the capillary pressure; S is the water saturation and Swi is irreducible

water saturation; α, n, m are the constants used to define the curve shape. In
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the formula, it is observed that the capillary pressure curve can be calibrated by

changing the values of Swi, α, m and n, so pc in Eq. 5.10 can be defined as,

pcj = [(Swi)j, αj, lj, nj], j ∈ {1, 2, . . . , Ne}, (5.12)

Relative permeability is defined by Burdine’s equation:

krw = (
S − Swi
1− Swi

)2[1− (1− (
S − Swi
1− Swi

)1/l)(1−2/n)], (5.13)

and

krg = (1− S − Swi
1− Swi

)2(1− (
S − Swi
1− Swi

)1/l)(1−2/n). (5.14)

where l, n and Swi are the same parameters as those for capillary pressure curve,

so kr in Eq. 5.10 can be defined as,

(kr)j = [lj, nj, (Swi)j], j ∈ {1, 2, . . . , Ne}, (5.15)

Shear modulus of grains (G), Poisson’s ratio (ν) and coordination number (z)

are the rock properties that affect the seismic data integration, so Rsi is defined

as,

Rsi = [Gj, νj, zj], j ∈ {1, 2, . . . , Ne}, (5.16)

Take the Eqs. 5.12 and 5.16 into Eq. 5.10, then we have

mj = [ln(kj), φj, pj, (Sw)j, (Swi)j, αj, lj, nj, (cr)j, Gj, νj, zj], j ∈ {1, 2, . . . , Ne},

(5.17)

this mj will be used in the EnKF method which takes the capillary pressure, rela-

tive permeability and compressibility into consideration for integrating production

data, and grain’s shear modulus, Poisson’s ratio and coordination number for in-

tegrating seismic data.
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5.5 Sand Tank Model Initialization

To match the observation data of sand tank experiment, porosity and permeability

are the two parameters tuned using the EnKF method. Unconditional simulation

(White, 2010) is used here as a geostatistical technique to generate the prior poros-

ity and permeability field, which are used as initial guesses.

Unconditional simulation does not honor individual points, but only the overall

mean and variance are used. It has advantages over kriging and other linear inter-

polation techniques because they maintain the spatial variability of the property

being simulated. With the unconditional simulation any number of nonunique re-

alizations or possibilities for the spatial distribution of permeability and porosities

can be generated. Based on grain size analyses (Smolkin, 2011), the logarithm of

grain sizes are normally distributed with a mean of 1.54 and a standard deviation

of 0.2. The porosity is normally distributed with a mean of 0.35 and a standard

deviation of 0.025. The cross-correlation coefficient of grain size and porosity is

assumed to be 0 (Beard and Weyl, 1973). The variogram is exponential and the

range is assumed to be 5 grid blocks. The initial covariance function of porosity

and permeability in the three–dimensional grid system are:

Cφ(i1, i2) = σφ
2exp(−3|i1 − i2|

a1

), (5.18)

and

Cln(dg)(i1, i2) = σln(dg)
2exp(−3|i1 − i2|

a1

), (5.19)

where a1 is the range of variogram, i1 and i2 are the location vectors of two grid

blocks. The initial covariance function for ln(dg) is:

The procedures for the property model construction are:

1. construct the covariance matrix Cφ and Cln(dg) using the Eqs. 5.18 and 5.19
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2. decompose them using the Cholesky decomposition:

Cφ = LφL
T
φ, Cln(dg) = Lln(dg)L

T
ln(dg), (5.20)

3. generate the porosity field

φ = µφ − σφLφZ1, (5.21)

where µφ is the prior mean of porosity and σφ is the standard deviation. Z1

is vector of uncorrelated random number with standard normal distribution.

4. generate the grain size field

ln(dg) = µln(dg) − σln(dg)Lln(dg)(ρZ1 +
√

1− ρ2Z2). (5.22)

where µln(dg) is the prior mean of logarithm of grain size and σln(dg) is the

standard deviation. Z2 is vector of uncorrelated random number with stan-

dard normal distribution.

5. calculate the permeability using Equation 2.5.

Figure 5.2 and 5.3 are the permeability and porosity distribution of four models

picked from the forty initial models. We can see that they have different perme-

ability and porosity distributions.

Two sand tank experiments have been done. One was conducted by Shannon

Chollett (2012) and another one was conducted by Ting Sun and Jie Shen. Data

from both experiments will be used to test the EnKF method in the following two

chapters.
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(a) Permeability distribution of Model 10 (b) Permeability distribution of Model 20

(c) Permeability distribution of Model 30 (d) Permeability distribution of Model 40

FIGURE 5.2. Permeability of prior models of the second sand tank experiment. Each
model has a different permeability distribution and the prior permeability is in the range
between 17 darcy and 54 darcy.
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(a) Porosity distribution of Model 10 (b) Porosity distribution of Model 20

(c) Porosity distribution of Model 30 (d) Porosity distribution of Model 40

FIGURE 5.3. Porosity of prior models of the second sand tank experiment.Each model
has a different porosity distribution and the prior porosity is in the range between 0.32
and 0.44.



Chapter 6
Analysis and Integration of
Experimental Data with Large Errors

6.1 Introduction

Many methods have been developed for continuous reservoir model updating. How-

ever, there are few data sets to test the history matching methods. The real field

data can be used, but the collection of the field data is time–consuming and ex-

pensive and the subsurface data sets are nearly impossible to validate. Comparing

with real field, although the sand tank is small (meter scale), it is physical–rich,

highly repeatable and has various experimental configurations. So sand tank is

more suitable to test the history matching method.

In Chapter 5, EnKF method and data integration workflow have been intro-

duced. In this chapter, both the production and seismic data acquired in the first

experiment are analyzed, and integrated with the production data to test the per-

formance of the EnKF method.

6.2 First Sand Tank Experiment

The first experiment was conducted by Chollett (2012), to collect both production

data and seismic data. The sand tank was filled with water to a height of 30.5 cm

and four wells were placed at different locations to mimic field production behavior.

The well in the center was producing water and the other wells were used as the

monitoring well. The bottom–hole pressures of all the wells and the flow rate of

the water production well were collected every 5 seconds (Figure 6.1), and the

seismic data were collected for the dry tank at the beginning of the experiment

and one hour and five hours later during the experiment (Figure 6.2). The location
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of pressure and temperature sensors and the seismic shots and receivers are shown

in Figure 6.3.

FIGURE 6.1. The red curve indicates the bottom–hole pressure of the production well.
Bottom–hole pressure decreased in the beginning and increased after 1 hour production;
the blue curve indicates the flow rate of the production well, and it oscillated near 830
cm3/min; the top curves indicate the bottom–hole pressure of the monitoring wells, and
they decreased from beginning to the end, but only a little-less than 0.5 kPa (Chollett,
2012). The circles with solid fills are the integrated production data.

6.3 Production Data Integration

In the real field, the production data are collected routinely and contain informa-

tion reflecting the reservoir properties, therefore, they are the most frequently used

data for history matching.

In this section, the production data of the sand tank experiment will be inte-

grated to improve the sand tank models. Before integration, the sand tank ex-

periment data are analyzed briefly, then a primary history matching is done to

obtain a better understanding of the sand tank experiment that the bottom of the

sand tank is uneven and corrections should be added to the observed pressures of
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(a) Sand tank filled with 30.5 cm of water (b) After producing water for one hour

(c) After producing water for five hours (d) After producing water for fifteen hours

FIGURE 6.2. Seismic traces (amplitue versus time at various receiver locations) of the
sand tank at different times (Chollett 2012). The surface waves and some noise from
collection equipments are clearly presented. The red lines mark the first arrival data.

the monitoring wells. Lastly, corrections for bottom–hole pressures are applied to

obtain an improved history matching.
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FIGURE 6.3. For the first experiment, well #1, well #2 and well #4 (blue circles with
solid fill) were monitoring wells and well #3 (black circle with solid fill) was the produc-
tion well. Each well had a PT sensor placed at the bottom to record the bottom–hole
pressure and temperature. The PT sensor #5 (blue circle without fill) was placed at bot-
tom of the open water area to record the changes of boundary conditions. A pipe joined
to a pump was placed in the production well and reaches the bottom, and they were
used to produce water from well #3. The seismic shots (black triangles) and receivers
(red diamonds) were placed straight in line, and there are receivers 2-7 between receiver
1 and 8. They are not marked because of legibility.

6.3.1 Production Data Results and Analysis

Before integrating the production data, we need to understand and analyze the

experimental results (Figure 6.1). The experiment results show that the measured
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flow rate of the production well is constant (830 cm3/min) and that the bottom–

hole pressure decreases from 103 kPa to 102 kPa (between 0 and 70 minutes) and

increases from 102 kPa to 102.8 kPa (between 70 and 100 minutes). After 100

minutes, the bottom–hole pressure stays constant at 102.8 kPa. The causes of the

bottom–hole pressure changes of the production well will be discussed later in this

subsection. For the three monitoring wells, the measured bottom–hole pressures

decrease first, and then stay almost constant (104.1 kPa for well #2 and 103.8

kPa for well #1 and well #4).

In the sand tank experiment (Chollett 2012), there are three monitoring wells

and one production well. A big open water area is on one side of the sand tank,

and it is considered as a constant pressure boundary. The top of the sand tank is

open to the air, and we can also consider it as a constant pressure boundary. All

the other sides are no flow boundaries. Generally, if there is only one production

well with a constant flow rate, the bottom–hole pressure of the production well

should decrease throughout the experiment. There appears conflict between our

analysis and the experiment results of the bottom–hole pressure of the production

well.

One possible reason that the bottom–hole pressure increases during the experi-

ment is that the flowmeter used in this experiment was inaccurate (Chollett, 2012).

The relative measurement error of flowmeter is 38 percent and the true flow rate

is decreasing with time (Chollett, 2012).

Another possible reason for the unusual bottom–hole pressure is the sand migra-

tion. The sand is unconsolidated and the slits on the PCV pipe are 0.254 mm thick

(Chollett, 2012) which are close to the average grain diameter 0.35 mm (Smolkin,

2011). During production, the grains may move with the water and pack at the

wellbore or flow into the wellbore. This will cause a wellbore damage or improve-

66



ment and can be described by skin effects (Mian, 1992). A positive skin effect

indicates wellbore damage and a negative skin effect indicates wellbore improve-

ment. The following section will provide more discussions on skin effects in sand

tank experiment.

6.3.2 Primary History Matching

Generally, flow rates are used as well control parameters for field operations, since

they are much easier to regulate than the bottom–hole pressures and we are in-

terested mainly in flow rates not bottom–hole pressures. Therefore, flow rates are

used as well constraints and the bottom–hole pressures are used as observations

commonly during the reservoir history matching (Oliver et al., 2008). However,

this is not mathematically correct because the flow gauges always have larger mea-

surement errors than the pressure gauges, if they are used as well constraints, a

relatively larger error will be introduced into reservoir simulation and the sim-

ulation results will not be reliable for history matching. In the first sand tank

experiment, since the measurement errors of the flow rate (38 percent) are much

higher than the pressure errors (between 2.3 percent and 3.4 percent ), the bottom–

hole pressures of the production well are used to constrain well conditions. The

flow rates of the production well and the bottom–hole pressures of the monitoring

wells are used as observation variables in the history matching.

A comparsion of the simulation results of the initial and updated models (Figure

6.4 and 6.5) shows that:

1. The well–flow rates of the initial models have a larger range than the updated

models (Figure 6.4). After the first update narrows the spread of flow rate,

the following updates change little. Although the spread is still wide, the

range is acceptable within the large measurement errors.
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(b) Calculations of the updated models at step 2
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(c) Calculations of the updated models at step 4

FIGURE 6.4. Flow rate output from the initial and updated models. The flow rate
(thin orange line) has been smoothed (thicker orange line; R Core Team, 2012). The 95
percent confidence region (light orange) and interquartile range (medium orange) are
shown for the observations. The simulation results of sand tank models (light blue lines)
are mostly within the interquartile range of the observations, and always within the 95
percent confidence interval. Two points (shown as orange circles) are used for the history
match. Forty simulations were used.

2. The bottom–hole pressure calculated using the initial models has a larger

range. Updates improve the simulation results of the sand tank models, and

the bottom–hole pressures calculated using the updated models are much
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(c) Calculations of the updated models at step 4

FIGURE 6.5. Pressure of monitoring well No.1 output using initial and updated models.
The pressure (thin orange line) is smoothed (thicker orange line; R Core Team, 2012).
The 95 percent confidence region (light orange) and interquartile range (medium orange)
are shown for the observations. The simulation results of sand tank models (light blue
lines) are converged but deviated from the observations. Two points (shown as orange
circles) are used for the history match. Forty simulations were used.

converged and show the same trend (Figure 6.5). However, the pressure data

can not be matched, especially for the monitoring wells 1 and 4. One possible

cause is the uneven bottom of the sand tank.
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One feature appears that the calculated bottom–hole pressure at the monitoring

wells using the updated models are always higher than the experiment results and

the differences between them are almost constant (Figure 6.6). The differences are

probably caused by uneven bottom of the sand tank. So in the following history

matching process a makeup will be added to the observation data (Table 6.1).

(a) Pressure differences for monitoring well 1

(b) Pressure differences for monitoring well 2

(c) Pressure differences for monitoring well 4

FIGURE 6.6. The bottom–hole pressure differences between simulation results and the
observation. The simulation results are calculated using the updated models at step 4.
The differences are calculated every five minutes.
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TABLE 6.1. A linear regression and statistic analysis were done to the discrepancy
between calculated and observed bottom–hole pressures. Here shows the analysis result
and it indicates the discrepancies are almost stay constant which probably caused by
uneven bottom of the sand tank.

Well ID Slope P-value Average (kPa) water height (cm)

Monitoring Well 1 -0.000333 0.617 0.299 3.07
Monitoring Well 2 -0.000944 0.118 0.085 0.87
Monitoring Well 4 0.001303 0.180 0.271 2.78

6.3.3 Model Updating with Corrected Observation Data

After the analysis of primary history matching results, a better understanding of

the sand tank experiment has been obtained, then we start over the integration of

the sand tank experiment data. Here, we correct observed bottom–hole pressures

of the monitoring wells and keep updating the near wellbore permeability and

porosity (Figure 6.7).

Since the predicted flow rates using the initial models spread over a wild range,

the observation data are integrated at 20th, 40th, 60th and 80th minutes. For the

flow rate, the spreads of the Ensemble predictions are reduced after each data

integration, and almost all the predictions are lower than the measurements, after

the data integration at 160th minute, all the predictions of flow rates fall into range

of 200 to 500 cm3/min. Because the flow meter used in the experiment has a large

relative error — 38 percent, even though the predictions are much less than the

observations (around 830 cm3/min), they are still acceptable (Chollett, 2012).

For the bottom–hole pressure of the monitoring wells, the predictions are always

in an acceptable range. The data integration in the first several steps does not

improve the predictions very much (Figure 6.7). Since the predictions are spread

and deviated from the measurements at the 160th minute, the observations are

integrated and the models were updated. The predictions with updated models

are improved and close to the measurements.
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The case tests the performance of the EnKF method when some of the observa-

tion data has low quality, and the result showed that even if the observation data

has a large error ( 38% measurement errors), the EnKF method still works and

brings reasonable results.

6.4 Seismic Data Analysis

The seismic data in the sand tank are collected in both dry and wet conditions,

and the seismic first arrival times are picked, because based on the design of this

experiment they will be integrated to improve the flow models (Chapter 4). To

integrate the first arrival time, both simulated and observed first arrival time are

needed and the simulated first arrival time is obtained by running the seismic

raytracing on the velocity models.

Since the seismic first arrival times collected at different time are almost the

same (Figure 6.8), we can not use them to improve the flow models, but we can

still compare the simulated and observed first arrival times. For the dry tank case,

the simulated and observed first arrival times match (Figure 6.9) and this proved

that the velocity of sand tank can be calculated correctly by Hertz-Mindlin theory

and Gassmann equation (Chapter 2). For the wet tank, Figure 6.10 shows that the

simulated first arrival time was much earlier than the observed one at the receivers

more than 40 cm away from seismic source. It was caused by the calculated high

velocity zone near the water table since we assume that the residual air saturation

was zero and the tank was fully saturated below the water table. After we chang

the residual air saturation to 20%, the simulated and observed first arrival time

can be matched (Figure 6.11). The results show that in the first experiment the

sand tank was not fully saturated below the water table and the high velocity zone

can not be found.
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FIGURE 6.8. First arrival times selected from raw seismic data. Seismic source is located
at original point. The black circles show the first arrival times for the dry tank case. For
the wet tank, the red squares, blue diamonds and green triangles show the first arrival
time obtained at initial, 1 hour production and 5 hours production conditions separately.
The first arrival times of the dry tank are different from the ones of wet tank, because
there was no water in the dry tank and the seismic velocities are different from the ones
in the wet tank. The first arrival times of wet tank collected at different time steps are
almost the same , because the water pumped out is only a small amount compared to the
whole tank, and the water table level only changed a little bit (less than 1 cm) during
the experiment.

6.5 Conclusions

In this chapter, both the production and seismic data in the first experiment are

analyzed and the production data are integrated to improve the sand tank models.

For the production data, although the measured flow rates have large errors, EnKF

still can reduce the uncertainty of the sand tank models, and the predictions are

in the acceptable range, which means EnKF method can handle the observations

with large measurement errors. For seismic data, the simulated first arrival time

can match the observed ones for the dry tank case. When the sand tank is filled

with water, the observed first arrival time can only be matched if we consider

the existence of irreducible air which means that the sand is not fully saturated.
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FIGURE 6.9. Simulated seismic first arrival time of the dry tank. The x–axis is the
receiver position in centimeter and y–axis is first arrival time in second. The red circles
show the observed first arrival time and the black triangles show the simulated first
arrival time.

FIGURE 6.10. Simulated seismic first arrival times (triangles) of the wet tank calculated
using zero residual air saturation. The red circles show the observed first arrival times
and the black triangles show the simulated first arrival time. The simulated first arrival
times are matched for the receivers near the source (less than 40 cm), but are very
different for the receivers far away from the source (more than 40 cm).
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FIGURE 6.11. Simulated first arrival time of the wet tank calculated using 20% residual
air saturation. The red circles show the observed first arrival time and the black triangles
show the simulated first arrival time. The simulated and observed first arrival time is
matched well.

Because the sand below the water–air contact is not fully saturated and the water

level change less than 1 cm, first arrival times collected at different time steps are

almost the same and can not be used for history matching.

6.6 Recommendations

This chapter describes the first try on the sand tank experiment data integra-

tion. The analysis and results provide the several references for the subsequent

experiments:

• Since the bottom of the tank is uneven, the water height in each well should

be measured, and used for simulation result correction.

• The flow meter does not work well, since its measurement range is too big

for the flow rate in the sand tank experiment. So a new flow meter may be

needed or we need another way to measure the flow rate.
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• The first arrival of seismic data collected at different time steps are almost

the same, since the water level changes less than 1 cm from beginning to the

end. A new experiment design is needed for testing the integration of seismic

first arrivals, and it must be able to provide large water level changes.
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Chapter 7
Analysis and Integration of
Experimental Data with Small Errors

7.1 Introduction

In Chapter 6, the first sand tank experiment results are discussed and applied to

test the EnKF method. Although there are large errors in flow rate, a reasonable

result is obtained. Based on the conclusion in Chapter 6, the second sand tank

experiment is conducted and the collected data are more reliable. In the second

sand tank experiment only production data are collected and integrated to test the

performance of the EnKF method. Since the quality of data is good, production

history is easy to match.

7.2 Second Sand Tank Experiment

The second experiment is conducted by Ting Sun and Jie Shen. Five water wells

are placed at different locations to mimic field production behavior. Production

data are collected. The experiment consists of three parts: preparation, sensor

calibration and experiment.

7.2.1 Preparation

First, the sand is mixed to provide homogeneous properties (permeability and

porosity). The sand tank is shaped with a slope at one side (Figure 2.1) and the

wells are placed at five locations (Figure 7.1).

Second, the tank is filled until the water level is 50 cm high and the water is

allowed to stand about seven hours so that it can thoroughly permeate sand, and

the water levels in all the wells are recorded (Table 7.1). Because the sand tank

leaks, after another 8 hours the water level in production well drops to 42.5 cm.
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Water level changes in all wells (Table 7.1) are nearly the same; this means the

water completely permeated throughout the entire sand tank.

FIGURE 7.1. The locations of the wells in the second experiment. For the second ex-
periment, each well had a pressure and temperature (PT) sensor placed at its bottom
and the PT sensor #6 (blue circle without solid fill) is placed at the open water area to
record the changes of boundary conditions. Well # 1 (black circle with solid fill) was the
production well and all the other wells (blue circles with solid fill) are used as monitoring
wells.
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TABLE 7.1. Water level records of each well at different times.

Well ID Heada at 7 hrs, cm Head at 15 hours, cm Head change, cm

Well 1 43.1 42.5 0.6
Well 2 42.1 41.5 0.6
Well 3 43.1 42.5 0.6
Well 4 40.0 39.5 0.5
Well 5 43.6 43.0 0.6

a Datum is base of tank.

7.2.2 Sensor calibration

Data output by the pressure and temperature sensors are in units of voltage, which

must be converted to pressure (kPa). The calibration is done by using the sensors to

measure different known pressures, and finding out the linear relationship between

voltage and pressure. Here is the procedure:

• put all the sensors in a bucket vertically and make sure the end of sensors

touched the flat bottom of the bucket;

• fill the bucket with water to 5 different heights, and record data from PT

sensors in voltage;

• calculate the pressure at 5 different heights, and compare them with recorded

data, then a linear relationship can be found by using the linear least square

fit.

by using linear least square fit find out the linear relationship between voltage

data from sensors and the pressure value (Figure 7.2).

7.2.3 Experiment

The experiment uses the following procedure:

• turn on the data collection equipment and the computer, and make sure they

all work well;
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FIGURE 7.2. The calibration formula for PT censors are derived by curve fitting, assum-
ing the linear relation between the output of censors in voltage and the actual pressures.

• turn on the pump and start to pump the water out of the production well;

• measure the flow rate of production well with a graduated cylinder every 5

to 10 minutes.

The experiment lasts for 4 hours. Flow rate data (Figure 7.3) are saved to hard disk

and the voltage data from the PT sensors are converted to psi units (Figure 7.4).
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Although the pump is set up to produce at a constant rate, the measured flow rate

increases with time. One possible reason is that when we fill the tank, the water

can not displace all the air in the sand and residual air bubbles remain. As the

experiment goes on, both water and air are produced and less air is left in the sand,

so the air production rate decreases. Because the pump produces constant volume

of water and air, while the air production rate decreases, the water production rate

(flow rate) increases.

FIGURE 7.3. The flow rate data from the production well. Bubbles stuck in the flow
meter make the flow rates measured by flow meter unreliable. Here the flow rate was
derived by measuring the amount of produced water in a certain time period (between
80 and 100 seconds) using graduated cylinders, so only limited number measured points
are shown. Overall the plot shows that the flow rate increases with time.

7.3 Production Data Integration

To integrate the sand tank experiment data, 40 initial models are generated using

the unconditional simulation method, and the reservoir simulation runs with the

bottom hole pressures of the production well as the constraint. The bottom hole

pressures of the monitoring wells and the flow rate of production well are then

integrated at 20 minutes and 37 minutes. The predictions using updated models
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FIGURE 7.4. The blue curve at the bottom shows the pressure measured at the pro-
duction well, and the others represent the pressures at the monitoring wells. All the
bottom hole pressures decrease with time, and have a similar decreasing gradient. The
bottom hole pressure of the production well has a jump in the beginning when production
started.

have better results (Figuire 7.5 and 7.6) which has less spread and are more close

to the observation.

7.4 Summary

In this chapter, the second sand tank experiment has been introduced, including

preparation, data collection and calibration. Because the first experiment has pro-

vided some references, better data are collected in the second experiment. The

data of the second experiment are easy to match and explain since their quality

are much better than the first one.

History matching results prove that the EnKF method can be used for the

sand tank data integration and its updating results can improve the predictions.

Secondly, because the sand tank experiment data is the real data, not synthetic

data, the history matching results prove that the EnKF method can be used for

real data integration which means that the EnKF method also can be applied to

the real reservoir history matching.
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FIGURE 7.5. Evolution of predicted production rates for the second sand tank experi-
ment. The grey curves indicate the simulations of forty models which are generated by
using unconditional gaussian simulation and the red points indicate the measured flow
rate. The models are updated at 20 minutes and 37 minutes. For the flow rates, the first
20 minutes are predicted with the initial models, and the spread of ensemble is large.
With EnKF updating at 20 minutes, the prediction of flow rate are improved and the
spread of the ensemble is reduced significantly, and the predictions are “close” to the
measurement. At the 37th minute, the observation data are integrated again, and after
this step, the spread of the ensemble is reduced, not as much as previous updating step,
but the prediction is much closer to the measurements.
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(a) Bottom hole pressures of monitoring well 2

(b) Bottom hole pressures of monitoring well 4

FIGURE 7.6. Evolution of predicted bottom hole pressure for the second experiment
data. The grey curves are the ensemble of models and the red points are the measured
bottom hole pressures. The models are updated at 20 minutes and 37 minutes. For the
bottom hole pressures of the monitoring wells, the prediction was close to the measure-
ment result in the beginning, but the uncertainty of the predictions increases with time.
After the updating at the 20th and 37th minutes, the spreads of predicted bottom hole
pressures are reduced a little bit, since it has been already small.



Chapter 8
Conclusions and Recommendations

8.1 Conclusions

The main objective of this dissertation is to build a continuous reservoir model

updating workflow to integrate the sand tank experiment data including both

production and seismic data. Because the data are high–frequency sequential data

with noise, the EnKF method is used to efficiently integrate them.

Sand tank flow and acoustic properties are needed for the reservoir simulation

and seismic raytracing. Because the experiments are run under normal tempera-

ture and pressure condition, the property values are easy to be estimated or found

in the references. To better understand the problem, scaling analysis and seismic

resolvability analysis are done on the capillary transition zone. In the scaling anal-

ysis, two new dimensionless numbers are introduced—capillary time and capillary

length. We found that for different models, if their capillary number and gravity

number are equal, the capillary time would be the same. The scaling analysis re-

sults help us find a proper flow rate for the sand tank experiment. In the seismic

resolvability analysis, the results indicate that the water table is the main factor

affecting first arrival time. The velocity profile above the water table also affects

the first arrival time and ray path, but to a lesser degree. Based on the above

conclusion, the seismic first arrival time is determined by flow model properties,

so it is reasonable to attempt to integrate it to decrease flow model uncertainty.

Two experiments have been done to test the workflow and the EnKF method.

In the first one, both the production and seismic data are analyzed and production

data are integrated to improve the sand tank simulation models. For the produc-
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tion data, there are large errors in the measurements, which makes the data hard

to be explained or matched. The analysis and primary match are done before in-

tegrating the observations. Based on the primary match results, we have a better

understanding of the sand tank experiment, reservoir models and the observations.

A better match is obtained after applying the corrections to observations. For the

dry sand, the simulated first arrival time can match the observed ones. When the

sand tank is filled with water, the observed first arrival time can only be matched if

we consider the existence of irreducible air which means that the sand is not fully

saturated. Because the sand below the water–air contact is not fully saturated and

the water level only changes very little, first arrival times collected at different

time steps are almost the same and can not be used for history matching. This

case provides the references for the following experiment and tests performance of

the EnKF method. The history matching results demonstrate that even if the ob-

servation data has large error, the EnKF method still works and brings reasonable

results.

In the second experiment, the errors of flow rate are reduced by measuring man-

ually with a graduated cylinder. The level differences of each well location are also

measured and used to correct the observed bottom hole pressure of the monitor-

ing wells. Because the data quality are much better in the second experiment, the

observations can be matched easily.

8.2 Recommendations

The recommendations are summarized as follows:

• Regarding the experimental setup, currently the flow rate is measured man-

ually, which is an impediment to apply the automatic history matching, so

a new way to measure the flow rate automatically is needed.
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• Several saturation meters should be added to the experiment to measure the

saturations at different depth and locations. The measurements can be used

to verify the history matching results or as observation variables to integrate

with the sand tank models.

• One of the advantages of the sand tank experiment is that we can design

the experiment based on the need. The sand tank experiments applied in

this dissertation are simple, since only one production well is placed. For

future work, we can change the shape of the sand tank, add production and

injection wells, or place an artificial “fault” (a piece of wood).

• The capillary pressure and permeability data used are obtained from the

reference (Lauer and Engel, 2005). To make the simulation results more re-

liable, we can measure the true capillary pressure and relative permeability

to incorporate them into the reservoir simulation.

• The seismic first arrival times are mainly determined by water table levels,

so if we would like to integrate seismic first arrival times, there should be a

dynamic monitoring of the water table change during the experiment.
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Appendix: Capillary Pressure and
Parameters for Velocity Calculation

TABLE A.1. Capillary pressure saturation table of Hostun sand (Engle, Schanz, and
Lauer 2005). The grain size is similar to the sand tank, and these data are used for sand
tank calculations.

Saturation Capillary Pressure (psi) Capillary Pressure (kPa)

0.06 1.45 10.00
0.07 1.16 8.00
0.08 0.87 6.00
0.09 0.58 4.00
0.10 0.44 3.03
0.39 0.29 2.00
0.64 0.22 1.52
0.97 0.15 1.03
0.98 0.07 0.48
1.00 0 0

TABLE A.2. The values of the other parameters used to calculate velocities

Quantity Symbol Value Units

Bulk modulus of water Kwater 2.2× 109 Pa
Bulk modulus of air Kair 1.01× 105 Pa
Mineral bulk modulus K0 36.6× 109 Pa
Framework dry shear modulus Gdry 45.0× 109 Pa
Water density ρwater 1000 kg/m3

Air density ρair 0.18 kg/m3

Mineral density ρquartz 2650 kg/m3
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