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ABSTRACT 

The Critical Access Hospital (CAH) Program was created in response to the dramatic 

deterioration of financial conditions and the potential threat of closure of small rural hospitals 

under the Prospective Payment System (PPS).  CAHs receive cost-based reimbursement for 

services provided to Medicare patients in exchange for accepting a number of restrictions.  In the 

first essay, I examine the impact of conversion to CAH status on hospital efficiency.  The 

estimated results show that CAHs are less cost and allocatively efficient than non-converting, 

PPS rural hospitals, without being less technically efficient.  Relative to their pre-conversion 

selves, CAHs appear to be slightly less allocatively efficient, while they are slightly more 

technically efficient, and no less cost efficient.  The second essay examines cost efficiency 

differences between CAHs and non-converting, PPS rural hospitals using quality controls and 

alternative methods of efficiency analysis.  The results show that CAHs are, on average, less cost 

efficient than non-converting, PPS rural hospitals.  The third essay estimates the marginal effects 

of environmental variables on the technical efficiency of CAHs.  The results suggest that 

enhanced Medicare reimbursement may not have had a detrimental effect on the technical 

efficiency of CAHs.  Overall, the results of this dissertation have important policy implications.  

First, they show that cost-based reimbursed CAHs are, on average, between 4.5 and 6.7 

percentage points less cost efficient than non-converting, PPS rural hospitals.  This can be 

translated in a cost per CAH between $751,000 and $1.12 million (in 2005 dollars) higher than 

the cost that would have been under the PPS.  Second, the results show that the technical 

efficiency of CAHs improved relative to the pre-conversion period and that CAHs are as 

technically efficient as non-converting, PPS rural hospitals.  Third, improved technical efficiency 

of CAHs in conjunction with their decreased cost efficiency suggest that reductions in CAHs’ 
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cost efficiency may not be a function of direct overconsumption of physical inputs.  Rather, 

decreased cost efficiency of CAHs may be driven by allocative inefficiency generated by the 

inability of these hospitals to substitute to lower input cost combinations in the production 

process. 
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CHAPTER 1  

INTRODUCTION 

1.1 Introduction and Background Information 

Rural hospitals in the U.S. have plaid a critical role in the delivery of health care services in rural 

communities.  Their major goal has been to increase health care access for individuals living in 

rural areas [1].  However, due to their relatively small size, rural hospitals have been vulnerable 

to policy changes.  Medicare has been the most important source of revenue for rural hospitals 

because rural communities have a disproportionately larger proportion of the elderly than their 

urban hospital counterparts [2].  Relying heavily on Medicare, small rural hospitals have been 

largely affected by the Medicare reimbursement policies.  The increased dependence on 

Medicare has been even more significant starting with the Social Security Amendments of 1983 

when Medicare replaced the retrospective cost-based reimbursement with the Prospective 

Payment System (PPS).  While under the cost-based reimbursement hospitals are reimbursed 

total allowable costs for providing services to Medicare beneficiaries, the PPS system pays a 

fixed fee per case depending on the diagnosis-related group (DRG).  The PPS system has been 

designed to promote efficiency in hospital operations by encouraging the use of outpatient 

services, instead of inpatient care, and reduced length of stay [3].   

Rural hospitals (especially small ones) were particularly vulnerable to the financial 

pressures resulting from the PPS reimbursement [3].  Under the PPS, Medicare paid rural 

hospitals at a lower rate than their urban counterparts for the same services because of the lower 

labor costs in rural areas.  This, combined with a general decline in non-Medicare admissions 

and occupancy rates and with increased dependence of rural hospitals on Medicare 

reimbursement, undermined the general financial viability of rural hospitals in the 1980s and 
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1990s.  One consequence of this financial stress was an increase in the closure of rural hospitals.  

In response to the financial problems of small rural hospitals, Congress created special Medicare 

payment policies.   

One of the most important changes in rural health care policy that has impacted rural 

hospitals dramatically has been the creation of Critical Access Hospital (CAH) program which 

was introduced by the Balanced Budget Act (BBA) of 1997.  A hospital that converts to CAH 

status has the advantage of receiving Medicare cost-based reimbursement for inpatient and 

outpatient services, post-acute (swing-bed) care, and laboratory services delivered to Medicare 

beneficiaries.  Under the BBA of 1997, however, a rural hospital had to meet several 

requirements before being considered eligible for CAH designation.  Most importantly, to 

qualify for CAH status a hospital needed to be classified as non-metropolitan, be under 

government or non-profit ownership, be located at least 15 miles by secondary road or 35 miles 

by primary road from the nearest short-term general hospital, or be declared by the state as a 

“necessary provider”.  Under the “necessary provider” provision, states could waive the distance 

requirement for hospitals that were considered important for the delivery of health care services 

and qualify them for CAH conversion.  Many hospitals failed to meet the 35-mile criterion for 

being considered isolated hospitals and entered the program based on state criteria that declared 

them necessary providers.  Hospitals that converted to CAH status were also required to use no 

more than 15 acute care beds at any one time plus an additional of 10 beds to be used only as 

swing beds for long-term care patients, limit the length of stay to 96 hours or less for acute care 

patients, and provide 24-hour emergency care services. 

The Balanced Budget Refinement Act (BBRA) of 1999 subsequently expanded CAH 

eligibility by allowing for-profit hospitals to participate, and by including facilities that were 
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located in counties contained in Metropolitan Statistical Areas but identified as rural by their 

own state regulations.  The BBRA also replaced the 96-hour length of stay limit with the less 

restrictive requirement that the annual average length of stay could not be greater than four days.   

The Medicare Prescription Drug, Improvement, and Modernization Act of 2003 (MMA) 

eliminated states’ ability to declare a hospital as a “necessary provider” starting in January 2006 

and states could no longer waive the distance requirement.  As a result, few additional hospitals 

met the criteria and entered the CAH program after January 2006.  In addition, MMA increased 

the reimbursement for CAHs to 101 percent of reasonable costs for inpatient, outpatient and 

post-acute care, the number of acute care beds increased from 15 to 25, and allowed CAHs to 

have PPS reimbursed skilled nursing facilities, psychiatric units, rehabilitation units, and home 

health agencies.  

Since 1999, the CAH program has grown rapidly from 41 hospitals in 1999 to 1,055 

hospitals in 2005 and to 1,327 CAHs in 2011.  A large number of hospitals converted to CAH 

status between 2001 and 2005, with the largest number of hospitals joining to CAH program in 

2005 because of the intention of the federal government to stop allowing states to waive the 

distance requirement with “necessary provider” criteria [4].  Medicare Payment Advisory 

Commission (MedPAC) [5] estimated that, due to flexibility in the “necessary provider” criteria, 

only 17 percent of CAHs are more than 35 road miles from another provider, 67 percent are 15 

to 35 miles, and 16 percent of CAHs are less than 15 miles from another hospital. 

The CAH program has been created to preserve access to primary and emergency care 

services in isolated rural areas by improving the financial conditions of small rural hospitals and 

preventing closure.  Rural hospitals that converted to CAH status have generally experienced 

significant improvements in their finances due to Medicare cost-based reimbursement.  MedPAC 
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[5] estimated hospitals that converted to CAH status have dramatically increased their Medicare 

payments and improved their all-payer profit margins from -1.2 percent in 1998 to 2.2 percent in 

2003.  For similar rural hospitals that did not convert to CAH status and remained on PPS all-

payer profit margins declined from 2.2 percent in 1998 to -0.2 percent in 2003.  Additionally, 

Medicare payments to CAHs rose, on average, by 9.5 percent per year during the period 1998-

2003, compared with a 3.3 percent rise for similar rural hospitals that did not convert to CAH 

status.   

Medicare cost-based payments for CAH hospitals were over $3 million per hospital in 

2003, roughly $850,000 more per hospital than if CAHs would have received PPS payment rates.  

MedPAC [5] estimated that the $850,000 represented increased Medicare payment rates rather 

than volume increases. The increase in the volume of outpatient services and post-acute (swing-

bed) days at CAHs was roughly offset by the decrease in inpatient volume.  MedPAC [5] also 

predicted that, in 2006, Medicare payments per CAH were roughly $1 million higher under cost-

based reimbursement than they would have been under PPS rates.  Recent data from MedPAC 

indicate that payments for CAHs are roughly $2 billion higher than they would have been under 

PPS.  While part of this increase in Medicare spending can be explained by improvements in 

quality and access since quality and access improvements have been the goals of the CAH 

program [6], part of it might represent inefficiency.  

The PPS system has been designed to promote efficiency in hospital operations by 

motivating hospitals to keep their costs below the PPS reimbursement rates [7].   Under the PPS 

system, hospitals are allowed to keep the difference between the PPS rate and actual cost of 

providing services.  Conversely, hospitals can lose money if their costs exceed the PPS rates. 

Cost-based reimbursement, on the other hand, has been historically associated with inefficiency 



5 
 

in hospital operations.  The rationale is that under cost-based reimbursement a hospital has an 

incentive to oversupply services (and increase costs) in order to receive higher revenues because 

Medicare pays on a cost basis [8-9].  Since CAH hospitals receive Medicare cost-based 

reimbursement, there have been concerns that they will have a disincentive to control costs and 

operate efficiently.  In the 2005 Report to Congress, the Medicare Payment Advisory 

Commission states: “Although the CAH program has helped preserve access to emergency and 

inpatient care in isolated areas, it may not have accomplished this goal in an efficient manner.” 

1.2 Framing the Policy Question 

One of the most important challenges regarding rural health care policy changes is to determine 

whether the benefits outweigh the costs.  The CAH program has been designed to protect small, 

financially vulnerable rural hospitals that might be essential for access to health care services by 

granting them Medicare cost-based reimbursement, rather than prospective payments [10].  The 

benefits of the CAH program have been mostly associated with improvements in access to health 

care services in isolated rural areas.  Previous research has shown that an increase in travel time 

both discourages the demand for health care and reduces the probability of seeking health care 

[11].  Because CAHs decrease the travel time by maintaining hospital services in isolated areas, 

it is expected that the demand for health care services (and, consequently, health status) will 

increase in rural areas [12].  In addition, retaining a limited hospital facility in a rural community 

not only reduces welfare losses relative to the hospital closure [13], but also has a positive 

economic impact on the community as a whole [14]. 

The cost of the CAH program is represented by increased Medicare payments for CAH 

hospitals which are borne in principal by taxpayers.  As previously mentioned, MedPAC [5] 

estimated that in 2003 payments per CAH were roughly $850,000 higher under cost-based 
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reimbursement than they would have been under the PPS system.  The total costs of the CAH 

program under Medicare cost-based reimbursement may consist of two parts: costs associated 

with optimal use of resources in health care production and costs associated with inefficiency.  

While a complete evaluation of the CAH program requires answering the question whether the 

total benefits outweigh the total costs, I focus in this research on assessing the efficiency / 

inefficiency of CAH hospitals.  The question I seek to answer in this research is: does the CAH 

program have created a disincentive for the efficient operation of hospitals that converted to 

CAH status? Alternatively, does enhanced Medicare reimbursement have a negative effect on the 

efficiency of CAHs? 

1.3 Study Objectives 

Cost containment in the health care industry is one of the issues at the forefront of the present 

health care debate.  With health care costs rising at a rapid rate, an analysis of the efficiency of 

CAH program is important as Congress weighs the tradeoff of increased Medicare costs versus 

rural health care access.   

The primary objective of this research is to analyze the impact of the CAH program on 

hospital efficiency.  Specific objectives are: 

1. Analyze the impact of conversion to CAH status on hospital efficiency by comparing 

the cost, technical, and allocative efficiencies of a sample of rural hospitals before 

and after the conversion to CAH status as well as by comparing the efficiency of 

CAHs with that of a group of non-converting, PPS rural hospitals.      

2. Examine cost efficiency differences between CAHs and non-converting, PPS rural 

hospitals using quality controls and alternative methods of efficiency analysis. 
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3. Estimate the (marginal) effects of environmental variables (especially of Medicare 

and Medicaid financing) on the technical efficiency of CAH hospitals.  

1.4 Contributions to Literature 

Previous research focused almost exclusively on evaluating financial performance and quality of 

care of CAH hospitals.  Using a panel data set of 89 rural hospitals in Iowa, Li et al. [15] found 

that hospitals that converted to CAH status significantly increased their operating revenues, 

expenses, and margins.  MedPAC [5] estimated hospitals that converted to CAH status have 

dramatically increased their Medicare payments and improved their all-payer profit margins 

between 1998 and 2003.  Li et al. [16] examined the impact of CAH conversion on hospital 

patient safety and found that CAH conversion was associated with improved performance of 

certain Patient Safety Indicators.  In a recent study, Rosko and Mutter [17] compared the cost 

inefficiency of CAHs with that of prospectively paid rural hospitals using stochastic frontier 

analysis and found that CAHs were, on average, less cost efficient than PPS rural hospitals.1 

The overall contribution of this study to the literature is twofold.  The first is treating 

efficiency as a metric that should be considered in the policy analysis of the CAH program that 

has a focus on access and quality.  The second is the application of improved techniques to 

hospital efficiency analysis.  Specifically, a nonparametric kernel density estimator is used to 

estimate and visualize the efficiency distributions of a sample of hospitals before and after the 

conversion to CAH status as well as of a comparison group of non-converting, prospectively 

paid rural hospitals.  The null hypotheses on equality between these efficiency distributions are 

tested using a bootstrap-based test proposed by Simar and Zelenyuk [18].   Further, a two-stage, 

semi-parametric approach with the single and double bootstrap procedures proposed by Simar 

                                                            
1 No published articles on the efficiency of CAHs existed when I started this research. 
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and Wilson [19] is used for making valid inferences about the impact of environmental variables 

on hospital efficiency. 

1.5 Outline 

In Chapter 2, the impact of conversion to CAH status on hospital efficiency is examined 

(Objective 1) using a two-stage approach and recent methodological advancements of Simar and 

Zelenyuk [18] and Simar and Wilson [19].  In the first stage, data envelopment analysis (DEA) is 

used to estimate cost, technical, and allocative efficiency scores of each hospital in the sample.  I 

estimate and compare the densities of efficiency scores of CAHs, before and after conversion, 

and PPS rural hospitals using a nonparametric kernel density estimator and a bootstrap-based test 

proposed by Simar and Zelenyuk [18].  In the second stage, a truncated regression with a 

bootstrap procedure suggested by Simar and Wilson [19] is used to investigate how the 

conditional mean of efficiency scores is influenced by environmental variables such as CAH 

status, Medicare and Medicaid reimbursement, hospital ownership, etc.   

Density analysis and results from bootstrapped truncated regressions show that CAHs are 

less cost and allocatively efficient than prospectively paid rural hospitals, without being less 

technically efficient.  Relative to their pre-conversion selves, CAHs appear to be slightly less 

allocatively efficient, while they are slightly more technically efficient and no less cost efficient.  

Overall, the results suggest that the CAH program may have decreased allocative and cost 

efficiencies of rural hospitals that converted to CAH status relative to prospectively paid rural 

hospitals, without significantly increasing their technical efficiency.  

In Chapter 3, I examine cost efficiency differences between cost-based reimbursed CAHs 

and non-converting, PPS rural hospitals using quality controls and alternative methods of 

efficiency analysis (Objective 2).  The first method is DEA which is a nonparametric approach 
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that uses linear programming to estimate cost efficiency scores.  A nonparametric kernel density 

estimator is used to estimate the densities of cost efficiency scores of CAH and PPS rural 

hospitals, and the null hypothesis on equality between these densities is tested using a bootstrap-

based test suggested by  Simar and Zelenyuk [18].  The second method is the two-stage, semi-

parametric approach in which cost efficiency scores, estimated in the first stage using DEA, are 

regressed, in the second stage, on explanatory variables expected to influence hospital cost 

efficiency.  In the second stage, both a tobit model (which has been traditionally used in the 

literature) and a truncated regression with a bootstrap procedure suggested by Simar and Wilson 

[19] are used to estimate the marginal effects of environmental variables (in particular, CAH 

status) on hospital cost efficiency.  Although tobit has been historically used in the two-stage 

approach applications, Simar and Wilson [19] indicate that tobit is a misspecification under their 

statistical model.  The third method is stochastic frontier analysis (SFA) which is a parametric 

approach based on a cost function.   

DEA and SFA were both used to estimate hospital cost efficiency.  CAHs were, on 

average, 4.5% using DEA and 6.7% using SFA less cost efficient than non-converting rural 

hospitals.  Density analysis of cost efficiency scores indicated that CAHs were more cost 

inefficient than non-converting, PPS rural hospitals and the difference was found statistically 

significant based on Simar-Zelenyuk test.  Marginal effects of environmental variables were 

estimated using SFA and the two-stage DEA approach with both the tobit and truncated 

regression.  The estimated results showed that the CAH dummy was statistically significant in 

SFA and the bootstrap truncated regression models and insignificant in the tobit model.  

Specifically, I found that CAHs were 5.2% less cost efficient using bootstrapped truncated 

regression, and 7.3% less cost efficient using SFA than non-converting, PPS rural hospitals.  
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While these results support our prior findings, they also show how the tobit model in this case 

may lead to an alternative interpretation. 

In Chapter 4, the research question I seek to answer is: if cost-based reimbursement 

creates disincentives for hospitals to operate efficiently, does an increase in Medicare patient mix 

have a negative effect on CAHs’ technical efficiency?  I use the two-stage approach with single 

and double bootstrap procedures suggested by Simar and Wilson [19] to estimate the marginal 

effects of environmental variables (in particular, Medicare reimbursement) on CAHs’ technical 

efficiency (Objective 3).  Simar and Wilson [19] showed that the DEA efficiency scores are 

serially correlated and inference in the second stage regression is invalid based on standard 

methods.  They defined a statistical model where a truncated regression with a (single) 

parametric bootstrap procedure allows for valid inference in the second stage.  An additional 

problem is that the DEA efficiency estimator, although consistent, is biased.  In order to address 

both the bias and serial correlation of efficiency scores, Simar and Wilson [19] developed a 

double bootstrap procedure, where bias-corrected efficiency estimates are obtained in the first 

stage using a specific bootstrap procedure.  In the second stage, the marginal effects of 

environmental variables on (bias-corrected) efficiency scores are estimated using a second, 

parametric bootstrap procedure applied to the truncated regression. 

An important finding was that the performance of the double bootstrap procedure in 

explaining hospital efficiency significantly improved when quality was accounted for in 

efficiency estimation relative to a similar model without quality.  I also compared the 

performance of the double bootstrap procedure with that of the single bootstrap procedure of 

Simar and Wilson [19].  While both bootstrap procedures were created to provide valid 

inference, the double bootstrap procedure clearly improved statistical efficiency in the second 
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stage truncated regression relative to the single bootstrap procedure.  The key finding of this 

study was that the Medicare percent of admissions variable had an insignificant effect on CAHs’ 

technical efficiency, suggesting that Medicare cost-based reimbursement may not have created a 

disincentive for these hospitals to operate in a less technically efficient manner.    

Chapter 5 of this dissertation provides conclusions and examines some policy 

implications.  In particular, my findings of improved technical efficiency of CAHs in 

conjunction with decreased cost efficiency might suggest that the reduction in CAHs’ cost 

efficiency may not be a function of direct overconsumption of physical inputs.  Rather, decreased 

cost efficiency of CAHs may be driven by allocative inefficiency generated by the inability of 

these hospitals to quickly substitute to lower input cost combinations in the production process.   

 

1.6 References 

1. Moscovice I, Stensland J (2002) Rural hospitals: trends, challenges, and a future research 
and policy analysis agenda. J Rural Health 18:197-210.  

2. Ricketts TC, Heaphy PE (eds) (1999) Hospitals in rural America. Rural health in the 
United States. Oxford University Press, New York. 

3. Ermann DA (1990) Rural health care: The future of the hospital. Medical Care Review 
47(1):33-73.  

4. McNamara PE (2009) Rural hospitals, reimbursement policy, and health care reform. 
Choices 24(4).  

5. Medicare Payment Advisory Commision (MedPAC) (2005) Report to Congress: Issues in 
a modernized Medicare program.  Washington, DC. 

6. Casey MM, Moscovice I (2004) Quality improvement strategies and best practices in 
Critical Access Hospitals. J Rural Health 20(4):327-334.  

7. Sexton TR, Leiken AM, Sleeper S, Coburn AF (1989) The impact of prospective 
reimbursement on nursing-home efficiency. Med Care 27(2):154-163.  



12 
 

8. Gianfrancesco FD (1990) The fairness of the PPS reimbursement methodology. Health 
Serv Res 25(1):1-23.  

9. McKay NL, Deily ME, Dorner FH (2002) Ownership and changes in hospital 
inefficiency, 1986-1991. Inquiry-J Health Car 39(4):388-399.  

10. Dalton K, Slifkin R, Poley S, Fruhbeis M (2003) Choosing to convert to Critical Access 
Hospital status. Health Care Financing Review 25(1):115-132.  

11. Acton JP (1975) Nonmonetary factors in the demand for medical services: some 
empirical evidence. Journal of Political Economy 83(3):595–614.  

12. Capalbo SM, Heggem CN (1999) Valuing rural health care: issues of access and quality. 
American Journal of Agricultural Economics 81(3):674–679.  

13. McNamara PE (1999) Welfare effects of rural hospital closures: a nested logit analysis of 
the demand for rural hospital services. American Journal of Agricultural Economics 
81(3):686–691.  

14. Holmes GM, Slifkin RT, Randolph RK, Poley S (2006) The effect of rural hospital 
closures on community economic health. Health Serv Res 41:467–485.  

15. Li PX, Schneider JE, Ward MM (2009) Converting to Critical Access status: how does it 
affect rural hospitals' financial performance? Inquiry-J Health Car 46(1):46-57.  

16. Li PX, Schneider JE, Ward MM (2007) Effect of Critical Access Hospital conversion on 
patient safety. Health Serv Res 42(6):2089-2108.  

17. Rosko MD, Mutter RL (2010) Inefficiency differences between Critical Access Hospitals 
and prospectively paid rural hospitals. Journal of Health Politics Policy and Law 
35(1):95-126.  

18. Simar L, Zelenyuk V (2006) On testing equality of distributions of technical efficiency 
scores. Econometric Reviews 25(4):497-522.  

19. Simar L, Wilson PW (2007) Estimation and inference in two-stage, semi-parametric 
models of production processes. Journal of Econometrics 136(1):31-64.  

 

 



13 

 

CHAPTER 2 

IMPACT OF CONVERSION TO CRITICAL ACCESS HOSPITAL STATUS                    
ON HOSPITAL EFFICIENCY1  

2.1 Introduction  

The Critical Access Hospital (CAH) Program, introduced by the Balanced Budget Act of 

1997, has been created to protect small, financially vulnerable rural hospitals that might be 

important for access to health care services in isolated rural areas in the U.S. [1].  A hospital 

that converts to CAH status receives Medicare cost-based reimbursement provided it meets 

requirements such as restrictions on the maximum number of acute care beds and average 

length of inpatient stay.  Under cost-based reimbursement, hospitals are reimbursed for the 

total costs of providing health care services.  This reimbursement method was used by 

Medicare to pay for hospital services before 1983.  Although access to health care services 

and hospital finances improved significantly, cost-based reimbursement led to a rapid 

increase in health care costs.  Furthermore, historical evidence suggested that it was 

associated with inefficiency in hospital operations.  Under cost-based reimbursement, 

payment levels equaled hospitals’ costs.  Thus, it provided incentives for hospitals to 

oversupply services, overuse resources, and increase costs in order to increase their revenues 

since Medicare paid for services on a cost basis [2-3].   

In 1983, Medicare introduced a new payment method known as the Prospective 

Payment System (PPS).  Medicare classified all illnesses into diagnosis-related groups 

(DRGs) and estimated the average cost per case for each group.  Under the PPS, hospitals are 

paid fixed prices based on the DRGs and are allowed to keep the difference between these 

                                                            

1 NOTICE: this is the author's version of a work that was accepted for publication in Socio-Economic Planning 
Sciences. Changes resulting from the publishing process, such as peer review, editing, corrections, structural 
formatting, and other quality control mechanisms may not be reflected in this document. Changes may have 
been made to this work since it was submitted for publication. A definitive version was subsequently published 
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fixed DRG prices and their costs.  Thus, the PPS has provided an incentive for hospitals to 

reduce costs and increase their efficiency by motivating hospitals to keep their costs below 

the PPS rates in order to make profits [4].  Small rural hospitals, however, were particularly 

vulnerable to the financial pressures of the PPS and commonly failed to cover costs on 

Medicare patients [5].   

The CAH Program has been created to preserve access to health care services in 

isolated rural communities by improving the financial conditions of small rural hospitals and 

preventing their closure.  However, there have been concerns that Medicare cost-based 

reimbursement has provided a disincentive for CAHs to control costs and operate efficiently.  

In the 2005 Report to Congress, the Medicare Payment Advisory Commission (MedPAC) [6] 

states: “Although the CAH Program has helped preserve access to emergency and inpatient 

care in isolated areas, it may not have accomplished this goal in an efficient manner.” 

The objective of this paper is to determine the impact (if any) of CAH conversion on 

hospital efficiency.  To achieve this objective, we use recent developments in the area of 

efficiency analysis implemented using a two-stage approach.  In the first stage, data 

envelopment analysis (DEA) is used to estimate hospital cost, technical, and allocative 

efficiency scores [7].  In simple terms, a firm is technically efficient if it uses the minimum 

quantities of inputs to produce a given level of outputs.  For the hospital sector, technical 

efficiency refers to the relationship between inputs used (i.e., capital and labor) and outputs 

produced (i.e., outpatient visits, inpatient days, surgeries, etc.).  Allocative efficiency reflects 

the ability of a hospital to produce a given level of outputs using the optimal combination of 

inputs (i.e., cost-minimizing), given input prices.  A hospital is (overall) cost efficient when it 

                                                                                                                                                                                         

in Socio-Economic Planning Sciences (DOI: 10.1016/j.seps.2012.09.005). Authorization for reproduction can 
be found in Appendix 4. 
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is both technically and allocatively efficient.  Cost efficiency indicates the extent to which the 

hospital minimizes the cost of producing a specific level of outputs, given input prices.   

Further, the densities of efficiency scores of CAHs and PPS (non-CAH) rural 

hospitals (which include hospitals prior to CAH conversion as well as non-converting, PPS 

rural hospitals) are estimated and compared using a nonparametric kernel density estimator 

and a bootstrap-based test proposed by Simar and Zelenyuk [8].  In the second stage, we use 

truncated regressions with bootstrap suggested by Simar and Wilson [9] to investigate how 

the conditional mean of efficiency scores is influenced by environmental variables such as 

CAH status, Medicare and Medicaid reimbursement, and hospital ownership.   

Previous studies analyzed the impact of Medicare reimbursement changes on either 

cost efficiency [3,10] or technical efficiency of health care facilities [4] using standard 

methods such as DEA or stochastic frontier analysis.  To the best of our knowledge, this is 

the first study that examines differences in all three Farrell [11] type efficiency measures 

jointly between hospitals operating under different Medicare reimbursement systems, using 

methodological advancements proposed by Simar and Zelenyuk [8] and Simar and Wilson 

[9].  We hypothesize that cost-based reimbursed CAHs are more cost inefficient than PPS 

rural hospitals because of the differences in Medicare reimbursement methods, and thus 

incentives, facing these two groups of rural hospitals.  Additionally, we analyze not only 

whether cost-based reimbursed CAHs are more cost inefficient than PPS rural hospitals but 

also whether this cost inefficiency increase comes more from technical inefficiency (i.e., 

hospitals do not use the minimum input quantities to produce their output levels) or allocative 

inefficiency (i.e., hospitals do not use the least-cost combination of inputs in producing their 

outputs). 
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2.2 CAH Program 

The CAH Program was introduced as part of the Balanced Budget Act of 1997 and it was 

subsequently expanded by the Balanced Budget Refinement Act of 1999 and the Medicare 

Prescription Drug, Improvement, and Modernization Act of 2003.  A hospital that converts to 

CAH status has the advantage of receiving Medicare cost-based reimbursement, equivalent to 

101 percent of actual cost, for inpatient and outpatient services delivered to Medicare 

beneficiaries.  However, the hospital must meet several requirements before conversion.  

Most importantly, the hospital must be located at least 35 miles by primary road, or 15 miles 

by secondary road, from the nearest full service hospital or be declared by the state as a 

“necessary provider”; use no more than 25 acute care beds at any one time; annual average 

length of stay cannot be greater than four days, and the hospital must provide 24-hour 

emergency care services.  Before January 2006, states could waive the distance requirement 

using the “necessary provider” provision.  That is, a state could declare a hospital a 

“necessary provider” and qualify it for CAH conversion based on arbitrary criteria.  Further, 

some CAHs were allowed to exist in Metropolitan Statistical Areas based on state regulations 

that declared them rural hospitals.   MedPAC [6] estimated that only 17 percent of CAHs are 

more than 35 road miles from another provider, 67 percent are 15 to 35 miles, and 16 percent 

of CAHs are less than 15 miles from another hospital. 

Rural hospitals that converted to CAH status have generally experienced significant 

improvements in their finances due to Medicare cost-based reimbursement.  For example, 

hospitals that converted to CAH status have dramatically increased their Medicare payments 

and improved their all-payer profit margins from -1.2 percent in 1998 to 2.2 percent in 2003.  

For similar rural hospitals that did not convert to CAH status and remained on PPS all-payer 

profit margins declined from 2.2 percent in 1998 to -0.2 percent in 2003.  Medicare payments 

to CAHs rose, on average, by 9.5 percent per year during the period 1998-2003, compared 
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with a 3.3 percent rise for similar rural hospitals that did not convert to CAH status [6].  

MedPAC [6] estimated that in 2003 payments per CAH were roughly $850,000 higher under 

cost-based reimbursement than they would have been under the PPS. 

2.3 Literature Review 

The impact of Medicare reimbursement changes on the efficiency of health care facilities has 

been an important research topic.  Morey and Dittman [12] examined the effect of cost-based 

reimbursement on the technical efficiency of North Carolina hospitals operating in 1978.  

Using DEA, they found that hospitals with a higher percentage of cost-based reimbursement 

tended to be less technically efficient.  Sexton et al. [4] analyzed the effect of the PPS on the 

technical efficiency of 52 nursing homes in Maine using DEA with four years of data (two 

years before and two years after the introduction of the PPS).  An unexpected result was that 

the average technical efficiency fell after the introduction of the PPS.  In their paper, Chern 

and Wan [13] analyzed the impact of the PPS on the technical efficiency of hospitals in 

Virginia.  They used a DEA model with two years of data (1984, before, and 1993, after the 

PPS was implemented) lumped together and found no statistically significant differences in 

technical efficiency over the study period. 

 Evaluating the performance of the CAH Program has spurred significant interest in 

health services research area.  Stensland, Davidson, and Moscovice [14] found that hospitals 

that converted to CAH status significantly increased their Medicare revenue, profitability, 

employee salaries, and capital expenditures.  They estimated that, on average, inflation-

adjusted revenue of hospitals that converted to CAH status increased by $518,571 per 

hospital, half of which was used to cover loses or retained as profits and the other half used to 

raise salaries and to cover other expenses.  Using a panel data set on 89 rural hospitals in 

Iowa, Li, Schneider, and Ward [15] found that hospitals that converted to CAH status 

increased their operating revenues, expenses, and profit margins.  Similarly, Schoenman and 
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Sutton [16] also found that, after conversion to CAH status, hospitals dramatically increased 

their profitability due to Medicare cost-based reimbursement.  Using a stochastic frontier cost 

function, Rosko and Mutter [10] compared the cost inefficiency of CAHs with that of 

prospectively paid rural hospitals and found that CAHs were, on average, more cost 

inefficient.  

2.4 Methodology 

To assess the impact of CAH status on hospital efficiency, we use a two-stage approach, 

where DEA is used in the first stage to estimate cost, technical, and allocative efficiency 

scores of each hospital in the sample.  DEA uses linear programming (LP) to define a 

piecewise linear estimate of the efficient frontier enveloping all the data.  Efficiency of a firm 

is measured relative to this efficient (best-practice) frontier.  As a nonparametric approach, 

DEA does not assume a specific functional form for the frontier or probability distributions 

and, thus, avoids any misspecification problems.  Its main drawback, however, is that it is 

deterministic, meaning that deviations from the efficient frontier are entirely attributed to 

inefficiency and no allowance is made for statistical noise, random shocks, or measurement 

error.  The two-stage approach, however, allows us to deal with this issue in the second stage 

regression model.  In this study, an input-oriented DEA model is used because (1) it is 

consistent with previous literature and with the assumption that hospitals have more control 

over the inputs than over the outputs, and (2) it allows a natural decomposition of cost 

efficiency into its technical and allocative components. 

DEA measures cost efficiency in two steps.  First, given input prices and output 

levels, the cost-minimizing input vector for each hospital is calculated by LP.  Next, cost 

efficiency is estimated as the ratio of minimum cost to observed cost and takes a value 

between 0 and 1, where a value of 1 indicates a cost efficient hospital.  For our specific case, 

let yrj be a vector of six outputs (r = 1,…., 6) and xij a vector of two inputs (i = 1, 2) for each 
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hospital j (j = 1,….., n).  For a given level of outputs yro and an input price vector wio (i = 1, 

2) for hospital o, the minimum cost under variable returns to scale (VRS) is obtained by 

solving the following LP problem:  

:..   *2

1, * tsxwMin ioi ioxioj
∑=λ          (1)

 

),......,1( ,0

1

)2 ,1(,

)6,.....,1(,

1

*
1

1

nj

ixx

ryy

j

n

j j

ioij
n

j j

rorj
n

j j

=≥

=

=≤

=≥

∑
∑
∑

=

=

=

λ

λ

λ

λ

 

where λj and *
iox  are the decision variables.  The optimal solution to this problem is the input 

vector *
iox  that minimizes the cost of producing the observed level of outputs given 

technology and input prices. The cost efficiency, CE, is:  
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That is, CE is the ratio of minimum cost to observed cost and indicates the proportion of the 

hospital’s observed cost required to produce its observed level of outputs [17].  For example, 

a cost efficiency score of 0.75 indicates that the hospital is cost inefficient, with cost 

inefficiency measured at 33 percent (i.e., 1/0.75 - 1). 

The input-oriented measure of technical efficiency (TE) under VRS can be calculated 

by solving the following DEA LP problem: 
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The objective of the LP problem in (3) is to find the minimum θ that proportionally reduces 

the input vector to ioxθ  while guaranteeing at least the output level roy .  The optimal solution 

to the LP problem is TE = θ ≤ 1, where TE = 1 indicates a point on the efficient frontier and, 

hence, a technically efficient hospital.  TE < 1 indicates that it is possible to produce the 

observed level of outputs using less than all inputs.  That is, a technical efficiency score of 

0.85, for example, indicates that the hospital is technically inefficient, with technical 

inefficiency measured at 17.6 percent (i.e., 1/0.85 - 1).  

Once cost and technical efficiency scores are derived, the allocative efficiency (AE) 

can be simply calculated as: 

AE = CE / TE.           (4) 

The allocative efficiency indicates by how much the cost of the hospital can be reduced if it 

selects the input mix that is the most appropriate given the input price ratio faced by the 

hospital.  From (4), the following relationship can be defined between cost, technical, and 

allocative efficiencies: 

CE = TE × AE.          (5) 

This suggests that failure to achieve cost efficiency may be due to (a) technical inefficiency 

in the form of wasteful use of inputs overall, and (b) allocative inefficiency due to the 

incorrect mix of inputs given input price levels.  

2.4.1 Analysis of Efficiency Distributions 

To analyze differences in efficiency between CAHs and non-CAH, PPS rural hospitals, we 

first estimate and visualize the densities of efficiency scores using a nonparametric kernel 

density estimator.  Based on the estimated densities, we test the null hypothesis of equality 

between CAH and non-CAH efficiency distributions against the alternative that they are 

different.  One of the major problems encountered in the analysis of distributions of 

efficiency scores arises from the fact that, in finite samples, the DEA efficiency estimator is 
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biased (however, it is a consistent estimator [18]) and the estimated efficiency scores are not 

independent [8-9].   

 Building on the work of Li [19], Simar and Zelenyuk [8] proposed a bootstrapped-

based test for testing equality of distributions of DEA-estimated efficiency scores.  To briefly 

outline the test statistics, suppose group A is the group of CAHs and group Z is the group of 

non-CAH, PPS rural hospitals.  We are interested to test the null hypothesis of equality 

between the efficiency distributions of the two groups against the alternative that they are 

different:  

H0:  fA(uA) = fZ(uZ)  

H1:  fA(uA) ≠ fZ(uZ)  

where ),....,1(, AiA niu = and ),....,1(, ZkZ nku =  are the efficiency scores of CAHs and non-

CAH, PPS rural hospitals and fA(uA) and  fZ(uZ) are the corresponding probability 

distributions.  The Li [19] test statistics is: 
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where K is a kernel function (assumed to be Gaussian), h is a bandwidth, ZAn nn /=λ , 

ZA nnn += , λλ →n when ∞→An , and ),0( ∞∈λ is a constant.   
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Simar and Zelenyuk [8] noted that an important problem encountered in the 

application of the test is the discontinuity problem.  By construction, some of the DEA 

efficiency scores equal to 1, creating a spurious mass at unity and violating the continuity 

assumption required to ensure consistency of the density estimation.  They suggested two 

approaches to deal with the discontinuity problem.  The first approach is based on 

computation and bootstrapping the Li test using the sample of DEA efficiency scores without 

those equal to unity.  The second approach is based on computation and bootstrapping the Li 

test using the sample of DEA efficiency scores where those equal to unity are “smoothed” 

away from the boundary by adding a small amount of noise (see Simar and Zelenyuk [8] for 

the bootstrap algorithm for Li statistics).  We adopt the second approach with a Gaussian 

kernel and a bandwidth selected using Silverman [20].  

2.4.2 Second Stage Truncated Regression 

In the second stage, cost, technical, and allocative efficiency scores, obtained in the first stage 

using DEA, are regressed on a set of explanatory variables to investigate the dependency of 

efficiency scores on such variables.  In an influential paper, Simar and Wilson [9] criticized 

previous two-stage studies because of the failure to define a statistical model consistent with 

the second stage analysis.  They argue that inference in those studies is invalid because of the 

failure to account for the serial correlation present among efficiency estimates used in the 

second stage regression.  Simar and Wilson [9] defined a statistical model in which a 

truncated regression with a bootstrap procedure allows for valid inference in the second stage 

analysis.  Following Simar and Wilson [9], our second stage model is specified as a truncated 

regression: 

1ˆ ≥+= iii zu εβ ,     i = 1, 2, …., n        (9) 
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where iû is the reciprocal of efficiency scores2 (which are referred to as inefficiency scores) 

such that 1ˆ ≥iu , εi is assumed to be distributed N(0, σ2) with left truncation at βiz−1 , zi is a 

vector of k environmental variables which are thought to have an effect on hospital 

efficiency, and β is a vector of parameters to be estimated.  Unfortunately, in (9), iû ’s are 

serially correlated in a complicated, unknown way.  To provide valid inference in the second 

stage analysis, Simar and Wilson [9] suggested a parametric bootstrap of the truncated 

regression.  In this paper, we use their Algorithm 1 bootstrap procedure whose steps are the 

following: 

1. Use the method of maximum likelihood to obtain an estimate β̂ of β in the truncated 

regression 1ˆ >+= iii zu εβ , using m < n observations where 1ˆ >iu  (i = 1, …, m). 

2. Loop over the next three steps L = 2000 times to obtain a set of bootstrap estimates 

{ }L

b 1
*ˆ

==Δ β : 

a. For each i = 1,…., m, draw εi from N(0, 2σ̂ ) with left truncation at β̂1 iz− . 

b. Compute iii zu εβ += ˆ* , i = 1,….., m . 

c. Estimate the truncated regression of *
iu on zi, yielding estimates *β̂ .  

3. Use the bootstrap values in Δ and the original estimates of β̂  to construct percentile 

confidence intervals for each element of β. 

Step 2 is a parametric bootstrap of a truncated regression model. The bootstrapped 

coefficients for each resample are estimated and placed in an L× k matrix. Once the bootstrap 

values in Δ are obtained, percentile bootstrap confidence intervals can be constructed for each 

element of β.   

                                                            

2 Such a parameterization of efficiency scores will give us a dependent variable with only a lower bound at 1 in 
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2.5 Data 

In this study, we use four years of data (1997, 1998, 2005, and 2006) from the American 

Hospital Association (AHA) Annual Survey of Hospitals, the Area Resource File and the 

Medicare Hospital Cost Report.  To assess the impact of CAH conversion on hospital 

efficiency, we examine changes in efficiency for a sample of rural hospitals classified as 

CAHs in 2005 and 2006 (post-conversion period) that were PPS hospitals in 1997 and 1998 

(pre-conversion period).  We also include a control group of non-converting rural hospitals 

with less than seventy-six beds which retained the PPS status throughout the study period 

[10].  Consistent with previous literature, we recognize the difficulty of creating a control 

group since hospitals choose to convert to CAH status and any comparison group will differ 

from converting hospitals [14].  However, this criterion allowed us to have two groups of 

hospitals of similar size (the mean for CAH total beds in our sample was 41 while for non-

converting rural hospitals was 46.8) while maintaining a measurable number of observations 

for the comparison group.  While selection issues may be of concern, Rosko and Mutter [10] 

indicate that an approach in which CAHs are compared not only to non-converting rural 

hospitals but also to pre-conversion selves may mitigate these issues.  A total of 797 CAHs 

and 298 non-converting, PPS rural hospitals in each of the four years were included in our 

initial sample.  For consistency, we eliminated 159 CAHs located in Metropolitan Statistical 

Areas. 

The DEA-cost model used in this study requires information on hospital outputs, 

inputs, and input prices.  All hospital efficiency studies included both inpatient and outpatient 

outputs.  The number of outpatient visits has been consistently used as a measure of 

outpatient output.  Similarly, the numbers of admissions and post-admission days (inpatient 

                                                                                                                                                                                         

the second stage truncated regression, unlike the original efficiency measures that are bounded by 0 and 1. 
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days – admissions) have been used as measures of inpatient outputs [10,21].  Additionally, 

hospital outputs are heterogeneous and researchers have included variables such as 

emergency room visits, outpatient surgeries, and births to control for output heterogeneity.  

Our choice of outputs was guided by previous literature [10,21] and includes outpatient visits, 

admissions, post-admission days, emergency room visits, outpatient surgeries, and births 

(Table 2.1).  Due to data constraints, input price variables were also similar in hospital 

efficiency studies [10,21].   Following this literature, we use two input prices: the price of 

labor (sum of payroll expenses and employee benefits divided by the full-time equivalent 

(FTE) facility personnel), and the price of capital (sum of depreciation expenses and interest 

expenses − obtained from the Medicare Hospital Cost Report – divided by the number of 

facility beds).  The corresponding physical inputs used in this analysis consist of FTE 

personnel and total staffed and licensed facility beds (a proxy for capital) [17]. 

For the choice of variables used in the second stage (Table 2.1), we followed recent 

literature on hospital efficiency for the specification of environmental variables [10,22].  The 

primary variable of interest is a CAH dummy (one if the hospital is a CAH and zero, 

otherwise) which is used to measure the impact of conversion to CAH status on hospital 

efficiency.  Previous literature showed that Medicare and Medicaid exert financial pressure 

and can create incentives for hospitals to operate more efficiently.  Medicare is a federal 

program that pays for services for the aged while Medicaid is a joint federal and state 

program for the poor.  It has been shown that Medicaid typically underpays hospitals more 

than Medicare and exerts cost containment pressure irrespective of the payment mechanism 

[22].  On the other hand, the effect of Medicare on hospital efficiency has been shown to be 

dependent on the payment mechanism.  Specifically, reimbursement under Medicare PPS 

creates incentives for reducing inefficiency while cost-based reimbursement might give 

hospitals few incentives to control their costs.  We follow previous literature [10,22] and use 
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two variables to reflect the external pressure for efficiency of public payers: Medicare percent 

of admissions (Medicare) ((Medicare admissions / total admissions) × 100) and Medicaid 

percent of admissions (Medicaid) ((Medicaid admissions / total admissions) × 100).  While 

Medicaid percent of admissions is expected to be inversely associated with hospital 

inefficiency given the cost containment pressure from Medicaid, the effect of Medicare 

percent of admissions on hospital inefficiency is ambiguous given the joint use in estimation 

of cost-based reimbursed CAHs and PPS-reimbursed rural hospitals. 

Table 2.1. Variable definitions and summary statistics. 

Variable  
CAH   Rural   

Mean Std. dev.  Mean Std. dev. 
Outputs      
Total hospital admissions 801.56 596.89  1,839.01  911.01 
Post-admission days 8,580.56 10,147.13  5,829.26  3,145.29 
Total outpatient visits 24,676.48 23,143.57  40,654.53  32,353.93 
Emergency room visits 4,509.50 4,000.33  9,070.30  5,554.56 
Outpatient surgeries 501.23 539.00  1,098.10  916.12 
Total births 71.72 103.82  207.98  198.88 
Inputs  

Staffed and licensed facility beds 46.04 33.39  46.83  14.76 
Full time equivalent (FTE) employees 141.48 87.97  221.18  112.32 
Input Prices  

Price of capital($) 17,890.96 21,752.43  26,111.02  23,210.37 
Price of labor($) 38,759.67 15,108.06  41,073.32  13,803.73 

 
Environmental  
Variables Variable Definition     

 
    

Government Government  hospital (1 or 0) 0.51 -  0.38  - 
For-profit For-profit hospital (1 or 0) 0.03 -  0.17  - 
Medicare % Medicare admissions 56.86 13.72  51.44  11.86 
Medicaid % Medicaid admissions 12.11 7.96  16.83  9.47 
HHI Herfindahl-Hirschman  index 0.57 0.35  0.58  0.34 
System Multihospital system (1 or 0) 0.29 -  0.39  - 
MHMO % Medicare HMO penetration 2.60 5.43  3.14  6.05 
Income Median household income 34,681.38 6,794.81  33,481.79  8,528.68 
Emergency % Emergency room visits 23.10 18.39  28.61  18.30 
Surgeries % Outpatient surgeries 2.41 2.53  3.35  3.41 
Births % Admissions for birth 7.93 9.13  10.40  8.86 
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The ownership status is introduced by using dummy variables that define government 

hospitals (Government), non-profit hospitals and for-profit hospitals (For-profit).  Non-profit 

ownership is the reference category.  Consistent with Property Rights Theory (PRT), we 

expect that for-profit hospitals will place a greater emphasis on earning profits and increasing 

efficiency than non-profit or government hospitals.  

A source of external pressure for efficiency is Health Maintenance Organization 

(HMO) penetration.  Following Rosko and Mutter [10], we used Medicare HMO penetration 

(MHMO) from the Area Resource File as a proxy for general HMO penetration.  A 

Herfindahl-Hirschman index (HHI) (calculated by summing the squares of the market shares 

of admissions for all of the hospitals in the county) is used to control for competitive pressure 

in a hospital’s market (defined as the county).  Median household income of the county 

(Income) and a dummy variable for membership in a multihospital system (System) are also 

included in the second stage regression to explain hospital inefficiency.  In addition, dummy 

variables for each year are included to account for the time effects, with year 1997 as the 

reference category. 

A particular challenge was adjusting outputs to control for case-mix variations.  

Researchers usually employ a case-mix index − which is a measure of the relative complexity 

of the patient mix treated in a hospital − to adjust outputs.  Unfortunately, there is no case-

mix index available for CAHs as these hospitals are exempted from the PPS.  Although we 

are unable to adjust outputs for case-mix, we follow Pilyavsky et al. [23] and control for case-

mix variations in the second stage regression using proxies such as percent of emergency 

room visits (Emergency) ((emergency room visits / outpatient visits) × 100), percent of 

outpatient surgeries (Surgeries) ((outpatient surgeries / outpatient visits) × 100) and percent 

of births (Births) ((births / admissions) × 100).  Furthermore, Ozgen and Ozcan [24] noted 
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that the lack of case-mix variables in DEA efficiency models is in part compensated by the 

specification of multiple outputs. 

A limitation of this research is the lack of any controls for quality of care.  While 

controlling for quality is important in hospital efficiency studies, finding adequate measures 

of quality has been difficult.  In hospital efficiency studies, the difficulty of controlling for 

quality relates in principal to data availability [25].  Since 2004, Center for Medicare and 

Medicaid Services (CMS) Hospital Compare database has provided some quality measures 

but, unfortunately, the proportion of CAHs reporting quality information has been very small.  

Only 41 percent of CAHs reported at least one quality measure to Hospital Compare in 2004 

[26], making it difficult to find a measurable number of hospitals that reported information on 

the same quality measures.  Our examination of the 2005 Hospital Compare database showed 

that only 186 CAHs reported information for two of the most common quality measures for 

pneumonia.  CAHs voluntarily report quality information to CMS and they do not have the 

financial incentives of PPS hospitals to consistently report such information.  In our study, 

controlling for quality is even more difficult because of the lack of quality measures collected 

and reported by rural hospitals in 1997 and 1998 which are required for purposes of the 

policy analysis. 

Variable definitions for DEA as well as for the second stage truncated regressions are 

presented in Table 2.1.  Summary statistics of these variables are presented for both CAHs 

(joint data for all four years, irrespective of conversion) and the control group of non-

converting, PPS rural hospitals.   

2.6 Results and Discussion 

In the first stage, we estimated a DEA model with the four years of data jointly.  Such 

pooling of the data over time is a frequent practice in DEA estimation and offers the 

advantage of a substantial increase in the sample size which is important for obtaining 
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reliable estimates of efficiency [27].  As a preliminary analysis, a kernel density estimator is 

used to obtain estimates of densities of cost, technical, and allocative inefficiencies (the 

reciprocal of original efficiency scores).  The estimated densities were visualized and 

indicated that some outliers were present in the sample as shown by the long tails of the 

densities that stretch out up to inefficiency scores of 10 or 12 (see Figure A.2.1 in Appendix 

1).  Because such outliers can be very problematic for the convergence of the likelihood 

function in the second stage, we follow Zelenyuk and Zeka [27] and trim the right tails of the 

distributions resulting in 165 observations being eliminated from the sample.  As sensitivity 

analysis, we performed a Simar-Zelenyuk-adapted-Li test in order to test the null hypothesis 

of equality of cost inefficiency distributions between the samples before and after the 

trimming.  Based on this test, we failed to reject the null hypothesis (bootstrap p-value was 

0.70) indicating that the trimming had an insignificant effect on the estimated inefficiency 

distributions.  Table 2.2 (column 2) presents the distributions of CAHs and non-CAH, PPS 

rural hospitals in the sample, by year, after the trimming of outliers.  All estimations are 

based on this trimmed sample. 

Table 2.2. Summary statistics of DEA estimated efficiency scores. 

  
  Cost 

Efficiency 

 
Technical 
 Efficiency 

 
Allocative  
Efficiency   

 Group N Mean Std. dev.  Mean Std. dev.  Mean Std. dev. 
CAH2006 750 0.464 0.144  0.673 0.152  0.693 0.138 
CAH2005 752 0.462 0.138  0.676 0.150  0.688 0.137 
Pre-CAH1997 771 0.458 0.129  0.645 0.153  0.718 0.139 
Pre-CAH1998 767 0.455 0.130  0.645 0.149  0.713 0.138 
Rural2006 293 0.580 0.178  0.694 0.147  0.826 0.121 
Rural2005 295 0.586 0.170  0.703 0.144  0.825 0.119 
Rural1997 294 0.516 0.152  0.652 0.141  0.789 0.128 
Rural1998 293 0.531 0.147  0.658 0.133  0.804 0.124 
CAH 1,502 0.463 0.141  0.674 0.151  0.690 0.138 
Non-CAH 2,713 0.498 0.153  0.659 0.149  0.757 0.140 
All 4,215 0.486 0.150  0.665 0.149  0.733 0.143 
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Table 2.2 also shows summary statistics of DEA-estimated cost, technical, and 

allocative efficiency scores for CAHs and non-CAH, PPS rural hospitals in each year as well 

as combined.  The average level of cost efficiency for CAHs changed only slightly over the 

study period (from 45.5 percent in 1998, before conversion to CAH status, to 46.4 in 2006), 

while for the comparison group of non-converting, PPS rural hospitals, cost efficiency 

increased from 51.6 percent in 1997 to 58 percent in 2006.  While mean technical efficiency 

increased for both groups, mean allocative efficiency decreased for CAHs from 71.8 percent 

in 1997 (in the pre-conversion period) to 69 percent in 2006 (after conversion to CAH status), 

while it increased for the non-converting rural hospitals from 79 percent to 82.6 percent over 

the same period.   

2.6.1 Analysis of Inefficiency Distributions 

Figure 2.1 shows the distributions of inefficiency scores for CAHs and the comparison group 

of non-converting, PPS rural hospitals in 2005 and 2006.  We observe a large rightward shift 

from the efficient unity of the distributions of cost and allocative inefficiency scores of CAHs 

relative to those of non-converting rural hospitals in 2005 and 2006, suggesting that CAHs 

tend to be less cost and allocatively efficient than non-converting rural hospitals.  The results 

are also supported by the Simar-Zelenyuk-adapted-Li tests (Table 2.3) which strongly 

rejected the null hypotheses on equalities of inefficiency distributions between CAHs and 

non-converting, PPS rural hospitals.  On the other hand, the differences are not so clear in 

terms of technical inefficiency distributions between CAHs and non-converting, PPS rural 

hospitals, and the Simar-Zelenyuk-adapted-Li test rejected the null hypothesis of equality 

only for 2005. 

Figure 2.2 shows the distributions of inefficiency scores of hospitals before (1997 and 

1998) and after (2005 and 2006) the conversion to CAH status.  Simar-Zelenyuk-adapted-Li 

tests (Table 2.3) in conjunction with estimated densities show that CAHs in 2005 and 2006 
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tend to be slightly less allocatively efficient while they are slightly more technically efficient 

relative to their pre-conversion selves.  In terms of cost inefficiency distributions, there seems 

to be no significant differences over the same period of time.   

A comparison of inefficiency distributions between all CAHs and all non-CAH rural 

hospitals in our sample (Figure 2.3) shows that CAHs are less allocatively and cost efficient, 

while they tend to be slightly more technically efficient, than non-CAH, PPS rural hospitals.  

However, the difference in technical inefficiency between CAHs and non-CAH rural 

hospitals is not statistically significant as indicated by Simar-Zelenyuk-adapted-Li test in 

Table 2.3. 

Table 2.3. Simar-Zelenyuk-adapted-Li test for equality of inefficiency distributions. 

Cost  
Inefficiency 

 Allocative  
Inefficiency 

 Technical  
 Inefficiency 

Null Hypothesis Li test  ap-val  Li test  ap-val  Li test  ap-val 
f(cah06)=f(rur06) 25.58 0.000  37.07 0.000  0.22 0.809 
f(cah05)=f(rur05) 32.59 0.000  40.49 0.000  1.77 0.040 
f(cah06)=f(cah97) 1.35 0.068  1.58 0.042  1.97 0.027 
f(cah06)=f(cah98) -0.23 0.800  0.60 0.419  1.30 0.070 
f(cah05)=f(cah97) 1.43 0.055  2.31 0.013  2.11 0.024
f(cah05)=f(cah98) 0.00 0.999  0.80 0.248  2.20 0.023 
f(cah)=f(non-cah) 12.67 0.000  45.64 0.000  0.70 0.425 
a Bootstrap p-value. The number of bootstrap iterations is 2000. All estimations are done by authors in Matlab 
adopting from programs written for [8]. 

2.6.2 Bootstrapped Truncated Regressions 

Table 2.4 summarizes the results of bootstrapped truncated regressions in which cost, 

technical, and allocative inefficiency scores are regressed against a set of environmental 

variables (see Tables A.2.5, A.2.6, and A.2.7 in Appendix 1 for percentile bootstrap 

confidence intervals).  As an interpretation rule, a positive (negative) coefficient indicates a 

positive (negative) effect on hospital inefficiency.   

 



32 

 

 

 

 

Figure 2.1. Densities of inefficiency scores: CAHs vs. non-converting, PPS rural hospitals in 
2005 and 2006. 



33 

 

 

 

 

Figure 2.2. Densities of inefficiency scores: CAHs in 2005 and 2006 vs. pre-conversion 
hospitals in 1997 and 1998. 



34 

 

 

 

 

Figure 2.3. Densities of inefficiency scores: CAHs vs. non-CAH, PPS rural hospitals. 
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 The primary variable of interest is the CAH dummy which indicates whether CAHs 

are more or less inefficient relative to the non-CAH, PPS rural hospitals.  The results show 

that the coefficient of the CAH dummy is positive and significant at the 1 percent level in the 

cost and allocative inefficiency models and insignificant in the technical inefficiency model, 

suggesting that CAHs are more cost and allocatively inefficient than non-CAH, PPS rural 

hospitals, while they are no less technically efficient.  These results support, in part, our 

hypothesis that CAHs are less cost efficient than non-CAH, PPS rural hospitals because of 

the differences in Medicare reimbursement facing these hospitals. 

The results also show that for-profit hospitals are less cost and allocatively inefficient 

than non-profit hospitals, while government hospitals are more cost, technically, and 

allocatively inefficient relative to non-profit ones.  These results are consistent with PRT 

which suggests that for-profit hospitals are more efficient than non-profit and government 

hospitals because a profit maximization objective requires hospitals to reduce their costs and 

use their resources in an efficient manner. 

The estimated results show that Medicare share of admissions has a positive and 

significant effect on the cost and technical inefficiencies of hospitals.  This is in contrast with 

the negative effect of the same variable on the hospital cost inefficiency found by Rosko and 

Mutter [10].  An explanation for this discrepancy is that both papers analyze a joint set of 

cost-based reimbursed CAHs and PPS reimbursed rural hospitals and one can expect an 

inconclusive effect of Medicare share of admissions on hospital efficiency in this situation.  

Alternatively, our results show that Medicaid share of admissions has a negative and 

significant effect (at the 1 percent level) on the cost and technical inefficiencies of hospitals.  

It is well known that Medicaid payments are low and that Medicaid typically underpays 

hospitals forcing them to reduce costs in order to maintain their financial viability.  Thus, our 
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results are consistent with prior research which has shown that Medicaid exerts cost 

containment pressure and provides a strong incentive for efficiency [22].    

Table 2.4. Results of bootstrapped truncated regressions. 

 Variable 
Cost 

Inefficiency 
Technical 

Inefficiency 
Allocative 

Inefficiency 
CAH 0.3987*** 0.0217 0.5482*** 
Government 0.2028*** 0.1374*** 0.0746*** 
For-profit -0.1453*** 0.0501 -0.2948*** 
Medicare 0.0043*** 0.0034*** 0.0007 
Medicaid -0.0058*** -0.0053*** -0.00003 
HHI 0.0171 0.0806*** -0.0731*** 
System -0.1535*** -0.0935*** -0.0524** 
Income -0.000006*** -0.000005*** 0.000001 
MHMO -0.0054*** -0.0059*** 0.0014 
Emergency -0.0006 0.0005 -0.0010* 
Surgeries -0.0035 -0.0043 -0.0019 
Births -0.0076*** -0.0011 -0.0085*** 
2006 -0.2987*** -0.0749** -0.4124*** 
2005 -0.3417*** -0.1209*** -0.3980*** 
1998 -0.0165 -0.0184 -0.0136 
Constant 2.3273*** 1.5242*** 1.2826*** 
***, **, and *  denote significance at 1%, 5%, and 10% levels 
a Estimation based on Algorithm 1 of Simar and Wilson [9], with 2000 bootstrap replications for confidence 
intervals of the estimated coefficients.  All estimations are done by authors in Stata 11.  
 

System membership has a negative and significant effect on hospital inefficiency, 

suggesting that hospitals belonging to a multihospital system are less cost, technically, and 

allocatively inefficient than non-system hospitals.  These results are consistent with previous 

literature which suggests that system membership may enhance hospital performance because 

hospital systems enjoy economies of scale in production, eliminate duplicative administrative 

functions, and have greater bargaining power in the market [22].  Similarly, the negative 

effect of Medicare HMO on hospital cost and technical inefficiencies suggests that Medicare 

HMO penetration creates pressure for hospitals to operate more efficiently.  In particular, 

health maintenance organizations have contributed to health care cost containment by using 

their market power to extract large discounts from providers and, thus, forcing hospitals to 
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reduce costs in order to remain financially viable [28].  We also found a negative and 

significant effect (however, small in magnitude) of the county median household income on 

the cost and technical inefficiencies.   

The results show that HHI has an insignificant coefficient in the cost inefficiency 

model, while the coefficient is negative and significant in the allocative inefficiency model 

and positive and significant in the technical inefficiency model.  Previous literature also 

reported mixed findings with respect to the effect of HHI on hospital efficiency.  For 

example, an inverse relation between HHI and hospital inefficiency, suggesting that a 

decrease in HHI (or an increase in hospital competition) leads to an increase in hospital 

inefficiency, was associated with the theory of service-based competition.  That is, hospitals 

in more competitive markets have higher costs and tend to be more inefficient because they 

compete for patients based on the services provided.  Alternatively, the theory of price-based 

competition predicts that if competition is increased hospitals will compete for patients by 

reducing costs and improving efficiency [22]. 

Our results also indicate that hospitals (both CAHs and non-converting, PPS rural 

hospitals) in 2005 and 2006 are more cost, technically, and allocatively efficient relative to 

the same set of hospitals in 1997.  This may raise concerns that pooling all data across all 

time may lead to a trending issue.   While the yearly dummies were included to control for 

time effects, we also performed sensitivity analysis and estimated the models using only data 

for 2005 and 2006.  Specifically, DEA was used, in the first stage, with 2005 and 2006 data 

jointly to estimate cost, technical, and allocative efficiency scores.  The null hypothesis on 

equality of cost efficiency distributions between 2005 and 2006 was tested and failed to reject 

(based on Simar-Zelenyuk test with a bootstrap p-value = 0.56).  Similarly, the equality of 

technical efficiency distributions between 2005 and 2006 was not rejected (bootstrap p-value 

= 0.63).  Second stage bootstrapped truncated regressions were estimated with pooled data 
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for the two years.  The results were consistent and similar to the estimated models with 

pooled data for all four years, suggesting that our results were robust (see Table A.2.8 in 

Appendix 1). 

2.6.3 Discussion  

The CAH Program appears to have created two separate incentive structures for those rural 

hospitals that converted to CAH status.  The first, a change in mission, appears to have 

increased the technical efficiency of CAHs in 2005 and 2006 relative to their pre-conversion 

selves in 1997 and 1998, as shown by the results in Table 2.2 and by the density analysis.  At 

the same time, CAHs appear to be as technically efficient as non-CAH, PPS rural hospitals in 

our sample, as shown by density analysis and bootstrapped truncated regression results.  It is 

possible that the program’s mission change requirements (limitations on the maximum 

number of acute care beds to 25 and average length of stay to 4 days) may have resulted in 

the same proportional technical efficiency improvements that PPS cost containment pressures 

may have had on the non-converting rural hospitals.  It might also be the case that all the 

hospitals in the study experienced general improvements in technical efficiency over the 

study period. 

The second incentive structure associated with CAH conversion is Medicare cost-

based reimbursement which has dramatically changed hospitals’ financial incentives.  

Previous research found  that hospitals that converted to CAH status significantly increased 

their Medicare revenue, profitability, employee salaries, and capital expenditures due to 

Medicare cost-based reimbursement [14].  Furthermore, the average salary per FTE employee 

increased dramatically for hospitals after CAH conversion while it increased only modestly 

for non-converting, PPS rural hospitals [16].  Thus, it may be the case that the allocative 

efficiency declines may be due to the inability of CAH hospitals to substitute away from the 

higher labor costs identified by previous literature.   
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Alternatively, anecdotal evidence suggests that after CAH hospitals improved their 

balance sheets post-conversion, they may have embarked on construction of new hospitals or 

major infrastructure upgrades at existing CAH hospital locations.  These infrastructure 

improvements add to the average fixed cost of hospitals.  Such increased fixed capital 

expenditure (which cannot be substituted away from) may lead to increased allocative 

inefficiency in the short term that is mitigated in the longer term as these capital costs are 

spread over a longer time horizon.3 

2.7 Conclusions  

This study analyzed the impact of conversion to CAH status on hospital efficiency using a 

two-stage approach and recent methodological advancements in efficiency analysis.  In the 

first stage, DEA was used to estimate hospital cost, allocative, and technical efficiency 

scores.  Using a kernel density estimator and a bootstrap-based test, we estimated and 

compared the distributions of inefficiency scores of CAH hospitals before and after 

conversion, as well as with those of a comparison group of non-converting, PPS rural 

hospitals.  In the second stage, bootstrapped truncated regressions were estimated in which 

cost, technical, and allocative inefficiencies were regressed on explanatory variables. 

The results of Simar-Zelenyuk-adapted-Li test and density analysis showed that 

CAHs were less cost and allocatively efficient than the comparison group of non-converting 

rural hospitals in 2005 and 2006, while they were no less technically efficient.  When 

compared with their pre-conversion selves in 1997 and 1998, CAHs appeared to be slightly 

less allocatively efficient, while they were slightly more technically efficient and no less cost 

                                                            

3 Allocative inefficiency may be driven by the depreciation schedule.  Infrastructure improvements (including 
equipment) may have an accelerated depreciation rate in years just after construction/purchase with reduced 
depreciation in later years.  This would result in CAH hospitals making these improvements to show increased 
allocative inefficiency in the short term, but allocative efficiency improvements in the long term as the 
annualized price of capital shifts the isocost curve back toward a lower cost input mix with labor.  
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efficient.  The second stage bootstrapped truncated regression results showed that CAHs were 

less cost and allocatively efficient than non-CAH, PPS rural hospitals, while they were no 

less technically efficient. 

A shortcoming of this research is the lack of quality controls.  While our results would 

have been strengthened with the inclusion of quality measures, the approach taken here to 

study the impact of CAH conversion on hospital efficiency made it impossible to find quality 

measures for the two years before conversion (1997 and 1998).  As new data become 

available, future research on CAH efficiency should incorporate quality controls in the 

methodological advancements proposed by Simar and Wilson [9].  

The Critical Access Hospital program has created incentives to maintain inpatient 

access in remote rural areas of the U.S. at an increased cost.  While the results suggest that 

overall economic (cost) efficiency declined, the inability to quickly substitute to lower cost 

inputs as input prices change may be the leading driver of that inefficiency.   Federal 

programs should consider strategies that help CAH hospitals reduce labor inputs as their 

labor costs increase as well as identify lower cost models for providing up-to-date facilities 

and equipment. 
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CHAPTER 3 

COST EFFICIENCY OF RURAL HOSPITALS:  
DEA, TWO-STAGE APPROACH, AND STOCHASTIC FRONTIER ANALYSIS  

3.1 Introduction 

In this study, I compare the performance of two groups of rural hospitals in the U.S. operating 

under different Medicare reimbursement systems.  Specifically, I statistically test for cost 

efficiency differences between cost-based reimbursed Critical Access Hospitals (CAHs) and 

rural hospitals reimbursed under the Prospective Payment System (PPS) using three 

methodological approaches.  The first method is data envelopment analysis (DEA) which is a 

nonparametric approach that uses linear programming to estimate cost efficiency scores.  A 

nonparametric kernel density estimator is used to estimate the densities of cost efficiency scores 

of CAH and PPS rural hospitals, and the null hypothesis on equality between these densities is 

tested using a bootstrap-based test suggested by Simar and Zelenyuk [1].  The second method is 

the two-stage, semi-parametric approach in which cost efficiency scores, estimated in the first 

stage using DEA, are regressed, in the second stage, on explanatory variables expected to 

influence hospital cost efficiency.  In the second stage, both a tobit model (which has been 

traditionally used in the literature) and a truncated regression with a bootstrap procedure 

suggested by Simar and Wilson [2] are used to make inferences about the impact of 

environmental variables (in particular, CAH status) on hospital cost efficiency.  Finally, the third 

method is stochastic frontier analysis (SFA) which is a parametric approach based on a cost 

function.   

The CAH Program was created in 1997 in response to the dramatic deterioration of 

financial conditions (and the potential threat of closure) of small rural hospitals.  Medicare has 
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paid enhanced cost-based reimbursement, representing 101 percent of costs, to rural hospitals 

participating in the CAH Program, providing they meet several requirements before conversion.1  

In contrast, Medicare PPS pays the remainder hospitals a fixed price per case based on the 

diagnosis related group (DRG), allowing hospitals to keep the difference between this fixed price 

and actual cost.  The two reimbursement methods provide different incentives for hospitals.  In 

particular, Medicare cost-based reimbursement − which was the reimbursement method for 

hospitals before 1983 − provided an incentive for hospitals to increase costs in order to receive 

higher revenues because Medicare paid for the total cost of services [3-4].  The PPS, on the other 

hand, has been designed to promote efficiency in hospital operations by motivating hospitals to 

keep their costs below the PPS reimbursement rates [5]. 

In the efficiency analysis literature, there has been considerable interest in reconciling 

SFA and DEA [6].  Two of the studies that compared the two methods are Chiricos and Sear [7]  

for US hospitals and Jacobs [8] for hospitals in the UK.  Both studies found significant 

differences between the results from the two approaches.  Using SFA, Rosko and Mutter [9] 

compared the cost inefficiency of CAHs with that of non-CAH rural hospitals and found that, on 

average, CAHs were more cost inefficient than non-CAH rural hospitals.   

To the best of my knowledge, this is the first study providing empirical applications of 

methodological approaches of efficiency analysis ranging from fully nonparametric, to semi-

parametric, and to fully parametric to analyze cost efficiency differences between two groups of 

rural hospitals operating under different Medicare reimbursement systems.  A nonparametric 

                                                            
1 To be eligible for CAH conversion, a hospital must be located at least 35 miles by primary road, or 15 miles by 
secondary road, from another hospital; use no more than 25 acute care beds (however, CAHs have no limitations on 
non-acute care beds); annual average length of stay cannot be greater than 4 days, and the hospital must provide 24-
hour emergency care services.   
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approach, such as DEA, requires minimal statistical assumptions and, thus, avoids the risk of 

specification error.  However, the deterministic nature of DEA does not account for statistical 

noise in efficiency estimation.  A fully parametric approach, such as SFA, requires restrictive 

assumptions in terms of a functional form and probability distributions, but it accounts for 

statistical noise in efficiency estimation.  A semi-parametric approach, such as the two-stage 

approach, is less restrictive than SFA in the sense that some features of the statistical model are 

left unspecified. 

3.2 Methods 

3.2.1 DEA Cost Efficiency Estimator 

DEA uses linear programming to construct a piecewise linear estimate of the best-practice 

(efficient) frontier enveloping all the data.  The efficiency score of a firm is measured relative to 

this best-practice frontier.  As a nonparametric method, DEA requires no specific assumptions 

about the functional form of the frontier and, thus, avoids any misspecification problems.  

However, DEA is deterministic, meaning that deviations from the efficient frontier are entirely 

assumed to be due to inefficiency and no allowance is made for statistical noise or measurement 

error.  Nevertheless, some good statistical properties have been recently unveiled for the DEA 

efficiency estimator, the most important of which is consistency [10]. 

DEA measures cost efficiency in two steps.  First, given input prices and output levels, 

the cost-minimizing input vector for each hospital is calculated using linear programming (LP).    

Specifically, let yrj be an output vector (r = 1,…, m) and xij an input vector (i = 1,…., k) for 

hospital j (j = 1,…., n).  For a given output level yro and an input price vector wio for hospital o, 

the minimum cost under the assumption of variable returns to scale is obtained by solving the 

following LP problem:  
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The optimal solution to this LP problem is the input vector *
iox which minimizes the cost of 

producing the observed level of outputs given input prices.  Cost efficiency δ is measured as the 

ratio of minimum cost to observed cost and takes a value between 0 and 1, where a value of 1 

indicates a cost efficient hospital: 

io
k

i ioio
k

i io xwxw ∑∑ ==
=

1
*

1
δ .          (2)  

3.2.2 Density Analysis of DEA Efficiency Scores 

Simply comparing only the sample means of DEA cost efficiency scores of CAHs and non-

converting rural hospitals may not provide a complete picture.  An alternative approach is to 

estimate and compare the densities of efficiency scores of the two groups of rural hospitals.    

There are, however, two important problems with this approach: (1) some of the DEA efficiency 

scores equal to 1, by construction, violating the continuity assumption required for consistency 

of the kernel density estimation, and (2) in finite samples, the estimated efficiency scores are 

biased and not independent (however both these problems vanish asymptotically).  To address 

these problems, Simar and Zelenyuk [1] suggested kernel methods to consistently estimate the 

densities of DEA estimated efficiency scores and proposed a bootstrapped-based test for testing 

the null hypothesis on equality of these densities (see Simar and Zelenyuk [1], for details).    

3.2.3 Two-Stage, Semi-parametric Approach 

In the two-stage approach, cost efficiency scores, estimated in the first stage using DEA, are 

regressed, in the second stage, on environmental variables to investigate the dependency of 

hospital efficiency on such explanatory variables.  In health care applications of the two-stage 
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approach, the tobit (censored) model has been a popular analytical technique used in the second 

stage.  Simar and Wilson [2], however, criticized previous two-stage studies because of the 

failure to define a coherent statistical model consistent with the second stage analysis.  

Additionally, they argue that inference in the previous two-stage studies is invalid because of the 

failure to account for the serial correlation present among efficiency estimates.  Simar and 

Wilson [2] defined a statistical model consistent with the second stage analysis which requires a 

truncated regression in the second stage.  Further, they suggested a bootstrap procedure to 

provide valid inference about the effects of explanatory variables on estimated efficiency in the 

second stage truncated regression.    

In the second stage, I specify the following truncated regression model: 

1ˆ0 ≤+=< jjj z εβδ ,     j = 1, 2, …., n       (3) 

where jδ̂  is DEA estimated cost efficiency score of the j-th hospital, εj is assumed to be 

distributed N(0, σ2) with left truncation at βjz− and right truncation at βjz−1 , jz is a vector of 

k environmental variables which are thought to affect hospital efficiency, and β is a vector of 

parameters to be estimated.  It has been shown that the DEA efficiency estimates used as the 

dependent variable in the second stage regression are serially correlated [2].  While this 

correlation disappears asymptotically, Simar and Wilson [2] showed that conventional methods 

for inference in the second stage regression are invalid.  To provide valid inference in the second 

stage analysis, they suggested a bootstrap algorithm which is a parametric bootstrap of the 

truncated regression.  Here, I use their Algorithm 1 bootstrap procedure, modified for lower and 

upper bounds of DEA cost efficiency scores, which has the following steps: 
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1. Estimate the truncated regression 1ˆ0 ≤+=< jjj z εβδ  using the m < n observations 

where 1ˆ <jδ  (j = 1,.…, m), to obtain an estimate β̂  of β. 

2. Loop over the next three steps L = 2000 times to obtain a set of bootstrap estimates 

{ }L

b 1
*ˆ

==Β β : 

i. For each j = 1,…., m, draw εj from N(0, 2σ̂ ) with left truncation at β̂jz−  and right 

truncation at β̂1 jz− . 

ii. For each j = 1,….., m compute jjj z εβδ += ˆ* . 

iii. Estimate the truncated regression of *
jδ on jz  yielding estimates *β̂ .  

3. Use the bootstrap values in B and the original estimates of β̂  to construct percentile 

confidence intervals for each element of β. 

3.2.4 Stochastic Frontier Analysis     

Alternatively, hospital cost efficiency can be estimated using SFA which, in a general form, 

specifies total cost as a function of outputs and input prices plus a composite error term [11]: 

jjjj wyfTC ε+= ),( ,           (4) 

and jjj uv +=ε ,  j = 1, 2, …., n       

where TCj represents the total cost of the j-th hospital, yj is a vector of outputs, wj is a vector of 

input prices, and εj is a composite error term.  εj is decomposed as random statistical noise vj, 

assumed normally distributed, plus cost inefficiency uj for which a distribution must also be 

assumed.2  Additionally, one must also specify a functional form for the cost equation.  The most 

                                                            
2 Distributions generally assumed for the inefficiency error term are: half-normal, truncated-normal, exponential and 
gamma.   
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popular functional forms used in empirical research have been the translog and Cobb-Douglas 

cost functions.  Given the distributional assumptions for the two error terms, the model is 

estimated by maximum likelihood [11].   

In SFA, the impact of environmental variables on the cost inefficiency is specified as: 

jjj zu ηβ +=ˆ ,  j = 1, 2, …., n         (5) 

where jû  is the SFA estimated cost inefficiency, zj is the vector of environmental variables, β is 

a vector of parameters to be estimated and ηj is a random variable defined by the truncation of 

the normal distribution with mean zero and variance σ2.  The stochastic frontier cost model used 

in this study allows cost inefficiency to be explicitly modeled as a function of environmental 

variables, the parameters of which are estimated simultaneously with the stochastic frontier cost 

function in a one-stage procedure [11].  

3.3 Data 

In this study, we use data from the 2005 and 2006 American Hospital Association (AHA) 

Annual Survey of Hospitals, the Area Resource File, the Medicare Hospital Cost Report, and the 

Centers for Medicare and Medicaid Services (CMS) Hospital Compare public reporting database 

for hospital quality measures.  The analyzed sample consists of CAH rural hospitals and non-

converting, PPS rural hospitals.  Following Stensland, Davidson, and Moscovice [12], we restrict 

the PPS rural hospitals to those with no more than fifty beds, allowing us to have two groups of 

rural hospitals of similar size.  While CAHs are restricted to no more than 25 acute care beds, 

they have no restrictions on long-term care beds such as skilled nursing home beds; the mean for 

CAHs’ total staffed and licensed beds in our sample was 36 while for non-converting rural 

hospitals was 38 (Table 3.2).   
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One of the goals of the CAH Program has been to improve the quality of care provided 

by CAHs.  To control for the quality of care, we follow Nayar and Ozcan [13] and use quality 

measures publicly available from the CMS Hospital Compare database.  For this study, only two 

quality measures reflecting recommended treatments for pneumonia are selected because of a 

large number of missing observations on the other quality measures.  Additionally, only those 

hospitals for which quality measures were calculated based on at least 25 patients (consistent 

with CMS recommendations) are used in the analysis, further reducing the sample size.  The two 

quality measures used in this study are: (1) percent of patients given pneumococcal vaccination, 

i.e., pneumonia patients age 65 and older who were screened for pneumococcal vaccine status 

and were administered the vaccine prior to discharge, if indicated; (2) percent of patients given 

initial antibiotic timing, i.e., pneumonia patients given initial antibiotic within four hours after 

arrival.  Casey et al. [14] found these to be relevant quality measures for CAHs.  The data sample 

consists of 331 rural hospitals in 2005 (of which 178 were rural CAHs), and 429 in 2006 (of 

which 224 were rural CAHs).3   

 For the specification of the stochastic frontier cost function, we followed previous 

literature [9,15].  Specifically, we used total hospital expenses (exptot) as the dependent variable, 

and input prices, hospital outputs, and product mix descriptors as explanatory variables.  Hospital 

outputs consist of outpatient visits (opv), admissions (admtot), and post-admission days 

(postdays) (inpatient days – admissions).  Consistent with previous literature, we control for 

hospital output heterogeneity using product mix descriptors (PMD): percent of emergency room 

visits (erv%) ((emergency room visits / outpatient visits) × 100), percent of outpatient surgeries 

(outsurg%) ((outpatient surgeries / outpatient visits) × 100) and percent of births (birth%) 

                                                            
3 For consistency, CAHs located in metropolitan statistical areas were eliminated from the analysis. 
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((births / admissions) × 100).  Additionally, we control for quality of care using percent of 

patients given pneumococcal vaccination (pneum_vac%) and percent of patients given initial 

antibiotic timing (initial_antib%).  We also include the number of hospital beds as a proxy for 

fixed costs in the cost function.  Input prices used in the analysis are: the price of labor (w) (sum 

of payroll expenses and employee benefits divided by the full-time equivalent facility personnel) 

and the price of capital (pk) (sum of depreciation expenses and interest expenses divided by the 

number of facility beds) [15].  The assumption of linear homogeneity in input prices is imposed 

by normalizing the cost equation by the price of labor. 

The DEA cost model requires information on hospital outputs, inputs, and input prices 

[16].  For consistency, we used the same hospital outputs and input prices as in the stochastic 

frontier cost function.  However, the product mix descriptors used in the SFA are included as 

actual outputs in the DEA model.  Specifically, we used the following hospital outputs in our 

DEA model: outpatient visits, admissions, post-admission days, emergency room visits, 

outpatient surgeries, and births.  Consistent with previous literature, we used the two quality 

measures as additional outputs in the DEA model [13].  The physical inputs consist of full time 

equivalent (FTE) facility personnel and total staffed and licensed hospital beds, and the 

corresponding  input prices are identical to the ones in the SFA (the price of labor and the price 

of capital) (see Table 3.1 for the specifications of DEA and SFA models).    

A particular challenge in this study is adjusting outputs to control for case-mix variations.  

Unfortunately, there is no Medicare Case-Mix Index available for CAHs as these hospitals are 

exempted from the PPS system that reports case-mix data.  In the stochastic frontier cost 

function, percent of emergency room visits, percent of outpatient surgeries and percent of births 

are used to control for heterogeneity in hospital outputs [17].   
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Table 3.1. Variable definitions and model specifications. 

Variable Variable Definition DEA  SFA 
Outputs 
admtot Total hospital admissions Output Output 
postdays Post-admission days Output Output 
opv Total outpatient visits Output Output 
erv Emergency room visits Output 
outsurg Outpatient surgeries Output 
births Total births Output 
Product Mix Descriptors (PMD) 
erv% % Emergency room visits PMD 
outsurg% % Outpatient surgeries PMD 
birth% % Admissions for birth PMD 
Quality Indicators 
pneum_vac% %Patients given pneumococcal vaccination  Quality Output Quality Measure 
initial_antib% %Patients given initial antibiotic timing   Quality Output Quality Measure 
Inputs 
bdtot Total staffed and licensed hospital beds Input Fixed Input 
fte Full time equivalent (FTE) employee Input 
Input Prices 
pk $ Price of capital Input Price Input Price 
w $ Price of labor Input Price Input Price 
exptot $ Total hospital expenditure Total Cost 
Environmental Variables     
Government Government  hospital (1,0) Env. Variable Env. Variable 
For-profit For-profit hospital (1,0) Env. Variable Env. Variable 
Medicare% % Medicare admissions Env. Variable Env. Variable 
Medicaid% % Medicaid admissions Env. Variable Env. Variable 
HHI Herfindahl-Hirschman  index Env. Variable Env. Variable 
System Member of a multihospital system (1,0) Env. Variable Env. Variable 
MHMO% % Medicare HMO penetration Env. Variable Env. Variable 
CAH CAH hospital (0,1) Env. Variable Env. Variable 
Income Median household income Env. Variable Env. Variable 
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 Ozgen and Ozcan [18] noted that the lack of case-mix variables in DEA efficiency 

models is in part compensated by the specification of multiple outputs.  In the DEA model, we 

expand the set of outputs (beyond the ones used in SFA) in order to capture case-mix differences 

by including emergency room visits, outpatient surgeries, and births.   

The set of environmental variables used to explain cost efficiency, on which we focus in 

this analysis, is identical for both SFA and the second stage regression in the two-stage approach.  

For the specification of environmental variables, we follow Rosko and Mutter [9,17].  The 

primary variable of interest is a CAH dummy (one if the hospital has CAH status and zero 

otherwise) which is used to test whether CAHs are more or less cost efficient than non-

converting, PPS rural hospitals.  Dummy variables that define government hospitals 

(Government) and for-profit hospitals (For-profit) are included to control for internal pressure 

for efficiency associated with ownership.  Non-profit ownership is the reference category.  For-

profit hospitals are expected to be more cost efficient than non-profit and government hospitals 

because their profit-maximization objective provides a strong incentive for cost reduction and 

efficiency improvement.  Membership in a multihospital system (System), which is also 

introduced as a dummy variable, is also expected to be directly associated with hospital 

efficiency because hospital system membership has been shown to provide significant cost 

advantages [17]. 

Two variables are used to control for external pressure for efficiency associated with 

public payers: Medicare percent of admissions (Medicare%) ((Medicare admissions/total 

admissions)×100) and Medicaid percent of admissions (Medicaid%) ((Medicaid admissions/ 

total admissions)×100).  The effect of Medicare% on hospital cost efficiency is not clear given 

the joint use in estimation of the two groups of rural hospitals with different reimbursement 
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systems: cost-based reimbursed CAHs and PPS rural hospitals.  Medicaid, on the other hand, 

typically underpays hospitals and exerts cost containment pressure and, thus, Medicaid% is 

expected to be directly associated with hospital cost efficiency.  

Table 3.2. Summary statistics of variables. 

CAH  Rural 
Variable Mean SD  Mean SD 
admtot 1,072.12 427.87  1,730.83 737.84 
postdays 6,296.83 6,769.26  4,535.68 2,024.08 
opv 42,104.53 30,384.28  45,033.72 33,299.60 
erv 6,981.46 4,516.93  9,492.27 5,194.94 
outsurg 889.98 721.07  1,175.71 885.10 
births 97.53 109.61  202.41 213.33 
pneum_vac% 62.31 23.66  59.90 24.28 
initial_antib% 84.74 8.75  80.87 10.40 
bdtot 35.92 22.27  37.93 9.41 
fte 191.95 79.35  216.16 98.51 
pk 36,824.86 29,993.99  35,780.83 27,633.52 
w 50,747.63 13,418.28  49,177.05 12,514.33 
exptot 1.80E+07 9.31E+06  2.08E+07 1.20E+07 
erv% 20.60 13.52  26.49 16.71 
outsurg% 2.60 2.41  3.41 3.59 
birth% 7.91 7.90  10.86 10.21 
Environmental Variables          
Government 0.32 0.47  0.34 0.47 
For-profit 0.03 0.18  0.14 0.35 
Medicare% 59.90 12.57  52.47 11.77 
Medicaid% 13.05 7.98  17.37 9.65 
HHI 0.50 0.35  0.56 0.33 
System 0.42 0.49  0.51 0.50 
MHMO% 3.26 5.31  2.64 4.76 
Income 38,432.78 6,190.83  37,391.59 8,465.68 
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A Herfindahl-Hirschman index (HHI) is used to control for competitive pressure in a 

hospital’s market, which is defined as the county.  HHI is calculated by summing the squares of 

the market shares of admissions for all of the hospitals in the county and takes a value between 0 

and 1, with values approaching 1 indicating less competitive pressures.  Another source of 

external pressure for efficiency is Health Maintenance Organization (HMO) penetration.  We 

used percent of Medicare HMO penetration (MHMO%) from the Area Resource File as a proxy 

for general HMO penetration [9].   Median household income of the county (Income) and a 

dummy variable for 2006 to control for time effects are also included as environmental variables 

to explain hospital efficiency. 

 Summary statistics of the variables used in the empirical analysis are presented for both 

CAHs and the PPS rural hospitals in Table 3.2.   

3.4 Results 

We started the empirical analysis by performing a series of likelihood ratio tests to arrive at an 

appropriate specification of the SFA model.  Based on the results of these tests, we adopted a 

SFA cost model with a translog functional form and a half-normal distribution for the 

inefficiency error term.  The results of the SFA translog cost function are presented in the 

Appendix 2 (Table A.3.6), together with the likelihood ratio tests performed for the SFA model. 

Table 3.3 shows summary statistics of cost efficiency scores estimated by both DEA and 

the SFA with the two years of data jointly.  We present the reciprocal of SFA cost inefficiency 

scores.  The mean cost efficiency of all rural hospitals estimated using DEA without quality 

measures was 63.3%, increasing to 70% when quality measures were included.  Similarly, the 

mean cost efficiency estimated using SFA increased from 70.2% to 78.3% after inclusion of the 
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quality measures.  Mutter et al. [6] indicate that if quality is not controlled for in hospital 

efficiency estimation, it will show up as inefficiency. Our results confirm their statement. 

The DEA estimated mean cost efficiency (Table 3.3) for CAHs is 67.9% while for the 

comparison group of non-converting, PPS rural hospitals is 72.4%, indicating that CAHs are less 

cost efficient.  The mean cost efficiency estimated using SFA is 75.1% for CAHs and 81.8% for 

non-converting rural hospitals, also indicating that CAHs are less cost efficient.  As expected, 

there is a significant difference in the magnitude of efficiency scores estimated by DEA and 

SFA, which is attributed in principal to the differences in how the two methods account for 

statistical noise.    

3.4.1 Density Analysis of DEA Cost Inefficiency Scores 

Figure 3.1 shows the densities of DEA estimated cost inefficiency scores of CAHs and non-

converting, PPS rural hospitals in each year (a) as well as with the two years jointly used (b).  

Consistent with the original Simar and Zelenyuk (2006) test, we use the reciprocal of cost 

efficiency scores (cost inefficiency ≥ 1) for kernel density estimation.   In Figure 3.1(a), we 

observe a rightward shift from the efficient unity of the densities of cost inefficiency scores of 

CAHs relative to those of non-converting rural hospitals in 2005 and 2006 (a), suggesting that 

CAHs tend to be more cost inefficient than non-converting rural hospitals in both years.  Figure 

3.1(b) shows the densities of cost inefficiency scores of CAHs and non-converting rural hospitals 

with pooled data.  Again, we observe a rightward shift of CAHs’ density relative to the one for 

the PPS rural hospitals, suggesting that CAHs are more cost inefficient than the PPS rural 

hospitals.  These findings are also supported by the Simar-Zelenyuk test (Table 3.4) which 

rejected the null hypotheses on equality of densities between CAHs and PPS rural hospitals.  
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Table 3.3. Summary statistics of DEA and SFA estimated cost efficiency. 

    DEA  SFA 
Year N Mean SD  Mean SD 
CAH2005 178 0.678 0.184  0.792 0.034 
CAH2006 224 0.679 0.181  0.719 0.034 
Rural2005 153 0.720 0.163  0.864 0.038 
Rural2006 205 0.727 0.171  0.784 0.035 
CAH 402 0.679 0.182  0.751 0.050 
Rural 358 0.724 0.167  0.818 0.054 
All 760 0.700 0.177  0.783 0.062 
 

Table 3.4. Simar-Zelenyuk test on equality of densities of DEA cost inefficiency scores. 

Null Hypothesis Test *p-value 
f(CAH06)=f(Rural06) 4.13 0.002 
f(CAH05)=f(Rural05) 3.76 0.001 
f(CAH)=f(Rural) 6.35 0.000 
Notes: *Bootstrap p-value. The number of bootstrap iterations is 2000. All calculations are done by authors in 
Matlab adopting from programs written for Simar and Zelenyuk [1]. 
 

3.4.2 Marginal Effects of Environmental Variables  

Table 3.5 presents the results of three different approaches to estimate the marginal effects of 

environmental variables:  the DEA two-stage approach with a traditional tobit model, as well as 

with a bootstrapped truncated regression along the line of Simar and Wilson [2] (for which 99% 

and 95% bootstrap confidence intervals are shown), and SFA.  For tobit and bootstrapped 

truncated regression models, the dependent variable is DEA cost efficiency; therefore a positive 

(negative) coefficient suggests a positive (negative) effect on cost efficiency.  For SFA, the 

dependent variable is cost inefficiency, where a positive coefficient implies decreased efficiency.  

It should be noted that except for the insignificant Medicaid variable, all variables were 

consistent in sign – all variables that were negative in the DEA bootstrapped truncated regression 

were positive in the SFA cost inefficiency equation and vice versa. 
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(a) 

(b) 

Figure 3.1. Kernel estimated densities of DEA cost inefficiency scores of CAHs and non-
converting rural hospitals: (a) 2005 – 2006, and (b) pooled data) 
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The results show that the coefficient of our key variable, the CAH dummy, is positive 

and highly statistically significant (p-value < 0.01) in the SFA model.  This suggests that CAHs 

are more cost inefficient than non-converting, PPS rural hospitals.  An interpretation of this 

coefficient is that, after controlling for other factors, CAHs are 7.3% more cost inefficient than 

non-converting rural hospitals.  This is similar to the difference of 6.7% in mean group cost 

efficiency estimated by SFA (Table 3.3).  The marginal effect of the CAH dummy variable on 

cost efficiency is negative and statistically significant at the 1% level in the bootstrapped 

truncated regression, suggesting that CAHs are 5.2% less cost efficient than non-converting rural 

hospitals.  This is also similar to the difference of 4.5% in mean group cost efficiency estimated 

by DEA (Table 3.3).  In the tobit model, the same coefficient is negative but statistically 

insignificant (or significant only at the 10% level) and only half the size of the CAH coefficient 

in the bootstrapped truncated regression.  While these results support our hypothesis that CAHs 

are less cost efficient than non-converting, PPS rural hospitals because of the differences in 

Medicare reimbursement facing these two groups of rural hospitals, they also show how results 

of the tobit model in this case may lead to an alternative interpretation. 

The estimated results show a positive and statistically significant coefficient of 

government ownership in the SFA model, suggesting that government owned rural hospitals are 

more cost inefficient than nonprofit rural hospitals, a result that is consistent with previous 

literature [9].  In the two-stage approach, the effect of government ownership on hospital cost 

efficiency is negative but significant only in the tobit model.  For-profit ownership, on the other 

hand, was not found to impact efficiency in any of the three models.   

The share of Medicare admissions has a negative and significant coefficient in both tobit 

and bootstrapped truncated regression models, suggesting that an increase in Medicare 
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admissions is inversely associated with hospital efficiency.  Similar to Rosko and Mutter [9], the 

coefficient of Herfindahl-Hirschman index is positive and significant only in the SFA model, 

suggesting that an increase in HHI (or a decrease in market competition) is directly associated 

with hospital cost inefficiency. This is also consistent with the concept of price-based 

competition which suggests that if competition is increased, hospitals will compete for patients 

by reducing costs [17].  

The positive and significant coefficient of system membership found in the tobit and 

bootstrapped truncated regression models suggests that rural hospitals that are members of a 

multihospital system are more cost efficient than the ones that are not.  System membership has 

been shown to improve hospital performance because hospital systems can take advantage of 

economies of scale and eliminate duplicative administrative functions [17].   

The negative and significant coefficient of Medicare HMO found in the SFA model 

suggests that HMO penetration creates pressure for rural hospitals to reduce cost inefficiency, a 

result consistent with previous literature [9].  Finally, the positive and significant coefficient of 

the county median household income in the SFA model suggests a direct relationship between 

this variable and hospital cost inefficiency [9]. 

3.5 Discussion and Conclusions 

This study compared efficiencies of two groups of rural hospitals operating under different 

Medicare reimbursement systems.  Cost efficiency scores were estimated using two different 

frontier methods: DEA and SFA.  Comparisons of mean cost efficiencies between cost-based 

reimbursed CAH rural hospitals and non-converting, PPS rural hospitals revealed that CAHs 

were less cost efficient than non-converting rural hospitals.  I found that CAHs were, on average,
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Table 3.5. Estimated effects of environmental variables on cost efficiency/inefficiency. 

  Tobit Regression  Bootstrapped Truncated Regression  SFA 
 Cost Efficiency   Cost Efficiency  Cost Inefficiency 

 99% Bootstrap C.I. 95% Bootstrap C.I.  
Variable β t-stat  β LB UB LB UB  β t-stat
Constant 0.8522** 11.05 0.8138** 0.6569 0.9712 0.6943 0.9322 0.0058 0.01
CAH -0.0271 -1.77 -0.0524** -0.0843 -0.0214 -0.0768 -0.0287 0.0732** 11.90
Government -0.0384* -2.38 -0.0152 -0.0474 0.0178 -0.0390 0.0099 0.0285** 22.52
For-profit 0.0180 0.65 0.0249 -0.0385 0.0829 -0.0219 0.0686 -0.0040 -0.17
Medicare% -0.0017* -2.38 -0.0015* -0.0030 0.0000 -0.0026 -0.0003 0.0009 1.83
Medicaid% -0.0006 -0.56 -0.0005 -0.0026 0.0016 -0.0021 0.0011 -0.0019 -1.93
HHI -0.0059 -0.28 -0.0157 -0.0573 0.0234 -0.0474 0.0158 0.0541** 2.75
System 0.0481** 3.11 0.0432** 0.0129 0.0730 0.0196 0.0664 -0.0169 -0.95
Income -8.35E-07 -0.77 -1.34E-06 -3.54E-06 7.95E-07 -3.05E-06 2.80E-07 2.99E-06** 2.85
MHMO% -0.0008 -0.58 0.0016 -0.0013 0.0045 -0.0006 0.0038 -0.0035* -2.23
Y2006 0.0123 0.82 0.0011 -0.0286 0.0301 -0.0219 0.0235 0.0856 0.90
Notes:  ** and * denote significance at 1% and 5% levels.  Estimation of bootstrapped truncated regression is based on Algorithm 1 of Simar and Wilson (2007), 
modified for left and right truncations, with 2000 bootstrap replications for confidence intervals.  The dependent variable in tobit and bootstrapped truncated 
regression models is cost efficiency while in SFA model is cost inefficiency. 
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4.5% less cost efficient than non-converting rural hospitals in the DEA model while the results of 

the SFA model showed that CAHs were, on average, 6.7% less cost efficient than non-

converting rural hospitals.  Using SFA, Rosko and Mutter [9] found that CAHs were 5.6% less 

cost efficient than non-converting rural hospitals.  Additionally, the densities of DEA cost 

inefficiency scores were estimated and compared using a nonparametric kernel density estimator 

and a bootstrap-based test suggested by Simar and Zelenyuk [1].  The results of Simar-Zelenyuk 

test and density analysis of DEA cost inefficiency scores also showed that CAHs were less cost 

efficient than non-converting rural hospitals.   

 An alternative approach employed to analyze the effect of Medicare reimbursement 

system on rural hospital cost efficiency was incorporated by using a CAH dummy and estimating 

its marginal effect using SFA as well as the two-stage DEA approach.  By now, it is well 

established in the literature how to use SFA to make valid inferences about the effects of 

environmental variables on estimated cost inefficiency [11].  The two-stage approach, in which 

efficiency scores estimated in the first stage by DEA are regressed in the second stage on 

environmental variables, has been popular in the efficiency analysis literature.  Many of the 

previous studies used a tobit model in the second stage.  However, Simar and Wilson [2] 

criticized previous applications of the two-stage stage approach, mainly because of the failure to 

account for the correlation present among efficiency estimates and the use of tobit in the second-

stage analysis.  They defined an alternative statistical model where the truncated regression with 

bootstrap leads to consistent estimation in the second stage analysis.   

  In this study, we estimated the marginal effects of environmental variables (CAH status, 

ownership, Medicare and Medicaid, etc.) on hospital cost efficiency using SFA and the two-stage 

DEA approach with tobit as well as with the bootstrapped truncated regression suggested by 
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Simar and Wilson [2].   Our key variable, the CAH dummy, had strongly statistically significant 

coefficients in the bootstrapped truncated regression and SFA models, suggesting that CAHs 

were between 5% and 7% less cost efficient than non-converting rural hospitals.  These results 

are consistent with our mean group efficiencies estimated by DEA and SFA where we find 

similar differences between mean cost efficiencies of CAHs and non-converting rural hospitals.  

In contrast, the coefficient of the CAH variable was insignificant in the tobit model.   

It should be noted that this research has some limitations.  In particular, this study cannot 

be truly considered a policy analysis of the CAH Program because it does not perform a “before” 

and “after” analysis, nor does it examine the total benefits and the total costs of the CAH 

Program.  An additional concern arises from the fact that CAH conversion is not random because 

hospitals choose to convert and any comparison group will differ from converting hospitals [19].  

It is possible that our conclusion that CAHs are less cost efficient than non-converting rural 

hospitals could be driven by more inefficient hospitals choosing to convert to CAH status.  

However, our results are supported by similar findings in the literature and by historical evidence 

which indicate that the PPS reimbursement results in greater cost containment and improved 

efficiency [9]. 

Our research suggests that SFA and the two-stage DEA approach along the line of Simar 

and Wilson [2] are viable alternatives for analyzing the impact of environmental variables on 

hospital cost efficiency.  We found that both the SFA and two-stage approach generated mostly 

similar and consistent results in our empirical application of the two methods to the efficiency 

analysis of rural hospitals.  Both methods have advantages and disadvantages that one needs to 

be aware of.  In particular, when using the two-stage DEA approach, researchers should consider 

using the bootstrap algorithm proposed by Simar and Wilson [2] for making valid inference.  
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Researchers should also consider using both methods, wherever possible, as a robustness check 

of the impact of environmental variables on estimated efficiency. 
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CHAPTER 4 

TECHNICAL EFFICIENCY OF CRITICAL ACCESS HOSPITALS: AN APPLICATION 
OF THE TWO-STAGE APPROACH WITH DOUBLE BOOTSTRAP1 

4.1 Introduction 

The Critical Access Hospital (CAH) Program, introduced by the Rural Hospital Flexibility 

(Flex) Program, represents a subset of mostly rural hospitals that receive special cost-based 

reimbursement for treating Medicare patients.  Starting in 1997, the program has allowed for 

more than 1,300 hospitals to convert to CAH status in exchange for accepting some 

restrictions.  Most importantly, CAH conversion requires hospitals to be at least 35 miles by 

primary road, or 15 miles by secondary road, from the nearest hospital,2 have no more than 

25 acute care beds, and maintain an annual average length of in-patient stay of 96 hours or 

less.  

 Medicare has paid CAHs on a cost basis rather than prospective payment system 

(PPS)3 in order to protect these financially vulnerable hospitals that are important for access 

to care in isolated rural areas [2].  A low patient volume has made it difficult for small rural 

hospitals to recover their Medicare costs under the PPS [1].  The CAH Program has increased 

Medicare payments to converting hospitals to improve their financial viability and potentially 

prevent hospital closure.  While it is widely believed that the CAH Program has maintained 

access to care in remote regions, concerns have been raised about the effect of Medicare 

reimbursement on the efficiency of CAHs [1].  In particular, cost-based reimbursement − 

which was used by Medicare to reimburse hospitals before 1983 – provided an incentive for 

                                                 
1 This chapter has been accepted for publication in Health Care Management Science. Authorization from 
publisher, Springer, for reproduction can be found in Appendix 4. The final publication is available at 
www.springerlink.com (DOI 10.1007/s10729-012-9209-8). 
2Before January 2006, states were allowed to waive the distance requirement for hospitals that were declared 
“necessary providers” and qualify them for CAH conversion. Thus, some CAHs are quite close to other 
hospitals. For a detailed description of the CAH Program, see [1]. 
3 The PPS pays a fixed price per case based on the diagnosis-related group (DRG), constraining hospitals to 
keep their unit costs bellow the PPS rates in order to remain financially viable.   
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hospitals to increase costs (i.e., oversupply services and/or overuse resources) in order to 

receive higher revenues because Medicare paid on a cost basis [3-4]. 

In a recent article, Rosko and Mutter [5] examined cost inefficiency differences 

between CAH and non-CAH rural hospitals using stochastic frontier analysis.  They found 

that, on average, CAHs were more cost inefficient than non-CAH rural hospitals and that 

there was a positive association between the number of years in the CAH Program and cost 

inefficiency.  However, by jointly using CAH and non-CAH rural hospitals in their analysis, 

they were unable to isolate the marginal effects of Medicare and Medicaid patient mix on 

CAHs’ efficiency.  Cost-based reimbursement has been the primary factor driving CAH 

conversion and the effects of Medicare and Medicaid reimbursement on the efficiency of 

CAHs may be of interest for policy makers. 

In light of the above discussion, the question that arises is: among those hospitals that 

have already converted to CAH status, does an increased Medicare patient mix have a 

negative effect on the technical efficiency of CAHs?  That is, if cost-based reimbursement 

creates a disincentive for hospitals to operate efficiently, would we expect to see CAH 

hospitals with a higher proportion of Medicare cost-based reimbursement patients have 

greater decreases in technical efficiency? 

In this paper, we seek to answer to this question by focusing on the CAH certified 

rural hospitals and using recent methodological advancements in efficiency analysis.  

Specifically, we use a two-stage, semi-parametric approach and bootstrap procedures 

proposed by Simar and Wilson [6] to estimate technical efficiency scores and make valid 

inferences about the impact of environmental variables (i.e., Medicare and Medicaid 

reimbursement, hospital ownership, market competition) on CAHs’ efficiency.   

In the two-stage approach, technical efficiency scores, estimated in the first stage 

using data envelopment analysis (DEA), are regressed, in the second stage, on environmental 



68 

 

variables to investigate their effects on efficiency.  A firm (CAH in our case) is technically 

efficient if it produces its outputs using minimum input quantities [7].  DEA measures 

efficiency of a firm relative to a nonparametric estimate of the best-practice (efficient) 

frontier constructed from the most efficient firms.  We assess technical efficiency of CAHs in 

2005 and 2006, controlling for quality using measures (publicly available) as additional 

outputs in the DEA model [8-9].   

The two-stage approach has been a popular technique for efficiency analysis.  In an 

influential paper, however, Simar and Wilson [6] criticized previous applications of the two-

stage approach because of the failure to account for the correlation present among efficiency 

estimates.  They show that the DEA efficiency scores are serially correlated and inference in 

the second stage regression is invalid based on standard methods.  The correlation arises in 

finite samples because the efficiency score of a firm is estimated relative to the efficiencies of 

peer firms lying on the frontier.  Simar and Wilson [6] defined a statistical model where a 

truncated regression with a parametric bootstrap procedure (Algorithm #1) allows for valid 

inference in the second stage analysis.   

 An additional problem arises from the fact that the DEA efficiency estimator is 

biased by construction; however, it is a consistent estimator [10].  In order to account for both 

the bias and serial correlation of efficiency scores, Simar and Wilson [6] developed the so 

called double bootstrap procedure (Algorithm #2).  In the double bootstrap procedure, the 

DEA efficiency estimator is corrected for bias, in the first stage, using a specific bootstrap 

procedure.  In the second stage, bias-corrected efficiency scores are regressed on 

environmental variables using a second, parametric bootstrap procedure applied to the 

truncated regression.  Although the methodology proposed by Simar and Wilson [6] has 

become an important approach for efficiency analysis (see, for example, Zelenyuk and Zheka 

[11], and Demchuk and Zelenyuk [12] for empirical applications), we are unaware of any 
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study that has applied the double bootstrap procedure to analyze efficiency in the U.S. 

hospital industry.  In this study, we use both bootstrap algorithms of Simar and Wilson [6] to 

investigate how the technical efficiency of CAHs is influenced by environmental variables, in 

particular Medicare and Medicaid reimbursement.  

4.2 Literature Review 

Since its creation, there has been a growing interest in evaluating the performance of the 

CAH Program.  Previous research focused almost exclusively on evaluating financial 

performance and quality of care of CAHs.  Using Medicare Cost Report data, Pink et al. [13] 

developed comparative financial indicators for CAHs.  Based on these financial indicators, 

Pink et al. [14] found significant differences in financial performance among CAH peer 

groups.  MedPAC [1] reported hospitals that converted to CAH status dramatically increased 

their Medicare payments and improved their all-payer profit margins between 1998 and 2003.  

Using an eight-year panel of 89 rural hospitals in Iowa, Li et al. [15] found that hospitals that 

converted to CAH status significantly increased their operating revenues, expenses, and 

margins.  Li et al. [16] examined the impact of CAH conversion on hospital patient safety and 

found that CAH conversion was associated with improved performance of certain Patient 

Safety Indicators.  Analyzing quality improvements in CAHs, Casey and Moscovice [17] 

found that Medicare cost-based reimbursement allowed CAHs to fund additional staff, staff 

training, and equipment to improve patient care.  Rosko and Mutter [5] compared the cost 

inefficiency of CAHs with that of prospectively paid rural hospitals using stochastic frontier 

analysis and found that CAHs were, on average, more cost inefficient. 

 The contribution of our paper to the literature is twofold.  First, through focusing 

solely on the CAH hospital subset, we examine the effect of Medicare cost-based 

reimbursement on the technical efficiency of CAHs.  The second contribution is the 
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application of recent methodological advancements to hospital efficiency analysis, namely 

the two-stage approach with bootstrap procedures suggested by Simar and Wilson [6]. 

4.3 Data 

Data used in this study come from the American Hospital Association (AHA) Annual Survey 

of Hospitals, the Centers for Medicare and Medicaid Services (CMS) Hospital Compare 

public reporting database for hospital quality measures, and from the Area Resource File.4  

We focus on the set of community, general rural hospitals in the U.S. classified as Critical 

Access Hospitals.  For the purpose of this study, we used data on CAH rural hospitals in 2005 

and 2006. 

4.3.1 DEA Variables 

The choice of outputs and inputs used in the DEA model was guided by previous literature 

[5,9].  Specifically, we used as hospital outputs the number of outpatient visits, the number of 

admissions, post-admission days (inpatient days – admissions), emergency room visits, 

outpatient surgeries, and total births (Table 4.1).  The inputs used for DEA efficiency 

estimation consists of labor and capital inputs.  The labor inputs are full time equivalent 

(FTE) registered nurses, FTE licensed practical nurses, and other FTEs, while the capital 

input is represented by total staffed and licensed hospital beds [9].   

To control for the quality of care, we follow Nayar and Ozcan [8] and use quality 

measures publicly available from the CMS Hospital Compare database.  Although the 

Hospital Compare database provides quality measures reflecting recommended treatments for 

acute myocardial infarction (AMI), heart failure, and pneumonia, only quality measures for 

                                                 

4 AHA data can be obtained from http://www.ahadataviewer.com/book-cd-products/AHA-Survey/, Area 
Resource File data from http://www.arf.hrsa.gov, and Hospital Compare quality data from 
http://www.hospitalcompare.hhs.gov. 
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pneumonia were selected for this study because there were too many missing observations for 

AMI and heart failure.  Unfortunately, the proportion of CAHs reporting quality information 

in 2005 and 2006 was low.  CAHs voluntarily report quality measures to Hospital Compare 

and they do not have the financial incentives of PPS hospitals to consistently report quality 

information to CMS.  Additionally, only those hospitals for which quality measures were 

calculated based on at least 25 patients (consistent with CMS recommendations) were used in 

the analysis, which further reduced the sample size.  Two quality measures are used in this 

study: (1) percent of patients given pneumococcal vaccination (i.e., pneumonia patients age 

65 and older who were screened for pneumococcal vaccine status and were administered the 

vaccine prior to discharge, if indicated), and (2) percent of patients given initial antibiotic 

timing (i.e., pneumonia patients given initial antibiotic within four hours after arrival).  The 

data sample consists of 186 rural CAHs in 2005 and 229 rural CAHs in 2006.   

A particular challenge in this study is adjusting outputs to control for case-mix 

variations.  Unfortunately, there is no Medicare Case-Mix Index available for CAHs as these 

hospitals are exempted from the PPS system.  Ozgen and Ozcan [18] and others noted that 

the lack of case-mix variables in DEA efficiency models is in part compensated by 

specification of multiple outputs.  In this study, the vector of outputs was expanded beyond 

the usual inpatient and outpatient outputs used in hospital efficiency studies by including 

emergency room visits, outpatient surgeries, and births as case-mix controls. 

4.3.2 Environmental Variables   

The specification of environmental variables used in the second stage regression (Table 4.1) 

follows recent literature on hospital efficiency.  Rosko and Mutter [19] broadly classify these 

variables as internal factors (ownership status and system membership) and external factors 

(public payment policy, hospital competition, and health maintenance organization 

penetration). 
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Table 4.1. Descriptive statistics of the variables. 
DEA Variables Mean Std. Dev. 

Outputs   
Hospital admissions 1,069.41 428.29 
Post-admission days  6,274.87 6,737.47 
Outpatient visits 41,773.94 30,092.56 
Emergency room visits 6,974.06 4,474.27 
Outpatient surgeries 885.82 712.13 
Births 96.07 108.97 
Quality Measures   
Patients given pneumococcal vaccination (%) 61.90 23.65 
Patients given initial antibiotic timing (%) 84.61 8.68 
Inputs   
Total staffed and licensed hospital beds 36.08 22.21 
Full time equivalent (FTE) registered nurses 40.38 19.63 
FTE licensed practical nurses 9.02 6.62 
Other FTEs 122.78 56.64 
 
Environmental Variables Variable Definition   
Government  Government  hospital (binary variable 1,0) 0.32 - 
For-profit For-profit hospital (binary variable 1,0) 0.03 - 
Medicare % Medicare admissions 59.93 12.64
Medicaid % Medicaid admissions 12.98 7.90 
HHI Herfindahl-Hirschman  index 0.50 0.35 
System Multihospital system (binary variable 1,0) 0.42 -
MHMO % Medicare HMO penetration 3.32 5.29 
Income Median household income 38,360.79 6,218.81 
 

Binary variables that define government and for-profit hospitals, with non-profit 

hospitals as the reference category, are used to control for the internal pressure for efficiency 

associated with ownership [5,19].  One line of thought in the theoretical literature indicates 

that the effect of ownership on hospital efficiency should be consistent with property rights 

theory (PRT) which argues that when property rights are not clearly specified, incentives 

decline that promote efficient behavior.  Based on PRT, we would expect that for-profit 

hospitals will place a greater emphasis on increasing efficiency than non-profit and 

government hospitals.  However, the empirical literature that examined the impact of 

ownership on hospital efficiency reported mixed findings.  Using DEA, several studies found 

that non-profit hospitals are more efficient than for-profit hospitals [20] or for-profit hospitals 

are more efficient than non-profit ones [21].  Another internal factor that has been associated 

with hospital efficiency is membership in a multihospital system. 
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Previous studies showed that the external financial pressure from Medicare and 

Medicaid is a key factor affecting hospital efficiency [19].  While variables representing 

shares of revenue from Medicare and Medicaid would be desirable to control for external 

pressure for efficiency of public payers, such measures are not available.  Instead, we follow 

previous literature [5,19] and use proxies such as Medicare percent of admissions ((Medicare 

admissions / total admissions) × 100) and Medicaid percent of admissions ((Medicaid 

admissions / total admissions) × 100).  The rationale for the Medicare cost-based 

reimbursement of CAHs has been to improve the financial situation of many of the small 

rural hospitals that were unable to cover their costs under the PPS.  Cost-based 

reimbursement, however, has been related with inefficiency in hospital operations [3-4].  

Since CAHs receive Medicare cost-based reimbursement, we want to test whether Medicare 

percent of admissions (a proxy for Medicare reimbursement) is inversely associated with 

CAHs’ technical efficiency.  It has also been shown that Medicaid typically underpays 

hospitals and exerts cost containment pressures irrespective of the payment system [19].  

Therefore, Medicaid percent of admissions is expected to be directly associated with CAHs’ 

technical efficiency.   

We use a Herfindahl-Hirschman index (HHI) to control for competitive pressure in a 

hospital’s market at the county level (consistent with previous studies).  HHI is calculated by 

summing the squares of the market shares of admissions for all of the hospitals in the county 

[22] and it takes a value between 0 and 1, with values of HHI approaching 1 indicating less 

competitive pressure.  Recent research showed an inverse relationship between HHI and 

hospital efficiency [5]. 

Health Maintenance Organization (HMO) penetration constitutes another source of 

external pressure for efficiency.  Previous literature showed that HMO penetration is directly 

associated with hospital efficiency [22].  Similar to Rosko and Mutter [5], we used percent of 
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Medicare HMO penetration as a proxy for general HMO penetration.  We also included in the 

second stage model the median household income of the county (from the Area Resource 

File) and a dummy variable for 2006 to control for time effects. 

4.4 Methodology 

4.4.1 DEA Efficiency Estimator (First Stage) 

For the efficiency analysis of CAHs, we use a two-stage approach along the line of Simar and 

Wilson [6].  In the first stage, a DEA efficiency estimator is used to obtain technical 

efficiency scores for individual CAHs.  The main advantage of DEA is that it can easily 

accommodate multiple inputs and outputs and requires no specific assumption about the 

functional form of the frontier.5  However, DEA is deterministic, meaning that deviations 

from the efficient frontier are entirely assumed to be due to inefficiency and no allowance is 

made for statistical noise.   

Consistent with the statistical model defined by Simar and Wilson [6], we specify the 

following production or technology set: 

} producecan  |),{( yxRyxT MN+
+∈=        (1) 

where NRx +∈ is a vector of N inputs used to produce a vector of M outputs, MRy +∈ .  The 

upper boundary of T, which represents the technology or production frontier, is of interest for 

efficiency measurement.  Inefficient hospitals operate at points in the interior of T, with the 

distance from each point in T to the frontier representing inefficiency, while those that are 

efficient operate on the frontier.   

  In this study, an input-oriented, variable returns to scale (VRS) approach to efficiency 

measurement is used, based on the assumption that hospitals have more control over their 
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inputs than over the outputs.  The Farrell [7] input-oriented measure of technical efficiency 

is:  

}),(|{inf ),( Tyxyx ∈= θθθ          (2) 

which gives the radial, proportionate reduction in inputs for a hospital to become technically 

efficient in the sense that ),( yxθ is on the efficient frontier.  By construction, 

1),(0 ≤< yxθ and a hospital is efficient if 1),( =yxθ .   

In practice, T and ),( yxθ are unobserved and their estimates can be consistently 

obtained from the observed data by employing a DEA efficiency estimator.  Let yrj be a 

vector of outputs (r = 1,…., M) and xij a vector of inputs (i = 1,…..., N) for each hospital j (j = 

1,….., n).  For a given level of outputs yro and a given level of inputs xio for hospital o, the 

input-oriented measure of technical efficiency, assuming VRS, can be estimated by solving 

the following DEA linear programming problem: 
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where λj (j = 1, …., n) are the intensity variables over which optimization in (3) is made.  The 

objective of (3) is to find the minimum θ that proportionally reduces the input vector to 

ioxθ while guaranteeing at least the output level roy . The optimal solution is 1ˆ ≤θ , where 

1ˆ =θ  indicates a point on the efficient frontier and, hence, a technically efficient hospital.  

                                                                                                                                                        
5 Alternatively, one can use a stochastic frontier model which, as a parametric approach, requires strong 
assumptions about the functional form and error distributions. Further, a stochastic frontier model cannot easily 
accommodate multiple outputs and inputs. 



76 

 

1ˆ <θ  indicates that it is possible to produce the observed level of outputs using 

proportionately less than observed  input levels of the hospital.   

4.4.2 Truncated Regression (Second Stage) 

Our focus in this study is generating valid inferences about the impact of environmental 

variables on the technical efficiency of CAHs.  For this, we follow Simar and Wilson [6] and 

specify, at the second stage, the truncated regression model:6 

1ˆ0 ≤+=< iii z εβθ    i = 1, 2,…., n        (4) 

where iθ̂ is the DEA estimated technical efficiency score of the i-th hospital, εi is assumed to 

be normally distributed with left truncation at βiz−  and right truncation at βiz−1 , zi is a 

vector of environmental variables which are thought to have an effect on hospital efficiency, 

and β is a vector of parameters to be estimated.  The implicit assumption is that the 

environmental variables only affect the efficiency scores and have no effect on the frontier 

[6].  Unfortunately, iθ̂ is  biased and iθ̂ ’s and, implicitly, εi’s (i = 1, 2,…, n) in (4) are serially 

correlated. While the correlation among εi’s disappears asymptotically, standard methods for 

inference are invalid.  To provide valid inference in the second stage analysis, Simar and 

Wilson [6] suggest using a parametric bootstrap of the truncated regression in (4) which they 

call Algorithm #1.  This single bootstrap procedure (Algorithm #1) can improve on inference 

in the second stage regression, but without correcting the DEA estimator for bias. 

 Alternatively, Simar and Wilson [6] suggest using a bootstrap procedure to obtain 

bias-corrected DEA estimates of technical efficiency and use them as the dependent variable 

in the second stage regression.  This approach has been shown to improve the statistical 

                                                 
6 Many of the previous two-stage studies used a tobit (censored) regression in the second stage.  However, 
Simar and Wilson showed that tobit is a misspecification under their statistical model.  
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efficiency of the parameter estimator in the second stage truncated regression [6].  The 

truncated regression model can be rewritten as 

1ˆ̂0 ≤+=< iii z εβθ            (5) 

where )ˆ(ˆˆ̂
iii bias θθθ −= is the bias-corrected estimator of technical efficiency and )ˆ( ibias θ is 

the bootstrap bias estimate of iθ̂ .  For valid inference about β, a second bootstrap procedure 

must be applied to the truncated regression in (5).  The specific steps of the double bootstrap 

procedure used in this study follow from Algorithm #2 of Simar and Wilson [6], modified to 

account for the left and right boundaries of input-oriented technical efficiency scores:  

1. Using the original sample of data, estimate the input-oriented DEA technical 

efficiency scores iθ̂ ’s (i = 1,…., n). 

2. Obtain estimates β̂ in the truncated regression 1ˆ0 ≤+=< iii z εβθ  using m<n 

observations, when 1ˆ <iθ . 

3. Loop over the next four steps (3.1 - 3.4) L1 = 100 times to obtain a set of bootstrap 

estimates { } 1

1
*ˆ L

bibB == θ , i = 1, ….., n: 

3.1. For each i = 1, ….., n draw εi  from )ˆ,0( 2σN  with left truncation at β̂iz−  and  

right truncation at β̂1 iz− . 

3.2. Compute iii z εβθ += ˆ* , i = 1, ….., n. 

3.3. Set ** /ˆ
iiii xx θθ= and ii yy =* , i = 1, ….., n. 

3.4. Using *
ix and *

iy , estimate *
îθ  (i = 1,…., n) using the DEA estimator. 

4. For each i = 1, ….., n, compute the bias-corrected estimates iθ̂̂ using the bootstrap 

estimates in B obtained in step 3.4 and the original estimates iθ̂ .   
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5. Estimate the truncated regression of iθ̂̂  on zi to obtain estimates β̂̂ . 

6. Loop over the next three steps (6.1 – 6.3) L2 = 2000 times to obtain a set of bootstrap 

estimates 
2

1

*ˆ̂ L

b=⎭
⎬
⎫

⎩
⎨
⎧=Δ β : 

6.1. For each i = 1,…., n, draw εi from )ˆ̂,0( 2σN with left truncation at β̂̂iz−  and  

right truncation at β̂̂1 iz− . 

6.2. Compute iii z εβθ += ˆ̂** , i = 1,….., n. 

6.3. Estimate the truncated regression of **
iθ on zi, yielding estimates *ˆ̂β .  

7. Use the bootstrap values in Δ and the original estimates β̂̂  to construct confidence 

intervals for each element of β.  The (1-α) confidence interval for βj is constructed by 

finding values aα/2 and bα/2 such that αββ αα −≈⎥⎦
⎤

⎢⎣
⎡ −≤−≤− 1)ˆ̂ˆ̂(Pr *

2/
**

2/ ab jj . 

4.5 Results 

In the first stage, DEA is used with the two years of data (2005 and 2006) jointly to estimate 

technical efficiency scores of CAHs.  This approach offers the advantage of a substantial 

increase in the sample size which is important for obtaining reliable estimates of efficiency 

used in the second stage regression [11].  In the second stage, we use a pooled cross-sectional 

design for the truncated regression model.   

4.5.1 Technical Efficiency Scores (First Stage) 

Table 4.2 presents original and bias-corrected mean technical efficiency of CAHs.  The 

original (uncorrected) mean technical efficiency of CAHs estimated using DEA without 

quality outputs was 0.84 and increased to 0.89 when quality outputs were included in the 

DEA model.  These results are consistent with Nayar and Ozcan [8] who found that the 
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average technical efficiency of  a sample of hospitals in Virginia increased from 0.81 to 0.86 

after the inclusion of three quality measures for pneumonia (from CMS Hospital Compare) in 

the DEA model.  Alternatively, this increase in technical efficiency after controlling for 

quality could be a consequence of the increased number of outputs in the DEA model. 

Table 4.2. Original and bias-corrected efficiency scores. 

Year N 

DEA without Quality Outputs DEA with Quality Outputs 

Original DEA  
Estimates 

Bias-Corrected Original DEA  
Estimates 

Bias-Corrected 
Mean Std. Dev. Mean Std. Dev. 

2005 186 0.826 0.707 0.113 0.871 0.750 0.097 
2006 229 0.855 0.724 0.099 0.906 0.767 0.084 
All 415 0.842 0.716 0.106 0.890 0.759 0.090 
Note: Estimation of bias-corrected efficiency scores was based on the first stage of Algorithm #2 of Simar and 
Wilson, modified for the left and right boundaries of input-oriented efficiency scores. Estimation by authors in 
Matlab, adopting from code written by V. Zelenyuk and L. Simar. 
 

  We further investigated the sensitivity of technical efficiency scores with respect to 

quality outputs using an approach suggested by Simar and Zelenyuk [23].  Specifically, a 

nonparametric kernel density estimator was used to estimate the densities of efficiency scores 

from the two DEA models in which quality outputs were included and excluded.  The null 

hypothesis on equality between these densities was tested using a bootstrap-based test (see 

Simar and Zelenyuk [23] for details).  Simar-Zelenyuk test rejected the null hypothesis of 

equal densities (Simar-Zelenyuk test = 3.26, bootstrap p-value = 0.003), suggesting that 

quality has a statistically significant effect on CAHs’ technical efficiency. 

The results in Table 4.2 also indicate that the bias-corrected efficiency scores are, on 

average, lower than the uncorrected DEA estimates suggesting that the uncorrected efficiency 

estimates are upward biased.  Specifically, the mean of bias-corrected efficiency scores was 

0.76 in the DEA model with quality outputs suggesting that, without correcting for bias, the 

estimated results would have indicated that CAHs were performing more technically efficient 

than they actually were.   
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4.5.2 Truncated Regression Results (Second Stage) 

The focus of this study is on using the two-stage approach with bootstrap procedures 

suggested by Simar and Wilson [6] to make valid inferences about the effects of 

environmental variables on CAHs’ technical efficiency.  The dependent variable in the 

second stage truncated regression is hospital technical efficiency; therefore, a positive 

(negative) coefficient indicates a positive (negative) marginal effect on efficiency.  Table 4.3 

summarizes the results of three bootstrapped truncated regression models (see Tables A.4.4, 

A.4.5, and A.4.6 in Appendix 3 for percentile bootstrap confidence intervals of the truncated 

regression coefficients).   

Model 1 in Table 4.3 was based on Algorithm #2 where bias-corrected efficiency 

scores, estimated in the first stage DEA model with no quality outputs, were used in the 

second stage bootstrapped truncated regression.  The results of Model 1 show that the 

coefficients of most environmental variables are insignificant (only system membership has a 

positive and significant coefficient, as expected).  Model 2, in which quality outputs were 

included in the DEA model, was based on Algorithm #1 where original (uncorrected) 

technical efficiency scores were regressed on environmental variables in the second stage 

bootstrapped truncated regression.  The results show that Model 2 is also characterized by 

low statistical significance (only HHI was found significant in Model 2).  Model 3 was based 

on Algorithm #2 in which bias-corrected technical efficiency scores obtained in the first stage 

DEA model with quality outputs were regressed, in the second stage, on environmental 

variables.  Relative to Model 1, the results of Model 3 show a clear improvement in the 

statistical significance of the estimated coefficients when quality is accounted for in 

efficiency estimation.  Similarly, Model 3 shows a clear improvement in statistical efficiency 

relative to Model 2.  This is consistent with Simar and Wilson [6] findings that Algorithm #2 
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improves statistical efficiency in the second stage truncated regression more than Algorithm 

#1.    

Table 4.3. Results of the second stage bootstrapped truncated regressions. 
Variable Model 1 Model 2 Model 3 
Constant  0.7232*** 0.7885*** 0.7124*** 
Government  -0.0157 -0.0245 -0.0214** 
For-profit 0.0148 -0.0132 -0.0166 
Medicare 0.0001 0.0012 0.0007 
Medicaid 0.0013 0.0029 0.0016**
HHI 0.0031 -0.0691** -0.0514*** 
System 0.0388*** 0.0364 0.0381*** 
Income -1.37E-06 -2.94E-07 -3.34E-07
MHMO -0.0007 0.0026 0.0017** 
Y2006 0.0236** 0.0084 0.0171* 
Sigma 0.1033*** 0.1400*** 0.0851*** 
Note: ***, **, and * denote significance at 1%, 5%, and 10% levels based on percentile bootstrap confidence 
intervals. Model 1 is based on Algorithm #2 using no quality outputs in DEA model; Model 2 is based on 
Algorithm #1 using quality outputs in DEA model; Models 3 is based on Algorithm #2 using quality outputs in 
DEA model. Estimation by authors in STATA 11 with 2000 bootstrap replications for confidence intervals of 
the estimated coefficients.     
 

Now, we refer to Model 3 (the benchmark) for the interpretation of the coefficients.  

The key variables are the two proxies for Medicare and Medicaid reimbursement.  It is 

widely recognized that hospitals respond to the Medicare and Medicaid reimbursement 

mechanism.  For example, previous studies showed that Medicare PPS placed fiscal pressure 

on hospitals and Medicare percent of admissions was directly related with hospital efficiency 

[19].  Medicare cost-based reimbursement, on the other hand, was associated with 

inefficiency in hospital operations.  In this study, we test the effect of Medicare percent of 

admissions (a proxy for Medicare reimbursement) on the technical efficiency of CAHs.  The 

estimated results show that Medicare percent of admissions has a positive but insignificant 

coefficient, potentially suggesting that Medicare cost-based reimbursement may not have had 

detrimental effects on CAHs’ technical efficiency, after controlling for quality.  The results 

may also suggest that CAHs did not intentionally over-consume hospital inputs in order to 

maximize reimbursement, but rather increased reimbursement revenues would have been 

driven primarily by the increased reimbursement rate.  Additionally, Medicaid percent of 



82 

 

admissions has a positive and significant effect on the technical efficiency of CAHs.  This is 

consistent with prior research which has shown that Medicaid typically underpays hospitals 

and exerts cost containment pressures irrespective of the payment mechanism [19].   

The estimated results show a negative and significant coefficient of government 

ownership, suggesting that government owned CAHs are less technically efficient relative to 

non-profit CAHs, a result consistent with previous literature [5].  We found an insignificant 

effect of for-profit ownership on technical efficiency, suggesting that for-profit CAHs are no 

more technically efficient than non-profit CAHs.    

The results also show that Herfindahl-Hirschman Index (HHI) has a negative and 

significant coefficient, suggesting that an increase in HHI (or a decrease in hospital market 

competition) leads to a decrease in CAHs’ technical efficiency.  This result is consistent with 

other findings in the literature [5] and with the concept of price-based competition which 

suggests that if competition is increased, hospitals will compete for patients by reducing costs 

[19].  This result may also indicate that there may be some hospitals that are not critical for 

access that have been given the benefits of the CAH status.7  MedPAC [1] estimated that 16 

percent of CAHs are less than 15 miles from another hospital and only 17 percent of CAHs 

are more than 35 miles from another provider, raising issues of competition between some 

CAHs and nearby non-converting hospitals. 

The positive and significant coefficient of system membership suggests that CAHs 

that are members of a multi-hospital system are more technically efficient than the ones that 

are not, a result consistent with previous literature [5].  Similarly, the positive and significant 

coefficient of Medicare HMO may suggest that Medicare HMO penetration creates pressure 

for CAHs to operate more efficiently [5].  This is also consistent with other studies that found 

a direct correlation between managed care penetration and hospital efficiency [22].    
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4.6 Conclusions   

This paper examined technical efficiency of Critical Access Hospitals using recent 

methodological advancements in efficiency analysis and incorporating measures of quality.  

Specifically, we used a two-stage DEA approach with Algorithm #1 and Algorithm #2 

bootstrap procedures proposed by Simar and Wilson [6] for making valid inferences about 

the effects of environmental variables on CAHs’ technical efficiency.  An important finding 

was that the performance of the double bootstrap procedure (Algorithm #2) in explaining 

hospital efficiency significantly improved when quality was accounted for in efficiency 

estimation relative to a similar model without quality.  Similarly, we also compared the 

performance of Algorithm #2 with that of the single bootstrap procedure (Algorithm #1).  

While both bootstrap algorithms were created to provide valid inference, Algorithm #2 

clearly improved statistical efficiency in the second stage truncated regression relative to 

Algorithm #1.   

As a result, our preferred model for estimating the (marginal) effects of environmental 

variables on the technical efficiency of CAHs was based on the two-stage approach with 

Algorithm #2 proposed by Simar and Wilson [6].  Specifically, bias-corrected technical 

efficiency scores, obtained using a bootstrapped DEA model with quality outputs, were 

regressed on environmental variables using a bootstrapped truncated regression.  The key 

finding was that Medicare percent of admissions variable had an insignificant effect on 

CAHs’ technical efficiency, suggesting that Medicare cost-based reimbursement may not 

have created a disincentive for these hospitals to operate in a less technically efficient 

manner.  The percent of Medicaid admissions had a positive and significant effect on the 

                                                                                                                                                        
 
7 We thank an anonymous reviewer for pointing out this issue. 
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technical efficiency of CAHs, consistent with prior studies showing Medicaid’s positive 

effect on hospital efficiency. 

 A limitation of this research is associated with incomplete information on many of 

the quality measures reported by CAHs to Hospital Compare.  As a result, only quality 

measures for pneumonia were selected for this study [8], and the two years of data were 

jointly used in the analysis to increase the sample size.  As new data become available, future 

research on CAH efficiency should incorporate other quality controls in the methodological 

advancements proposed by Simar and Wilson [6]. 

Although the two-stage approach has been very popular in the efficiency analysis 

literature, Simar and Wilson [6] criticized previous applications of this method because of the 

failure to define a statistical model consistent with the second stage analysis.  They show that 

the DEA efficiency estimates used in the second stage are biased and serially correlated, and, 

thus, standard methods for inference are invalid.  Consequently, the bootstrap methods 

proposed by Simar and Wilson [6] are the only feasible means for making valid inference in 

the second stage regression.  Our research suggests that, for future hospital efficiency studies, 

the two-stage DEA approach with double bootstrap can be a viable alternative for analyzing 

the effects of environmental variables on hospital efficiency.   
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CHAPTER 5  

CONCLUSIONS 

5.1 Summary and Conclusions 

With health care costs rising at a rapid rate, cost containment is one of the most important issues 

in the present health care debate.  One approach to address rising health care costs is to improve 

the efficiency of health care providers.   In this dissertation, I examine the efficiency of rural 

hospitals in the U.S. with a focus on the Critical Access Hospital (CAH) Program.  This research 

is particularly important as Congress weights the tradeoff of increased Medicare costs versus 

rural health care access. 

Rural hospitals have played a critical role for access to health care services in rural 

communities.  Their low-volume of patients, however, makes costs per unit of service 

disproportionately large and puts rural hospitals (especially small ones) at risk of closure.    

The CAH Program has been created to maintain access to health care services in isolated 

communities by improving the financial viability of small hospitals and preventing closure.  

CAHs receive Medicare cost-based reimbursement, where hospitals’ payments must equal 

hospitals’ charges.  Cost-based reimbursement, however, has been associated with increased 

health care costs and inefficiency.  

  Under the Prospective Payment System (PPS), hospitals are paid fixed prices based on 

the Diagnosis Related Group (DRG) and are allowed to keep the difference between these fixed 

prices and their costs.  Thus, the PPS provides incentives for hospitals to reduce costs and 

increase efficiency by motivating hospitals to keep their unit costs below the PPS reimbursement 

rates in order to make profits.  Although there is a large consensus that the CAH Program has 
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improved access to health care services in isolated rural communities, concerns have been raised 

about the efficiency of CAHs.   

 The objective of Chapter 2 was to analyze the impact of conversion to CAH status on 

hospital efficiency.  The efficiency scores of a sample of rural hospitals before and after the 

conversion to CAH status, as well as of a comparison group of non-converting, PPS rural 

hospitals were estimated and compared.  Additionally, overall hospital cost efficiency was 

decomposed into its allocative and technical components.  This allowed me to infer whether the 

failure to achieve cost efficiency might be due to (a) technical inefficiency in the sense that 

hospitals do not use minimum quantities of inputs to produce their outputs, or (b) allocative 

inefficiency in the sense that hospitals do not use the least cost combination of inputs in 

producing outputs.  A two-stage approach was used, where Data Envelopment Analysis (DEA) 

was used in the first stage to estimate cost, technical, and allocative efficiency scores of each 

hospital in the sample.  The densities of efficiency scores of CAHs and PPS rural hospitals were 

estimated and compared using a nonparametric kernel density estimator and a bootstrap-based 

test.  In the second stage, a truncated regression with bootstrap was used to investigate the effects 

of environmental variables on efficiency scores.   

The density analysis of efficiency scores showed that CAHs were less cost and 

allocativelly efficient than the comparison group of non-converting rural hospitals, while they 

were no less technically efficient.  When compared with their pre-conversion selves, CAHs 

appeared to be slightly less allocativelly efficient, while they were slightly more technically 

efficient and no less cost efficient. Bootstrapped truncated regression results showed that CAHs 

tended to be less cost and allocatively efficient than PPS rural hospitals, while they were no less 

technically efficient. 
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The objective of Chapter 3 was to analyze the impact of different Medicare 

reimbursement systems on the cost efficiency of rural hospitals.  Specifically, I statistically test 

whether there are cost efficiency differences between cost-based reimbursed CAHs and rural 

hospitals paid under the PPS reimbursement system.  The analysis controlled for the quality of 

care as well as compared different models of efficiency analysis.  Cost efficiency scores were 

estimated using two different frontier methods: DEA and stochastic frontier analysis (SFA).  The 

comparison of mean cost efficiencies between cost-based reimbursed CAHs and PPS rural 

hospitals showed that CAHs were less cost efficient than the PPS rural hospitals.  The density 

analysis of DEA cost efficiency scores also showed that CAHs were less cost efficient than the 

PPS rural hospitals, and the difference was statistically significant.  Additionally, marginal 

effects of environmental variables were estimated using SFA and the two-stage DEA approach 

with tobit as well as with the bootstrapped truncated regression.  The CAH dummy, the key 

variable in this study, had a statistically significant coefficient in the bootstrapped truncated 

regression and SFA models, suggesting that CAHs were less cost efficient than the PPS rural 

hospitals.   

To the best of my knowledge, Chapter 4 provides the first application of the two-stage 

approach with double bootstrap to analyze efficiency in the U.S. hospital industry.  Specifically, 

bias-corrected efficiency scores obtained in the first stage using a specific bootstrap procedure 

are regressed on environmental variables, in the second stage, using a bootstrapped truncated 

regression.  An important finding was that the performance of the double bootstrap procedure in 

explaining hospital efficiency significantly improved when quality was accounted for in 

efficiency estimation relative to a similar model without quality.  Additionally, the double 

bootstrap procedure clearly improved on statistical efficiency of parameter estimates in the 
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second stage truncated regression relative to the single bootstrap procedure (where original 

efficiency scores were used in the second stage bootstrapped truncated regression).   

The objective of Chapter 4 was also to examine the relationship between Medicare cost-

based reimbursement and the technical efficiency of CAHs.  Medicare cost-based reimbursement 

has been the primary factor driving CAH conversion.  Cost-based reimbursement, however, has 

been historically associated with hospital inefficiency.  Thus, the question that arises is: does 

Medicare cost-based reimbursement have a negative effect on CAHs’ technical efficiency. 

Overall, the estimated results suggest that enhanced Medicare reimbursement may not have had 

detrimental effects on the technical efficiency of CAHs.   

5.2 Policy Implications 

The results of this dissertation have important implications for policy.  First, the results indicate 

that the technical efficiency of rural hospitals that converted to CAH status improved relative to 

the pre-conversion period.  At the same time, CAHs appear to be as technically efficient as non-

converting, PPS rural hospitals.  It may be the case that the CAH Program’s requirements 

(limitations on the maximum number of acute care beds to 25 and average length of stay to 4 

days) may have resulted in technical efficiency improvements comparable to the PPS.   For 

example, these requirements may have limited the types and complexity of procedures treated by 

CAHs.  The relatively larger proportion of less complex procedures with low resource 

requirements may have created the increase in CAHs’ technical efficiency. 

Second, the results also indicate that CAHs are less allocatively efficient not only relative 

to the pre-conversion period, but also relative to non-converting, PPS rural hospitals.  CAH 

conversion has been primarily associated with Medicare cost-based reimbursement which has 

dramatically changed hospitals’ financial incentives.  Stensland, Davidson, and Moscovice [1] 
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found that hospitals that converted to CAH status significantly increased their Medicare revenue, 

profitability, employee salaries and capital expenditures.  Schoenman and Sutton [2] found that, 

after conversion to CAH status, hospitals increased their profitability due to Medicare cost-based 

reimbursement.  Further, anecdotal evidence suggests that after hospitals improved their finances 

post-conversion, many CAHs invested in new equipment, new hospitals or major infrastructure 

upgrades.  It may be the case that the allocative inefficiency increase for CAH hospitals may be 

due to their inability to substitute to lower cost inputs in the production process. 

Third, the overall cost efficiency of cost-based reimbursed CAHs was, on average, 

between 4.5 and 6.7 percent lower (depending on the model choice) than that of non-converting, 

PPS rural hospitals.  To see the impact of Medicare cost-based reimbursement on the costs of 

CAHs, I multiply mean CAH expenditure ($16,700,000 in 2005 dollars) by the difference in cost 

efficiency between CAHs and PPS rural hospitals.  I found that the cost per CAH was, on 

average, between $751,500 and $1,119,000 higher than the cost that would have been under the 

PPS reimbursement.  For a total number of 1,055 CAHs in 2005, I estimate the cost of the CAH 

Program to have been between $793,000,000 and almost $1.2 billion higher than it would have 

been under the PPS.  Given that the CAH Program has been created to increase Medicare 

payments to low-volume hospitals whose Medicare costs exceed the PPS rates, this increase in 

spending might be justified if hospital closure and its negative impact have been avoided. 

While efficiency is an important factor for measuring the effectiveness of a health care 

policy or program, a complete assessment of the CAH program needs to go beyond efficiency 

and take into account issues such as equitable access to high-quality care.  The policy rationale 

for the Medicare cost-based reimbursement of CAH hospitals has been to protect these small, 

financially vulnerable rural hospitals and prevent their potential closure.  The benefits of the 
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CAH Program have been mostly associated with improvements in access to health care services 

in isolated rural areas.  Previous literature also showed that retaining a limited hospital facility in 

a rural community not only reduces welfare losses relative to the hospital closure [3], but also 

has a positive economic impact on the community as a whole [4].  Holmes et al. [4] estimated 

that the closure of the sole hospital in the community reduced per-capita income by 4 percent and 

increased the unemployment rate by 1.6 percent.  The cost of the CAH Program is represented by 

the increased Medicare payments for CAH hospitals which are borne in principal by federal 

taxpayers.  While a complete evaluation of the CAH program requires answering the question 

whether the total benefits outweigh the total costs, this research attempts to add to the policy 

debate by understanding if, and by how much, efficiency declines occurred for hospitals that 

converted to CAH status.  

5.3 Limitations and Future Research 

A particular challenge in this research was controlling for the quality of care.  While controlling 

for quality is important in hospital efficiency and cost studies, finding adequate measures of 

quality has been difficult. The problem is that quality of care has many dimensions, and no single 

measure will be capable of capturing it.  Since 2004, Center for Medicare and Medicaid Services 

(CMS) Hospital Compare database has provided some quality measures but, unfortunately, the 

proportion of CAH hospitals reporting quality information has been very small.  CAH hospitals 

voluntarily report quality information to CMS and they do not have the financial incentives of 

PPS hospitals to consistently report such information.  While the approach taken to study the 

impact of CAH conversion on hospital efficiency in Chapter 2 made it impossible to find quality 

measures for the two years before conversion (1997 and 1998), I was able to control for quality 
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in the other two essays using quality measures for pneumonia.  As new data become available, 

future research on CAH efficiency should include additional quality controls. 

 While there is a growing literature on the cost side of the CAH Program, I am unaware of 

any attempt to estimate the welfare benefits of the CAH Program.  These benefits have been 

mostly associated with improvements in access to health care services in isolated rural areas.  

Thus, future research should provide an estimate of the value of access to a CAH hospital or the 

value of preventing closure.  Further, future research should evaluate the potential impact of 

alternative reimbursement mechanisms, such as modified PPS, to increase the efficiency of CAH 

hospitals without deteriorating financial viability and quality of care of these hospitals. 
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APPENDIX 1 

ADDITIONAL RESULTS FOR CHAPTER 2 

 

Figure A.2.1. Densities of inefficiency scores for all hospitals in the sample, before trimming of 
outliers.    
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Table A.2.5. Bootstrap estimated confidence intervals: cost inefficiency. 

99% Bootstrap C.I. 95% Bootstrap C.I. 90% Bootstrap C.I. 
Variable β LB UB LB UB LB UB 
CAH 0.3987 0.3129 0.4875 0.3308 0.4675 0.3419 0.4554 
Government 0.2028 0.1489 0.2552 0.1618 0.2440 0.1684 0.2380 
For-profit -0.1453 -0.2574 -0.0282 -0.2346 -0.0541 -0.2176 -0.0656 
Medicare 0.0043 0.0018 0.0068 0.0025 0.0062 0.0027 0.0059 
Medicaid -0.0058 -0.0096 -0.0020 -0.0087 -0.0028 -0.0083 -0.0033 
HHI 0.0171 -0.0556 0.0855 -0.0397 0.0736 -0.0310 0.0644 
System -0.1535 -0.2150 -0.0910 -0.2019 -0.1055 -0.1938 -0.1138 
Income -0.000006 -0.000011 -0.000001 -0.000010 -0.000003 -0.000009 -0.000003 
MHMO -0.0054 -0.0100 -0.0004 -0.0089 -0.0016 -0.0084 -0.0021 
Emergency -0.0006 -0.0022 0.0008 -0.0017 0.0006 -0.0015 0.0004 
Surgeries -0.0035 -0.0139 0.0064 -0.0113 0.0040 -0.0100 0.0028 
Births -0.0076 -0.0111 -0.0040 -0.0102 -0.0047 -0.0098 -0.0052 
2006 -0.2987 -0.4118 -0.1941 -0.3840 -0.2136 -0.3666 -0.2277 
2005 -0.3417 -0.4499 -0.2331 -0.4219 -0.2621 -0.4094 -0.2747 
1998 -0.0165 -0.0914 0.0572 -0.0701 0.0388 -0.0635 0.0290 
Constant 2.3273 2.0709 2.5907 2.1343 2.5148 2.1609 2.4867 
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Table A.2.6. Bootstrap estimated confidence intervals: technical inefficiency. 

99% Bootstrap C.I. 95% Bootstrap C.I. 90% Bootstrap C.I. 
Variable β LB UB LB UB LB UB 
CAH 0.0217 -0.0524 0.0933 -0.0332 0.0737 -0.0253 0.0671 
Government 0.1374 0.0916 0.1814 0.1029 0.1720 0.1084 0.1670 
For-profit 0.0501 -0.0406 0.1523 -0.0194 0.1206 -0.0073 0.1101 
Medicare 0.0034 0.0015 0.0054 0.0020 0.0049 0.0022 0.0046 
Medicaid -0.0053 -0.0085 -0.0021 -0.0077 -0.0029 -0.0073 -0.0034 
HHI 0.0806 0.0184 0.1430 0.0345 0.1273 0.0424 0.1193 
System -0.0935 -0.1460 -0.0426 -0.1331 -0.0557 -0.1253 -0.0624 
Income -0.000005 -0.000008 -0.000001 -0.000008 -0.000002 -0.000007 -0.000002 
MHMO -0.0059 -0.0100 -0.0016 -0.0091 -0.0028 -0.0084 -0.0032 
Emergency 0.0005 -0.0006 0.0018 -0.0004 0.0014 -0.0002 0.0013 
Surgeries -0.0043 -0.0124 0.0038 -0.0107 0.0016 -0.0096 0.0006 
Births -0.0011 -0.0042 0.0018 -0.0034 0.0011 -0.0030 0.0008 
2006 -0.0749 -0.1533 0.0087 -0.1351 -0.0091 -0.1271 -0.0183 
2005 -0.1209 -0.1987 -0.0457 -0.1812 -0.0611 -0.1698 -0.0683 
1998 -0.0184 -0.0789 0.0418 -0.0645 0.0273 -0.0561 0.0203 
Constant 1.5242 1.3031 1.7344 1.3701 1.6828 1.3985 1.6601 
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Table A.2.7. Bootstrap estimated confidence intervals: allocative inefficiency. 

99% Bootstrap C.I. 95% Bootstrap C.I. 90% Bootstrap C.I. 
Variable β LB UB LB UB LB UB 
CAH 0.5482 0.4350 0.6456 0.4642 0.6271 0.4807 0.6156 
Government 0.0746 0.0242 0.1252 0.0371 0.1121 0.0432 0.1066 
For-profit -0.2948 -0.4152 -0.1548 -0.3939 -0.1904 -0.3811 -0.2078 
Medicare 0.0007 -0.0016 0.0027 -0.0009 0.0022 -0.0006 0.0020 
Medicaid -0.00003 -0.0035 0.0033 -0.0027 0.0026 -0.0023 0.0022 
HHI -0.0731 -0.1427 -0.0069 -0.1207 -0.0225 -0.1136 -0.0335 
System -0.0524 -0.1034 0.0010 -0.0930 -0.0097 -0.0861 -0.0178 
Income 0.000001 -0.000003 0.000005 -0.000002 0.000004 -0.000002 0.000004 
MHMO 0.0014 -0.0026 0.0059 -0.0017 0.0048 -0.0013 0.0043 
Emergency -0.0010 -0.0023 0.0003 -0.0020 0.00000 -0.0019 -0.0002 
Surgeries -0.0019 -0.0116 0.0076 -0.0092 0.0053 -0.0079 0.0041 
Births -0.0085 -0.0121 -0.0051 -0.0111 -0.0058 -0.0106 -0.0063 
2006 -0.4124 -0.5244 -0.2935 -0.5009 -0.3226 -0.4846 -0.3380 
2005 -0.3980 -0.5033 -0.2803 -0.4812 -0.3110 -0.4700 -0.3249 
1998 -0.0136 -0.0794 0.0529 -0.0612 0.0375 -0.0538 0.0285 
Constant 1.2826 1.0652 1.5117 1.1097 1.4447 1.1386 1.4231 
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Table A.2.8. Results of bootstrapped truncated regressions: pooled data with 2005 and 2006. 

 Variable 
Cost  

Inefficiency  
Technical  

Inefficiency 
Allocative  

Inefficiency 
CAH 0.3183*** -0.0038 0.6619*** 
Government 0.2105*** 0.1673*** 0.0672** 
For-profit -0.2013*** -0.0917* -0.3023** 
Medicare 0.0014 0.0021** -0.0009 
Medicaid -0.0079*** -0.0070*** -0.0004 
HHI -0.0244 0.0399 -0.0861** 
System -0.1661*** -0.0526** -0.1485*** 
Income -2.51E-06 -3.62E-06* 5.03E-06* 
MHMO -0.0097*** -0.0091*** -0.0001 
Emergency -0.0013 0.0008 -0.0030*** 
Surgeries -0.0064 -0.0081* 0.0005 
Birth -0.0163*** -0.0025 -0.0226*** 
2006 0.0381 0.0453** -0.0273 
Constant 2.0298*** 1.4975*** 0.6573*** 
***, **, and * denote significance at 1%, 5%, and 10% levels 
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APPENDIX 2  

ADDITIONAL RESULTS FOR CHAPTER 3 

For the specification of the SFA cost model, I performed a series of likelihood ratio tests.  First, I 

tested whether SFA is more appropriate than OLS regression as an estimation technique.  The 

null hypothesis that the two approaches were equivalent was rejected at the 5% level of 

significance and the stochastic frontier cost model was used in empirical analysis.  In SFA, an 

assumption about the distribution of the inefficiency error term, u, must be made.  One of the 

concerns about SFA has been that it does not provide a prior justification for the choice of a 

distribution for u.  This problem has been partially addressed by using the truncated-normal 

distribution which is a generalization of the half-normal distribution.  The truncated-normal 

distribution for u, defined as u ~ N+ (µ, 2
uσ ), reduces to the half-normal distribution when µ=0.   

A likelihood ratio test for H0: µ=0 failed to reject the null hypothesis and the half-normal 

distribution was assumed in empirical estimation.  I also tested whether a simpler functional 

form such as Cobb-Douglas could more accurately represent the cost frontier.  The null 

hypothesis was that the parameters of all squared and interaction terms in the translog cost 

function were equal to zero.  Rejection of the null hypothesis indicates that the translog 

functional form is more appropriate.  Finally, Hausman tests for endogeneity suggest that the 

price of capital and hospital outputs can be treated as being exogenous. 

The results of the SFA translog cost function (Table A.3.6) show that the coefficient of 

the price of capital, pk, was found positive and significant, as expected.  Some of the estimated 

coefficients of the output variables and interaction terms were insignificant or of an unexpected 

sign, fact that may be due to multicolinearity problems.  I also found positive and significant 

coefficients for the product mix descriptors (erv%, outsurg%, and birth%).  Of the two quality 



100 

 

control variables, only pneum_vac% was found positive and significant, indicating a direct 

relationship between quality and hospital costs. 

 
Table A.3.6.  Results of the SFA translog cost estimation 
Variable Coeff. t-stat 
Constant 2.8369 1.4964 
ln(admtot) -0.5573 -1.4388 
ln(postdays) 0.3269 1.4184 
ln(opv) -0.0083 -0.0344 
ln(pk) 0.7944 3.9365 
ln(admtot)-sq -0.0428 -0.7137 
ln(admtot)*ln(postdays) -0.0324 -1.4357 
ln(admtot)*ln(opv) 0.1381 4.4076 
ln(postdays)-sq 0.0472 1.5082 
ln(postdays)*ln(opv) -0.0378 -2.2163 
ln(opv)-sq -0.0402 -1.5293 
ln(pk)-sq 0.1044 5.4357 
ln(admtot)*ln(pk) -0.0307 -1.1256 
ln(postdays)*ln(pk) 0.0403 2.3325 
ln(opv)*ln(pk) -0.0639 -4.1126 
ln(bdtot) 0.1810 4.3104 
erv% 0.0027 4.2204 
outsurg% 0.0171 5.8217 
birth% 0.0048 4.9587 
pneum_vac% 0.0007 2.1861 
initial_antib% -0.0002 -0.1976 
Y2006 -0.0894 -1.5021 
Log-Likelihood  147.0242 
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APPENDIX 3  

ADDITIONAL RESULTS FOR CHAPTER 4 

Table A.4.4. Bootstrapped truncated regression: Model 1. 

  99% Bootstrap C.I. 95% Bootstrap C.I. 90% Bootstrap C.I. 
Variable β LB UB LB UB LB UB 
Constant  0.7232 0.5699 0.8846 0.6055 0.8433 0.6261 0.8244 
Government  -0.0157 -0.0459 0.0136 -0.0383 0.0069 -0.0351 0.0039 
For-profit 0.0148 -0.0635 0.0918 -0.0446 0.0715 -0.0331 0.0617 
Medicare 0.0001 -0.0013 0.0014 -0.0009 0.0011 -0.0008 0.0010 
Medicaid 0.0013 -0.0009 0.0033 -0.0004 0.0029 -0.0002 0.0026 
HHI 0.0031 -0.0388 0.0413 -0.0277 0.0324 -0.0226 0.0271 
System 0.0388 0.0113 0.0690 0.0177 0.0612 0.0213 0.0577 
Income -1.37E-06 -3.78E-06 9.60E-07 -3.21E-06 4.40E-07 -2.89E-06 1.50E-07 
MHMO -0.0007 -0.0032 0.0020 -0.0026 0.0013 -0.0023 0.0009 
Y2006 0.0236 -0.0060 0.0518 0.0023 0.0444 0.0050 0.0411 
Sigma 0.1033 0.0944 0.1148 0.0970 0.1119 0.0982 0.1108 
 

 

Table A.4.5. Bootstrapped truncated regression: Model 2. 

  99% Bootstrap C.I. 95% Bootstrap C.I. 90% Bootstrap C.I. 
Variable β LB UB LB UB LB UB 
Constant  0.7885 0.4078 1.1230 0.4909 1.0721 0.5465 1.0333 
Government  -0.0245 -0.0825 0.0349 -0.0709 0.0227 -0.0636 0.0149 
For-profit -0.0132 -0.2256 0.1454 -0.1720 0.1116 -0.1395 0.0864 
Medicare 0.0012 -0.0019 0.0043 -0.0012 0.0037 -0.0008 0.0033 
Medicaid 0.0029 -0.0027 0.0079 -0.0012 0.0068 -0.0007 0.0062 
HHI -0.0691 -0.1517 0.0243 -0.1332 -0.0035 -0.1258 -0.0155 
System 0.0364 -0.0348 0.1018 -0.0171 0.0839 -0.0080 0.0769 
Income -2.94E-07 -5.57E-06 5.25E-06 -4.40E-06 3.77E-06 -3.79E-06 3.22E-06 
MHMO 0.0026 -0.0053 0.0088 -0.0029 0.0071 -0.0018 0.0065 
Y2006 0.0084 -0.0530 0.0694 -0.0395 0.0566 -0.0312 0.0464 
Sigma 0.1400 0.1096 0.1684 0.1219 0.1627 0.1253 0.1600 
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Table A.4.6. Bootstrapped truncated regression: Model 3. 

  99% Bootstrap C.I. 95% Bootstrap C.I. 90% Bootstrap C.I. 
Variable β LB UB LB UB LB UB 
Constant  0.7124 0.5860 0.8449 0.6167 0.8114 0.6322 0.7955 
Government  -0.0214 -0.0462 0.0028 -0.0400 -0.0028 -0.0373 -0.0053 
For-profit -0.0166 -0.0804 0.0453 -0.0642 0.0299 -0.0553 0.0221 
Medicare 0.0007 -0.0005 0.0017 -0.0002 0.0015 -0.00003 0.0014 
Medicaid 0.0016 -0.0001 0.0033 0.0003 0.0030 0.0005 0.0027 
HHI -0.0514 -0.0857 -0.0200 -0.0764 -0.0271 -0.0727 -0.0316 
System 0.0381 0.0154 0.0632 0.0208 0.0565 0.0238 0.0538 
Income -3.34E-07 -2.32E-06 1.57E-06 -1.84E-06 1.16E-06 -1.59E-06 9.22E-07 
MHMO 0.0017 -0.0004 0.0039 0.00003 0.0033 0.0003 0.0030 
Y2006 0.0171 -0.0072 0.0402 -0.0005 0.0342 0.0018 0.0316 
Sigma 0.0851 0.0779 0.0945 0.0800 0.0922 0.0811 0.0913 
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