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Abstract

Real–time reservoir management is developed to manage a shrinking labor force and rising

demand on energy supply. This dissertation seeks good strategies for real–time reservoir

management. First, two simulator–independent optimization algorithms are investigated:

ensemble–based optimization (EnOpt) and bound optimization by quadratic approximation

(BOBYQA). Multiscale regularization is applied to both to find appropriate frequencies

for well control adjustment. Second, two gathered EnKF methods are proposed to save

computational cost and reduce sampling error: gathered EnKF with a fixed gather size and

adaptively gathered EnKF. Finally, oil price uncertainty is forecasted and quantified with

three price forecasting models: conventional forecasting, bootstrap forecasting and sequential

Gaussian simulation forecasting. The relative effect of oil price and its volatility on the

optimization strategies are investigated.

A number of key findings of this dissertation are: (a) if multiscale regularization is not

used, EnOpt converges to a higher net present value (NPV) than BOBYQA—even though

BOBYQA uses second order Hessian information whereas EnOpt uses first order gradients.

BOBYQA performs comparably only if multiscale regularization is used. Multiscale regular-

ization results in a higher optimized NPV with simpler well control strategies and converges

in fewer iterations; (b) gathering observations not only reduces the sampling errors but also

saves significant amount of computational cost. In addition, adaptively gathered EnKF is

superior to gathered EnKF with a fixed gather size when the prior ensemble mean is not

near the truth; (c) it is shown that a good oil price forecasting model can improve NPV by

more than four percent, and (d) instability in oil prices also causes fluctuation in optimized

well controls.

xi



Chapter 1
Introduction

A good understanding of reservoir management and its elements is important to the proper

development and exploration of oil and gas reservoirs. This chapter gives a brief introduction

to reservoir management and its major components, points out some problems existing in

current real–time reservoir management and the approaches used in this study to solve these

problems.

1.1 Introduction to reservoir management

Definition. Reservoir management has been defined by many authors. Fowler et al. (1996)

summarized reservoir management as “a sequence of resource–deployment decisions made

to maintain optimum economic recovery of petroleum.” Gringarten (1998) defined reservoir

management as “the application of available technology and knowledge to a reservoir system

in order to control operations and maximize economic recovery within given management

environment. ” Thakur (1996) described reservoir management is to “rely on use of financial,

technological, and human resources, while minimizing capital investments and operating

expenses to maximize economic recovery of oil and gas from a reservoir.” Overall, the whole

purpose of reservoir management is to help oil companies make the best decisions to meet

specific objective using all the available resources.

Process. The process of reservoir management generally begins with reservoir characteri-

zation or reservoir modeling. It requires construction of a single “most probable” simulation

model, or an ensemble of simulation models to represent or estimate the real reservoir by in-

tegrating both static and dynamic knowledge about the reservoir. Once the reservoir model

is constructed, verification is needed to make sure that the reservoir model is consistent

with all the available information and can reproduce all the data used in characterization

1



process, including seismic, logs, well tests, and production data (Gringarten 1998). After

the simulation model(s) are developed, they are used as input for subsequent development

planning or decision making such as defining well counts, types, locations and production

strategies. Once the field is developed and goes on production, data (such as geomechanics,

traces, production logs, well tests data) are then collected and analyzed. These data are used

as the feedback from the reservoir for calibrating the simulation models and revising plans

and strategies. It is clear that reservoir management is an iterative process which must be

repeated when new information is available.

Challenges. There has been a growing demand on energy due to the growing affluence

as well as growing population. Because the “easy” oil fields are gone and existing fields

are becoming more and more depleted, oil companies are starting to invest in complex

and difficult fields. With the limited availability of finances and changing business needs, it

becomes even harder to continue producing the existing field economically. Another challenge

oil industry is facing is the shrinking labor force. The average oil worker is older than 50,

and replacing the retirees becomes difficult as fewer and fewer people want to work in boom-

and-bust business (Steinhubl and Klimchuk 2008). To manage the rising oil demand and

shrinking labor force, integrating new technologies and strategies into conventional reservoir

management is necessary.

1.2 Reservoir management in real time

To meet the rising demand on oil energy and manage the shirking labor force, the oil industry

is making great effort to build the required infrastructure for managing the reservoir in real

time. For example, with the implementation of permanent downhole gauges, information on

pressure, temperature and other field conditions which were measured in days and months

now are measured in seconds and minutes. Installation of inflow control valves on intelligent

wells also provides flexibility to control each well segment independently—enabling improved

recovery under complex reservoir conditions. Other examples include building onshore op-
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eration rooms to remotely support drilling or production work process in realtime. Such

infrastructure applications coupled with the advances in computers, internet and other in-

formation technologies make the real–time reservoir management within reach (Verma and

Cline 2005).

The real–time reservoir management concept is also referred as closed–loop reservoir man-

agement, smart field, digital oil field, e-field, i-field and field of the future. Here, we use an

E&P company’s1 smart field philosophy to illustrate the real time reservoir management

concept. As it is shown in Fig. 1.1, the process of real–time reservoir management is a con-

tinuous cycle to optimize the the economic performance of the oil and gas field. It mainly

integrates the following steps: (1) high frequency data are measured using downhole gauges

and sensors and transmitted to the engineering office; (2) the measured data are used to up-

date reservoir simulation models, which are then used to generate options for short and long

term actions; (3) people from different disciplines are gathered to evaluate the options, and

the decisions, and (4) the final decisions are implemented through intelligent well system.

The intelligent well technology provides the capability to remotely monitor and manage mul-

tiple production zones independently through inflow control valves (ICV), reducing the cost

of well interventions, accelerating the production and reducing the injection and production

of water.

Compared with conventional reservoir management, real–time reservoir management has

advantages such as (1) it can prevent hazardous outcomes and improve safely because prob-

lems can be identified and responded every quickly, and the remote sensors enable the oper-

ators to operate from a distance; (2) it helps the oil industry to manage the shrinking labor

force by transforming oil operations from “labor intensive” to “technology driven” (Steinhubl

and Klimchuk 2008); (3) most of all, the continuous reservoir model updating and optimiza-

tion process is expected to improve the oil recovery and increase profit on developing complex

reservoirs. Overall, real–time reservoir management is able to accelerate production through

1Shell Exploration & Technology Co.
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Figure 1.1: Shell’s smart field philosophy includes the measure-model-decide-control loop
(Dolle et al. 2006). First, high frequency data are measured using downhole gauges and
sensors and transmitted to the engineering office; second, the measured data are used to
update reservoir simulation models, which are then used to generate options for short and
long term actions; third, people from different disciplines are gathered to evaluate the options,
and the decisions, and, fourth, the final decisions are implemented through intelligent well
system.

intelligent tools such as sensors, hardware, communication IT and software while reducing

production costs and human resource requirements.

1.3 Computer assisted history matching

As mentioned earlier, the ultimate goal of reservoir management is to enable oil compa-

nies make the best decisions so that they can produce oil and gas reservoir effectively and

profitability. The ability to make the best decisions relies predicting the consequence of im-

plementing these decisions. The predication process is usually performed by running the

plausible, estimated simulation model(s) on reservoir simulator. Thus, a good selection of

reasonable simulation model(s) is one of the key components for a successful reservoir man-

agement. To better represent the actual reservoir, the estimated model(s) must be consistent

with all available information. If not, the model(s) should be adjusted until it closely repro-
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duces the past behavior of the reservoir. This process is defined as history matching. History

matching can be carried out either manually or automatically on computers.

Traditionally, history matching has been done manually by adjusting model–input param-

eters until a good match of production data is obtained. Parameters commonly adjusted

includes permeability, porosity, relatively permeability end points, water oil contact, fluids’

viscosity. Manual history matching is a trial-and-error process. With the adjusted parame-

ters high interacting with each other, it can be very time consuming and difficult especially

when the reservoir model is complex.

Alternatively, computer–assisted history matching is done under the assistance of a com-

puter program, combining with reservoir engineers’ experience and skills. The computer

assisted history matching does save significant amount of man power, especially with the

increasing computational power and decreasing hardware cost. Multiple simulation jobs can

be carried out simultaneously using multiple machines. Even a single job can be executed

in parallel, for greater speed, using high performing computers. Thus the reservoir engineer

has more time to analyze input and output data, interpret simulation results, and make

necessary changes to the history match process (Maschio and Schiozer 2005; Yang, Nghiem,

and Card 2007).

Reservoir history matching is an inverse problem with very large number of unknown pa-

rameters. History matching is typically an underdetermined inversion of a nonlinear system;

such inverses are nonunique, which means that different combinations of model parameter

values may yield nearly identical match to historical data. When it is done manually, only a

few parameters can be adjusted, and due to the time limitation, the manual history matching

usually leads only to a single matched model (Maschio and Schiozer 2005; Yang, Nghiem,

and Card 2007). Unlike manual history matching, computer assisted history matching can

consider a large number of unknowns by using efficient numerical optimization algorithms.

In addition, reservoir model uncertainty can be better captured with computer assisted his-

tory matching. Commonly, reservoir model uncertainty is quantified using a Monte Carlo
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approach, through which multiple realizations are sampled based on the prior knowledge of

the reservoir model. The uncertainties are then reduced by conditioning the prior model to

reservoir dynamic data such as production data and interpreted 4D seismic data.

In real–time reservoir management, the history matching process is repeated whenever new

data are available to keep the reservoir model up–to–data. Therefore, this is also referred as

“continuous reservoir model updating” in some publications. After the reservoir models are

updated, they are then used for the optimization of economic life–cycle performance. This

type of model–based life–cycle optimization is also referred to as “model–based production

optimization” which is further introduced in next section.

1.4 Model–based production optimization

Production optimization aims to maximize the economic performance of a reservoir by mak-

ing the best development decisions regarding the well count, well type, well trajectory, well

location, well injection and production schedules and so on. Traditionally, this has been done

by reservoir engineers using trail–and–error method. But in real–time reservoir management,

this is done by combining numerical reservoir simulator with some optimization algorithms.

The optimization algorithms are used to maximize or minimize some objective function g(x)

by manipulating some parameter x. The parameters x could be the well coordinates of each

well; it can also be a set of well controls such as bottom hole pressures, flow rates of each

well, etc. For a smart well system, well control valves allow control of the flow of each zone

layer independently; therefore x can also be the bottom hole pressure or flow rate of each

perforation layer. The objective function g(x) to be maximized includes net present value

of the reservoir, the cumulative oil production rate, the reservoir sweep efficiency, etc. The

objective function is evaluated by running reservoir simulators using the reservoir simula-

tion models obtained from history matching. The well count and well location optimization

problems are more complicated than well control optimization problems because, unlike well

control parameters which can be treated as real numbers, well count and location are usu-
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ally treated as integral optimization problems. The well location optimization is treated as

integral optimization because, with the standard commercial simulator, it is not possible to

simulate off–center wells at arbitrary location accurately, resulting in discontinuity of the

search space.

Because there are always uncertainties associated with the reservoir model parameters,

an ensemble of reservoir simulation models is commonly used to describe the uncertainty.

To incorporate reservoir model uncertainty, production optimization is done over multiple

realizations. It is generally accepted that optimizing the objective function under reservoir

model uncertainty results in better, more robust, decision. When uncertainty is quantified,

a range of possible outcomes of uncertain events are considered and assigned probabilities

to generate a probability-density function of the objective functions.

1.5 Two optimization problems

As explained above, real–time reservoir management contains two key components. One is

continuous reservoir model updating using the production measurements. The other is life–

cycle optimization based on the latest uncertain reservoir models. In fact, both of these

components are ill–posed optimal problems with nonunique solutions. The reservoir model

updating minimizes the objective function composed of the mismatch between prior model

parameters and updated reservoir model parameters, plus the mismatch between model

predicting data and the measured data. The production optimization maximizes the objective

function composed of profitability of the hydrocarbon reservoir.

The common used optimization methods fall into two categories: nongradient–based and

gradient–based optimizations. For nongradient–based optimization, algorithms such as sim-

ulated annealing and the genetic algorithm have been investigated for many years (Quenes

et al. 1993; Quenes, Bhagavan, and Travis 1994; Huang and Kelkar 1994; Bukhamsin, Farshi,

and Aziz 2010). Nongradient–based methods are simulator–independent and therefore easy

to couple with commercial softwares. Moreover, most of them are often posed as global op-
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timization while gradient based methods tend to get stuck in local optimum. However, for

large–scale problems, non–gradient methods converge slowly and are therefore expensive.

For gradient–based optimization, the gradient of the objective function is needed to design

the optimization variables. The adjoint method of sensitivity analysis is commonly used to

compute the gradient of the objective function with respect to the optimization variables

(Gao, Rajeswaran, and Nakagawa 2007; Sarma 2006; Chen et al. 2010). Because it converges

fast and the computational cost is nearly independent of the number of unknown parame-

ters (the number of adjoins is independent of the number of unknowns), it has been widely

used in history matching and production optimization. However, this method requires de-

tailed knowledge of the reservoir simulator and the cost of gradient computations (especially

Hessians) may be high. Alternatively, ensemble–based method generates an ensemble of per-

turbed variables to approximate the gradient, which is simulator–independent and may be

of acceptably low computational cost (Chen 2008). However, the accuracy of this method

strongly depends on the nonlinearity of the problems and the size of ensemble. Developing

a cost efficient algorithm for simultaneous production optimization under reservoir model

uncertainty is necessary.

1.6 Research objective

As field application of true real–time reservoir management is in its infancy, challenges

remain on finding efficient and cost–effective methods to accelerate routine field application

of real–time reservoir management. This dissertation explores the possible solutions to the

following questions.

• What is the optimal frequency for updating of reservoir models and pro-

duction strategies?

The value of high frequency data streams can only be realized if we are able to use them

efficiently and accurately to update the reservoir model and to make crucial reservoir
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engineering decisions. However, transmission, archiving and integration of high fre-

quency data streams received from permanent downhole gauges remains a challenge.

Too–frequent model updating and production optimization will pose significant com-

putational burden to the system. On the other hand, excessively low–frequency model

updating and production optimization can not keep the reservoir management up–to–

date and therefore may not help with real–time decision making.

• What is the optimal frequency for adjusting production controls?

Similar problems exist in finding the control adjustment frequency; adjusting well con-

trols too frequently imposes unrealistic control burdens on operations, increasing well

management cost. Moreover, high–frequency control adjustment increases the risk of

optimization algorithms being trapped at local optima as the problem is more under-

determined. On the other hand, excessively low–frequency control adjustment may not

truly optimize oil recovery.

• How does oil price uncertainty impact on the optimal production con-

trols?

Although the optimal control strategy is strongly depend on the unknown reservoir

properties, uncertainty in oil price will certainly also play a role on decision making.

The oil price uncertainty is always significant and it can not be eliminated, an accurate

forecast on the volatility of future oil price is as important as reservoir characteriza-

tion and reserves determinations because it enable the oil companies to make better

decisions and allocate their capital efficiently.

1.7 Dissertation outline

Chen (2008) introduced and ensemble–based closed–loop optimization method which com-

bines ensemble based data assimilation methods, including Ensemble Kalman Filter (EnKF)

and Ensemble Random Maximum Likelihood (EnRML) with Ensemble–based Optimization
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(EnOpt) for production optimization. Her results showed that ensemble–based closed–loop

optimization is suitable for large scale problems because the use of ensemble greatly reduced

the dimensionality of both data assimilation and production optimization.

The ensemble–based methods are the focus of this dissertation. Modifications and improve-

ments are made to address the problems listed in section 1.6. This dissertation contains 8

chapters. A brief summary of each chapter is given as following.

Chapter 2 compares two simulator–independent optimization algorithms on single reservoir

model optimization: the ensemble based optimization (EnOpt) and bound optimization by

quadratic approximation (BOBYQA). The application of multiscale regularization to find

the best well control frequency is also tested on these two methods. Mutiscale regularization

starts optimization from the coarsest control scale (and thus, with the fewest number of

control parameters) and refines successively using the coarse–scale solution as the initial

guess of controls for next finer scale optimization. The refining process is terminated when

no further improvement on the objective function is obtained. Multiscale regularization aims

to avoid too frequent control adjustment by adding well control parameters hierarchically.

In a synthetic case study, if multiscale regularization is not used, then EnOpt converges to

a higher net value of production than BOBYQA even though BOBYQA uses second order

Hessian information (EnOpt uses first order gradients). BOBYQA performes comparably

only if multiscale regularization is used. After multiscale regularization, both methods obtain

net value of production (NVP) that equal or exceed unregularized optimization, with simpler

well control strategies and convergence in fewer iterations.

Chapter 3 reviews ensemble Kalman filter as a data assimilation approach and proposes

gathering observations as a way to improve the stability and save computational cost of

standard EnKF. In gathered EnKF method, if there is no significant change in observa-

tions compared to previous ensemble predictions, the measurements are stored instead of

assimilated. Model updating is done only if the gathered data volume exceeds a specified

threshold, or if the observations diverge from prior ensemble predictions significantly. Due
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to the finite size of ensemble, sampling errors are introduced to the Kalman gain both from

prior ensemble covariance and the perturbed observation, resulting in a negative bias of esti-

mated ensemble covariance. In this chapter, we theoretically prove that the sampling errors

introduced from the prior ensemble have the same effect for gathered and standard EnKF.

However, by gathering the observations less errors are introduced from the perturbed obser-

vation resulting in a better estimated of the ensemble covariance. More over, gathered EnKF

also reduces the computational costs of simulation restarts, file transfers and reading and

writing required at each EnKF assimilation step. This method is first tested on a scalar case

and then on a 2D synthetic reservoir history matching case. Both cases show that gathered

EnKF is more efficient and stable than standard EnKF.

Only 2D synthetic reservoir models are used in chapter 2 and chapter 3 to demonstrate

how the proposed methods work. A more realistic, complex reservoir model is needed for

the further testaments. The Brugge “field case is a 3D synthetic complex reservoir field

made available to participants by Netherlands Organization for Applied Scientific Research

(TNO) in the preparation for SPE Applied Technology Workshop (ATW) (Chen and Oliver

2010; Peters et al. 2009), a benchmark project for closed–loop reservoir management, held

in Brugge in June 2008. Since the Brugge field is the most “realistic”, complex, 3D synthetic

case that has been widely used for comparative study of alternative methods for reservoir

history matching and model–based production optimization; it is also chosen as illustrative

example in this dissertation. The detailed description of the Brugge field is given in chapter

4.

Chapter 5 focuses on improving the gathered EnKF proposed in chapter 3 to an adaptively

gathered EnKF. In fact, as it is shown in chapter 5 through the Brugge field example, the

gathered EnKF with a fixed gather size does not always works better than the standard

EnKF. If the initial ensemble mean is not very close to the truth, the gathered EnKF

with a large gather size may result in a slower convergence than the standard EnKF. If the

mean is not close to the truth, neither would be the estimated covariance from the ensemble
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close to the true covariance due to the nonlinear characteristic of the dynamic model. In

such case, recursive updates keep the model on track and close to the true solution and

therefore converge more quickly. To overcome this problem, an adaptively gathered EnKF

is proposed in chapter 5. The method starts with a small gather size. Then, if the mean

ensemble prediction is converging on the observations after assimilation, the gather size is

doubled until it reaches a specified maximum interval. If the mean ensemble prediction is

diverging from the observations, we reduce our gather size by half. The adaptively gathered

EnKF can also be used to determine the optimal frequency for updating reservoir model and

optimizing the production controls. It is reasonable to update the model more frequently at

the beginning (when the mean is not near the truth and the uncertainty is relatively large).

When the mean is near the truth and the uncertainty is small, corrections to the prior

model are smaller, and high–frequency model updating may destroy ensemble diversity and

cause filter divergence. Therefore, a larger time interval can be used for model updating

and production optimization to save computational cost. The adaptively gathered EnKF is

tested on the Brugge field. Results shows it works better than standard EnKF and gathered

EnKF with a fixed gather size in terms of time saving and convergence.

Chapter 6 applies the proposed methods on the closed–loop frame work. In addition, three

price forecasting models are used to quantify the price uncertainty: conventional forecast-

ing, sequential Gaussian simulation and bootstrap sampling methods. Price uncertainty is

included into the closed–loop frame work and tested on Brugge field. This allows posing

questions about relations among price uncertainty and volatility, reservoir uncertainty, and

control strategy, including

• What are the relative effects of price and technical uncertainty on optimization and

value?

• As the level of price volatility and/or imposed trends change, how does the optimized

control strategy change?
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• How does the discount rate affect the optimized control strategies?

All of these are addressed in Chapter 6.

Chapter 7 discusses some topics of particular interest for future study, including using

Karhunen-Loeve expansion to save the computational cost of Kalman gain in gathered

EnKF, optimizing well control with an adaptive multiscale regularization method in which

well controls are adjusted with a changing time interval, and extending ensemble–based

methods for well location optimization by integrating off–center well simulation to standard

simulator.

Chapter 8 summarizes the whole dissertation.
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Chapter 2
Using Mutiscale Regularization to Obtain

Realistic Optimal Control Strategies
2

2.1 Introduction

The benefits of smart wells have been demonstrated in theoretical studies and practical

applications (Brouwer et al. 2001; Jansen et al. 2002; Ramakrishnan 2007; van Essen et al.

2009; Meshioye et al. 2010; van Essen et al. 2010). These benefits can summarized as two

types: (1) for highly heterogeneous reservoirs, smart wells can help avoid early water or

gas breakthrough from high permeability zones, and (2) for multilateral wells (or monobore

wells with multiple segments), smart wells provide flexibility to control each branch (or

segment) of the well independently. Smart wells can do this because, unlike conventional

wells, smart wells have permanent downhole sensors and controls. Those sensors provide

realtime rates, pressures and temperatures; the control valves allow control of flow in each

reservoir interval. The data feedback and inflow control valves (ICVs) are the key components

of smart well systems. Based on the feedback, the downhole control valves are adjusted to

suppress unwanted fluid production and increase oil recovery.

Optimization algorithms can be used to find the optimum valve settings. These methods

can be categorized into two classes, gradient–free methods and gradient methods. Gradient–

free methods do not rely on gradient information to guide the optimization search. Their

primary benefits are their potential to find the global optimum and the ability to han-

dle discrete design variables. Because they are capable of discrete parameter optimization,

gradient–free methods are also used in well placement optimization (Onwunalu and Durlof-

sky 2010). A considerable disadvantage of gradient–free methods is that they require more

function evaluations than gradient methods and converge slowly. For instance, Isebor (2009)

compared gradient–free methods (including a genetic algorithm, general pattern search, and

2 Portions of this chapter appeared in 2011 SPE conference paper no. 142043.
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Hooke-Jeeves direct search) with a gradient method (sequential quadratic programming) for

constrained production optimization. Isebor found that the gradient–free methods tend to

be about an order of magnitude slower than the gradient method with adjoint–computed

gradients. To improve the efficiency of gradient–free methods, one should combine them with

a local optimization method. Harding, Radcliffe, and King (1996) showed the combination

of a genetic algorithm with sequential quadratic programming for local search outperforms

the “pure” genetic algorithm. This was also observed by Isebor (2009).

In contrast, gradient methods take advantage of the gradient information to guide their

search. Despite their inability to guarantee a global optimum, these methods converge much

faster than gradient–free optimization. Common methods of this type used in production op-

timization are steepest ascent (Chen, Oliver, and Zhang 2009), conjugate gradient (Chaudhri

et al. 2009), and sequential quadratic programming (Isebor 2009).

For gradient optimization, two approaches can be used to compute the gradients of objec-

tive function with respect to well control variables. One approach is to obtain the gradients

using the adjoint equation. The other approach is to approximate the gradients using methods

such as finite difference perturbation, simultaneous perturbation stochastic approximation,

or EnOpt. Among all these methods, the adjoint method is the most robust and therefore

the most efficient. For example, Chen et al. (2010) found that the adjoint method converges

in less than 50 simulation runs if it was used to optimize production for a Brugge case

with about 3600 well control variables. However, few commercial simulators provide adjoint

gradients, and computing them requires detailed knowledge of the underlying simulator for-

mulation. Unlike the adjoint method, approximate gradient methods can treat the simulator

as a “black box.” That is, it does not require the explicit knowledge of the dynamic fluid

flow equations used in simulator source code. However, extra function evaluations — here,

simulation runs — are required to approximate the gradients.

In this chapter, two simulator independent optimization algorithms were investigated: en-

semble based optimization (EnOpt) and bound optimization by quadratic approximation
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(BOBYQA). Multiscale regularization was applied to both to find appropriate frequencies

for well control adjustment. Here, the properties of the reservoir simulation model are as-

sumed to be known deterministically. Methods to incorporate uncertainty is discussed in

subsequent chapters.

2.2 Optimization formulation and methods

2.2.1 Objective function.

As it is mentioned in the introduction chapter, the ultimate goal of reservoir management is

to optimize some cost function g(x) of the reservoir by adjusting the well control vectors x

including, for example, well rates and bottom hole pressures (BHPs). The cost function can

be the net present value (NPV) of the reservoir, the ultimate recovery and sweep efficiency,

etc. The net present value is more common than others to be chosen as the the objective

function (Wang, Li, and Reynolds 2009; Chen, Oliver, and Zhang 2009; Chaudhri et al.

2009). Assuming no cost for water injection, following Chaudhri et al. (2009), the formula

for calculating NPV of a single two–phase (oil/water) reservoir model is given as:

g(x) =
Nt�

i=1

PoQoi(x)− PwQwi(x)

(1 + rτ )
ti
τ

, (2.1)

where, x is the Nx–long vector of control variables, and Nt is the number of control time

steps; Po and Pw are oil price and water disposal cost, respectively. The increments of oil

and water production over time step i are Qoi and Qwi; rτ is the discount rate for a time

interval τ , and ti is cumulative time at time step i. The objective function g(x) gives NPV

as a function of the well controls x. If the discount rate is set to zero, the denominator in

Eq. 2.1 is unity and the objective function can be simplified to

g(x) =
Nt�

i=1

[PoQoi(x)− PwQwi(x)] . (2.2)

The objective function g(x) in Eq. 2.2 is the net value of production (NVP), as no discount

factor is considered.
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2.2.2 Ensemble optimization.

EnOpt was first introduced in production optimization by Nwaozo (2006) and further inves-

tigated by Chen, Oliver, and Zhang (2009), Wang, Li, and Reynolds (2009), and Chaudhri

et al. (2009). EnOpt can be applied for the optimization of a large number of well control

settings. In addition, EnOpt can account for uncertain reservoir models without increasing

the number of optimization parameters if an ensemble of reservoir models is available (as for

EnKF history matches).

In Nwaozo (2006) and Wang, Li, and Reynolds (2009), the initial mean value of well

controls of each well was randomly sampled from a uniform distribution with specified lower

and upper bounds.The mean value was then perturbed to generate multiple realizations.

With the mean value of each well available, the well control distribution of each well as a

function of time was then generated by sampling a Gaussian distribution using the prescribed

mean and a covariance function with a practical range of a. The covariance function is defined

as:

Ci,j = σ2exp(
−3|i− j|

a
), (2.3)

where σ is the standard deviation of the well control vector; a is the correlation range; i and

j are the control step indices.

EnOpt (Chen, Oliver, and Zhang 2009) uses the steepest ascent method to iteratively

update the well control vector x, and at each iteration uses the perturbed ensemble to

approximate the gradients. At iteration l, after the Ne samples of well control vectors xl,j are

randomly generated following the Gaussian distribution described in Eq. 2.3,Ne simulations

are run, and then the net value of production g(xl,j) is evaluated for all j ∈ {1 . . . Ne}

using Eq. 2.2; Ne is the number of models in the ensemble. Following Chen, Oliver, and

Zhang (2009), the gradients of objective function NVP with respect to well controls can be

approximated as

GT
l ≈ C−1

xl
Cxl,g(xl), (2.4)
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with

Cxl,g(xl) =
1

Ne − 1

Ne�

j=1

(xl,j − x̄l)(g(xl,j)− ḡ(xl)), (2.5)

and

Cxl
=

1

Ne − 1

Ne�

i,j=1

(xl,i − x̄l)(xl,j − x̄l)
T . (2.6)

In Eq. 2.4, Gl is the vector of the gradients at iteration l. Cxl
is the covariance matrix of the

well control variables xl. Cxl,g(xl) is the cross–covariance between well control variables xl,j

and objective function g(xl,j). In Eq. 2.5 and Eq. 2.6, x̄l and ḡ(xl) indicate the mean values

of well controls and the objective function for the ensemble at iteration l. They are

x̄l =
1

Ne

Ne�

j=1

xl,j,

and

ḡ(xl) =
1

Ne

Ne�

j=1

g(xl,j).

The steepest ascent equation for updating control variables x is

xl+1 = xl +
1

αl
Cxl

Cxl
GT

l , (2.7)

where αl is a tuning parameter to determine step size in the search direction at iteration l.

Because the cross–covariance estimated using a perturbed ensemble may suffer from spurious

correlation when the ensemble size is not sufficiently large, Chen, Oliver, and Zhang (2009)

suggest using a matrix product of the covariance matrix of the control variables Rxl
= Cxl

Cxl

for localization and smoothing. After substituting Eq. 2.4 to Eq. 2.7, the steepest ascent

method used for ensemble optimization becomes

xl+1 = xl +
1

αl
Cxl

Cxl,g(xl).

2.2.3 Trust–region optimization.

BOBYQA is a package of Fortran subroutines written by Powell (2009). It is an iterative

algorithm for solving bound–constrained problems in which the objective function can be
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treated as a “black box” which evolves the reservoir state forward in time, and therefore these

methods do not require modifications in the simulator to evaluate the objective function and

its derivatives.The BOBYQA method (Powell 2009) applies a trust region optimization algo-

rithm for bound–constrained nonlinear optimization. This method does not require derivative

information for the objective function, nor does it explicitly approximate the derivatives. In-

stead, at each iteration it builds a local quadratic model Q(x) of the objective function g(x)

by multivariate interpolation in combination with trust region techniques. The trust region is

referred as a subset of the region of the objective function to be optimized using the approx-

imate quadratic model. The region can either be expanded or contracted depending on the

quality of the approximation of the quadratic function Q(x) to g(x). If the approximation is

good, then the region is expanded; otherwise, the region is contracted.

The quadratic model employs the form,

Q(x + d) = Q(x) + dT �Q(x) +
1

2
dT �2 Q(x)d,

which is solved by conditioning

Q(xi) = g(xi), ∀i ∈ {1 . . . m},

where d is the searching distance; m ∈ {(n + 2) . . . (2n + 1)} and n is the total number of

control variables. In our numerical experiments, m = n + 2 function evaluations are used

to build the quadratic model Q(x). The quadratic approximation Q is used to evaluate the

needed derivatives.

The algorithm used by BOBYQA is an iterative algorithm that uses the least Frobenius

norm updating strategy. For an n×n matrix A with entries aij, i, j ∈ {1 . . . n}, the Frobenius

norm is

�A�F =

����
n�

i,j=1

a2
ij .
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At each iteration, we solve the following optimization problem

min �∇2�t�F (2.8)

s. t. �t(x
+) = 1, �t(x) = 0, x ∈ X \ xt,

where �t is a second order polynomial which needs to be determined, X is the current set of

interpolation points, x+ is a new point added to X and xt is a point deleted from X (Powell

2009).

Then, the new model Q+(x) is updated by

Q+(x) = Q(x) + {g(x+)−Q(x+)}�t(x),

where �t(x) is the solution of (Eq. 2.8). Eq. 2.8 has a closed form solution, which can be

computed by solving a linear system (Powell 2009).

Hence, only on the order of n function evaluations are needed to build the quadratic

model, whereas normally (n + 1)(n + 2)/2 function evaluations are required for building a

full quadratic model. Global convergence as well as the good local sampling for building the

quadratic model are guaranteed by trust region techniques. Recent research (Moré and Wild

2009) in the computational optimization community indicates this trust region model method

performs better than other optimization methods without explicit gradient computations.

Comparing with EnOpt, for small scale problems (less than a hundred control variables)

we would expect BOBYQA to converge faster because it extracts local second order Hessian

information, whereas EnOpt only uses first order gradient information. Moreover, at each

iteration, it requires only one new function evaluation to update the local quadratic model

whereas EnOpt requires an ensemble of function evaluations to update the gradients. How-

ever, BOBYQA is limited to medium scale optimization problems (a few hundred variables),

because at least n+2 function evaluations are needed for building the first quadratic model;

this is unacceptable for large scale problems (thousands of variables) with expensive function

evaluations.
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2.2.4 Multiscale regularization.

In production optimization, specifying the frequency of well control adjustment is a chal-

lenge. On one hand, high–frequency control adjustment imposes unrealistic control burdens

on operations, increasing well management cost. In addition, high–frequency control implies

many control variables, and many degrees of freedom increase the risk of an optimization

algorithm being trapped at local optimum, as the problem is less well–determined. More-

over, some optimization algorithms can be computationally infeasible when the number of

unknowns is large. On the other hand, excessively low–frequency control adjustment may

not truly optimize oil recovery.

Multiscale regularization provides a way to address this problem. It starts optimization

from the coarsest control scale (and thus, with the fewest number of control parameters) and

refines successively using the coarse–scale solution as the initial guess of controls for next

finer scale optimization. The refining process is terminated when no further improvement on

the objective function is obtained.

In this chapter, we test the performance of ordinary multiscale regularization with the

EnOpt and BOBYQA optimization methods. Lien et al. (2008) used adaptive multiscale

regularization with an adjoint method for production optimization. Their method needs

fine–scale gradients of the objective function as indicators to guide the refinement. We use

ordinary multiscale regularization rather than gradient–based adaptive multiscale regular-

ization for two reasons. First, the gradients calculated by both EnOpt and BOBYQA are

approximate rather than true gradients, so that gradient adaptive multiscale regularization

may not outperform ordinary multiscale regularization; we observed no improvement in our

numerical experiments. Second, computing the fine–scale gradients at each refinement stage

is expensive for BOBYQA method, requiring at least n+2 function evaluations to build the

quadratic model.

The step–wise procedure for ordinary multiscale regularization is:
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1. At scale l = 1 (the coarsest scale), one well control is used for each well; the number of

unknowns is equal to the number of wells. The time step is set equal to the production

(optimization) period. Initial values are assigned to each well control.

START: DO WHILE LOOP (check stop criterion, see if further refinement improves

NVP)

2. Find optimum solution for scale l using EnOpt or BOBYQA

3. l = l+1. Reduce time step by a factor of 2, and increase the number of control parame-

ters by a factor of 2. Use the solution from step 2 as the initial well control for this scale.

END: DO WHILE LOOP

Because both EnOpt and BOBYQA are iterative methods, in addition to the outer “DO

WHILE” loop used for refinement, there is an inner loop for well control optimization at

each control regularization scale l, which is not shown here. The change in NVP is also used

as the stop criterion for the inner loop. The stop criterion for the inner loop is not kept

constant. Instead, it is decreased as the scale is refined, because convergence at the coarse

scale takes many simulation runs while NVP is only slightly increased.

2.3 Test case

The EnOpt and BOBYQA optimization methods are applied to a simple–but–interesting

synthetic test case. Optimization is done with and without multiscale regularization, and

the results for all cases are compared.
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2.3.1 Case description.

We consider a two–dimensional two–phase synthetic reservoir model. It has 45 × 45 × 1

grid blocks with a uniform grid block size of 50 ft × 50 ft × 15 ft. To add heterogeneity, the

reservoir model is “channelized” with three uniform high–permeability zones (5 D) and a low–

permeability back ground (80 mD; Fig. 2.1). Reservoir porosity is uniform and equal to 0.2.

Nine producers and four injectors are located in a repeated five–spot well pattern, with three

producers and two injectors positioned at high permeability channel and others positioned

at the low permeability background. This configuration is chosen to induce intuitively clear

challenges in well control optimization (Discussion, later).

During the water flooding process, water is injected at 900 stb/day for each injector with a

total injection rate of 3600 stb/day. Only fluid production rates for producers are considered

as control variables for the NVP optimization. The time range for optimization is 960 days.

The price of oil is 80 $/bbl and the cost for produced water disposal is 5 $/bbl. A total fluid

production rate constraint of 3600 stb/day is imposed for the producers.

Figure 2.1: The permeability distribution of the channelized synthetic example: 5 D for three

high permeability channels and 80 mD for the low permeability background.
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2.3.2 Optimization parameters.

Before multiscale regularization, the time step for production optimization is 60 days. Thus,

there are 16 control variables for each producer and 144 total unknowns. For multiscale

regularized EnOpt and BOBYQA, the coarsest scale time step is 960 days, with one control

variable for each producer. As regularization proceeds, the time step decreases by a factor of

two whereas the total number of control variables increases by a factor of two for the next

finer scale. The refinement is continued until the stop criterion is reached. An ensemble size

of 30 is used for the ensemble–based method. A nonoptimized case is used as a reference

case, in which the total production rate is equally distributed among the producers (400

stb/day for each producer). If not specified otherwise, this is also the initial value used for

the optimized scenarios discussed in the next section.

2.3.3 Results.

The optimized NVPs for EnOpt, BOBYQA, multiscale regularized EnOpt and multiscale

regularized BOBYQA range from 85.3 to 86.9 million dollars (Fig. 2.2). All optimized cases

have higher NVPs compared with the nonoptimized case (NVP with constant rates). Mul-

tiscale regularized EnOpt (Fig. 2.2(a), upper curve ) obtains the highest NVP among all

these methods. Multiscale regularized BOBYQA (Fig. 2.2(b), upper curve) has a similar

NVP to EnOpt (Fig. 2.2(a), lower curve), but with faster convergence. The BOBYQA (Fig.

2.2(b), lower curve) method is not as efficient as other methods. With n + 2 (n = 144 before

multiscale regularization) function evaluation runs to build the quadratic model, BOBYQA

takes less than 20 simulation runs to converge because it uses second order gradients. How-

ever, it converges to a local optimum instead of the global one; for this particular system,

BOBYQA may converge to a local optimum if the number of control variables is more than

a hundred. In comparison, regularized BOBYQA has higher NVP even at the coarsest scale

of regularization (scale 1). For EnOpt, the effect of multiscale regularization is not as signif-

icant as for BOBYQA, but the convergence speed and NVP are improved slightly. Moreover,
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both multiscale regularized cases terminate at scale 4 with a total number of 72 (8 control

variables × 9 wells) unknowns, which is 50 percent fewer than the total number of well

controls (16 control variables × 9 wells = 144 unknowns) used in unregularized EnOpt and

BOBYQA methods.

(a) EnOpt and multsicale regularized EnOpt (b) BOBYQA and multsicale regularized BOBYQA

Figure 2.2: NVP as a function of number of simulation runs before and after multiscale reg-

ularization. Multiscale regularized methods converge to higher NVPs with fewer simulation

runs and fewer control variables. (scale 1: 1 control variable for each producer each 960 days;

scale 2: 2 control variables for each producer each 480 days; scale 3: 4 control variables for

each producer each 240 days; scale 4: 8 control variables for each producer each 120 days;

unregularized cases: 16 control variables for each producer each 60 days.)

2.4 Discussion

2.4.1 Improving sweep efficiency.

In the nonoptimized case (Fig. 2.3(a)), water is breaking through to producers 1 and 4

as they are connected to injectors 1 and 4 by high permeability channel, leaving unswept

regions due to permeability heterogeity. After optimization (Fig. 2.3(b) to Fig. 2.3(e)), water

breakthrough for producers 1 and 4 is delayed by all optimization algorithms and the unswept

area is reduced. In addition, multiscale regularization (Fig. 2.3(c) and Fig. 2.3(e)) reduces

the unswept area for both EnOpt and BOBYQA. Among all these methods, multiscale
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regularized EnOpt works the best because it has a larger swept area (the darker blue

regions) than all the other methods.

(a) Nonoptimized case (b) EnOpt (c) Multiscale regularized EnOpt

(d) BOBYQA (e) Multiscale regularized BOBYQA

Figure 2.3: Water saturation at the end of 32 months before and after multiscale regular-

ization. Areas with darker blue have been swept. Thus, the relatively large extents of the

cyan hues in the nonoptimized case indicate lower recovery. EnOpt improves recovery (less

cyan); BOBYQA performs comparably only if multiscale regularization is used.

2.4.2 Sensitivity to initial controls.

Because this problem is nonlinear, the optimization is nonunique and may be sensitive to

initial guesses of the control vector. When different initial guesses are used with unregu-

larized methods (Table 2.1), there is a significant effect on the controls and the net value

of production (differences up to 1.61 percent for EnOpt and 2.09 percent for BOBYQA).

Regularization allows all methods to converge to consistent, higher optima regardless of

differences in the initial controls (differences less than 0.35 percent and 0.23 percent for
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regularized EnOpt and BOBYQA). This is important, because the initial controls may be

difficult to specify for complex reservoir models. Three initial guesses used in Table 2.1 are:

• Initial 1 assigns the production rates from the coarsest scale of multiscale regularized

BOBYQA optimization to the producers. For producers 1 to 9 these are 177, 249, 262,

206, 375, 887, 598, 413 and 433 stb/day, respectively.

• Initial 2 assigns 400 stb/day to each producer.

• Initial 3 uses the same production rates used as for initial 1, except the order of

assignment is from producer 9 to 1. This initial estimate is farther from optimal than

initial 1.

Table 2.1: The effect of initial guesses on optimized NVPs ($ millions) for different meth-

ods. MEnOpt and MBOBYQA stand for Multiscale regularized EnOpt and Multiscale

regularized BOBYQA respectively.

Optimized NVP Optimized NVP Optimized NVP Differencea

Methods using initial 1 using initial 2 using initial 3 (%)

EnOpt 86.8 86.7 85.4 1.61

BOBYQA 85.8 85.3 84.0 2.09

MEnOpt 86.7 86.9 86.6 0.35

MBOBYQA 86.6 86.7 86.5 0.23
aThe difference is computed as

max NV P−min NPV
max NV P × 100%.

2.4.3 Evolution of controls.

The changes of well controls as simulation runs are shown for producers 1 and 5 in Fig.

2.4 and Fig. 2.5. Producer 1 is located in a high permeability channel whereas producer 5

is located in the low permeability background. For both EnOpt and BOBYQA, multiscale

regularized algorithms tend to have simpler control strategies but with more sudden changes

in most cases (compare right figures in Fig. 2.4 and Fig. 2.5 with their left figures). Instead

of specifying a fixed resolution and optimizing a large control set initially, multiscale reg-

ularization optimizes from a low resolution and sequentially increases resolution to avoid
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high–dimensional local optima. Apparently (Fig. 2.4(b), Fig. 2.4(d), Fig. 2.5(b) and Fig.

2.5(d)), the coarse scale optimizes in some average sense, providing a good initial estimate

for next finer scale. In addition, because producer 1 is located within the high permeability

channel, it produces at high rates at early stage. The production rate gradually decreases

as the water break through. This trend was captured by most of the methods except for

multiscale regularized BOBYQA method. With the decreasing of production rate on pro-

ducer 1, the production rate for producer 5 starts to increase to meet the total production

rate constraints (Fig. 2.5). Although the control strategies are very different (Fig. 2.4), the

recoveries values are very similar (Table 2.1).

(a) EnOpt (b) Multiscale regularized EnOpt

(c) BOBYQA (d) Multiscale regularized BOBYQA

Figure 2.4: Change of control variables with simulation runs: producer 1. Multiscale regu-

larized methods give simpler control strategies. The coarse scale optimizes in some average

sense, providing a good initial estimate for next finer scale. Because producer 1 is located in

the high permeability channel, it produces at high rates at early stage. The production rate

gradually decreases as the water break through. This trend was captured by all the methods

except for multiscale regularized BOBYQA method.
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(a) EnOpt (b) Multiscale regularized EnOpt

(c) BOBYQA (d) Multiscale regularized BOBYQA

Figure 2.5: Change of control variables with simulation runs: producer 5. Multiscale regu-
larized methods give simpler control strategies. The coarse scale optimizes in some average
sense, providing a good initial estimate for next finer scale.With the decreasing of production
rate on producer 1, the production rate for producer 5 starts to increase to meet the total
production rate constraints.
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Optimized well control trends from most methods are similar (Fig. 2.6). Because producer

1 is connected to injector 1 by a high permeability channel, the optimized controls from

EnOpt, multiscale regularized EnOpt and BOBYQA tend to be higher at the beginning of

production due to the better transmissibility, and then decrease gradually to reduce water

production after water breakthrough (Fig. 2.6(a)). Similarly, as producer 5 is positioned in

the low permeability background, it takes much longer for water to breakthrough compar-

ing with producer 1. Therefore, this objective function is less sensitive to producer 5 than

producer 1. However, to satisfy the total liquid production rate constraints (3600 stb/day),

the optimized well controls from multiscale regularized EnOpt, BOBYQA and multiscale

regularized BOBYQA increase at later time because of the rate reduction from wells (e.g.,

producer 1) in the high permeability channel (Fig. 2.6(b)).

(a) Producer 1 (b) Producer 5

Figure 2.6: Comparison of optimized controls from EnOpt, multiscale regularized EnOpt,
BOBYQA and multiscale regularized BOBYQA. Similar trends are obtained for different
methods.

2.4.4 Nonuniqueness and optimality.

The optimized control trends from most methods are similar. However, some well control

trends from different methods are different even though they have similar NVPs. In this

example (Fig. 2.6), the EnOpt NVP is similar to multiscale regularized BOBYQA, but the

estimated optimal controls for producers 1 and 5 are quite different. This can be further
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explained by Fig. 2.7, where

σm =

��Nx

i=1(xi,m − xi,best)2

Nx − 1
.

The deviation of gm (m indicates different methods) from gbest can be calculated as (gbest −

gm). The nonoptimized control variance σo and net value of production go are used for

normalization. The loss in optimized gm increases with the increase of deviation of xm from

xbest. However, the penalty in the value of production is small (less than 0.3 percent) for the

optimized cases, even if there is a significant difference in control values (σm/σo =0.88). Such

small differences in optimality for such markedly different control strategies (Figs. 2.4–2.5)

are somewhat surprising.

Figure 2.7: The deviation of optimized gm from gbest increases with the deviation of well
controls xm from the best controls xbest. The penalty in the value of NVP is small (less than
0.3 percent), even when there is a significant difference in control values (σm/σo =0.88 with
σo=275 stb/day )

2.4.5 Extensions.

Only time scale regularization is considered in our synthetic case. For life cycle production

optimization with many wells or well segments, regularization both in time and space might

be more efficient (Lien et al. 2008).

One disadvantage of ordinary multiscale regularization is that the refinement is carried

out uniformly instead of adaptively, resulting in local over–parameterization and wasting
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simulation runs in methods like BOBYQA. Examining Fig. 2.4(b) as an example, for the

last 16 months, only one control variable is needed whereas four control variables are assigned

at scale 8. Adaptive multiscale regularization may be a good way to solve this problem.

2.5 Conclusions

Two simulator–independent methods of smart well production optimization were investi-

gated, EnOpt and BOBYQA. Multiscale regularization was tested on these two methods

including examining effective control adjustment frequencies. The BOBYQA method is not

as efficient as EnOpt method for optimization problems with more than a hundred un-

knowns because the BOBYQA method is prone to converging to local optima.

Multiscale regularization is promising for production optimization. The advantages of ap-

plying multiscale regularization on well control optimization include:

• Mutiscale regularized well control optimization is more efficient than direct fine–scale

optimization.

• Regularizing the well controls makes the optimization problem for coarse scale less

undetermined.

• The solution from the coarse scale appears to be less likely to converge to a local

optimum.

• Coarse–scale early iterations provide a good starting point for the next finer scale,

resulting in higher optima and better convergence speed.

• Instead of using a priori determined control adjustment frequency, mutiscale regular-

ization finds the best control adjustment frequency by increasing control frequency

successively until further refinement does not increase NVP.
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Chapter 3
Application of Gathered EnKF for
Continuous Reservoir Model Updating

3.1 Introduction

In the past decade, the petroleum industry has invested hundreds of millions of dollars to

develop and install instrumentation and hardware such as permanent downhole gauges to

provide continuous dynamic reservoir data. Reservoir observations which used to be recorded

at intervals of months or days are now recorded at frequencies of minutes or seconds. The

ultimate goal for obtaining these high frequency data observations is to enable continuous

updating of reservoir models so that real–time decision–making can improve reservoir per-

formance. In this chapter, we propose a gathered EnKF to handle high frequency data

assimilation.

The Ensemble Kalman Filter (EnKF) is a recursive data assimilation method. It is well–

suited to continuous reservoir model updating (Chen et al. 2010; Chen, Oliver, and Zhang

2009; Gu and Oliver 2006; Li 2008; Wen and Chen 2007). The EnKF was introduced by

Evensen (1994) as an alternative to the Extended Kalman Filter (EKF) for weather pre-

diction; it was introduced to petroleum engineering by Nævdal et al. (2005). Ease of imple-

mentation and increasing deployment of permanent sensors make the EnKF appealing for

continuous reservoir model updating.

The value of high frequency data streams can only be realized if we can use them to update

the reservoir model, and thereby inform reservoir management decisions. However, despite

the strengths of the EnKF, integrating high frequency data streams received from permanent

sensors remains a challenge. First, the EnKF requires simulator restarts of each realization

at each assimilation point, entailing file transfer and input–output. High–frequency model

updating may impose a significant computational burden. Second, too–frequent model up-

dating increases the need for rapid model updating, because the new observations may be
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available at intervals as small as a few seconds. However, it is difficult to update an ensemble

of models in seconds; moreover, such frequent updates may not improve ensemble fidelity.

Lastly, EnKF performance depends on ensemble size. The ensemble size is commonly on

the order of 100 to balance adequate sampling with computational cost. This is far less than

the dimension of the model parameter space. The limited ensemble size may cause errors in

the estimated covariances and thus the Kalman gain. This degrades the EnKF forecast as

more data are assimilated. High–frequency model updating may destroy ensemble diversity

and lead to filter divergence.

The Ensemble Smoother (ES) is an alternative proposed by Leeuwen and Evensen (1996)

as a linear variance minimizing analysis. The ES is similar to the EnKF except that it

assimilates all observations simultaneously rather than sequentially as the EnKF does. An

advantage of the ES is that computational cost may be reduced by avoiding recursive model

updating.

However, the ES strictly applies only to linear dynamic models and Gaussian priors

(Evensen 2009); if these assumptions are honored, ES and EnKF should get identical re-

sults. For nonlinear dynamic models, ES is expected to perform more poorly than EnKF, as

illustrated by Evensen (1997) and Evensen and van Leeuwen (2000) using a nonlinear Lorenz

model. Because reservoir models are typically nonlinear, ES has not been commonly used for

reservoir model updating. Skjervheim et al. (2011) compare the EnKF and ES for reservoir

dynamics models; they found that the two methods may obtain similar results, and the ES

may require as little as 10 percent of the time used for EnKF. They attribute this good

performance of ES for nonlinear models to the diffusive nature of some reservoir dynamics

problems, compared to the chaotic and dynamic Lorenz system previously used to test ES

(Evensen 1997; Evensen and van Leeuwen 2000).

We propose a gathered EnKF method, which can also be seen as a step–wise ES method.

In this method, if there is no significant mismatch between the observations and the en-

semble predictions, the observations are stored (or “gathered”) instead of being assimilated
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immediately. Model updating is done only if the gathered data volume exceeds a specified

threshold, or if the observations diverge from prior ensemble predictions. The motivations

for the new algorithm are to

1. provide an efficient ensemble based method for nonlinear model updating that is more

computationally efficient than the standard EnKF, and

2. reduce sampling errors caused by the finite size of ensembles.

That is, the gathered EnKF is intended to overcome limitations of the standard EnKF

(which may require too–frequent model updating) and the ES (which may not keep the

model sufficiently up–to–date and is less robust for nonlinear problems).

In the next section, we review the EnKF and ES. In section 3.3, we prove that for a linear

dynamic model, simultaneous data assimilation (ES) has less sampling error than sequential

data assimilation (EnKF). In section 3.4, the effects of gathering are tested with a scalar

case and then a 2D reservoir model updating case. The gathered method is further improved

to a more flexible adaptive way for high frequency data in real–time reservoir management

in chapter 5.

3.2 Ensemble methods

The ensemble–based is a Monte Carlo approach for Bayesian updating. It begins with an

ensemble of realizations based on a priori model parameters; these realizations are then used

to approximate the covariance of the augmented vector at each assimilation step. The models

are typically evolved through time using numerical methods. In this way, computations to

evolve the covariance matrix from step to step are avoided, making large scale model updating

practical.
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3.2.1 Ensemble Kalman filter

We adopt the notation from Chen (2008). Let m be a a vector comprising model parameters

(e.g., permeability and porosity at each gridblock), elements of m are constant but their

estimates change with time. Let f be a vector of state variables (e.g., pressure and phase

saturation at each gridblock); elements of f usually vary with time. Model parameters m

are sometimes called “static variables,” and state variables f are sometimes called “dynamic

variables.” Finally, let d denote the predicted production observations (e.g., bottom hole

pressure and water-oil ratio). In the EnKF, an augmented vector y combines all these

variables. At assimilation step i,

yi = [mT
i , fT

i , dT
i ]T . (3.1)

The initial realizations (at time zero) are based on a priori knowledge of the initial state,

sampled into an ensemble

M0 = [m1,0, m2,0, m3,0, . . . ,mNe,0] ,

with the subscript ·Ne indicating the last member of an ensemble with Ne members. The

initial states

fj,0 , j ∈ {1 . . . Ne}

may vary among members because of initialization of models with differing a priori param-

eters mj,0.

The observations dobs,i are obtained at discrete time points ti. Burgers (1998) proved that

using the same observations for all ensemble members causes the updated ensemble variance

to be too low; essentially such a treatment implies that the observations are exact and over

tunes the ensemble to the observations. This is corrected by adding random perturbations

with correct covariances to the observation dobs,i. That is,

dobs,j,i = dobs,i + ξj,i, j = 1, 2, . . . , Ne , (3.2)
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with expected value
�
ξj,iξT

j,i

�
= CDi and �ξj,i� = 0. Here ξj,i is the observation error at time

stepti, which is commonly assumed to follow a Gaussian distribution.

At each step, the augmented vectors yj (j ∈ {1 . . . Ne}) are updated using the prior

reservoir states and the weighted differences between the perturbed observation data and

predicted data as

y
u
j,i = y

f
j,i + Ke,i(dobs,j,i − dj,i)

= y
f
j,i + Ke,i(dobs,j,i −Hy

f
j,i) . (3.3)

The forecast state vector comprises the posterior model parameters mj,i−1 along with calcu-

lated “observations” dj,i and dynamic variables fj,i. Explicitly, the Kalman gain is

Ke,i = C
f
Y e,iH

T (HC
f
Y e,iH

T + CDi)
−1

, (3.4)

and

H = [0 I],

where Ke,i is Kalman gain matrix approximated from the ensemble at time step i. The

subscript e denotes ensemble and the superscripts u and f indicate update and forecast. H

is a measurement operator which extracts simulated observation data from the augmented

vector y
f ; 0 is a Nd × (Ny −Nd) matrix with all zeroes as its entries. I is a Nd ×Nd identity

matrix. Nd is the number of observations and Ny is the number of variables in the augmented

vector. CY e,i is the covariance matrix of the augmented vector which is approximated as

C
f
Ye,i

=

��
y

f
i −

�
yi

f
�� �

y
f
i −

�
yi

f
��T

�
, (3.5)

where �·� indicates the expected value.

One advantage of the EnKF is that computation of the full matrix CY e,i is rarely necessary.

If we expand some expressions in the previous equations,

C
f
Y e,iH

T =





Cmi,mi Cmi,fi Cmi,di

Cfi,mi Cfi,fi Cfi,di

Cdi,mi Cdi,fi Cdi,di









0

0

I




= Cyi,di , (3.6)
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and

HC
f
Y e,iH

T = Cdi,di . (3.7)

Then the computation of Kalman gain can be simplified as

Ke,i = Cyi,di(Cdi,di + CDi)
−1

. (3.8)

After each updating step, the augmented vector is advanced from time ti−1 to time ti,

commonly using a reservoir simulator. In the forecast step, the dynamic variables f (such

as pressure) and the predicted observations d are updated, but the the model parameters m

are not ( Eq. 3.9).

(fj,i, dj,i)
f = F (mj,i−1, fj,i−1)

u
, (3.9)

where F (·) denotes the forward operator (e.g., a reservoir simulator).

3.2.2 Ensemble smoother

The ES differs from the EnKF by assimilating the observations simultaneously instead of

sequentially. Thus the augmented vector for the ES can be modified from Eq. 3.1 as

y = [mT
, f

T
, d

T
1 , d

T
2 , · · · , d

T
Nt]

T
, (3.10)

where Nt is the total number of discrete observation times (indicated by ·Nt when sub-

scripted). For the remainder of this section, the time step subscript i is dropped because ES

only has one step of assimilation.

If we define

d
T = [dT

1 , d
T
2 , · · · , d

T
Nt] (3.11)

and

CD =





CD1 . . . .

...
. . .

...

· . . . CDNt




, (3.12)
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then Kalman gain for ensemble smoother is modified from Eq. 3.8 to obtain

Ke = Cy,d(Cd,d + CD)
−1

(3.13)

with

yu
j = yf

j + Ke(dobs,j − dj) . (3.14)

Assume that the total number of observations for all times is NS
d ,

NS
d =

Nt�

i=1

Nd,i

From Eq. 3.13, the ensemble Kalman gain is a multiplication of a Ny by NS
d matrix with

another NS
d by NS

d matrix. The ES method saves computational cost by avoiding simulation,

requeueing, file input–output, and transferring at each data assimilation step. However, the

increased work of computing the Kalman gain for large numbers of observations (NS
d �

max Nd,i) may offset these savings (further discussion see 3.6.4).

3.3 Sampling errors of ensemble based methods

The ensemble Kalman filter tends to underestimate the model covariance even if ensembles

of perturbed observations are used in the analysis step. This is because unlike the Kalman

filter and extended Kalman filter (in which the error covariances are evolved in time), the

ensemble Kalman filter uses the ensemble covariance to approximate the error covariance.

For any finite ensemble, sampling errors cause a negative bias in the estimated covariance

from the ensemble (van Leeuwenan 1998; Sacher and Bartello 2008). There are two types of

sampling errors in the EnKF: first, errors are introduced from the prior ensemble; second,

errors are caused by the perturbed observations. Both van Leeuwenan (1998) and Sacher

and Bartello (2008) only considered the errors introduced from the prior ensemble.

In this section, we show that the observation sampling errors induce an additional neg-

ative bias in the estimated covariance. In addition, we prove that — for linear dynamic
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models with only prior sampling errors considered — sequential data assimilation (filters)

and simultaneous data assimilation (smoothers) give identical results. On the other hand, if

observation sampling error is included, simultaneous data assimilation (ES) provides better

covariance and gain estimates than sequential data assimilation (EnKF). Essentially, the

smoother has a larger sample of observations, reducing bias.

3.3.1 The need to use perturbed observations

An ensemble of observation should be generated at each assimilation step by adding random

perturbations with correct statistics to the observations (Burgers 1998); otherwise, the co-

variance of the updated ensemble will be too low compared to the true covariance. Explicitly,

C
u
Y e =

�
(yu − �yu�) (yu − �yu�)T

�

= (I −KeH)Cf
Y e(I −H

T
K

T
e )

+Ke

�
(dobs − �dobs�) (dobs − �dobs�)T

�
K

T
e

= (I −KeH)Cf
Y e(I −H

T
K

T
e ) + Ke

�
ξξ

T
�
K

T
e . (3.15)

If the observation is not perturbed, the second term in Eq. 3.15 vanishes
�
Ke

�
ξξ

T
�
K

T
e ≡ 0

�
;

in the traditional Kalman filter this term should equal to KCDK
T , which is positive definite.

However, even if an ensemble of perturbed observations is used, the updated ensemble

covariance is unbiased only if the prior ensemble covariance and the perturbed observation

error are unbiased (Cf
Y e = C

f
Y with C

f
Y denoting the true prior covariance and CD =

�
ξξ

T
�
),

which is not assured because of the finite ensemble size.

3.3.2 The effect of finite ensemble size

Neither the initial ensemble nor the perturbed observation errors lead to exact covariance

estimates for finite ensembles. If we denote the difference between the prior ensemble co-

variance C
f
Y e and the true prior covariance C

f
Y by � with ��� = 0, then the estimated prior

covariance can be expressed as C
f
Y e = C

f
Y + �. Similarly, let

�
ξξ

T
�

= CD + ρ, with ρ being

the assimilated errors from the perturbed observation.
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Assuming a linear dynamic model and a Gaussian observation error model, we outline how

observation sampling errors ρ for sequential data assimilation (EnKF) induce a negative bias

in the ensemble covariance.

We first consider two data assimilation cycles for sequential data assimilation (EnKF)

and then compare it with simultaneous data assimilation (ES). Defining

y =
�
m

T
, f

T
, d

T
1 , d

T
2

�T
,

dobs =
�
d

T
obs,1, d

T
obs,2

�T
,

CD =




CD1 0

0 CD2



 ,

and

H = [H1, H2]
T

, with H1 = [0 0 I 0] and H2 = [0 0 0 I].

The extraction matrix H1 differs from H2 because different observation sets are extracted

at each data assimilation step. The observation errors of the two data sets are assumed to

be independent.

We use subscript � to indicate that only initial sampling error � is considered, whereas

subscript E indicates that initial errors � and assimilated errors ρ are considered. The true

case bears no subscript. Similarly, subscripts 1 and 2 denote for data assimilation step 1 and

step 2.

Sampling errors from the initial ensemble

Assume the perturbed observation error is unbiased, which means
�
ξ1ξ

T
1

�
= CD1 and

�
ξ2ξ

T
2

�
=

CD2. If only sampling errors in the prior ensemble are considered, and the system is linear,

then sequential data assimilation (EnKF) and simultaneous data assimilation (ES) yield

identical updated ensemble covariances (details, Appendix A).

A theoretical justification of the “inbreeding” effect caused by prior covariance sampling

error � is given both in van Leeuwenan (1998) and Sacher and Bartello (2008). Here we briefly
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summarize those results. Because there is no difference between sequential data assimilation

and simultaneous data assimilation when sampling error from the perturbed observation is

not considered, in this subsubsection the time step subscript i is suppressed.

Following Sacher and Bartello (2008), to simplify the algebra, we define Φ = (HCf
Y HT +

CD)−1, κ� = �HT Φ, and L = I−KH. The ensemble Kalman gain and the updated ensemble

covariance are (Sacher and Bartello 2008)

KE = K + L(κ� − κ�Hκ�) + O(� κ�Hκ� �) and (3.16)

Cu
Y E = Cu

Y + L�LT − Lκ�Φ
−1κT

� LT + O(� κ�Φ
−1κT

� �). (3.17)

The expected value of Cu
Y E is

�Cu
Y E� = Cu

Y − L�κ�Φ
−1κT

� �LT + O(� κ�Φ
−1κT

� �). (3.18)

Because the second term L�κ�Φ−1κT
� �LT in Eq. 3.18 is positive definite, the updated ensemble

covariance always underestimates the true covariance.

Sampling errors from the perturbed observation

Because of finite ensemble size, the covariance of randomly sampled observation errors
�
ξξT

�

differs from the covariance of the true observation error CD. If we denote the errors at each

data assimilation cycle by ρ1 and ρ2 (�ρ1� = �ρ2� = 0), then the relationship between the

true and the estimated observation error covariances is

�
ξ1ξ

T
1

�
= CD1 + ρ1 and

�
ξ2ξ

T
2

�
= CD2 + ρ2 (3.19)

Sequential data assimilation (EnKF). Let CY � and K� denote the covariance and

Kalman gain in which only prior sampling errors are considered. If the data sets are assim-

ilated sequentially, d1 followed by d2, at first step assimilation, because Cf
Y E,1 = Cf

Y �1, the
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Kalman gain is expressed as

KE,1 = C
f
Y E,1(H1C

f
Y E,1H

T
1 + CD1)

−1

= C
f
Y �,1(H1C

f
Y �,1H

T
1 + CD1)

−1

= K�,1 . (3.20)

That is, the initial ensemble errors � are introduced to the Kalman gain at first assimilation

(Eq. 3.16), but observation biases ρ1 are not (Eq. 3.20). Similarly, since KE,1 = K�,1, after

first step assimilation, Eq. 3.15 can be rewritten as,

C
u
Y E,1 = (I − K�,1H1)C

f
Y �,1(I − H

T
1 K

T
�,1)

+K�,1(CD1 + ρ1)K
T
�,1

= C
u
Y �,1 + K�,1ρ1K

T
�,1 . (3.21)

Because �ρ1� = 0, this leads to

�Cu
Y E,1� = �Cu

Y �,1�. (3.22)

Eq. 3.22 indicates that at first assimilation step, the sampling errors ρ1 introduced from the

perturbed observations will not affect the expect value of updated ensemble covariance.

However, the observation error bias will appear if multiple assimilation steps are used.

For example, when incorporating the second data set d2, a forecast step is taken to forward

the augmented vector from step 1 to step 2. Here we assume a linear relationship between

the last step updated (posterior) augmented vector y
u
1 and the current step forecast (prior)

augmented vector y
f
2 , which is expressed as y

f
2 = Ay

u
1 . Then the forecast ensemble covariance

at second step can be calculated as,

C
f
Y E,2 = AC

u
Y E,1A

T

= A(C
u
Y �,1 + K�,1ρ1K

T
�,1)A

T

= C
f
Y �,2 + AK�,1ρ1K

T
�,1A

T
. (3.23)
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To simplify the equations, we define η = AK�,1ρ1KT
�,1A

T , κη = ηH2Φ�, K�,2 = Cf
Y �,2H

T
2 Φ�.

and Φ� = (H2CY �,2HT
2 +CD2)−1. Then the ensemble Kalman gain at the second assimilation

step can be written as (details, Appendix B)

KE,2 = Cf
Y E,2(H2C

f
Y E,2H

T
2 + CD2)

−1

= K�,2 + L�,2(κη − κηH2κη) + O(� κηH2κη �) , (3.24)

where L�,2 = I − K�,2H2. Similarly the updated ensemble covariance at the second step,

CY E,2, is (Appendix B)

Cu
Y E,2 = Cu

Y �,2 + L�,2ηLT
�,2 − L�,2κηΦ

−1
� κT

η LT
�,2

+KE,2ρ2K
T
E,2 + O(� (κηΦ

−1
� κT

η �). (3.25)

The expected value of CY e,2 is

�Cu
Y E,2� = �Cu

Y �,2� − L�,2

�
κηΦ−1

� κT
η

�
LT

�,2

+O(� (κηΦ−1
� κT

η �). (3.26)

Eq. 3.26 shows that the sampling errors introduced from previous step’s perturbed observa-

tion data set induce a negative basis (−L�,2

�
κηΦ−1

� κT
η

�
LT

�,2) in subsequent steps (in the κη

term). An over–confident prior reduces the weight given to subsequent observations. This

may eventually lead to filter divergence, in which the ensemble update is insensitive to the

observations.

Simultaneous data assimilation (ES). If the two data sets are assimilated at the same

time, then similarly we would get,

Cu
Y E = Cu

Y � + K�ρKT
� (3.27)

with the expected value

�Cu
Y E� = �Cu

Y �� . (3.28)

Comparing Eq. 3.26 with Eq. 3.28, the ES is less biased than EnKF because only sampling

errors in the prior ensemble are introduced to the Kalman gain.
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Gathered EnKF. Based on the above discussion, it appears that gathering the obser-

vations can reduce the sampling errors compared to sequential data assimilation — at least

for the linear case. Because ρ is a matrix composed of random numbers, the trace of K�ρKT
�

can possibly be reduced by increasing the dimension of ρ (ρ has a dimension of Nd ×Nd).

This method is a compromise between the simultaneous ES and the sequential EnKF,

with the aim of obtaining some of the desirable properties of each method. Multiple EnKF

assimilation points are “gathered” into a single assimilation for stability, accuracy, and effi-

ciency.

3.4 A scalar case

Here we test our proof with a scalar case in which the forecast and observations are taken

from a normal distribution with zero mean and unit variance, N(0, 1). 10
5

realizations are

generated (MathWorks Inc. 2010) and divided to equal sized subsets for different ensemble

sizes

Ne ∈ {5, 20, 100, 1000} .

The results discussed below are the expected value of all the subsets, each case using 10

observations.

In sequential data assimilation (EnKF), the 10 observations are assimilated sequentially

with one observation at each time; in simultaneous data assimilation (ES), all the obser-

vations are assimilated at one time. The expected values of the RMSE (root mean square

error) of the mean from the truth �δ� and the spread of the samples �σ� are used to evaluate

the performance of EnKF, ES and gathered EnKF. These statistics are defined as

δ =

��Nm

i=1(mtrue,i − m̄i)
2

Nm
and (3.29)

σ =

��Ne

j=1

�Nm

i=1(mj,i − m̄i)
2

NmNe
, (3.30)

with Nm being the dimension of m (here Nm = 1 ).
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(a) Departure of the ensemble mean from the true mean
(RMSE, �δ�).

(b) Updated ensemble spread, �σ�.

Figure 3.1: Comparing ES with EnKF for various ensemble sizes for a linear, Gaussian

scalar system. Means are performed over 105 realizations. The ES always outperforms the

standard EnKF; ES and standard EnKF both converge to correct results as ensemble size

Ne increases.

If the ensemble size is small (less than 20), ES has a lower RMSE �δ� (Fig. 3.1(a)). As

ensemble size increases, the difference between ES and EnKF decreases, with both becoming

more accurate. Similar results observed for the updated ensemble spread (standard deviation)

�σ� (Fig. 3.1(b)). For Ne < 100, the standard deviations of ensembles (�σ�) from ES are more

accurate than EnKF. As expected, updated standard derivation (�σ�) of both ES and EnKF

converge to the true standard derivation as Ne increases.

The effect of gather size is also tested with the scalar case. For small ensemble sizes (e.g.,

Ne = 5), the gathered EnKF with different gather sizes outperforms standard EnKF (equiv-

alent to a gather size Ng = 1; Fig. 3.2). The wider the gather, the better the performance.

3.5 A 2D reservoir model updating case

3.5.1 Case description

We consider a 2D water flooding of synthetic case with 45 × 45 × 1 grid and cell size 30

ft × 30 ft × 10 ft. Only two phases, oil and water, are present. The porosity of the field is
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(a) Gather size = 2 (b) Gather size = 2

(c) Gather size = 5 (d) Gather size = 5

(e) Gather size = 10 (f) Gather size = 10

Figure 3.2: Effect of gather size on sampling error for a linear, Gaussian scalar system with
Ne = 5. Subfigures on the left shows the departure of the ensemble mean from the true mean
(RMSE, �δ� and the subfigures on the right shows the updated ensemble spread, �σ�. Means
are performed over 105 realizations. The departure from the true mean and reproduction of
ensemble spread are always superior for the gathered EnKF. The advantage increases as
gather size increases (from top to bottom).
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assumed to be 0.2 through out the reservoir. The permeability in each gridlock is the only

unknown model parameter to be estimated. The reservoir has a horizontal injector at the

west side and a horizontal producer at the east side. Both the injector and the producer are

composed of 15 equal-length segments with rate controls on every segment. The horizontal

injector has a water injection rate of 60 stb/day per segment and the horizontal producer

has a uniform pressure of 5780 psi. The true ln k distribution is Gaussian with mean 7.21

and variance of 1.12 respectively (permeability in mD). The semivariogram is elliptical with

an west–east range of 810 ft and an north–south range of 405 ft.

Assuming the permeability at each well segment and the histogram of the permeability

are known (and used to condition the prior ensemble), an initial ensemble with 500 realiza-

tions is generated using conditional sequential Gaussian simulation. Unless stated otherwise,

the ensemble size is Ne = 50 to keep computational costs moderate. The observations of

oil production rate and water cut of each producer segment, and bottom hole pressure of

each injector segment are posted every 5 days until 180 days. The standard derivations of

observations are assumed to be 5 stb/day for oil rate, 2 percent for water cut, and 7 psi for

bottom hole pressure. A perturbation vector with the the same standard deviations as the

observation errors is added to the observation to create the ensemble of observation data.

There are 45 observations at each time step: 15 producer segments × 2 observations (qo, fw)

+ 15 injector segments × 1 observation (pwf ). For the standard EnKF, data assimilation

takes place every 5 days, so there are 36 assimilation steps. For the gathered EnKF, three

different gather sizes Ng ∈ {3, 6, 9, 18} are examined.

3.5.2 Results

Similar to the scalar case, we use the RMSE of the mean from the truth (δ) and the spread

of the samples (σ) to evaluate the performance of standard EnKF and gathered EnKF

(Eqs. 3.29–3.30). For the sequential data assimilation after 180 days, the variance of the

ensemble σ reduces to 0.2 whereas the RMSE of mean from the truth δ is as large as 0.4
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(Fig. 3.3). In contrast, the gathered EnKF with Ng = 18 obtains a better RMSE (δ = 0.31)

and a more diverse ensemble (σ = 0.29); as in the linear case, the ensemble is both more

diverse and more accurate. However, δ decreases more slowly for the gathered method than

sequential EnKF at early time; this may due to the nonlinearity of the reservoir model.

Both standard (Fig. 3.4(c)) and gathered (Fig. 3.4(d); Ng = 18) methods capture the basic

Figure 3.3: Comparison of RMSE of ensemble mean from the truth (δ) and ensemble spread

(σ) for ln k. At the end of the simulated time interval, the gathered EnKF has less error

compared to the true mean (δ) and more diversity (σ)

features of the true average ln k field (Fig. 3.4(a)) at 180 days. Fig. 3.5 and Fig. 3.6 shows

the production predictions by running the simulator forward from time zero to 600 days.

Both methods match the production observation well; the gathered EnKF works slightly

better than standard EnKF.
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(a) True case for ln k. (b) Initial mean of ln k for the ensemble.

(c) Mean ln k after EnKF. (d) Mean ln k after gathered EnKF.

Figure 3.4: Mean horizontal ln k distribution before and after data assimilation. The standard
EnKF and gathered EnKF evolve to similar mean distributions.
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(a) P1, initial ensemble (b) P1, after standard EnKF (c) P1, after gathered EnKF

(d) P3, initial ensemble (e) P3, after standard EnKF (f) P3, after gathered EnKF

(g) P4, initial ensemble (h) P4, after standard EnKF (i) P4, after gathered EnKF

Figure 3.5: Comparison of cumulative water predictions before and after data assimilation.
Box plots show the prediction of the realizations and red curve indicates the observation.
Both methods match the production observations well; the gathered EnKF works slightly
better than standard EnKF
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(a) P1, before EnKF (b) P1, after standard EnKF (c) P1, after gathered EnKF

(d) P3, before EnKF (e) P3, after standard EnKF (f) P3, after gathered EnKF

(g) P4, before EnKF (h) P4, after standard EnKF (i) P4, after gathered EnKF

Figure 3.6: Comparison of cumulative oil predictions before and after data assimilation. Box
plots show the prediction of the realizations and red curve indicates the observation. Both
methods match the production observations well; the gathered EnKF works slightly better
than standard EnKF

3.6 Discussion

3.6.1 Effects of ensemble size.

The ensemble size effect is now assessed using a gather size of Ng = 6. To control bias, each

case is repeated with the same ensemble 10 times, with differently perturbed observations.

The RMSEs of the mean from the truth (δ) for each individual run are shown as diamonds

and the ensemble standard derivations (σ) are shown as circles ( Fig. 3.7). The expectation of

these two values (�δ� and �σ�) are shown as solid and dashed lines respectively. The δ of the
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standard EnKF (Fig. 3.7(a), Fig. 3.7(c) and Fig. 3.7(e)) are more dispersed than the gathered

EnKF (Fig. 3.7(b), Fig. 3.7(d) and Fig. 3.7(f)). This shows that gathering the observations

reduces the observation sampling errors introduced to the Kalman gain, making the model

more stable. In addition, for small ensembles, the gathered EnKF obtains a smaller mean

error �δ� and greater diversity �σ� than standard EnKF. As expected, increasing ensemble

size causes these two methods to converge.

3.6.2 Effects of gather size

The effect of gather size on sampling errors is also examined and the results are shown in

Fig. 3.8 and Fig. 3.9. Increasing the gather size reduces the dispersion of σ and δ for different

runs thus making the model more stable (Fig. 3.8 ). As the gather size Ng increases, the

mean of the departure from the true mean (δ) decreases and mean of ensemble standard

deviation σ is estimated more accurately (Fig. 3.9). This is consistent with the scalar case

as well as the proof.

3.6.3 The effect of initial ensemble and time interval

A good initial ensemble (||�|| � ||CY || ) is one of the key components for the successful

EnKF data assimilation. In a good ensemble, the forecasts of the ensemble members should

cover the true forecast and the mean of the ensemble should close to the truth (Fig. 3.10(a)).

However, in some cases bad initial ensembles may generated due to the low resolution of the

samples or small size of the ensemble, the ensemble forecasts may away from the truth and

relatively close to each other (Fig. 3.10(b)). In this case, reservoir model updating could fail

since the lack of ensemble spread would cause an overconfidence on the prior model(s).

To demonstrate this, we divide the 500 initial realizations to 10 equal–sized subsets. We

forecast the performance of these 10 subsets by running the simulator forward from time

zero to 600 days. A good and bad ensembles are then selected based on the RMSE of the

forecast ensemble mean from the true observation. The smaller the RMSE, the higher the
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(a) Ne = 50, EnKF. (b) Ne = 50, gathered EnKF.

(c) Ne = 250, EnKF. (d) Ne = 250, gathered EnKF.

(e) Ne = 500, EnKF. (f) Ne = 500, gathered EnKF.

Figure 3.7: Comparison of standard EnKF with gathered EnKF for different ensemble size,
2D synthetic waterflood case. All estimates improve with time and with increasing Ne. The
gathered EnKF generally outperforms the standard EnKF, especially at late time: the
estimate has smaller mean error and greater diversity.
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(a) Gather size = 1. (b) Gather size = 3.

(c) Gather size = 6. (d) Gather size = 9.

Figure 3.8: The effect of gather size on sampling errors for reservoir model updating case,
2D synthetic waterflood case. Increasing gather size reduces the dispersion of σ and δ for
different runs, making the model more stable.

(a) �δ� for different gather sizes. (b) �σ� for different gather sizes.

Figure 3.9: Comparison of �δ� and �σ� for different gather sizes, 2D synthetic waterflood case.
The RMSE �δ� decreases and ensemble standard derivation �σ� is estimated more accurately
with the increasing gather size.
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sample quality. When a good ensemble is used, the more observations assimilated (or the

smaller the data assimilation time interval), the closer the the ensemble mean from the truth

(Fig. 3.11(a)). However, if a bad ensemble is used, increasing the number of observations or

reducing the time interval may not help to get the estimated mean close to the truth (Fig.

3.11(b)). If the prior ensemble is poor, the ensemble prediction can not cover the truth, and

the forecast ensemble covariance (Cf
YE

) may be relatively far away the true covariance (Cf
Y )

due to large sampling errors (�). This may cause a slower reduction of RMSE of the ensemble

mean from the truth at early time. The ensemble may diverge from the truth at late time if

ensemble diversity σ collapses to too small a value (Fig. 3.11(c)). The gathered EnKF can not

solve this problem because it only reduces sampling errors from the perturbed observations.

Thus, gathered EnKF outperforms standard EnKF only if a good initial ensemble is used.

Methods to improve initial ensemble qualities was discussed by Oliver and Chen (2008) and

Evensen (2009).

3.6.4 Computational efficiency

Gathering the observation data reduces data assimilation time and saves computational cost

because of avoided restarts, file transfers, and reading and writing required at each EnKF

assimilation step. The main cost save are from avoiding restarts, this is further discussed in

chapter 5. However, increasing the number of observations assimilated at one time, increases

the cost of computing the Kalman gain:

Ke ≈ Cy,d(Cd,d + CD)−1 .

Because the Kalman gain is a product of Ny by NS
d matrix and NS

d by NS
d matrix, the

cost of computing it increases exponentially with the increases of NS
d . When the number

of observations is small, the increase of Kalman gain computational cost is small compared

with other costs.

For moderate values of observation count NS
d and gather size Ng, computation costs de-

crease with increasing Ng (Ng is the number of discrete observation intervals gathered into a
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(a) Good ensemble

(b) Bad ensemble

Figure 3.10: Schematic of the essential components of an ensemble of forecasts: The analysis
(a cross) which constitutes the initial conditions for the control forecast (in green); the initial
perturbations (a thick dot) around the analysis, which in this case are chosen to be equal and
opposite; the perturbed forecasts (in black); the ensemble average (in blue); and verifying
analysis or truth (in red). The first schematic is that of a “good ensemble” in which truth is
a plausible member of the ensemble. The second is a bad ensemble, quite different from the
truth, pointing to the presence of a problem in the forecasting system such as deficiencies in
the analysis, in the ensemble of perturbations and/or in the model, Kalnay (2006).
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(a) Good ensemble (b) Bad ensemble

(c) Early–time detail of bad ensemble

Figure 3.11: The effect of initial ensemble.When a good ensemble is used, the more obser-

vations assimilated (or the smaller the data assimilation time interval), the closer the the

ensemble mean from the truth. However, if a bad ensemble is used, increasing the number

of observations or reducing the time interval may not help to get the estimated mean close

to the truth.

single assimilation). However, for larger NS
d , the cost of the Kalman gain increases steeply.

If the increment of Kalman gain computation is bigger than the time saved on simulation

restarts and data movement, then gathering the observations does not reduce the computa-

tional cost. Hence, there is an optimum gather size, Ng. For different ensemble sizes, model

sizes, and model dynamics, the optimum gather size will be different. The bigger the en-
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semble size Ne, the larger the value Ng, that minimizes computation work (Fig. 3.12). For

Ne = 50, computation time is a minimum at Ng = 9; for Ne = 500, computation time is still

decreasing at Ng = 36.

Figure 3.12: Normalized CPU time changes with gather size for different ensemble size, 2D

synthetic waterflood case. An optimum gather size exists in terms of time saving. However, for

different ensemble sizes, the optimum gather size will be different. The bigger the ensemble

size used, the more we can gather. As shown in this figure, for Ne = 50, CPU time is a

minimum at Ng = 9; for Ne = 500, CPU time is still decreasing at Ng = 36.

3.7 Conclusions

A gathered EnKF method is investigated in this chapter.

1. Gathering the observations was proven to reduce sampling errors in the Kalman gain,

reducing bias in the ensemble covariance.

2. The gathered EnKF was tested with scalar and 2D reservoir history matching cases.

These verified the improved estimation of the ensemble covariance and suggested im-

proved estimation of the ensemble mean.
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3. Improved estimation of the ensemble mean and the more diverse ensembles provided

by gathering imply greater stability compared with the standard EnKF.
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Chapter 4
The Brugge Field Description

Only 2D synthetic reservoir models are used in chapter 2 and chapter 3 to demonstrate

how the proposed methods work. A more realistic, complex reservoir model is needed for the

further testing and demonstration. Because the Brugge field is the most “realistic”, complex,

3D synthetic case that has been widely used for comparative study of alternative methods

for reservoir history matching and model–based production optimization; it is also chosen as

illustrative example in this dissertation. A detailed description of the Brugge field is given

in this chapter.

4.1 Introduction

The Brugge field case is a 3D synthetic complex reservoir field made available to participants

by Netherlands Organization for Applied Scientific Research (TNO) in the preparation for

SPE Applied Technology Workshop (ATW), a benchmark project for closed–loop reservoir

management, held in Brugge in June 2008. The goal of the project was to test the differ-

ent combined use of optimization and history matching methods in closed–loop reservoir

management (Peters et al. 2009).

The original Brugge field model is a high–resolution model which consists of 20 million

grid cells. This high resolution model was upscaled to a 450,000 grid cell model which was

used as the true case. 104 further upscaled realizations containing 60,000 grid blocks were

then generated using data extracted from the true case including well logs, geological facies

classifications and maps. Each realization contains seven types of parameters needed to

be history matched: facies, net–to–gross, porosity, permeability in X, Y, Z directions and

the initial water saturation. The structure of the field (fault position and throws, top of

structure map, zone thickness , grid cell geometry) was identical for all the realizations. These
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104 realizations along with upscaled structure model, well log data, 10 years of production

history data and inverted time–lapse 4D seismic data generated from the true case were

provided to the participants. With all these information, participants are required to history

match for the first 10 years and provide a history matched model (or a matched ensemble

set) for production optimization for the next 20 years. The field contains 10 injectors and 20

producers. For the next 20 years, all these wells are assumed to be smart wells that each well

segment can be controlled independently by inflow control valves. The economic parameters

including oil price, water disposal cost as well as discount rate were also provided by TNO.

Their strategies were then sent to TNO to be tested on the “true case” to get production

observations for years 10–20. The observations were then sent back to participants with

which they used to update their reservoir model and revise their optimization strategies for

years 20–30.

Nine groups participated in the workshop and the results are reviewed by Peters et al.

(2009). The combination of history matching and production optimization methods used by

the participants varied considerably. For history matching, methods used by participants

include EnKF, EnRML (Ensemble random likelihood), streamline–based generated travel

time inversion, sequential quadratic program and so on. For production optimizations, meth-

ods used include EnOpt, sequential experimental design, adjoint–based gradients optimiza-

tion and so on. The root mean square error (RMSE) for the production data and the realized

NPV for the next 20 years are used to check the quality of history matching and production

optimization respectively. The RMSE obtained by participants ranges from 574 to 58 for

years 0–10 and from 1820 to 239 for years 10–20 years. Note here RMSE are the summation

of water rate, oil rate and BHP. Even though they have different units (water, oil rate in

bbl/day, BHP in psi), in this case, they are in the same order. The realized NPV ranges from

$4.01–$4.46 billion for years 10–20 and $4.12–$4.50 billion for years 20–30. Among the nine

groups, Chen and Oliver (2010) obtains the highest NPV ($4.5 billion) which was only three

percent lower than the optimized NPV ($4.63 billion) on the true model.

62



Two lessons from the benchmark study which are also pointed out by Peters et al. (2009)

are:

• A good history matched model or a set of good matched models are necessary to obtain

a high realized NPV; none of the participants with high RMSE obtains high realized

NPV. However, it is not sufficient. The quality of the optimization algorithm is equally

important.

• Increasing the optimization and reservoir model updating frequency using the field

feedback and increasing the uncertainty on the reservoir model parameters could im-

prove the performance of closed–loop reservoir management.

In this chapter, we give detailed description of the Brugge field. In chapter 5, we propose

an adaptively gathered EnKF method and test it on Brugge field. In chapter 6, we test the

whole closed–loop reservoir management concept on the Brugge field.

4.2 Geology structure and simulation model

The Brugge reservoir consists of an E–W elongated half–dome with a large boundary fault

and one internal fault. The reservoir extent is about 328,000 × 98,400 × 200 ft3. The initial

oil in place is about 775 MMstb. From top to bottom, the Brugge field consists of four

main reservoir formations, Schelde, Maas, Waal and Schie. The characteristic of each zone

are summarized in Table 4.1. The lithology for Schelde formation is discrete sand bodies in

shale, for Maas formation is carbonate concretions and for Schie formation is the irregular

carbonate patches. Schelde and Waal formations have higher permeability and porosity and

more heterogenous than Maas and Schie formations. Out of these four formations, Waal

formation has the most favorable reservoir properties.

The simulation model provided by TNO contains 60,000 gridblocks with Nm = 44, 550

active gridblocks. It has 9 simulation layers. Layers 1–2 belong to the Schelde formation,

layers 3–5 belong to Maas, layer 6–8 belongs to Waal, and layer 9 belongs to Schie. Each of
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Table 4.1: Properties of the Brugge field formation

Formation Average Average Average Average Depositional
thickness (ft) porosity permeability (md) net–to-Gross environment

Schelde 32.8 0.207 1105 60 Fluvial
Maas 65.6 0.190 90 88 Lower shoreface
Waal 85.3 0.241 814 97 Upper shoreface
Schie 16.4 0.194 36 77 Sandy shelf

this 9 layers contains 139× 48 grid blocks. The field is completed with 20 producers and 10

injectors (Fig. 4.1) with the producer surrounding by injectors.

Figure 4.1: The top of the Brugge field. Injectors are indicated with I and producers with P .
Areal extent is approximately 328,000 by 98,400 ft2, and the model has 9 layers and 44,550
active blocks.
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4.3 Prior realizations

A total of 104 realizations were generated using different geostatistical methods (Peters et al.

2009). The described properties are facies, net–to–gross, porosity, water saturation and per-

meability in the X, Y and Z directions. 78 of the realizations have facies modeling enabled

(FY) while 26 of the realizations facies are ignored (FN). For half of the realizations with

facies modeling enabled, the top formation (Schelde; fluvial depositional environment) is

modeled using channel objects in a shale background (SF). The left half is modeled us-

ing sequential indicator simulation (SS). For the realizations without facies, only sequential

indicator simulation (SS) is considered for all realizations. The porosity is generated us-

ing sequential Gaussian simulation for all the realizations. The permeability for realizations

with facies enabled is generated either using single poroperm regression (KS) (Fig. 4.3, up-

per graph), or using different poroperm regression for different facies (KM) (Fig. 4.3, lower

graph), or with cokriging on porosity (KP). When facies is ignored, only the first two methods

are used to create permeability. Overall, the realization either has a combination of FN-SS-

KS, or FN-SS-KP, or FY-SS-KS, or FY-SS-KP, or FY-SS-KM, or FY-SF-KS, or FY-SF-KP,

or FY-SF-KM. Each type of combination has 13 realizations.

4.4 Reservoir simulation parameters of the true model

PVT data. Table 4.2 lists all the PVT data at reference pressure of 2465 psi. Because the

reservoir is an undersaturated oil reservoir, the oil–water two–phase reservoir model is used

simulate the reservoir model in this dissertation.

Table 4.2: PVT data of the Brugge field at reference pressure of 2465 psi.

Density Compressibility Viscosity

lb/ft3 1/psi cp

Water 62.6 3.00× 10−6 0.320

Oil 56.0 9.26× 10−6 1.294

Pore - 3.50× 10−6 -
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Figure 4.2: Porosity and permeability relations derived from all wells of the Brugge field.

Upper graph shows the results for all facies. Lower graph shows the results for each individual

facies (image from TNO).
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Relative permeability and capillary pressure curves. The reservoir model is divided to

seven different rock types based on the porosity (Table 4.3). For different rock types different

relative permeability and capillary curves are used. The Corey permeability model is used to

calculate the permeability curve with the same exponents for different rock types which are

nw = 3, no = 5, Ke
rw = 0.6 and Ke

ro = 0.4. The end points for water saturation are different

for different rock types whereas the end points for oil saturation are the same. The relative

permeability curves and capillary curves are shown in Fig. 4.3 and Fig.4.4 respectively.

Table 4.3: Relative permeability of the Brugge field for the Corey models

Rock type Porosity (φ) range Swc Sor

1 ≥ 0.225 0.252 0.15

2 0.200–0.225 0.257 0.15

3 0.175–0.200 0.266 0.15

4 0.150–0.175 0.286 0.15

5 0.125–0.150 0.304 0.15

6 0.075–0.125 0.516 0.15

7 ≤ 0.075 0.850 0.15

Initialization data. The reference pressure is about 2465 psi at 5578 ft depth and the free

water level used in the true reservoir model is at depth 5505 ft. Besides free water level,

TNO also provided 104 realizations of initial water saturations. Instead of using the free

water level, we can also use the initial water saturation to initialize our reservoir models.

4.5 Producers and injectors

The field case has 20 vertical producers and 10 vertical peripheral water injectors. The well

completions are summarized in Table 4.4. The injectors are completed in all the formations

while some of the producers are only completed in the top layers to avoid completing under

initial oil water contact. One well is turned on each month. The starting sequence for all

the wells are as following: BR-P-5, BR-P-10, BR-P-11, BR-P-12, BR-P-13, BR-P-14, BR-

P-15, BR-P-16, BR-P-17, BR-P-18, BR-P-19, BR-P-20, BR-P-1, BR-P-2, BR-P-3, BR-P-4,
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Figure 4.3: Relative permeability curves for seven rock types of the Brugge field. Rock types
1–5 have similar relative permeability curves.

Figure 4.4: Capillary pressure curves for seven rock types of the Brugge field

68



BR-P-6, BR-P-7, BR-P-8, BR-P-9, BR-I-1, BR-I-2, BR-I-3, BR-I-4, BR-I-5, BR-I-6, BR-I-7,

BR-I-8, BR-I-9 and BR-I-10. The first turned on well is BR-P-5 which begins producing

on day 0 and the last well on production is BR-I-10, beginning on day 870. The producers

are controlled by a fluid production rate of 2000 stb/day and a maximum water cut of

90 percent. The injectors are controlled by water injection rate of 4000 stb/day. Monthly

production observations are provided for the first 10 years (bottom hole pressure for all wells,

and oil rate and water rate for each producer). Production history data provided by TNO

shows most of the wells can meet the target production rate 2000 stb/day except BR-P-9.

BR-P-9 starts with a liquid production rate about 1300 stb/day and it keeps on dropping to

about 600 stb/day at the end of year 10.

Table 4.4: Brugge field well perforations. Yes stands for perforated, no standards for not
perforated.

Layer 1, 2 Layer 3, 4, 5 Layer 6,7,8 Layer 9
Schelde Fm Maas Fm Waal Fm Schie Fm

Producers 1-4, 6-8, 11-13 and 16-20 Yes Yes Yes Yes
Producers 5, 10 ,14 and 15 Yes Yes No No
Producer 9 Yes No No No
All injectors Yes Yes Yes Yes

4.6 Initial ensemble performance

As I discussed in chapter 3, a good ensemble is needed for a good history match. In order to

know how accurate the initial ensemble captures the true field, we forecast the production

for the first ten years using the initial ensemble. The performance of the initial realizations

are reviewed in terms of match qualities to the observations from the true field.

4.6.1 Production data

The predictions of water cuts for selected producers and the bottom hole pressure for se-

lected producers and injectors are shown in Fig. 4.5 and Fig. 4.6 respectively. Here, we only
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show the prediction of bottom hole pressure for one injector; because, the performance for

all the injectors are quite similar. The initial ensemble prediction for most of the wells are

biased and the ensemble mean is not near to the observations. Despite the bias, the spread

of ensemble is moderate. For wells close to the free water level, water break through within

10 years (eg. BR-P-12, BR-P-18 and BR-P-20; Fig. 4.5). Generally, adjusting free water

contact would be a good solution to match water cuts. However, in our case, the ensemble

overestimates the water cuts of some wells while underestimates the water cuts of the others.

Thus adjusting free water level may not be the ideal solution. In addition, the predictions

of bottom hole pressures (Fig. 4.6) show that, the ensemble overestimates the bottom hole

pressure for injectors and underestimates the bottom hole pressure for producers. This indi-

cates an underestimation of permeability when the viscosities of water and oil are the same

as the true case.

4.6.2 Inverted 4D seismic data

4D seismic is an important source of information for the reservoir monitoring and improve-

ment of the geological model. The averaged seismic data, which inverted as time–lapse dif-

ferences in pore pressure and water saturation changes for the first ten years is also provided

by TNO as another type of observation data. However, because the data from TNO is for a

finer scale model (450,000 gridlocks), we cannot assimilate it for history matching without

down scaling; it can be used to check the quality of initial and updated realizations.

As it is shown in Fig. 4.7 and Fig. 4.8, the water swept area of the initial mean for Shelde

zone and Waal zone are smaller than these of the inverted 4D seismic data, indicating the

transmissibilities between injectors and producers are underestimated. This is further con-

firmed with the pressure changes which are shown in Fig. 4.8. Comparing with the inverted

4D seismic data, the initial ensemble mean has larger pressure drops at production area and

smaller pressure drops in other area.
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(a) BR-P-1 (b) BRP-2 (c) BR-P-9

(d) BR-P-11 (e) BR-P-12 (f) BR-P-13

(g) BR-P-15 (h) BR-P-16 (i) BR-P-17

(j) BR-P-18 (k) BR-P-19 (l) BR-P-20

Figure 4.5: Prediction of the water cuts from the initial ensemble for selected wells. Red dots
indicate the observations. The initial ensemble forecasts for most of the wells are biased.
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(a) BR-P-1 (b) BR-P-2 (c) BR-P-5

(d) BP-P-10 (e) BR-P-11 (f) BR-P-14

(g) BR-P-15 (h) BR-P-16 (i) BR-P-17

(j) BR-P-19 (k) BR-P-20 (l) BR-I-1

Figure 4.6: Prediction of the bottom hole pressure from the initial ensemble for selected
wells. Red dots indicate the observations. The prediction of bottom hole pressure for most
producers are lower than the observation; whereas the prediction of bottom hole pressure for
most injectors are higher than the observation.
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(a) Shelde zone, true model (b) Maas zone, true model (c) Waal zone, true model

(d) Shelde zone, initial ensemble mean (e) Maas zone, initial ensemble mean (f) Waal zone, initial ensemble mean

Figure 4.7: Water saturation changes for selected formations. Upper graphs show the 4D
inverted seismic data from the true model. Lower graphs are the predictions from initial
ensemble mean.

(a) Shelde zone, true model (b) Maas zone, true model (c) Waal zone, true model

(d) Shelde zone, initial ensemble mean (e) Maas zone, initial ensemble mean (f) Waal zone, initial ensemble mean

Figure 4.8: Pressure changes (unit in psi) for selected formations. Upper graphs show the
4D inverted seismic data from the true model. Lower graphs are the predictions from initial
ensemble mean.
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Chapter 5
An Adaptively Gathered EnKF for Brugge
Field Model Updating

5.1 Introduction

Chapter 3 discussed the gathered EnKF with a fixed gathered size and tested it with a

scalar and 2D cases. In this chapter, we apply it on a large and complex, synthetic reservoir

model–the Brugge field (chapter 4). We demonstrate that the gathered EnKF with a fixed

gather size may not work well if the ensemble mean is not very close to the truth. To address

this problem, we propose an adaptively gathered EnKF method. The method starts with a

small gather size. Then, if the ensemble mean prediction is converging on the observations

after assimilation, the gather size is doubled until it reaches a specified maximum interval. If

the mean ensemble prediction is diverging from the observations, we reduce our gather size by

half. The adaptively gathered EnKF is compared with standard EnKF and gathered EnKF

with a fixed gather size. Results are analyzed in terms of convergence and computational

cost.

5.2 Numerical experiments description

TNO provided monthly water production rate and oil production rate for all the 20 producers,

and bottom hole pressure for all the 10 injectors and 20 producers for years 1–10. For each

time step, there are about 70 observations available and totally there are bout 70 × 120 =

8400 observations available. In our numerical experiments, the water cut and bottom hole

pressure of the producers and the bottom hole of the injectors are used as observations.

Because the observations do not change significantly from month to month, we assume the

observations are available in a 3-month interval, thus the total number of observations used

in our numerical experiments are 50×40 = 2000. TNO does not provide measurement errors

for the observations, we assume the measurement error for water cut is 3 percent and for
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bottom hole pressure is 15 psi. Ne = 52 realizations are used in our numerical experiments to

save simulation time. To keep the diversity of the realizations, the 52 realizations are picked

up from every two of the 104 realizations instead of being randomly selected.

Five different senerios are tested in this chapter: standard EnKF, gathered EnKF withNg =

3, Ng = 5 and Ng = 10, and an adaptively gathered EnKF. The step–wise procedure for

the adaptively gathered EnKF is:

1. At assimilation step l = 1, Ng = 2, updating ensembles with EnKF.

START: DO WHILE LOOP (check stop criterion, see if more observations are avail-

able)

2. Forecast the performance of ensemble mean by forward running of simulation from

year 0 to year 10. Calculate the least square error δobs,l between the ensemble mean

prediction and the real observations.

3. l = l + 1. If δobs,l−1 < δobs,l−2 and Ng < Ng,max, Ng = Ng × 2, Else if δobs,l−1 < δobs,l−2

and Ng = Ng,max, Ng = Ng, Else δobs,l−1 > δobs,l−2, Ng = Ng/2, updating ensembles

with EnKF.

END: DO WHILE LOOP

The maximum gather size Ng,max varies from case to case depending on the number of

observations available at each time step and the ensemble size. In this chapter, we choose

Ng,max = 8 because if we set Ng,max = 16 then it takes much longer to calculate the Kalman

gain.
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5.3 Results

5.3.1 Comparison of RMSE for production data

RMSE for water rate, oil rate and bottom hole pressure (BHP) for the history matching

period of the first 10 years are used to show the quality of history match. They are calculated

using Eqs. 5.1–5.3.

RMSEBHP =

���� 1

Nt(NP + NI)

Nt�

t=1

NP +NI�

i=1

(BHPt,i −BHPobs,t,i)
2 (5.1)

RMSEwater =

���� 1

NtNP

Nt�

t=1

NP�

i=1

(Qw,t,i −Qwobs,t,i)
2 (5.2)

RMSEoil =

���� 1

NtNP

Nt�

t=1

NP�

i=1

(Qo,t,i −Qoobs,t,i)
2 (5.3)

where NI is the number of injectors and NP is the number of producers. Nt indicates total

number of time step at which observations are available. Qw and Qo are the predicted water

and oil production rates using updated ensemble. Qwobs and Qoobs are the water and oil rates

from the true field.

RMSE results for the five different scenarios are summarized in Table 5.1. RMSEs have

been significantly reduced compared with the initial ensemble for all cases. In addition, we

notice that the gathered EnKF with a fixed gather size works better than standard EnKF

only when small gather size is used (Ng = 3). The RMSEs increase with the increase of

gather size. This is because, when the prior ensemble mean is not near the truth, a smaller

gather size updating keeps the model on track and close to the true solution. However, if

the gather size is too small, the frequent model updating may destroy ensemble diversity

and lead to filter divergence; this explains why standard EnKF does not work as well as

gathered EnKF with Ng = 3. In such case, gathering observations adaptively could be a

good choice. In adaptively gathered EnKF, if the mean is not near the truth, a smaller

gather size is chosen. The gather size increases when the ensemble mean gets more and more
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close to the truth until it reaches to a specified maximum interval. The specified maximum

interval is the optimum value at which computational cost is minimum. In this case, the

adaptively gathered EnKF works slightly worse than gathered EnKF with Ng = 3 (better

than Ng = 10) but with 18 percent reduction on computational cost (see 5.3.3).

Table 5.1: Quality of the history match (RMSE) with production data for years 0–10.

RMSE water RMSE oil RMSE BHP
stb/day stb/day psi

Initial ensemble 354 394 451
Standard EnKF 46 73 78
GEnKF Ng = 3 46 64 34
GEnKF Ng = 5 50 68 46
GEnKF Ng = 10 70 102 45
AGEnKF Ng ∈ {2, 4, 8} 55 70 39

Comparing with nine participated groups in the benchmark workshop (Table 5.2), our

results obtained from AGEnKF is only higher than that of two groups (IRIS and OU

groups). This may because we only use 52 realizations while these two groups used 104

realizations.

Table 5.2: History match results for years 0–10 from the Brugge benchmark study (Peters
et al. 2009).

RMSE water RMSE oil RMSE BHP
stb/day stb/day psi

Halliburton 178 61.0 209
IRIS 19.4 25.1 13.2
OU/Chevron 41.3 47.3 18.4
Roxar NA NA NA
SLB 118 181 275
TAMU 104 95.5 47.3
Tulsa 87.3 90.0 25.6
SIEP 135 161 165
Stanford/Chevron 213 130 82.4
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5.3.2 Updated ensemble performance

Both the updated ensemble of adaptively gathered EnKF and standard EnKF are rerun

from time zero. The performance of each updated realization for both methods are shown

in Fig. 5.1 and Fig. 5.2. Both methods match the water cut very well (Fig. 5.1). The only

thing different is that the updated ensemble spread of adaptively gathered EnKF is wider

than standard EnKF for some wells (e.g. BR-P-17, BR-P-19). For bottom hole pressure, the

results from adaptively gathered EnKF is less biased than standard EnKF for most of the

wells.

The water saturation and pressure changes for the first 10 years are also plotted and

compared with the 4D inverted seismic data. Because the standard EnKF and adaptively

gathered EnKF obtain similar results, only the results of adaptively gathered EnKF is

shown here. The water saturation (Fig. 5.3) and pressure (Fig. 5.4) changes after adaptively

gathered EnKF match the 4D seismic data very well compared with the predictions using

initial ensemble (Fig. 4.7 and Fig. 4.8).

5.3.3 Comparison of CPU time

The computation time for different senerios are summarized in Table 5.3. Increasing the

gather size can save the total simulation time used for history matching. For example, com-

paring with standard EnKF, a gathered EnKF can reduce computational cost by more

than 50 percent. Less than 20 percent of the total time saved is from avoiding time con-

sumed by tasks like file reading, writing, transferring, calculating of the covariance matrix

and so on (time used for i/o, etc). More than 80 percent is saved by avoiding restarts for

simulation runs (Fig. 5.5). If we simulate the Brugge field for 10 years in one run, it requires

less than 200 seconds; but if we cut it to 40 equalized runs (0.25 year per run), it takes more

than 1000 seconds. Therefore, increasing the gather size can significantly save simulation

run time, especially for large ensemble size (assuming all the realizations are running se-

quentially). However, with the increase of gather size, the time used for calculating Kalman
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(a) BR-P-11, after EnKF (b) BR-P-13, after EnKF (c) BR-P-15, after EnKF

(d) BR-P-11, after AGEnKF (e) BR-P-13, after AGEnKF (f) BR-P-15, after AGEnKF

(g) BR-P-17, after EnKF (h) BR-P-19, after EnKF (i) BR-P-20, after EnKF

(j) BR-P-17, after AGEnKF (k) BR-P-19, after AGEnKF (l) BR-P-20, after AGEnKF

Figure 5.1: History match of water cut for selected wells using EnKF and adaptively gathered

EnKF (AGEnKF). Red dots are the observations from the true case. Both methods match

the observations well. The updated ensemble spread of adaptively gathered EnKF is wider

than standard EnKF for some wells (e.g. BR-P-17, BR-P-19 and BR-P-20).
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(a) BR-P-1, after EnKF (b) BR-P-5, after EnKF (c) BR-P-14, after EnKF

(d) BR-P-1, after AGEnKF (e) BR-P-5, after AGEnKF (f) BR-P-14, after AGEnKF

(g) BR-P-16, after EnKF (h) BR-P-20, after EnKF (i) BR-I-1, after EnKF

(j) BR-P-14, after AGEnKF (k) BR-P-16, after AGEnKF (l) BR-I-1, after AGEnKF

Figure 5.2: History match of bottom whole pressure for selected wells using EnKF and

adaptively gathered EnKF (AGEnKF). Red dots are the observations from the true case.

Both methods match the observations well. The results of the adaptively gathered EnKF is

less biased than the standard EnKF.
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(a) Shelde zone, true model (b) Maas zone, true model (c) Waal zone, true model

(d) Shelde zone, ensemble mean after
AGEnKF

(e) Maas zone, ensemble mean after
AGEnKF

(f) Waal zone, ensemble mean after
AGEnKF

Figure 5.3: Water saturation changes for selected formations. Upper graphs show the 4D
inverted seismic data from true model. Lower graphs are the predictions of the updated
ensemble for adaptively gathered EnKF. The saturation changes after adaptively gathered
EnKF match the 4D seismic data well compared with the predictions from the initial en-
semble (Fig. 4.7).
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(a) Shelde zone, true model (b) Maas zone, true model (c) Waal zone, true model

(d) Shelde zone, ensemble mean after
AGEnKF

(e) Maas zone,ensemble mean after
AGEnKF

(f) Waal zone,ensemble mean after
AGEnKF

Figure 5.4: Pressure changes (unit in psi) for selected formations. Upper graphs show the
4D inverted seismic data from true model. Lower graphs are the predictions of the updated
ensemble for adaptively gathered EnKF. The pressure changes after adaptively gathered
EnKF match the 4D seismic data well compared with the predictions from the initial en-
semble (Fig. 4.8).
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Table 5.3: Computation time (unit in hour) used for different methods. GEnKF and
AGEnKF stand for gathered EnKF and adaptively gathered EnKF respectively.

Time used for Time used for Time used for Total
run simulations Kalman gain i/o, etc.

Standard EnKF 14.19 0.37 1.55 16.11
GEnKF Ng = 3 7.17 0.23 0.68 8.08
GEnKF Ng = 5 5.75 0.40 0.56 6.71
GEnKF Ng = 10 5.02 1.06 0.01 6.09
AGEnKF Ng ∈ {2, 4, 8} 5.78 0.69 0.12 6.59

gain of each assimilation step also increases significantly (shown with blue in Fig. 5.6). For

gather size Ng = 1, the calculation of Kalman gain at each time step only takes 30 seconds;

but for Ng = 10, it takes about 900 seconds. When gather size reaches to a certain value, it

becomes impractical to calculate the Kalman gain matrix. The total time used on Kalman

gain calculation through out the history matching process first decreases and then increases

with the increase of gather size (shown with red in Fig. 5.6). The reduction is caused by

decreasing of total number of assimilation steps.

Figure 5.5: Total simulation time increases with number of restarts. Axis Y shows the total
simulation time required to simulate the Brugge field for 10 years. Axis X shows cases with
different number of simulation breakdown. Running 10 years in 40 restarts (Ng = 1) costs
almost 5 times as an uninterrupted run (full run) does.
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Figure 5.6: Time used to calculate Kalman gain for different senerios. Blue shows time used
at each assimilation step, red shows the total time used on Kalman gain calculation for
the whole history matching process. Time used on Kalman gain at each time step increases
significantly with the increase of gather size. The total time used decreases and then increases
with increase of gather size.

5.4 Discussion

Despite the appeal of ensemble Kalman filter, there is much yet to be learned before it reaches

its full potential. As we mentioned in chapter 3, one substantial problem of EnKF is that

the ensemble estimate of covariance tends to be overwhelmed with noise when the ensemble

size is small, leading to unrealistic updating of the unknown variables. For the Brugge field,

the size of ensemble (52) used is much smaller than the number of unknowns (44,550 × 7).

Thus, the estimated ensemble covariance is expected to exhibit strong spurious correlations.

In the following two subsections, we discuss two methods that can reduce the noise in the

estimated covariance. The first method is called distance localization in which the spurious

correlations in the estimated ensemble covariance is filtered by multiplying the covariance

matrix with a distance dependent correlation function. For the second method, we reduce

the number of unknowns (size of the state vector) by using the correlations between reservoir

gridblock properties.
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5.4.1 Distance localization

Spurious correlations may arise in the estimated ensemble covariance when a limited en-

semble size is used in an EnKF. When the gridblocks are far apart, correlations between

the separated gridblock properties are small. Thus the spurious noise tends to dominate

the estimated covariance. Houtekamer and Mitchell (1998) noted that by simply filtering

(excluding) the observations greatly distant from the gridblock can improve the accuracy of

EnKF method. Their method was further improved by filtering the estimated covariance us-

ing the Schur product of the estimated ensemble covariance matrix and a distance–dependent

correlation function that varies from 1.0 at the observation location to 0 at some prespeci-

fied radial distance (Houtekamer and Mitchell 2001). They found that by incorporating this

covariance localization not only the analysis errors are improved but also the analysis were

smoother than when observations beyond a specified distance from the observation were

excluded. Hamill and Whiteaker (2001) used numerical experiments to show that noise in

the estimated covariance overwhelms the signal at relatively short distances from the obser-

vations, if the ensemble size is small; for larger ensembles, noise does not overwhelm until

much further from the observations.

We use the distance–dependent correlation function described in Furrer and Bengtsson

(2007) which is also applied by Chen (2008):

ρ(s) =
1

1 + (1 + fc(0)2/fc(s)2)/Ne
, (5.4)

where Ne is the ensemble size. fc is a covariance function used to calculate the covariance

between different gridblock properties. The exponential form is used in this study,

fc(s) = exp

�
−(

s

L
)
2
�

, (5.5)

with parameter L is the specified distance within which the observations is incorporated

instead of filtered; s is the distance between two gridblocks.
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The standard localization scheme applies the localization matrix ρ(s) to the estimated

Kalman gain Ke via Schur product (Chen 2008),

Kloc = ρ(s) ◦ Ke, (5.6)

with Ke calculated by Eq. 3.4. The Schur product matrices A and B is a matrix C of the

same dimension, where Ci,j = Ai,jBi,j.

The updated permeability distributions with and without localization for Brugge field

are shown in Fig. 5.7. Without localization, unreasonable large changes happens in regions

where permeabilities have small correlations with the observations. With localization, only

permeabilities near the well locations are changed.

5.4.2 Using correlations between different properties

Spurious correlation become strong if ensemble size is small compared with the state vec-

tor. Either increasing the ensemble size or reducing the size of state vector should reduce

the spurious correlations; however, increasing the ensemble size is computationally expen-

sive, especially for complex reservoir models. Instead, the correlations between the gridblock

properties can be used to reduce the uncertainty of the reservoir models, because this reduces

the number of unknowns.

In general, correlations exist between porosity and permeability kx, ky and kz. This is

also true for the Brugge field. The initial information given by TNO shows that a linear

relationship exists between porosity and ln horizontal permeabilities (see Fig. 5.8 upper two

graphs and Fig. 4.3). In our previous numerical experiments, porosity and permeability kx,

ky and kz are assumed to be independent from each other. For these cases, after EnKF, the

correlations are not well preserved due to spurious correlations (Fig. 5.8 lower two graphs).

In this subsection, reservoir model uncertainty is reduced using the relationship between

the gridblock properties from the initial ensemble mean. Thus, only net-to-gross and porosity

are the properties need to be updated. Permeability kx is generated using equation k̂x =

0.038 exp(43φ) (see Fig. 5.8 upper left graph). Since for the Brugge, kx = ky, same equation
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(a) Layer 1, initial ensemble mean (b) Layer 1, without localization (c) Layer 1, with localization

(d) Layer 2, initial ensemble mean (e) Layer 2, without localization (f) Layer 2, with localization

(g) Layer 5, initial ensemble mean (h) Layer 5, without localization (i) Layer 5, with localization

Figure 5.7: ln k distribution for selected layers. Left graphs are the ln k of the initial ensemble
mean. Middle graphs are the updated ln k without localization; and the right graphs are the
results with localization. With localization, only the permeabilities near the well locations
are changed.

is used to generate ky. kz is generated using equation k̂z = 0.00058 exp(48φ) (see Fig. 5.8

upper right graph). The two equations are obtained by applying reduced major axis (Jennings

1999) regression on the initial ensemble mean. By doing so, the correlations between porosity

and permeabilities are better preserved without sacrificing the quality of history match. Fig.

5.9 shows EnKF with correlations matches the rate observations as good as the EnKF

without correlations (and with more unknown model parameters). In addition, reducing the

number of unknowns saves CPU time when calculating Kalman gain. For example, in this
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case, for a gather size of Ng = 8, the CPU time used to calculate Kalman gain is reduced by

half if correlations between different parameters are used.

However, one should be careful when using correlations between different parameters to

reduce the uncertainty: inappropriate correlations may cause unreasonable updating of the

unknowns and eventually lead to filter divergence.

(a) PoroPerm(kx) correlations of the initial ensemble mean (b) PoroPerm (kz) correlations of the initial ensemble mean

(c) PoroPerm(kx) correlations of the ensemble mean after
EnKF

(d) PoroPerm(kz) correlations of the ensemble mean after
EnKF

Figure 5.8: Porosity and permeability correlations before and after EnKF. The correlations
are not well preserved after EnKF due to spurious correlations.

5.5 Conclusions

An adaptively gathered EnKF is proposed in this chapter. The adaptively gathered EnKF

is tested on Brugge field and compared with the standard EnKF. Our numerical experiments

show that when the prior mean is not near the “truth”, the gathered EnKF with a fixed
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(a) Oil production rate (b) Water production rate

Figure 5.9: History match of field oil and water production rates using EnKF with and

without parameter correlation. EnKF with correlations works as good as EnKF without

correlations.

gather size may not work well. In this case, an adaptively gathered EnKF is needed. Exper-

iment shows the adaptively gathered EnKF is more efficient, accurate, and stable than the

standard EnKF for the Brugge field. In addition, using distance–localization and parameter

correlations improves the accuracy or efficiency of EnKF method. Distance–localization im-

proves the accuracy by filtering spurious correlations in which the observation–parameter dis-

tance is large. Finally, using parameter corrections may better preserve relationships among

parameters without sacrificing the quality of history match, and may yield savings in com-

putation time.
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Chapter 6
Closed–Loop Reservoir Management On

Brugge Field, Including Price Uncertainty

6.1 Introduction

The closed–loop reservoir management is also known as i–field, e–field, smart field or dig-

ital oil field of the future. It uses interactive, complementary technologies and knowledge–

management systems to allow company continuously optimize the field. New technologies

including intelligent wells with fiber–optic sensors ensure constant stream of data about

the well and its environment transferred to the remote office, enabling timely decision be

made. The closed–loop reservoir management helps companies to reach previously off–limits

reserves. It also helps the oil industry manage a shrinking labor force and rising oil demand.

From reservoir engineer of view, the closed–loop reservoir management has two major

components: real–time reservoir model updating and model–based production optimization.

The real–time reservoir model updating differs from traditional history matching in a way

that it assimilates the observations in a sequential manner instead of a “batch type” in order

to keep the reservoir model up–to–date. The primary goal of real–time model updating

is to allow decision to be made to maximize the production potential based on the most

recent updated reservoir models. When the geological model(s) are updated, model–based

production optimization is used to simultaneously determine optimal operating parameters

for the remaining expected life of the reservoir. The reservoir model updating and production

optimization loop can be repeated over the life of the reservoir. The underlying hypothesis

for closed–loop reservoir management is that by frequent life–cycle optimization based on

frequently updated models we can increase the reservoir recovery significantly.

There is a large element of uncertainty in reservoir management, including technical un-

certainty and economic uncertainty. Fariyibi (2006) defines technical uncertainty is the un-

certainty “relates to whether or not the hydrocarbon volume estimated by geologists and
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engineers exists in the ground and whether or not the reserves and recovery rates will be as

projected by the engineers”, and economic uncertainty is caused by “a lack of knowledge of

future oil and gas prices, drilling and production costs, and other parameters affecting the

economic performance of petroleum assets.” Since uncertainty is inevitable, how to quan-

tify those uncertainties is important in reservoir management. Quantification of uncertainty

leads to better decision making and greater profitability; absent or inaccurate uncertainty

quantification and forecasts can lead to suboptimal operations and poor economic perfor-

mance. Previous works quantify technical uncertainty in closed–loop reservoir management;

however, relatively little attention has been paid on addressing economic uncertainty.

This chapter demonstrates the closed–loop reservoir management concept in Brugge field.

This demonstration includes oil price uncertainty in closed–loop reservoir management, and

discusses the impact of price uncertainty on optimized well controls. The technical uncer-

tainty is quantified via a set of realistic models using all known information and keeping

these models up to date by conditioning the forecast model to new observations.

To better forecast and quantify the uncertainty of future oil price, the historical oil price

is examined. Three price forecasting models–Conventional Forecast (CF) method, Bootstrap

Sampling (BS) and Sequential Gaussian Simulation (SGS)–are used to forecast prices. The

forecast oil prices are updated whenever new oil prices are available. The adaptively gathered

EnKF is then used to update the reservoir models and multiscale regularized EnOpt is used

to determine the optimal frequency for adjusting well controls. The effect of discount rate

on optimized well control is also discussed.

6.2 Historical oil price

To predict the future behavior of crude oil, examination of the historical oil price is needed.

The blue curve in Fig. 6.1 shows the historical monthly oil prices from year 1974 to year 2011.

In the past 37 years, the crude oil prices adjusted have fluctuated wildly between a low price

of about 6 $/bbl to a high price about 130 $/bbl with an average about 50 $/bbl. There are
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many factors affecting crude oil prices, including supply and demand, petroleum reserves,

world crises, natural and man made disasters, technical advances and so on. Because the

forecasting methods are assumed to be stochastic, we give no explanation of events that lead

to extreme oil price fluctuations.

The Brugge field is used as an example to illustrate the closed–loop reservoir management

concept. To verify the accuracy of the forecast models, we assume Brugge field starts de-

veloping at January 2002. Therefore, only prices from January 1974 to December 2001 are

treated as historical data and used in the price forecasting models after adjusting for inflation

(red curve in Fig. 6.1). Oil prices from January 2002 to December 2011 are used as price

observations which are assumed to be gradually available during reservoir development.

Figure 6.1: Monthly historical WTI oil prices from year 1974 to 2011 (Energy Informa-

tion Administration 2012). Blue curve indicates the nominal oil prices; and the red curve

indicates oil price adjusting for inflation of December 2001.
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6.3 Price forecasting models

The impacts of the price uncertainty quantification models on optimized well controls are

investigated using three different forecast models: conventional forecast method, bootstrap

sampling method and sequential Gaussian simulation method. The workflow of these three

methods are described in the following subsections.

6.3.1 Conventional forecast

The conventional method uses a range of forecasts representing the pessimistic, most likely

and optimistic cases to quantify the uncertainty of oil prices. The pessimistic case is consid-

ered to be a P90 value and the optimistic case a P10 value. The spread between the pes-

simistic and optimistic cases is interpreted as 80 percent confidence interval. Conventional

forecasts are commonly represented as monotonically increasing, having little resemblance

to historical prices paths. As a result, conventional method fails to capture the full range

and fluctuating character of price uncertainty (Fariyibi 2006; Holmes, Mendjoge, and McVay

2006; McMichael 1999)

Following McMichael (1999), the pessimistic case in this study assumes the oil prices

remain at current oil price (20 $/bbl in December 2001) in the future. The most likely case

assumes oil price increases with a constant annual rate which is determined from historical

information, and the optimistic case assumes oil price raises with an annual rate twice as the

mostly likely case. The average historical inflation rate (3 percent) is chosen as the annual

increasing rate. In this dissertation, to generate multiple realizations, a normal distribution

with mean 3 percent and standard deviation of 1.3 percent are used to generate annual

increasing rates for different realizations. The forecast realizations are shown in Fig. 6.2. The

price uncertainty is poorly captured by conventional forecast because all of the realizations

are far lower than the true oil prices.
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Figure 6.2: Conventional oil price forecasts from year 2002 to 2011. Black curves represent

the forecast realizations and the green curve represents the forecast mean. The red curve

represents the real observations

6.3.2 Bootstrap forecast

The basic idea behind bootstrap is simple and goes back at least two centuries (Faure and

Grotjahn 2001). Given an original sample, which itself is assumed to be the best estimation

of the population, bootstrap generates a sample set of size n by randomly sampling the

original data with replacement. In this way, some numbers in the original data set may be

taken several times while others may be excluded. The process can then be repeated as often

as needed. The advantage of it is the simplicity. However, it requires each number must be

statistically independent of the other number and does not preserve the correlation of oil

prices in time (McMichael 1999; Fariyibi 2006).
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Following Fariyibi (2006), the historical monthly fractional prices changes (
∆Po
Po

)i of the

crude oil without inflation are used to generate multiple forecasts

(
∆Po

Po
)i =

Po,i − Po,i−1

Po,i−1
, (6.1)

where Po,i is the price of oil for month i after adjusting for inflation.

Steps for generating the multiple price realizations for bootstrap method are summarized

as below:

1. Remove inflation for historical nominal oil prices (present in 2001 December constant

dollars). This is done by diving the inflation factor with nominal oil prices;

2. Calculate the historical fractional monthly oil price changes ((
∆P
P )i) using Eq. 6.1;

3. Use the historical monthly oil prices changes ((
∆P
P )i) as the population, forecasting

fractional monthly oil price changes for the future using bootstrap sampling;

4. Calculate future oil price by multiplying current oil price (Po,0) with cumulative frac-

tional price change which is defined as

Po,i

Po,0
= (1 + (

∆Po

Po
)i)(1 + (

∆Po

Po
)i−1)(1 + (

∆Po

Po
)i−2) · · · (1 + (

∆Po

Po
)1); (6.2)

5. Adjust the forecasted oil prices for inflation (an annual inflation rate of 3 percent is

used in this case);

6. Repeated all the above steps for multiply forecasts.

The forecast results of bootstrap method are shown in Fig. 6.3. Bootstrap forecasting cap-

tures uncertainty better than conventional method (Fig. 6.2).

6.3.3 Sequential Gaussian simulation forecast

Holmes, Mendjoge, and McVay (2006) applied sequential Gaussian simulation (SGS) method

to quantify the uncertainty of future oil prices. Since the use of SGS requires the input
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Figure 6.3: Bootstrap oil price forecasts from year 2002 to 2011. Black curves represent
the forecast realizations and the green curve represents the forecast mean. The red curve
represents the real observations.

data be normal distribution whereas the historical oil prices were not; they used a normal

score transform, transferring the historical oil prices after removing inflation to a standard

normal distribution. The transformed data was then used to model the correlation of the

oil price in time by plotting out the semivariogram. Finally, the SGS method was used to

generate multiple realizations consisting with both the frequency distribution and temporal

variability of the historical price. A inverse normal score transform was then used to converts

the forecasted normal score oil prices to regular oil prices. Comparing with bootstrap method,

the advantage of SGS is that it preserves the correlations of the oil prices in time.

As shown in Fig. 6.4, even though the historical oil prices from year 1974–2011 are not

normally distributed (shown in the left figure), their log values are approximately normal

distributed (shown in the right figure). So, instead of using a normal score transform, we

directly use the log(Po) to develop the semivariogram. An exponential model is then used
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to fit the semivariogram as shown in Fig. 6.5. The exponential model is used to generate

multiply realizations using conditional sequential gaussian simulation. All these processes

were performed using software R (Team 2008).
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Figure 6.4: Histograms of historical oil price (left) and log historical oil prices (right),

from year 1974–2001, excluding inflation. Historical oil prices are approximately normal

distributed after log transform.

Steps for generating the multiple price realizations for sequential Gaussian simulation

method are summarized as below:

1. Remove inflation for historical nominal oil prices (present in 2001 December constant

dollars);

2. Generate the semivariogram of historical log(Po,i);

3. Use conditional (condition it to current oil price (December 2001) ) sequential Gaussian

simulation to generate multiple realization for log(Po,i). The generate realizations must

be consistent with the historical semivariogram;

4. Adjust the forecasted oil prices for inflation (an annual inflation rate of 3 percent is

used in this case).
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Figure 6.5: Semi-variogram of historical oil prices after log transform.The exponential model

fits to the semi-variogram well.

Price forecasting results for sequential Gaussian simulation method are shown in Fig. 6.6.

The uncertainty forecasted using sequential Gaussian simulation is higher than conventional

method and lower than the bootstrap method. All these three methods underestimate the

future oil prices in this particular case.

6.4 Optimization formulation and methods

Chapter 2 described production optimization methods on single reservoir model assuming

known geology model and constant oil and water price. This chapter extends the optimization

objective function and methods to multiple reservoir models and oil price realizations. Only

the ensemble based optimization method is used in this chapter. The BOBYQA method is

discarded because it is not as efficient as EnOpt when the number of unknowns is in the

order of 100.
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Figure 6.6: Sequential Gaussian simulation oil price forecasts from year 2002 to 2011. Black
curves represent the forecast realizations and the green curve represents the forecast mean.
The red curve represents the real observations.

6.4.1 Objective function

As in chapter 2, the net present value (NPV) is chosen as the objective function to be

maximized. When optimizing considering geological and oil price uncertainty, the optimized

NPV is not only affected by well controls, but also by reservoir properties and future oil

prices. Therefore, the NPV of each realization j is calculated as

gj(x, yj, Po,j) =
Nt�

i=1

Po,i,jQo,i,j(x, yj)− PwQw,i,j(x, yj)

(1 + rτ )
ti
τ

, (6.3)

where x is the vector of well control variables; y indicates the vector of reservoir properties;

Ne is the total number of reservoir model realizations; Nt is the total number of control time

steps; Po,i,j is the forecast oil price at time ti for realization j. Pw is the water disposal cost

which assumed to be a constant. Qo,i,j and Qw,i,j represent the total production oil and water

over time step ∆ti for realization j, respectively. rτ is the discount rate in terms of time span
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τ , ti is the cumulative production time at time step i. The objective function gj(x, yj, Po,j)

gives NPV as a function of well control x, reservoir properties y and oil prices Po.

The average NPV over all realizations is the objective function needed to be maximized

J(x) =
1

Ne

Ne�

j=1

gj(x, yj, Po,j). (6.4)

Only the well controls are adjusted during the optimization process. In closed–loop reservoir

management, the reservoir properties yj are updated after each data assimilation (reservoir

history matching). The forecast oil prices Po,j are also updated when new oil prices are

available.

6.4.2 Ensemble–based optimization under uncertainty

As in chapter 2, steepest ascent method is used to illustrate the methodology of EnOpt.

The steepest ascent method is given as,

xl+1 =
1

αl
CxG

T
l + xl, (6.5)

where x is a vector of the well control variables; l is the iteration index. Cx is the covariance

matrix of the well control variables which is used as a preconditioner here (Chen 2008). α

is the step size for the search direction, and Gl is the gradient of objective function with

respective to x.

For the uncertain reservoir description represented by an ensemble,

CxG
T ≈ 1

Ne

Ne�

j=1

Cx,gj(x,yj ,Po,j), (6.6)

where Ne is the ensemble size of reservoir models, iteration index l is dropped for simplicity.

As it is proven by Chen (2008), the cross-covariance CxGT can be approximated

CxG
T ≈ 1

Ne
[

Ne�

i=1

(xj − x̄)(gj(xj, yj, Po,j)− ḡ(x, y, Po)], (6.7)

where

ḡ(x, y, Po) =
1

Ne

Ne�

j=1

gj(xj, yj, Po,j), (6.8)
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and

x̄ =
1

Ne

Ne�

j=1

xj. (6.9)

6.5 Open–loop production optimization

In this section, we use open–loop production optimization to demonstrate (a) multiscale reg-

ularization application on finding optimal adjusting frequency for well control; (b) the effect

of discount rate on optimized well control and (c) the effect of different forecast models on

optimized well control. The open–loop optimization is an approach wherein the optimization

is directly performed on the true reservoir model (Sarma 2006). Because, in reality, the true

reservoir model is never known. Here, we use the history matched reservoir models from last

chapter instead. We assume the history matched models are very close to the true model. In

chapter 5, we history matched the reservoir models using production data from year 0–10.

Here, we optimize the NPV of the field from year 10–20 using the history matched models.

The optimization is carried out with only one inflow control valve (ICV) per well. Producers

are producing under maximum fluid rate constraint (3000 stb/day) and the injectors are

producing under maximum injection rate constraint (4000 bbl/day). If not otherwise speci-

fied, the cost for disposing produced water is 5 $/bbl and the oil price is 80 $/bbl. The liquid

production rate of each producer and water injection rate of each injector are manipulated

to maximize the NPV. These well controls are adjusted every half year for nonregularized

case. There are 30 wells × 20 time steps = 600 unknowns. An ensemble size of 30 is used for

all scenarios.

6.5.1 Sensitivity to discount rate

If the NPV is discounted, it assumes the early production phase is more important than the

later years. Assuming a discount rate of 10 percent, one barrel of oil in 10 years later would

be equivalent of
1

(1+0.1)10 = 0.385 barrel today. In this subsection we test how the optimized

well control strategies are affected by discount rate. Four different scenarios are considered: a
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nondiscounted case (discount rate = 0) and three discounted cases with discount rate equal

to 0.1, 0.2 and 0.3 respectively. Except the discount rate, other parameters are the same

for these four scenarios. The effect of discount rate on the optimized well control strategy

is clearly demonstrated in Fig. 6.7. When a higher discount rate is used, it implies a higher

value for oil produced early, and very little value is attached to oil produced in later years

or decades. As a result, less cumulative oil is usually produced at higher discount rates.

If a discount rate of zero is used, the optimization target is equivalent to maximizing the

cumulative field oil production rate while minimizing the cumulative water production.

6.5.2 The effect of multiscale regularization

Chapter 2 presented multiscale regularization for an ensemble based method. Here, multi-

scale regularization method is further tested on the Brugge field. For unregularized EnOpt,

well controls are adjusted every half year; this gives a total of 600 unknowns. For multi-

scale regularized EnOpt, optimization starts with a coarse scale (well controls are adjusted

every 10 years) and gradually refined until further refinement does not improve the NPV.

Table. 6.1 compares the results of EnOpt with multiscale regularized EnOpt. Optimization

has improved the NPV by more than 15 percent for both methods. Multiscale regularized

EnOpt obtains slightly higher NPV than standard EnOpt while using a larger well control

adjustment time interval. In addition, multiscale regularization saves computational cost by

about 30 percent.

Table 6.1: Comparison of EnOpt and multiscale regularized EnOpt. MEnOpt stands for
multiscale regularized EnOpt.

Time interval used Initial optimized CPU time
Methods for well control adjustment NPVa NPVa used for optimization
EnOpt 6 months 3.0× 109$ 3.45× 109$ 31 hours
MEnOpt 15 monthsb 3.0× 109$ 3.50× 109$ 22 hours
aThe NPV shown here is the mean value of the ensemble.
bThis is the finest scale used in MEnOpt.
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Figure 6.7: The effect of discount rate on optimized well control strategy. When a higher
discount rate is used, it implies a higher value for oil produced early, and very little value is
attached to oil produced in later years or decades. As a result, less cumulative oil is usually
produced at higher discount rates.
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6.5.3 Optimization with price forecasting

This subsection test the impact of the price uncertainty quantification models on optimized

well control strategies. Three different scenarios are compared:

1. Optimize with known prices: oil prices are assumed to be known without uncertainty

and the production optimization is done based on the true prices use EnOpt method.

This is used as a reference case.

2. Optimize with price forecast mean: oil prices are assumed to be unknown. Conventional,

bootstrap and sequential Gaussian simulation methods are used to forecast the future

oil prices. The forecast means are then used for each simulation model.

3. Optimize with multiple price realizations: the same as scenario 2 except instead of

using forecast mean, different price realizations are used for different geology models.

When optimization is done under single price model (without uncertainty), the closer the

forecast price to the true price, the higher the NPV is achieved. This is clearly demonstrated

in Table 6.2. The normalized RMSE of forecast prices are used to quantify the accuracy of

forecast price models. It is defined as

δPo =

���� 1

NPo

NPo�

i=1

(
P fm

o,i − P t
o,i

P t
o,i

)2, (6.10)

where NPo is the total number of prices used in optimizations. In this case NPo = 120 (120

months × 1/ month ). P fm
o,i is the forecast mean and P t

o,i is the true price. Among all these

three forecast methods, bootstrap obtains the lowest RMSE and the conventional forecast

obtains the highest. As a result, the realized NPV using bootstrap forecasting is $70 million

more than that of using conventional forecasting, and it is very close to the realized NPV of

optimizing with known price (1 percent difference).

The forecast price mean for all these three methods increases monotonically; while the real

oil prices fluctuated wildly (Figs. 6.2, 6.3 and 6.6 ). To demonstrate how the fluctuation in oil
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Table 6.2: Comparison of different forecast models.

Normalized RMSE Optimized NPV Realized NPVa

Methods of forecast prices 109$ 109$

Optimize with known price 0.00 2.20 2.20

Optimize with BS mean 0.52 0.92 2.18

Optimize with SGS mean 0.55 0.85 2.14

Optimize with CF mean 0.60 0.74 2.09
aThe realized NPV is NPV achieved when applying true price to the op-

timized control strategies.

prices impacts the optimized well controls, semivariograms are generated using optimized well

controls of all 20 producers for optimizations with bootstrap forecast mean and known price.

The bootstrap forecast mean is used as a representative of monotonically increasing cases.

As it is shown in Fig. 6.8, optimized well control with true prices has a larger semivariogram

sill (i.e., control variability) than that with bootstrap forecast mean at the same lag-time.

Thus, instability in the oil prices also causes fluctuation in optimized well controls. This is

also clearly demonstrated in Fig. 6.9.

There is always uncertainty associated with future oil prices. In this study, like the geolog-

ical uncertainty, the price uncertainty is represented by using an ensemble of price forecast

models. Incorporating uncertainty in decision making can lower the risk and therefore may

leads to cost reduction. Fig. 6.10 compares optimized NPV frequency distribution with and

without uncertainty for three different forecasting models. The red curve represents the case

of optimizing with multiple price realizations and the blue curve represents the case of opti-

mizing with forecast mean but calculating optimized NPV with multiple price realizations.

Optimizing without uncertainty obtains higher NPVs than optimizing under uncertainty for

all three methods which is somewhat surprising. This is because the EnOpt uses Monte

Carlo method to approximate the gradient. The approximation works well if the joint pdf

is narrow. But if there is large uncertainty in the geological and price models, the optimiza-

tion algorithm is more easier trapped at local optima. This could possibly be improved by

increasing the size of ensemble.
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Figure 6.8: Semi-variogram of optimized well controls. Blue and red dots are the calculated

semivariograms for optimized well controls with known price and bootstrap forecast mean,

respectively. Instability in the oil prices also causes fluctuation in optimized well controls.

(a) Optimize with BS mean (b) Optimize with known price

Figure 6.9: Optimized field liquid rate changes with oil price. Red curves represent bootstrap

forecast mean (left) and real oil prices (right) changes with time after adjusting for discount

rate; blue curves represent the optimized field liquid production rates of these two cases.

Instability in the oil prices also causes fluctuation in optimized well controls.
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(c) Bootstrap sampling

Figure 6.10: Comparison of optimized NPV frequency distribution with and without uncer-
tainty. The red curve represents the case of optimizing with multiple price realizations and
the blue curve represents the case of optimizing with forecast mean but calculating optimized
NPV with multiple price realizations.
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6.6 Closed–loop production optimization

In this section, we access the closed–loop reservoir management concept with Brugge field.

Because the true model is not available, one realization is randomly picked up from 104

realizations as the “true” field. We assume all the 30 wells are opened at time 0 and the

production constraints are the same mentioned in the open–loop production optimization

section. Production optimization starts at time zero and repeated after each data assimila-

tion. Adaptively gathered EnKF is used to update the reservoir models. Four scenarios are

examined in this section:

1. Optimization with true model: The reservoir geological properties and oil prices are

assumed to be known. Production optimization is done based on the true model.

2. Nonoptimized case: Producers are producing at maximum fluid rate of 3000 stb/day

and injectors are injecting at maximum injection rate constraint of 4000 bbl/day. Nei-

ther the oil price nor the geological model are updated.

3. Closed–loop optimization: The geological properties and oil prices are assumed to be

unknown, 30 realizations are used to represent the uncertainty of the geological model.

Those realizations are updated using adaptively gathered EnKF method. Forecast

oil prices are also updated at each data assimilation step using bootstrap sampling

method. Production optimization is done under geology uncertainty after each data

assimilation using EnOpt. The forecast mean of oil prices instead of all the realizations

is used for optimization. This is because the price uncertainty is generally large, so that

the EnOpt algorithm trapped at local optimum easily when small ensemble is used.

Gather sizes used in this cases are Ng ∈ {2, 4, 8}. We start with a gather size of 2 and

gradually double the gather size if the prediction of the ensemble mean close to the

truth. Otherwise, the gather size is reduced by half.
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4. Optimization without model updating: Production optimization is done only at time

zero with uncertain geological models and forecast oil price mean.

6.6.1 Data assimilation results

As more and more observations become available, the geological uncertainty is expected to

be reduced. This is clearly demonstrated in Fig. 6.11. The predicted water cuts of all the

realizations for the selected well gradually approach the “true” model after each data assim-

ilation. In addition, the uncertainty reduces significantly after first two steps of gathering

(after 1.5 years production). This is also demonstrated in Fig. 6.12. The estimation of net

to gross improved significantly in the first two steps. Hence, it makes sense to update and

optimize more frequently in the early stage than the later time if only geological uncertainty

is considered.

Unlike geological uncertainty, which should decrease with production of a reservoir, price

uncertainty does not decrease over the life of a petroleum reservoir (Fig. 6.13). The longer

the forecast time, the higher the uncertainty. When price uncertainty is considered, how

frequent shall we optimize the production becomes a complicate question which requires

further research.

6.6.2 Production optimization results

Fig. 6.14 shows the optimized well controls for selected wells. Dished lines represent the

evolution of optimized controls in closed–loop reservoir management as production proceeds.

Black line represents the final well control obtained using closed–loop reservoir management.

Red line is the optimized control on the “true” case. The optimized controls in closed–loop

reservoir management at the beginning of production is far away from optimized controls

obtained from the “true” model because the estimated reservoir models and oil prices are not

near the truth. As the production proceeds, more and more observations become available

and the updated reservoir models and forecasted oil prices become more and more close to
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(a) BR-P-5, prior (b) BR-P-15, prior (c) BR-P-18, prior

(d) BR-P-5, after 1 gather step (e) BR-P-15, after 1 gather step (f) BR-P-18, after 1 gather step

(g) BR-P-5, after 2 gather steps (h) BR-P-15, after 2 gather steps (i) BR-P-18, after 2 gather steps

(j) BR-P-5, after 6 gather steps (k) BR-P-15, after 6 gather steps (l) BR-P-18, after 6 gather steps

Figure 6.11: Water cut matches for selected well in closed–loop reservoir management. Red
dots indicate the observations from the true model. Blue curves are reruns with the updated
realizations after data assimilation. Geological uncertainty reduces with production of a
reservoir.
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Figure 6.12: Updating of net-to-gross mean after each data assimilation. A good estimation
of net-to-gross is obtained after 2 gathered steps.
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Figure 6.13: Oil price matches in closed-loop reservoir management. Black curves indicate

the forecast realizations and the green curve is the ensemble mean. The red curve represents

the real oil prices. Each shift of the green curve indicates an updating of the price forecast.

Price uncertainty does not reduce with production of a reservoir.

the truth. As a result, the optimized controls are also approaching to the optimized controls

obtained from the true case.

The realized NPVs for different scenarios are shown in Fig. 6.15. The black line indicates

the realized NPVs with the true geological model and oil prices. The blue curve indicates the

realized NPV of closed–loop reservoir management. The green dot indicates the realized NPV

of optimization without model updating. The red dot shows the NPV for nonoptimized case.

Closed–loop reservoir management obtains a NPV 8 percent higher than the nonoptimized

case, 5 percent higher than optimization without model updating, and only 0.4 percent less

than optimizing with the true case.

6.7 Conclusions

1. Three different price forecasting models are investigated: conventional forecast method,

bootstrap sampling and sequential Gaussian simulation. They are used to forecast
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(a) BR-P-1 (b) BR-P-10

(c) BR-P-14 (d) BR-P-19

Figure 6.14: Optimized well controls for selected wells. Dished lines represent the evolution

of optimized controls as production proceeds. Black line represents the final well control

obtained using closed–loop reservoir management. Red line is the optimized control on the

“true” case. As production proceeds, the optimized controls get more and more close to

optimized controls on the “true” case.
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Figure 6.15: Realized NPV for different scenarios. The black line indicates the realized NPV

with true geological and true price model. The blue curve indicates the realized NPV of

closed–loop reservoir management. The green dot indicates the realized NPV without reser-

voir model updating. The red rectangular mark indicates the realized NPV of nonoptimized

case. Closed–loop reservoir management obtains a NPV 8 percent higher than the nonopti-

mized case, 5 percent higher than optimization without model updating, and only 0.4 percent

less than optimizing with the true case.

monthly oil prices from 2002 to 2011 using the historical data from year 1974 to 2001.

None of these three methods captures the full range of price uncertainty. Among all

these three methods, bootstrap sampling obtains a mean most close to the true oil

price.

2. The forecast realizations and means are used in open–loop production optimization of

the Brugge field from production year 10–20. It is shown that a better forecast model

can improve NPV by more than 4 percent.

3. Optimization with price forecast means obtains higher NPVs than optimization with

multiple realizations for all these three forecast models. This is because that EnOpt

uses Monte Carlo method to approximate the gradient. The approximation works well
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if the joint pdf is narrow. But if there is large uncertainty in the geological and price

models, the optimization algorithm is more easier trapped at local optima.

4. The closed–loop reservoir management concept is also examined and compared with

nonoptimized case, optimization without model updating and optimization with true

geological model and oil prices. It is shown that the closed–loop reservoir management

obtains a NPV 8 percent higher than the nonoptimized case, 5 percent higher than

optimization without model updating, and only 0.4 percent less than optimization with

the true reservoir model and oil prices.
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Chapter 7
Concluding Discussion

Focused discussions have been presented in previous chapters. This chapter we first discuss

some potential solutions to improve the efficiency of the current methods. We also propose

a novel way to extend ensemble based methods for well placement optimization.

7.1 Karhunen–Loeve for gathered EnKF

One problem with gathered EnKF is that when the gather size becomes too big, it could

be very time consuming or may not be practical to calculate the Kalman gain. Because the

Kalman gain (Chapter 3) is a product of Ny by NS
d matrix and NS

d by NS
d matrix, with Ny

the dimension of augment vector y and N s
d the total number of observations gathered at one

assimilation step; the maximum gather size strongly depends on the dimension (Ny) of the

augment vector (y). The smaller the Ny, the more the observations N s
d can be assimilated

before it becomes impractical to calculate the Kalman gain. To allow a big gather size

for large scale reservoir simulation model updating, Karhunen-Loeve (K-L) expansion can

be used to parameterize augment vector y to another vector ε which has a much smaller

dimension than y (Huang, Quek, and Phoon 2001).

The discrete K-L expansion to generate realizations with the covariance Cy is given as

(Sarma 2006),

y = EΛ1/2ε ≡ y = f(ε), (7.1)

where E is the matrix of eigenvectors of the covariance matrix Cy, Λ is a diagonal matrix

of the eigenvalues of Cy, and ε is a set of uncorrelated, independent random variables. Since

the matrix Cy has a dimension of Ny × Ny, The maximum size of the matrices E and Λ is
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also Ny ×Ny, and the dimension of vector ε is Ny × 1. But the beauty of K-L expansion is

that we can choose to retain only the largest NK of the total Ny eigenvalues, in which case

E is of size Ny ×NK , Λ is of size NK ×NK , and ε is of size NK × 1. In fact, Sarma (2006)

showed that the maximum number of nonzero eigenvalues is actually the minimum of Ny

and the number of realizations Ne. Therefore, NK could be much smaller than Ny for large

scale model updating with moderate ensemble size Ne.

From above it is clear that K-L expansion is based on the eigen–decomposition of the

covariance function. Singular value decomposition can be used to get the eigenvalues of the

covariance matrix. But it is very computationally expensive when the covariance matrix is

very large. Sarma (2006) suggested that using kernel formulation of the eigenvalue problem

instead of directly performing an eigen-decompostion can solve this problem.

After K-L expansion, the data assimilation equation of EnKF can be written as

y(ε)u
j = y(ε)f

j + K(ε)e(dobs,j − dj) . (7.2)

Since ε has a much small dimension than y, calculation of Kalman gain K(ε)e could be much

more efficient compared with the standard EnKF. Thus, more data can be gathered at each

time assimilation step before it reaches to computational limits.

7.2 Optimize control with changing time interval

In chapter 2, ordinary multiscale regularization was used to find optimum frequency for well

control adjustment with known reservoir model. In ordinary multiscale regularization, well

controls are optimized using equal–length time interval for adjustment. Here, we propose

an adaptive multiscale regularization method for closed–loop reservoir management. As it

is shown in Fig. 7.1, the adaptive multiscale regularization method uses gradually increased

time intervals for production optimization, at each optimization step. The time intervals are

then gradually refined as production proceeds.

117



The step–wise procedure of using adaptive multiscale regularized EnOpt for closed–loop

production optimization can be summarized as:

1. Well controls are optimized using the adjustment time intervals as ∆t, 2∆t, 4∆t, 8∆t,

· · · ;

2. The optimized well controls are applied to next update time (say the field is produced

for a time period of ∆t), new observations are measured;

3. Reservoir models are updated with the new observations using adaptively gathered

EnKF;

4. Production optimization is repeated for the rest of the reservoir life. The optimized

well control from last optimization is used as the initial value for this step, and time

intervals of this optimization step is obtained by slicing each of the last optimization’

time interval to two. Thus the wells are adjusted at time intervals as: ∆t, ∆t, 2∆t,2∆t,

4∆t, 4∆t, 8∆t,8∆t ,· · · ;

5. The procedure is repeated as the production going on.

Reasons for choosing gradually increased time intervals are: (1) if the NPV is discounted,

early production phase is more important than the later years; (2) only the early years’ well

controls are implemented before the next production optimization, the later years’ optimized

well controls will be updated as the reservoir uncertainty reduces. (3) using gradually in-

creased time intervals results in less number of unknowns comparing with using relatively fine

equal-length time intervals. Therefore, the risk of the optimization algorithm been trapped

at local optimum is reduced.
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Figure 7.1: Adaptive multiscale regularization for closed–loop production optimization

7.3 EnOpt for well location optimization

As we mentioned in the introduction chapter, one of the crucial decisions in reservoir man-

agement is to determine the well locations. In this subsection, we discuss the possibility to

extend ensemble–based method for well placement optimization.

The well placement optimization aims at finding the optimum locations of wells to maxi-

mize the reservoir performance. Here if we still use the NPV as the optimizing target, then

the objective function g for a known reservoir model can be modified from Eq. 2.1,

g(x, u) =

Nt�

i=1

PoQoi(x, u)− PwQwi(x, u)

(1 + rτ )
ti
τ

, (7.3)

with u being a variable vector containing coordinates of each well. To simplify the problem,

we assume the total number of wells, well types and well drilling cost are all fixed. Since the

cost of drilling is assumed to be constant; it is not included into the objective function.

Well placement optimization is a challenge topic due to the discontinuity of the search

space. With the standard commercial simulator, it is not possible to simulate off–center

wells at arbitrary location accurately. That is to say, the well coordinates u can only be

at the center of the well grid block. For the particular reason, evolution methods such as

genetic algorithm(GA), simulated annealing (SA) and particle swarm (PS) optimization

methods are commonly used for well placement optimization. For example, Montes, Repsol,
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and Bartolome (2001) applied GA in a simple and a complex reservoir models. satisfactory

results are obtained with both cases. However, global convergence and stability issues were

observed. Combination of GA with other evaluation methods were recommended to improve

the efficiency. Farshi (2008) generate a well placement optimization framework using con-

tinuous search engine to avoid generating invalid wells during reproduction. Onwunalu and

Durlofsky (2009) applied PS for determine well location and type. Their study shows PS

takes fewer function than GA to converge to global optimum. Even though such evolution

methods are always claimed as global optimizations methods, they usually take large number

of function evaluations to converge to global optimum. This could be a big issue for large

scale complex reservoir model well placement optimization where function evaluation is very

time–consuming and expensive.

While many authors are focusing on adapting the existing algorithms for discontinuous

optimization; few efforts have been made to transform the discontinuous optimization prob-

lem to continuous fashion. If the off–center well can be simulate accurately in the reservoir

simulator, the well placement optimization problems can then be treated as continuous op-

timization problems. Thus, many gradient–based methods such as EnOpt can directly be

applied. Ding, Renard, and Weill (1998) shows how the off–center wells can be simulated in

existing simulators by multiplying the conventional wellblock transmissibility with a corre-

lation factor α. Their work is briefly summarized as following.

Considering an off–center well locates at arbitrary location of a grid block (Fig. 7.2),

Ding, Renard, and Weill (1998) improved the fluid–flow calculations by using an equivalent

transmissibility (Teq,j) for the wellblock,

Teq,j = kh
θi

ln ri
ro

, i ∈ {1, 2, 3, 4}, (7.4)

where θi is the angle formed by the i-th wellblock interface view from the well, and ri is the

distance of the well to its i-th neighboring block center.
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To simulate the off-center well in standard simulators, a correlation coefficient for wellblock

transmissibility is introduced, it is calculated as

αi =
Teq,i

Ti
, (7.5)

where Ti is the conventional transmissibility, and it is defined as,

Ti = kh
∆b0

∆a±1/2
, (i = 1, 3) and

Ti = kh
∆a0

∆b±1/2
, (i = 2, 4). (7.6)

For instance, α1 is defined as,

α1 =
∆a1/2

∆b0

θ1

ln( r1
r0

)
. (7.7)

Figure 7.2: Representation of off–center well in numerical simulation, adapted from Ding,
Renard, and Weill (1998).

Through this way, well placement optimization can be done using EnOpt by updating

the gridblock transmissibility file, just like updating permeability file.
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Chapter 8
Summary and Recommendations

8.1 Summary

Two simulator–independent methods are compared for production optimization: the ensemble–

based optimization method (EnOpt) and the bound optimization by quadratic approxima-

tion (BOBYQA). EnOpt uses the steepest ascent method to iteratively update the well

control vectors, and at each iteration uses a perturbed ensemble to approximate the gradi-

ents; whereas BOBYQA builds a local quadratic model to approximate the objective function

by multivariate interpolation and updates the well controls using trust region technologies.

Even though BOBYQA extracts a local second order Hessian information, whereas EnOpt

only uses first order gradient information, our numerical experiments show that EnOpt

converges to a higher NPV than BOBYQA for optimization problems with more than 100

of unknowns.

Multiscale regularization is applied to both EnOpt and BOBYQA to find out the opti-

mum well control adjustment frequency. Multiscale regularized optimization starts from the

coarsest control scale and refines successively using the coarse–scale solution as the initial

guess of controls for next finer scale optimization. The refining process is terminated when

no further improvement on the objective function is obtained. Result shows that multiscale

regularized method is more efficient than direct fine–scale optimization because the coarse

scale is less likely to be trapped at local optimum than the fine-scale. In addition, unlike

the non–regularized EnOpt and BOBYQA methods, which are sensitive to the initial guess

of well controls, the regularized methods converge to consistent, higher optima regardless of

differences in the initial controls.

A gathered EnKF method, which can also be seen as a step–wise ensemble smoother

method, is proposed to handle the high frequency data from permanent downhole sensors.
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In this method, if there is no significant mismatch between the observations and the en-

semble predictions, the observations are stored (or gathered) instead of being assimilated

immediately. Model updating is done only if the gathered data volume exceeds a specified

threshold, or if the observations diverge from prior ensemble predictions. It is proven that by

gathering the observations, sampling errors introduced from the perturbed observations to

the Kalman gain are reduced resulting in less biased ensemble covariance. Another benefit

of gathering the observation is the reduction of computational cost by avoiding simulation

restarts. However, gathered EnKF with a fixed gather size does not always work well due to

the nonlinearity of the dynamic model. An adaptively gathered EnKF is then proposed to

solve this problem. The adaptively gathered EnKF starts from a small gather size and grad-

ually increases the gather size if the ensemble forecast converges to the true observations,

otherwise, the gather size are reduced. Besides reducing the sampling errors and compu-

tational cost, the adaptively gathered EnKF can also be used to determine the optimal

frequency for updating reservoir model and optimizing the production controls. It is rea-

sonable to update the model more frequently at the beginning (when the mean is not near

the truth and the uncertainty is relatively large). When the mean is near the truth and the

uncertainty is small, corrections to the prior model are smaller, and high–frequency model

updating may destroy ensemble diversity and cause filter divergence.

Besides reservoir model uncertainty, oil price uncertainty has also be incorporated into

closed–loop reservoir management. Three price forecast models are used to demonstrate how

the price forecast models affect optimized NPV. They are conventional forecast, sequential

Gaussian simulation and bootstrap sampling methods. Among all these three methods, the

bootstrap sampling forecast works best when they are used to forecast oil price from 2002–

2011. As a result, it obtains a optimized NPV four percent higher than other methods. Our

numerical experiments also show that EnOpt tends to trap at local optimum if there is

large uncertainty in the forecasted oil prices. The closed–loop reservoir management concept

is also examined and compared with nonoptimized case as well as optimization with known
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geological model and oil prices. It is shown that the closed–loop reservoir management obtains

a NPV eight percent higher than the nonoptimized case, and only 0.4 percent less than

optimization with the true case.

8.2 Recommendations

• This dissertation only address well control optimization problems. It would be interest-

ing to incorporate other optimization problems, for example, well count, well type, well

location and trajectory, all together to one closed–loop reservoir management process.

• As it is mentioned earlier, the accuracy of ensemble based method strongly depends

on the size of ensemble. In general, the ensemble size is recommended to be on the

order of 100 to keep an adequate sampling. But running 100 simulations for model

based production optimization is still every time consuming, especially for large scale

complex reservoir models. Take the Brugge field for example, to optimize the field for

10 years costs about one and half days (100 simulations × 2 minutes per simulation ×

10 iterations = 33.3 hours) if 100 realizations are used. Therefore, parallel simulation

is strongly recommended.

• The LSU petroleum and geology departments have built up a sand tank experiment to

mimic real–time reservoir management. Because the algorithms described in this dis-

sertation are only tested with synthetic cases, further verifying them with the sandtank

experiment is desirable.

• When price forecasting is included in closed–loop reservoir management, our objective

function is not only affected by the reservoir model uncertainties but also by the price

uncertainty and its fluctuations. How often should we update the price forecast and

repeat the production optimization process has not yet been addressed. In principle,

both the magnitude and frequency of the price fluctuations may impact optimized

controls.
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[45] Moré, Jorge J., and Stefan M. Wild. 2009. “Benchmarking Derivative–Free Optimization
Algorithms.” SIAM J. Optimization 20 (1): 172–191.

[46] Nævdal, Geir, Liv Merethe Johnsen, Sigurd Ivar Aanonsen, and Erlend H. Vefring.
2005. “Reservoir Monitoring and Continuous Model Updating Using Ensemble Kalman
Filter.” SPE Journal 10 (1): 66–74 (March). SPE–84372–PA.

[47] Nwaozo, Jude. 2006. “Dynamic Optimization of a Water Flooding Reservoir.” Master’s
thesis, University of Oklahoma, Norman, Oklahoma.

[48] Oliver, Dean S., and Yan Chen. 2008. “Improved Initial Sampling for the Ensemble
Kalman Filter.” Computational Geosciences 13:13–27.

128



[49] Oliver, Dean S., Albert C. Reynolds, and Ning Liu. 2008. Inverse Theory for Petroleum
Reservoir Characterization and History Matching. ISBN 978-0-521-88151-7. Cambridge
University Press.

[50] Onwunalu, Jerome E., and Louis J. Durlofsky. 2009. “Application of A Particle Swarm
Optimization Algorithm for Determining Optimum Well Location and Typend Type.”
Computational Geosciences 14:183–198.
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AppendixA: Comparing Sequential And
Simultaneous Data Assimilation

If only sampling errors in the initial ensemble � (yf
�,1 = y

f
1 + � with subscript 1 denoting

the first assimilation step) is considered, and for the linear case, sequential data assimilation

should get identical results to simultaneous data assimilation. We prove this below. If the

two data sets are assimilated sequentially, say dobs,1 followed by dobs,2, then after assimilation

of the data set dobs,1, the updated state vector y
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�,1 can be written as
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When incorporating the new data set dobs,2, a forward step is taken. Assuming the forward

model is linear, that is to say y
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�,1, then the augment vector can be calculated as,
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If the two data set are assimilated simultaneously,
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Similar proof can also be found in (49).
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Appendix B: Calculation of K2,e and Cu
Y2,e

Substituting Cf
Y E,2 = Cf

Y �,2 + η to the Kalman gain,

KE,2 = Cf
Y E,2H

T
2 (H2C

f
Y E,2H

T
2 + CD2)

−1

= (Cf
Y �,2 + η)HT

2 (H2CY �,2H
T
2 + H2ηHT

2 + CD2)
−1

= (K�,2 + κη)(I + H2κη)
−1

= K�,2 + (I −K�,2H2)[κη(I + H2κη)
−1]. (8.7)

Following Sacher and Bartello (57), if � H2κη ��� I �, then the Taylor expansion for

(I + H2κη)−1 is

(I + H2κη)
−1 = I −H2κη + (H2κη)

2 + · · · + (−1)n(H2κη)
n

+O(� H2κη �n) . (8.8)

This leads to

KE,2 = K�,2 + L�,2

n�

i=0

(−1)iκη(H2κη)
i + O(� (κηH2)

nκη �)

= K�,2 + L�,2(κη − κηH2κη) + O(� κηH2κη �). (8.9)

Using Eq. 3.21 Cu
Y E,2 can be calculated as,

Cu
Y E,2 = (I −KE,2H2)C

f
Y E,2(I −HT

2 KT
E,2)

+KE,2(CD2 + ρ2)K
T
E,2

= Cf
Y E,2 −KE,2H2C

f
Y E,2 − Cf

Y E,2H
T
2 KT

E,2

+KE,2(H2C
f
Y E,2H

T
2 + CD2)K

T
E,2 + KE,2ρ2K

T
E,2

= (I −KE,2H2)C
f
Y E,2 + KE,2ρ2K

T
E,2 . (8.10)

134



Substituting Eq. 8.9 into Eq. 8.10,
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Appendix C: Historical Oil Prices From Year
1974-2011

Month Nominal oil prices($)3 CPI index4 Inflation index, Adjusted oil prices ($)

adjusted to Dec,2001 adjusted to Dec,2001

Jan-74 7.0 46.6 0.26 26.6

Feb-74 6.9 47.2 0.26 26.0

Mar-74 6.8 47.8 0.27 25.3

Apr-74 6.8 48.0 0.27 25.1

May-74 6.9 48.6 0.27 25.2

Jun-74 6.9 49.0 0.27 24.9

Jul-74 6.8 49.4 0.28 24.5

Aug-74 6.7 50.0 0.28 23.9

Sep-74 6.7 50.6 0.28 23.6

Oct-74 7.0 51.1 0.29 24.3

Nov-74 7.0 51.5 0.29 24.1

Dec-74 7.1 51.9 0.29 24.4

Jan-75 7.6 52.1 0.29 26.0

Feb-75 7.5 52.5 0.29 25.4

Mar-75 7.6 52.7 0.30 25.6

Apr-75 7.6 52.9 0.30 25.4

May-75 7.5 53.2 0.30 25.2

Jun-75 7.5 53.6 0.30 24.9

Jul-75 7.8 54.2 0.30 25.5

Aug-75 7.7 54.3 0.30 25.4

Sep-75 7.8 54.6 0.31 25.3

Oct-75 7.8 54.9 0.31 25.4

Nov-75 7.8 55.3 0.31 25.1

Dec-75 7.9 55.5 0.31 25.5

Jan-76 8.6 55.6 0.31 27.7

Feb-76 7.9 55.8 0.31 25.1

Mar-76 7.8 55.9 0.31 24.8

Apr-76 7.9 56.1 0.31 25.0

May-76 7.9 56.5 0.32 24.9

Jun-76 8.0 56.8 0.32 25.1

Jul-76 8.0 57.1 0.32 25.1

Aug-76 8.0 57.4 0.32 24.9

Sep-76 8.4 57.6 0.32 26.0

Oct-76 8.5 57.9 0.32 26.1

Nov-76 8.6 58.0 0.33 26.5

Dec-76 8.6 58.2 0.33 26.4

Jan-77 8.5 58.5 0.33 25.9

Feb-77 8.6 59.1 0.33 25.9

Mar-77 8.5 59.5 0.33 25.3

Apr-77 8.4 60.0 0.34 25.0
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May-77 8.5 60.3 0.34 25.1

Jun-77 8.4 60.7 0.34 24.8

Jul-77 8.5 61.0 0.34 24.8

Aug-77 8.6 61.2 0.34 25.1

Sep-77 8.6 61.4 0.34 25.1

Oct-77 8.7 61.6 0.35 25.2

Nov-77 8.7 61.9 0.35 25.1

Dec-77 8.8 62.1 0.35 25.2

Jan-78 8.7 62.5 0.35 24.8

Feb-78 8.8 62.9 0.35 25.1

Mar-78 8.8 63.4 0.36 24.7

Apr-78 8.8 63.9 0.36 24.6

May-78 8.8 64.5 0.36 24.4

Jun-78 9.1 65.2 0.37 24.7

Jul-78 9.0 65.7 0.37 24.3

Aug-78 9.1 66.0 0.37 24.4

Sep-78 9.2 66.5 0.37 24.5

Oct-78 9.2 67.1 0.38 24.4

Nov-78 9.2 67.4 0.38 24.3

Dec-78 9.5 67.7 0.38 24.9

Jan-79 9.5 68.3 0.38 24.7

Feb-79 9.7 69.1 0.39 25.0

Mar-79 9.8 69.8 0.39 25.1

Apr-79 10.3 70.6 0.40 26.1

May-79 10.7 71.5 0.40 26.7

Jun-79 11.7 72.3 0.41 28.9

Jul-79 13.4 73.1 0.41 32.7

Aug-79 14.0 73.8 0.41 33.8

Sep-79 14.6 74.6 0.42 34.8

Oct-79 15.1 75.2 0.42 35.8

Nov-79 15.5 75.9 0.43 36.5

Dec-79 17.0 76.7 0.43 39.6

Jan-80 17.9 77.8 0.44 40.9

Feb-80 18.8 78.9 0.44 42.5

Mar-80 19.3 80.1 0.45 43.1

Apr-80 20.3 81.0 0.45 44.7

May-80 21.0 81.8 0.46 45.8

Jun-80 21.5 82.7 0.46 46.4

Jul-80 22.3 82.7 0.46 48.0

Aug-80 22.6 83.3 0.47 48.4

Sep-80 22.6 84.0 0.47 47.9

Oct-80 23.2 84.8 0.48 48.8

Nov-80 23.9 85.5 0.48 49.9

Dec-80 25.8 86.3 0.48 53.3

Jan-81 28.9 87.0 0.49 59.1

Feb-81 34.1 87.9 0.49 69.3

137



Mar-81 34.7 88.5 0.50 69.9

Apr-81 34.1 89.1 0.50 68.1

May-81 32.7 89.8 0.50 64.9

Jun-81 31.7 90.6 0.51 62.4

Jul-81 31.1 91.6 0.51 60.6

Aug-81 31.1 92.3 0.52 60.1

Sep-81 31.1 93.2 0.52 59.6

Oct-81 31.0 93.4 0.52 59.2

Nov-81 31.0 93.7 0.53 59.0

Dec-81 30.7 94.0 0.53 58.3

Jan-82 33.9 94.3 0.53 64.0

Feb-82 31.6 94.6 0.53 59.5

Mar-82 28.5 94.5 0.53 53.7

Apr-82 33.5 94.9 0.53 62.8

May-82 35.9 95.8 0.54 66.9

Jun-82 35.1 97.0 0.54 64.5

Jul-82 34.2 97.5 0.55 62.5

Aug-82 34.0 97.7 0.55 62.0

Sep-82 35.6 97.9 0.55 64.9

Oct-82 35.7 98.2 0.55 64.8

Nov-82 34.2 98.0 0.55 62.1

Dec-82 31.7 97.6 0.55 57.9

Jan-83 31.2 97.8 0.55 56.9

Feb-83 29.0 97.9 0.55 52.7

Mar-83 28.6 97.9 0.55 52.1

Apr-83 30.6 98.6 0.55 55.4

May-83 30.0 99.2 0.56 53.9

Jun-83 31.0 99.5 0.56 55.6

Jul-83 31.7 99.9 0.56 56.5

Aug-83 31.9 100.2 0.56 56.8

Sep-83 31.1 100.7 0.56 55.1

Oct-83 30.4 101.0 0.57 53.7

Nov-83 29.8 101.2 0.57 52.6

Dec-83 29.2 101.3 0.57 51.5

Jan-84 29.7 101.9 0.57 52.0

Feb-84 30.2 102.4 0.57 52.6

Mar-84 30.8 102.6 0.58 53.5

Apr-84 30.6 103.1 0.58 52.9

May-84 30.7 103.4 0.58 52.9

Jun-84 29.9 103.7 0.58 51.3

Jul-84 28.7 104.1 0.58 49.2

Aug-84 29.2 104.5 0.59 49.9

Sep-84 29.4 105.0 0.59 49.9

Oct-84 28.6 105.3 0.59 48.4

Nov-84 28.0 105.3 0.59 47.4

Dec-84 26.7 105.3 0.59 45.1
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Jan-85 25.9 105.5 0.59 43.7

Feb-85 27.3 106.0 0.59 46.0

Mar-85 28.5 106.4 0.60 47.8

Apr-85 28.6 106.9 0.60 47.7

May-85 27.6 107.3 0.60 45.9

Jun-85 27.1 107.6 0.60 45.0

Jul-85 27.2 107.8 0.60 45.0

Aug-85 27.6 108.0 0.61 45.5

Sep-85 28.5 108.3 0.61 47.0

Oct-85 29.5 108.7 0.61 48.5

Nov-85 30.9 109.0 0.61 50.5

Dec-85 27.5 109.3 0.61 44.8

Jan-86 22.9 109.6 0.61 37.3

Feb-86 15.5 109.3 0.61 25.2

Mar-86 12.6 108.8 0.61 20.7

Apr-86 12.8 108.6 0.61 21.1

May-86 15.4 108.9 0.61 25.2

Jun-86 13.4 109.5 0.61 21.9

Jul-86 11.6 109.5 0.61 18.9

Aug-86 15.1 109.7 0.62 24.5

Sep-86 14.9 110.2 0.62 24.1

Oct-86 14.9 110.3 0.62 24.1

Nov-86 15.2 110.4 0.62 24.6

Dec-86 16.1 110.5 0.62 26.0

Jan-87 18.7 111.2 0.62 29.9

Feb-87 17.8 111.6 0.63 28.4

Mar-87 18.3 112.1 0.63 29.1

Apr-87 18.7 112.7 0.63 29.6

May-87 19.4 113.1 0.63 30.6

Jun-87 20.1 113.5 0.64 31.5

Jul-87 21.3 113.8 0.64 33.4

Aug-87 20.3 114.4 0.64 31.7

Sep-87 19.5 115.0 0.64 30.3

Oct-87 19.9 115.3 0.65 30.7

Nov-87 18.9 115.4 0.65 29.1

Dec-87 17.3 115.4 0.65 26.7

Jan-88 17.1 115.7 0.65 26.4

Feb-88 16.8 116.0 0.65 25.8

Mar-88 16.2 116.5 0.65 24.8

Apr-88 17.9 117.1 0.66 27.2

May-88 17.4 117.5 0.66 26.4

Jun-88 16.5 118.0 0.66 25.0

Jul-88 15.5 118.5 0.66 23.3

Aug-88 15.5 119.0 0.67 23.3

Sep-88 14.5 119.8 0.67 21.6

Oct-88 13.8 120.2 0.67 20.4
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Nov-88 14.1 120.3 0.67 21.0

Dec-88 16.4 120.5 0.68 24.2

Jan-89 18.0 121.1 0.68 26.5

Feb-89 17.9 121.6 0.68 26.3

Mar-89 19.5 122.3 0.69 28.4

Apr-89 21.1 123.1 0.69 30.5

May-89 20.1 123.8 0.69 29.0

Jun-89 20.1 124.1 0.70 28.8

Jul-89 19.8 124.4 0.70 28.4

Aug-89 18.6 124.6 0.70 26.6

Sep-89 19.6 125.0 0.70 27.9

Oct-89 20.1 125.6 0.70 28.5

Nov-89 19.9 125.9 0.71 28.1

Dec-89 21.1 126.1 0.71 29.8

Jan-90 22.9 127.4 0.71 32.0

Feb-90 22.1 128.0 0.72 30.8

Mar-90 20.4 128.7 0.72 28.2

Apr-90 18.4 128.9 0.72 25.5

May-90 18.2 129.2 0.72 25.1

Jun-90 16.7 129.9 0.73 22.9

Jul-90 18.5 130.4 0.73 25.2

Aug-90 27.3 131.6 0.74 37.0

Sep-90 33.5 132.7 0.74 45.0

Oct-90 36.0 133.5 0.75 48.1

Nov-90 32.3 133.8 0.75 43.1

Dec-90 27.3 133.8 0.75 36.4

Jan-91 25.2 134.6 0.75 33.4

Feb-91 20.5 134.8 0.76 27.1

Mar-91 19.9 135.0 0.76 26.3

Apr-91 20.8 135.2 0.76 27.5

May-91 21.2 135.6 0.76 27.9

Jun-91 20.2 136.0 0.76 26.5

Jul-91 21.4 136.2 0.76 28.0

Aug-91 21.7 136.6 0.77 28.3

Sep-91 21.9 137.2 0.77 28.4

Oct-91 23.2 137.4 0.77 30.1

Nov-91 22.5 137.8 0.77 29.1

Dec-91 19.5 137.9 0.77 25.2

Jan-92 18.8 138.1 0.77 24.3

Feb-92 19.0 138.6 0.78 24.5

Mar-92 18.9 139.3 0.78 24.2

Apr-92 20.2 139.5 0.78 25.9

May-92 21.0 139.7 0.78 26.8

Jun-92 22.4 140.2 0.79 28.5

Jul-92 21.8 140.5 0.79 27.6

Aug-92 21.3 140.9 0.79 27.0
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Sep-92 21.9 141.3 0.79 27.6

Oct-92 21.7 141.8 0.80 27.3

Nov-92 20.3 142.0 0.80 25.5

Dec-92 19.4 141.9 0.80 24.4

Jan-93 19.0 142.6 0.80 23.8

Feb-93 20.1 143.1 0.80 25.0

Mar-93 20.3 143.6 0.81 25.2

Apr-93 20.3 144.0 0.81 25.1

May-93 20.0 144.2 0.81 24.7

Jun-93 19.1 144.4 0.81 23.6

Jul-93 17.9 144.4 0.81 22.1

Aug-93 18.0 144.8 0.81 22.2

Sep-93 17.5 145.1 0.81 21.5

Oct-93 18.2 145.7 0.82 22.2

Nov-93 16.6 145.8 0.82 20.3

Dec-93 14.5 145.8 0.82 17.8

Jan-94 15.0 146.2 0.82 18.3

Feb-94 14.8 146.7 0.82 18.0

Mar-94 14.7 147.2 0.83 17.8

Apr-94 16.4 147.4 0.83 19.9

May-94 17.9 147.5 0.83 21.6

Jun-94 19.1 148.0 0.83 23.0

Jul-94 19.7 148.4 0.83 23.6

Aug-94 18.4 149.0 0.84 22.0

Sep-94 17.5 149.4 0.84 20.8

Oct-94 17.7 149.5 0.84 21.1

Nov-94 18.1 149.7 0.84 21.5

Dec-94 17.2 149.7 0.84 20.4

Jan-95 18.0 150.3 0.84 21.4

Feb-95 18.6 150.9 0.85 21.9

Mar-95 18.5 151.4 0.85 21.8

Apr-95 19.9 151.9 0.85 23.4

May-95 19.7 152.2 0.85 23.1

Jun-95 18.5 152.5 0.86 21.6

Jul-95 17.3 152.5 0.86 20.3

Aug-95 18.0 152.9 0.86 21.0

Sep-95 18.2 153.2 0.86 21.2

Oct-95 17.4 153.7 0.86 20.2

Nov-95 18.0 153.6 0.86 20.9

Dec-95 19.0 153.5 0.86 22.1

Jan-96 18.9 154.4 0.87 21.8

Feb-96 19.1 154.9 0.87 22.0

Mar-96 21.3 155.7 0.87 24.4

Apr-96 23.5 156.3 0.88 26.8

May-96 21.2 156.6 0.88 24.1

Jun-96 20.4 156.7 0.88 23.2
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Jul-96 21.3 157.0 0.88 24.2

Aug-96 21.9 157.3 0.88 24.8

Sep-96 24.0 157.8 0.89 27.1

Oct-96 24.9 158.3 0.89 28.0

Nov-96 23.7 158.6 0.89 26.7

Dec-96 25.2 158.6 0.89 28.4

Jan-97 25.1 159.1 0.89 28.2

Feb-97 22.2 159.6 0.90 24.8

Mar-97 21.0 160.0 0.90 23.4

Apr-97 19.7 160.2 0.90 21.9

May-97 20.8 160.1 0.90 23.2

Jun-97 19.3 160.3 0.90 21.4

Jul-97 19.7 160.5 0.90 21.8

Aug-97 20.0 160.8 0.90 22.1

Sep-97 19.8 161.2 0.90 21.9

Oct-97 21.3 161.6 0.91 23.5

Nov-97 20.2 161.5 0.91 22.3

Dec-97 18.3 161.3 0.90 20.3

Jan-98 16.7 161.6 0.91 18.4

Feb-98 16.1 161.9 0.91 17.7

Mar-98 15.1 162.2 0.91 16.6

Apr-98 15.4 162.5 0.91 16.8

May-98 14.9 162.8 0.91 16.3

Jun-98 13.7 163.0 0.91 15.0

Jul-98 14.2 163.2 0.92 15.5

Aug-98 13.5 163.4 0.92 14.7

Sep-98 15.0 163.6 0.92 16.4

Oct-98 14.5 164.0 0.92 15.7

Nov-98 13.0 164.0 0.92 14.1

Dec-98 11.4 163.9 0.92 12.3

Jan-99 12.5 164.3 0.92 13.6

Feb-99 12.0 164.5 0.92 13.0

Mar-99 14.7 165.0 0.93 15.9

Apr-99 17.3 166.2 0.93 18.6

May-99 17.7 166.2 0.93 19.0

Jun-99 17.9 166.2 0.93 19.2

Jul-99 20.1 166.7 0.93 21.5

Aug-99 21.3 167.1 0.94 22.7

Sep-99 23.8 167.9 0.94 25.3

Oct-99 22.7 168.2 0.94 24.1

Nov-99 25.0 168.3 0.94 26.5

Dec-99 26.1 168.3 0.94 27.7

Jan-00 27.3 168.8 0.95 28.8

Feb-00 29.4 169.8 0.95 30.8

Mar-00 29.8 171.2 0.96 31.1

Apr-00 25.7 171.3 0.96 26.8

142



May-00 28.8 171.5 0.96 29.9

Jun-00 31.8 172.4 0.97 32.9

Jul-00 29.7 172.8 0.97 30.6

Aug-00 31.3 172.8 0.97 32.3

Sep-00 33.9 173.7 0.97 34.8

Oct-00 33.1 174.0 0.98 33.9

Nov-00 34.4 174.1 0.98 35.3

Dec-00 28.4 174.0 0.98 29.1

Jan-01 29.6 175.1 0.98 30.1

Feb-01 29.6 175.8 0.99 30.0

Mar-01 27.3 176.2 0.99 27.6

Apr-01 27.5 176.9 0.99 27.7

May-01 28.6 177.7 1.00 28.7

Jun-01 27.6 178.0 1.00 27.6

Jul-01 26.4 177.5 1.00 26.5

Aug-01 27.4 177.5 1.00 27.5

Sep-01 26.2 178.3 1.00 26.2

Oct-01 22.2 177.7

Nov-01 19.6 177.4

Dec-01 19.4 176.7

Jan-02 19.7 177.1

Feb-02 20.7 177.8

Mar-02 24.5 178.8

Apr-02 26.2 179.8

May-02 27.0 179.8

Jun-02 25.5 179.9

Jul-02 27.0 180.1

Aug-02 28.4 180.7

Sep-02 29.7 181.0

Oct-02 28.8 181.3

Nov-02 26.4 181.3

Dec-02 29.5 180.9

Jan-03 33.0 181.7

Feb-03 35.8 183.1

Mar-03 33.5 184.2

Apr-03 28.2 183.8

May-03 28.1 183.5

Jun-03 30.7 183.7

Jul-03 30.8 183.9

Aug-03 31.6 184.6

Sep-03 28.3 185.2

Oct-03 30.3 185.0

Nov-03 31.1 184.5

Dec-03 32.1 184.3

Jan-04 34.3 185.2

Feb-04 34.7 186.2
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Mar-04 36.7 187.4

Apr-04 36.8 188.0

May-04 40.3 189.1

Jun-04 38.0 189.7

Jul-04 40.8 189.4

Aug-04 44.9 189.5

Sep-04 45.9 189.9

Oct-04 53.3 190.9

Nov-04 48.5 191.0

Dec-04 43.2 190.3

Jan-05 46.8 190.7

Feb-05 48.2 191.8

Mar-05 54.2 193.3

Apr-05 53.0 194.6

May-05 49.8 194.4

Jun-05 56.4 194.5

Jul-05 59.0 195.4

Aug-05 65.0 196.4

Sep-05 65.6 198.8

Oct-05 62.3 199.2

Nov-05 58.3 197.6

Dec-05 59.4 196.8

Jan-06 65.5 198.3

Feb-06 61.6 198.7

Mar-06 62.7 199.8

Apr-06 69.4 201.5

May-06 70.8 202.5

Jun-06 71.0 202.9

Jul-06 74.4 203.5

Aug-06 73.0 203.9

Sep-06 63.8 202.9

Oct-06 58.9 201.8

Nov-06 59.1 201.5

Dec-06 62.0 201.8

Jan-07 54.5 202.4

Feb-07 59.3 203.5

Mar-07 60.4 205.4

Apr-07 64.0 206.7

May-07 63.5 207.9

Jun-07 67.5 208.4

Jul-07 74.1 208.3

Aug-07 72.4 207.9

Sep-07 79.9 208.5

Oct-07 85.8 208.9

Nov-07 94.8 210.2

Dec-07 91.7 210.0
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Jan-08 93.0 211.1

Feb-08 95.4 211.7

Mar-08 105.5 213.5

Apr-08 112.6 214.8

May-08 125.4 216.6

Jun-08 133.9 218.8

Jul-08 133.4 220.0

Aug-08 116.7 219.1

Sep-08 104.1 218.8

Oct-08 76.6 216.6

Nov-08 57.3 212.4

Dec-08 41.1 210.2

Jan-09 41.7 211.1

Feb-09 39.1 212.2

Mar-09 47.9 212.7

Apr-09 49.7 213.2

May-09 59.0 213.9

Jun-09 69.6 215.7

Jul-09 64.2 215.4

Aug-09 71.1 215.8

Sep-09 69.4 216.0

Oct-09 75.7 216.2

Nov-09 78.0 216.3

Dec-09 74.5 215.9

Jan-10 78.3 216.7

Feb-10 76.4 216.7

Mar-10 81.2 217.6

Apr-10 84.3 218.0

May-10 73.7 218.2

Jun-10 75.3 218.0

Jul-10 76.3 218.0

Aug-10 76.6 218.3

Sep-10 75.2 218.4

Oct-10 81.9 218.7

Nov-10 84.3 218.8

Dec-10 89.2 219.2

Jan-11 89.2 220.2

Feb-11 88.6 221.3

Mar-11 102.9 223.5

Apr-11 109.5 224.9

May-11 100.9 226.0

Jun-11 96.3 225.7

Jul-11 97.3 225.9

Aug-11 86.3 226.5

Sep-11 85.5 226.9

Oct-11 86.3 226.4
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Nov-11 97.2 226.2
Dec-11 98.6 225.7

3
Monthly nominal oil prices are adapted from http://www.eia.gov/dnav/pet/hist/LeafHandler.ashx?n=PET&s=RWTC&f=M

4
CPIs are adapted from http://www.bls.gov/cpi/
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