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ABSTRACT 

Current trends in the U. S. dairy industry show an increase in milk cows per farm and 

milk production per cow, though the total number of milk cows in the industry is declining. This 

increase in productivity is attributed to advancements and adoption of modern dairy 

technologies. Breeding technologies are one of the important components of this structural 

change. This study analyzed the factors affecting the adoption of modern breeding technologies 

such as artificial insemination, embryo transplants, and sexed semen, and the impact of these 

technologies on farm productivity and profitability.  

Results of a bivariate probit model with selection showed that the adoption decision is 

affected by different farm and farmer attributes such as age, education, off-farm work, farm size, 

and specialization. The embryo transplants and/or sexed semen technology adoption decision 

was also influenced by the farmer‟s planning horizon. Farm impact was assessed by estimating 

net returns and cost measures using ordinary least squares methods. Endogeneity and self-

selection bias issues were also tested and corrected for in the impact models. Both artificial 

insemination (AI) and embryo transplants and/or sexed semen (ETSS) technologies are found to 

have significant and positive influences on net returns over total and net returns over operating 

costs per hundredweight of milk produced. Results also suggest that a higher allocated cost is 

associated with ETSS adoption. Relatively younger, more highly educated farmers and larger 

and more specialized farms received higher net returns. Since some part of the costs involved in 

ETSS may be for conducting artificial insemination, larger farms that had already adopted AI 

may consider ETSS adoption. Adoption decisions on a farm, however, would be based on the 

added advantages of ETSS adoption versus the additional costs of adopting these. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background  

The U.S. dairy industry has experienced significant structural change during the last few 

decades. Average U.S. herd size was 19 cows in 1970, rising to 120 in 2006 (MacDonald et al., 

2007). Over that period, average milk produced per cow doubled and milk produced per farm 

increased twelvefold (MacDonald et al., 2007). Trends show that the larger, more efficient 

operations are continually increasing their share of the milk cow inventory and milk production 

while numbers of smaller operations are declining. The very large operations with 2,000 or more 

cows doubled in number between 2000 and 2006 (MacDonald et al., 2007). In the industry, 

farms with more than 1,000 cows are growing (contributing more than one third of the inventory 

in 2004, but less than 10 percent in 1992). Figure 1.1 shows the increasing trend of milk per cow 

along with a decline in the cow population over the years. 

 
Source: USDA/ NASS 

 

Figure 1.1: Total U.S. Dairy Cows and Milk per Dairy Cow, 1990-2007 
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Geographically, milk production has increased in the western United States where herd 

size is relatively larger. However, traditional dairy states are also rapidly increasing their 

numbers of larger operations (Short, 2004). Figure 1.2 compares the milk production between 

1980 and 2003, showing the changes in milk production across different regions. 

 
Note: Units are millions of pounds of milk. Source: USDA, Report to Congress, July, 2004.  

 

Figure 1.2: Change in Milk Production by Farm Production Region, 1980-2003 

 

Total annual milk production in 2008 is reported at around 180 billion pounds (189,992 

million pounds), an increase of 2.3 percent from 2007 (USDA/NASS, 2009). Average milk 

production per cow in 2008 was 20,396 pounds which is an increase of 501 pounds per cow from 

2006 (USDA/NASS, July 2009).  The report also shows that the dairy industry generated cash 

receipts of $34.8 billion from 189 billion pounds of milk marketed in 2008. Regarding regional 
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production, the Pacific region (25.63%) was the highest contributor of total U.S. milk production 

in 2006, followed by Lake States (21.38%) (ERS, USDA, 2009).  

Remarkable specialization and mechanization over the years have been key factors 

associated with structural changes (Short, 2000; Short, 2004; MacDonald et al., 2007).  

MacDonald et al. (2007) found that the return from large dairy enterprises well exceeds their full 

costs while smaller dairy farms incur economic losses if capital cost and time contribution of the 

owners are included. This ongoing structural change of shifting production to larger operations 

will continue putting downward pressure on dairy prices (MacDonald et al., 2007), forcing 

smaller operations out of the industry (Short, 2004).  

New technology is always a critical element in a changing industry structure. Johnson 

and Ruttan (1997) found breeding technologies as the most significant factor contributing to 

farm productivity in the livestock sector since the 1940s. Dairy was the first livestock sector to 

accept the concept of commercial breeding (Johnson and Ruttan, 1997). The dairy industry has 

experienced a substantial increase in milk produced per cow, mostly attributed to innovations in 

breeding and feeding systems (MacDonald et al., 2007).  

Breeding technologies are among the important components of structural change in the 

U.S. dairy industry. Modern dairy cows with higher production potential have been developed 

through genetic selection. This is consistent with the findings of Short (2004), who indicated a 

relatively large proportion of farms used genetic selection and breeding programs to improve 

herd quality. On the other hand, higher yielders require greater management; failing to recognize 

this fact may result in financial loss (Britt, 1985). There appears to be a direct
 
relationship 

between herd management and reproductive performance, ultimately influencing farm profit 

(Britt, 1985). According to Shook (2006), genetics has accounted for about 55% of gains in the 

yield traits and about one-third of the change in the time interval required to conception.  This 
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can be accomplished through artificial insemination (AI), embryo transplants (ET), sexed semen 

and/or traditional breeding methods. This thesis addresses adoption rates of AI as well as ET and 

sexed semen. 

Artificial insemination is a breeding process in which sperm collected from the male are 

processed, stored and artificially introduced into the female. Artificial insemination has become 

one of the most important techniques for genetic improvement of farm animals. Literature has 

shown the significant impact of AI in dairy cattle (Barber, 1983; Hillers et al., 1982). Artificial 

insemination has made maximum use of superior sires, allowing a good economic return (Hillers 

et al., 1982). 

Embryo Transplant is a technique by which embryos are collected from a donor female 

and are transferred to recipient females. Recipients do not have genetic influence on the embryo. 

Multiple eggs may be obtained from a cow via hormone administration, even with young heifer 

calves.  These “superovulated,” generally more valuable donor cows are then inseminated and 

embryos are allowed to grow for 4-5 days prior to their being transferred to relatively less 

valuable recipient cows (Tyler and Ensminger, 2005).  Application of ET results in an increase in 

the reproductive rate of females. An increase in such rate is an opportunity to reduce the number 

of dams that need to be selected for the next generation (Arendonk and Bijma, 2003). 

Sexed semen technology comprises the separation of sperm into male/Y bearing and 

female/X bearing sperm cells and then artificially inseminating with the desired sexed-sorted 

semen. Sexed semen technology lets dairy producers increase the supply of replacement heifers, 

resulting in lower purchase cost of heifers. Using sexed semen, a calf of specific sex can be 

produced (De Vries, et al., 2008); however, slower sorting speed and lower conception rate (35 

to 40% with sexed semen as compared with 55 to 60% for unsexed semen) are the main 

limitations (Weigel, 2004).    
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Artificial insemination, after its introduction in 1940s, gained a rapid initial diffusion 

(Johnson and Ruttan, 1997). Considering its positive influence on genetic improvement and 

profitability, AI is one of the farmer-friendly and widely adopted breeding technologies (Johnson 

and Ruttan, 1997; Hillers et al., 1982; Barber, 1983). Embryo transplants and sexed semen 

technologies are relatively newer and still diffusing technologies on dairy farms. Embryo 

transplant technology was used at the farm level after the development of non-surgical methods 

in 1970s. Studies suggested that the application of ET could produce a substantial genetic 

improvement and increase in reproductive rate of females (De-Boer and Arendonk, 1994; 

Arendonk and Bijma, 2003). Use of sexed semen technology on farms is increasing. Application 

of sexed semen allows sorting the semen and lets dairy farmers increase the supply of 

replacement heifers, resulting in lower purchase cost of heifers. Sexed semen technology is 

suggested to have a wider adoption and impact in the near future (Weigel, 2004; De Vries et al., 

2008).  

Farmers‟ technology adoption decisions are generally affected by a number of 

demographic and socioeconomic factors. In an economic sense, farmers adopt technology if the 

utility associated with adopting it is greater than the utility associated with not adopting. Feder et 

al. (1985) suggested that changes in parameters affecting farmers‟ decisions are the result of 

dynamic processes such as information gathering, learning by doing, or accumulating resources.  

Adoption of breeding technologies such as AI, ET, and sexed semen has significant 

economic value in dairy performance (De Vries et al., 2008; Seidel 1984). Despite their 

influence on productivity, a number of factors cause the rate of adoption of these technologies to 

be different across dairy farms. This study uses extensive survey data (Agricultural Resource 

Management Survey- Dairy Version) of the United States Department of Agriculture (USDA) to 
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assess factors affecting the adoption of AI, ET, and sexed semen and determine their influence 

on farm profitability.  

This study has two components. First, an adoption decision model explains the factors 

affecting the adoption decisions of two breeding technologies AI and ET and/or sexed semen. 

These technologies being breeding technologies, farmers‟ adoption decisions of the technologies 

are assumed to be correlated. Thus, there is a need to account for their jointness in adoption. 

There is involvement of artificially collected semen in ET and /or sexed semen. Basically, AI 

adopting farms can select for adopting sexed semen and/or ET technologies. A bivariate probit 

with sample selection model is chosen in this study to model the adoption decision.  Second, an 

impact model includes different indicators of farm productivity and profitability as dependent 

variables, which are regressed with independent variables to assess the economic impact of these 

breeding technologies. This study accounts for the potential endogeneity and self-selection issues 

in impact assessment. Details of the model are explained in the methodology section. 

1.2 Problem Definition 

Manchester and Blaney (1997) stated that, “technological developments in dairy have 

changed the assembly, processing, and distribution of milk.” The adoption decision of a 

particular technology is, however, mainly associated with its impact on productivity. Genetics 

and reproductive performance of the dairy herd are considered to be among the major farm 

productivity determinants (Britt, 1985; Shook, 2006; Olynk and Wolf, 2008). The advantage of 

AI and ET is that they allow dairy farmers to select for specific traits (e.g. milk yield, 

conformation, reproductive performance, etc.) by increasing the genetic pool dairy farmers have 

to choose from.  Genetic improvement in dairy cattle is driven primarily by the array of bull 

genetics provided by the AI industry and secondarily by the choices producers make among the 

available bulls (Shook, 2006). 
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Adoption of breeding technology is considered as a key element in structural changes in 

the livestock industry (Johnson and Ruttan, 1997; Gillespie et al., 2004), as it directly affects 

performance (Olynk and Wolf, 2008). Breeding and feeding technologies are the key for 

structural changes in the dairy industry (Feder et al., 1985). However, the adoption decision of 

breeding technology is affected by several things. According to Abdulai and Huffman (2005), 

the question, especially in the livestock sector, is why seemingly profitable technologies are not 

adopted. Past literature provides ample technical description of technologies and their methods 

of operation. However, the factors influencing the adoption decisions associated with these 

technologies on the farm and their profitability are unclear. For the dairy industry, interesting 

questions are, Why does the adoption rate of breeding technologies differ among farms?; Are 

they profitable for farms?, and Who are the early adopters of these technologies? Answers to 

these questions may provide insight into how to build strategic breeding programs in the dairy 

sector. Demographic, socioeconomic, and other factors affecting adoption of AI, ET, and sexed 

semen will give the sketch of linkages between technologies in relation with the factors. How 

much each factor increases or decreases the likelihood of adopting will be found. The 

information will be helpful for researchers, policy makers, and farmers aiming to establish a new 

dairy farm or adjust their current management strategy. 

1.3 Research Questions 

The following research questions will be addressed in this study:  

(1) What are the factors affecting the adoption of major breeding technologies- AI, ET, and/ or 

sexed semen on U.S. dairy farms?  

(2) What are the characteristics of dairy farms/farmers who embrace the breeding technologies, 

AI, ET, and/or sexed semen?  
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(3) Are these technologies profitable for U.S. dairy farms? What is the impact of adoption of AI 

and ET and /or sexed semen techniques on U.S. dairy farms?  

1.4 Objectives 

This thesis research has the following objectives: 

 To determine the factors affecting the adoption of breeding technologies on US dairy 

farms.  

 To determine the impact of AI, and ET, and/or sexed semen techniques on the 

productivity and profitability of U.S. dairy farms. 

1.5 Arrangement of the Thesis 

Chapter 2 provides a review of literature on adoption of technology. Chapter 3 describes the 

data, conceptual model, and methodological frameworks used in this study. Chapter 4 presents 

and discusses the results obtained. Finally, Chapter 5 provides summary and conclusions.  
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Technology Adoption 

In a general sense, adoption may be viewed as an act of accepting as approval, accepting 

or choosing or taking something as your own. Rogers (1995) defines adoption of an innovation 

as the mental process of decision making that begins with hearing about the innovation to its 

final adoption. Five stages of the adoption process include knowledge, persuasion, decision, 

implementation and confirmation (Rogers, 1995). Initial adoption is generally followed by 

diffusion, the spread of the technology within a region (Feder et al., 1985).  

Extensive literature can be found regarding technology adoption on farms. Griliches 

(1957), on the economics of technological change associated with hybrid corn, was one of the 

early economic studies on adoption and diffusion. Feder et al. (1985) extensively surveyed 

theoretical and empirical studies regarding the patterns of adoption behavior, focusing on 

developing countries. They suggested that changes in the parameters that affect farmers‟ 

decisions are the result of dynamic processes such as information gathering, learning by doing or 

accumulating resources. The adoption decision of a farmer is based upon the maximization of 

expected utility subject to constraints such as limited resources including land, credit, etc. Farmer 

experience, the information gathered from previous periods, information about indicators (such 

as yield, profit, revenue) accumulated over periods, and information obtained by other farmers 

are used in further making the decision about the technology (Feder et al., 1985).  

Besley and Case (1993) focused on understanding technology adoption across space and 

time and developed empirical models for studying technological adoption. Ghosh et al. (1994) 

studied technology adoption and its relationship with technical efficiency and risk attitude.  A 
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number of factors have been identified as influencing technology adoption. Massey et al. (2004) 

found that factors relating to the farm business (financial stability, level of debt, etc.); efficiency 

of the innovation system (presence of extension and consultancy providers, the availability of 

information, the ease with which individuals can access information, etc.); and individual 

characteristics (age, education, confidence, and innovation capacity) affect technological 

learning on the basis of their survey of the New Zealand Dairy industry.  Rogers (1995) 

classified adopters into innovators, early adopters, early majority, late majority and laggards 

based on the adoption decisions they make. Massy et al. (2004) extensively reviewed the 

literature regarding early adopters, suggesting that adoption will happen quickly if the individual 

is better educated, receptive to new ideas, self-confident and younger, and the farm system is 

large, profitable, endowed with absorptive capacity, able to transplant information, and linked 

with other farms and networks.  

Bandiara and Rasul (2006) studied farmers‟ adoption choices in relation to their social 

network. If there were few adopters in a network, the social effect would be positive; the effect, 

however, is negative with many adopters (Bandaira and Rasul, 2006). Abdulai and Huffman 

(2005) studied diffusion of cross-bred cows in Tanzania, finding that the effects among farmers 

are stronger for smaller than for larger areas.  Credit availability and contact with extension 

agents are correlated with adoption (Abdulai and Huffman, 2005). However, in the context of 

Mozambique, Bandiara and Rasul (2006) wrote, “….giving incentives to adopt early to too many 

farmers can actually reduce the incentives to adopt for other farmers around them.”  

Abdulai et al. (2008) examined the decision of dairy farmers to acquire information and 

adopt technology in the presence of uncertainty in Tanzania. They found that human capital and 

scale of operation were positive and significant in the adoption decision. Increases in education, 
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age and herd size, and an expectation of higher profitability from the technology were found to 

have positive effects on adoption intensity.  

2.2 Technology Adoption in the US Dairy Industry 

Technology adoption in dairy is an important element of structural change in the industry. 

Johnson and Ruttan (1997) reviewed the structure of the dairy industry. They revealed that 

during the 1980s, increased production, slow growth in consumption, and lower government 

support prices in the dairy sector led farms to increase in size. This also shifted dairy production 

from the traditional areas where average herd size was 50 to 150 head (Lake States, Northeast) to 

the Pacific, Mountain and Southern Plain regions (herd sizes of 500 to 1500 cows). Hammond 

(1994) explains that in traditional dairy states such as Wisconsin and Minnesota, farms with herd 

sizes of 100 or more increased their herd sizes while smaller farms declined in number. Weersink 

and Tauer (1991) showed, however, that the direction of casualty appeared to be from herd size 

to technology; their finding partially supported the view of productivity change as the cause of 

change in size.  

Technological developments in dairy have changed the assembly, processing, and 

distribution of milk (Manchester and Blayney, 1997).Various studies related to dairy farm cost 

efficiency have shown that the adoption of production practices or technologies impact 

profitability. Foltz and Chang (2002), El-Osta and Johnson (1998), and similar studies have 

found production per cow to be a strong factor associated with dairy farm profitability. Studies 

have also shown that inferior genetics, low quality feeds, and disease incidence are limiting 

factors for production per cow. El-Osta and Morehart (2000) showed that the chance of a farmer 

being in the lowest quartile of production performance is lower with the adoption of capital or 

management intensive technology. Those farmers who were in the top performance group had 

milk production costs 53% lower than those in the low-performance group (El-Osta and 
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Morehart, 2000). These facts demonstrate the importance of improved production practices in 

dairy production. Early adoption studies in agriculture and more recently Bandiera and Rasul 

(2006) have shown that agricultural innovations are adopted slowly and some aspects of the 

agricultural adoption process are yet to be understood.  Feder et al. (1985) mentioned that the 

new technologies have attained only partial success even though new technology often offers an 

opportunity to increase production and income substantially. Many questions regarding the 

determinants of technology adoption are not easily answered (Besley and Case, 1993), especially 

in the livestock sector (Abdulai and Huffman, 2005). This leads to further enthusiasm about the 

factors affecting technology adoption in the dairy sector. 

2.3 Breeding Technologies and Adoption 

The application of reproductive and breeding techniques has a major impact on the 

structure of breeding programs,  genetic gain and the dissemination of the genetic gain in 

livestock production (Arendonk and Bijma, 2003). According to Shook (2006), genetics has 

accounted for about 55% of gains in the yield traits and about one-third of the change in the time 

interval required to conception.  This can be accomplished through AI, ET, sexed semen and 

traditional breeding methods.   

The dairy sector was the first to adopt improved breeding for commercial production in 

the livestock sector. Breeding and herd improvement associations had an important role in 

disseminating information about AI after its introduction in the 1940s (Johnson and Ruttan, 

1997). Artificial Insemination was introduced at the local level. The industry experienced a rapid 

initial diffusion of the technology (Johnson and Ruttan, 1997). In the past 50 years, AI developed 

as a solution for the need for genetic improvement and elimination of costly venereal diseases 

(Foote, 1996). Hillers et al. (1982) compared the cost and returns of breeding dairy cows both 

artificially and naturally. The study clearly showed the economic advantage of using genetically 



13 
 

superior AI bulls in breeding. This study showed that calving intervals with natural service (NS) 

in excess of 365 days or an initial conception rate of AI greater than 0.5 would make AI 

economically more favorable compared to NS. In addition, there is the risk of personal injury 

using NS due to the presence of bulls. Management factors such as accuracy of estrus detection 

and knowledge of proper insemination techniques are the constraints to even wider use of AI 

(Hillers et al., 1982). Barber (1983) found both biological and monetary factors affecting the 

adoption of breeding technologies. For most commercial dairy herds, Barber (1983) outlined the 

dramatic impact of AI on genetic improvement and profitability.  Busem and Bromley (1975) 

showed the adoption of new breeding technology to be closely linked with stability of farm 

income. Steady cash flow is their major source of income in intensively managed dairy 

enterprises. An AI breeding program could be recommended for dairy operations (Barber, 1983). 

Foltz and Chang (2002), El-Osta and Johnson (1998), and other studies have found production 

per cow as a strong factor associated with dairy farm profitability.  

According to Johnson and Ruttan (1997), “Breeding technologies are highly information 

intensive. An understanding of the principles of breeding and genetics, as well as performance 

data collection, management and analysis, are often necessary in order to use the new 

technologies effectively.” They added, “Increasing knowledge can increase the effectiveness of 

breeding technologies; however it also favors a large operation over which to spread the costs.” 

This provides some intuition about the factors affecting the adoption of breeding technologies. 

There are differences in AI adoption rates and productivity between regions and producers. 

Shumway (1987) considers the costs involved in effective AI use as one of the explanations for 

differences in adoption rates and productivity among regions and producers. The farmer‟s 

breeding decision is the key factor in increasing productivity through AI.  
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Application of ET technologies results in an increase in the reproductive rate of females. 

An increase in this rate is an opportunity to reduce the number of dams that need to be selected 

for the next generation (Arendonk and Bijma, 2003). Arendonk and Bijma (2003) referred to 

research which concluded that Multiple Ovulation and Embryo Transplants (MOET) could 

produce substantial increases in genetic improvement and its main advantage is faster 

dissemination of superior genetics using cloned embryos (De Boer and Arendonk, 1994). 

Arendonk and Bijma (2003) also illustrated that factors such as genetic scheme and genetic merit 

between available semen and embryos as well as the purchase price of semen and embryos 

determine a farmer‟s decision to inseminate a cow with semen from a progeny tested sire or to 

implant the embryo.  

Use of sexed semen will lead to higher genetic merit of the newborn calf (Arendonk and 

Bijma, 2003). Weigel (2004) revealed that the use of sexed semen has been limited to a few 

highly marketable animals. However, he also mentioned the keen interest of dairy producers in 

acquiring sexed semen, which shows the potential high rate of adoption of this technology. De  

Vries et al. (2008) mentioned that the use of sexed semen is expanding. Due to continued 

improvement in fertility and sorting capacity of sexed semen, commercial application will be 

wider (De Vries et al., 2008). With the use of sexed semen and better utilization of genetic 

markers, cost of progeny testing and ET will be lower (De Vries et al., 2008). According to 

Weigel (2004), early adopters of this technology capture economic benefits because adopters 

will get an increased supply of (extra) replacement heifers and the chance to expand rapidly from 

within a closed herd.  

Embryo transplant technology was significantly used after the development of non-

surgical methods in the 1970s. The number of registered Holstein calves doubled yearly in 

1980s, but the rate slowed after the 1980s (Hasler, 1992).  Neither ET nor sexed semen 
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techniques seem to be perfectly feasible for all types of farms, thus their lack of rapid adoption 

diffusion. There may be several technical and managerial reasons behind this. Structured ET 

operations require a great deal of capital to build facilities (Funk, 2006). Smeaton et al. (2003) 

revealed that embryo technologies have a low uptake rate in New Zealand dairy. They also 

mentioned that embryo-based reproductive technologies are usually not profitable in the general 

situation if the offspring obtained by ET does not command a higher price than that from natural 

mating or AI systems. According to Foote (1996), ET for selected animals was successful partly 

because the dairy farmers who adopted AI for generations showed their interest in applying new 

methods of making desired germplasm.  

Sexing sperm in a dairy enables producers to predetermine the sex of offspring prior to 

conception.  Seidel (1984) had explained basically two procedures of sexing embryos. The first, 

„karyotyping,‟ requires biopsy and the killing of a number of embryonic cells to examine the 

chromosomes. The second includes making an antibody to molecules to distinguish male 

embryos from females with a florescent microscope or by an enzymatic product. Arendonk and 

Bijma (2003) mentioned that the use of ET or sexed semen help farmers to reduce calving 

difficulties and improve animal welfare. Medical News Today (2006) in their website (accessed 

on July, 2009) reports, “Several companies providing artificial insemination to the dairy, beef 

and swine industries, including some of the world's largest, have signed licensing term sheets 

with Toronto-based Microbix Biosystems Inc. (TSX:MBX) for distribution of its proprietary 

Sperm Sexing Technology (SST).  Microbix' technology allows breeders to determine the sex of 

offspring prior to the insemination of cattle or swine.” Quoting Willium J. Gastle, the president 

and CEO of Microbix Company, Medical News Today (2006), "Upon commercialization, this 

will be the single-greatest breakthrough since the advent of commercial artificial insemination 

almost 50 years ago and will revolutionize the way animal production takes place. Our market 
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research indicates within three years of launch of this technology, close to 100 percent of the 

dairy semen provided will be sexed semen." Microbix (2009) predicts that semen sales in the 

dairy industry, the largest user of AI, will increase by more than 2-fold with the introduction of 

sex-specific semen.  

Herbst et al. (2009) studied the effects of sexed sorted semen on Southern dairy farms. 

The study showed that the use of sexed-sorted semen over unsorted semen made available the 

surplus replacement heifers to sell. The positive results of more heifer calves should compensate 

the higher cost of sexed-sorted semen to have application of this technology in farms (Herbst et 

al., 2009).  

2.4 Adoption and Impact Studies: Review of Methodology  

Assessing the impact of technology is the subject of discussion in some adoption models. 

Various scholars have discussed and used different statistical methods to assess the actual impact 

on the farm (Foltz and Chang, 2002; Fernandez-Cornejo and McBride, 2002; Tauer, 2001; Foltz 

and Lang, 2005; Tauer, 2006). To assess the financial impact of a breeding technology on a farm, 

we need to control the effects of several other factors that may also affect financial performance. 

The effects of the other technologies and management practices, size, location and operator 

characteristics need to be accounted for in order to isolate the effect of a breeding technology on 

farm financial performance.  

Endogeniety and self selection issues and their associated correction methods have been 

discussed (for e.g., Vella and Verbeek, 1999; Green, 2005; Freedman and Sekhon, 2008). Vella 

and Verbeek (1999) statistically explained that the popular two procedures in estimating the 

impact of endogenous treatment effects, instrumental variables and control function procedures, 

are closely related.  Heckman (1978, 1979) suggested a two-step method for taking care of 

endogeneity. This popular two-step method is used by many scholars in their studies. Freedman 
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and Sekhon (2008) compared the methods for removing endogeniety bias in regression. They 

showed that the likelihood methods are superior to the 2SLS method in a probit model. They 

stated, however, the serious numerical concerns in maximizing the bivariate probit likelihood 

function by standard software packages. They also referred to the literature where maximum 

likelihood functions performed rather badly.   

Gillespie et al. (2004) studied the adoption of four breeding technologies in the hog 

industry. They used a multivariate probit technique to estimate the impact of factors affecting 

adoption. The multinomial probit technique is also possible in this case, but use of multinomial 

probit becomes more difficult and complicated when more than two technologies are under study 

(Gillespie et al., 2004). 

Burton et al. (1999) used binomial and multinomial logit techniques to study the adoption 

decision regarding organic techniques. Besides two groups-“adopters” or “non-adopters,” they 

also categorized “registered-adopters” and “unregistered adopters” within adopters.  They used a 

likelihood ratio test to find significant differences between binomial and multinomial logit 

techniques. Results suggested that there are differences between “registered” and “unregistered” 

groups, suggesting that they should not be treated as homogenous.  

Caswell and Zilberman (1985) studied the choices of sprinkler or drip irrigation 

technologies relative to traditional surface irrigation and the factors influencing them. However, 

Dorfman (1996) commented that the use of the multinomial logit model in Caswell and 

Zilberman (1985) did not measure the interaction between the two improved technologies. 

Dorfman (1996) used the multinomial probit model to assess the adoption decision with multiple 

technologies. According to Dorfman (1996), the multinomial probit model had not been widely 

used in the past because of some computational difficulties. Now, however, the computation is 

easier with advances in computing methods, specifically Gibbs sampling and the use of the 
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numerical Bayesian approach in estimation. The relationship or interaction between two 

technologies can also be assessed (Dorfman, 1996).  Dorfman (1996) used the multinomial 

probit in an adoption study of two technologies: Integrated Pest Management (IPM) and 

irrigation, dividing them into four possible technology bundles as four possible adoption 

decisions.  

El- Osta et al. (2007) used the multinomial logit to measure the economic well-being of 

U.S. farm households among four different wealth categories. They estimated the relative and 

absolute well-being of households. Using least squares estimates, they also included the 

probabilities of off-farm work and government payments from the first stage multinomial logit 

models.  

Moreno and Sunding (2003) used a bivariate probit model to estimate the simultaneous 

nature of technology adoption and land allocation. They included a technology adoption equation 

as a function of the crop choice decision. A bivariate probit model was estimated by maximum 

likelihood.  

Monero and Sunding (2005) found that technology choice differed for different crops, 

though technology and crop decisions were taken jointly. So, they estimated technology adoption 

using a nested logit model of technology adoption and crop choice. They showed a farmer‟s crop 

technology choices as a two-level nested choice.  

El-Osta and Morehart (2000) used two separate logistic regressions in a first-stage 

estimation of management and capital intensive technologies. The binomial logits were used to 

obtain estimated probabilities of adoption. They incorporated the predicted probabilities 

(technology variables) and selectivity variables from first stage models as exogenous variables in 

a second stage output frontier model to address simultaneity and self-selectivity concerns.  
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Abdulai et al. (2008) studied the adoption of technology in the presence of uncertainty 

among dairy farmers of Tanzania. They jointly estimated the information acquisition and 

adoption decision. They also estimated the intensity of adoption using the Heckman (1979) 

procedure using bivariate probit model equations (first step) followed by use of the inverse Mills 

ratio in the intensity equation. Cooper and Keim (1996) also used a selectivity model with a 

bivariate probit sample selection in assessment of adoption of water quality protection practices. 

Technology adoption and farm financial performance are jointly determined. Thus, there 

is a simultaneity concern (Zepeda, 1994). Several studies (e.g., Fernendez-Cornejo and McBride, 

2002; Foltz and Chang, 2002) have used predicted probabilities from adoption decision models 

as instrumental variables in second stage impact models. They had randomly assigned farmers as 

adopters and non-adopters. The farmers had decided themselves to be the adopter or non-

adopter. Thus, the adopters and non-adopters in this sense may be systematically different, which 

may lead to differences in farm performance; thus there is the need to account for self-selectivity 

(Greene, 1997).  

Fernandez-Cornejo and McBride (2002) studied the financial impact of adoption of 

genetically engineered crops. They included predicted probabilities and an inverse Mills ratio 

from the first stage adoption decision model (probit) as additional regressors in a second stage 

regression (impact model) to account for simultaneity and self-selectivity. Fernandez-Cornejo et 

al. (2002) studied the on-farm impacts of adopting herbicide-tolerant soybean. They used 

predicted probabilities from first stage probits to account for endogeneity coming from 

simultaneity and self-selection bias.  
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CHAPTER 3 

DATA AND METHODOLOGY 

3.1 Data 

This study utilizes data from the 2005 Agricultural Resource Management Survey 

(ARMS), dairy version, conducted by the Economic Research Service (ERS) and National 

Agricultural Statistical Service (NASS) of the U.S. Department of Agriculture (USDA). 

Altogether, the survey includes 1,814 observations from 24 states. States covered include AZ, 

CA, FL, GA, ID, IL, IN, IA, KY, ME, MI, MN, MO, NM, NY, OH, OR, PA, TN, TX, VT, VA, 

WA, and WI, shown in Figure 3.1. 

Figure 3.1: U.S. States Covered by ARMS, Dairy Version 2005 
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Sample dairy farms were selected from the list of farms maintained by USDA-NASS. 

Data on agricultural production, land use, revenue, expenses, and detailed information on input 

usage are covered by ARMS. The survey also includes information on farm operator and 

financial characteristics, size, commodities produced, and technology use. Sampling is stratified, 

with sampling probabilities varying by farm size and state. Each sample farm represents a 

number of like farms in the population, and expansion factors allow for extrapolation to the dairy 

population of the 24 states where the survey was conducted (90% of the U.S. dairy population).   

Each data unit (farm) is weighted based on the difference in dairy production and regions. 

We included those weights in our study. Making the total number of observations equal to the 

sample size, weights were adjusted for each observation accordingly:  

     
   

    
 
   

   

Where      is the weight for farm j computed for this study,     is the weight variable (scalar) 

for the j
th

 farm assigned in the ARMS data, and N is the total number of observations. 

3.2 Models 

The model used in this study includes two stages: 1) an adoption decision model assessing 

the factors influencing the adoption of two breeding technologies, AI and ET and/ or sexed 

semen and 2) an adoption impact model assessing the impact of these breeding technologies on 

farm productivity and profitability. 

3.2.1 Adoption Decision Model 

3.2.1.1 Economic and Econometric Model Set-up 

As a part of genetic selection and breeding programs, dairy farmers adopt AI, ET and/or 

sexed semen technologies among the major breeding technologies on their farms. Assessment of 

the extent of adoption and the characteristics of adopters is the subject of this research. Through 
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this model, we seek to determine the factors influencing the adoption of AI, ET and sexed semen 

technologies and how each of these factors affects the likelihood of adoption. 

The 2005 ARMS dairy version includes the following two questions regarding adoption of 

breeding technologies on dairy farms: 

 During 2005, did the farm (operation) use artificial insemination (AI) as part of the 

genetic selection and breeding program?  Answer: YES or NO 

 During 2005, did this operation use embryo transplants or sexed semen (ETSS) as part of 

the genetic selection and breeding program? Answer: YES or NO 

We assume that farm households make rational decisions. Farm households maximize a 

utility function that ranks the household‟s preferences among available technological choices.  

The farmer‟s adoption decision is to either adopt or not adopt. These adoption decisions are 

influenced by a number of demographic, socioeconomic and other factors.  

Let Uo and UN be the representations of the expected benefits from old (traditional) 

breeding technologies and new breeding technologies, respectively. The dairy farmer decides to 

adopt a new breeding technology if UN*= UN - Uo > 0. The net benefits due to adoption of the 

new breeding technology, UN* which is latent to farmers, is assumed to be a function of different 

farm attributes, management considerations and the farm‟s sources of information (Nicholson et 

al., 1999).  

Utility UN * = f (F, M, I) where F are farm and farmer attributes; M represents 

management considerations associated with the technology and farm; and I includes the farm‟s 

sources of information about the technology. If X is the vector containing all of the variables in 

F, M and I, and α  is the coefficient vector of X , then UN * = X α + e, where e is a random error 
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term distributed normally with mean zero and variance one. So, the observable choice D 

(decision) to adopt new breeding technologies will be as follows:  

DN = 1 if  UN * >0 ; DN= 0, otherwise  

In our case, if AI* and ETSS* are unknown variables denoting the net benefits of 

adopting these technologies, respectively, then AI* and ETSS* depend on several variables 

(whose vectors are X1 and X2, respectively, with a and b respective coefficients) such that  

ETSS*= X1a + ε1   

AI*= X2b + ε2 

Then, ETSS =1 if ETSS* > 0 and AI= 1 if AI* > 0. 

Error terms ε1 and ε2 are associated with the two equations, respectively. Artificial insemination 

has value 1 for adoption and 0 for non-adoption, and ETSS likewise. 

Given AI and ETSS are adopted as breeding technologies, the adoption decisions of AI 

and ETSS are assumed to be related. This implies that the random error terms in the equations 

are correlated. If so, we need to account for the joint probability rather than by using separate 

probit models for each. So, a bivariate probit model would be more appropriate than single probit 

equations. In the bivariate probit, the covariance of [ε1, ε2] equals a constant ρ, rather than zero 

as is assumed in the case of individual probit models. In practical terms, this implies that the 

decision to adopt one technology is related to the decision to adopt another.  

According to Greene (2008), the bivariate probit is a natural extension of the probit 

model, allowing two equations whose general specification follows:  

  
     

              if   
   , 0 otherwise 

  
     

              if   
   , 0 otherwise 

                       = 0, 
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(Greene, 2008). 

The bivariate normal cumulative distribution function (CDF) is: 

                             
  

  
      

  

  
. This is denoted as              

The density is: 

             
 
 
 
 
    

    
                

           
 

 (Greene, 2008), where 2 (.) and 2 (.) are the bivariate normal density and bivariate cumulative 

distribution functions, respectively. 

Artificial insemination technology was introduced during the 1950s and is considered as 

a successful and farmer-friendly technology. Many previous studies about AI suggested that it 

has been extensively used in dairy farms (Johnson and Ruttan 1997, Hillers et al. 1982, Barber 

1983). A recent study by Khanal et al. (2010) based on ARMS data found that AI was adopted 

by 81.4% of the U.S. dairy farms in 2005, while ETSS technologies were adopted by 10% of the 

farms. Artificial insemination seems to be a well-adopted technology on dairy farms while ETSS 

are emerging, still diffusing technologies. Previous studies about ETSS (e.g., Arendonk and 

Bijma 2003; Weigel, 2004; De Vries et al. 2008) suggest wider adoption of ET and sexed semen 

in near future. There is the involvement of semen that has been collected by artificial means in 

the use of both ET and sexed semen. For instance, the use of ET and/or sexed semen require that 

sperm will have been artificially collected, whether or not both or all three technologies are 

adopted on the same farm. Thus for practical purposes, adopters of ET and/or sexed semen are a 

subset of AI adopters since there would be very few cases where ETSS were used by farmers 

without AI. Thus the assumption in this study is that AI adopting farms select to either use or not 
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use ETSS. Having the situation that ETSS appears on the farms where AI is adopted, there is no 

difference in observability in adoption pattern of the set (ETSS=0 ∩ AI=0) and the set (ETSS=1 

∩ AI= 0). This suggests the case of bivariate probit with selection.  

In the bivariate setting, there may be the condition where data on y1 would be observed 

only when y2 equals one. This type of estimator was proposed by Van De Ven and Van Praag 

(1981) and is used in several studies (Boyes et al. 1989; Greene 1992; Kaplan and Venezky 

1994; Greene 1998; Mohanty 2002). In the setting of bivariate probit with selection, the model is 

                             

                             

                           

(    ,    ) is observed only when       

Where yi1 is the observation of y1 for the i
th

 individual and yi2 is the observation y2 for individual 

i. So, observations yi1 and yi2 depend on the sign of the zi1 and zi2, respectively. In the bivariate 

with selection setting, y1 is not observed unless yi2 =1. So, there would be three observed 

outcomes on this selection model. These three types of observations in the sample with their 

unconditional means are:  

                                  
     

                                              
        

        

                                             
        

      . 

The log likelihood for the bivariate probit with selection is 

                            
                           

        
        

             
    . (Greene 2008; LIMDEP Version 9).  
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Meng and Schmidt‟s (1985) partial observability model has a formulation similar to the 

bivariate probit model with sample selection, proposed by Van De Ven and Van Praag (1981). 

Meng and Schmidt‟s (1985) model has the following set up: 

If y1=1, both y1 and y2 are observed. 

If y1=0, then only y1 × y2 is observed.  

(Greene, 2008; LIMDEP Version 9.0).  

Van De Ven and Van Praag (1981) proposed and applied a correction method analogous 

to Heckman‟s (1979) method of correcting sample selection. They derived the likelihood of the 

proposed model of bivariate probit with sample selection correction. They applied this model in 

the study of the propensity for accepting deductibles in health insurance on the basis of stated 

preferences. Estimation results resembled maximum likelihood estimates.  

Boyes et al. (1989) analyzed the bank credit scoring problem using a censored probit 

framework with a choice based sample. In the study, y1 was whether the loan was granted while 

y2 was whether the loan was defaulted. Since default on the loan can be made only if the loan is 

granted, the case was, y2 is observed only when y1=1. Similar to the model of Van de Ven and 

Van Praag (1981) and the likelihood function suggested by Meng and Schmidt (1985), they 

computed estimates of the probability of loan grant and loan default using bivariate probit with 

selection. 

Greene (1992) also conducted a similar study on credit scoring. Greene (1992) used the 

same model as Van De Ven and Van Praag (1981) and that used by Boyes et al. (1989): bivariate 

probit with selection. They found similar conclusions. Obubuafo et al. (2008) studied awareness 

and adoption of the Environmental Quality Incentive Program (EQIP) by cow-calf producers. 

They used a bivariate probit designing two equations, first an awareness equation and second an 
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application (adoption) equation. Since farmers apply for EQIP if they are aware of the program, 

they used Meng and Schmidt‟s (1985) framework in their study. 

Mohanty (2002) studied factors determining the employment of teenager workers. The 

paper showed the combined role of the teenager‟s employment participation decision and the 

employer‟s hiring decision of teenagers. Misleading evidence of hiring discrimination among 

black teenagers, which was prevalent when computing separate probabilities, disappeared when 

estimated in an appropriate bivariate framework. This paper followed the censored bivariate 

probit approach developed by Meng and Schmidt (1985), allowing interaction between the 

employer‟s hiring decision and the worker‟s participation decision.  More precisely, the paper 

explains that the worker is employed if he/she actively looks for a job (SEEK= 1) and is also 

selected by the employer (SEL= 1).  If both SEEKi and SELi are observed for each i, the 

employment probability can be estimated from the bivariate probability. The SEEK variable is 

observed for all individuals in employment probability but the SEL variable is not because when 

SEEK=0, the intersection of SEEK and SEL have same observation (i.e. SEEK=0 ∩ SEL = 1 is 

observed the same as SEEK=0 ∩ SEL=0). So, the paper used Meng and Schmidt‟s (1985) partial 

observability model. The Meng and Schmidt (1985) model is very similar to the bivariate probit 

model with sample selection developed by Van de Ven and Van Praag (1981) in the formulation 

of the probability and likelihood (Greene, 2002; Mohanty, 2002). 

Kaplan and Venezky (1994) used a bivariate probit model with sample selection 

framework to study literacy and voting behavior. People who are voting must be registered 

voters. The voting response of respondent yv  is observed only when they are registered for vote 

yr. The error terms in separate probit equations (uv and ur) may have non-zero covariance.  So, 

they found bivariate probit with sample selection best suitable to address this issue.  
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3.2.1.2 Statistical Test for Zero Correlation 

The relationship between AI and ETSS suggested that the bivariate probit with sample 

selection was the most appropriate for the present study. This should be confirmed by a formal 

statistical test. A statistical test for zero correlation is used to check whether there is statistical 

significance associated with using separate probit models for the two technologies or bivariate 

probit with selection. The test is         against           The likelihood ratio test can be 

used to test this null hypothesis of no correlation between the two technologies.  

To use the likelihood ratio test, we should note that when       , then the bivariate 

probit becomes two independent univariate probits. So, the LR statistic can be computed from 

the difference between the bivariate probit log likelihood and the sum of the two log likelihoods 

of the independent univariate probits as follows:  

LR-statistic= 2 [ln Lbivariate – ( ln L1+ln L2)] where lnL1 and lnL2 result from the univariate 

probit models. This converges to a chi-squared variable with one degree of freedom (Greene, 

2008). Thus, if the statistic is greater than 3.84, then the null hypothesis is rejected at the 95% 

confidence level.  

3.2.1.3 Marginal Effects  

The marginal effect for continuous variables in the probit model is: 

 
       

  
 = { 

       

      
             

In the case of a dummy variable for a binary independent variable d, the marginal effect would  

be:  Marginal effect = Pr[ | , ] Pr[ | , ]* *Y x d Y x d    1 1 1 0  

where x*  denotes the means of all the other variables in the model  (Greene, 2008). 

The bivariate probit model is the extension of the probit. There are several marginal 

effects associated with the bivariate probit model. The first step could be the derivatives of  
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                      as follows: 

      
       

        

   
      

       
  

       
    

     
     

(Greene, 2008). 

We can evaluate several conditional means and their partial effects as we have two 

dependent variables, y1 and y2. If x is defined as            and,   
      

     Greene 

(2008) has shown different conditional probabilities and their marginal effects as: 

                    
     

        
   

  
            

                             
                

           
 

    
     

      

       
  

We can obtain the marginal effects for y2|y1 by respecifying the model with y1 and y2 reversed.   

For E [y2| y1=1, X], the marginal effect of this function is: 

           

  
  

 

       
             

       

       
     

Where             
    ρ    
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   ,             and              

so that       if       and -1 if      ,   
            and        

(Greene, 2008; LIMDEP version 9). 

3.2.1.4 Heteroskedasticity  

The assumption of homoskedasticity assumes that for each value of x, the values of y are 

distributed about their mean value following a probability distribution, i.e.            . 

Violation of this equal variance assumption is called heteroskedasticity. Alternatively, variable yi 

and random error term ei are said to be heteroskedastic. Presence of heteroskedasticity in data 
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does not affect the assumption of unbiasedness and consistency but creates inefficiency in linear 

regression estimates. Greene (2008) mentioned the trend of using a robust “sandwich” estimator 

for asymptotic covariance matrix estimation to account for the standard error in probit models.  

Since ARMS includes a complex survey design and cross sectional data, it has more possibility 

of heteroskedastic error terms. Mishra and El-Osta (2008) used the Huber-White sandwich 

robust variance estimator in their study using ARMS data in logistic distributions. We used the 

“Robust” option in LIMDEP which adjusts for such heteroskedastic standard errors (LIMDEP, 

Version 9). 

3.2.1.5 Independent Variables Used in the Adoption Equation 

Farm Size: Farm size is an important factor in the adoption decision of technology. Previous 

studies on adoption of technologies in dairy have included herd size as the indicator of farm size. 

Herd size as an indication of farm size allows for analysis of the scale response of the 

technology. It requires extra management and effort to manage bulls and to mate them with 

cows, especially in larger farms. In using bulls for breeding, there will also be the chance of 

physical injuries. So, as herd size expands, natural breeding using a bull may be less feasible, 

implying the adoption of AI, ET and/or sexed semen. So, the number of milk cows on the farm, 

NMILKCOW, is included as an explanatory variable in the adoption decision model. In the 

McBride et al. (2004) and Foltz and Chang (2002) rbST adoption studies, number of milk cows 

was included to consider influence of adoption by size. Though larger farms may be more likely 

to adopt, this size impact may increase at a decreasing rate (McBride et al., 2004).  El-Osta and 

Morehart (2000) found that the likelihood of adopting capital-intensive technologies increases 

with size and reaches a peak at a size of 358 milking cows, while the likelihood of adopting a 

management intensive technology decreases as farm size increases, reaching its lowest at 129 

milking cows, beyond which it rises with farm size. However, this finding may not have exact 
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implications in terms of our peak milking cow figures as their study was based on 1993 ARMS 

data with the farms surveyed having an average herd size of 57 cows (El-Osta and Morehart, 

2000).    

 Though genetically superior milking cows may be considered capital- intensive (El-Osta 

and Morehart, 2000), breeding technologies such as AI, ET, and sexed semen can generally be 

considered as management intensive rather than capital intensive. All require appropriate time 

management, specialized knowledge, and skill such as accurate detection of estrus for successful 

use. 

Farmer Characteristics: Younger people are generally considered to be more receptive to new 

ideas and, thus, are expected to be the greater adopters of advanced technologies, as shown in 

most adoption studies. To examine whether this is the case for these breeding technologies, age 

of the principal operator, AGE, is included in the model. Previous studies illustrate that breeding 

technologies are information and knowledge-intensive (Johnson and Ruttan, 1997). Planning 

horizon of the farmer also affects adoption decision of a technology. The consideration of 

continuation of farming in the next several years may influence the decision. Dairy producers 

with longer planning horizons may be more interested in investing in the development of human 

capital or other capital that supports AI and/or ETSS adoption. Previous adoption studies have 

also included planning horizon (McBride et al., 2004). In this study, TENYEARS, a dummy 

variable having value 1 if the farmer (operator) is planning to continue the operation for the next 

ten years, is included. Farmer education has been consistently used in adoption studies. Younger 

and more educated farmers were the more likely the adopters in case of rbST (McBride et al., 

2004). More educated farmers are expected to more likely adopt new technologies. So, the 

principal operator‟s education is also included in the model as a separate variable. EDUC is a 

dummy variable having the value 1 if the principal operator is a college graduate or beyond.  
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Farm specialization is another variable of interest. Likelihood of being a top producer 

increased with specialization of the farm (El-Osta and Morehart, 2000). The ratio of dairy 

enterprise revenues to total farm revenues indicates degree of specialization in dairy. So, the 

specialization is the ratio of the value of dairy production to the total value of production in farm. 

Another farmer characteristic is farmer‟s work in an off-farm job. This variable has resulted in 

mixed findings in terms of technology adoption decisions. The lower the off-farm income, the 

more was the adoption of managerially intensive technologies such as precision farming 

(Fernendez-Cornejo, 2007). Adoption of herbicide tolerant soybean, on the other hand, was 

positively related with off-farm income (Fernendez-Cornejo et al., 2005). Fernendez-Cornejo 

(2007) found that farm efficiency decreases when off-farm activities increase. In this study, 

dummy variable OFFARM is included, taking a value of 0 if both the operator and the spouse do 

not work off the farm for wages or salary, else 1.   

Location Factors: Technology adoption differs across regions. Location factors account for 

geographic and regional differences in climate, production systems and cultural perceptions 

about the technology (McBride et al., 2004). Technology adoption studies (McBride et al., 2004; 

El-Osta and Morehart, 2000; Fernendez-Cornejo and McBride, 2002) have included location 

variables in adoption decision equations. El-Osta and Morehart (2000) included dairy production 

locations as “WEST” (farms located in the western US) and “NORTH” (farms located in the 

northern US). Khanal et al. (2010), however, assumed the regional differences in dairy 

technologies and management practices may be associated with differences in farm size. In this 

study, two dummy variables for West and South are included to capture the regional differences. 

Dummy variable WESTUS includes the Pacific (CA, OR, and WA), West (AZ, ID, and NM) and 

Southern Plains (TX) states. The SOUTHUS dummy variable includes the Appalachia (KY, TN, 

and VA) and Southeastern (FL and GA) states. The U.S. states covered under WESTUS and 
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SOUTHUS in our study is shown in Figure 3.2. Figure 3.2 also shows the base survey states not 

included under WESTUS and SOUTHUS.  

 

Figure 3.2: Survey States Included Under WESTUS and SOUTHUS 

Adoption of Other Technologies and Management Practices: According to Johnson and 

Ruttan (1997), “..an understanding of principles of breeding and genetics, as well as performance 

data collection, management and analysis, are often necessary in order to use the new breeding 

technology effectively.” This implies that the adoption of some other technology or milk 

production system or management practices may be complementary with breeding technologies. 

So, adoption of some particular technologies, management practices or production systems can 

influence the adoption decision of breeding technologies. Studies related to the adoption of dairy 

technologies (McBride et al., 2004; Foltz and Chang, 2002) have found differences in the 

probability of adoption when accounting for other technologies in the adoption equation. Khanal 

et al. (2010) have found complementary relationships between dairy technologies, management 

practices and/or production systems. Their study found that having a parlor milking system on 
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the farm was the most common factor that increased the likelihood of adoption of most of the 

other technologies, management practices and production systems on dairy farms. We include 

dummy variable, PARLOR, having value =1 if it is adopted on the farm.   

3.2.2 Farm Impact Model 

3.2.2.1 Model Set-up 

A farm impact model assesses the impact of the adoption of breeding technologies (AI 

and ET and/or sexed semen) on farm productivity and farm profitability. Milk production per 

cow is used as an indicator of farm productivity while net returns variables are used as indicators 

of farm profitability.  

If Yi is the productivity or profitability of the farm, expressed in terms of dollars or 

amount milk produced, then it is a function of vectors of explanatory variables (Xi) and two 

dummy variables for adoption of breeding technologies (AI and ETSS), ETSS being a dummy 

variable having value =1 if ET and/or sexed semen is adopted.  

     
                      

where   is the vector of parameters for independent variables other than AI and ETSS, AI and 

ETSS are two dummy variables having value 1 for adoption and 0 for non-adoption, with 1 and  

2 as respective parameters. Estimate ei is the random error term.  

From the previous discussions on the adoption decision model, we know that farmers will 

adopt each technology if the benefit associated with adoption is higher than the cost associated 

with adopting. Let AI* and ETSS* be unknown variables denoting this benefit factor. AI* and 

ETSS* depend on several variables (say, whose vectors are βa and βb) such that  

ETSS*= X1βa + ε1 and AI*= X2βb + ε2. Then, ETSS =1 if ETSS* > 0 and AI= 1 if AI* > 0. 
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Other technologies adopted on the farm also have the influence on productivity and profitability. 

So, if    is a vector of other technologies, management practices, and production systems on the 

farm, we can rewrite our model as: 

     
                      

       , where    is the coefficient vector.  

3.2.2.2 Accounting for Endogeneity and Self-Selection Bias Issues 

The above mentioned equation can be estimated using the Ordinary Least Squares (OLS) 

regression technique. However, the estimators computed using a simple OLS technique may be 

biased and inconsistent if there is a problem of the presence of the correlation between the 

explanatory variables and error terms. If there is potential for such a problem, it should be tested 

and corrected for to reduce bias and obtain a more consistent approximation of the estimator.  

Explanatory variables which have such correlation with the error term are said to be 

endogenous and the least squares estimator fails to estimate accurately in this case (Hill et al., 

2008). We suspect that AI and ETSS are endogenous. This problem can be addressed by 

administration of appropriate instrumental variables.  

Hill et al. (2008) have explained that the endogeneity problem may arise due to one or 

more of the following reasons: 1) measurement problems (the explanatory variable is measured 

with error), 2) the case where an omitted variable is correlated with explanatory variables, then 

resulting in the error term being correlated with explanatory variables, 3) simultaneous equation 

bias, and 4) when a lagged dependent variable is in the model (due to serial correlation). 

Any of the reasons mentioned above may cause endogeneity. In our study, there is a need 

to test for potential endogeneity of ETSS and AI in impact (profit, revenue, and cost) equations. 

If endogeneity is detected, ETSS and AI should be replaced with appropriate instrumental 

variables (Greene, 2008). Several previous studies (Foltz and Chang, 2002; Fernandez-Cornejo 

et al., 2002; Fernandez-Cornejo and McBride, 2002) have used predicted probabilities from the 
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adoption decision model (probit equation) as instrumental variables in a profit equation. Foltz 

and Chang (2002) showed that the probability of adoption can serve as an instrument for 

adoption of that technology (in their study, the case was rbST adoption). El-Osta et al. (2007) 

used predicted probabilities as instruments in a multinomial regression model. 

 Note that AI and ETSS decisions are related to each other as described in the adoption 

decision model. So, to account for the endogeneity, if detected, predicted probabilities from a 

bivariate probit model can be used as instruments in the productivity/ profitability equations to 

account for joint probability of adoption. So, after replacing AI and ETSS variables with their 

predicted probabilities, our equation would be: 

     
                    

    
      , where      and      

  are the predicted probabilities.  

 Self selection could be an issue here. We have not assigned farmers as adopters and non-

adopters; they have chosen themselves to be adopters / non-adopters. Thus, the two categories of 

farmers as adopters and non-adopters may be systematically different, leading to differences in farm 

performance, but that difference may not be solely due to the adoption of technology of interest 

(Greene, 2002; Fernendez-Cornejo and McBride 2002). If we ignore self-selection bias in 

estimating the impact, then this equation would lead to inconsistent estimates. Since larger farms 

are more likely to adopt many advanced technologies, management practices or production systems, 

the impact of a particular one on farm profitability and productivity may be biased unless accounted 

for using the impact of others using selection bias correction (Khanal et al., 2010).   

 Selection-bias can be corrected for using self-selection variables in the impact estimation 

equation. Heckman‟s (1979) procedure is applicable. This involves computing self-selection 

variables from the adoption decision model and then placing them in the impact model. From the 

bivariate probit with selection equation in the adoption decision model, selection terms, or the 

inverse Mill ratios (λ), are calculated and used as variables in the productivity/ profitability 
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equations. We obtain two selection variables (   and    ) from the bivariate probit model for AI and 

ET, respectively.  

 The selection variable or inverse Mills ratio is the ratio of the normal density function 

and cumulative normal distribution.  In the bivariate probit, the selection variables are given as: 

  
        

                  
 
  

  
 

  
        

                    
 
  

  
 

      
     and        

     

(Abdulai et al., 2008). 

Where    denotes the bivariate normal cumulative distribution with probability density function 

as   . 

So, the final farm impact model is as follows: 

     
                    

    
         

          
      

 Fernandez-Cornejo and McBride (2002) also included both a predicted probability and an 

inverse Mills ratio as regressors in farm impact models to account for endogeneity and self-

selectivity issues. They computed probabilities and inverse Mills ratios from separate probit 

equations of the adoption decision model. Abdulai et al. (2008) included the inverse Mills ratio 

from a bivariate probit model in their study regarding joint estimation of information acquisition 

and adoption of new technologies. Our model is consistent with these previous studies in using 

the tools, but is different in the sense that it uses both predicted probabilities and inverse Mills 

ratios from a bivariate probit with selection equation. 

 A study by Wahba (2007) regarding returns to overseas work experience is also worth 

mentioning here. This study estimated the wage differential between waged employees who are 
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return migrants and those who are non-migrants. Two potential selection biases due to the 

migration decision and wage employment participation (labor market participation) were taken 

into account. The study regarded Egypt, where purpose of migration was employment and 

temporary overseas work experience was affecting wages. Wahba mentioned that there may be 

two potential selection biases: one is migration selection bias because migrated returnees may 

not be representatives of a random sample, but are self-selected. The second bias in selection 

could be on wage work as returnees have alternatives of not entering the wage market, e.g., being 

self-employed). To handle this situation, Wahba used a two-step Heckman (1979) approach but 

with extended correction terms. In the first step, two selection equations are jointly estimated 

using maximum likelihood bivariate probit with selection. In the second stage, the wage 

equations were estimated through simple OLS including the correction terms (computed from 

bivariate probit results) as additional regressors.  

3.2.2.3 Test for Endogeneity and Overidentifying Restrictions  

To check whether predicted probabilities of AI and ETSS from adoption decisions are 

appropriate versus the actual values for AI and ETSS, we tested for the significance of predicted 

values for AI and ETSS, PredAI and PredETSS, respectively in a multiple regression with all Xs, 

AI, ET and PredAI and PredETSS as regressors. Since in our case, joint significance of AI and 

ETSS was found, we included both the predicted values of AI and ETSS (i.e. PredAI and 

PredETSS) in model estimation when either was significant. If not, we chose AI and ETSS 

instead of their predicted values. This procedure is based on suggestions by Wooldridge (2006) 

for testing endogeneity and overidentifying restrictions, whose general procedure is as follows: 

 Estimate the reduced form equation for the suspected endogenous variable and obtain the 

residual of the equation as     
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 Add    as an independent variable in the structural equation which also includes the 

suspected endogenous variable as an independent variable. 

 Regress the equation and check for the significance of   . If    , in the structural equation, 

is statistically different from zero, we conclude that the suspected variable is indeed 

endogenous.  

If endogeneity was detected following this procedure, we included predicted values in 

structural equations. After choosing predicted or actual ones from the above mentioned 

procedure, we also included λ1 and λ2 (self-selection variables) as exogenous regressors and 

checked for their significance. We dropped those in the structural equation if neither were 

significantly different from zero while both λ1 and λ2 were included if either was significant. 

3.2.2.4 Heteroskedasticity Correction in the Model 

We say that heteroskedasticity is present when a sequence of random variables has 

different variances. This violates the assumption of equal variances in least squares estimation. If 

there is heteroskedasticity, OLS estimators remain unbiased and consistent, but are inefficient. 

So, OLS will be no longer result in the BLUE (Best Linear Unbiased Estimator). 

There are several procedures to correct for heteroskedasticity. We can stabilize the 

variances by transformation of the dependent variables. If there is a prior expectation about the 

form of heteroskedasticity, we can use a Generalized (or weighted) least squares estimator 

instead of OLS. If there is suspicion of the presence of heteroskedasticity, but we are unaware of 

the type of heteroskedasticity, then HCCM (Heteroskedasticity Consistent Covariance Matrix) 

estimators are used to obtain more efficient standard errors of the OLS estimates (Long and 

Ervin, 2000). Long and Ervin (2000) studied different methods of HCCM, suggesting that if the 

number of observations is less than 250, HC3 (HCCM estimator based on hat matrix) would 
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perform better. They suggested that if the sample size is more than 500, any HCCM-based test 

(White, HC1, HC2, and HC3) performs well.  

As a robust covariance matrix, the White estimator is one of the common estimators, 

which is: 

                      
     

           
     (LIMDEP, version 9) 

To account for the heteroskedasticity in the impact equations, we used the “Heteroscedasticity” 

option that corrects heteroskedasticity through the corrected White estimator (LIMDEP, version 

9). 

3.2.2.5 Variables in Farm Impact Models 

 Dependent Variables 

 Dependent variables in the impact models are variables accounting for farm productivity, 

profitability, cost, and revenues. Dairy enterprise net returns over total costs are included as the 

indication of farm profitability while milk per cow is the indication of farm productivity. The 

gross return (revenue) and the total and allocated cost variables are also used as dependent 

variables.  

 Dairy enterprise net returns are the difference between gross returns and total costs. Gross 

returns include the value of milk sold, revenues from sales of culled cattle, the implicit fertilizer 

value of manure produced, and other income from the dairy.  Operating costs include feed 

(including the implicit value of homegrown feed), veterinary and medical, bedding, marketing, 

custom services, fuel, lube, electricity, repairs, other operating costs and interest on operating 

costs.  Allocated overhead costs include: hired labor, the opportunity cost of unpaid labor, capital 

recovery of machinery and equipment, the opportunity cost of land (rental rate), taxes and 

insurance, and general farm overhead.  Each of the following variables is used in a separate 

equation as a dependent variable to assess impact.   
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Dairy enterprise level net returns include net returns over total cost (NETTOT) and Net 

returns over operating costs (NETOPER).  NETTOTCWT is net returns over total costs per 

hundredweight of milk produced. Net returns over total costs per milk cow is represented as the 

variable NETTOTCOW. The measures used for operating costs per hundredweight of milk 

produced and per cow are NETOPCWT and NETOPCOW, respectively.  

Different revenue and cost measures are included in the farm impact models. Revenue 

measures include gross returns per hundredweight of milk produced (GROSSCWT) and gross 

returns per cow (GROSSCOW). Different total, operating and allocated cost measures are also 

included as dependent variables. Total costs per hundredweight and per cow (TOTALCWT and 

TOTALCOW); operating costs per cwt and per cow (OPERCWT and OPERCOW) and allocable 

costs per cwt and per cow (ALLOCWT and ALLOCOW) are included as cost measures.  

 Explanatory Variables 

Demographic and Socio-Economic Factors: Previous adoption studies show that farm 

productivity and profitability are influenced by demographic and socio-economic factors. So, 

farm size, farm specialization, farmer characteristics (age, education, and work in an off-farm 

job) are included in the adoption impact models. Location variables are also included to account 

for differences in productivity and profitability due to region. A brief description of these 

variables is already given in the adoption decision model.  

Farm size is consistently used in impact studies. Farm size (number of milk cows) was 

positively related with milk per cow and profit per cow in previous studies (Foltz and Chang, 

2002). McBride et al. (2004) found that the size of operation has a positive impact on operating 

margin per unpaid labor hour while impact was not significant in milk yield. As there are 

expected economies of size involved in dairy, profitability is expected to increase with number 
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of milk cows. A squared term of number of milk cows is also of interest. This study includes 

both number of milk cows and the squared of number of milk cows as independent variables. 

Farmer‟s education is expected to have positive influences on productivity and 

profitability. More educated farmers and more specialized operations have been shown to have 

higher milk yield per cow (Foltz and Chang, 2002; McBride et al., 2004). El-Osta and Morehart 

(2000) also found that the more specialized operations are more likely to be in the top producer 

(performer) group.  Similar to the adoption decision model, variables WESTUS and SOUTHUS 

were included to capture regional differences in production.  

Adoption of Other Technologies: Farm profitability and productivity may be influenced by 

several other technologies, management practices and production systems. Previous findings 

showed that the adoption of other technologies has a significant impact on milk per cow and 

profit per cow (Foltz and Chang, 2002; McBride et al., 2004). Milk production system or milking 

facilities adoption can uniquely influence profitability and productivity. This model includes 

three variables for production system- Parlor, Graze, and milking 3 times daily.  

Parlor: Milking facilities affect the productivity of the farm. The cost of stanchion 

technology is generally lower than that of parlor technology for small farms (Tauer, 1998; 

Katsumata and Tauer, 2008).  Tauer (1998) found that parlor technology was more cost efficient 

in barns with greater than 160 cows, suggesting significantly associated economies of size. 

PARLOR had a positive, however non-significant, impact on yield per cow and operating margin 

per unpaid hours while the impact on profit per cow and operating margin per hundredweight 

were negative (Foltz and Chang, 2002; McBride et al., 2004).  Thus, a dummy variable 

indicating whether a parlor is adopted is included in adoption impact model.  

Milking 3 Times Daily: Milking three times daily is associated with higher milk 

production. Studies have shown a 6 to 19% increase in production associated with a third 
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milking (Amos et al., 1985; DePeters et al., 1985; Gisi et al., 1986; Goff, 1977; Logan et al., 

1978; Lush and Shrode, 1950; Pearson et al., 1979; Pelissier et al., 1978; Poole, 1982; and Kruip 

et al., 2000). Erdman and Varner (1994) found that the increase in yield due to increase in 

milking frequency is by a certain fixed amount (certain kilogram) rather than a percentage 

increase. An additional advantage to milking three times daily is that it partially solves the 

problem of milk quality deteriorating in the late stages of lactation to the point where it cannot be 

used for cheese (Sorensen et al., 2001). Therefore, a dummy variable to account for 3 times 

milking daily is included.  

Grazing (Pasture-based Dairying): Grazing can range from slight to extensive on dairy 

farms. Dairy operations may be pasture-based, where grazing on pasture contributes the majority 

of forage needs during grazing season. As discussed by Gillespie et al. (2009), pasture-based 

operations are defined in various ways such as management-intensive grazing, those that use 

pasture as the primary forage source in the grazing season (Taylor and Foltz, 2006); farms where 

animals obtain 40% of their forage needs during the summer months from pasture (Hanson et al., 

1998); and the operations where at least 25% of the annual forage requirement is obtained from 

pasture and animals are grazed for at least four months (Dartt et al., 1999). The definitions have 

general agreement on overall concept of “pasture-based.” Gillespie et al. (2009) categorized 

operations as conventional, semi-pasture based and pasture-based. In their multinomial logit 

framework, they considered “pasture-based” operations as those that obtain 50-100% of the total 

forage ration for milk cows from pasture during the grazing season. Pasture-based or grazing 

operations may have the different associated farm productivity and profitability from non grazing 

operations. Increased interest in pasture-based dairying has emerged due to increased demand for 

“natural” milk products and the fact that some pasture-based operations may qualify as organic 

with additional management changes. There are different findings about the profitability of 
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pasture-based dairy systems (Gillespie et al., 2009; Hanson et al., 1998; Dartt et al., 1999; Foltz 

and Lang, 2005). Gillespie et al. (2009) found that the semi-pasture based operations were less 

profitable than conventional systems on an enterprise basis while pasture-based operations were 

not significantly different in profitability from other systems. This study includes GRAZE as a 

dummy variable, having a value of 1 if more than 50% of the total forage for milk cows during 

grazing season is obtained from pasture, otherwise 0.  

“SUMTECH” Variable: Variable SUMTECH is a summation of the adoption of eight 

different technologies or management practices on a dairy farm. As an indicator of the number of 

relevant technologies adopted on the farm, variable SUMTECH provides a measure of the 

intensity of adoption. The farms with higher values of SUMTECH can be interpreted as the 

greater technology adopters. SUMTECH includes: 1) holding pen with udder washer, 2) milking 

units with automatic take offs, 3) computerized milking system, 4) computerized feeding system, 

5) using rbST on the farm, 6) DHIA membership, 7) using a nutritionist to purchase or formulate 

feed, and 8) accessing the internet for dairy information. For detailed descriptions of each 

technology and management practice, we refer to Khanal et al. (2010). 
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CHAPTER 4 

RESULTS AND DISCUSSION 

 

The results of adoption decision models and farm impact models developed in Chapter 3 

are presented in this chapter. First, the breeding technology adopter characteristics are presented. 

Demographic, socio-economic, and financial characteristics of the adopters and non-adopters are 

compared. Then, results of the adoption decision and farm impact models are presented and 

discussed. The adoption decision model includes the results of separate probits and a bivariate 

probit with selection. The farm impact models show the least squares regression results, 

accounting for endogeneity and self-selection bias wherever necessary. Each data unit (farm) 

used in these analyses is weighted on the basis of the weights assigned in ARMS and are 

corrected for potential heteroskedasticity. The econometric software LIMDEP, version 9, was 

used for analysis.  

4.1 Characteristics of Adopters and Non-Adopters 

Adopter and non-adopter differences across various demographic, socioeconomic, and farm 

financial characteristics are presented in Table 4.1. Mean differences of the adopters and non-

adopters are statistically tested using paired t-tests. These results are based on 1,814 observations 

of ARMS 2005 data employing pair-wise two-tailed delete-a-group Jackknife t-statistics at the 

90% confidence level or more. There were 15 replicates and 28 degrees of freedom using the 

jackknife. For greater detail on this estimation procedure using ARMS, the reader is referred to 

Dubman (2000). The null hypothesis in two-tailed paired t-tests was B1=B2=0, where B1 and B2 

are respective variable means of adopters and non-adopters.  

 Our results presented in Table 4.1 shows the characteristics of adopters and non-adopters.  
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Table 4.1 Weighted Mean Differences between Breeding Technologies, Adopters and Non-

Adopters, 2005.  

Item Non-Adoption, 2005 Adoption, 2005 

 

……………………………………Artificial Insemination (AI)………………………………... 

  Number of farms 9,710
b 

42,527
a 

  Size   

    Acres 384.0 413.2 

    Number of milk cows 116.1
b 

162.6
a 

  Demographics   

    Farmer age 52.1 51.0 

    Farmer college degree 0.116
b 

0.171
a 

    Farmer‟s off farm work hours per year 140.664 124.859 

  Other   

    Debt-asset ratio 0.144 0.146 

    Milk per cow, cwt/year 133.024
b 

177.142
a 

 
   

…………………………………..Embryo Transfer and/or Sexed Semen (ETSS)……………. 

  Number of farms 46,804
a 

5,433
b 

  Size   

    Acres 396.7
b 

503.2
a 

    Number of milk cows 147.5
b 

209.6
a 

  Demographics   

    Farmer age 51.6
a 

47.6
b 

    Farmer college degree 0.132
b 

0.408
a 

    Farmer‟s off farm work hours per year 121.701 180.308 

  Other   

    Debt-asset ratio 0.143 0.172 

    Milk per cow, cwt/year 164.18
b 

209.95
a 

a-d
:Means within a row with different superscripts differ at P < 0.10. 

Source: USDA, ARMS Data, Dairy Survey, 2005 

 

Number of milk cows for AI adopters were significantly higher than for non-adopters with an 

average 163 milk cows for adopters. Adopters of AI were more highly educated: 17.1% of 

adopters held 4-year college degrees while just 11.6% of the non-adopters had college degrees. 

Milk yield per cow of AI adopters was significantly higher than that of non-adopters (average 

177.14 cwt/year for adopters versus 133.02 cwt/year for non-adopters). Overall, AI adopters had 

more milk cows, were having higher education (college degree and beyond) and produced higher 

milk yield per cow.  
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Mean results suggest that the adopters of ETSS had more acres of land and a significantly higher 

number of milk cows. The portion of adopters having 4-year college degrees was greater than 

that of non-adopters. Adopters of ETSS also received higher milk yields (average 209.95 

cwt/year) per cow than non-adopters (average 164.18 cwt/year). Overall, ETSS adopters had 

more acres of land, had more cows, and were relatively younger and more educated than non-

adopters. 

4.2 Adoption Decision Model  

4.2.1 Descriptive Statistics 

Table 4.2 shows the weighted general descriptive statistics of dependent and independent 

variables used in the adoption decision models. In total, 1,748 observations were used in the data 

set representing the dairy farms (producers) of 24 different states in the U.S. This is cross-

sectional data for 2005. 

 Artificial insemination is used by most dairy farmers. Johnson and Ruttan (1997) have 

described AI as one of the farmer-friendly technologies that experienced rapid initial diffusion in 

dairy. Consistent with this, our data shows a high rate of AI adoption: around 77.9% of the dairy 

farms inseminated their cows via AI in 2005. Our data also shows that ET and sexed semen are 

still diffusing technologies in dairy, as they were adopted by 11% of the dairy farms.  

Average age of the dairy farmers in this survey was 51 years, with a standard deviation of 

11 years. Twenty-one percent of the farmers were college graduates or beyond. TENYEARS is a 

dummy variable indicating whether the farmer plans to continue farming for next 10 years or 

more. This is an indication of the planning horizon of the farm. Descriptive statistics suggests 

that 60.5% of the farms planned to continue farming for the next ten years or more. Data shows 

that 47.5 % of the principal operators or their spouses worked off the farm for wages or salary. 

Regarding the size of the operation, dairy farms in 2005 had 322 milk cows on their farms, on 
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Table 4.2 Weighted Descriptive Statistics: Dependent and Independent Variables in Adoption 

Decision Model  

Source: USDA, ARMS Data, Dairy Survey, 2005 

average. However, as indicated by the higher standard deviation, the number of milk cows across 

farms varied widely. Having a parlor as the milking facility on dairy farms was common:  68.4% 

adopted parlors in 2005. The portion of the farms located in the western U.S.  (CA, OR, WA, 

AZ, ID, NM, and TX) was higher than the southern part (KY, TN, VA, FL, and GA) in 2005.  

Variable  Definition      Mean Std.Dev. 

 

Dependent variables 

 

AI Dummy variable; whether artificial insemination is 

adopted in the dairy farm in 2005; 1 if adopted, 0 if 

not 

   0.779   0.414 

ETSS Dummy variable; whether embryo transplant and /or 

sexed semen is adopted in the farm in 2005; 1 if 

adopted, 0 if not 

 

  0.113   0.317 

Independent Variables 

 

AGE Continuous variable; Principal operator‟s age     51.467 

 

  11.193 

 

TENYEARS Dummy Variable; Continuation of farm operation; 1 

if operator plans to continue the operation for next 10 

years or more 

   0.605   0.488 

EDUC Dummy variable; Principal operator‟s education 

level; 1 if principal operator is college graduate or 

beyond 

   0.209   0.4069 

OFFARM Dummy variable; Operator‟s off-farm job; 1 if 

Principal operator or spouse work off-farm for wages 

or salary  

  0.475   0.4995 

SPECLIZE Farm specialization, share of dairy in total farm value 

of production (Dairy/VPRODTOT) 

  0.849   0.17 

NMILKCOW Continuous variable; Number of milk cows in the 

farm/1000  

  0.322   0.608 

WESTUS Regional dummy; if farm is located in western US 

(Pacific- CA, OR, WA or West- AZ,ID, NM or 

Southern Plain- TX),  WESTUS=1, else 0 

  0.212   0.409 

SOUTHUS Regional dummy; if farm is located in Southern US 

(Appalachia- KY,TN, VA or Southeast-FL, GA), 

SOUTHUS=1, else 0 

  0.172   0.378 

PARLOR Dummy variable; if parlor is adopted in the farm, 

Parlor=1, else 0 

  0.685   0.465 
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4.2.2 Separate (Univariate) Probit Results  

Table 4.3 shows the parameter estimates for univariate (separate) probit equations for AI 

and ETSS. In computation of the separate probit models, we disregard the potential relationship 

between adoption decisions of these technologies. Each probit equation has 1,748 observations 

and 10 parameters. In both equations, principal operator‟s education level, off farm work, and 

farm specialization were significant at the 10% level. In addition, operator age and the longer 

planning horizon (TENYEARS) were significant in the ETSS equation while regional variables 

were significant in the AI adoption equation. Results suggest that the adopters of ETSS were 

younger, had longer planning horizons, and were more likely to hold college degrees. Principal 

operators or their spouses having an off farm job were the less likely adopters of ETSS. More 

specialized dairy farms had greater probabilities of ETSS adoption. Adopters of AI were more 

likely to hold college degrees. More specialized farms had higher probabilities of AI adoption. 

Principal operators or their spouses working off-farm for wages or salary were the less likely 

adopters of AI than non off-farm workers. Coefficients of regional variables suggest that the 

farms located in the western and southern regions were the less likely adopters of AI than those 

in the base region. 

4.2.3 Test for Zero Correlation 

As discussed in the methodology, there is potential correlation between the adoption decisions of 

AI and ETSS on dairy farms. In such a case, the estimation of the bivariate probit will be more 

appropriate than separate probits. A statistical test for zero correlation of the error terms is used 

to check whether there is statistical significance associated with using separate probit models for 

the two technologies or bivariate probit with selection. We used a likelihood ratio test to test the 

null hypothesis of no correlation between the adoptions of the two technologies. The likelihood 

ratio test statistic is obtained using the formula LR-statistic= 2 [ln Lbivariate – ( ln L1+ln L2)]. Log  
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Table 4.3 Estimated Separate Probit Equations.  

                   ETSS                        AI  

Variables Estimates Standard errors Estimates Standard errors 

Constant -1.5699*** 0.3784 0.2151 0.2618 

AGE -0.0111** 0.0044 -0.0035 0.0035 

TENYEARS 0.4488*** 0.1010 0.0019 0.0842 

EDUC 0.8183*** 0.1001 0.3930*** 0.1094 

OFFARM -0.2131** 0.0873 -0.2552*** 0.0741 

NMILKCOW 0.0153 0.1106 0.4535 0.3351 

SPECLIZE 0.5724* 0.3012 1.3881*** 0.1987 

WESTUS -0.0634 0.1470 -0.6900*** 0.1269 

SOUTHUS -0.0513 0.1893 -0.8634*** 0.1372 

PARLOR 0.1130 0.1006 -0.3377 0.8844 

Log Likelihood function                       -524.631                                                -743.617                                                         

Pseudo R
2                                                               

0.12                                                       0.10 

No. of observations  1748 

***= Significant at 1%, **= Significant at 5%, * = Significant at 10% 

Source: USDA ARMS data, Dairy Survey, 2005 

 

likelihood functions of the two separate probits (lnL1 and lnL2) are obtained from the separate 

probit equations. These are reported in Table 4.3 as: -524.63 and -743.617 for the ETSS and AI 

equations, respectively. ln Lbivariate is -1235.97. So, the LR-statistic is 64.554, greater than the 

critical value of the chi-square distribution of χ
2 

= 3.84 at the 95% confidence level, indicating 

the rejection of the null hypothesis of no correlation. This suggests the use of bivariate probit 

with selection rather than separate probit equations.  

4.2.4 Bivariate Probit with Selection Results 

Full information maximum likelihood estimates were computed for the bivariate probit 

with selection model. Estimates were based on 1,748 observations with 21 parameters. Since AI 

adopters select for the use of ETSS in dairy farms, we formulated the selection model based on 
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AI. LIMDEP command “selection” set the model to be fitted for the Van de Ven and Van Praag 

(1981) bivariate probit model with selection (Greene, 2009- LIMDEP version 9). To obtain 

efficient estimators accounting for heteroskedasticity in the data, robust standard errors were 

computed. “Robust” computes a weighted covariance matrix as a sandwich between standard 

errors.  

Table 4.4 shows the coefficients of estimates and standard errors from the bivariate probit 

with selection model. Farmers having college degrees or beyond were the more likely adopters 

of AI and ETSS. The education coefficient was significant in ETSS. Number of milk cows was 

not significant in the separate probit equations, but was highly significant in the bivariate probit 

estimation. Highly significant and positive coefficients of NMILKCOW and SPECLIZE in the 

AI equation suggest that the larger operations with more cows and greater specialization had 

greater probabilities of AI adoption. Principal operator or spouse‟s off farm job had negative 

effects on both AI and ETSS adoption. An off-farm job may be associated with a number of 

factors, but one of them is less time availability for the farm. Thus, the effect of holding an off-

farm job on AI and ETSS adoption in our analysis is as expected since these technologies are 

more management intensive. Age was negatively associated with ETSS adoption. Another 

interesting variable not significant in AI, but in ETSS, is TENYEARS. This suggests that the 

probability of ETSS adoption was higher in farms that had longer planning horizons. Most of our 

results have expected signs and are consistent with previous adoption studies. 

In the two-equation system, there are several available marginal effects, and we need to 

choose which is of greater interest. Literature, however, is still unclear about partial effects of 

“what on what?” According to Greene (2009, LIMDEP version 9), there are mainly two models -

the base case y1, y2, a pair of correlated probit models, and y1|y2=1, the bivariate probit with 

sample selection, whose conditional means are identical, as follows: 
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                             , where    is the bivariate normal cumulative 

distribution function (CDF) and   is the univariate normal CDF.  

LIMDEP analyzes the conditional mean of 

                                                        

Table 4.4 Estimated Bivariate Probit Model with Sample Selection  

                   ETSS                        AI  

Variables Estimates Standard errors Estimates Standard errors 

Constant -1.4538** 0.6492 0.1951 0.2675 

AGE -0.0104** 0.0041 -0.004 0.0036 

TENYEARS 0.4556*** 0.1179 0.0161 0.0818 

EDUC 0.8008*** 0.1017 0.4088*** 0.1151 

OFFARM -0.2105* 0.1075 -0.2633*** 0.0801 

NMILKCOW  0.0221 0.1672 0.4383*** 0.0962 

SPECLIZE  0.4246 0.6331 1.3947*** 0.1906 

WESTUS -0.0709 0.2761 -0.6930*** 0.1162 

SOUTHUS -0.0256 0.4435 -0.8652*** 0.1373 

PARLOR  0.0934 0.0983  0.0387 0.0824 

Rho (1, 2)                 0.44                                                           (Selection model based on AI) 

Log Likelihood function  -1235.97 

No. of observations  1748 

***= Significant at 1%, **= Significant at 5%, * = Significant at 10% 

Source: USDA ARMS data, Dairy Survey, 2005 

 

Marginal effects in the bivariate probit setting may have come from different contributors 

(i.e. those from vector of the first set of variables or from the vector set of the second). Table 4.5 

shows the total marginal effects of the respective variables (partial effects for            with 

respect to the vector of characteristics). The mean estimate of           , which is the 

proportion of Prob [ETSS=1, AI=1] / Prob[AI=1], is 0.105. Total effects are the sum of direct 

and indirect effects. Direct effects are the marginal effects of the variables that appear in the first 
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equation while indirect effects are the effects from the second set (Greene, LIMDEP, Version 9). 

Total effects of age, education, farmer‟s long term planning horizon, and off farm job were 

significant and had expected signs. A one year increase in the age of the farmer decreased the 

probability of adoption of ETSS, given AI has been adopted, by 0.0018. TENYEARS, EDUC, 

OFFARM, SPECLIZE, PARLOR, WESTUS, and SOUTHUS are dummy variables. Dairy 

operations that planned to continue their operation for next ten years or more had probabilities of 

adoption of ETSS, given AI had been adopted, that were 8.5 points higher than those of non-

adopters. The total effect of education (college degree or beyond) had the strongest effect. This 

suggests that the more educated farmers may be better able to manage information intensive 

breeding technologies. Having a college degree or beyond increased the probability of adoption 

of the breeding technologies by 0.187. The principal operator and/or his/her spouse‟s holding an  

Table 4.5 Marginal Effects of the Adoption of ETSS and AI   

Variables                Total effect Mean of X 

 Coefficient Std. error  

AGE -0.0018*** 0.0007 50.920 

TENYEARS 0.0852*** 0.0182 0.497 

EDUC 0.1870*** 0.0294 0.171 

OFFARM -0.0333* 0.0173 0.508 

NMILKCOW -0.0060 0.0254 0.147 

SPECLIZE 0.0469 0.0696 0.847 

WESTUS 0.0075 0.0275 0.112 

SOUTHUS 0.0255 0.0396 0.046 

PARLOR 0.0185 0.0182 0.420 

Partial derivatives of            with respect to vector of characteristics, estimated at mean X 

Estimates of            =  0.1053 

***= Significant at 1%, **= Significant at 5%, * = Significant at 10% 

Source: USDA ARMS data, Dairy Survey, 2005 
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off-farm job reduced the probabilities of adoption of breeding technologies of ETSS, given AI 

had been adopted, by 0.033. 

4.3 Farm Impact Models 

4.3.1 Descriptive Statistics 

Table 4.6 shows the general descriptive statistics of the dependent variables used in the 

farm impact models. Profitability and productivity measures and revenue and cost measures were 

used as dependent variables. Net returns over total cost (NETTOT), Net returns over operating 

costs (NETOPER), and those in per hundredweight and per cow bases (NETTOTCWT, 

NETTOTCOW, NETOPCWT, NETOPCOW) include revenue and expenses associated with the 

dairy enterprise. Dairy farmers received total revenue of $17.95 per cwt milk produced with total 

cost of 27.87 per cwt milk produced, for a negative net return of $9.92 per cwt of milk produced. 

If we examine on a per cow basis, farmers generated revenues of $2,925.48 with total costs of 

$4,164.01 involved, for a negative $1238.61 in net returns over total costs per cow. These 

negative results over total costs, however, are not surprising because the costs involved here are 

economic costs, including fixed costs. Average net returns over operating costs per cwt of milk 

produced were $5.02 and per cow were $880.36. Average allocated costs per cwt of milk 

produced were $12.93, while on a per cow basis, $2,045.12. Large standard deviations indicate 

that there were wide variations in returns and costs across farms.  

Table 4.7 shows the descriptive statistics of independent variables used in the impact 

models. Average age of the principal operator was 51 years. Twenty one percent of the dairy 

farmers (principal operators) of the farm were college graduates or beyond. Approximately 48% 

of the farm‟s principal operator and/or his/her spouse worked off the farm for a job or salary. 

Number of milk cows on the farm varied widely, with the average number of milk cows of 322.  
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Table 4.6 Weighted Descriptive Statistics of Dependent Variables Used in Impact Model 

Variables Definition  Mean Std. Dev. 

 

Profitability, productivity and income measures 

 

NETTOT 

 

Net returns over total cost, dollars 

 

-43,128.53 

 

477,959.03 

NETOPER Net returns over operating cost, dollars 169,926.8 634,723.25 

NRTOTCWT Net returns over total cost per hundredweight of milk produced, dollars  -9.92 12.87   

NRTOTCOW Net returns over total cost per cow, dollars -1,238.61 1,362.92 

NROPCWT Net returns over operating cost per hundredweight of milk produced, dollars 5.02 5.10   

NROPCOW Net returns over total cost per cow, dollars 880.36 820.78 

MLKPERCOW Milk yield per cow 165.96 52.42   

 

Revenue measures of the farm 

 

GROSSCWT Gross returns per hundredweight of milk produced (Revenues per cwt) 17.95 3.65 

GROSSCOW Gross returns per cow (Revenues per cow) 2,925.48 924.46   

 

Cost measures of the farm 

 

TOTALCWT Total costs per hundredweight of milk produced 27.87 13.72 

TOTALCOW Total costs per cow 4,164.01 1262.70   

OPERCWT Operating cost per hundredweight of milk produced 12.93 4.83    

OPERCOW Operating cost per cow 2,045.12 762.48   

ALLOCWT Allocated costs per hundredweight of milk produced 14.94 10.66     

ALLOCOW Allocated costs per cow 2,118.97 960.14  

Source: USDA, ARMS Data, Dairy Survey, 2005 
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Table 4.7 Weighted Descriptive Statistics of Independent Variables Used in Impact Models 

Variables Definition      Mean Std. Dev. 

 

AGE 

 

Continuous variable; Principal operator‟s age in years  

 

51.467 

 

11.194 

EDUC Dummy variable; Principal operator‟s education level; 1 if principal operator is 

college graduate or beyond 

0.209 0.407 

OFFARM 

 

Dummy variable; Operator‟s off-farm job; 1 if Principal operator or spouse work 

off-farm for wages or salary  

0.475 0.499 

NMILKCOW Continuous variable; Number of milk cows in the farm/1000  0.322 0.609 

NCOWS^2 Square of NMILKCOWS variable 0.474 2.781 

SPECLIZE Farm specialization, contribution of the dairy production value in total farm value 

of production (Dairy/VPRODTOT) 

0.849 0.17 

WESTUS Regional dummy; if farm is located in western US (Pacific- CA, OR, WA or West- 

AZ,ID, NM or Southern Plain- TX),  WESTUS=1, else 0 

0.212 0.409 

SOUTHUS Regional dummy; if farm is located in Southern US (Appalachia- KY,TN, VA or 

Southeast-FL, GA), SOUTHUS=1, else 0 

0.173 0.378 

PARLOR Dummy variable; if parlor is adopted in the farm, Parlor=1, else 0 0.685 0.465 

GRAZE Dummy variable; 1 if farm is pasture based (those that obtain 50-100% of the total 

forage ration for milk cows from pasture during the grazing season), else 0 

0.223 0.416 

M3TIMES Dummy variable; 1 if cows are milked 3 times a day, 0 if two times or less 0.149 0.357 

SUMTECH Sum of the eight dummy variables for 8 different technologies or management 

practices of dairy; value ranges from 0 to 8 

2.91 1.88 

AI Dummy variable; whether artificial insemination is adopted in the dairy farm in 

2005; 1 if adopted, 0 if not 

0.789 0.415 

ETSS Dummy variable; whether embryo transplant and /or sexed semen is adopted in the 

farm in 2005; 1 if adopted, 0 if not 

0.113 0.317 

    

Source: USDA, ARMS Data, Dairy Survey, 2005 
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The specialization variable indicates that an average of 84.9% of the total value of farm  

production was contributed by the dairy enterprise in most of the farms.  

Technology adoption variables were quite interesting. About two thirds (68.5%) of the 

dairy farms used parlors in their operations. Approximately 14.9% of the farms milked 3 times 

daily. AI was adopted by 78.9% of the farms while ETSS was adopted by 11.3% of the farms. 

Twenty-two percent of the farms were pasture-based (obtained more than 50% of the total forage 

requirement from pasture during the grazing season). This varied widely with a standard 

deviation of 0.416. The SUMTECH variable indicates that dairy farms, on average, adopted 

approximately 3 of 8 technologies and management practices: holding pens with udder washers, 

milkers with automatic take-offs, computerized feeding system, computerized milking system, 

assessing internet for information, membership with DHIA, recombinant bovine somatotropin 

(rbST) and use nutritionist to formulate or purchase feed. 

We included two location variables, SOUTHUS and WESTUS to capture the location 

differences. Of the total dairy farms, 21.2% of dairy farms were located in WESTUS - Pacific 

(CA, OR, WA, AZ, ID, NM, TX), while the SOUTHUS (KY, TN, VA , FL, GA) had 17.3% of 

the dairy farms under study.  

4.3.2 Farm Impact and Cost Measures  

Tables 4.8 through 4.11 show the OLS results of profitability, productivity and cost 

measures of the farm.  

4.3.2.1 Net Returns over Costs  

Table 4.8 shows the parameter estimates of equations for enterprise net returns over total 

costs and enterprise net returns over operating costs. Age is significantly negative in the 

NETTOT equation.  A one year increase in the age of the principal operator was associated with 

a decrease in net returns over total costs of $2,794.81. Highly significant result of NMILKCOW 
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indicates that the net returns over total and operating costs increase with herd size. The western 

U.S. had both net returns over total costs and net returns over operating costs that were lower 

than those of the base region (North Central and Northeast). Significant negative coefficients of 

SUMTECH in both net returns equations indicate that the costs involved in adoption of 

subsequent technology (among eight) may be higher than the returns, reducing net returns. 

Neither AI nor ETSS was significantly different from zero at the 10% level. 

4.3.2.2 Milk Yield per Cow 

In Table 4.8, the right-most two columns show the parameter estimates and respective 

standard errors of the milk yield per cow equation. An adjusted R
2 

value of 0.39 suggests that 

around 39% of the variation in milk yield per cow is explained by the model. Age of the farmer, 

education, off-farm job, and farm specialization are significant at the 1% significance level. 

Coefficients of grazing, milking 3 times, and sum of the technologies were also highly 

significant (at the 1% level). A negative coefficient of education, indicating an annual decrease 

in cwt of milk produced per cow by 9.38, was unexpected. Greater opportunities associated with 

the college degree may be one of the explanations. The negative coefficients of off farm job and 

age suggest that principal operator or spouse‟s off farm job and older age were associated with 

lower milk yield. The SPECLIZE coefficient suggests that more specialized dairy farms had 

higher milk yield per cow, as expected. Pasture-based dairy operations were getting lower milk 

yield per cow than those using conventional dairies. Our results suggest that milking three times 

was associated with a higher milk yield of approximately 21 cwt milk produced per cow than 2 

times milking. Coefficients of number of milk cows and squared number of milk cows were not 

significantly different from zero at the 10% significance level.  The positive and highly 

significant coefficient of SUMTECH suggests that those farms adopting greater numbers of
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Table 4.8 Farm Impact: OLS Estimators of Net Returns over Total and Operating Costs, and Milk Yield per Cow 

Dep. Variables NETTOT NETOPER MLKPERCOW 

Indep. Variables Coefficient Std. Error Coefficient Std. Error Coefficient Std. Error 

Constant 59791.20 101990.10 48759.60 87901.30 160.45*** 10.26 

AGE -2794.81**      101990.10 -1529.20 1000.22 -0.84*** 0.09 

EDUC  38879.80         1247.09  39268.80       30134.03 -9.38*** 3.14 

OFFARM  31811.90        42198.80  15782.80        18263.21 -8.15*** 1.98 

NMILKCOW 0.103D+07*      23151.50  0.159D+07***      347546.90 2.21 6.70 

NCOWS^2 -58672.70      529970.50       9956.69      107843.50 -0.89 1.11 

SPECLIZE -62668.10        185139.60        -33334.60       73611.19       34.99*** 7.80 

WESTUS -106456.00*         86015.67 -128221*** 44819.42 -5.31 3.37 

SOUTHUS -42322.10  62241.99 -37962.70      25704.09 -4.75 4.63 

PARLOR -22223.50  31527.73  23479.60         21605.49 -1.48 2.48 

GRAZE  15928.00  26676.31  9685.65  7446.18 -7.49*** 2.74 

M3TIMES  16074.00    104922.00  103462 88393.98  20.88*** 4.21 

SUMTECH -27712.20**             13813.91 -13338.00**       93336.34 12.11*** 0.81 

AI 26718.80 19282.51  25410.60 21152.75   

ETSS -45212.40 34891.38  -31952.80 32439.23   

PREDAI     1.25 2.09 

PREDETSS     14.98*** 5.01 

LAMDAA     7.92*** 2.43 

LAMDAB     7.91*** 2.10 

Model fit Adj. R
2
 0.27 Adj. R

2
 0.72 Adj. R

2
 0.39 

Model test    F [14, 1733]  46 F [14, 1733]  329.3 F [16, 1731] 71.3 

***= Significant at 1%, **= Significant at 5%, * = Significant at 10%;    D+aa or D-aa: multiply by 10 to +aa or –aa 

Source: USDA, ARMS Data, Dairy Survey, 2005 
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technologies and management practices received higher milk yield per cow in 2005. A 

significant and positive coefficient of PREDETSS at the 1% level suggests that higher 

probabilities of ETSS technology adoption have a positive impact on milk yield per cow. This is 

after accounting for endogeneity and potential self selection issues. Significant lamda 

coefficients showed that there was self-selection bias associated with the milk yield equation, 

which required correction to reduce bias. 

4.3.2.3 Net Returns over Cost per Unit of Input and Output  

Table 4.9 shows the parameter estimates for net returns over total expenditures per cwt 

and cow bases and net returns over operating expenditures per cwt and per cow bases. These 

measures are consistently used in several farm impact studies as indicators of farm profitability. 

Short (2000) and Short (2004) included these measures as performance characteristics of dairy 

farms. Foltz and Chang (2002) used net returns over total costs per cow. McBride et al. (2002) 

considered net returns over operating costs per cwt.  Gillespie et al. (2009) included net returns 

over total costs per cwt and per cow. 

Results suggest that the older farmers have lower net returns over total costs for both per 

cwt and per cow measures as well as for net returns over operating expenses per cow. A one year 

increase in age of the principal operator is associated with lower net returns of 11 cents over total 

costs per cwt milk produced, lower net returns over operating costs of $7.92 per cow, and $13 

lower net returns over total costs per cow. Furthermore, education had positive and significant 

coefficient in all equations except that of returns over total costs per cow. This suggests that 

farmers with college degrees or beyond had greater net returns over both total and operating 

costs. A college degree was associated with $2.94 more net returns over total costs per cwt and 

$4.11 more net returns over operating costs per cwt. Farmers with college degrees received 

$186.67 more returns over operating costs than those not having a degree. A principal operator  



61 
 

Table 4.9 Farm Impact: OLS Estimators of Net Returns over Total and Operating Costs per CWT and COW  

Dep. Variables NRTOTCWT NRTOTCOW NROPCWT NROPCOW 

Inde.Variables Coefficient Std. Error Coefficient Std. Error Coefficient Std. Error Coefficient Std. Error 

Constant -38.66*** 6.72 -3657.71*** 712.88 -12.09** 4.93 571.95** 272.28 

AGE -0.11***        0.024 -13.04***       2.80 0.01 0.01 -7.92***    1.80 

EDUC  2.94**         1.29  223.44        145.64 4.11*** 0.97 186.67***         71.39 

OFFARM -0.02        0.55  16.18      58.29 -0.17 0.25 -72.85*      39.13 

NMILKCOW 7.009***       1.55 1446.30***      208.73  0.60           0.86       310.77***      120.36 

NCOWS^2 -1.16***        0.38 -212.28***      51.78 -0.11    0.20 -40.60*        21.10     

SPECLIZE  19.44***         3.42  1730.77***       383.88 7.83*** 2.57  513.86** 211.41         

WESTUS  -1.05        0.90  -168.27*        100.12 -1.93***         0.37     -295.66***      60.99 

SOUTHUS -4.76***           1.58 -526.52***         183.95 -3.92*** 1.14        -222.06**      103.37 

PARLOR  4.27***        0.67  562.33***      74.70 1.67***           0.36  163.34***     46.53 

GRAZE -3.76***        0.84 -310.91***      81.22 -0.26         0.32 -19.23         51.44 

M3TIMES -2.20*** 0.76  -62.66 119.19 -0.43 0.42 76.14 89.21 

SUMTECH 1.99*** 0.18 139.26***      21.45 0.08           0.09 54.82*** 14.89 

AI 12.58***        3.20 1010.62***         316.84 8.54*** 2.14 149.97*** 49.46 

ETSS 5.82**          2.82 463.92      290.82 6.86*** 2.10 -94.95 186.14 

LAMDAA -5.24*** 1.65 -513.93*** 177.62 -5.15*** 1.35 -159.02*** 63.58 

LAMDAB -4.52** 1.82 -457.24*** 188.32 -5.27*** 1.43 -127.45*** 53.37 

Model fit Adj. R
2
 0.27 Adj. R

2
 0.25 Adj. R

2
 0.08 Adj. R

2
 0.09 

Model test    F [16, 1731]  42.2 F [16, 1731]  38.0 F [16,1731]  10.1 F [16,1731] 11.2 

***= Significant at 1%, **= Significant at 5%, * = Significant at 10% 

Source: USDA, ARMS Data, Dairy Survey, 2005. 
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and/or his/her spouse having off farm job received $72.85 lower net returns over operating costs 

per cow than those not having an off-farm job.  

Highly significant positive coefficients of number of milk cows indicate that farm size is 

positively associated with net returns over total and operating costs on both per cwt and per cow 

bases. Coefficients of NCOWS^2 are also significant and negative, suggesting that the maximum 

net returns over total costs per cwt were obtained when herd size is around 3,021. Similarly, 

increases in numbers of milk cows increase net returns over total costs per cow until the herd 

size reaches around 3,400. The peak point to have maximized net returns over operating costs 

per cow, on the other hand, was found to be around 3,827. The maximum level of milk cow 

number is as suggested by the squared term. Inclusion of the quadratic term places a restriction 

of a minimum or maximum level and may not be the actual representation. However, the 

quadratic term allows for greater flexibility. Farm specialization is another important factor. Our 

Results suggested that the more specialized dairy operations had higher net returns per cow and 

per cwt in 2005. If there are significant economies of size associated, then specialization in that 

particular enterprise would increase mean financial performance (Purdy et al., 1997). Purdy et al. 

(1997) further suggested that the trend of specialization in dairy is likely to continue. Moving 

from 100% diversification (0% of income from milk) to 100% specialization resulted in a $19.44 

increase in net returns over total costs per cwt and a $7.83 increase in net returns over operating 

costs per cwt milk produced. On a per cow basis, the increases were $1,730.77 and $513.86, 

respectively. Overall positive impact of specialization on net returns is demonstrated by the 

results. Purdy et al. (1997) also found increased financial performance associated with 

specialization in dairy. McBride et al. (2004), however, found an unexpected negative coefficient 

for specialization in dairy. Overall, signs and coefficients of demographic and farm 

characteristics variables in profitability measures in our study are as expected.  
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 Farms having parlors were getting higher net returns over total and operating costs on 

both per cwt of milk produced and per cow bases. Significant positive impacts included: higher 

net returns of $562.33 and $163.34 over total and operating costs, respectively, were shown to be 

associated with parlor adoption on per cow bases. On a per cwt milk produced basis, parlor 

adopters received additional net returns of $4.27 over total costs and $1.67 over operating costs, 

respectively, than non-adopters. Results suggest that the pasture-based dairy operations received 

lower net returns over total costs than conventional dairy farms on both per cwt and per cow 

bases. Net returns over total costs per cow for pasture-based dairy operations were $310.91 less 

than that of non-pasture based.  Similarly, pasture based operations experienced lower net returns 

of $3.76 over total costs per hundredweight of milk sold. Milking 3 times daily was also negative 

and significant in the NRTOTCWT equation, suggesting a decrease of $2.20 in net returns over 

total costs on per cwt milk produced basis. Milking 3 times daily was not significant in other 

measures. Coefficients of AI were highly significant and positive in all profitability equations in 

Table 4.9, indicating a positive impact of the adoption of AI on net returns per cwt milk 

produced and per cow. Remarkable increases in net returns over total costs by around $12.58 and 

$1,010.62 on per cwt and per cow basis, respectively, were associated with AI adoption. Results 

of NROPCWT and NROPCOW equations suggest that AI adopters had $8.54 greater net returns 

over operating costs per cwt milk produced than non-adopters, while on a per cow basis, the 

measure was $149.97.  

Adoption of ETSS was significant and positive in net returns over total and operating 

costs per cwt milk produced bases while those on per cow bases were not significant. Results 

show that higher net returns of around $5.82 over total costs and around $6.86 over operating 

costs, both on per cwt milk produced bases, were associated with ETSS adoption over non-

adoption. Every net return measure on Table 4.9 showed that the adoption of modern dairy 
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technologies (among eight under SUMTECH) was associated with higher profitability. 

Significant increases in net returns over total costs by $1.99 and $139.26 were associated with 

adoption of each subsequent technology among eight on per cwt of milk produced and per cow 

bases, respectively. Similarly, positive net returns of around $54.82 over operating costs per cow 

were associated with each subsequent technology adoption.   

 Highly significant coefficients of lamdas in all profitability equations in Table 4.9 are 

particularly noticeable. This suggests that there would have been selection bias present if we had 

not accounted and corrected for it. If we had not included selection bias variables (LAMDAA 

and LAMDAB) in those regressions, then the estimators of other variables would have biased 

coefficients.  

4.3.2.4 Gross Returns on the Farm 

Gross returns are the total return measures of the dairy enterprise. In 2005, farmers 

received $19.23 of gross returns per hundredweight of milk produced and around $3,052.80 per 

cow, on average (Table 4.6). Least squares estimates of variables on gross returns per hundred 

weight of milk produced and gross returns per cow equations are shown in Table 4.10. 

GROSSCWT and GROSSCOW are gross return measures per cwt of milk produced and per cow 

bases. Having a college degree or beyond had a significantly positive effect on gross returns per 

cwt milk produced. Principal operator‟s age had a negative effect on gross returns per cow. Off-

farm job negatively affected both gross returns (per cwt milk produced and per cow bases) 

measures. As farms became more specialized in dairy, they realized lower gross returns per cwt 

milk sold than diversified farms in 2005.  

Results suggested that having a parlor in the dairy operation was negatively associated 

with gross returns. Pasture-based dairies had lower gross returns per cow than conventional. As 

indicated by the SUMTECH coefficient, greater technology adopters (adopting a greater number 
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Table 4.10 Farm Impact: OLS Estimators of Overall Farm Revenue (Gross Returns) and Total Costs per CWT and Cow   

Dep. Variables          GROSSCWT        GROSSCOW       TOTALCWT        TOTALCOW 

Indep.Variables Coefficient Std. Error Coefficient Std. Error Coefficient Std. Error Coefficient Std. Error 

Constant 24.07*** 1.29 3381.25*** 291.39 43.15*** 2.55 5647.95*** 432.05 

AGE -0.008 0.007 -15.95*** 1.72 0.15*** 0.02 -1.23 2.83 

EDUC 0.76*** 0.23 -12.74 64.12 1.56** 0.68 -39.94 93.86 

OFFARM -0.49*** 0.15 -210.10*** 36.56 -0.17 0.55 -225.19*** 56.42 

NMILKCOW 0.39 0.41 74.13 118.22 -8.41*** 1.75 -1421.56*** 186.42 

NCOWS^2 -0.06 0.05 -22.61 18.12   1.27*** 0.146  193.26*** 38.14 

SPECLIZE -5.89*** 1.28 139.79 231.86 -16.31***  2.26 -1050.56*** 339.67 

WESTUS -1.15*** 0.23 -267.26*** 64.14  0.21 0.65 -130.68 99.19 

SOUTHUS 0.81 0.21  89.01 146.0 2.35* 0.80   415.32* 218.26 

PARLOR -0.59*** 0.24 -106.54** 52.91 -3.87*** 0.78 -614.97*** 80.68 

GRAZE 0.19 0.21 -90.30* 50.63 4.06*** 0.88  218.46*** 76.96 

M3TIMES -0.03 0.24 326.30*** 82.26 1.89*** 0.54  364.87*** 104.63 

SUMTECH -0.03 0.06 202.62*** 14.17 -2.03*** 0.20  61.22*** 21.02 

AI     -4.34*** 0.88   

ETSS       0.36 0.70   

PREDAI -0.52*** 0.14 -21.98 50.56    -236.9*** 81.75 

PREDETSS -0.96* 0.56 -35.02 116.15     412.79*** 124.38 

LAMDAA   152.35** 68.17     395.94*** 102.79 

LAMDAB   146.53** 58.86     311.73*** 84.35 

Model fit Adj. R
2
 0.14 Adj. R

2
 0.32 Adj. R

2
 0.29 Adj. R

2
 0.15 

Model test    F [14, 1733]  21.5 F [14, 1733] 53.0 F [14,1733] 53.5 F [16,1733] 20.9 

***= Significant at 1%, **= Significant at 5%, * = Significant at 10% 

Source: USDA, ARMS Data, Dairy Survey, 2005 
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of modern dairy technologies) received higher gross returns per cow.  Those milking 3 times per 

day received higher gross returns per cow than those milking 2 times. The coefficient of 

PREDAI suggested that the gross returns per cwt of milk produced of the farms adopting AI 

were less than those not adopting by $0.52.  A similar interpretation can be made for the -0.96 

coefficient of PREDETSS. As indicated by significant lamda coefficients, there was a self-

selection bias issue associated with the gross returns per cow equation and the estimators would 

have been biased had we not included the lamdas as regressors. Differences on per cow bases, 

particularly with the technologies, can generally be attributed to influence of the technologies on 

efficiency. 

4.3.2.5 Cost Measures on the Farm 

After the analysis of net returns over costs and gross returns, we move to the analysis of 

enterprise costs in dairy farms. Knowing the revenues and different cost equations of the farm 

helps understanding the profitability of the farms more clearly. Cost results include regression 

results of total, operating and allocated cost measures. Total cost is the sum of allocated cost and 

operating cost. The coefficients of different variables on those different cost equation more 

explicitly show which variables or technologies have strong effects on total cost and also 

whether the effect is more towards allocated costs or operating costs. The total cost equation is 

shown in Table 4.10 while operating and allocated cost equations estimators are in Table 4.11.  

Results suggest that an increase in age of the operator by one year increased total costs 

per cwt of milk produced by 15 cents. The positive coefficient of education is not expected and 

may be counterintuitive in total costs per cwt milk produced. However, the coefficient of 

education on a per cow basis is negative and non-significant. Results show that an off-farm job 

reduces total costs per cow by $225.19. Highly significant coefficients of milk cows and the 

squared term in both per cwt and per cow bases suggest that an increase in milk cow numbers on 
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the farm reduces the total costs of the farm up to a point. Coefficients suggested that the 

optimum level of cost minimization was at 3,310 milk cows on a per cwt milk produced basis, 

while on a per cow basis, it was at around 3,670. The milk cow number we discussed to 

minimize cost is as suggested by the squared term. Inclusion of the quadratic term places a 

restriction of a minimum or maximum level and may not be the actual representation. However, 

the quadratic term allows for greater flexibility. More specialized dairy operations were able to 

reduce total costs. Region-wise, southern farms had higher total costs per cwt produced and per 

cow than the northern states.  Farms having a parlor in the operation, those adopting AI, and 

adopting the modern dairy technologies (among eight in SUMTECH) were able to reduce total 

costs per cwt of milk produced. Adopters of AI had $4.34 less total costs per cwt of milk 

produced than non adopters. Results showed that the higher total costs per cow were associated 

with the adopters of pasture-based operations and adopters of milking 3 times daily. The 

negative coefficient of PREDAI in the total costs per cow equation also showed lower total costs 

associated with AI adoption. Adoption of ETSS, on the other hand, was shown to have higher 

total costs per cow than non-adoption, as suggested by PREDETSS. The positive coefficient of 

ETSS was, however, non-significant in total costs per cwt of milk produced.  

Parameter estimates of operating costs and allocated or fixed costs on per cwt of milk and 

per cow bases are shown in Table 4.11. Number of milk cows is significant (at 5% or more) in 

all cost measures, indicating that herd expansion is associated with reducing the operating costs 

per cwt of milk and per cow bases and also the allocated costs per cwt of milk and per cow 

bases. Farm specialization was also shown to have a positive impact on reducing both operating 

costs and allocated costs. Parlor adopters had lower operating costs and allocated costs than non-

adopters on both per cwt of milk and per cow bases. Results suggested a positive association of 

education (college degree or beyond) with both allocated cost measures. Operating costs per 
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Table 4.11 Farm Cost Measures: OLS Estimators of Total Operating and Allocated Costs per CWT and Cow  

Dep. Variables OPERCWT OPERCOW ALLOCWT ALLOCOW 

Indep.Variables Coefficient Std. Error Coefficient Std. Error Coefficient Std. Error Coefficient Std. Error 

Constant 25.54*** 2.96 2809.3*** 250.18 23.56*** 1.73 2608*** 158.38 

AGE  0.002 0.01 -8.03*** 1.63 0.13 *** 0.02 8.04*** 1.78 

EDUC -1.33 0.57 -199.41*** 62.11 1.38*** 0.51 223.62*** 61.87 

OFFARM -0.23 0.23 -137.26*** 33.30 -0.02 0.41 -80.31** 40.23 

NMILKCOW -0.89**** 0.53 -236.64** 106.70 -6.67*** 1.15 -1236.9*** 144.28 

NCOWS^2  0.10* 0.09 17.98 16.59  1.08*** 0.28 180.53*** 37.32 

SPECLIZE -8.51*** 1.67 -374.06* 193.76 -11.23*** 1.72 -554.21*** 151.42 

WESTUS 0.50 0.32  28.39 55.12 -0.39 0.69 -129.04* 69.79 

SOUTHUS 2.78*** 0.75  311.07*** 102.35  0.78 1.04   66.39 123.34 

PARLOR -1.71*** 0.30 -269.88*** 44.69 -2.50*** 0.47 -330.02*** 49.76 

GRAZE 0.45 0.31 -71.06* 40.72  3.57*** 0.67  294.95*** 57.67 

M3TIMES 0.31 0.34 250.15*** 73.57  1.54*** 0.49  115.44**  57.02 

SUMTECH -0.13 0.08 147.80*** 13.06 -1.94*** 0.13 -85.67***  13.86 

AI -4.71*** 1.23       

ETSS -1.69 1.16       

PREDAI   -171.96*** 44.84 -1.29*** 0.33  5.81 24.94 

PREDETSS    59.92 105.32  1.37* 0.83  323.24*** 129.85 

LAMDAA 2.12*** 0.73 311.38*** 57.51     

LAMDAB 1.92** 0.77 273.98*** 46.09     

Model fit Adj. R
2
 0.09 Adj. R

2
 0.21 Adj. R

2
 0.37 Adj. R

2
 0.28 

Model test    F [16, 1731]  11.8 F [16, 1731] 30.5 F [14,1733] 73.7 F [14,1733] 49.76 

***= Significant at 1%, **= Significant at 5%, * = Significant at 10% 

Source: USDA, ARMS Data, Dairy Survey, 2005 
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cow, on the other hand, were significantly lower for the farmers with college degrees than 

without them. An off-farm job was associated with a reduction of both allocated and operating 

costs per cow. Our results suggest that the older the operator, the lower the operating costs per 

unit, but the higher the allocated costs.  

Coefficients of GRAZE suggest that the pasture-based operations had lower operating 

costs per cow but higher allocated costs than non pasture-based operations. Milking 3 times daily 

was associated with higher operating and allocated costs per cow and higher allocated costs per 

cwt of milk produced. SUMTECH coefficients suggest that adoption of modern dairy 

technologies reduced allocated costs per cwt milk produced and allocated costs per cow. 

However, higher operating costs per cow of $147.80 for each subsequent technology adoption 

(among eight) was suggested by the result.  

Results suggest that significant reductions in operating and allocated costs per cwt of 

milk produced and operating costs per cow were associated with AI adoption. Coefficients of 

PREDETSS in allocated costs per cwt of milk produced and allocated costs per cow equations 

suggested that ETSS adoption resulted in significantly higher allocated costs than non-adoption. 

Significant coefficients on LAMDAA and LAMDAB in operating costs per cwt and operating 

costs per cow equations suggest that there would have been selection bias had we not included 

the self selection variables in the equations. 

4.3.3 Multicollinearity Diagnostic Test  

Highly correlated independent variables may cause statistical problems. This situation is 

called multicollinearity. Wide swings in the parameter estimates, high standard errors of 

coefficients, and wrong signs of coefficients may result from multicollinearity. Multicollinearity 

can be analyzed in terms of the effect of the intercorrelation of the regressors on the variances of 

the least squares coefficient estimators. Variance inflation factors (VIF), an effect of 
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intercorrelation of the regressors on the variance of least squares coefficient estimates, can be 

used to diagnose multicollinearity. Following is the general formula of VIF:             
  , 

where   
  is the    obtained when the k

th
 regressor is regressed on the remaining variables. There 

is no consensus on what values of the variance inflation factor suggest multicollinearity. Some 

authors suggest values greater than 10 suggest problems (Chatterjee and Price, 1991), while 

others suggest 30 or 40 as the benchmark value (Greene, 2009: LIMDEP version 9). Table 4.12 

shows the VIF of each variable. Results suggest that none of the variables seems problematic.  

Table 4.12: Results of Multicollinearity Diagnostic Test 

Variables Variance Inflation Factor 

Constant 0 

TENYEARS 1.13 

AGE 1.08 

EDUC 1.08 

OFFARM 1.04 

NMILKCOW 6.72 

NCOWS^2 5.01 

SPECLIZE 1.08 

WESTUS 1.40 

SOUTHUS 1.26 

PARLOR 1.43 

GRAZE 1.21 

M3TIMES 1.48 

SUMTECH 2.05 

AI 1.23 

ETSS 1.12 
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CHAPTER 5 

SUMMARY AND CONCLUSIONS 

5.1 Summary 

Milk production is one of the important components of U.S. agriculture.  Milk has a farm 

value of production second after beef among livestock industries. The trend in the dairy industry 

shows that milk production per cow is significantly increasing while the number of milk cows is 

decreasing. Overall milk production per year is increasing despite the declining milk cow 

numbers. This increase in productivity is attributed to advancements and adoption of modern 

dairy technologies.  Breeding technologies are one of the important components of this structural 

change in dairy as they directly affect genetics and reproductive performance of the farm. The 

adoption decision of modern breeding technologies such as AI, ET, and sexed semen on the 

dairy farm is affected by several socioeconomic, demographic, and other factors. Past literature 

provides ample technical description of technologies and their methods of operation. However, 

the factors associated with the adoption decisions of these breeding technologies and their actual 

impacts on farm profitability have not been understood. This study analyzed the factors affecting 

the adoption of AI, and ET and/or sexed semen, and their impacts on farm profitability. First, the 

characteristics of adopters and non-adopters of these breeding technologies were assessed. Then, 

adoption decision models and farm impact models were estimated.  

The dairy version of the ARMS, 2005, was used for this study. Altogether, there were 

1,814 usable observations in the data. Previous studies have explained AI as a widely adopted, 

farmer-friendly technology and ET and sexed semen technologies as relatively newer, still 

diffusing technologies. Embryo transplant and sexed semen technologies are suggested to have 

potentially wider adoption in the near future. Consistent with previous findings, our results also 
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suggest wider adoption of AI (around 79% of farms). Embryo transplant and/or sexed semen 

technologies were adopted by around 11% of dairy farms in 2005. We attempted to account for 

the probable correlation of the adoption decisions of these breeding technologies, different from 

most of the adoption studies where separate probit equations were generally used. Results from 

two separate probits for these two adoption equations are also shown. The assumption of 

potential correlation between adoption decisions was confirmed by a formal statistical test. A 

correlation coefficient term (correlation between the error terms of two individual probit 

equations) significantly different from zero suggested the use of a bivariate probit model rather 

than individual probits.  

This study also explored some technical and practical patterns of how these breeding 

technologies are operated on the farm. There is the involvement of semen that has been collected 

by artificial means in the use of both ET and sexed semen. The use of ETSS requires that sperm 

will have been collected, artificially, whether or not both or all three technologies are adopted on 

the same farm. Since there would be very few cases where ETSS were used by farmers without 

AI, adopters of the former could actually be considered as a subset of the latter, implying 

selection. This suggested the selection based on AI (i.e., AI adopters select either to use or not 

use ETSS).  Thus, a bivariate probit with selection model was used to study the adoption.  

Relatively younger and more educated farmers had higher probabilities of adoption of 

both breeding technologies. The significant negative total marginal effect of age suggested that 

younger farmers are the more likely adopters of breeding technologies. Embryo transplant and 

sexed semen technologies being relatively newer, a stronger marginal effect of age in the ETSS 

equation than that in AI further supports that younger people are more receptive to new ideas 

regarding the adoption of technology. The result also supports previous findings about education 

and the information-demanding nature of breeding technologies, as breeding technologies were 
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considered “knowledge and information intensive” (Johnson and Ruttan, 1997). Our results 

suggested that as farms become more specialized in dairy, the probability of breeding technology 

adoption increases. More specialized farms are more focused on higher milk production and may 

be interested in adopting the technologies that have short-term as well as long-term effects on 

milk production. Furthermore, farms with longer planning horizons of continuing operation for 

10 years or more had higher probabilities of breeding technology adoption. The longer planning 

horizon was also significant in the separate probit equation of ETSS, but not that of AI. This 

further provides insight about the adoption decision in relation to the nature of the technologies.  

The ET involves increased reproductive performance of the female and sexed semen 

allows the farmer to increase the supply of replacement heifers. Thus, these technologies are not 

adopted simply to increase the current season‟s milk yield, but for long-term economic benefits. 

As ETSS involves more technical expertise and demands more specialized equipment, farmers 

planning to be in the business over an extended period may be more interested in purchasing the 

necessary equipment and developing the human resources needed for successful adoption. The 

finding of a negative effect of an off-farm job on probability of adoption is as expected, as 

breeding technologies are management-intensive. Our results support that the hypothesis that 

probability of adoption increases with an increase in the number of milk cows. This suggests that 

larger farms are the more likely adopters of breeding technologies.  

 Farm productivity and profitability were analyzed by estimating the impacts of 

demographics and socio-economic factors, adoption of other technologies, and regional 

differences on net returns, milk yield per cow, farm revenues, and farm costs equations using 

least squares regressions. The actual assessment of the farm impact due to technology adoption is 

always an issue in impact studies. To assess the impact of a particular technology, we need to 
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isolate the effects through appropriate correction procedures.  In this study, endogeneity and self-

selection bias issues were tested in each equation and corrected when necessary.  

 Principal operator‟s age negatively affected most of the profitability measures and annual 

milk yield per cow. Farmers having a college degree or beyond  received higher net returns over 

total and operating costs on both per cwt and cow bases. This suggests that younger and more 

educated operators can better manage the farm for higher net returns. Principal operator and/or 

spouse‟s work off the farm negatively affected net returns over operating costs per cow, around 

$73 less than those not working off-farm. Off-farm work also affected milk yield per cow. 

Having an off-farm job results in less time available for on-farm work, and thus might have 

resulted in lower efficiency of the farm.  

Profitability and productivity also depended on the number of milk cows in the operation. 

Our results suggest that, with an increase in farm size, net returns over costs per cwt of milk 

produced and per cow increase. These results suggest the dairy industry has significant 

associated economies of size. Our results also clearly show that an increase in farm size is 

significantly associated with decreases in both operating and allocated costs, and thus an increase 

in net returns. As farms became more specialized in dairy, they were able to reduce both 

operating and allocated costs on both per cow and per cwt of milk produced bases. This less 

proportional increase in costs associated with size and specialization results in significant 

positive net returns over costs and higher milk yield per cow.  

Results suggest that the adoption of modern dairy technologies is associated with higher 

net returns over total and operating costs, in general. Though profit depends on the nature of a 

specific technology, adoption of modern dairy technologies is associated with higher net returns 

over costs in general. A higher return over total costs per cow of $139.26 was associated with 

each subsequent adoption of modern technology (among eight considered in this study). On the 
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bases of both per cow and per cwt of milk produced, the farmer having a parlor incurred lower 

operating and allocated costs, resulting in higher net returns over both total and operating costs. 

Some previous studies also suggested lower costs per unit with parlor adoption for larger farms, 

though a parlor is considered as capital intensive (Tauer, 1998; Katsumata and Tauer, 2008). 

Results suggested that milking 3 times per day involved both higher allocated and operating 

costs. Our result showed slightly higher total costs than revenues per cwt of milk produced, 

though this was not significant on a per cow basis. Farms milking 3 times daily had higher milk 

yields, a higher yield of 20.88 cwt of milk per cow annually than those milking 2 times or less.  

Grazers (pasture based operations) had higher allocated costs and lower operating costs 

than non-pasture based operations. Milk yield per cow was lower for pasture-based operations. 

Total costs were higher than total revenues for grazers, resulting in negative net returns over total 

costs on both per cow and per cwt milk bases. Pasture-based operations require larger land area 

for grazing than non-pasture based operations. So, the higher allocated cost results from the cost 

of land. Our findings regarding costs and net returns are as expected and consistent with previous 

findings regarding pasture-based operations.  

We accounted for endogeneity and self-selection issues that might have incurred in the 

impact study of breeding technologies. Thus, the coefficients about breeding technologies in this 

study are expected to be closer approximations than those not accounting for the issue. Results 

suggested AI to be a significantly profitable breeding technology on both per cwt milk produced 

and per cow bases. Higher milk yield per cow was associated with AI adoption. AI adopters were 

more efficient in reducing total costs than non-adopters. Results also showed the major portion 

of the total costs involved in AI come from operating costs rather than allocated costs. Embryo 

transplant and/or sexed semen adoption was also suggested to result in higher milk yield and 

positive net returns over total and operating costs per cwt milk produced. The impacts on net 
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returns over total and operating costs per cow were non-significant. Results of cost equations 

suggested that a higher allocated cost per cow is involved in ETSS adoption. Total costs involved 

on a per cow basis were also suggested to be higher with ETSS adoption than non-adoption. 

Despite the significantly higher costs, a positive net return over total and operating costs per cwt 

milk produced was experienced by ETSS adopters since it was associated with higher milk yield 

per cow.  

Our results suggest positive, significant, and higher net returns over total and operating 

costs associated with both AI and ETSS adoption, at least on a per cwt milk produced basis. 

Higher allocated costs were suggested to be involved in ETSS adoption while the major portion 

of total costs in AI comes from operating expenses. The coefficient of ETSS should be 

interpreted accordingly because we have assumed ETSS adoption as a subset of AI adoption 

based on the observations and practicality. This suggests that the ETSS adopters are also the AI 

adopters and AI adopters select for ETSS adoption. So, the impact we see on ETSS in our study 

also encompasses AI. In the rare cases where ETSS is adopted without AI, the impact of ETSS 

on farm profitability and productivity may be different from our result.  

5.2 Conclusions and Recommendations 

This study showed that adoption of breeding technologies in the U.S. was influenced by 

farm characteristics, operator characteristics, adoption of other technologies, and regional 

differences. The study also showed the impact of demographics and socio-economic factors, 

adoption of other technologies, and regional differences on net returns, milk yield per cow, farm 

revenues, and farm costs. The following conclusions and recommendations can be drawn from 

our results: 

 Breeding technologies, affecting reproductive performance of the herd and productivity 

and profitability, play an important role in the profitability of dairy farms. 
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 Artificial insemination and ET and/or sexed semen adopters, in general, have more milk 

cows, are relatively younger and more educated, and produce higher milk yield per cow 

than non-adopters. The farms having longer planning horizons are the more likely 

adopters of ETSS. 

 More accurate impact assessment of a particular technology on profitability requires 

isolation of that from others. Depending upon the case, accounting for endogeneity and 

self-selection issues in impact studies can correct bias and provide more approximate 

estimates.  

 Our results suggest positive, significant, and higher net returns over total and operating 

costs associated with both AI and ETSS adoption, at least on a per cwt milk produced 

basis. Higher allocated costs were found to be involved in ETSS adoption while the 

major portion of total costs in AI comes from operating expenses. 

 Our findings regarding size and specialization suggest that the larger and more 

specialized farms are the recipients of higher net returns. Based on our results, dairy 

farms can increase size to capture the higher net returns. The adoption of ETSS may help 

increase the number of milk cows by increasing the supply of replacement heifers, but 

significant allocated cost involved in the adoption should also be considered.  

 Since some part of the costs involved in ETSS may be for conducting artificial 

insemination, larger farms that had already adopted AI may consider ETSS adoption. 

Adoption decisions on a farm, however, would be based on the added advantages of 

ETSS adoption versus the additional costs of adopting these. 

 In addition to costs, technical knowledge and information requirements for breeding 

technologies could be a hindrance in the diffusion of breeding technologies, particularly 

ETSS. Extension agents and/or specialists are suggested to consider more educated, 
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younger farmers with larger farms as quick adopters of breeding technologies. Further, 

farms that plan to continue operation for a number of years are suggested to be potential 

ETSS adopters. 

5.3 Limitations 

Based on the literature, we said that ETSS allows for an increased supply of replacement 

heifers and improved reproductive performance in the herd. We also suggested that farmers 

judge the advantages accordingly. One of the limitations and beyond the scope of this study is 

determining the actual number of replacement heifers produced or how much reproductive 

performance is improved annually on a particular farm due to the adoption of ETSS. Another 

limitation we faced using ARMS data was the inseparability between ET and sexed semen 

adopters. Since the ARMS question was designed such that they were not separated, we have 

treated ET and/or sexed semen as one technology, “ETSS.” Though the adopters of these 

technologies may have similar traits, the results and implications when they are treated 

separately may be different. 

Sexed semen technology is expanding and is expected to have wider adoption in the near 

future. The actual impact of the sexed semen technology, once when it becomes more diffused 

would be a further interest of study. Since farmer‟s perceptions about the profitability of the 

technology may also affect the adoption decision, inclusion of perception questions in the ARMS 

dairy survey could lead to more insights.   
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