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ABSTRACT 
 

This study uses a translog cost function to investigate the technical and economic 

relationships present among a sample of Florida grouper longline vessels. The existence of 

jointness-in-inputs and non-separability between inputs and outputs suggests that resource 

management should be based on multiproduct production theory, and that explicit recognition of 

the economic interactions among species should be incorporated in any regulatory process. The 

cross-price elasticities of input demands showed substitution relationships between input pairs, 

implying that imposed regulation on the single input will be compensated for by increases in the 

other inputs. Furthermore, model results showed apparently substantial economies of scope, 

especially between red grouper and most of the other species in the grouper fishery, product 

specific economies of scale and multiproduct economies of scale. The technical and economic 

interrelationships inferred from this study suggest that individual species regulation can generate 

economic inefficiency by inducing nonoptimal input and output mixes. 
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CHAPTER 1: INTRODUCTION 

1.1 Introduction 

Fish resources are an important source of high-quality food and employment for many 

coastal people. Moreover, if managed efficiently, fish resources represent an important source of 

revenue to those who own property rights. When property rights are well defined, it is reasonable 

to suppose that fish resources will be managed so as to maximize profit. If property rights are not 

well defined, however, the profit will be dissipated as new entrants come into the fishery. The 

lack of property rights leads to overexploitation of fish resources as the competition among 

fishermen increases. The public management and regulation of multispecies fisheries is often 

seen as the most efficient means of preventing overexploitation of fish resources. Unknown 

technical and economic interrelationships among different species, however, make the efficient 

management and regulation of fisheries difficult. The success or failure of a regulation depends, 

in part, on how fisheries respond to the regulation given their technological characteristics. For 

example, a quota or output regulation on one species may result in increased exploitation of other 

species (Kirkley and Strand 1988). In light of this, analyzing the individual firm’s technology 

and costs in a multispecies fishery allows regulators to design more effective output regulations 

(Squires and Kirkley 1991). 

The Florida grouper fishery offers a case in which regulations were imposed with only 

partial knowledge of the technical and economic interrelationships within the fishery. In 

addition, a variety of commercial fishing regulations are currently proposed for the grouper 

fishery, including quotas, limited entry programs, trip limits, closed seasons and areas, and size 

limits. These regulations may affect, and be affected by, the cost of harvesting and the economic 

structure of the grouper fishing industry. 
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1.2 Goals and Objectives 

The overall goal of this study is to investigate the technical economic structure among 

Florida grouper longline vessels and suggest how this information should affect managers as 

they attempt to design economically efficient policies.  Specifically, the study will: 

- Collect trip-based logbook data from a sample of Florida grouper longline vessels; 

- Estimate a multioutput cost function to characterize the harvesting process among these 

vessels; 

- Analyze the estimated cost function to determine the technical and economic interactions; and 

- Based on the outcomes of the previous objectives, identify important considerations that need 

to be taken into account when developing strategies for the optimal management of Florida 

grouper fishery. 

1.3 Background 

 Fisheries located off the coast of the United States represent an important renewable 

natural resource for whose protection the U.S. Congress enacted the Magnuson Fishery 

Conservation and Management Act in 1976 (renamed Magnuson - Stevens Fishery Conservation 

and Management Act in 1996). The Act established a U.S. exclusive economic zone existing 

between 3 and 200 miles offshore, and created eight regional fishery councils to manage fish 

resources within their respective regions. Among the purposes of these councils are to promote 

commercial and recreational fishing based on conservation and management principles, and to 

prepare and implement fishery management plans for each fishery requiring conservation and 

management in accordance with the national standards promoted by  the Act, as amended. The 

Magnuson – Stevens Act was recently reauthorized under the name Magnuson-Stevens Fishery 

Conservation and Management Reauthorization Act of 2006. This new law authorizes the use of 
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annual catch limits to end and prevent overfishing, promote market-based fishery management 

through limited access programs, and calls for enhanced international cooperation. 

1.3.1 The Grouper Fishery 
 

One of the historically important fisheries in the Gulf of Mexico is the grouper fishery.  

Although the grouper fishery occurs throughout the Gulf of Mexico, it is primarily concentrated 

on the West Florida Shelf.  As a result, the state of Florida is by far the most important grouper 

fishery location, accounting for nearly 90% of the Gulf shallow-water grouper (SWG) and deep 

water grouper (DWG) commercial landings, and is the home-port state for the vast majority of 

vessels in the fishery. Fishermen and grouper sales are also concentrated in Florida (Gulf of 

Mexico Fishery Management Council, 2005).  Participants in the grouper fishery include 

commercial fishermen utilizing different types of gear (bottom longline, vertical line) and 

recreational fishermen (private anglers, head and party-boat operators and their customers).  

The SWG and DWG complex is a multispecies fishery encompassing 17 species.  Of 

these species, 13 are managed, two are prohibited from harvest (Nassau and goliath grouper), 

and two species are not currently considered to be in the management unit (sand perch and dwarf 

sand perch). SWG include red grouper, black grouper, gag, yellowfin grouper, scamp, 

yellowmouth grouper, rock hind, and red hind. DWG include yellowedge grouper, warsaw 

grouper, snowy grouper, speckled hind, and misty grouper. The most commonly landed SWG 

species in the commercial fishery are red grouper, gag, and black grouper, while yellowedge 

grouper is the most commonly landed DWG species. 

Red grouper are commonly caught in the Gulf of Mexico from Panama City, Florida, to 

the Florida Keys, along the inner to mid-continental shelf in depths ranging from 2 to over 120 m 

(Moe 1969). Red grouper has accounted for nearly two-thirds of the total commercial grouper 
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harvest since 1986.1 Estimates of the recreational catch of red grouper have been highly variable: 

about 0.6-1.0 million fish per year in the mid- to late-1980s, 0.2 million fish in 1990 following 

the implementation of minimum size limits, and 0.2-0.1 million fish per year during the 1996-

1997 period (NMFS, 2004).2  

  Gag grouper is primarily caught on the west coast of Florida from Tampa Bay to the 

northern extent of the state (Goodyear and Schirripa 1994). Historically, gag was often confused 

with black grouper because they are similar in appearance and, therefore, difficult for fishers to 

distinguish. The next most commonly landed SWG is black grouper. The rest of SWG that can 

be legally harvested account for a small percentage of the overall commercial landings.  

As the name implied, DWG occur farther offshore than SWG, but are occasionally 

caught by fishermen targeting SWG.  Approximately 98-99 percent of the annual harvest of 

DWG is caught commercially, with recreational interests responsible for only minor harvests. 

Yellowedge grouper is the most abundant and longest-lived grouper, reaching a maximum age of 

85 years (Cass-Calay and Bahnick, 2000), while Warsaw grouper is the largest of DWG species, 

reaching a maximum length and weight of 92 inches and 419 lbs (Manooch and Mason 1987). 

As part of the incidental catch associated with commercial SWG and DWG fishing, 

snappers, jacks, and triggerfishes are frequently harvested.  King and Spanish mackerel, as well 

as sharks, are also harvested or incidentally captured by commercial fishermen. For example, 

sharks represented 6.1 percent of landings by longline vessels that reported at least one harvested 

                                                 
1  The greatest part of the commercial and recreational harvest comes from south of Tampa. Commercial landings of 
red grouper have been separated from other groupers within national records only since 1986. Before 1986 red 
grouper were included in catch statistics along with other grouper species as “unclassified groupers.” 
2  These estimated recreational harvests have been influenced by various regulations over the years.  Florida enacted 
an 18-inch minimum size limit in 1985 for state waters, a recreational bag limit of 5 fish per day in 1986, and a 20-
inch minimum size limit in 1990. The Gulf of Mexico Fishery Management Council established three conservation 
measures for groupers in federal waters in 1990: 20-inch minimum size, a 5 fish per day recreational bag limit, and a 
9.2 million pound commercial quota for SWG.  
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pound of SWG or DWG in 2004 (Gulf of Mexico Fishery Management Council, 2005).  What is 

unclear in this statistic, however, is whether grouper were the intended target species for all of 

the included trips. 

Stock assessments are available for four grouper species – red grouper, gag, goliath 

grouper, and yellowedge grouper. The status of red grouper was assessed in 2002 and it was 

determined that the population was undergoing overfishing, but not overfished.3 The most recent 

stock assessment, completed in the spring of 2007, concluded that red grouper were not 

experiencing overfishing nor were they overfished (SEDAR 12, 2007). The obvious conclusion 

that might be drawn from this information is that the red grouper population had completely 

recovered during the ensuing 5 year period.4  The status of gag was most recently assessed in 

2006, and it was determined that the population is undergoing overfishing (SEDAR 10, 2006). 

The status of yellowedge grouper and the status of goliath grouper were assessed in 2002 and 

2004, respectively, and the fishing status for both were determined to be unknown (Cass-Calay 

and Bahnick, 2002; SEDAR 6, 2004). As previously mentioned, recreational and commercial 

harvests of goliath grouper are prohibited even though NOAA removed goliath grouper from the 

“species of concern” list (Gulf Fishery News, April-May 2006). Recently, the Southeast 

Fisheries Science Center (SFSC) requested that the status of goliath grouper be changed from 

“unknown” to “not overfished”. 

The harvesting gear used in the commercial grouper fishery includes bottom longlines 

and vertical lines. On average, 165 bottom longline vessels took 1,410 trips per year and 894 

                                                 
3 The Magnuson-Stevens Fishery Conservation and Management Act defines overfishing as "a rate or level of 
fishing mortality that jeopardizes the capacity of a fishery to produce the maximum sustainable yield on a continuing 
basis." A stock is considered to be overfished when the total abundance of a fish population is below a minimum 
specified level of abundance. Given that the definitions are dependent on the concept of sustainable yield, a finding 
of overfishing or overfished is dependent on the quality of empirical data concerning a stock. 
4  A less obvious conclusion is that one or both of the stock assessments may be in error.  Given that red grouper has 
a relatively long life-span and does not reach full reproductive maturity until 6 years of age (Fitzhugh et al. 2006), it 
can be considered a significant management accomplishment to achieve fisheries recovery in 5 years. 
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vertical line vessels took 7,600 trips per year from 1993-2000 (Waters 2001). Waters (2002) 

reported that, in 2000, 782 vessels in Florida and 207 vessels in other Gulf states reported 

landings of reef fish using vertical line, and 155 vessels in Florida and 33 vessels in the other 

Gulf states were using longline gear. An additional 55 fish trap vessels were located in Florida. 

For the reef fish vessels, 546 harvested SWG on a regular basis, and of them 138 used longlines, 

353 used vertical lines, and 55 used fish traps. Waters (2002) indicated that longlines accounted 

for 59 percent of commercial red grouper landings, while vertical lines accounted for 24 percent, 

and fish traps accounted for 16 percent. For gag grouper, vertical lines accounted for 73 percent 

of commercial landings, longlines accounted for 25 percent, and fish traps 2 percent.  

Gulf SWG and DWG accounted for 85 percent (5.6 out of 6.6 million pound gutted 

weight-MPGW) of the 2002-2004 average annual landings of reef fish by longline vessels, 

representing 74 percent of the average annual gross revenue for longline vessels, while for 

vertical lines grouper represented only 32 percent of the 2002-2004 average annual landings of 

reef fish by vertical lines, or 29 percent of their average annual gross revenue (Gulf of Mexico 

Fishery Management Council, 2005). Therefore, it can be inferred that the economic impact of a 

regulatory measure (grouper trip limits, for example) would fall to a larger degree on longline 

fishermen than on vertical line fishermen. 

1.3.2 Regulatory History 
 

 Secretarial Amendment 1 to the Reef Fish Fishery Management Plan was implemented 

by NOAA’s National Marine Fisheries Service (NMFS) on July 15, 2004, and established a 10-

year rebuilding plan, a 5.31 million pound gutted weight (MP GW) commercial quota, and a 1.25 

MP GW recreational quota for red grouper. The commercial and recreational quotas were  
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adopted based on the ratio of 81 percent commercial and 19 percent recreational reflecting 1999-

2001 historical red grouper landings.  In addition, Secretarial Amendment 1 reduced the quotas 

for deep-water grouper (DWG) fishery from 1.35 MP GW to 1.02 MP GW, and for shallow-

water grouper (SWG) fishery from 9.35 MP GW to 8.80 MP GW. By amendment, the 

commercial SWG fishery closes when either the commercial quota of red grouper (5.31 MP) is 

reached or when the commercial SWG aggregate quota (8.80 MP) is reached, whichever occurs 

first. As a result, the commercial deep-water grouper (DWG) fishery was closed on July 15, 

2004, the same day when Secretarial Amendment 1 was implemented, while the shallow-water 

grouper (SWG) fishery was closed on November 15, 2004. Another purpose of Secretarial 

Amendment 1 was to evaluate and control the impact of the red grouper rebuilding plan on other 

species. Gag and red grouper are the most commonly landed SWG species, and it is likely that 

regulatory measures to reduce red grouper harvest will affect gag harvest. Furthermore, measures 

to reduce SWG quota could result in effort shifting to target deep water grouper. 

To prolong the SWG and DWG fishing seasons in 2005, NMFS established trip limits for 

the commercial grouper fishery. However, these trip limits were not restrictive enough to extend 

the fishing season, and resulted in earlier closures to the DWG and SWG fisheries in 2005: 

DWG fishery was closed on June 23 and SWG fishery on October 10. In 2006 the commercial 

DWG fishery was closed on June 27. 

The Gulf of Mexico Fishery Management Council initiated a Regulatory Amendment in 

the fall of 2004 to adjust Total Allowable Catch (TAC) and management measures necessary to 

maintain the rebuilding schedules specified in Secretarial Amendment 1.  The purpose of this 

regulatory amendment was to establish more permanent trip limits for the commercial grouper 

fishery, thus extending the commercial grouper fishing season, and to reduce the adverse 
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socioeconomic effects of derby fishing.5 Specifically, derby fishing is expected to result in 

shorter fishing seasons, forcing markets to meet consumer demand for grouper fish during 

closures by either importing grouper or by substitution using different domestic species. These 

actions may have a negative economic impact on the domestic market for grouper and the 

commercial grouper fishery. Furthermore, the economic loss experienced by the fishery 

participants will have spillover effects on the associated industries (gear and supply shops, 

grocers, etc.) and on families and communities. 

Given the adverse socioeconomic effects that may arise from derby fishing in the 

commercial grouper fishery, developing new regulatory measures has been a priority for the Gulf 

of Mexico Fishery Management Council. The Regulatory Amendment initiated by the Council 

considers six alternatives to control commercial landings of SWG and DWG, with alternative 1 

based on quotas alone and alternatives 2-6 including trip limits in addition to quotas. The 

management of the commercial grouper fishery under Alternative 1 (status quo) is expected to 

result in increasingly shorter seasons, reduced prices, lost markets, and the worsening of 

economic conditions in the commercial grouper fishery. On the other hand, Alternatives 2-6 are 

expected to prolong the fishing season, but on the expense of a reduction in net revenue relative 

to the status quo. While these losses in net revenue are expected to be less than those that would 

occur in the long-run if derby conditions were allowed to continue, the lack of enough relevant 

economic information for grouper fishery increases the difficulty of making appropriate 

management suggestions.  

                                                 
5 Derby conditions are likely to appear in an open-access fishery restricted by quota regulations and they can alter 
fishing opportunities for many vessels, fishing practices among commercial fishermen, and business practices 
among dealers and other support industries. 
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1.4 Overview of Previous Related Research  

Revenue, profit and cost functions have often been used to describe the technological and 

economic conditions experienced by fishing firms. While in the primal approach product supply 

and factor demand equations are obtained by explicitly solving an optimization problem, the dual 

approach allows one to obtain product supply and factor demand equations by partial 

differentiation of an indirect objective function (for example, an indirect profit function is the 

maximum profit associated with given product and factor prices, while an indirect cost function 

is the minimum cost of producing the given product). The dual approach overcomes problems 

associated with unknown input quantities because duality uses prices as independent variables 

(Jensen 2002). In the case of the dual cost function this means that one needs to know only total 

cost and input prices to determine optimal input quantities. Pope (1982) argues that the dual 

approach is easier to use in characterizing multiproduct technology properties, more flexible in 

measurement, and no first-order conditions need to be solved, suggesting that the dual approach 

can be applied to many functional forms. 

Most fishing firms are multiproduct; they produce several outputs by employing a range 

of different inputs. The failure to recognize the technical and economic interrelationships among 

different species may lead to negative outcomes for multispecies fisheries management (Kirkley 

and Strand 1988, Squires and Kirkley 1991, and Diop and Kazmierczak 1996). Thus, the present 

study will be based on dual cost function to describe technical and economic interrelationships 

present among grouper longline vessels. The empirical literature that employs this approach to 

analyze the technological properties of industries is reviewed below, with a focus (although not 

exclusive) on studies that examined fisheries. 

Kirkley and Strand (1988) applied a dual revenue function to the New England 

multispecies fishery, and indicated that the more commonly advocated forms of stock 
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management (e.g., unit stock and biomass) are inappropriate given that managers are also 

concerned about the exploitation of other species. Both hypotheses of nonjointness-in-inputs and 

separability between inputs and outputs were rejected by the authors. The results revealed that 

restrictions placed on one species will result in increased exploitation of the other species. 

 Squires and Kirkley (1991) found that a quota on the individual firm’s production of 

sablefish may be inappropriate, as this may result in excessive discard of regulated species. They 

suggested alternative management strategies, including license limitation, individual transferable 

quotas (ITQ), and trip quotas. 

Applying a dual revenue function derived from a generalized Leontief form, Diop and 

Kazmierczak (1996) analyzed technical and economic interactions in the Mauritanian 

cephalopod fishery. Model results indicated the existence of jointness in inputs and non-

separability between inputs and outputs in the fishery. In addition, cross price elasticities 

indicated a number of substitute and complementary relationships. These results indicate that the 

management on a species-by-species basis may lead to unintended outcomes, including over-

exploitation of the resource.  

Squires (1987a,b,c) and Alam, Ishak, and Squires (2002) employed the multiproduct 

profit function to describe the profit-maximizing firm. Squires (1987a) and Squires (1987b) used 

a translog profit function to analyze the New England otter trawl industry. Although both studies 

used similar data, the results indicated different input-output separability results. Squires (1987b) 

found weak separability for roundfish (cod and haddock) and flatfish (yellowtail and other 

flounders), and input-output separability is rejected. A different result was found in Squires 

(1987a), where input-output separability was accepted. In Squires (1987c) the multiproduct 

profit function was used to estimate long-run, multiproduct costs, including economies of scope, 

product-specific returns to scale, and multiproduct returns to scale. All three studies indicated 
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elastic own-price elasticities. In Squires (1987b, c) Marshallian elasticities indicated a 

complementary relationship between capital, labor and fuel.6

A translog profit function was also used by Alam, Ishak, and Squires (2002) to evaluate 

the harvesting technology and cost and revenue structure of Peninsular Malaysian fishing 

trawlers to design an area licence limitation program under conditions of asymmetric 

information. Both global separability of outputs and variable inputs and separability between 

outputs and variable inputs were rejected. Non-jointness-in-inputs was also rejected, indicating 

that all inputs were required to produce each output. Hicksian elasticities showed substitution 

between input factors7, and the technology exhibited increasing product-specific returns to scale 

and decreasing multiproduct economies of scale. Alam, Ishak, and Squires concluded that the 

current policy of licensing vessels should be augmented in order to limit the number of vessels 

through the use of non-transferable licences. 

Dupont (1991) used a quadratic restricted profit function to evaluate the harvesting 

technology and substitution possibilities for the British Columbia commercial salmon fishery. 

Elasticities of intensities were used to describe the impact that a change in a restricted input 

would have on an unrestricted input. Dupont showed that restrictions on fishing days could be an 

effective way to reduce fishing effort in industry with few substitution possibilities. 

Lipton and Strand (1992), Bjorndal and Gordon (2001), and Weninger (1998) all used the 

behavioral hypothesis of cost minimization to describe firms operating under output regulation. 

In their article, Lipton and Strand (1992) analyzed the effect of stock size and regulations on the 

fishing industry cost and structure in the Atlantic clam fishery. The assumption made is that 

firms minimize the cost of harvesting subject to an output level. The authors concluded that the 

                                                 
6 The Marshallian elasticities measure both pure substitution (changes in the input mix along a given isoquant) and 
expansion effects (inputs change along the expansion path). 
7 Hicksian elasticities measure pure substitution effects among input pairs along an isoquant. 
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optimal industry configuration, under a limited-access management regime, would be achieved 

with an increase in the number of vessels and a decrease in the catch per vessel of surf clams and 

an increase in the catch of ocean quahogs.  

Bjorndal and Gordon (1993) tested for optimal vessel size in the Norwegian fishing fleet, 

comparing actual vessel size to optimal conditions, under alternative scenarios defining the 

opportunity cost of capital. The econometric results showed that adjustments in vessel size are 

necessary in response to changes in economic and biological conditions and that the introduction 

of an ITQ to regulate the fishery would lead to optimal sized vessels.  Bjorndal and Gordon 

(2001) used a multi-output cost function to analyze the harvesting process for three vessel types 

(purse seiners, coastal vessels, and trawlers) in the Norwegian spring-spawning herring fishery. 

Because catch levels were set by quota, they assumed that fishing vessel attempt to minimize the 

cost of harvesting the set quota level subject to vessel type. They estimated a translog cost 

function from which can be calculated input demand elasticities, economies of scale, and output 

cost elasticities. The own-price elasticity estimates showed a strong inelastic response to prices 

for each vessel type for each year. The estimates of economies of scale for each vessel type for 

each year showed increasing returns to scale. The cost elasticities associated with each output 

group for each vessel type showed an inelastic response of total cost to changes in harvest levels. 

The authors concluded that purse seiners and trawlers are cost efficient in terms of capturing 

available economies of scale; however, trawlers harvest only a small share relative to purse 

seiners. 

A dual cost function was also used by Weninger (1998) to analyze harvest sector 

efficiency gains from an ITQ in the Mid-Atlantic surf clam and ocean quahog fishery. It was 

assumed that fishers try to minimize the cost of harvesting surf clam and ocean quahog subject to 

exogenous prices, technology, and stock levels. The author estimated variable cost associated 
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with fuel and gear, by specifying a trans-log cost function. The variable cost technology 

exhibited overall and product-specific increasing returns to scale, scope diseconomies, and 

nonjoint-in-inputs, with fixed costs declining for larger vessels.  Consequently, the author 

concluded that important sources of efficiency gains in the clam fishery are associated with 1) 

the elimination of redundant harvesting capital and the realization of scale economies and 2) 

returns to specialization or single species production. 

Generalized cost functions like the translog have provided a convenient framework for 

analyzing agricultural production. An important characteristic of the translog cost function is its 

flexibility, allowing testing for specific characteristics of technology. Binswanger (1974) and 

Ray (1982) used translog cost functions to derive estimates of elasticities of demand and 

elasticities of substitution for the agricultural sector in U.S. Binswanger estimated a single output 

cost function using cross-section and time-series data, while Ray treated crops and livestock as 

two distinct outputs. Labor was found to be a substitute for the other inputs in both studies. 

However, Binswanger found complementarity between labor and fertilizers, in contrast with 

Ray’s findings of increased substitutability between labor and fertilizers. 

A generalized translog functional form was used by Caves et al. (1980) and Caves et al. 

(1981) to analyze productivity growth in U.S. railroads. The estimates of productivity growth 

based on the total cost function for 1981 were significantly lower than those reported in the 1980 

paper. The primary reason for this difference is the fact that, in 1980 paper, the authors analyzed 

industry totals rather than firm data. Caves et al. (1981) used a variable cost function to estimate 

the structure of production and productivity growth for U.S. railroads. The results were then 

compared to those from the total cost function, showing that although the two cost functions 

have similar estimates of returns to scale, they yield different estimates of productivity growth.  

Akridge and Hertel (1986) estimated a short-run translog cost function to analyze multiproduct 
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cost relationships for retail fertilizer plants. The results strongly supported the existence of 

economies of scope between anhydrous ammonia and the rest of outputs taken as a group, and 

product-specific scale economies in producing anhydrous ammonia. Akridge and Hertel 

suggested that plants could lower average cost by increasing output and by diversifying into 

anhydrous ammonia. 

1.5 Organization of the Thesis 

  The organization of the remaining parts of thesis proceeds as follows. Chapter 2 presents 

the cost function, with emphasis being given to how the dual cost function is employed to 

describe technical and economic interrelationships present in grouper fishery. An empirical 

model for the grouper fishery is developed and presented in Chapter 3, along with the data used 

in estimation. In Chapter 4, the results associated with the estimated model are presented and 

discussed. In the final chapter, a summary of the key findings is presented, along with a 

discussion of some of the management and policy implications. 
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CHAPTER 2: THEORETICAL MODEL - COST FUNCTION 
  

 The cost function represents the minimum cost of producing any given level of output 

and is expressed as a function of input prices and output. The existence of a well defined cost 

function is based on a set of assumptions concerning cost minimization behavior of the firms. 

Specifically, this set of assumptions includes the presumption that the level of output y produced 

by the firm is predetermined, that the input prices are fixed and exogenous, and that the firm 

chooses input quantities so as to minimize the cost of producing output y. Therefore, 

corresponding to a production function that indicates the maximum output y given any 

combination of inputs, there is a dual cost function relating the minimum cost of producing a 

given level of output to the input prices and the level of output y. This dual cost function can be 

written as C = C*(r, y) where r is a vector of input prices. The advantages of a cost function 

approach relative to a production function approach were summarized by Binswanger (1974): 

1. A cost function is linearly homogeneous in input prices regardless of the homogeneity 

properties of the production function, meaning that a doubling of all prices will double the cost 

but will not affect factor ratios; 

2. A cost function uses input prices as independent variables rather than factor quantities, and 

thus managers make decisions on factor use according to exogenous prices; 

3. In production function estimation, input quantities tend not to be independent of one another, 

leading to a possible problem of multicollinearity.8 Since there is usually little multicollinearity 

among input prices9, this problem does not arise in cost function estimation. 

                                                 
8 For many production processes, input quantities are used in fixed or relatively fixed proportions. Thus, within the 
context of a single production activity, the use of inputs is highly correlated. 
9 Input prices in the market will be less correlated than the use of inputs themselves in a production process to the 
extent that they are demanded in many different types of production. 
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2.1 Cost-Minimizing Input Choices 

 The cost function is a mathematical representation of the cost minimization problem. 

Given that minimizing cost for a given level of output is a necessary condition for profit 

maximization, the cost minimization problem can be written as 

Minimize C = r1x1 + r2x2     subject to y0 = f(x1, x2)          2.1 

where x1 and x2 are input quantities, r1 and r2 are input prices, and y0 is an output level. From the 

Lagrangian 

L = r1x1 + r2x2 + λ (y0 - f(x1, x2)           2.2 

the first order conditions for a constrained minimum are 

0λf rxL 111 =−=∂∂              2.3 

0λf rxL 222 =−=∂∂             2.4 

0), xf(x yλL 210 =−=∂∂             2.5 

where 22121211 ),(and),( xxxffxxxff ∂∂=∂∂= .  Dividing equation 2.3 by equation 2.4 yields  

RTS
f
f

r
r

==
2

1

2

1 .             2.6 

Condition 2.6 requires that the cost-minimizing firm should equate the rate of technical 

substitution (RTS) for the two inputs to the ratio of their prices. The rate of technical substitution 

is the rate at which one variable input is substituted for another variable input, holding the level 

of output constant. 

 The sufficient second-order condition for the cost minimization is that the following 

bordered Hessian determinant be negative: 

0
0ff
fλfλf
fλfλf

H

21

22221

11211

<
−−

−−−
−−−

= .           2.7 
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The elements of this determinant are the second partial derivatives of the Lagrangian with 

respect to x1, x2, and λ, or the first partial derivatives of the first order equations with respect to 

x1, x2, and λ. Graphically, the second order condition relates to the shape of the isoquants. An 

isoquant is a locus of points representing input combinations that yield the same level of output. 

Production isoquants must be convex in order that the tangency point between isoquant and 

isocost curves be a minimum cost for a specified output. 

 Assuming that the second order condition is satisfied, the first order conditions of 

equations 2.3 – 2.5 can be solved for x1 and x2, yielding the conditional factor demand equations 

).,,(

),,(

21
*
2

*
2

21
*
1

*
1

yrrxx

yrrxx

=

=
             2.8 

Solving the first order conditions for λ yields 

2

2

1

1*λ
f
r

f
r

==               2.9 

where f1 and f2 can be interpreted as marginal products of x1 and x2.  At the least-cost 

combination of inputs, λ* is equal to marginal cost, or the additional cost associated with an 

additional unit increase in output. 

 Mathematically, the cost function is derived by substituting the conditional factor demand 

equations x1
* and x2

* into C = r1x1 + r2x2. Then, the cost function becomes  

C =C*(r1, r2, y), where C* is the minimum cost of producing output y given that the input prices 

are constant. 

 The cost-minimizing combination of inputs is illustrated graphically in Figure 2.1. Given 

the output isoquant associated with y0, the objective of the firm is to shift to a lower isocost 

curve, thus reducing the cost, until the least-cost combination of inputs is obtained for output y0.  

An isocost curve is a locus of points where the total cost is the same for alternative input 
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combinations. It is clear from Figure 2.1 that the minimum cost of producing y0 is at point A 

where the isocost curve C0 is tangent to the isoquant y0. Assuming that the isoquant is convex, 

the cost-minimizing input combination is x1
*, x2

*.  The line 0E in Figure 2.1 represents the cost-

minimizing tangencies for successively higher levels of output. This line is called the firm’s 

expansion path and shows how inputs expand as output expands, holding the prices of the inputs 

constant. 

2.2 Cost Function 

 Average and marginal cost functions are two different unit cost measures associated with 

the cost function. The average cost function is defined as 

.
*

y
CAC =  

The marginal cost function is defined as the change in cost for a change in output 

.
*

y
CMC
∂
∂

=  

Given the expansion path in Figure 2.1, the cost function is represented graphically by 

plotting output levels with their corresponding minimum cost. Information from the total cost 

curve (Figure 2.2, top) can be used to construct the average and marginal cost curves (Figure 2.2, 

bottom). Long-run marginal cost (LMC) is simply the slope of long-run total cost (LTC) curve, 

while long-run average cost (LAC), for some level of output, is the slope of a chord through the 

origin intersecting the LTC curve at that output level. As illustrated in Figure 2.2, LAC is at a 

minimum when the chord is tangent to the LTC curve. On the other hand, LMC reaches a 

minimum at the point of inflection of LTC curve. So long as LMC is below LAC, LAC is falling, 

when LMC is above LAC, LAC is rising, and LMC = LAC when LAC is at a minimum. 
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Figure 2.1. Minimizing cost for a given level of output. 

 

 

Assuming it is possible to proportionally change all inputs, one important characteristic 

of the production function is the concept of returns to scale. This is a measure of how output 

changes with a proportionate change in inputs. Specifically, the production function y = f(x1, x2) 

exhibits constant returns to scale if  

f(αx1, αx2) = αf(x1, x2) = αy,  for any α > 0. For example, if all inputs are doubled, then output 

would also double. Decreasing returns to scale exists if f(αx1, αx2) < αf(x1, x2) = αy, implying 

that a doubling in all inputs results in less than a doubling of output. Increasing returns to scale 

exists if f(αx1, αx2) > αf(x1, x2) = αy, implying that a doubling in all inputs results in more than a 

doubling of output. 
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Figure 2.2. Long-run cost curves. 
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 The concept of returns to scale is directly related to the cost curves. As illustrated in 

Figure 2.2, increasing returns to scale is in that region where the LAC curve is declining, 

0<∂∂ yLAC , or where increases in total cost are proportionally smaller than an increase in 

output. Similarly, decreasing returns to scale is in that region where LAC curve is increasing, 

0>∂∂ yLAC  , or where increases in total cost are proportionally larger than an increase in 

output.  Constant returns to scale are where 0=∂∂ yLAC , and this corresponds to the minimum 

point of LAC curve. 

Returning to the cost minimization problem, it can be demonstrated that conditional 

factor demands respond to changes in prices and output. Specifically, we are interested in the 

determination of the sign of the partial derivatives
y
x

r
x i

j

i

∂
∂

∂
∂ **

and . The first step in this comparative 

statics analysis, as stated by Silberberg (1978), is to substitute x1
*, x2

* and λ* into the first-order 

conditions (equations 2.3 – 2.5) and differentiate the resulting identities with respect to r1, r2 and 

y. Taking partial derivatives with respect to r1 yields 
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The equations can be written in matrix form as 
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Using Cramer’s rule,  

               2.12 

Repeating the same sort of calculations to analyze the response to a change in r2, we find 
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By symmetry, 
1

*
2

2

*
1

r
x

r
x

∂
∂

=
∂
∂ , or the “cross-price” effects of changing input prices on input use must 

be equal for any input pair at the optimum. On the other hand, the own-price effects must be 

negative, meaning that the conditional factor demands are downward sloping. 

2.3 Short-Run Cost and Long-Run Cost 

 To this point the focus has been on long-run total cost, or the minimum cost necessary for 

obtaining a given level of output when all inputs are variable. In the short-run, one or more 

factors of production are fixed and the short-run total cost (STC) is the sum of short-run variable 

cost (SVC) and short-run fixed cost (SFC), 

STC = SVC + SFC. 

SVC is the cost of those inputs that can be varied in order to change the output level. On the 

other hand, SFC is the cost associated with inputs that cannot be varied in the short run. Short-

run average total cost (SATC) can be defined as 

SAFCSAVC
y

SFC
y

SVC
y

STCSATC +=+==          2.14 

where SAVC is short-run average variable cost and SAFC is short-run average fixed cost. 
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 Short-run marginal cost (SMC) is given as: 

y
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y
STCSMC
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∂
= .             2.15 

Graphically, the short-run cost functions are shown in Figure 2.3. The relationship between SMC 

and SAVC is derived as follows: 

y
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           2.17 

Since
y

SVC
y

STCSMC
∂

∂
=

∂
∂

= , the relationship between SMC and SATC can be derived in the 

same way. 

 In the short-run, a firm can increase its output by adding variable inputs to the fixed 

inputs. However, the “Law of Diminishing Marginal Returns” implies that as more of a variable 

input is added to a constant amount of fixed inputs, the marginal product of the variable input 

will eventually decline. Thus, where the SMC curve is positively sloped there are diminishing 

marginal returns, and where the SMC curve is negatively sloped there are increasing marginal 

returns. A consequence of the Law of Diminishing Marginal Returns is that SMC, SAVC, and 

SATC will eventually rise with increases in output. 

In general, a short-run production function is divided into three stages of production. As 

Figure 2.3 shows, Stage I includes the area where SAVC is falling, up to the point where SAVC 

reaches a minimum, which also corresponds to an increasing average product. 

 23 
 



 

 

 

y

STC

SVC

$

SAVC

SATC

SMC 

 
Stage I

Stage II 

Stage III 

y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.3. Short-run cost curves and stages of production. 
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In Stage I the variable input is limited relative to the fixed inputs; therefore the firm can increase 

the output by adding variable input as long as average product is rising. Stage III starts where 

marginal product of the variable input is zero, or SMC is undefined, and includes the area of 

negative marginal product for the variable input. In Stage III, STC and STVC are still increasing 

but output is declining as more of the variable input is added. A rational profit-maximizing 

producer would never knowingly operate in Stage I or Stage III of production. Firms aim to 

operate in Stage II of production, which includes the area where SAVC is rising as output 

increases. Within this stage, both average product and marginal product of the variable input are 

positive but declining. 

 The relationship between long-run and short-run cost curves is shown in Figure 2.4. 

Consider two inputs, x1 and x2 , where in the long-run both inputs are variable, but in the short-

run we assume that x2 is fixed. Figure 2.4 shows that while there is a single long-run total cost 

curve (LTC), we can draw an infinite number of short-run cost curves, one for every level of 

fixed input x2. For example, STC0 and STC1 are short-run total cost curves when input x2 is fixed 

at x2
0 and x2

1, respectively.  STC curves are tangent to LTC curve at that level of fixed input x2 

that is the long run optimal input usage, making the long-run total cost curve an envelope curve 

of the short-run total cost curves. Figure 2.4 also demonstrates that the cost of producing y1 when 

x2 is fixed at x2
1 is given by point B. However, in the long-run the cost of y1 is minimized if x2 is 

adjusted from x2
1 to x2

0. This is shown graphically as a tangency between STC0 and LTC, given 

by point A. 

From the long-run cost curve and short-run cost curves we can derive long-run average 

cost curve (LAC) and short-run average cost curves (SAC). Where STC curves are tangent to 

LTC curve, SAC curves are also tangent to LAC curve. Note, however, that this point of 

tangency does not necessarily occur at the minimum point of SAC curve. 
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Figure 2.4. Short-run total cost and long-run total cost curves. 
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Similarly to the relationship between STC curves and LTC curve, the LAC curve is an envelope 

of the SAC curves. 

2.4 The Duality of the Cost Function 

 The importance of the dual approach, as stated by Beattie and Taylor (1985), resides in 

the fact that it “allows one to obtain product supply and factor demand equations by partial 

differentiation of an indirect objective function.” Two important concepts are associated with 

duality. One concept is that of an indirect cost function, which is defined as the minimum cost of 

producing a specified output y, at given factor prices. That is C = C*(r, y), where r is a vector of 

input prices.  The properties of this indirect cost function can be summarized as (Chambers, 

1988): 

1. Nonnegativity: if r >0 and y > 0, then C*(r, y) > 0. 

2. Nondecreasing in r: if r’ > r, then C*(r’, y) > C*(r, y). This indicates that increasing any input 

price must not decrease the cost. 

3. Homogeneous of degree one in r: C*(tr, y) = tC*(r, y), since factor demand functions are 

homogeneous of degree 0 in r. So, as long as input prices only vary proportionately, the cost 

minimizing choice of inputs will not vary, but we would expect cost C* to vary proportionately. 

4. Concave and continuous in r. 

5. Nondecreasing in y: if y > y’, then C*(r, y) > C*(r, y’). 

Another important concept in duality is the envelope theorem. Assuming that the 

conditional factor demands are x1
* and x2

*, the indirect cost function is 

C* = r1x1
* + r2x2

*              2.18 

and the envelope theorem states that 
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Equation 2.19, also known as Shepard’s lemma, points out that the rate of change in the indirect 

cost function, C*, with respect to a parameter, r1, allowing all xi to adjust, is equal to the partial 

derivative of the Lagrangian with respect to the same parameter r1, holding all xi fixed. 

A proof of the envelope theorem is given in Silberberg (1978) by taking partial 

derivatives of C* = r1x1
* + r2x2

* with respect to r1

           2.20 
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From the first order conditions, ,11 λf r = 22 λf r = , and substituting these into equation 2.20 

yields 

)
r
xf

r
xλ(fx

r
C

1

*
2

2
1

*
1

1
*
1

1

*

∂
∂

+
∂
∂

+=
∂
∂ .           2.21 

Differentiating the constraint identity y0 = f(x1
*, x2

*) with respect to r1 yields 
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which is exactly the expression in parentheses in equation 2.21. Hence, as the envelope theorem 

states, .*
1

1

*

x
r
C

=
∂
∂  

 An illustration of the envelope theorem applied to the cost function is shown in Figure 

2.5. As Beattie and Taylor (1985) describe this graph, the indirect cost function C* is a lower 

envelope to the direct cost equations C = r1x1 + r2x2. In accordance with the envelope theorem, at 

the tangency point A the indirect cost function C* and the direct cost function C (x1
0, x2

0) have 
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the same slope if the slope of the direct cost function is evaluated at the cost-minimizing values 

x1
0, x2

0. 

r1 
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C(x1
0, x2
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0, x2

0) 

C

A

 

Figure 2.5. The envelope theorem applied to cost function. 

2.5 Comparative Statics of the Cost Function 

 The questions addressed in this section are “How do cost and input demands respond to 

changes in input prices?” and “What happens to input utilization and cost if output increases?” 

To some extent, the first question was addressed in the earlier discussion of the cost 

minimization problem where it was shown that the responses of demand to input prices are 

computed from the Hessian matrix of the cost function, resulting in 
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Thus, conditional factor demands must be downward sloping, meaning that a rise in any input 

price results in a decline in the demand for that input. The conditional factor demands are 
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homogeneous of degree zero in input prices since the cost function is homogeneous of degree 

one. Mathematically this is written as 

xi
*(tr, y) = xi

*(r, y), i = 1, 2,….,n. 

The response of factor demands to changes in factor prices can also be described in terms 

of elasticity: 
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where εij represents the percentage change in the factor demand xi (holding output constant) due 

to one percent change in the input price rj. When i = j, this is the own-price elasticity; when i ≠ j, 

this is the cross-price elasticity. 

The response of the conditional factor demands to a change in output is also computed 

from the Hessian matrix of the cost function. By Shephard’s lemma  
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           2.25 

where yC ∂∂ *  is marginal cost.  Equation 2.25 shows that the response of the ith input to a 

change in output equals the change in marginal cost caused by a change in the price of the ith 

input. When the above equation is negative, the ith input is inferior, meaning that if the output 

level is increased the use of the ith input is decreased; when it is positive, the ith input is said to 

be normal, meaning that an increase in output leads to an increase in the use of the ith input. 

However, an input cannot be inferior over the whole range of output. 

2.6 Multioutput Cost Function 

 The discussion of the multiproduct cost function is similar to that for single-output-case. 

Consider the cost minimization problem for an m-outputs, n-inputs technology: 
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From the Lagrangian 
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the first order conditions yield 
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Solving the (n + 1) equations generates the conditional factor demand functions 

xi
* = xi

*(r1, ….., rn, y1, ….,ym), for i = 1,….., n.  The multioutput cost function C* is then 

determined by substituting the conditional factor demand equations into the primal cost function 

C, resulting in C* = C* (r1, …., rn, y1, …., ym).  C* gives the minimum cost for producing 

specified outputs. 

 The sufficient second order condition for cost minimization requires that the determinants 

of the principal minors of the bordered Hessian be negative. Thus 
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which implies that the production isoquants will be convex. 

 Technical interdependence and economic interdependence are two concepts associated 

with multiproduct cost function. Beattie and Taylor (1985) show that technical interdependence 

can be expressed as 
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Thus, the products yi and yj are said to be technically competing, independent, or complementary 

depending upon whether the sign of 
ji

*2

yy
C
∂∂

∂  is positive, zero, or negative. In other words, the 

products yi and yj are technically competing, independent, or complementary if the marginal cost 

of producing yi is increased, unchanged, or decreased as the product yj is increased. The products 

yi and yj are technically competing if, as a result of changed conditions, one product replaces the 

other in production. The products are complementary if they can be produced together. 

 Economic interdependence, as shown by Beattie and Taylor, refers to the 

interrelationships between two factors, two products, or a product and a factor, and involves 

determining what happens to quantity demanded or quantity supplied as a certain price changes. 

Specifically, factors xi and xl are economically complementary if 0
*

<
∂
∂

l

i

r
x , economically 

competing if 0
*

>
∂
∂

l

i

r
x , and economically independent if 0

*

=
∂
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l

i

r
x .  For product interdependence, 
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with products yj and yk, and pk representing the output price of yk, ⇒<
∂

∂
0

k
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y

 yj and yk are 

economically competing, ⇒>
∂

∂
0

k

j
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 yj and yk are economically complementary, and 

⇒=
∂

∂
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k

j

p
y

 yj and yk are economically independent. 

Regarding factor-product or product-factor cross-price effect, for normal products and 

normal factors, 0<
∂

∂

i

j

r
y

and 0
*

>
∂
∂

j

i

p
x

. That is, an increase in a factor price would result in a 

decrease in the quantity supplied of any product utilizing that factor, and an increase in a product 

price would generate an increase in factor demand.  

A major problem associated with multioutput technology is that, in many instances, the 

number of outputs and inputs is too large to be handled adequately by limited data sets. The 

complexity of the multioutput technology can be reduced if it is possible to group several inputs 

or several outputs into subsets.  Input-output separability is an important aggregation concept 

characteristic to multioutput technology. It implies that output price ratios or marginal rates of 

transformation are independent of factor intensities or factor prices (Hall 1973). Chambers 

(1988) gives the necessary conditions for input-output separability for the profit-maximizing 

producer as 0)( =∂∂ pxx ji  and 0)( =∂∂ ryy ji . The first condition implies that a change in 

output prices, p, does not influence the composition of inputs xi and xj, while the second 

condition implies that a change in input prices, r, does not influence the composition of outputs 

yi and yj. Rejecting input-output separability means that a change in input (output) price alters the 

composition of output (input) quantities. 
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 Non-jointness in inputs is another important concept pertaining to multioutput 

technology. It implies a separate production function for each output. According to Hall (1973) 

and Shumway, Pope, and Nash (1984), the technology is nonjoint in inputs if the cost function 

can be written as 

),( ii
i

i yrCyC ∑= ,              2.32 

where Ci is the individual cost function for the ith output. Non-jointness in inputs implies that 

0
yy

C

ki

2

=
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∂ , or marginal cost of producing the ith output does not depend on the level of the kth 

output, k ≠ i. A necessary condition for non-jointness in inputs is 0=∂∂ ji py . That is, a price 

change in the jth output will not affect the supply of the ith nonjoint output. 

2.7 Multiproduct Cost Concepts 

An important component of the multiproduct cost structure is economies of scope.  If 

economies of scope exist then cost savings may be obtained by simultaneously producing several 

different outputs in a single multiproduct firm, instead of producing each output by its own 

specialized firm.   The condition for economies of scope (Baumol, Panzar, and Willig 1988, 

Akridge and Hertel 1986) is  

∑ >
i

i  C (y)) C (y ,             2.33 

 where yi are output vectors and y is an output vector containing all of the yi vectors. Therefore, 

economies of scope exist if the total cost of the joint output of all products is less than the sum of 

the costs of producing the products separately. Dividing the equation 2.33 by C (y) provides a 

measure of the degree of economies of scope, where economies of scope exists if EOS > 0: 
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 Baumol, Panzar, and Willig (1988) identify two cost sources from which economies of 

scope can arise. The first source is cost complementarity, which implies that the marginal cost of 

producing one output is lowered by an increase in production of the other output: 
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The second source from which economies of scope arise is represented by subadditive fixed 

costs. The multiproduct cost function can be expressed as a sum of fixed costs (F) and variable 

costs (V), C(y) = V(y) + F(T). Fixed costs depend on which product sets are produced. Two 

product sets Ti and Tj share some fixed costs when fixed costs are subadditive: 

 ).()()( jiji TTFTFTF ∪>+

Product-specific economies of scale and multiproduct economies of scale are two other 

components of the multiproduct cost structure. Product-specific economies of scale, Si (y), 

measure the change in costs as the quantity of a single product increases, holding constant the 

other output levels and input prices. An important concept in measuring product-specific 

economies of scale is incremental cost of product i, which is defined by Baumol, Panzar, and 

Willig (1988) as ICi (y) = C (y) – C (yN – i) where C (yN – i) = C (y1,…., yi – 1, 0, yi + 1,…..yN).  The 

average incremental cost of the ith product is defined as 

iii y(y)IC(y)AIC =   where yi is the quantity of the ith output produced. 

The condition for product specific-economies of scale (Baumol, Panzar, and Willig, 

1988, and Kim, 1987) is: 

i

i
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Hence, product-specific economies of scale are the average incremental costs of producing the 

ith output divided by the marginal cost of producing the ith output.  If Si (y) > 1, then product-

specific economies of scale exist in the production of the ith output. If Si (y) < 1, there are 

diseconomies of scale. 

 Multiproduct economies of scale, SM(y), measure the change in costs for proportional 

changes in all outputs and inputs. Following Baumol, Panzar, and Willig (1988) and Kim (1987), 

a measure of scale economies for a multiproduct firm is defined as 

∑∑ ==
i

Cyi
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where ii yC(y)(y)C ∂∂=  is the marginal cost with respect to the ith output,  and 

iCyi lnylnC(y)e ∂∂= , the cost elasticity of the ith output. If SM(y) > 1, there exists economies of 

scale, meaning that a proportional increase in all outputs leads to a less than proportional 

increase in total cost. If SM(y) < 1, then there exists diseconomies of scale. 

 An additional concept that characterizes the multiproduct cost structure is cost 

subadditivity (Baumol, Panzar, and Willig 1988).  A cost function C(y) is subadditive at y if for 

any and all quantities of outputs y1,……, yk, such that , we have yy
n

j
j =∑

=1

)()(
1
∑
=

<
k

j
jyCyC .  In other words, a cost function is subadditive at output y if it is more 

expensive for two or more firms to produce y than it is for a single firm to produce y. 

 The cost function represents an efficient mechanism used to reveal the technical and 

economic interrelationships present in a firm. Because input prices are used as independent 

variables, the cost function overcomes problems associated with unknown input quantities. This 

means that one needs to know just total cost and input prices to find optimal input quantities.   
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CHAPTER 3: DATA AND EMPIRICAL MODEL 

3.1 Data  

Data used for analysis were trip-based information obtained from a set of 8 west-Florida 

grouper fishing vessels for 2005 and 2006.  The data included information on landings per 

species (red grouper, gag grouper, other grouper, and other species), gross trip revenues, trip 

costs (including expenditures on fuel, tackle, supplies, bait, ice, food, clothing, and captain and 

crew costs), and the number of days spent fishing.  As a result, the cost variable used in this 

analysis consisted of the aggregated expenditures on fuel, labor (total trip captain and crew 

costs), and miscellaneous items (tackle, supplies, bait, ice, food, and clothing).  In terms of cost 

shares, labor accounted for almost 50 percent of the total cost on an average trip, while fuel and 

miscellaneous inputs accounted for 15 and 35 percent of the total cost, respectively.   

Three input prices were used as explanatory variables in the analysis: price of fuel, price 

of labor (crew and captain), and an aggregate price for the other miscellaneous inputs (tackle, 

supplies, bait, ice, food, and clothing).  The price of fuel was proxied by using a fuel price index 

reported for the Miami-Fort Lauderdale region, which was the geographic area closest to the 

primary ports used by the grouper fishermen (U.S. Bureau of Labor Statistics).  The labor and 

miscellaneous price variables were constructed using information from the sample vessels.  

Specifically, the price of labor was calculated by dividing the expenditure on labor by the 

number of days spent fishing, thereby yielding a variable that was in terms of labor costs per day.  

Given the incomplete records for some trips, this approach generated a number of observations 

with a zero price for labor.  These zero records were replaced by constructed data using the total 

revenue and the labor share of that revenue.  In short, the mean labor share of total revenue was 

calculated for each vessel and used to estimate the amount of labor expenditures for the trips of 

that vessel that had missing labor data.  These mean expenditures were then divided by the 
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number of days spent fishing for each particular vessel and trip.  In all, 57 zero labor price 

observations were replaced using this method, representing 20 percents of all labor prices.  The 

price of miscellaneous inputs was calculated by dividing the total expenditure on the 

miscellaneous inputs by the numbers of days spent fishing, a process that did not yield zero 

observations due to the completeness of that part of the log book data.  

In addition to input prices, the cost function analysis required output levels, which in the 

present study were represented by the harvests of red grouper, gag grouper, other grouper, and 

other species (all measured in pounds). Given the study’s focus on the grouper complex, trip 

records were dropped from the analysis when the sum of red grouper, gag grouper, and other 

grouper were zero or missing. In total, the resulting data used in the empirical analysis consisted 

of 208 trip observations, statistical summaries of which are presented in Table 3.1.  As indicated 

by the information in Table 3.2, grouper on average accounted for more than 75 percent of all 

fish landed per trip by the vessels in the data.  In addition, shallow-water grouper (red and gag) 

accounted on average for almost 75 percent of all grouper landed per trip.  Red grouper alone on 

average accounted for more than 55 percent of all grouper landed per trip. 

Given that information on vessels sizes was incomplete, a proxy for size was created 

using a (0, 1) intercept dummy variable. This dummy variable was created based on the gross 

total revenues of the vessels, with the assumption that large vessels and small vessels may have a 

significant effect on the model’s parameters. Moreover, to test whether the yearly closed season 

has a significant influence on the model’s parameters, another intercept dummy variable was 

created to account for this possible effect.   
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Table 3.1. Statistical summaries of data variables used in the estimation of the translog cost 
function. 
 
 
Variable 
 

N Mean S.E. Min Max 

 
Red grouper harvested on trip (lb.) 208 1792.19 1865.11 0.01 8154.00 
 
Gag harvested on trip (lb.) 208 541.22 707.89 0.01 3471.00 
 
Other grouper harvested on trip (lb.) 208 881.71 1673.63 0.01 8920.00 
 
Other species harvested on trip (lb.) 208 1025.66 1658.69 0.01 11836.00 
 
Total trip fuel costs ($) 208 958.39 541.25 0.00 3353.08 
 
Total trip crew and captain costs ($) 208 3109.09 3625.43 0.00 15008.32 
 
Total trip misca. costs ($) 208 2248.02 1377.22 13.70 10125.41 
 
Number of days spent fishing 208 7.32 3.73 1.00 15.00 
 
Price of fuel (index) 208 220.03 27.44 170.50 262.20 
 
Price of labor ($ per day) 208 416.74 391.87 4.14 2393.00 
 
Price of misc ($ per day) 
 

208 342.24 254.23 13.38 2531.35 

a Miscellaneous trip costs includes those for tackle, supplies, bait, ice, food, and clothing. 

 
Table 3.2. Cost shares and harvest shares by species for the average trip. 

 
 

 
Mean Share 

  
Total trip fuel costs ($) 958.40 0.1517 

  
Total trip crew & captain costs ($) 3109.09 0.4923 
 
Total trip misc. costs ($) 2248.02 

 
0.3559 

 
Total trip cost ($) 6315.51   
 
Red grouper harvested on trip (lb.) 1792.20  0.4226 
 
Gag harvested on trip (lb.) 541.22  0.1276 
 
Other grouper harvested on trip (lb.) 881.71 0.2079 

   
1025.66 Other species harvested on trip (lb.) 0.2418 

   
4240.79 Total harvest on trip (lb.) 
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3.2 Empirical Model 

As indicated in Chapter Two, the cost function will be used to reveal technical and 

economic interrelationships present in the grouper fishery. Because maximum catch levels are 

set by quota, it is assumed that fishing vessels attempt to minimize the cost of  

harvesting the set quota. The cost function can be written as a function of output levels (Y) and 

input prices (r), or C = f (Y, r).  A specific example of how a dual cost function is estimated from 

a primal cost function might add to the understanding of how this process follows. Assume the 

following cost minimization problem: 

min C = r1X1 + r2X2  subject to Y = X1X2           3.1 

where Xi = input quantities, ri = input prices, Y = output, and the production technology is 

multiplicative (Cobb-Douglas) in form. From the Lagrangian: 

L = r1X1 + r2X2 + λ(Y - X1X2)            3.2 

the first order conditions for optimization yield 

0λX rXL 211 =−=∂∂             3.3 

0λX rXL 122 =−=∂∂             3.4 

.0XX YλL 21 =−=∂∂             3.5 

Solving these three equations yields the optimal values of X1 and X2: 

1/2
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2 rrYX = .              3.7 

The dual minimum cost function C* is then determined by substituting the demand equations X1
* 

and X2
* into the primal cost function C = r1X1 + r2X2 to obtain 

1/2
2

1/2
1

1/2* rr2YC = . 
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This cost function must satisfy the following regularity conditions: continuity, monotonicity in 

input prices and outputs, concavity in input prices, and linear homogeneity in input prices. The 

condition of monotonicity indicates that the cost function is nondecreasing in input prices 

( 0* >∂∂ PC ) and output ( 0* >∂∂ qC ). Concavity in input prices ( 02*2 <∂∂ PC ) implies a 

downward-sloping input demand curve. The condition of homogeneity of degree one in input 

prices requires that C*(tP) = tC*(P), where t>0. For example, if all input prices double, we would 

expect cost C* to double. If the cost function is homogeneous of degree one, then the conditional 

input demand (which is the first derivative of the cost function with respect to input price) is 

homogeneous of degree zero (x(tP)=x(P)). 

 For estimation, the translog functional form was used to specify C* in this study. The 

translog function, introduced by Christensen et al. (1973), has been frequently used to analyze 

input demand and the underlying technological structure of production. A history of studies 

using the translog cost function includes Binswanger (1974), Ray (1982), Grisley and Gitu 

(1985). The translog cost function is used to analyze technological interactions in fisheries 

because it is technically flexible, implying that specific characteristics of technology may be 

tested by examining the estimated model parameters (Ray 1982). Specifically, the flexible 

translog cost function permits estimation of the increase in costs from a proportionate increase in 

all outputs (economies of scale), as well as the cost savings firms realize by producing several 

outputs jointly rather than specializing in the production of one (economies of scope).  Finally, 

the translog cost function is flexible because it is not restricted to be monotonically increasing or 

decreasing as, for example, the Cobb-Douglas and CES specifications are. Thus one is able to 

estimate more realistic relationships between multiple inputs and outputs (Murray and White, 

1983).  
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          Mathematically, the translog cost function can be written for this study as:  
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where C is harvesting cost per trip, Qk (k = 1, 2, 3, 4) stands for the harvested quantity of red 

grouper, gag, other grouper, and other species per trip, Pi (i = 1, 2, 3) stands for the price of 

labor, fuel, and miscellaneous, and a0, ai, bij, ck, dkl, and eik are the parameters to be estimated.  

For this function to be homogeneous of degree one in input prices, the following conditions must 

hold:  and . These theoretical conditions were first tested and then 

imposed on the estimation (as discussed in Chapter 4), all within the context of an OLS estimator 

as implemented in STATA 9.2.  In addition, Young’s theorem shows that the second order cross 

partial derivatives of the translog cost function should be symmetrical, and the symmetry 

restrictions b

0,1,
j

ij
i

i == ∑∑ ba 0
k

ik =∑e

ij = bji, dkl = dlk and eik = eki were imposed on the model. 

 Based on Shephard’s lemma, the input share equations can be derived from the translog 

cost function through partial differentiation with respect to the natural logarithm of each input 

price. For example the share equation for the ith input is: 

k
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ijiiii lnQelnPbaCXPlnPlnC ∑∑ ++==∂∂          3.9 

where Xi‘s are input quantities, and the shares must add up to 1. 

From the estimated coefficients of the regression function, own- and cross-price 

elasticities of input demand can be calculated as: 
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where Si and Sj are the cost shares computed at the means of the variable inputs. 
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 Two important characteristics of technology were tested with respect to the Florida 

grouper fishery – input-output separability and non-jointness in inputs. The aggregation of inputs 

and outputs in a single composite input (called fishing effort) and a single composite output is 

equivalent to separability between inputs and outputs. This implies that there is no specific 

interaction between the harvest of any one species and any one input so that composite input and 

output bundles can be specified to represent the harvest function. Input-output separability 

implies that the marginal rates of substitution between input pairs are independent of the 

composition of catch, while the marginal rates of transformation between species pairs are 

independent of the composition of inputs (Squires 1987b). For fisheries, this implies that only the 

aggregate levels of catch and effort require regulation, and regulation of species (input) mix does 

not adversely affect the optimal factor (product) combinations (Squires and Kirkley 1991). The 

test for input-output separability is that there is no interaction between inputs and outputs, and, 

with the translog cost function, this implies that eik = 0, for every i ≠ k. 

 Another potential technological relationship, jointness-in-inputs, implies that all inputs 

are required to produce all outputs, while non-jointness in inputs implies that the output of any 

single product depends only on the inputs used in the production of that product and not on the 

inputs or outputs used in any other production process. A finding of non-jointness in inputs is 

equivalent to having separate production functions for each output or set of outputs; each 

production process can be separately regulated without affecting production of the other 

processes because there are no technological or cost tradeoffs between the output of one process 

and that of another (Squires and Kirkley, 1991). Non-jointness in inputs also implies that 
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∂ (Chambers, 1988), or that the marginal cost of producing the ith output does not 
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depend on the level of the  jth output, i ≠ j. For our model, the econometric restriction needed to 

test for non-jointness in inputs is dkl + ckcl= 0, for every k ≠ l. 

 The cost structure of multiproduct firm can provide useful information with respect to 

regulation that is imposed to promote economic efficiency. The importance of the multiproduct 

cost concepts resides in the fact that they can be used to identify the output bundle that generates 

the greatest return to the quota asset (Weninger, 1998).  An important component of the 

multiproduct cost technology is economies of scope. This concept refers to the possibility that 

cost savings may be obtained by simultaneously producing several different outputs by a single 

multiproduct firm, instead of producing each output by its own specialized firm. For example, in 

the case of two outputs, y1 and y2, C (y1, y2) < C (y1) + C (y2), which implies that the total cost of 

the joint output of the two products is less than the sum of the costs of producing the two 

products separately.  

Lipton and Strand (1992) indicate that economies of scope will arise if there is jointness 

in inputs, 0
yy

C

ji

2

<
∂∂

∂ , or fixed costs are subadditive ( )S(F)T(F
i

i >∑ , where Ti’s are a partition 

of S, and F(Ti) represents fixed costs that depends on which product is produced).  

Cost complementarity, expressed as 0
yy

C

ji

2

<
∂∂

∂ , provides a direct way of testing for 

economies of scope once a cost function for the firm has been estimated. It can be translated as 

an increase in the production of one output causes a decline in the marginal cost of the other 

output. With the translog cost function, cost complementarity can be determined by examining 

the cross derivatives of the cost elasticities. If 0)lnylnC(y)(
y i

j

<∂∂
∂
∂ , an increase in yj reduces 

the cost elasticity for yi (i ≠ j), indicating cost complementarity among outputs (Weninger, 1998). 
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An approximate test for economies of scope is ckcl + dkl < 0 (Murray and White, 1983).  If 

economies of scope exist in a multispecies fishery, then regulating one of the species might 

increase harvesting costs of the other species. For example, in the case of jointness-in-inputs, 

many species are harvested by the same gear at the same time, so that it is costly to exclude 

particular species (Lipton and Strand, 1992). 

 Product-specific economies of scale and multiproduct economies of scale are the other 

two components of the multiproduct cost structure. Product-specific economies of scale, Si (y), 

measure the change in costs as the quantity of a single product increases, holding constant the 

other output levels and input prices.  

 Ray (1982) indicates that the partial scale economy (or product-specific scale economies) 

may be measured as
i

i lnylnC(y)
1(y)S
∂∂

= . If Si(y) > 1, a proportional increase in yi leads to a 

less than proportional increase in C, indicating product-specific economies of scale. On the other 

hand, Ollinger et al. (2005) measure scale economies by estimating the elasticity of cost with 

respect to changes in an output, 

iCyi lnylnC(y)e ∂∂= .  If eCyi < 1, there are economies of scale.  Product-specific economies of 

scale can indicate whether an expansion in the scale of production of individual products is 

feasible and whether specialized firms producing only a single product are possible (Squires, 

1987 II). 

 Multiproduct economies of scale, SM(y), measure the change in costs for proportional 

changes in all outputs and inputs. Following Kim (1987) a measure of scale economies for 

multiproduct firm is defined as 

 
∑∑ ==

i
Cyi

i
iiM e1(y) CyC(y) (y) S ,          3.11 

 45 
 



where ii yC(y)(y)C ∂∂=  is the marginal cost with respect to the ith output,  

and iCyi lnylnC(y)e ∂∂= , the cost elasticity of the ith output. If SM(y) > 1, there exists economies 

of scale, meaning that a proportional increase in all outputs leads to a less than proportional 

increase in total cost. A measure of multiproduct economies of scale, as found in Cowing and 

Holtman (1983) and Akridge and Hertel (1986), is calculated using 

i
i

M lnylnC(y)1(y)S ∂∂−= ∑ .  Multiproduct economies of scale exist if SM(y) > 0. 
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CHAPTER 4: RESULTS 
 

 
The translog cost function was first estimated without imposing the theoretical conditions 

of homogeneity of degree one in input prices and the estimated results are presented in Table 4.1. 

Overall, this unconstrained model is highly statistically significant (model F(37, 170) = 83.25 for a 

(Pr.>F)<0.0001), and explains a large part of the variation in the data (R-squared = 0.9477).  The 

restrictions of homogeneity of degree one in input prices were tested separately, and five out of 

seven restrictions came out non-binding (Table 4.2), indicating that the data conformed well to 

the theoretical conditions of cost function. However, the joint hypothesis test for linear 

homogeneity in input prices ( 0,1,
j

ij
i

i == ∑∑ ba 0
k

ik =∑e ) was rejected at 5 percent level of 

significance, and thus all the theoretical constraints were imposed on the estimation. Imposing 

the restrictions on the translog cost function parameters ensured that the cost minimizing bundle 

would not change if all prices were multiplied by the same positive number, a condition that the 

data used in the estimation did not completely satisfy. 

 The results of the translog cost function, estimated with symmetry and homogeneity 

conditions imposed, are reported in Table 4.3. The test of overall model significance (Table 4.4) 

strongly rejected the null hypothesis that all model coefficients were zero (model F value = 62.86 

for a (Pr.>F) = 0.000), indicating that the estimated model was significant in describing cost 

relationships in the grouper fishery. In addition, a large proportion of the variation in the 

dependent variable (log (total cost)) was explained by the estimated model (R-squared = 0.9361). 

Of the 38 estimated model parameters, 17 were statistically significant at the 5 percent level of 

significance, with 4 additional coefficients significant at 10 percent level of significance. 

Specifically, highly significant variables were input prices (price of fuel, labor and 

miscellaneous), other species, interactions between input prices, and most of the 
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Table 4.1. Estimated coefficients and associated statistics of the unrestricted 
                  translog cost function.   
 
 
 
Variablea

 

 
Parameter 

Estimate 
 

 
Standard 

           Error 
 

 
       T Value 
 

            Pr>|t| 
 

Intercept -7.65355 39.58096 -0.19 0.847 
Closed season (Dummy) -0.17193 0.15186 -1.13 0.259 
Total revenue (Dummy) 0.04647 0.06191 0.75 0.454 
Red grouper -0.83061 0.38897 -2.14 0.034 
Gag grouper 0.31766 0.37827 0.84 0.402 
Other grouper 0.01427 0.25387 0.06 0.955 
Other species 0.03200 0.43978 0.07 0.942 
Fuel price   1.01765 14.1265 0.07 0.943 
Labor price 0.74854 0.92792 0.81 0.421 
Misc. price 3.72490 1.66402 2.24 0.026 
(Red grouper)^2 0.03689 0.00562 6.56 0.000 
Red grouper*gag -0.00032 0.00311 -0.10 0.918 
Red grouper*Other grouper -0.00902 0.00235 -3.83 0.000 
Red grouper*Other species -0.02368 0.00479 -4.94 0.000 
(Gag grouper)^2 0.01001 0.00611 1.64 0.103 
Gag grouper*Other grouper -0.00085 0.00268 -0.32 0.752 
Gag grouper*Other species -0.00055 0.00304 -0.18 0.858 
(Other grouper)^2 0.02287 0.00392 5.83 0.000 
Other grouper*Other species -0.00845 0.00260 -3.25 0.001 
(Other species)^2 0.01705 0.00515 3.31 0.001 
(Fuel price)^2 0.00239 2.55691 0.00 0.999 
Fuel price*Labor Price -0.04647 0.17059 -0.27 0.786 
Fuel price*Misc. price -0.40928 0.31022 -1.32 0.189 
(Misc. Price)^2 -0.09657 0.04942 -1.95 0.052 
Misc. Price*Labor price -0.11570 0.02210 -5.23 0.000 
(Labor price)^2 0.06464 0.02461 2.63 0.009 
Red grouper*Fuel price 0.22792 0.06989 3.26 0.001 
Red grouper*Misc. price -0.03653 0.01636 -2.23 0.027 
Red grouper*Labor price 0.00217 0.00929 0.23 0.815 
Gag grouper*Fuel price -0.06870 0.06884 -1.00 0.320 
Gag grouper*Misc. price 0.01078 0.01261 0.86 0.394 
Gag grouper*Labor price 0.00020 0.00862 0.02 0.981 
Other grouper*Fuel price 0.02761 0.04612 0.60 0.550 
Other grouper*Misc. price -0.00188 0.00959 -0.20 0.845 
Other grouper*Labor price -0.00668 0.00489 -1.37 0.174 
Other species*Fuel price 0.02594 0.07446 0.35 0.728 
Other species*Misc. Price 0.00294 0.01253 0.23 0.815 
Other species*Labor price 0.00422 0.01010 0.42 0.677 
 
Model F Value = 83.25 
           (Pr>F) = 0.0000 

      R-Square=0.9477 
 

a All model variables were in natural logs except the dummy variables for closed season and vessel total revenue. 
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Table 4.2. Results of the hypothesis tests of linear homogeneity. 
 

 Degrees of freedom   Reject H0  Hypothesis 
 

   Numerator  Denominator F P value     (Yes/No)  
 1

i
i =∑a  1 170 0.09 0.761 No 

 0
j

jfuel, =∑b  1 170 0.03 0.863 No 

 
  0

j
jlabor, =∑b 1 170 0.31 0.578 No 

 0
j

jmisc., =∑b  1 170 3.96 0.048 Yes 
 

0
k

k fuel, =∑e  1 170 4.07 0.045 Yes 
 0

k
k misc., =∑e  1 170 2.24 0.136 No 

 0
k

k labor, =∑e  1 170 0.00 0.995 No 

   
7 

 
170 5.36 

 

interaction terms associated with red grouper and other grouper.   The negative sign associated 

with the output interaction coefficients suggests that a cost reduction might be possible if 

different species are harvested at the same time.  In the translog cost function, however, the 

many interaction terms make the individual estimated coefficients difficult to interpret directly.  

As an alternative, these coefficients can be used to calculate own- and cross-price elasticities of 

input demand, cost elasticities, and economies of scope and scale.  

4.1 Hypothesis Tests 

 The results of the hypothesis tests for nonjointness in inputs and input-output separability 

are reported in Table 4.4. Nonjointness in inputs and input-output separability for all species as a 

group were tested and also rejected at 5 percent level of significance. The econometric restriction 

needed to test for nonjointness in inputs for the translog cost model is dkl + ckcl= 0, for every k 

≠l. The rejection of nonjointness in inputs suggests that there is interdependence among species 

Linear homogeneity in prices 0.000 
 

Yes 
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Table 4.3. Estimated coefficients and associated statistics of the restricted 
                  translog cost function.   
 
 
 
Variablea

 

 
Parameter 

Estimate 
 

 
Standard 

           Error 
 

 
       T Value 
 

            Pr>|t| 
 

Intercept -0.19253 0.19164 -1.00 0.316 
Closed season (Dummy) 0.03092 0.14733 0.21 0.834 
Total revenue (Dummy) 0.01671 0.06539 0.26 0.799 
Red grouper -0.27813 0.36541 -0.76 0.448 
Gag grouper 0.17174 0.37157 0.46 0.645 
Other grouper -0.34885 0.23591 -1.48 0.141 
Other species 0.95954 0.26693 3.59 0.000 
Fuel price   0.37944 0.05153 7.36 0.000 
Labor price 0.26758 0.03368 7.94 0.000 
Misc. price 0.35297 0.04205 8.39 0.000 
(Red grouper)^2 0.03778 0.00603 6.26 0.000 
Red grouper*gag -0.00201 0.00322 -0.62 0.534 
Red grouper*Other grouper -0.00856 0.00249 -3.44 0.001 
Red grouper*Other species -0.01873 0.00489 -3.83 0.000 
(Gag grouper)^2 0.00879 0.00649 1.35 0.177 
Gag grouper*Other grouper -0.00069 0.00275 -0.25 0.804 
Gag grouper*Other species -0.00269 0.00307 -0.87 0.383 
(Other grouper)^2 0.02327 0.00415 5.60 0.000 
Other grouper*Other species -0.01145 0.00263 -4.35 0.000 
(Other species)^2 0.01782 0.00476 3.74 0.000 
(Fuel price)^2 -0.29365 0.06252 -4.70 0.000 
Fuel price*Labor Price 0.06315 0.02877 2.19 0.030 
Fuel price*Misc. price 0.23049 0.05500 4.19 0.000 
(Misc. Price)^2 -0.09740 0.05000 -1.95 0.053 
Misc. Price*Labor price -0.13309 0.02156 -6.17 0.000 
(Labor price)^2 0.06993 0.02412 2.90 0.004 
Red grouper*Fuel price 0.11354 0.06516 1.74 0.083 
Red grouper*Misc. price -0.03319 0.01381 -2.40 0.017 
Red grouper*Labor price 0.00519 0.00943 0.55 0.582 
Gag grouper*Fuel price -0.04864 0.06786 -0.72 0.474 
Gag grouper*Misc. price 0.02246 0.01335 1.68 0.094 
Gag grouper*Labor price -0.00189 0.00899 -0.21 0.834 
Other grouper*Fuel price 0.08365 0.04352 1.92 0.056 
Other grouper*Misc. price 0.00804 0.00963 0.83 0.405 
Other grouper*Labor price -0.00218 0.00490 -0.45 0.657 
Other species*Fuel price -0.14857 0.04510 -3.29 0.001 
Other species*Misc. Price 0.00269 0.01071 0.25 0.802 
Other species*Labor price -0.00112 0.00635 -0.18 0.860 
 
Model F Value = 62.86 
           (Pr>F) = 0.0000 

      R-Square=0.9361 
 

a All model variables were in natural logs except the dummy variables for closed season and vessel total revenue. 
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landed by vessels, implying that the quantity of landings of a particular species is dependent, at 

least in part, on the inputs used in harvesting other species. Therefore, individual regulation of 

species will affect the harvest of the other species that are typically landed by these vessels. 

Rejecting nonjointness in inputs implies that Florida grouper fishery is characterized by jointness 

in inputs. The presence of jointness-in-inputs in the Florida grouper fishery may have arisen 

because many species are harvested by the same gear at the same time, implying that imposed 

regulations will probably alter the multispecies composition of harvest.  

The test for input-output separability (i.e., that there is no interaction between inputs and 

outputs) within the translog cost function framework examines whether eik = 0, for every i ≠ k. 

The rejection of input-output separability in this study indicates that there are interactions 

between inputs and outputs, and that input and output compositions are not independently 

determined. Moreover, rejecting input-output separability implies that input regulation might, for 

example, alter harvest composition. For the grouper fishery, the rejection of input-output 

separability and nonjointness in inputs together suggests that technical interdependence among 

species and joint production will make it difficult to regulate the fishery by focusing on 

individual species, and that attempts to do so will likely have significant spillover effects on 

other species in the fishery.           

Table 4.4. Results of hypothesis tests. 

 
 

Degrees of freedom   Reject H0 
Hypothesis 
 

   Numerator  Denominator F P value     (Yes/No) 

 
All coefficients zero 

 
30 

 
177 62.86 0.000 

 
Yes 

 
Nonjointness in inputs 

 
6 

 
177 6.04 0.000 

 
Yes 

 
Input - output separability 

 

 
9 

 
177 

 
2.76 

 
0.005 

 
Yes 
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4.2 Elasticities of Input Demand 

Although the parameter estimates from a translog function may be difficult to interpret 

because of the number of interactions, a summary description of the multiproduct technology can 

be calculated from the estimated parameters and cost shares computed at mean values of inputs 

(see equation 3.11). Table 4.5 reports the calculated own- and cross-price elasticities of input 

demand. The theory of cost and production requires that the own-price elasticities of input 

demand be negative. As expected, own-price input demand elasticities (main diagonal in Table 

4.5) were all negative, indicating that an increase in an input price leads to a decrease in the 

demand for that input. Of the three inputs, the own-price elasticity of fuel was highly elastic, or 

price responsive, at       -2.7832. It indicates that for one percent increase in the price of fuel, 

quantity demanded will decrease by 2.78 percent. The least price responsive of the three inputs 

was labor, whose own-price elasticity was calculated to be -0.3656,  suggesting that if wages go 

up by 10 percent, employment falls by less than 4 percent.  Labor quality might be a reason why 

labor is quite inelastic, since, in general, own-price elasticity of labor demand decreases with the 

skill level. Waters (1996) portrayed a Gulf reef fish fisherman as having an average age of 47 

years, more than 12 years of formal education, and an average of 19 years fishing experience. 

Another reason why labor might be inelastic is that labor is a lumpy input. Given that a vessel’s 

crew typically consists of only 2-4 individuals, it is difficult to make adjustments in labor in 

response to changes in wages if there is to be any fishing at all. The cross-price elasticities (off-

diagonal cells in Table 4.5) were all positive, indicating substitution possibilities between input 

pairs. Fuel is a substitute for both labor and miscellaneous. However, the cross-price elasticity of 

fuel with respect to miscellaneous was found to be more elastic (1.87), indicating that one 

percent increase in the price of miscellaneous leads to 1.87 percent increase in the quantity 

demanded of fuel. On the other hand, the elasticities of labor with respect to fuel and 
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miscellaneous were calculated to be quite inelastic, indicating that labor is an imperfect 

substitute for both fuel and miscellaneous. 

 

        Table 4.5. Price elasticities of input demand. 

 
 

Fuel Labor Miscellaneous 
 
Fuel -2.7832 0.9084 1.8748 
 
Labor 0.2800 -0.3656 0.0856 

 
Miscellaneous 

 
0.7992 0.1183 -0.9176 

 

4.3 Multiproduct Cost Structure 

The estimated parameters of the translog cost function can be used to determine how 

costs might increase given a proportional increase in outputs (economies of scale), as well as the 

cost savings firms might realize by producing several outputs jointly rather than specializing in 

the production of one (economies of scope). In the translog model, the necessary parameter 

condition for there to be economies of scope is ckcl + dkl < 0. This nonlinear restriction cannot be 

directly tested in this linear model.  Economies of scope can, however, be calculated from the 

estimated model parameters. As can be seen from Table 4.6, substantial economies of scope 

were found between red grouper and other species, and between other grouper and other species. 

This suggests that red grouper and other species, as well as other grouper and other species, 

enjoy cost complementarities or jointness in their production, implying that an increase in the 

harvest of one leads to a decline in the marginal cost of harvesting the other. Evidence of 

economies of scope was also found between red grouper and gag, and between gag and other 

grouper. Surprisingly, there were no economies of scope, or cost complementarity, between red 
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grouper and other grouper or between gag and other species. Red grouper is a pivotal species in 

the fishery because vessels enjoy cost savings by harvesting red grouper with most of the other 

species. Therefore, regulatory measures targeting red grouper may distort the complementarities 

of jointly harvested species, leading to increased harvesting costs.  

 

   Table 4.6. Economies of scope: Parameter estimates. 

 ckcl + dkl 
 
Red Grouper and Gag -0.04977 
 
Red Grouper and Other Grouper 0.08846 
 
Red Grouper and Other Species -0.28560 
 
Gag an Other Grouper -0.06059 
 
Gag an Other Species 0.16210 
 
Other Grouper and Other Species -0.34617 

 

Product specific economies of scale were measured by calculating the cost elasticity with 

respect to an output: iCyi lnylnC(y)e ∂∂= . Taking the derivative of the estimated translog cost 

function with respect to the log of each output, cost elasticities were calculated by holding 

constant all variables at mean levels (Table 4.7). In all cases we measured an inelastic response 

of cost to changes in harvest levels, indicating product specific economies of scale for each 

species. In particular, cost elasticities for gag and other grouper were very small, meaning that 

vessels can lower unit costs by expanding the scale of production for these species. For example, 

a 1 percent increase in gag (other grouper) harvest results in 0.031 (0.094) percent increase in 

total cost. Even though product specific economies of scale are present in the grouper fishery, the 

development of firms specialized in harvesting a single species is unlikely because of the 

previously mentioned technical advantages vessels have in jointly harvesting several species. 
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     Table 4.7. Cost elasticities. 

 
Red Grouper 0.23675 
 
Gag 0.03181 
 
Other Grouper 0.09429 
 
Other Species 
 

0.12360 

 

Multiproduct economies of scale, calculated as the reciprocal of the sum of cost 

elasticities ( ∑
i

Cyie1 ), measures the change in cost for proportional changes in all outputs. The 

calculated value (2.055) indicates that increasing multiproduct economies of scale are present in 

grouper fishery, meaning that vessels enjoy cost advantages from harvesting more fish in fixed 

proportions, assuming that input prices and resource abundance are constant. The presence of 

increasing economies of scale is not surprising given that, in the presence of output regulations, 

fishing vessels should be trying to minimize their production costs by operating in the area of 

increasing returns to scale. 

 

 

 

 

 

 

 

 

 55 
 



CHAPTER 5: CONCLUSIONS 
 

The main goal of this study was to analyze the technical and economic interrelationships 

among Florida grouper longline vessels by estimating a multiproduct cost function. The 

hypothesis of nonjointness-in-inputs was rejected, indicating that grouper fishery is characterized 

by a joint production process. The existence of jointness-in-inputs suggests that, to some degree, 

all inputs are required to produce all outputs. Thus, from a fishery management perspective, 

individual regulation of species will affect the harvest of the other species. Input-output 

separability was also tested and rejected, indicating that there are interactions between inputs and 

outputs, and that input and output compositions are not independently determined. For the 

grouper fishery, jointness-in-inputs and non-separability between inputs and outputs suggests 

that resource management should be based on multiproduct production theory, and that explicit 

recognition of the economic interactions among species should be incorporated in any regulatory 

process.  

A description of the multiproduct technology is provided by the own-price and cross-

price elasticities of the input demand functions. The cross-price elasticities are of direct use in 

policy formulation, since they reveal relationships among factors that make up fishing effort. 

They show substitution between input pairs in the grouper fishery, implying that imposed 

regulation on the single input will be compensated for by increases in other inputs. Under this 

situation, restrictions placed on overall fishing effort might be a better alternative to regulating 

individual inputs. However, the multidimensionality of fishing effort makes it difficult to 

manage, and a reduction in fishing effort is generally possible only if all dimensions of fishing 

effort are simultaneously restricted (Pearse and Wilen, 1979). 
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Besides testing hypothesis of nonjointness-in-inputs and input-output separability and 

deriving input demand elasticities, the multiproduct cost structure (economies of scope and 

scale) of the grouper fishery was also examined for technical and economic interrelationships. 

The results showed important economies of scope, especially between red grouper and most of 

the other species in the grouper fishery, product specific economies of scale and multiproduct 

economies of scale. The strong cost incentives to harvesting red grouper because of economies 

of scope and product specific economies of scale make red grouper stock vulnerable to 

overfishing. However, output regulation on red grouper may distort the economies of scope, 

leading to cost inefficiency in the fishery and generating spillover effects on jointly harvested 

species. 

Management strategies implemented in grouper fishery have generally not taken into 

account multispecies interactions and ecosystem effects. In a multispecies context, interactions 

between species need to be explicitly considered when deciding how to best manage harvesting 

strategies, and these interactions may be dependent on food-web interactions, changes in trophic 

structure, life history strategies, and bycatch, all of which can change ecosystem productivity 

(Committee on Ecosystem Effects of Fishing, 2006).  

The technical and economic interrelationships empirically measured in this study indicate that 

ecosystem-based fishery management approaches should be employed in the grouper fishery to 

account for the multispecies interactions and the fishery’s potential overall impact on the broader 

ecosystem. A management system with secure access privileges could be an alternative to the 

insecure access privileges currently used in grouper fishery. The key feature of this alternative 

system would be the creation and allocation of harvest access privileges that eliminates race-to-

fish incentives. This market-based approach would, in theory, simultaneously decentralize 

management and encourage a change in fishing behavior from catch maximizing to value 
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maximizing. In addition fishing is temporally slowed, redundant inputs are eliminated, and new 

innovations in the market are potentially stimulated, thereby leading to an increase in the value 

of harvest (Committee on Ecosystem Effects of Fishing, 2006). 

Of the management instruments that convey secure access privileges, individual fishing 

quotas (IFQ), expressed as a percentage of total allowable catch (TAC), have been proposed for 

the grouper fishery. One of the main benefits expected from the implementation of an IFQ 

program is the mitigation of overcapacity problems. Marginal and less efficient operations are 

expected to exit the fishery as IFQ shares are traded. Moreover, IFQ programs are expected to 

decrease fishermen operating cost through increased efficiency (optimal trip length and input 

selection) and to impact overall market conditions by eliminating seasonal product gluts and 

ensuring a steadier supply of fresh fish. IFQs are also expected to foster resource conservation by 

providing long term incentives to program participants. As this study showed, however, there are 

technical economic linkages not only among grouper species, but also between grouper and other 

reef fish species. What is not clear is how an IFQ program might be devised to simultaneously 

address all of the species in the harvesting complex. Additional research is needed to understand 

how IFQs can be used to address more inclusive ecosystem goals associated with fishery 

management and how they affect incentives in a multispecies setting. In addition, integrating 

ecological, social, and economic values into an ecosystem-based fishery management requires an 

enhanced understanding of both fishermen and the behavior of management institutions. 
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