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Abstract 
 

The research problem of this thesis was to compare strategies and costs of protecting 

impatiens in greenhouse culture from western flower thrips that would provide a plant of 

acceptable quality to the market and would address the issue of development of resistance to 

commonly used pesticides by evaluating biopesticides. Partial budgets based on alternative 

strategies were identified.  Six control strategies were identified from a combination of 

commercial growers, research experts and biopesticide recommendations from product 

distributors. The research-recommended strategy 6 had the highest total production cost 

($197.44), while one of the grower strategies based on conventional pesticides had the lowest 

total cost ($153.28). The second growers’ strategy had the second lowest total cost by relying on 

scouting and pesticide application as needed.  This strategy used the smallest quantity of 

pesticides, and was expected to reduce or prevent resistance and minimize environmental 

impacts. Biopesticides had higher prices than conventional pesticides. Three biopesticide 

recommendation strategies (3, 4 and 5) were in the midrange of production cost.  The treatments 

containing biopesticides usually had higher product and production cost than treatments that 

included only nonbiopesticides.   

An integer linear programming model was developed to determine the optimal WFT 

control program for impatiens. Constraints included pesticide mortality and label limits on 

consecutive or total applications per crop cycle. All pesticides in the linear programming solution 

were conventional. Biopesticides were not included in the solution because mortalities of 

biopesticides were far below the threshold, according to research reported through the IR4 

program. The costs of using pesticides include economic product costs and environmental costs.  
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Using biopesticides to replace conventional pesticides in a rotation scheme of conventional ones 

with different modes of action could reduce water and soil pollution while maintaining crop 

quality. 
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Chapter 1.  Introduction 

 
1.1 Introduction 

The ornamental horticulture industry consists of floriculture (including cultivation of 

foliage and flowering plants often grown in greenhouses), and nursery crops (usually woody 

perennial plants grown in open areas) (USDA, 2007).  Horticulture has been one of the fastest 

growing agricultural sectors over the past decade and contributes significantly to the agricultural 

output of the U.S. (USDA, 2007). According to the 2002 Census of Agriculture, total sales of 

greenhouse and nursery crops from all 50 states were about $15 billion in 2002, had reached $16 

billion by 2005, and were reported to be $17 billion in 2007 (USDA, 2002; USDA, 2007).  The 

outlook for the horticulture industry is promising. 

Ornamental plant production in Louisiana has experienced little growth in the past three to 

five years. The wholesale value of nursery-grown ornament production in Louisiana was around 

$120 million. Floriculture/bedding plants accounts for about 30 percent of Louisiana’s nursery 

crop production in 2008 (LSU AgCenter, 2009).  

Though the horticulture industry continues to grow, insect pests are a challenge which 

could constraint its development. Pests have caused huge damages to ornamental greenhouse 

crops that have been subjected to physical or aesthetic loss. Thrips are common pests of 

greenhouse plants and crops. There are around 6000 different species of thrips (Cloyd, 2009). 

The western flower thrips (WFT), Frankliniella occidentalis, is one of the most serious pests of 

ornamental crops as well as many other crops throughout the world (Lewis, 1997). It is also 

reported as one of the top three thrips having serious impact on floricultural protected crops (IR-

4 Ornamental Horticulture Survey, 2007).  WFT was first reported in 1895 (Driesche, 2010). In 

the 1970s and early 1980s, WFT spread throughout North America. Soon it was found in Europe 
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and Dutch greenhouses. Since then it has become an exotic pest of greenhouse production in 

many countries throughout the world due to the global trade in horticultural products (Frantz and 

Mellinger, 2009).  WFT is now established throughout North America and many countries of 

Europe, Asia, South America, Africa, and Australia (Kirk and Terry, 2003).  

WFT is a significant pest of almost all crops, including fruiting vegetables, leafy 

vegetables, ornamentals, tree fruits, small fruits, and cotton (Lewis, 1997). It could cause a wide 

range of crop damage due to its inherent excessive feeding (Lewis 1997).  It primarily feeds on 

young tissue in the bud or on newly expanded leaves by sucking up sap, thus causing 

considerable aesthetic damage to ornamental and fruiting crops (Cloyd, 2009).  The direct 

symptoms of WFT feeding include surface blemishes formed at the oviposition site, distorted 

growth, sunken tissues on leaf undersides, and deformation of flowers (Van Dijken, 1994). 

Further, pathogens such as fungi can easily enter plants through the feeding wounds created by 

WFT and do more harm to crops (Cloyd, 2009). In addition, WFT can transmit plant viruses to 

some crops; the most severe two are tomato spotted wilt virus and impatiens necrotic spot wilt 

virus (Terry, 2010).  

WFT is a damaging pest and virus vector on both outdoor crops and in greenhouse 

vegetable and flower crops (Robb and Parrella, 1989). There is not much information about total 

economic loss since some indirect loss is hard to evaluate. Nuessly and Nagata (1995) reported 

that losses caused by F. Occidentalis and Thrips Palmi (the most serious pest of a number of 

glasshouse and field crops in southern states) in 1993 in Florida exceeded $10 million. Zhang et 

al. (2007) reported annual losses of up to $75,000 per hectare caused by direct damage to 

cucumbers in a UK glasshouse. The indirect damage was even more serious. Thousands or 

millions of dollars worth of crops may have been destroyed by tomato spotted wilt virus (TSWV) 
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and impatiens necrotic spot virus (INSV) (Lewis, 1997). Hausbeck et al. (1992) reported that an 

infection by TSWV and INSW virus caused $675,000 in losses in Pennsylvania in 1990. 

By far the greatest damage caused by WFT is its ability to transmit Tospoviruses. WFT is 

known to be the primary vector of TSWV and INSV which occur in the U.S. (Driesche, 2010).  

As an accurate value of loss is difficult to obtain, an estimate that TSWV alone causes over $1 

billion in losses annually to various crops has been reported (Goldbach and Peters, 1994). WFT 

is the only thrips species that can transmit INSV (Cloyd, 2009).  INSV is becoming one of the 

most important problems in the floriculture industry today. This virus is widespread due to the 

distribution of infected plant material and the extensive spread of WFT which transmits the 

disease. INSV causes significant losses on a great variety of glasshouse ornamentals in many 

countries (Wick, 2009). The type of damage and loss caused is more or less the same as that 

caused by TSWV (Wick, 2009).  

Impatiens is a native plant which can grow throughout moist forests in eastern North 

America (Schemske, 1978). It is one of the most popular of warm-season bedding plants in the 

U.S.  Based on USDA’s survey data, the wholesale value of impatiens in the U.S. was around 

$153 million in 2008 (USDA, NASS, 2008). WFT is the primary pest on impatiens (Casey, 

1997). Impatiens growing under greenhouse conditions is prone to attack by WFT. The 

populations of WFT have been shown to grow rapidly in the presence of impatiens flowers 

(Gerin et al., 1999). Many species of thrips feed on nutrients from plant pollen (Ugine et al., 

2006a). Adult female WFT reared on impatiens foliage supplemented with impatiens pollen 

produced 2-3 times more offspring per day compared to females provided only with impatiens 

foliage (Ugine et al., 2006a).  
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Given the documentation of the seriousness of the WFT, Frankliniella occidentalis as a 

pest of ornamental crops, as well as many other crops throughout the world (Lewis, 1997), a 

proposal to study the problem of resistance to spinosad was developed and funded by the Special 

Research Grants Program – Pest Management Alternatives, Plant and animal Systems Unit, 

CSREES/USDA for the years 2010 and 2011. Some experts from the approved grant proposal 

described the horticultural and economic situation and objectives. 

As reported in the Annual Ornamental Research Priority Survey Summary conducted by 

the USDA Inter-Regional Project 4 (IR-4), thrips (mainly WFT) has been ranked in the top three 

arthropod pests (with two spotted spider mite and aphids) for three consecutive years from 2006 

to 2008, nationally and in the Southern Region (IR-4 Ornamental Research Priority Summary, 

2008). 

The proposed alternative thrips management strategy consists of two components. The first 

line of defense against thrips is cultural practice, namely manipulating nitrogen (N) and 

phosphorous (P) and using a resistant cultivar to help reduce pest damage and outbreak. Two 

biopesticides (QRD 452 and Met 52) that may provide satisfactory control on nymphal and adult 

thrips will be the second line of defense and part of a resistance management program for 

Conserve which is currently commonly used to control WFT. 

1.2. Problem Statement 

Pesticides are a common pest management strategy. Traditionally, chemical pesticides 

have been the most used and most effective way to control pests in crops. However, overuse of 

pesticides in agriculture has resulted in insect resistance and environmental pollution problems 

(Kos et al., 2009).  
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As we know, sustained use, abuse usage and overuse of pesticides can result in high 

resistance of insect to pesticides (Cloyd, 2009). Some insecticides, such as spinosad, which were 

effective in controlling pests at the beginning, have been documented to be ineffective on pests 

after many years’ application. New pesticides must be developed which increase production cost 

and environmental hazard. Spinosad, trade name Conserve, has been an effective pesticide since 

it was developed in 1985 (Nayak et al., 2005). Due to its high efficacy for thrips control, 

spinosad had become almost the only insecticide used against thrips in some areas. Some 

growers havw applied more than 10 applications of spinosad on crops per growing cycle (Bielza 

et al., 2007).  The high application rates led to thrips resistance. Loughner et al. (2005) reported 

thrips were resistant to spinosad when spinosad was applied up to 8 times a year. Thus, it is 

essential to reduce the use of spinosad or replace spinosad with alternatives to prevent the 

spinosad resistant thrips in greenhouse production.  

Biopesticides have several advantages over chemical pesticides. First, since biopestcides 

come from plants or microbes, their composition is usually inherently less toxic than 

conventional pesticides. They are chosen to affect only the target pest and closely related 

organisms, while conventional pesticides may affect pests as well as organisms, birds, insects, 

and mammals. Biopesticides’ compositions are usually effective at low levels and they 

decompose quickly, resulting in lower exposures and largely avoiding the pollution problems 

caused by conventional pesticides (Kogel et al., 2004b). Besides biopesticides, genetic 

modifying technology is another method to avoid the insect resistance problem. This technology 

has provided new developments such as resistant cultivar which is an environmentally friendly 

pest control technique. Researchers are doing more experiments in this field.  
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Problems with control of WFT in production of impatiens include direct and cross 

resistance to commonly used insecticides. Since WFT has high a reproductive rate, has a short-

term egg to adult life cycle, prefers cryptic habitats, and is resistant to insecticides, sustained 

pesticide use may lead to resistance within insect populations (Zepeda et al., 2006). An effective 

way to control WFT in the greenhouse is needed.  

Usually, there are four ways to reduce resistance: (1) reducing pesticide use, (2) using 

biopesticides to replace conventional ones, (3) using newly developed pesticides, and (4) using 

rotation programs with different modes of action. Development of new pesticides is expensive. It 

takes an average of 9.8 years between the first research tests and registration of a product 

(Whitford et al., 2006).  It was reported that the average cost of developing a new pesticide was 

about $80 million (Muir, 2012). The cost would be transferred from the buyer to the seller, and 

finally these costs would be shifted to the users in the industry.  The total amount of pesticides 

used has increased during the past several years (EPA, 2011). The benefits of appropriate use of 

pesticides to the costs of inappropriate use of pesticides were about 20 to 1 (Crop protection, 

2010). Based on these producers’ needs, investment in research is needed to determine 

appropriate WFT processes in greenhouse production. 

A separate set of problems related to economic issues in pest management as related to 

efficacy and cost has not been addressed in sufficient detail. Generally, field experiments have 

focused on problems within specific disciplines. Therefore, greenhouse producers have been 

offered suggestions for problems relating to crop production, for example, which cultivar is a 

good selection, how much fertilizer should be applied, what are the optimum pesticide rates, and 

timing, etc. Many practitioners have found that a single solution in pest management is rarely 

sufficient and usually has short duration (Kos et al., 2009). Thus, other pest management 
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strategies must be implemented or considered in conjunction. Since factors such as pesticides, 

fertilizers and cultivars could affect the yield and quality of the product, it is important for 

growers to incorporate low cost and high efficacy production factors into pest management 

programs for greenhouse impatiens production to compete in the market. No previous study has 

investigated the integration of alternative tactics and WFT management on impatiens production 

in a greenhouse.   

Growers’ motivations and incentives encourage them to produce high quality crops with 

biodiversity. The market demand is important to ornamental crops’ production because 

consumers usually prefer new, improved, easy-to-grow and unusual plant varieties or cultivars. 

In order to satisfy this demand, horticulturists evaluate seedlings or select cultivars with specific 

characteristics, such as plant size, shape, flower color and disease resistance (Bethke and Cloyd, 

2009). Farmers face a decision about how to allocate their production resources based on their 

previous experience and the existing farm plan. In order to maintain a successful business, 

producers must consider production cost to ensure a return on their investment.  

Like Jetter (2005) indicated, it was a challenge to assess all benefits and costs to a pest 

control program due to the different approaches and dynamic factors. In addition, few economic 

feasibility studies have been conducted on horticultural pest management (Olson et al., 1996). 

An economic model is needed for growers to estimate costs and benefits of WFT control on 

greenhouse impatiens production. 

A set of experiments was conducted to answer questions of science regarding the 

relationship between production quality and quantity.  In these experiments, biopesticides in 

conjunction with conventional pesticides were evaluated for their possible contribution to control 

WFT. The absence of studies of economic feasibility of the different production factors and their 
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relationship to pest management strategy affects the efficiency and effectiveness of producers’ 

decisions in terms of profitability and of slowing WFT resistance to conventional pesticides 

(Eigenbrode and Trumble, 1994).  

1.3 Justification  

There are significant socio-economic as well as environmental benefits to be gained from 

this research. The study will deliver substantial economic information to the whole greenhouse 

impatiens industry. Benefits of cultivars, pesticides and nutrient management could increase 

crops yields and reduce production costs. As we know, if the optimum choice of the three 

production factors is used, farmers may not only reduce the impatiens greenhouse production 

cost and increase its benefits, but also reduce the amount of pesticides and nutrients. Thus it 

could reduce the environmental chemical hazard caused by pesticide application to crops, 

prevent or reduce water pollution from over-fertilization, and maintain the soil’s water holding 

capability, etc. This information could help impatiens growers control pests, maximize impatiens 

market returns and meanwhile protect the environment. 

1.4 Objective 

The objective of this study was to provide an analysis of alternative schemes of WFT 

control that were designed to reduce production costs and reduce pesticide use in greenhouse 

production of impatiens. The subpurposes of this study were to evaluate the following factors 

on cost and profitability:   

       (a)  To identify thrips control options for impatiens (alternative impatiens WFT control 

programs, including biopesticides used alone, in combination, and conventional products alone) 

and to estimate the production cost of each scheme.  

(b) To determine optimal thrips control programs using linear programming procedures.  
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The content of this study was mainly focused on how to obtain an optimized pesticide 

application scheme which had lower total production cost and had higher WFT control efficacy 

in greenhouse impatiens production. Chapter 1 gave a background introduction to the project, 

identified the problem and stated the objectives of this study. Chapter 2 reports the related 

research results and the methods researchers have used in the literature review. The total 

production cost for each strategy by using partial budget analysis method is calculated in Chapter 

3. A linear programming model aimed to optimize the pesticide program is constructed and the 

optimal pesticide scheme was interpreted in chapter 4. Chapter 5 is a results summary section.  
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Chapter 2.  Literature Review 

   

2.1 Introduction  

Literature in economics was reviewed for analysis of outcomes of individual activities 

and pest management strategies. There has been a significant amount of analysis of efficacy of 

alternative treatments in the area of controlling of weeds, insects and other pests. However, those 

experimental strategies and outcomes have received relatively little economic analysis. This 

extends to experiments evaluating strategies for control of various insect pests on impatiens. In 

this section, reports from studies that relate directly to management of western flower thrips 

(WFT) on impatiens, and more generally to management of insect pests on crops, is presented 

under topics of cultivar effects, nutrition effects, and pesticide efficacy.   

To satisfy the rising demand for ornamental plants and greenhouse crops, growers are 

interested in producing large numbers of high quality crops. To maximize returns in an 

increasingly competitive market, farmers must determine the most cost effective production 

method. A producer would make a decision to remain in production in the short run if marginal 

revenue is equal to or greater than marginal cost (Pindyck and Rubinfeld, 2001)..  

2.1.1 Research on pesticide use 

The principal management strategy to control pests is to use insecticides. Hundreds of 

pesticides have been developed and used in horticulture (Cloyd, 2009). The same approach has 

been used in WFT control. However, most of the pesticides are useful when WFT is in its initial 

life stage and its population is low. Also, some of them only kill the nymphs or adults of WFT 

with no activity on the egg or pupae stage (Seaton et al., 1997). What is more, applying more 

repetitions of insecticides means more effective and higher volumes of insecticides are needed to 
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kill WFT because at any time they are in different life stages and hide in areas of plants such as 

unopened flower buds and inner leaves of plants that are hard to reach with pesticides (Lewis, 

1997). Due to the problems of developing pest resistance, short term duration (opposite of long-

term duration, usually indicates short time period effectiveness of pesticides), the damage caused 

to non-target organisms and the environmental hazards of chemical insecticides, there is 

increasing interest in biological control pest on crops (Moazami, 2000).  

QRD 452 (UDA-245) is a new botanical insecticide and acaricide based on the essential 

oil of Chenopodium ambrosioides. The active ingredients (composed mainly of terpene, cymene, 

and limonene with minimal amounts of several other terpenes) are in the essential oil extract of 

the C. ambrosioides variety near ambrosioides (Chiasson et al., 2004). It was registered on 

turfgrass in December, 2008, and was approved for ornamental crops on June 30, 2010, by EPA. 

The terpenoid contained in a product is toxic to insects and is compatible with hymenopteran 

parasitoids. Phytotoxicity trials suggested that QRD 452 will not injure flowers or leaves of 15 

bedding plant species tested at 0.5% necrosis (Chiasson, 2004). 

 Metarhizium anisopliae strain F52 (Met 52) was approved as a microbial pesticide for 

non-food use in greenhouses and nurseries in 2003 by EPA. The fungus Metarhizium anisopliae 

strain F52 infects insects which contact it. Once the fungus spores attach to the outer surface of 

the insect, they germinate and begin to grow, then penetrating the inside of the insect and grow 

rapidly, thus causing the insect to die. Metarhizium anisopliae strain F52 can infect larvae and 

adults of many insects (EPA, 2003). 

     Some information about the effectiveness of biopesticides QRD 452 and Metarhizium 

anisopliae strain F52 on crops has been reported in the literature. Chiasson et al. (2004) 

compared the effectiveness of QRD 452 with commercially available pesticides in a laboratory 
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bioassay. The results showed QRD 452 at 0.5% was significantly more effective in controlling 

mites than 0.7% neem oil, 1.0% insecticidal soap, and the control treatment. Kabaluk and 

Ericsson (2007) reported that corn seeds treated with Met 52 (M. anisopliae conidia) resulted in 

significant increases in stand density compared to no M. anisopliae treated seeds. It also 

increased plant (stock and foliage) fresh weight when it was applied together with spinosad or 

with no additional agrichemical on corn seeds. Ansari et al. (2007) reported that the 

entomogenous fungus Metarhizium anisopliae V275 was more efficacious than chemical 

insecticides (imidacloprid, fipronil) in killing pupae of WFT (70–90% versus 20–50%) in a range 

of horticultural growing media. Maniania et al. (2002) studied the potential of Met 52 to WFT on 

chrysanthemum cuttings and reported that Met 52 could significantly reduced in both the adult 

and larval populations of WFT. 

There is little information about the effectiveness of QRD 452 and Met 52 to control 

WFT on impatiens. Effects of these pesticides on the two spotted spider mite, European red mite, 

black vine weevil, and WFT has been studied by some researchers (Chiasson et al., 2004; Bruck 

and Donahue, 2007; Maniania et al., 2002). Since crop and insect interactions can be very 

complicated, we want to make a complete cost and benefit comparison among traditional and 

biopesticides to compare the efficacy and cost during impatiens production, which will 

contribute to the objectives.  

2.1.2 Research on Economic Analysis of Experimental Outcomes 

As noted above, various pest management strategies have been tested, but there are few 

references in the literature that identify strategies resulting in cost reductions or other advantages 

such as reduction in environmental degradation. In general, there appears to have been little work 

that documents or measures the impact of WFT on other greenhouse foliage or flowering plants, 
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or on costs of alternative pest management strategies. No work was found that applied directly to 

alternative pest management strategies for controlling WTF in impatiens.  

2.1.3 Cost and Production Theory 

The discussion below provides the overall cost framework that is critical to firm analysis, 

and discusses applications of analysis in a variety of situations. Growers require management 

tools that can be used to compare production efficiency and costs of their production operations 

to other firms in similar markets. Cost analysis is a good starting point common to all economic 

evaluation methods. Cost theory offers an approach to understanding the costs of production for 

an individual or a firm to determine the level of output that reaps the optimal level of profit at the 

least cost (Pindyck and Rubinfeld, 2001). When evaluating the production expenses of individual 

crops, fixed and variable costs must be determined. Fixed costs are those incurred regardless of 

the level of output. Variable costs are costs that vary with output which include specific costs 

such as seed, containers, fertilizers and plant material. To be profitable, product prices must 

include fixed costs and variable costs (Pindyck and Rubinfeld, 2001). Usually the cost function is 

specified as C= F(Y, P), where C is the total cost, Y and P are vectors of price of output and 

input, respectively.  

 Production is an economic behavior which transforms inputs into outputs. Inputs usually 

include land, labor, and capital, plus raw materials and business services. The efficiency of 

transformation of inputs into outputs is determined by the technology in use. Limited quantities 

of inputs will yield only limited quantities of outputs. The relationship between the quantities of 

inputs and the quantities of outputs produced is called the "production function." It is described 

by the equation q = f(k, l), where q represents quantities of output, k denotes the amount of 

capital, and l denotes the amount of labor (Pindyck and Rubinfeld, 2001). In economics, the key 
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point for a firm is how the levels of output and inputs are chosen to reach profit maximization 

under the existing technology. This can be expressed as a profit equation: Max π = p q(g(f, l)-

c(r(Y, P)), where π is profit, p is the market price of output, and q is the quantity of output. 

Since there exists the law of diminishing returns, the marginal productivity of the variable 

input will eventually decline. A decision rule for a firm is to produce at the point where marginal 

revenue equals marginal cost, which is expressed as Δπ/Δq = Δ revenue/Δq – Δcost/Δq. At this 

point, a firm could make the decision whether to produce or not in order to reach resource 

optimal allocation (Pindyck and Rubinfeld, 2001). If Δπ/Δq>0, the firm might choose to remain 

in production. If Δπ/Δq<0, the firm might stop production.  

2.2 Budgets 

There are four general types of farm/ranch budgets: enterprise, whole-farm, cash flow, 

and partial. A whole-farm budget is normally used to compare alternative farm organizations 

under different cropping or production patterns. A cash flow budget is concerned with the timing 

of receipts and expenses for a production period (Riggs et al., 2005). Thus, these two budgets are 

not appropriate to the objectives of this study, which is related to greenhouse production with 

almost the same production process for seasons and usually operated by one owner. Thus, we 

focused on enterprise budget and partial budgets. 

 Enterprise budgets are an important tool for planning and for ongoing farm financial 

management. Budgets are used as a starting point for individual producers to estimate the 

potential revenue, expense and profit for some specific enterprises and situations (Born, 2004). 

Producers must consider several economic questions before making a production decision. These 

questions include: Which crop and variety will be produced? How many acres will be produced? 

Which production system will be selected? Will the revenue be greater than the expenditure on 
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production? (Smith et al., 2009).   Producers will determine their production strategies based on 

the answers to these questions. This process is actually the basic procedure of budgeting with 

regard to the coordination of resources, production, and expenditures. Revenue, cost and profit 

are the three basic components of an enterprise crop budget. Revenue is derived from the product 

sale.  Profit equals revenue minus cost. Cost is all the expenditure of fixed and variable costs 

including machinery, fertilizer and electricity fees, etc. (Hanson et al., 1991).    

The partial budgets method is a practical way to compare changes in production costs and 

revenue since it requires minimal data compared to other budgets. It has been used largely when 

production systems are subject to change, to compare two or more alternative sets of production 

practices (Lu et al., 2003). All systems under comparison must be under the same production 

conditions, have the same fixed cost and vary only in explicitly specified components (Labarta et 

al., 2002). The main point is to calculate the net change in return, which subtracts the total cost 

from the total return. The key requirement for using the partial budgets method is to identify all 

the changes (positive and negative) produced by shifting from a standard input to a proposed 

alternative (Labarta et al., 2002). 

Budgeting is useful for estimating costs and returns on enterprises currently or in the 

future.  Producers may strive to optimally balance the use of conventional pest control products 

and biological control products while maintaining the desired quality level of the products to 

increase profit. Floriculture crops are valued based on their aesthetic value, which is diminished 

by the visual presence of pests, as well as by the damage caused by them. Therefore, high quality 

plants with no pests have been a goal of most floriculture producers (Schumacher et al., 2006).  
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2.2.1 Bioeconomic Model 

In prior literature, some economic models have been developed to evaluate the returns of 

production. But fewer models have incorporated pest control. In order to get an optimal decision 

rule for pest control as well as profit maximization for an ornamental crop, Schumacher et al. 

(2006) developed an optimal pest control model based on other authors’ model for the 

ornamental crop ivy geranium as the following formula (Equation 1). This model was structured  

on a single ornamental crop, one pest, and one predator within one crop cycle. Based on this 

model, growers could determine the level of conventional pest control, introduced biological 

control (e.g. natural enemy) and horticultural control (e.g. land sanitation) in each period that 

maximized the benefits of plant production. Optimal trajectories for chemical and biological 

control can be derived from the first order conditions of Equation 1. Growers had four options to 

use a chemical pesticide and/or introduce predators to control for pests: single, simultaneous, 

cyclical or no control. The specific underlying assumption was that a large population of pests 

can cause major damage to the crops. The functions and parameters the authors provided in the 

paper were specified for ivy geranium (Pelargonium peltatum). Its major pests are the 

twospotted spider mite (Tetranychus urticae) and a predatory mite (Phytoseiulus persimilis).  

Max୳ଵ୲,୳ଶ୲,୳ଷ୲ஹ଴ሼβT  BሺQሺαT, gT, pTሻ; Zሻ ൅ βT  Fሺ gT, pTሻ െ ∑ β୲ Cሺu1t, u2t, u3t; ZሻTିଵ
୲ୀ଴   ሽ…ሺ1ሻ 

Where: B(Q(aT, gT, pT);Z): concave benefit function, 
C(u1t, u2t, u3t; Z): a convex cost function, 
Q( aT, gT, pT): a continuously differentiable function that represents the total quality from the 
joint influence of plants and visual presence of insects. 
F(gT, pT): expected net benefits based on the state variables at terminal time T. 
(See Schumacher et al. (2006) for other details.) 

This procedure and equation could possibly be applied to other crops and pests. However, 

the parameters of those functions related to other pests and crops would be re-estimated because 

different pests have different growing stages, performances and population dynamics, and 
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different crops have different growing styles. In addition, functions such as Q and F require large 

amounts of data, consuming time and other resources. The environmental and weather conditions 

would affect the Q and F functions. It is not clear that the benefit of additional precision in 

pesticide amount and timing would exceed the cost of determining those parameters for solving 

problems in the field. 

2.2.2 Multiperiod Profit Maximizing Model 

Gillespie et al. (2008) reported a multiperiod profit-maximizing conceptual economic 

model related to cow-calf production (Equation 2). This equation provides the maximum profit  

max πሺxሻ ൌ෍ π୲  ሺx୧୲ሻ 
గ

௧ୀଵ

 

=෌ ሺ1 െ γሻ௧்
௧ୀଵ  ቄଵ

Y
 pୡ୭୵,   ୲   fሺx୧୲ሻ ൅ pୡୟ୪୤,   ୲    gሾfሺx୧୲ሻሿ –∑ ω୧୲x୧୲୬

୧ୀଵ ቅ …………………….... (2) 

Where πt(.): profit at year t, T: the number of years, xit : the amount of input i used at time t, Y: 
the useful life of the cow in years prior to culling, pcow,t : the price of the cull cow at year t, pcalf,t : 
the price of the calf at year t,  
f(.): the production function for the cow, g[.]:the production function for the calf,  
ωit : the price of input i at year t. 

of cow-calf production associated with optimal input usage in selecting a grazing strategy. 

Production functions for cow f(.) and calf g(.) must be available to solve for profit maximizing 

input levels, and data are rarely available to determine these functions for specific conditions 

(Gillespie et al., 2008).  The authors compared costs and returns among low/ medium / high 

stocking rates-continuous grazing and rotational grazing at a high stocking rate in the U.S. Gulf 

Coast region. Since the data provided the comparison of cost and benefits, partial budgeting was 

used to determine the impact of different stocking rates and grazing strategies on profit by 

changing stocking rate and/or grazing method. They concluded that rotational grazing had the 

least net return among the four different strategies.  
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2.2.3 Net Present Value Model (NPV)  

Other models, like net present value, have been used to analyze costs and profitability. 

For instance, Pandey et al. (2006) developed an NPV model to evaluate the optimum size of 

rainwater storage used for a rice-fish integrated production system revenue for a 2-3 year period. 

Net present value of irrigation systems was computed by subtracting the total costs from the 

present worth value of returns (Equations 3, 4, 5). This model is appropriate for investment  

                             NPV=WRE - WAC .. ………………….…………………………..……….…. (3) 

                             ோܹா ൌ    ∑
ோಶ,೟

ሺଵା௜ೝሻ೟
୬
୲ୀଵ    .…………….………………….….………..….....….. (4)                        

                                ஺ܹ஼ ൌ    ∑
஼ಲ,೟

ሺଵା௜ೝሻ೟
୬
୲ୀଵ   .………………………………………..........………... (5)                        

Where RE, t and CA, t are the returns and annual costs at the tth year, respectively. 
WRE: present worth value of returns.  WAC: annual costs. ir: an interest rate.  
n: economic years of life of a reservoir. 

evaluation of a firm for this 2-3 year period, and can be generalized to any number of years. The 

NPV concept converts all future cash flows (positive or negative) into present values. NPV 

indicates the difference between the present value of cash inflows and the present value of cash 

outflows. If NPV is positive, it is an investment for the firm to consider, although alternative 

uses of resources might still be compared (Pindyck and Rubinfeld, 2001). This scope of analysis 

was limited to the capital investment, plant operating cash flows, and logistics costs, but could 

have included other costs or revenues. This is not appropriate to our objectives because a 

multiperiod analysis is not required. 

 2.2.4 Partial Budgets Model 

 Wanyama et al. (2004) used partial budgets to analyze insecticide use and the potential 

for Bt Maize varieties in the control of stalk borer in Kenya. In Kenya, maize yield at first 

drastically increased up to the 1970s since the introduction of improved maize varieties; but has 
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declined since then.  The authors indicated that nutrient mining, sub-optimal input use and insect 

pest damage (stalk borer was the major pest) were the three main factors which caused the yield 

to decrease drastically. They evaluated the economic impact of Bt varieties which were tolerant 

to stalk borer and the types of insecticides used by farmers. Net benefits (NB) were gross 

benefits (net maize yield [Yi] multiplied by maize price) minus total variable costs (TVC: all 

inputs [Xi] multiplied by their respective prices [Px]). The equation was NB = Yi Py − Xi Px. 

This approach allowed the researchers to compare the cost and profit potential difference 

between use /non-use pesticides and resistant/nonresistant maize varieties planted in 6 different 

zones (low tropics, moist transitional tropics, high tropics, moist-mid-altitude zones, dry 

transitional and dry moist tropics). The authors concluded that if Bt maize were introduced in 

Kenya it would likely to reduce losses caused by stalk borer by 15%.  

     Other uses of partial budgets include analysis of whether production alternatives change 

profitability. Lu et al. (2003) used partial budgets to analyze the effect of management intensity 

on cost and profit of three watermelon cultivars. Carlson (2007) used partial budgeting to 

evaluate the costs and benefits in a field rice study by comparing the weed control, yield and 

revenue with alternative herbicide programs. Mite (2005) used partial budgets to determine 

economically optimal fallow weed control programs for alternative production situations for 

sugarcane producers. Gillespie et al. (2008) used partial budgets to investigate the role of labor 

and profitability in choosing a grazing strategy for beef production in the U.S. Gulf Coast region. 

Andino (1999) evaluated the cost and benefit of colored plastic mulch on watermelon production 

by using partial budgets. Wanyama’s study and other references illustrated that partial budgets 

could be a useful tool to analyze the costs and benefits of controlling WFT on impatiens 

production in the greenhouse production situation. 



22 
 

2.3 Linear Programming Model 

The obligation to meet infinite needs with restricted resources is one of the biggest 

challenges encountered in the market today (Ozsan et al., 2010). Linear programming (LP) is a 

powerful analytical tool that can be used to determine an optimal solution that satisfies the 

constraints and requirements of the current situation (Betters, 1988).  

This method consists of three quantitative components: (1) objective function 

(maximization of profit or minimization of costs); (2) constraints (limitation of production 

sources); and (3) decision variables (Chinneck, 2004). In formulating the linear programming 

problem, the assumption is that a series of linear (or approximately linear) relationships 

involving the decision variables exist over the range of alternatives being considered in the 

problem (Chinneck, 2004).  

LP output not only provides an optimal solution, it also provides sensitivity analysis. 

Sensitivity analysis evaluates how changes in the objective function coefficients affect the 

optimal solution of a linear programming model. It could examine how well the changes of 

objective function coefficients and the right hand side value could affect the optimal solution 

(Anderson et al., 2000).  

LP has been used in the evaluation and optimization of raw material resources, capital, 

machinery, equipment, time and manpower under certain restricting circumstances to get the 

most benefit (Han et al., 2011). Hassan (2005) used a linear programming model to determine 

the optimum cropping pattern as a prerequisite to efficient utilization of available resources of 

land, water, and capital for Pakistan’s agriculture. Bretas (1991) reported a general linear 

programming model which was developed to determine an income-maximizing set of 

management activities for a cash-crop farm subject to groundwater quality standards for 
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pesticide contamination. Ozsan et al. (2010) reported that a linear programming model was used 

to determine the maximum profit in marble processing plants.  

There is little information about how to obtain an optimal pesticides application strategy 

and achieve minimum production cost and high plant quality in a greenhouse. In this study, we 

present a conceptual linear programming framework by which agriculturalists or growers could 

examine the cost and efficiency of pesticide application in the management of WFT on impatiens 

in a greenhouse. Growers and managers may understand that the LP model helps to allocate the 

resources most efficiently, particularly in situations where important constraints are placed on the 

actions that may be taken. Sensitivity analysis allows evaluating the impact of pesticide price 

variability on optimal WFT control programs. A post optimal analysis of the established 

production minimization model would be attempted to help the growers in adjusting their 

decisions in facing increases or decreases in demand, resource prices and availability of raw 

materials.  
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Chapter 3.  A Partial Budget Analysis for Western Flower Thrips 
Management on Impatiens Grown in Greenhouses 

 

3.1 Introduction 

          Impatiens is among the most important bedding plant crops in the United States (Ugine et 

al., 2007).   The wholesale value of impatiens in the U.S. was around $153 million in 2008 

(USDA, NASS, 2008).  Impatiens grown in greenhouse conditions is prone to attack by western 

flower thrips (Frankliniella occidenttalis, Pergande). WFT is a serious pest of over 200 species 

of vegetables and ornamental crops worldwide (Arthurs and Heinz, 2006).  Damage to impatiens 

occurs in two distinct ways: (1) the direct feeding damage which causes surface blemishes, leaf 

scar, flower deformation, and growth distortion, and (2) the indirect damage from disease, 

particularly impatiens necrotic spot virus and tomato spotted wilt virus, which is facilitated by 

direct feeding damage (Cloyd, 2009). 

          The regular use of chemical insecticides in order to control thrips in greenhouses raises 

many concerns due to direct and cross resistance to commonly used insecticides (Arthurs and 

Heinz, 2006). Biological chemicals which come from natural plants, or microbes, degrade 

quickly after application. Little or no toxic residues would be left in the environment, thus 

largely avoiding the pollution problems caused by conventional pesticides (Kogel et al., 2004b). 

Due to the advantages of biological chemicals, people have more and more interest in 

biopesticides.  The overall goal of this project was to improve the efficiency of WFT 

management in greenhouse impatiens production in Louisiana. The cost effectiveness of newly 

developed biological chemicals (Met 52, QRD 452, and combinations) in preventing thrips was 

evaluated in this study.  Since a key resistance-management practice to avoid pesticides 

resistance is to use chemical rotation programs, some typical strategies (different chemical 
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rotations) and their costs were also discussed in this study. The issues presented should provide 

insight on the effectiveness of new biological chemicals dealing with WFT and the costs of 

different insecticide schemes.   

Repeated use of the same class of pesticides to control pests can cause undesirable 

changes in the gene pool of a pest. When a pesticide is first used, a small proportion of the pest 

population may survive due to its distinct genetic makeup. These individuals pass along the 

genes for resistance to the next generation. The proportion of these tolerant individuals in the 

population increases, while the more susceptible share of the population diminishes. Through 

this process, the population develops resistance to the pesticide. To counter this effect, the 

rotation of insecticides with different modes of action is a recommend approach (Cloyd, 2010).  

Biopesticides are alternatives that may be used in such rotation.  

Pesticide product labels provide critical information about how to safely and efficiently 

use pesticide products, and are the source of application rates. Specified amounts of each 

chemical are added to water to get the required rate solution in a tank.  

           Two or more pesticides may be applied simultaneously to make application convenient 

and save time. They can be mixed in one tank if their labels indicate compatibility. Reasons to 

avoid mixing are that they may react with each other and produce new compounds that have no 

impact on target pests; the reaction may form precipitates that interfere with the operation of the 

sprayer; or that pesticides may separate, which could cause differences in application as the 

concentrations in the tank vary.  

3.1.1 Flow Chart Description of Situations Chosen for Partial Budgeting  

          The criteria for choosing strategies for which partial budgets were prepared are presented 

in general form in Figure 1. A variety believed to be thrips-susceptible, Dazzler Violet, was 



28 
 

identified.  Results from experiments that evaluated the impact of alternative rates of N and P on 

plant growth and quality suggested whether a different budget was needed. Low and high rates 

were illustrated in the chart, but multiple rates were evaluated. If there was no difference based 

on outcomes of experiments, one budget sufficiently represents the situation. Following that 

choice, a series of pesticide strategies were developed based on the experiments, based on 

control strategies used by growers, and based on control strategies recommended by research 

scientists. These strategies included both conventional, commonly used products and the 

biopesticides.  

          Only one branch of the chart was illustrated in Figure 1. The other branches would be 

analogous, and a separate chart could be used to represent the thrips-resistant variety Super Elfin 

Red.   

                                                                                                                              S1 … to S7 
                                                                   Low N rate                yes        budget needed       (strategies defined  
                                                                   different from                                                        in following section) 
                                                                   high N rate?                
                                                                                                     no          budget not needed 
                                                                                                              
 Cultivar selection         nutrition    
  Dazzler Violet             experiments         Low P rate                 yes          budget needed 
                                                                  different from                                                           
                                                                   high P rate?               no           budget not needed     

                                                                                                                      
3.1.2 Background on Biological Pesticides Met 52 and QRD 452  

          QRD 452.  This is an essential oil extract of Chenopodium ambrosioides nr. Ambrosiodes, 

so it is a bioinsecticide. As a naturally occurring compound, it is not expected to be 

environmentally hazardous (EPA, 2011); however, the product was not labeled for use in 

greenhouse production of ornamentals at the time this project began. Recommendations for the 

use of a pesticide on a crop cannot be made until studies of its persistence have been carried out 

                                 Figure 1.   Flow chart of cultivars, fertilizers and pesticides schemes 
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(Sharma et al., 2007). It was labeled and available for outdoor use under the trade name Requiem. 

The developer AgraQuest had indicated work toward a label for the product for greenhouse 

ornamentals. It had been noted to have action on one or more stages of the thrips’ life cycle. Its 

mode of action is that softening of the cuticles of insects leads to disruption of respiration (EPA, 

2008). Chiasson et al. (2004a) reported that 0.5 % QRD 452 was effective against adult 

twospotted spider mite and the European red mite in a laboratory bioassay. Chiasson et al., 

(2004b) evaluated QRD 452 in controlling WFT in a laboratory bioassay. Results indicated it 

was significantly more effective than neem oil, insecticidal soap or the control treatment. Thus, it 

would represent an alternative product with environmental advantage to address the resistance 

issue. Overall, however, little research-based information about QRD 452’s impact on thrips was 

available in the literature.  For that reason, a request was made to AgraQuest’s research scientists 

(personal communication) to provide information about efficacy. These representatives 

responded that QRD 452 would not be made commercially available for greenhouse production 

of ornamental plants at this time. However, the product remains available to researchers for 

testing, was labeled for other applications, and was available in the market, so it was retained as 

one of the biopesticide alternatives in potential control rotations. 

Met 52 (Metarhizium anisopliae Strain F52).  This is a recently developed microbial 

insecticide, a deuteromycetous fungus with a host range primarily affecting coleopterans of the 

families Elateridae and Curculionidae (EPA, 2000).  Based on information from Novozymes 

(personal communication), Met 52 is available for greenhouse application in European countries 

and Canada. It is labeled in the U.S. for outdoor application on lawns for control of pests, such as 

ticks, under the trade name TICK-EX. Met 52 is sold in granular form for incorporation into 

media to act against eggs, instar and pupae stages of thrips, and in emulsifiable concentrate (EC) 
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form for foliar application as a spray.  The company indicated that Met 52 would be 

commercially available in the western U.S. late in 2011, with national distribution to follow.  

Met 52 is effective because Metarhizium anisopliae fungus spores can infect different 

developing stages of insects. Spores germinate on the surface of the insect, then penetrate into 

the insect, causing the insect to die (EPA, 2000).  Effectiveness of Met 52 was reported in the 

literature review in Chapter 2. Since the product’s effect is through production of spores, it is 

effective only after a period of reproduction.  

3.1.3 Sources of Data Used in the Study 

As discussed in the introduction chapter, a USDA/PMAP grant funded a series of 

experiments that were intended to answer questions about resistant and susceptible cultivars’ 

response to thrips pressure, about the role plant nutrition plays in being more or less attractive to 

thrips, and the role of biopesticides as part of resistance strategies. In addition to the experiments 

described in Chapter 1, information used to choose parameters came from informal interviews 

and discussions with growers and representatives of the companies that brought the biopesticides 

to the market. 

3.1.4. Discussion of Informal Data Collection 

        To get more detailed information about biopesticides and different pesticide schemes used 

to control thrips on impatiens production, greenhouse growers located in Louisiana were 

interviewed about impatiens production procedures.  Data included typical greenhouse size and 

bench/tray arrangement, tray capacity in a greenhouse, methods of estimating thrips population 

(yellow sticky cards, for example), pesticide preparation, spray and cleanup times and typical 

length of a crop cycle. It was common to have a regular, planned schedule of pesticide 

applications. Two of these interviews were in person, while four others were by telephone.  
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3.1.4.1 Information from Companies Marketing QRD 452 and Met 52.  

There was scant literature on efficacy of these two biopesticides; however, both had been 

tested at some length as part of the product registration process. Requests for publicly available 

research were made to company representatives - Novozymes for Met 52 and AgraQuest for 

QRD 452. Information that was provided included: 

— QRD 452 had been considered for registration on greenhouse ornamentals, but the 

company declined to take that action and did not disclose the reason for that decision. The 

product is registered for selected outdoor applications under the trade name Requiem. Product 

price was available because of this registration, and product for testing was available to research 

scientists. 

— Met 52 in granular form and emulsifiable concentrate form have been used in Europe for a 

period of years. Its label in the United States for application on ornamental plants in greenhouses 

is recent, and the product was scheduled for commercial sale on the west coast of the U.S. late in 

2011. The company representative indicated that Met 52 should provide acceptable control of 

thrips if applied regularly. 

3.1.5 Pesticide Programs Used by Louisiana Growers.  

Some of the pesticide schemes were based on production practices of growers. Initially, it 

was expected that additional information about the use of biopesticides and their effectiveness 

would be gained; however, it appeared that biopesticides were seldom used in Louisiana. 

Reasons given included that (i) thrips is not a problem, (ii) conventional products are effective, 

and (iii) there is a risk associated with new products (they knew how to use conventional 

products, but were unfamiliar with biopesticides). 
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University horticulturalists assumed a production cycle of 8 weeks. Some growers, 

however, had shorter cycles of about 6 weeks. Generally, growers followed one of two 

approaches. First was a pre-determined schedule of application of products, typically at 7 day 

intervals. Second was close observation of the crop to spot problems (scouting), followed by 

application as needed. Two typical pesticide schemes from growers (strategies 1 and 2) shown in 

Table 3.2 were used to compare their efficiency and cost with those of biopesticides.  

3.2 Method - Partial Budget Construction 

        Partial budgeting is a planning and decision-making framework used to compare the costs 

and benefits of alternatives faced by a farm business (Roth and Hyde, 2002). In a partial budget, 

only activities that will be changed are evaluated for their ability to increase or decrease income 

in the farm business. In this study, all aspects of farm profits that are unchanged will be ignored.  

3.2.1 Costs for Partial Budgets 

          Fixed costs include, but are not limited to, greenhouse, facilities, equipment depreciation 

and interest. The variable costs include: cultivar, fertilizer, chemical inputs, fuel, labor (i.e., 

harvest, transport), operating costs of machinery, and other inputs (i.e. utilities). Fixed costs do 

not change with levels of output. Variable costs, such as utilities, containers and other inputs, do 

change across production cycles. Variable costs were computed and analyzed on a per unit basis. 

Variable costs such as fertilizers, pesticides and labor were of interest in this study. Marketing, 

transportation and other inputs were assumed to be equal across treatments. As a result, changes 

in production costs were due to different fertilizer usage, labor cost and variations in pesticides 

programs.   

In this study, only total production cost was estimated in the partial budgets. The 

estimation of revenue was not included for the following reasons: (1) some plant quality 
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evaluations were taken as part of the scope of this project, but not for all the strategies; (2) there 

was little information in the literature review that related plant quality to pesticide control  

strategy, and it appeared that plant quality was assumed to be related to thrips mortality; (3)   

there appear to be two classes of impatiens sold – plants that meet expected quality at the market, 

and others that must be sold at discount due to lower quality. Any other plants are discarded.  

Growers did not have estimates of the shares of plants in these classes in general, and 

particularly by strategy. For these reasons, differences in revenue were difficult to estimate and 

were not included in these partial budgets. 

3.2.1.1 Fuel Cost  

        Several kinds of sprayers may be used for pesticides application.  Dramm Hydra sprayers 

are one example. It is a popular commercial greenhouse sprayer in today’s market (Plant Produce 

and Service, INC, 2009). Each Dramm Hydra sprayer is powered by either a 1.5 horsepower 

electric TEFC (Totally Enclosed, Fan Cooled) motor or a 5.5 horsepower Honda gasoline motor. 

The reference indicates that the gasoline motor consumes 200 grams gasoline per hour per 

horsepower (http://wenwen.soso.com/z/q233977950.htm). In this case, the 5.5 horsepower 

gasoline motor consumes 1100 grams of gasoline per hour. The fuel cost was calculated by 

multiplying the fuel consumption rate per hour times the price of gasoline. Thus, fuel cost per 

greenhouse equals gasoline price times gallons per hour times operation time (Cáceres, 2005). 

3.2.1.2 Labor Costs  

Labor cost was determined as the hourly labor rate multiplied by labor performance time. 

Labor included machine setup, machine operation, pesticide spray, machine service and personal 

scouting in greenhouse.  The minimum wage rate was $7.25 per hour regulated by federal 

government (http://www.dol.gov/whd/minwage/america.htm#Louisiana); however, a full time 
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labor cost was not only based on an hourly minimum basis, but also benefits such as medical 

insurance and social security.  Based on these considerations, a hired farm laborer was paid $9.60 

per hour (Salassi and Deliberto, 2012). Manager labor was charged at $15.60 per hour, which 

included a basic wage rate of $12.00 per hour plus additional costs (27.65%) for social security, 

Medicare, and workman’s compensation (6.2%, 1.45% and 20.0% respectively). The higher 

wage rate was charged for scouting because an expert with higher skills might be needed for 

scouting (Salassi and Deliberto, 2012). 

           Traditionally, growers use sprayers to apply insecticides. Based on the informal survey of 

growers, the setup and cleanup time for each application was around 25 minutes. One pesticide 

application time was estimated at 25 minutes for a greenhouse based on experience and reports 

from growers. These costs were a component of the partial budget. 

3.2.1.3 Chemical Costs 

        Market prices were used to estimate the costs of insecticides and fertilizers in this study.  

Input prices were from companies or suppliers of agricultural chemicals and services online.  For 

example BWI Company, Inc. (http://www.bwicompanies.com), B&T Grower Supply, Inc 

(http://btgrowersupply.stores.yahoo.net/insecticides.html) and Waldo Grower Supply Catalog 

(2008) were the major sources of prices.  

Chemical application time and rates were estimated based on the informal survey. 

Growers usually purchase plugs from the market and transplant them into 4- inch pots in a 

greenhouse.  Market size is reached in about 8 weeks. Thus 8 weeks was chosen as the 

production cycle. 
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3.2.1.4 Fertilizer Costs 

  The informal interviews indicated that growers purchased a complete analysis fertilizer, 

typically 17-5-24 (N-P2O5-K2O).  The common greenhouse size is 30 ft. x 96 ft. which can hold 

about 1000 flats of size 20.5 inches x 10.5 inches, and the production cycle is eight weeks from 

plug to mature crop. An application rate of 210 ppm is a weekly fertilizer use rate of 6.98 pounds, 

while the application rate of 105 ppm was a weekly rate of 3.49 pounds. These rates were used in 

the partial budgets. 

3.2.2 Considerations in Choice of Pesticide Schemes 

          Rotation schemes are one of the first lines of defense against pesticide resistance. Control 

products have different modes of action that can delay thrips resistance development and provide 

a sustainable and effective approach to control thrips (Cloyd, 2010). A mode of action (MoA) 

classification scheme was developed and endorsed by IRAC (Insecticide Resistance Action 

Committee), an international group of more than 150 members of the Crop Protection Industry. 

Its goal is to work as a technical group of the industry association CropLife to communicate, 

educate, prevent or delay the development of resistance in insects and mite pests in industry 

(http://www.irac-online.org/about/irac/). Resistance arises through the over-use of an insecticide 

against a pest species. This method of selection of resistant pests causes the evolution of 

populations that are tolerant to that insecticide. Resistance is commonly developed based on a 

genetic modification of a target site. The IRAC MoA classification provides guidance to the 

selection of insecticides or acaricides (any drug or formulation for killing mites or ticks) to 

growers, advisors, consultants and professionals to encourage effective and sustainable use of 

insecticides and acaricides. 
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3.2.3 Limits Imposed by the Pesticide Label 

The major chemicals used in this study were Met 52 and QRD 452. In the informal 

survey of growers, the products used were collected and added to the list. The company 

representatives were asked to identify thrips control products they had observed in use in 

greenhouse production situations of impatiens.  Subsequently, product formulations and label 

application recommendation limits for all these products were collected and shown in Table 3.1. 

Important concerns about application of major pesticides studied in the study on their labels were 

briefly discussed. 

          The old label of Conserve SE regulated that the maximum application times was 10 times 

a year before 2006 (label code: D02-090-010). Researchers have demonstrated that overuse of 

Conserve led to thrips resistance (Bielza et al., 2007).  Therefore, Conserve’s label has changed 

in recent years.  The number of permitted applications has been reduced to 5 or 6 times (D02-

090-013) per year. The production period of impatiens in a greenhouse is around 8 weeks. Thus 

there may be two or more impatiens production cycles in spring and fall. The recommendation of 

a single application of Conserve per production cycle was adopted.  

Met 52 has two forms: Met 52 Granular and Emulsifiable Concentrate (EC). Granular is 

incorporated into growing media or soil at a rate of 0.5 kg/m3 in order to protect crops. It must be 

incorporated thoroughly and evenly mixed into the media. Met 52 Granular can be used at all 

crop growth stages (http://www.fargro.co.uk/prodmanl/met52-0111.pdf). Met 52 EC may be used 

for foliar applications to control insects with a high reproductive potential. There is no 

application limit for this product. However, it is better to begin applying Met 52 EC at early 

stages since it takes time to be effective. Applications may be repeated at 5 to10 day intervals to 

match need based on insect population and plant quality goals.  
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According to the label, QRD 452 (REQUIEM EC) is a contact insecticide and thorough 

coverage is necessary for optimum thrips control. QRD 452 also needs to be applied at early 

stage of the pest cycle before thresholds are reached. The maximum application times of QRD 

452 was less than 10 times per crop production cycle. Other products also contain label 

recommendations with respect to number and times of applications (Table 3.1). 

Table 3.1 Label statement of limits on pesticides application rate ranges and number of 
applications for greenhouse ornamental plants 

Name Type Rate range per 
100 gal of water

Limit 

Avid insecticide 4 to 8 oz. No limits stated 

BotaniGard 22 WP biological 
insecticide 

16 to 32 oz 
 

No limits 

CapSil surfactant 6 to16 oz No limits 

Conserve SE pesticide 8 to 20 oz No more than 6 times in a year, never 
apply more than 3 consecutive 
applications  

Met 52 EC biological 
insecticide 

16 to 32 oz No limits 

Merit 75 WP insecticide 0.5 to 2 oz No limits stated 

Ornazin 3% EC botanical 
insecticide 

8 to10 oz No limits stated 

Orthene 75% SP systemic 
insecticide 

0-8 oz No more than 2 time per year 

Pedestal insecticide 6 to 8 oz No more than 2 times per crop per 
year 

QRD 452 EC biological 
insecticide 

64 to128 oz No more than 10 times per crop 
production cycle 

Talstar EC insecticide 10.8 to 21.7 oz No more than 10 times per year 

Tristar 30 SG insecticide 4 to 8 oz No more than 5 times per year 

Note: SP: soluble powder, WP: wettable powder, SC: suspension concentrate, EC: emulsifiable 
concentrate, SG: soluble granular 
 
3.2.4 Typical Industry Approaches to Thrips Control  

          A seven-day interval between applications was chosen for all pesticide schemes. This 

weekly schedule is common among growers because it generally provides sufficient protection 
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and is easy to recall. A five-day interval between applications is recommended for susceptible 

cultivars or heavy thrips pressure. The seven-day interval was chosen for the partial budgeting 

procedure.  

Pesticides used in alternative partial budgets were (i) typical combinations identified by 

growers; (ii) combinations chosen by experts to prevent or minimize development of resistance 

to thrips by rotating insecticides with differing modes of action (Cloyd, 2010); (iii) use of the 

individual biopesticides QRD 452 and Met 52, and combinations of the two, and (iv) 

combination of conventional chemicals and scouting. Because the best way to prevent or 

minimize resistance development of thrips was to rotate insecticides with variable MOA (Cloyd, 

2010), the pesticides in the 6 strategies have different modes of action according on the IRAC 

modes of classification.  

To make a broad range of partial budgets, some typical schemes were chosen to represent 

different kinds of growers located in Louisiana. The insecticides used in strategy 1 were 

commonly used and effective products available in the current market. The conventional 

pesticides Merit, Decathlon, Avid, Orthene and Tristar were included in strategy 1. They have 

been used extensively in commercial outdoor plant nurseries as well as in greenhouse production, 

and for lawn and landscape insect control. They are effective, broad spectrum, water soluble 

insecticides used against many kinds of aphids, insects and pests. Ornazin (a biopesticide) is a 

natural insect growth regulator extracted from the seeds of the tropical Neem tree (Azadirachta 

indica) (http://www.sepro.com /default.php?page=ornazin), and was included in this grower 

strategy.  

Another control scheme focused on scouting the thrips situation regularly (Table 3.2, 

strategy 2). In this scheme, no pesticides were applied at weeks one to four. Avid was applied at 
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week five. Talstar and Conserve were applied at week six. From week one to four, scouting was 

conducted to examine the thrips situation. The number of thrips on the crop is estimated by 

visual inspection, or counting the thrips captured on blue or yellow sticky cards placed 

appropriately in the greenhouse. Additionally, scouting could detect seasonal trends of thrips 

populations throughout the year and assess the effectiveness of management strategies 

implemented (Cloyd, 2010).  Scouting hours in the scheme were assumed to be 10 minutes per 

day. In this scheme, it was suggested that the typical first pesticide application would not occur 

until four weeks after transplanting. Pesticides then were only applied at the fifth week and the 

sixth week. In this case, the crop was marketed after six weeks. 

The biopesticide schemes of this study were designed to compare estimated cost of 

controlling thrips by using Met 52 and QRD 452 to more traditional controls with conventional 

pesticides. There was little information about these products in controlling thrips on impatiens 

since they were newly developed biological insecticides (Ansari et al., 2007; Chiasson et al., 

2004). Commercial growers reported no experience with biologicals except for limited 

familiarity with predators such as specific wasps. Thus, there is a practical need for researchers 

to provide more biopesticide information to growers.  Strategies 3 and 4 were single biopesticide 

schemes. As shown in Table 3.2, strategy 3 was prepared to estimate the cost of QRD 452 on 

controlling WFT. Likewise, strategy 4 was conducted to estimate the cost of Met 52 on 

controlling WFT.  

Strategy 5 was designed to alternate applications of Met 52 and QRD 452, with Conserve 

applied during the seventh week (Table 3.2). The reason for choosing this rotation scheme was 

that in practice, sequences of chemicals from groups with different modes of action can delay 

thrips resistance development and provide sustainable and effective approaches to control thrips 
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Table 3.2 Rotation schemes using products specified and midpoint of label recommended application rate and interval 
Name Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Application 

rate* 
Interval 
In days 

       
Strategy 1 

            
No 

Merit 
Decathlon 

CapSil 

Ornazin 
Decathlon 

CapSil 

Avid 
Orthene 
CapSil 

TriStar 
CapSil 

Merit  
Decathlon 

CapSil 

Ornazin 
Decathlon 

CapSil 

          
** 

        
7 

Strategy 2 No No No No Avid Talstar 
Conserve 

— midpoint 7 

Strategy 3 QRD 452 QRD 452 QRD 452 QRD 452 QRD 452 QRD 452 QRD 452 midpoint 7 

Strategy 4 Met 52 Met 52 Met 52 Met 52 Met 52 Met 52 Met 52 midpoint 7 

Strategy 5 Met 52 QRD 452 Met 52 QRD 452 Met 52 QRD 452 Conserve midpoint 7 

Strategy 6 BotaniGard BotaniGard Pedestal Pedestal Orthene Orthene Conserve midpoint 7 

 
* midpoint of label recommended application rate.  
** rates used by commercial growers. 
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(Cloyd, 2010). Conserve was included because it is a particularly effective product which has 

been in use for about 25 years (Nayak et al., 2005). It has been effective for both ornamental and 

vegetable crops, and in greenhouse and outdoor production. Conserve was used at the seventh 

week of strategy 5 because growers often use Conserve to be assured that WFT populations are 

controlled at the end of the production period and while being sold by the retailer.  

Strategy 6 was from the publication of Kansas State Research and Extension with minor 

modification. In this article, Cloyd (2010) provided 5 rotation programs which involved 

commercially available insecticides with different MOA. The chosen scheme (strategy 6) 

consisted of BotaniGard, Pedestal, Orthene and Conserve. BotaniGard (a biopesticide) has been 

used for the control of pest such as thrips and grasshoppers by growers for more than 10 years 

(Mommaerts, 2009). BotaniGard contains spores of the fungus Beauveria bassiana, strain GHA. 

The spores adhere to the host and germinate, penetrating and eventually killing the pest 

(http://www.growninmyownbackyard.com /BotaniGard.html). In strategy 6, each pesticide was 

applied in two consecutive weeks. Because of the issues related to resistance with Conserve, 

scientists recommended application of Conserve only once per crop cycle. This scheme has 

products with different MOA that the growers can use in a rotation program to alleviate problems 

with WFT and also minimize the prospects of resistance.  

3.3 Results and Discussion 

The economic analysis for the different strategies was conducted by using a partial 

budget procedure. For each strategy, pesticide costs for per application unit were calculated. The 

pesticides application rates of strategy 1 were obtained from the growers. All other input rates 

(strategies 2 to 6) used the midpoint of recommended application rates from the label of the 

specific pesticide. The cost was the key component of the analysis. Labor of pesticides 
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application and labor of fertilizer application were included in each week. The total cost was 

the sum of all production weeks.    

The production costs of adopting pesticides management for WFT control in the six 

greenhouse strategies were calculated in Tables 3.3 to 3.8. The components of these partial 

budgets include fertilizer cost, labor costs, pesticides cost and fuel cost. The production costs 

of the 6 strategies were also presented. 

Fertilizer cost:  All growers used fertilizer to improve the plant quality during 

production (Tables 3.3 to 3.8). Thus, fertilizer with analysis of 17-5-24 was applied each 

week for each strategy.  The average cost of fertilizer for each week was $5.24. The total 

fertilizer cost for 7 weeks was $36.68. Since the production cycle for strategy 2 is 6 weeks 

rather than the typical 8 weeks, the total fertilizer cost was $31.44. Fertilizer accounted for 

19.3% of the total cost in strategy 2. The fertilizer was about 23.9%, 21.0%, 20.9%, 20.3% 

and 18.6% for strategies 1, 3, 4, 5 and 6 respectively. Among the fertilizer shares of the total 

cost of all strategies, fertilizer cost of strategy 6 was the lowest share and strategy 1 was the 

highest share. However, there was only 5.3% difference between the highest and lowest 

fertilizer share.  

Labor cost: The labor cost included preparation before application and clean up after 

application, the fertilizer application process, and the pesticides application cost. In order to 

have a detailed conception of all these costs, scouting cost was not included in labor cost 

(Table 3.9). The average labor cost for each week was $11.04. Thus, the total labor cost for 7 

weeks was $77.28 for strategies 3, 4, 5 and 6. Strategy 1 had a $73.88 labor cost since there 

were no pesticide applications in the first week. Strategy 2 had the lowest labor cost of 

$31.68 as there were no pesticide applications during the first 4 weeks.  
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Table 3.3 Partial budget of estimated production cost per greenhouse for thrips control in 
impatiens using typical prescheduled grower application strategy (1) 

Week
 

Inputs 
 

Application 
unit 

Price per 
unit($) 

Input 
rates 

Cost per 
week ($)*

Total 
cost($) 

1 fertilizer 17-5-24 lb 1.50 3.49 5.24  
 labor (fertilizer) hour 9.60 0.25 2.40  
     subtotal 7.64 
       
2 Merit tbsp 0.65 4.00 0.65  
 Decathlon tbsp 3.87 3.80 3.68  
 CapSil  oz 0.82 16.00 3.28  
 fertilizer 17-5-24 lb 1.50 3.49 5.24  
 labor (fertilizer) hour 9.60 0.25 2.40  
 labor (prep. and cleanup) hour  9.60 0.42 4.03  
 labor (pesticides application) hour  9.60 0.48 4.61  
 fuel for sprayer gal/hour  3.00 0.10 0.30  
     subtotal 24.18 
       
3 Ornazin tbsp 0.54 16.00 2.16  
 Decathlon tbsp 3.87 3.80 3.68  
 CapSil  oz 0.82 16.00 3.28  
 fertilizer 17-5-24 lb 1.50 3.49 5.24  
 labor (fertilizer) hour 9.60 0.25 2.40  
 labor (prep. and cleanup) hour  9.60 0.42 4.03  
 labor (pesticides application) hour  9.60 0.48 4.61  
 fuel for sprayer gal/hour  3.00 0.10 0.30  
     subtotal 25.69 
       
4 Avid tbsp 2.32 8.00 4.64  
 Orthene tbsp 0.64 3.60 0.58  
 CapSil  oz 0.82 16.00 3.28  
 fertilizer 17-5-24 lb 1.50 3.49 5.24  
 labor (fertilizer) hour 9.60 0.25 2.40  
 labor (prep. and cleanup) hour  9.60 0.42 4.03  
 labor (pesticides application) hour  9.60 0.48 4.61  
 fuel for sprayer gal/hour  3.00 0.10 0.30  
     subtotal 25.07 
       
5 TriStar oz 0.96 4.00 0.96  
 CapSil oz 0.82 16.00 3.28  
 fertilizer 17-5-24 lb 1.50 3.49 5.24  
 labor (fertilizer) hour 9.60 0.25 2.40  
 labor (prep. and cleanup) hour  9.60 0.42 4.03  
 labor (pesticides application) hour  9.60 0.48 4.61  
 fuel for sprayer gal/hour  3.00 0.10 0.30  
     subtotal 20.82 
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 Table 3.3 continued      

Week
 

Inputs 
 

Application 
unit 

Price per 
unit($) 

Input 
rates 

Cost per 
week($) 

Total 
cost($) 

       
6 Merit tbsp 0.65 4.00 0.65  
 Decathlon tbsp 3.87 3.80 3.68  
 CapSil oz 6.59 16.00 3.28  
 fertilizer 17-5-24 lb 1.50 3.49 5.24  
 labor (fertilizer) hour 9.60 0.25 2.40  
 labor (prep. and cleanup) hour  9.60 0.42 4.03  
 labor (pesticides application) hour  9.60 0.48 4.61  
 fuel for sprayer gal/hour  3.00 0.10 0.30  
     subtotal 24.18 
       
7 Ornazin tbsp 0.54 16.00 2.17  
 Decathlon tbsp 3.87 3.80 3.68  
 CapSil  tbsp 0.82 16.00 3.28  
 fertilizer 17-5-24 lb 1.50 3.49 5.24  
 labor (fertilizer) hour 9.60 0.25 2.40  
 labor (prep. and cleanup) hour  9.60 0.42 4.03  
 labor (pesticides application) hour  9.60 0.48 4.61  
 fuel for sprayer gal/hour  3.00 0.10 0.30  
     subtotal 25.70 

     total 153.28 
*Pesticide labels often specify a mixture based on 100 gallons of water, which covers 4 greenhouses. 
Therefore, the cost per application per greenhouse is the 100 gallon mix divided by 4. As an example, 
price per unit for Merit is 0.65, input rate 4.00. Thus 0.65 *4.00/4 = 0.65. 
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Table 3.4 Partial budget of estimated production cost per greenhouse for thrips control in 
impatiens using scouting with application as needed strategy (2) 
Week 

 
Inputs 
 

Application 
unit 

Price per  
unit($) 

Input 
rates 

Cost per 
week($)* 

Total 
cost($) 

 
1 fertilizer 17-5-24 lb 1.50 3.49 5.24  
 labor (fertilizer) hour 9.60 0.25 2.40  
 scouting hour 15.60 1.17 18.25  
     subtotal 25.89 

 
2 fertilizer 17-5-24 lb 1.50 3.49 5.24  
 labor (fertilizer) hour 9.60 0.25 2.40  
 scouting hour 15.60 1.17 18.25  
 
 
3 

  
fertilizer 17-5-24 

 
lb 1.50 3.49 

Subtotal 
 

5.24 

25.89 
 
 

 labor (fertilizer) hour 9.60 0.25 2.40  
 scouting hour  15.60 1.17 18.25  
     subtotal 25.89 
 
4 fertilizer 17-5-24 lb 1.50 3.49 5.24 

 

 labor (fertilizer) hour 9.60 0.25 2.40  
 scouting hour  15.60 1.17 18.25  
     Subtotal 25.89 
       
5 Avid oz 4.65 6.00 6.98  
 fertilizer 17-5-24 lb 1.50 3.49 5.24  
 labor (fertilizer) hour 9.60 0.25 2.40  
 labor (prep. and cleanup) hour  9.60 0.42 4.03  
 labor (pesticides application) hour  9.60 0.48 4.61  
 fuel for sprayer gal/hour  3.00 0.10 0.30  
     subtotal 23.55 
6 Talstar oz 0.57 16.00 2.28  
 Conserve oz 4.86 14.00 17.01  
 fertilizer 17-5-24 lb 1.50 3.49 5.24  
 labor (fertilizer) hour 9.60 0.25 2.40  
 labor (prep. and cleanup) hour  9.60 0.42 4.03  
 labor (pesticides application) hour  9.60 0.48 4.61  
 fuel for sprayer gal/hour  3.00 0.10 0.30  
     subtotal 35.87 
     total 162.96 

*Pesticide labels often specify a mixture based on 100 gallons of water, which covers 4 greenhouses. 
Therefore, the cost per application per greenhouse is the 100 gallon mix divided by 4. As an example, 
price per unit for Avid is 4.65, input rate is 6.00. Thus 4.65 *6.00/4 = 6.98. 
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Table 3.5 Partial budget of estimated production cost per greenhouse for thrips control in 
impatiens using weekly QRD 452 application strategy (3) 
Week 

 
Inputs 
 

Application 
unit 

Price per 
unit($) 

Input 
rates 

Cost per 
week($)* 

Total 
Cost($)

1 QRD 452 oz 0.35 96.00 8.40  
 fertilizer 17-5-24 lb 1.50 3.49 5.24  
 labor (fertilizer) hour 9.60 0.25 2.40  
 labor (prep. and cleanup) hour 9.60 0.42 4.03  
 labor (pesticides application) hour 9.60 0.48 4.61  
 fuel for sprayer gal/hour 3.00 0.10 0.30  
    Subtotal 24.98 
      
2 QRD 452 oz 0.35 96.00 8.40  
 fertilizer 17-5-24 lb 1.50 3.49 5.24  
 labor (fertilizer) hour 9.60 0.25 2.40  
 labor (prep. and cleanup) hour 9.60 0.42 4.03  
 labor (pesticides application) hour 9.60 0.48 4.61  
 fuel for sprayer gal/hour 3.00 0.10 0.30  
    subtotal 24.98 
      
3 QRD 452 oz 0.35 96.00 8.40  
 fertilizer 17-5-24 lb 1.50 3.49 5.24  
 labor (fertilizer) hour 9.60 0.25 2.40  
 labor (prep. and cleanup) hour 9.60 0.42 4.03  
 labor (pesticides application) hour 9.60 0.48 4.61  
 fuel for sprayer gal/hour 3.00 0.10 0.30  
    Subtotal 24.98 
      
4 QRD 452 oz 0.35 96.00 8.40  
 fertilizer 17-5-24 lb 1.50 3.49 5.24  
 labor (fertilizer) hour 9.60 0.25 2.40  
 labor (prep. and cleanup) hour 9.60 0.42 4.03  
 labor (pesticides application) hour 9.60 0.48 4.61  
 fuel for sprayer gal/hour 3.00 0.10 0.30  
    subtotal 24.98 
      
5 QRD 452 oz 0.35 96.00 8.40  
 fertilizer 17-5-24 lb 1.50 3.49 5.24  
 labor (fertilizer) hour 9.60 0.25 2.40  
 labor (prep. and cleanup) hour 9.60 0.42 4.03  
 labor (pesticides application) hour 9.60 0.48 4.61  
 fuel for sprayer gal/hour 3.00 0.10 0.30  
    Subtotal 24.98 
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Table 3.5 continued     
Week 

 
Inputs 

 
Application 

unit 
Price per 
unit($) 

Input 
rates 

Cost per 
week($) 

Total 
Cost($) 

6 QRD 452 oz 0.35 96.00 8.40  
 fertilizer 17-5-24 lb 1.50 3.49 5.24  
 labor (fertilizer) hour 9.60 0.25 2.40  
 labor (prep. and cleanup) hour 9.60 0.42 4.03  
 labor (pesticides application) hour 9.60 0.48 4.61  
 fuel for sprayer gal/hour 3.00 0.10 0.30  
    subtotal 24.98 
      
7 QRD 452 oz 0.35 96.00 8.40  
 fertilizer 17-5-24 lb 1.50 3.49 5.24  
 labor (fertilizer) hour 9.60 0.25 2.40  
 labor (prep. and cleanup) hour 9.60 0.42 4.03  
 labor (pesticides application) hour 9.60 0.48 4.61  
 fuel for sprayer gal/hour 3.00 0.10 0.30  
    subtotal 24.98 
     total 174.83 

*Pesticide labels often specify a mixture based on 100 gallons of water, which covers 4 greenhouses. 
Therefore, the cost per application per greenhouse is the 100 gallon mix divided by 4. As an example, 
price per unit for QRD 452 is 0.35, input rate is 96.00. Thus 0.35 *96.00/4 = 8.40. 
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Table 3.6 Partial budget of estimated production cost per greenhouse for thrips control in 
impatiens using weekly Met 52 application strategy (4) 
Week 

 
Inputs 
 

Application 
unit 

Price per 
unit($) 

Input 
rates 

Cost per 
week($)* 

Total 
cost($)

1 Met 52 G media treatment g/cubic ft 0.04 38.00 19.62  
 Met 52  qt 30.00 0.75 5.63  
 fertilizer 17-5-24 lb 1.50 3.49 5.24  
 labor (fertilizer) hour 9.60 0.25 2.40  
 labor (prep. and cleanup) hour  9.60 0.42 4.03  
 labor (pesticides application) hour  9.60 0.48 4.61  
 fuel for sprayer gal/hour  3.00 0.10 0.30  
     subtotal 41.82 
       
2 Met 52  qt 30.00 0.75 5.63  
 fertilizer 17-5-24 lb 1.50 3.49 5.24  
 labor (fertilizer) hour 9.60 0.25 2.40  
 labor (prep. and cleanup) hour  9.60 0.42 4.03  
 labor (pesticides application) hour  9.60 0.48 4.61  
 fuel for sprayer gal/hour  3.00 0.10 0.30  
     subtotal 22.20 
       
3 Met 52  qt 30.00 0.75 5.63  
 fertilizer 17-5-24 lb 1.50 3.49 5.24  
 labor (fertilizer) hour 9.60 0.25 2.40  
 labor (prep and cleanup) hour  9.60 0.42 4.03  
 labor (pesticides application) hour  9.60 0.48 4.61  
 fuel for sprayer gal/hour  3.00 0.10 0.30  
     subtotal 22.20 
       
4 Met 52  qt 30.00 0.75 5.63  
 fertilizer 17-5-24 lb 1.50 3.49 5.24  
 labor (fertilizer) hour 9.60 0.25 2.40  
 labor (prep. and cleanup) hour  9.60 0.42 4.03  
 labor (pesticides application) hour  9.60 0.48 4.61  
 fuel for sprayer gal/hour  3.00 0.10 0.30  
     subtotal 22.20 
       
5 Met 52  qt 30.00 0.75 5.63  
 fertilizer 17-5-24 lb 1.50 3.49 5.24  
 labor (fertilizer) hour 9.60 0.25 2.40  
 labor (prep. and cleanup) hour  9.60 0.42 4.03  
 labor (pesticides application) hour  9.60 0.48 4.61  
 fuel for sprayer gal/hour  3.00 0.10 0.30  
     subtotal 22.20 
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Table 3.6 continued 
Week 

 
Inputs 
 

Application 
unit 

Price per 
unit($) 

Input 
rates 

Cost per 
week($) 

Total 
cost($)

6 Met 52  qt 30.00 0.75 5.63  
 fertilizer 17-5-24 lb 1.50 3.49 5.24  
 labor (fertilizer) hour 9.60 0.25 2.40  
 labor (prep. and cleanup) hour  9.60 0.42 4.03  
 labor (pesticides application) hour  9.60 0.48 4.61  
 fuel for sprayer gal/hour  3.00 0.10 0.30  
     subtotal 22.20
       
7 Met 52  qt 30.00 0.75 5.63  
 fertilizer 17-5-24 lb 1.50 3.49 5.24  
 labor (fertilizer) hour 9.60 0.25 2.40  
 labor (prep. and cleanup) hour  9.60 0.42 4.03  
 labor (pesticides application) hour  9.60 0.48 4.61  
 fuel for sprayer gal/hour  3.00 0.10 0.30  
 

    
subtotal 

total 
22.20
175.02

*Pesticide labels often specify a mixture based on 100 gallons of water, which covers 4 greenhouses. 
Therefore, the cost per application per greenhouse is the 100 gallon mix divided by 4. As an example, 
price per unit for Met 52 is 30.00, input rates is 0.75. Thus 30.00 *0.75/4 = 5.63. 
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Table 3.7 Partial budget of estimated production cost per greenhouse for thrips control in 
impatiens using weekly QRD 452 and Met 52 rotated application strategy (5) 
Week 

 
Inputs 
 

Application 
unit 

Price per 
unit($) 

Input 
rates 

Cost per 
week($)* 

Total 
cost($) 

1 Met 52  qt 30.00 0.75 5.63  
 fertilizer 17-5-24 lb 1.50 3.49 5.24  
 labor (fertilizer) hour 9.60 0.25 2.40  
 labor (prep. and cleanup) hour  9.60 0.42 4.03  
 labor (pesticides application) hour  9.60 0.48 4.61  
 fuel for sprayer gal / hour  3.00 0.10 0.30  
     subtotal 22.20 
       
2 QRD 452  oz 0.35 96.00 8.40  
 fertilizer 17-5-24 lb 1.50 3.49 5.24  
 labor (fertilizer) hour 9.60 0.25 2.40  
 labor (prep. and cleanup) hour  9.60 0.42 4.03  
 labor (pesticides application) hour  9.60 0.48 4.61  
 fuel for sprayer gal/hour  3.00 0.10 0.30  
     subtotal 24.98 
       
3 Met 52  qt 30.00 0.75 5.63  
 fertilizer 17-5-24 lb 1.50 3.49 5.24  
 labor (fertilizer) hour 9.60 0.25 2.40  
 labor (prep. and cleanup) hour  9.60 0.42 4.03  
 labor (pesticides application) hour  9.60 0.48 4.61  
 fuel for sprayer gal/hour  3.00 0.10 0.30  
     subtotal 22.20 
       
4 QRD 452  oz 0.35 96.00 8.40  
 fertilizer 17-5-24 lb 1.50 3.49 5.24  
 labor (fertilizer) hour 9.60 0.25 2.40  
 labor (prep. and cleanup) hour  9.60 0.42 4.03  
 labor (pesticides application) hour  9.60 0.48 4.61  
 fuel for sprayer gal/hour  3.00 0.10 0.30  
     subtotal 24.98 
       
5 Met 52  qt 30.00 0.75 5.63  
 fertilizer 17-5-24 lb 1.50 3.49 5.24  
 labor (fertilizer) hour 9.60 0.25 2.40  
 labor (prep. and cleanup) hour  9.60 0.42 4.03  
 labor (pesticides application) hour  9.60 0.48 4.61  
 fuel for sprayer gal/hour  3.00 0.10 0.30  
     subtotal 22.20 
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 Table 3.7 continued      
Week 

 
Inputs 
 

Application 
unit 

Price per 
unit($) 

Input 
rates 

Cost per 
week($) 

Total 
cost($) 

6 QRD 452  oz 0.35 96.00 8.40  
 fertilizer 17-5-24 lb 1.50 3.49 5.24  
 labor (fertilizer) hour 9.60 0.25 2.40  
 labor (prep. and cleanup) hour  9.60 0.42 4.03  
 labor (pesticides application) hour  9.60 0.48 4.61  
 fuel for sprayer gal/hour  3.00 0.10 0.30  
     subtotal 24.98 
       
7 Conserve oz 4.86 14.00 17.01  
 fertilizer 17-5-24 lb 1.50 3.49 5.24  
 labor (fertilizer) hour 9.60 0.25 2.40  
 labor (prep. and cleanup) hour  9.60 0.42 4.03  
 labor (pesticides application) hour  9.60 0.48 4.61  
 fuel for sprayer gal/hour  3.00 0.10 0.30  
     subtotal 33.58 
     total 175.12 

*Pesticide labels often specify a mixture based on 100 gallons of water, which covers 4 greenhouses. 
Therefore, the cost per application per greenhouse is the 100 gallon mix divided by 4. As an example, 
price per unit for Met 52 is 30.00, input rates is 0.75. Thus 30.00 *0.75/4 = 5.63. 
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Table 3.8 Partial budget of estimated production cost per greenhouse for thrips control in 
impatiens using rotated IRAC mode of action application strategy (6) 
Week 

 
Inputs 
 

Application 
unit 

Price per 
unit($) 

Input 
rates 

Cost per 
week($)* 

Total 
cost($)

1 BotaniGard  22 WP lb 80.00 1.50 30.00  
 fertilizer 17-5-24 lb 1.50 3.49 5.24  
 labor (fertilizer) hour 9.60 0.25 2.40  
 labor (prep. and cleanup) hour  9.60 0.42 4.03  
 labor (pesticides application) hour  9.60 0.48 4.61  
 fuel for sprayer gal/hour  3.00 0.10 0.30  
     subtotal 46.58 
       
2 BotaniGard  22 WP lb 80.00 1.50 30.00  
 fertilizer 17-5-24 lb 1.50 3.49 5.24  
 labor (fertilizer) hour 9.60 0.25 2.40  
 labor (prep. and cleanup) hour  9.60 0.42 4.03  
 labor (pesticides application) hour  9.60 0.48 4.61  
 fuel for sprayer gal/hour  3.00 0.10 0.30  
     subtotal 46.58 
       
3 Pedestal oz 0.93 7.00 1.63  
 fertilizer 17-5-24 lb 1.50 3.49 5.24  
 labor (fertilizer) hour 9.60 0.25 2.40  
 labor (prep. and cleanup) hour  9.60 0.42 4.03  
 labor (pesticides application) hour  9.60 0.48 4.61  
 fuel for sprayer gal/hour  3.00 0.10 0.30  
     subtotal 18.20 
       
4 Pedestal oz 0.93 7.00 1.63  
 fertilizer 17-5-24 lb 1.50 3.49 5.24  
 labor (fertilizer) hour 9.60 0.25 2.40  
 labor (prep. and cleanup) hour  9.60 0.42 4.03  
 labor (pesticides application) hour  9.60 0.48 4.61  
 fuel for sprayer gal/hour  3.00 0.10 0.30  
     subtotal 18.20 
       
5 Orthene tbsp 0.64 3.60 0.58  
 fertilizer 17-5-24 lb 1.50 3.49 5.24  
 labor (fertilizer) hour 9.60 0.25 2.40  
 labor (prep. and cleanup) hour  9.60 0.42 4.03  
 labor (pesticides application) hour  9.60 0.48 4.61  
 fuel for sprayer gal/hour  3.00 0.10 0.30  
     subtotal 17.15 
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Table 3.8 continued      
Week 
 

Inputs 
 

Application 
unit 

Price per 
unit($) 

Input 
rates 

Cost per 
week($) 

Total 
cost($)

6 Orthene tbsp 0.64 3.60 0.58  
 fertilizer 17-5-24 lb 1.50 3.49 5.24  

 labor (fertilizer) hour 9.60 0.25 2.40  
 labor (prep. and cleanup) hour  9.60 0.42 4.03  
 labor (pesticides application) hour  9.60 0.48 4.61  
 fuel for sprayer gal/hour  3.00 0.10 0.30  
     subtotal 17.15 
       
7 Conserve) oz 4.86 14.00 17.01  
 fertilizer 17-5-24 lb 1.50 3.49 5.24  
 labor (fertilizer) hour 9.60 0.25 2.40  
 labor (prep. and cleanup) hour  9.60 0.42 4.03  
 labor (pesticides application) hour  9.60 0.48 4.61  
 fuel for sprayer gal/hour  3.00 0.10 0.30  
     subtotal 33.59 
     total 197.44

*Pesticide labels often specify a mixture based on 100 gallons of water, which covers 4 greenhouses. 
Therefore, the cost per application per greenhouse is the 100 gallon mix divided by 4. As an example, 
price per unit for BotaniGard is 80.00, input rates is 1.50. Thus 80.00 *1.50/4 =30.00. 
 

Scouting cost:  Scouting (or monitoring) is a way to check the situation of thrips 

present in the greenhouse. Additionally, scouting also helps detect seasonal trends in 

populations throughout the production cycle. Therefore, growers could assess the 

effectiveness of thrips management strategies (Cloyd, 2010).  Although scouting cost is 

expensive, visual inspection such as looking into flowers and leaves are additional benefits 

that may be used to determine the crop quality. Also, scouting reduces pesticide amount use 

during production.  

Strategy 2 had a scouting cost (there is no scouting cost in other strategies). The 

average scouting cost for one week was $18.25. Thus, the total scouting cost for 4 weeks was 

$73.   The scouting cost accounted for 44.8% (73/162.96) of the total cost of strategy 2.   
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Fuel cost: Fuel cost came from pesticide applications by using a sprayer. The average 

fuel cost for each week was about $0.30. Thus, the total fuel cost was $2.10 for strategies 3, 4, 

5 and 6 since they applied pesticides each week. For strategy 1, the pesticides were applied 6 

times; thus, the fuel cost was $1.80. For strategy 2, the fuel cost was $0.60 since there was no 

pesticide application during the first 4 weeks. 

Chemical costs: Total pesticide cost for strategy 1 was $46.19. Pesticide cost was 

$26.27 for strategy 2.  Strategies 3 (for QRD 452) 4 and 5 (Met 52) had very close pesticide 

costs of $58.80 $59.03 and $59.10, respectively. The reason was that there was a $19.62 cost 

of Met 52 granular treatment (no Met 52 granular treatment for other strategy) in strategy 4 

and a $17.01 cost of Conserve in strategy 5. Thus, although Met 52 was cheaper than QRD 

452, the sums of pesticide costs of strategies 3, 4  and 5 were very close. The pesticide cost 

for strategy 5 (rotation program for QRD 452 and Met 52) was $59.10.  The total pesticide 

cost for strategy 6 was $81.43. Thus, strategy 6 has the highest pesticide cost among the 6 

programs as BotaniGard was more expensive than any other. Strategy 2 had the lowest 

pesticide cost among these strategies because the growers only applied pesticides in weeks 5 

and 6.  

Table 3.9 The fertilizer, labor, scouting, pesticides, fuel and total cost of WFT control 
strategies for greenhouse impatiens production 

 Cost ($)  
Strategy  Fertilizer Labor Scouting Pesticide Fuel Total cost Cost 

difference
1  36.68 73.88 0 46.19 1.80 153.28 base 
2  31.44 31.68 73 26.27 0.60 162.96 +9.68 
3  36.68 77.28 0 58.80 2.10 174.83 +21.55 
4  36.68 77.28 0 59.03 2.10 175.02 +21.74 
5  36.68 77.28 0 59.10 2.10 175.12 +21.84 
6  36.68 77.28 0 81.43 2.10 197.44 +44.16 

  
 



55 
 

Total cost: As shown in Table 3.9, the highest total cost ($197.44) was from strategy 

6 since BotaniGard had a high market price; followed by strategy 5 which had a total cost of 

$180.75. Strategy 1 had lowest total cost. The difference between strategies 1 and 6 was 

$44.16. Strategies 3 and 4 were similar in total production cost. 

Except for strategies 1 and 2, the other 4 strategies had the same costs for fertilizer, 

labor and fuel. They had differences only in pesticide cost. The higher pesticides cost 

increased the total cost.  The sums of fertilizer, labor and fuel costs of strategies 3, 4, 5 and 6 

were $116.06. The sums of fertilizer, labor, fuel and scouting cost of strategies 1 and 2 were 

$112.36 and $136.72 respectively.  Compared with that of strategies 3, 4, 5 and 6, the total 

cost of strategy 1 was the lowest due to its lowest pesticide cost. Strategy 2 had the second 

lowest total cost resulting from its lowest pesticide cost. Therefore, in this research, the costs 

associated with thrips control programs were mainly dependent on pesticide cost.   

In summary, implementation of different pesticide schemes to greenhouse impatiens 

would have different total production costs. Strategy 6 had the highest production cost and 

strategy 1 had the lowest cost. Strategy 1 was less expensive by $44.16 per production cycle 

for impatiens production in the greenhouse compared with the strategy 6. Strategy 2 had the 

second lowest production cost among the 6 strategies due to the least pesticides application. 

The scouting cost ($73) accounted for 44.8% of the total production cost of strategy 2. 

However, scouting offset part of the pesticides, labor and fuel cost. Strategy 6 had the highest 

pesticide costs ($81.43), followed by strategies 3, 4 and 5 which were $58.80, $59.03 and 

$59.10, respectively. The high market price of BotaniGard contributed to the high pesticide 

cost of strategy 6.  In general, the biopesticides had higher prices than nonbiopesticides, thus  
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the treatments applied with biopesticides had increased pesticide costs compared with 

treatments that included only nonbiopesticides.  

 Using partial budgeting can easily determine the cost change and compare the 

difference among them. The growers are most likely to use the schemes which have 

minimum production cost and high thrips control efficacy.  Among the six schemes, 

strategies 3, 4 and 5 are the schemes to test the efficacy of biopesticides of QRD 452 and Met 

52. Strategies 1, 2 and 6 are schemes that have pesticides that are commercially available in 

the market. These strategies can reduce or control WFT populations to levels that will allow 

greenhouse producers to grow and sell a high- level quality crop with minimal aesthetic 

injury.  
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Chapter 4.  A Linear Programming Model of Optimal Pesticide 
Programs of Thrips Control on Impatiens in Greenhouse 

Production 
 

4.1 Introduction 

Pest control programs for impatiens grown in the greenhouse have been associated 

with various factors, such as the prices of pesticides, growers’ financial/economic condition, 

marketing, environmental conditions and weather conditions. Pesticide applications are the 

key to the effective control of WFT. When growers consider WFT control programs on 

impatiens, pesticide costs and the benefits of their application are the most critical points. 

The common production period of greenhouse impatiens is 8 weeks. Pesticide applications 

are usually applied during the first to the seventh week. Growers usually do not apply 

pesticides in the eighth week because residual activity continues. 

 Controlling thrips populations can be challenging. As mentioned in previous chapters, 

WFT is the most prevalent species for ornamental horticulture crops (Palmer and Vea, 2011). 

Many old insecticide products are not performing as well as in the past and many new 

products have been developed. Growers have different considerations in developing their 

WFT control programs on impatiens. An optimized WFT control program is a preferred 

choice in business since it can return the same or bigger revenue with less cost.  

  LP output provides useful information that includes the optimal solution, and 

sensitivity analysis that evaluates how changes in the coefficients affect the optimal solution 

of a linear programming model. Using this method, how will the changes of the coefficients 

and the right hand side value (when considering constraints of the form such as f(x) ≤ b or 

h(x) ≥ c, the vector (b, c) is called the right hand side value) of a linear program affect the 
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optimal solution (Anderson et al., 2000)? Almost everything is changing in the real world, 

such as raw material prices, pesticide prices, or market demand increases or decreases. The 

mathematical modeling of sensitivity analysis can evaluate different scenarios. Growers are 

concerned about the production costs of pesticide control. In this study, factors include: 

changes in the price of pesticides, changes in pesticide application rates, or technological 

improvements in the mortalities of products. If one or some of these factors change, growers 

hope to know whether the original solution is still the best or not. Sensitivity analysis can 

help them determine how much each added dollar of pesticide cost is worth. 

4.2 Methods 

           As in the real world, theoretically, maximum profit is pursued by all manufacturers 

and producers.  Cost minimization is one way to reach the goal. An LP model was used as an 

analytical tool to determine an appropriate combination of pesticides and identify the 

economically optimal production cost of impatiens in greenhouse.  

4.2.1 General Objective Function.   

The problem is to determine optimal schedules for pesticide applications for each 

week and evaluate the production cost. It is typical to assume use of one application per week, 

which might include multiple products to control a range of pests and diseases. The typical 

production cycle of impatiens in a greenhouse is about 8 weeks, and growers typically do not 

apply any pesticides in the eighth week.  Thus, the cost component of the model involves a 

minimization of pesticides for 7 weeks and their per application cost. The general 

mathematical programming model was defined as Equation 1.  
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MinCost = ෍  P୧ Q୧ X୧ି୨
ଵଶ

௜ୀଵ
    

=P1Q1 X 1-1 + P2Q2 X 2-1+ P3 Q3X 3-1+……+ P12 Q12Xs 12 -1  

+P1Q 1X 1-2 + P2Q2 X 2-2 + P3 Q3 X 3-2 +……+ P12 Q12X 12 -2 

+P1Q1 X 1-3 + P2Q2 X 2-3 + P3 Q3 X 3-3 +……+ P12 Q12X 12 -3 

+P1Q1 X 1-4 + P2Q2 X 2-4 + P3 Q3 X 3-4 +……+ P12 Q12X 12 -4 

+P1Q1 X 1-5 + P2Q2 X 2-5 + P3 Q3 X 3-5 +……+ P12 Q12X 12 -5 

+P1Q1 X 1-6 + P2Q 2X 2-6 + P3 Q3 X 3-6 +……+ P12 Q12X 12 -6 

+P1Q1 X 1-7 + P2Q2 X 2-7 + P3 Q3X 3-7 +……+ P12 Q12X 12 -7..…………………………….(1) 

Pesticide applications are represented by X i-j, where i represents the pesticide i and 

i=1, 2,…12. Thus, X1…X12 represents the 12 pesticides respectively (Avid = X1, Mesurol = 

X2, Ornazin = X3, Orthene = X4, Overture = X5, Pylon = X6, Conserve = X7, Safari = X8, 

Tristar = X9, BotaniGard = X10, QRD 452 = X11, Met 52 = X12).  j represents the week in 

which the pesticide is applied and j=1,2, …7. X1-1 indicates that pesticide 1 is applied at week 

1, X1-2 indicates that pesticide 1 is applied at week 2, and so on.   

Pi indicates the price (dollars/oz) of pesticide i and Qi represents the quantity of 

pesticide i, where i =1, 2, 3…12. The price of a pesticide (Pi )  times the quantity of the 

pesticide (Qi) indicates the cost of one application of the specific pesticide. 

4.2.2 Decision Variables  

The decision variables represent choices available to the decision maker in terms of 

amounts of either inputs or outputs (Chinneck, 2004). In Equation (1), X1, X2…are decision 

variables.  

The pesticides in this LP model were chosen by growers, industry representatives, 

and research experts. Based on the communication with them, Avid, Mesurol, Ornazin, 
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Orthene, Overture, Pylon, Conserve, Safari, Tristar, BotaniGard, QRD 452 and Met 52 were 

selected. Most, except Ornazin, QRD 452 and Met 52, are common and popular products for 

control of thrips in the greenhouse. The former 9 pesticides were chosen since they had 

proven effective on nurseries and in research experiments. QRD 452 and Met 52 are newly 

developed biological products and do not have mature markets yet. They are both recently 

approved by EPA, but not in all states (http://www.davisenterprise.com/business/agraquest-

gets-epa-approval-for-requiem-insecticide/). Met 52 was registered by EPA at the end of 

2010 (EPA Registration Number: 70127-10). QRD 452 (with the trademark “Requiem”) was 

registered by EPA in 2010 (Registration Number 69592–25). A research scientist for 

AgraQuest (the manufacturer of QRD 452) indicated that the company decided not to seek 

extension of QRD 452’s registration to include production of ornamental plants in 

greenhouse. Despite that, researchers remain interested in testing the efficacy of QRD 425. 

4.2.3 Binary Variable  

           In a standard LP model, variable coefficients may take any fractional value. However, 

a binary variable is restricted to take on the values 0 or 1. This represents the selection or 

rejection of an option, the turning on or off of switches, a yes or no answer, or many other 

situations (Chinneck, 2004).  

A standard form of the objective function is: Min Z= ∑ ௝ܥ ௝ܺ
௡
௝ୀଵ  (C: coefficient. X: 

variable). All of the X j in the above equations (where j = 1, 2, 3...n) are binary variables. All 

objective function coefficients are non-negative. This seems like a restrictive set of 

conditions, but many problems are easy to convert to this standard form. It is also easy to 

order them as they are integer (Chinneck, 2004).  
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 In this specific problem, 12 pesticides and the week of application are decision 

variables. In the solution, several products are available for application treatment and only 

some, but not all, of the products will be chosen for application. Thus in this specific case, 

each variable is defined as a binary variable which takes on the values of 0 or 1 in the 

optimal solution (Equation 3). A value of 0 implies the product is not applied, while a value 

of 1 implies that the product is applied.  

The binary variables in this project can be expressed as the following equation.  

෍  X୧ି୨
ଵଶ

௜ୀଵ
 =1……………………………………………………………………… (2) 

Here   Xଵିଵ, Xଶିଵ, Xଷିଵ  …… Xଵଶିଵ  are binary.  

          Xଵିଶ, Xଶିଶ, Xଷିଶ  ……Xଵଶିଶ   are binary.  

            ……. 

          Xଵି଻, Xଶି଻, Xଷି଻  ……Xଵଶି଻ are binary.  

       ∑  X୧ିଵଵଶ
௜ୀଵ  = 1, (i-1 means ith chemical is applied at week 1) 

        ∑  X୧ିଶଵଶ
௜ୀଵ  = 1, (i-2 means ith chemical is applied at week 2) 

4.2.4 The Fully Specified Objective Function  

          The coefficients are the mathematical product of pesticide price and the midrange 

application rate (coefficient= price * rate) for each pesticide based on the label (Table 9). 

Label rates for pesticides applications usually are per 100 gallons of water. Based on the 

growers’ experience, 25 gallons of pesticide mixture typically is sufficient for foliar spray of 

plants in one greenhouse (30 feet x 100 feet). Thus 100 gallons of mixture covers 4 standard 

greenhouses (approximately 12, 000 square feet). 

MinCost= 6.98X1-1+ 17.88 X2-1+2.48 X3-1+ 1.29X4-1+12.96X5-1+26.7X6-1+17.01X7-1  

+12.95X8-1+1.44X9-1+30X10-1+5.86X11-1+7.5X12-1 (the cost of week 1)         
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+ 6.98X1-2+ 17.88 X2-2+2.48 X3-2+ 1.29X4-2+12.96X5-2+26.7X6-2+17.01X7-2 +12.95X8-2 

 +1.44X9-2+30X10-2+5.86X11-2+7.5X12-2 (the cost of week 2)         

+ 6.98X1-3+ 17.88 X2-3+2.48 X3-3+ 1.29X4-3 +12.96X5-3 +26.7X6-3 +17.01X7-3 +12.95X8-3 

 +1.44X9-3 +30X10-3 +5.86X11-3+7.5X12-3 (the cost of week 3)  

+ 6.98X1-4+ 17.88 X2-4+2.48 X3-4+ 1.29X4-4+12.96X5-4+26.7X6-4 +17.01X7-4 +12.95X8-4 

 +1.44X9-4+30X10-4+5.86X11-4+7.5X12-4 (the cost of week 4)         

+6.98X1-5+ 17.88 X2-5+2.48 X3-5+ 1.29X4-5+12.96X5-5+26.7X6-5+17.01X7-5 +12.95X8-5 

 +1.44X9-5+30X10-5+5.86X11-5+7.5X12-5 (the cost of week 5)      

+ 6.98X1-6 + 17.88 X2-6 +2.48 X3-6 + 1.29X4-6 +12.96X5-6 +26.7X6-6 +17.01X7-6 +12.95X8-6 

 +1.44X9-6+30X10-6+5.86X11-6 +7.5X12-6 (the cost of week 6) 

+6.98X1-7 + 17.88 X2-7 +2.48 X3-7 + 1.29X4-7 +12.96X5-7 +26.7X6-7 +17.01X7-7 +12.95X8-7 

 +1.44X9-7 +30X10-7 +5.86X11-7 +7.5X12-7 (the cost of week 7) ………………………... (3) 

4.2.5 Constraints 

            Constraints exist because certain limitations restrict the range of a variable’s possible 

values. A constraint of a linear program is binding at a point p if the inequality is met with 

equality at p. Constraints are limitations that restrict the alternative variables to decision 

makers (Chinneck, 2004). Usually, the constraints are inequalities like  ∑ ܽ௜௝ ܺ௝ ≥ bi . The 

graphic depiction of the process for solving linear programming exercises (showing 

constraints) forms a walled-off area on the x,y-plane ( called the feasible region, it is the set 

of all possible feasible solutions of the LP) (QuickMBA, 2010). Iterations find the  

intersection points of the various pairs of lines, and test these corner points in the formula to 

find the highest or lowest value. There are 5 types of constraints (McCarl and Spreen, 1997): 
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1. Lower and upper bounds on the values of the decision variables.  For example: x1 ≥ 10   

(lower limit);  x2 ≤ 20 (upper limit). 

2. Limitation constraints.  These are often used to model limited resources, such as time, 

units of material, money, etc. For example: 3x1 + 5x2 ≤ 50 (total 50 hours are available, 

where product 1 requires 3 hours, product 2 requires 5 hours). 

3. Requirement constraints.  They are used to model a requirement which must be satisfied, 

such as satisfying the requirements of a contract, forcing the investment of all money in a 

portfolio, etc. For example: X1 + X2 + X3 = 10 (total production must equal 10 units, in 

any combination of products 1, 2, and 3). 

4. Ratio constraints, similar to weighted average and percentage constraints.  These are used 

to model situations where the value of one (or more) variable, compared with the value of 

another (one or more), must satisfy some relationship. For examples: X1 / X2 ≥ 2 (That is, 

the ratio of x1 to x2 must be at least equal to or greater than 2).   

5. Balance constraints.  These are used to model processes where the "inputs" must equal 

the "outputs."  For example:   X (input )=Y(output+ waste) 

4.2.5.1 Constraints that Describe Application Limits 

            In this problem, based on the pesticides application labels and the suggestions of 

scientists, there is a maximum number of applications for most pesticides except those 

biological ones. The descriptions of constraints of each pesticide were listed in Table 4.1. 

Since the production cycle of greenhouse impatiens was around 8 weeks, most of the 

pesticides could not be applied more than 2 times. Experts asserted that the same product 

should not be applied for more than 2 consecutive weeks (Table 4.2). The main reason for the 

latter constraint was to prevent or minimize the potential to develop resistance in thrips 
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populations, thus prolonging the effectiveness of currently used pesticides by limiting the 

application times and rotating pesticides with different modes of action (Cloyd, 2010). 

Some pesticides, like Ornazin, QRD 452 and Met 52, are biological pesticides. 

Therefore there are no application limits or maximum number of application times for them 

(Table 10). That is, these three products (Ornazin = X3, QRD 452 = X11, Met 52 = X12) 

could be applied for consecutive 7 weeks.   Thus the number of i (Equation 1) was taken 

from 1 to 7.  Labels for other pesticides typically specify 2 or fewer applications during the 

crop cycle.  For example: X1-1  +X1-2  ≤ 2 would indicate that pesticide 1was not allowed to 

be applied for more than 2 times for 2 consecutive weeks. 

4.2.5.2 Application Limits for Biological Pesticides 

           There are several mechanisms for biological pesticides to reduce thrips damage, such 

as competition for nutrients and space (Elad, 1996), interference with a pathogen’s 

pathogenicity enzymes (Kapat et al., 1998), direct interaction with the pathogen through 

antibiosis or parasitism ( Elad and Freeman, 2002)  and activation of plant disease resistance 

(Korolev et al., 2008). They can be applied as many times as necessary since they have slight 

or slow selection resistance pressure. There are no application limits on the labels of Ornazin 

and Met 52.  The label of QRD 452 states “Do not apply more than 10 times per crop 

production cycle”, suggesting essentially no application limit.  

4.2.5.3 Application Limit Constraints to Conventional Pesticides  

          Applying pesticides is still the main method for controlling thrips in greenhouses, and 

repeated applications will eventually lead to development of resistance (Cloyd, 2010). 

Pesticides may affect the environment, including toxicity to non-target organisms such as 

wildlife, environmental contamination of soil and water, and selection of resistant pests, and 
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Table 4.1  Pesticide types, rate range from product label, typical price from suppliers, and price per application 

Name Type Rate range per100 
gallons of water 

Price ($) 
 

Price ($) per oz Price ($) per 
application* 

Avid 0.15 EC chemical 4 to 8 oz. 595.00/gal 4.65 
 

6.98 
 

BotaniGard 22 WP biological 16 to 32 oz 
 

80.00/lb 5.00 
 

30.00 
 

Conserve SC chemical 8 to 20 oz 155.50/qt 
 

4.86 17.01 

Met 52 EC biological 0.75 to 1.5 lb 20.00/lb 1.25 7.50 

Mesurol 75WP chemical 0.5 to 1 lb 190.65/2lb 5.96 17.88 
 

Ornazin 3% EC biological 8 to10 oz 34.70/qt 1.10 
 

2.48 

Orthene 75% SP chemical 2 to 6 oz 1.29/oz 1.29 1.29 

Overture 35WP chemical 0.25 to 0.75 lb 103.66/ lb 6.48 12.96 
 

Pylon chemical 2.6 to 5.2 oz 439.00/pt 27.40 26.70 

QRD 452 EC biological 64 to 128 oz 45.00/gal 0.35 5.86 

Safari 20 SG 
 

chemical 4 to 8 oz 103.54/12oz 8.63 12.95 
 

Tristar 30 SG chemical 0.25 to 0.5 lb 15.40/lb 0.96 1.44 

SP: soluble powder, WP: wettable powder, SC: suspension concentrate,  EC: emulsifiable concentrate,  SG: soluble granular 
*Pesticide labels often specify a mixture based on 100 gallons of water, which covers 4 greenhouses. Therefore, the price per application per 
greenhouse is the 100 gallon mix divided by 4. As an example, the midrange rate for Avid is 6 oz, price per oz is $4.65. Thus 6 *4.65/4=6.98. 
. 
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Table 4.2  Pesticide types, relative efficacy of mortality, application limits from product label and suggested constraints  

Name Type Mortality 
percentage 

Application limits Constraints 
 

Avid 0.15 EC chemical 59.8 No more than four applications per year. 5-7 days apart 
 

App. Time ≤ 2 
 

BotaniGard 22 
WP 

biological 48.0 No  more than 2 times per season, 7-10 days apart  
 

App. Time ≤ 2 
 

Conserve SC pesticide 69.7 No more than 6 times in a year, never apply more than 3 
consecutive application  
 

App. Time ≤ 1 

Met 52 EC biological 24.2 No limit No limit 

Mesurol 75WP chemical 58.5 No more than 2 times per year. At least 10 days apart. App. Time ≤ 1 

Ornazin 3% EC biological 43.5 No limit 
 

No limit 
 

Orthene 75% SP chemical 37.2 No more than 2 times per year App. Time ≤ 1 

Overture 35WP chemical 52.9 No more than 3 times per cropping cycle or more than 3 
times per 6 months 
 

App. Time ≤ 2 

Pylon chemical 59.02 No more than 2 consecutive apps, 3 per season App. Time ≤ 2 

QRD 452 EC biological 22.1 No more than 10 times per crop production cycle 
 

No limit 

Safari 20 SG chemical 66.6 No more than 2 times during a two-month period 
 

App. Time ≤ 2 

Tristar 30 SG chemical 60.1 No more than 5 applications per year. Do not reapply more 
than once every 7 days 

App. Time ≤ 2 

Note:  source of relative efficacy of mortality is IR4.  Application limits are obtained from the labels of pesticides.                             
SP: soluble powder, WP: wettable powder, SC: suspension concentrate, EC:  emulsifiable concentrate, SG: soluble granular.  
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human health (Pimentel et al., 1992). Thus, there is an interest in reducing pesticide use. The 

direct way is to reduce pesticide application times and rates. The application limitation for each 

pesticide stated on the label was listed in the “application limits” column and the constraint for 

each pesticide was set in “constraints” column (Table 4.2). For example, the application limits of 

Avid in label was “Avid is limited to no more than four applications per year”. The constraint for 

Avid was less than or equal to 2 times during the two- month production cycle.  The reasons for 

this were: (1) the production cycle of impatiens is around two months, and the product might be 

needed for other crops, and (2) rotations of pesticides could slow the evolution of resistance over 

a wider range of conditions and control insects cost-effectively (Raymond et al. 2007). The 

application constraint of Conserve is set as equal to or less than 1 time (Table 4.2). Experiments 

demonstrated that Conserve had residual activity up to 16 days, depending on temperature and 

the amount of sunlight (http://www.2ndchance.info/fleas-spinosadGarden.pdf). Thus Conserve 

could provide an extension of pest and disease control. Growers commented that Conserve is 

usually applied at the seventh week. Thus, it also could protect impatiens during the retail period. 

In a similar way, the application constraints were set for other non-biological products. 

4.2.5.4 Constraint Equations for Pesticide Application Limits  

Avid (X1): X1-1 +X1-2 +X1-3 +X1-4 +X1-5 +X1-6 +X1-7 ≤ 2          

Mesurol (X2): X2-1 +X2-2 +X2-3 +X2-4 +X2-5 +X2-6 +X2-7 ≤ 1 

Ornazin (X3): biological, no limits 

Orthene (X4): X4-1 +X4-2 +X4-3 +X4-4 +X4-5 +X4-6 +X4-7 ≤ 1 

Overture (X5): X5-1 +X5-2 +X5-3 +X5-4 +X5-5 +X5-6 +X5-7 ≤ 2 

Pylon(X6): X6-1 +X6-2 +X6-3 +X6-4 +X6-5 +X6-6 +X6-7 ≤ 2 

Conserve (X7): X7-7  ≤ 1 



70 
 

X7-1 +X7-2 +X7-3 +X7-4 +X7-5 +X7-6 = 0 (This equation defines Conserve was applied at week 7) 

Safari (X8): X8-1 +X8-2 +X8-3 +X8-4 +X8-5 +X8-6 +X8-7 ≤ 2 

Tristar (X9): X9-1 +X9-2 +X9-3 +X9-4 +X9-5 +X9-6 +X9-7 ≤ 2 

BotaniGard (X10): X10-1 +X10-2 +X10-3 +X10-4 +X10-5 +X10-6 +X10-7 ≤ 2 

QRD 452 (X11), Met 52 (X12): both are biological pesticides, therefore there is no limit to 

application. 

4.2.5.5 Constraints to Assure Target Level of Mortality  

The general equation which is set for percent mortality per week after pesticides 

application was the following equation: 

෍  RE ୧ X୧ି୨
ଵଶ

௜ୀଵ
  ≥ TM 

Here ۳܀ ܑ  (relative efficacy) indicates the relative efficacy of thrips mortality from individual 

pesticide i, and i =1, 2,…12.  j indicates the week number from 1 to 7. TM (total mortality) 

indicates thrips total mortality of each week after pesticides application. The fully specified 

equations for each week (total 7 weeks) during impatiens production with detailed thrips relative 

efficacy of mortality were listed below. 

           The RE value comes from the percent mortality of each pesticide based on Ornamental 

Horticulture Program of Interregional Research Project #4 (IR-4) summary report (Table A.1). 

For over forty years, the IR-4 Project has been the major resource for supplying pest 

management tools for specialty crops by developing research data to support registration 

clearances (Thompson et al. 2006). The IR-4 Project’s Ornamental Horticulture Program works 

with growers, researchers, registrants and regulatory agencies to assist new pesticide 

registrations. In addition, new diseases, insects, and weeds as well as new crops on already 

registered ornamental horticulture product labels are added (Thompson et al. 2006). Thus the IR-
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4 Project’s Ornamental Horticulture Program helps provide safe and effective pest management 

solutions for greenhouse, nursery, landscape and forestry producers. For the last 5 years, the IR-4 

Ornamental Horticulture Workshop has developed efficacy data on new products and currently 

registered products. From 2006 through 2011, about 57 products representing 48 different active 

ingredients were tested for thrips management. The data (in Table4.2) were the average value of 

the results of same pesticide reported in different experiments based on the past 6 years’ work.  

4.2.5.6 Source of Mortality Information 

           The insecticides performance controlling WFT was the source of efficacy information 

(Table 4.2). Data were collected from the database of the Entomological Society of America 

(http://entsoc.org) and IR4 Research Summary (http://ir4.rutgers.edu/ir4_pdf /default.aspx?pdf 

=http://ir4.rutgers.edu/Ornamental/SummaryReports/ThripsDataSummary2011.pdf). The data 

were chosen from the research reports which were focused on “western flower thrips” and the 

hosts were ornamental plants. The insecticides were sprayed on test plants.  The results across 

tests varied widely. These outcomes might have occurred because 

— experiments were conducted in different seasons, different locations and conditions;  

—  the host plants differed across studies. For example, some were impatiens, some were 

marigold, some were gerbera and so on;  

—  the application rates of the same insecticide varied;  

—  the data were recorded on different “days after treatments”;  

—  the application times of insecticides in different experiments were different;  

—  thrips numbers were counted at different sampling parts in different tests (some were 

counted on the whole plant, some were counted on leaves, some were counted on 

flowers); 
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  —  the equations for calculating mortality were different. Most of them counted only live 

thrips. One way to calculate the percentage of mortality was: 1 - (thrips on treated sample/ 

thrips on control).  The other way to calculate the percentage of mortality was:  dead thrips/ 

(dead + live) (http://ir4.rutgers.edu/ir4_pdf/default.aspx?pdf=http:// ir4.rutgers.edu/ 

Ornamental /Summary Reports/ThripsDataSummary2011.pdf). 

4.2.5.7 Justification of Mortality Constraints for Each Week 

           Chemicals for the control of WFT in greenhouse play an important role in protecting 

valuable ornamentals. Both proper selection of pesticides and appropriate application times have 

a direct effect on pest control.  Pesticides may be either nonpersistent or persistent.  

Nonpersistent pesticides are broken down quickly after application by microorganisms or 

sunlight. A nonpersistent pesticide performs its control function soon after application and then is 

no longer active (Smith, 2005). On the contrary, the chemical structures of persistent pesticides 

do not change for a long time after application. They may stay on leaves or in the soil and give 

long-term pest control without repeated applications (Smith, 2005).  Thus, persistent pesticides 

have a big drawback; that is, they may contaminate the environment for long period of time. 

Some even threaten people’s health. Another disadvantage of persistent insecticides is that 

resistance to persistent insecticides has occurred much more frequently than to nonpersistent 

insecticides.  Non-persistent pesticides are less harmful to the environment because they do not 

build up in the environment, but they have to be applied more often to crops or plants to be 

effective (Vargas, 1975). According to pesticide labels, the 12 pesticides used in this program are 

nonpersistent pesticides. Weekly applications are needed to be effective. Therefore the mortality 

of each week is essential to examine the efficacy of pesticide applications in controlling thrips.  
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The thrips percent mortality target for each week was set at 50%. Theoretically, the 

percent mortality ranges from 0 to 100% for each pesticide. Usually, a high concentration of 

pesticide leads to high percent mortality. However, greenhouse producers are continually seeking 

new alternative options to control WFT in order to alleviate the prospect of thrips resistance.   

Furthermore, it is difficult to suppress WFT because they tend to reside in tight-enclosed areas 

including unopened flower buds and terminal buds, decreasing their susceptibility to insecticide 

sprays (Cloyd and Gillespie, 2012). Therefore it is hard to achieve 100% mortality. From Table 

10, the highest percent mortality achieved was 69.7%, while the lowest mortality value was 

22.1%. The midrange of mortalities of all 12 pesticides in Table 10 is 45%. In a literature review, 

researchers did not identify a level of mortality associated with marketability. Based on all of the 

above information, the percent mortality for each week is arbitrarily set at 50% in this study. The 

constraints were: 

Constraint for week 1: 0.598X1-1  +0.585X2-1 +0.435 X3-1+0.372X4-1 +0.479X5-1+0.63X6-1 

+0.678X7-1+0.648X8-1+0.631X9-1 +0.48X10-1+0.144X11-1+0.207X12-1  ≥ 0.5  

Constraint for week 2: 0.598X1-2 +0.585X2-2+0.435 X3-2+0.372X4-2 +0.479X5-2+0.63X6-2 

+0.678X7-2+0.648X8-2+0.631X9-2 +0.48X10-2+0.144X11-2+0.207X12-2  ≥  0.5  

Constraint for week 3: 0.598X1-3 +0.585X2-3 +0.435 X3-3+0.372X4-3 +0.479X5-3 +0.63X6-3 

+0.678X7-3+0.648X8-3 +0.631X9-3 +0.48X10-3 +0.144X11-3 +0.207X12-3  ≥  0.5  

Constraint for week 4: 0.598X1-4 +0.585X2-4+0.435 X3-4+0.372X4-4 +0.479X5-4+0.63X6-4 

+0.678X7-4 +0.648X8-4 +0.631X9-4 +0.48X10-4 +0.144X11-4+0.207X12-4  ≥ 0.5  

Constraint for week 5: 0.598X1-5 +0.585X2-5+0.435 X3-5+0.372X4-5 +0.479X5-5+0.63X6-5 

+0.678X7-5 +0.648X8-5 +0.631X9-5 +0.48X10-5 +0.144X11-5 +0.207X12-5  ≥ 0.5  

Constraint for week 6: 0.598X1-6 +0.585X2-6+0.435 X3-6 +0.372X4-6 +0.479X5-6+0.63X6-6 
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+0.678X7-6+0.648X8-6+0.631X9-6 +0.48X10-6+0.144X11-6 +0.207X12-6  ≥ 0.5  

Constraint for week 7: 0.598X1-7 +0.585X2-7 +0.435 X3-7 +0.372X4-7 +0.479X5-7 +0.63X6-7 

+0.678X7-7 +0.648X8-7 +0.631X9-7 +0.48X10-7 +0.144X11-7 +0.207X12-7  ≥ 0.5  

4.3 Results and Discussion 

            Linear programming problems can be solved in SAS by using the PROC LP procedure. 

The LP procedure provides various control options and solution strategies. It also provides 

various kinds of intermediate and final solution information. SAS input data for linear 

programming models solved with the PROC LP procedure were entered in sparse data format. 

The sparse format is designed to specify only nonzero coefficients in the description of linear 

programs (SAS Institute Inc, 1999). Using sparse format enables the SAS program to run 

efficiently.   

          In addition to the optimal solution of a linear programming problem, evaluation of the 

sensitivity of the optimal solution to change in the parameters is important. Sensitivity analysis 

included assessing the impact on pesticide management problems if the values of these 

parameters were changed from current to other reasonable values. It also was used to assess the 

impact of changing assumptions of the model. Thus, a sensitivity analysis was used to examine 

how the change, such as pesticides prices and mortality constraints, would affect the optimal 

solution.    

  The output of the LP procedure consists of the following sections: (1) solution summary, 

(2) variable summary, (3) constraint summary, and (4) sensitivity analysis including objective 

function sensitivity analysis and right hand side sensitivity analysis. The following sections 

illustrate the results of the output.      
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4.3.1 Variable Summary 

            The results from the variable summary (Table 4.3) provide information about the 

variables of the problem for the optimal solution. Seven variables are listed for this problem. The 

‘Status’ column identifies which variables are in the optimal solution at nonzero values. Results 

for this problem indicate that X9-5 is in the optimal solution.  The ‘Type’ column identifies the 

type of each variable. All variables are binary variables in Table 4.3. Objective function 

coefficients for each variable are listed in the ‘Price’ column.  The optimal solution for this 

problem is listed in the ‘Activity’ column. Here all variables have ‘1’ value in ‘Activity’ column. 

This indicates that the listed variables all have 1 treatment in optimal solution (those variables 

with 0 values in the ‘Activity’ column are not included in this table as they are not applied in the 

optimal solution).   

The ‘Reduced Cost’ column lists the allowable increase (when maximizing) from the 

current value of this coefficient while remaining in the basis at the optimal solution, or the 

allowable decrease (when minimizing) (Hillier and Lieberman, 2001).   

Table 4.3 Output of variable summary of optimizing pesticides programs linear programming for 
thrips control of impatiens in greenhouse 

      Variable  Summary 
Variable name Status Type Price Activity Reduced cost 
X1-1 Binary 6.98 1 1.12 
X1-6 Binary 6.98 1 5.69 
X7-7 Binary 17.01 1 11.15 
X8-3 Binary 12.95 1 7.09 
X8-4 Binary 12.95 1 7.09 
X9-2 Binary 1.44 1 4.57 
X9-5                Basic Binary 1.44 1 0 
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4.3.2 Solution Summary 

            The solution summary provided information about the problem solution.  Important 

information provided in solution summary was the value of the objective function. For this 

particular problem, the objective function value was $59.75. This indicated that if the chosen 

pesticides in the solution would be applied in the indicated week, the minimum pesticides 

application cost for WFT control during 7 weeks for impatiens in a greenhouse was $59.75 and 

all constraints would be satisfied. 

The variables in the optimal solution from the LP model were shown in Table 4.3. The 

corresponding pesticide names (variables) in the result of LP in Table 4.3 and mortality and cost 

per application are listed in Table 4.4. As can be seen, the results showed at weeks 1 and 6, Avid 

was applied; at week 2 and 5, Tristar was chosen; at week 3 and 4, Safari was selected. Conserve 

was selected for week 7. The application costs of Avid, Tristar, Safari and Conserve provided the 

minimum cost solution for this specific problem. The objective function value using the LP 

procedure for WFT control for impatiens per greenhouse was $59.75 when the mortality 

constraints of each week were at least 50%. From Table 4.4, it showed that each pesticide had a 

mortality which was greater than 50%, as required by mortality constraints. If the mortality of 

the chosen pesticide was less than 50%, then it could not have been chosen by the model.  Thus  

Table 4.4   Product symbols and names, mortality and price per application from the linear 
programming solution in Table 4.3 

Week Product symbol Product name Mortality 
Price per 

application($) 
1 X1-1 Avid 0.598 6.98 
2 X9-2 Tristar 0.601 1.44 
3 X8-3 Safari 0.666 12.95 
4 X8-4 Safari 0.666 12.95 
5 X9-5 Tristar 0.601 1.44 
6 X1-6 Avid 0.598 6.98 
7 X7-7 Conserve 0.697 17.01 
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the mortality was the most important factor for each pesticide in order to be chosen in the LP 

model.   

4.3.3 Constraint Summary 

The “Constraint Summary” (Table 4.5) provides information about the right hand side values of 

the problem in the optimal solution. In this problem, the right hand side values include mortality 

percentages, application limits and binary constraints. In Table 4.5, the objective function is 

shown in the first line and its optimal objective function value “59.75” is listed under “Activity” 

column. Then seven constraints that require mortality to be a given level by week are listed.  The 

“mortality 1” constraint is the percent mortality of the pesticide for week 1 and so on.  Values of 

the mortality constraints used at each week are listed in the “Activity’ column”. For example, 

“0.598” (row 2) in “Activity” column indicates that the percent mortality of thrips in week 1 is 

59.8%.  The “Dual Activity” (also known as dual price or shadow price) represents the amount 

the objective function value would change (increase for a maximization model or decrease for a 

minimization model) given a unit of increase on the right hand side of the constraint (Reeb and 

Leavengood, 2000). Non-zero values in the “Dual Activity” column indicate constraints which 

are binding or limiting the solution.  

Table 4.5   Constraint summary of linear programming model to optimize pesticides programs 
for thrips control of impatiens in greenhouse   
                                                            Constraint Summary  
Constraint name type RHS Activity Dual activity 
Cost Objective 0 59.75 . 
Mortality1 GE 0.5 0.598 0 
Mortality2 GE 0.5 0.631 0 
Mortality3 GE 0.5 0.648 0 
Mortality4 GE 0.5 0.648 0 
Mortality5 GE 0.5 0.631 0 
Mortality6 GE 0.5 0.598 0 
Mortality7 GE 0.5 0.678 0 
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In Table 4.5, the dual prices of all mortality constraints of each week are zero. Binding 

constraints are constraints that hold with equality at the optimal solution. Any change to the right 

hand side of a binding constraint will change the optimal solution. Any change to the right hand 

side of a non-binding constraint will cause no change in the optimal solution (Reeb and 

Leavengood, 2000). Therefore the zero dual prices in Table 4.5 indicate that these constraints are 

all non-binding constraints. 

4.3.4 Sensitivity Analysis 

          Sensitivity Analysis concerns how the solution derived from the model would change if 

the value assigned to the parameter were changed to other possible values (SAS Institute Inc, 

1999).  The two most important parameters which were evaluated are objective function 

coefficients and the right hand side values. 

4.3.4.1 Objective Function Coefficients (same meaning as price in SAS output) Sensitivity 

Analysis  

           The RANGEPRICE option is used with LP procedure to analyze the sensitivity of the 

solution to changes in the objective function. The SAS program statement could be written as 

follows:  

PROC LP SPARSEDATA  RANGEPRICE; 

        Sensitivity analysis of the objective function coefficients provides the range over which 

each parameter could vary while leaving the optimal solution (values of decision variables) 

unchanged (Salassi, 2004). The linear programming procedure reported the coefficient range 

analysis for each variable in every week. All pesticides could be sensitive to any coefficients’ 

changes in their decision variables, thus affecting total value of objective function. For each 

pesticide, when their objective function coefficients (cost per application) were within the 
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allowable range, the optimal objective function value does not change. The results of Table 4.6 

indicated the range of unit cost increase for each decision variable that would not change the 

optimal solution, while the value of objective function would change if coefficients change. 

           From Table 4.4, the current optimal solution to the linear programming model is Avid, 

Tristar, Safari and Conserve. The range of each objective function coefficient provides the range 

of values over which the current solution will remain optimal. The current contribution to 

minimum cost of objective function is $ 6.98 per application cost of Avid, $1.44 per application 

of Tristar, $12.95 per application of Safari and $17.01 per application of Conserve. It is obvious 

that an increase in the pesticide application cost would lead to increased production cost of 

greenhouse impatiens.  

          For each decision variable, the upper and lower ranges of the production cost (objective 

function coefficient) are shown in Table 4.6.  “minimum phi” (or “maximum phi”) indicates the 

minimum (or maximum) value for which the basic variables remain basic.  The “price” column 

gives the minimum (under the section labeled minimum phi) or maximum (under the section 

labeled maximum phi) value of the coefficient. The “Objective” column gives the objective 

function value. The “Entering” column indicates the entering variable. The entering variable 

identifies the variable whose reduced cost first goes to zero as objective function value reaches 

its minimum or maximum. This is the nonbasic variable that would enter the basis to maintain 

optimality (SAS Institute Inc. 1999).   

Table 4.6 showed the range over which the current basic solution remained optimal so 

that the current pesticide program need not change.  For example, in Table 4.6, the coefficient 

value of X1-1 at week 1 could vary anywhere between $5.86 and infinity (originally at $6.98) 

and the optimal solution would remain unchanged.  Below $5.86, the optimal solution will 



80 
 

change. Similarly, the value of X1-6 at week 6 could vary anywhere between 1.29 (Though 

pesticide is the same, the lower bound of X1 at week 6 is $1.29. It is different from $5.86 at 

week 1. The reason is that X1 is treated as different subject at different week) and infinity 

(originally at $6.98); the value of X8 at week 3 and 4 could vary anywhere between $5.86 and 

infinity (originally at $12.69); the value of X9 at week 2 could vary anywhere between -3.13 (the 

computer calculation generates a negative number that satisfies to the condition. Since the price 

of a purchased input could not go below 0, the minimum value would be 0. In mathematics, -

3.13 is a number and the equation is satisfied) and infinity (originally at $1.44); the value of X9 

at week 1 could vary anywhere between -1.94 and infinity (originally at $1.44) and the value of 

X7 could vary from $5.85 to $17.01(originally at $17.01).    

Table 4.6 Sensitivity analysis of objective function coefficients from the linear programming 
model for thrips control of impatiens in greenhouse     

Input Price Range Analysis 
Variable Minimum phi Maximum phi 

name Price Entering Objective Price Entering Objective 

X1-1 5.86 X1-1 58.63 Infinity . Infinity 
X1-6 1.29 X1-6 54.06 Infinity . Infinity 
X7-7 5.86 X7-7 48.60 Infinity . Infinity 
X8-3 5.86 X8-3 52.66 Infinity . Infinity 
X8-4 5.86 X8-4 52.66 Infinity . Infinity 
X9-2 -3.13 X9-2 55.18 Infinity . Infinity 
X9-5 -1.94 X3-5 56.37 Infinity . Infinity 

Note:  Price column indicates up or low (under Maximum or Minimum phi section) bound.  
 

In addition, the output in Table 4.6 showed that if the cost of X1-1 decreased from $6.98 

to $5.86, the objective function value (total cost) would decrease from $59.75 to $58.63.  This is 

reasonable as decreasing the pesticide cost leads to decrease the production cost.  It would 

become optimal for any fractional decrease in the cost of a pesticide. When the original price of 

X1-1 was $6.98, the reduced cost of X1-1 was 1.12 (Table 4.4). Therefore decreasing the unit 
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cost of X1-1 from $6.98 to $5.86 would drive its reduced cost to zero (1.12-1.12 = 0). Any 

further decrease would drive its reduced cost to negative and would result in an alternative 

optimal solution. At this point ($5.86) where the reduced cost is zero, the objective function 

value would be $58.63 (59.75 -1.12). This value matched the results in Table 4.6. Similarly, if the 

cost of X9-5 were to decrease from $1.44 to -$1.94 (originally at $1.44, reduced cost is zero), the 

unit change was 3.38 (1.44 – (-1.94) =3.38). The objective function value would change to 56.37 

(59.75-3.38 = 56.37). This procedure applies to all other variables. 

Therefore, output 4.6 showed the range over which the current basic solution remained 

optimal so that the current pesticide use program need not change.  Between the interval of 

minimum phi and maximum phi, the optimal solution would not change no matter what value the 

coefficient takes. Outside the lower and upper bound, the optimal objective function value would 

change.  That is, the current production program would switch to other pesticide schemes 

because the combination of pesticides (in Table 4.4) would not provide an optimal solution. As 

pointed out above, the value of objective function would change if objective function coefficients 

change, but the optimal solution would not change if the coefficients remain in their allowable 

range.  

In Table 4.6, the lower bound of X1 at week 1 was $5.86. The original price of X1 was 

$ 6.98. The difference between them was $1.12. Similarly, the difference of X1-6 between the 

lower bound and original price was $5.69. The difference of X7-7 between the lower bound and 

original value was $11.15. The difference of X8-3(/X8-4) was $7.09. To X9-2 and X9-5, the 

difference was $4.57 and $3.38 respectively. Thus, the lower bound of X1-1 was the closest to its 

original price. The lower bound of X7-7 was the farthest to its original price. Therefore, X1-1 

might be more sensitive than the others since its original value was the nearest to the lower 
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bound and X7-7 might be the least sensitive one since its original price was the farthest to the 

lower bound. As pointed out before, the interval of the lower bound and upper bound provided 

how much the coefficient could change without changing the optimal solution. A decision maker 

might be concerned about whether the optimal solution was sensitive to a small change in one of 

the original coefficients of the objective function (or the right hand side constraints). For 

example, is the optimal solution sensitive to a price change of X1-1 from $6.98 to $5.98? Based 

on Table 4.6, the optimal solution appeared more sensitive to a price reduction of X1-1than to the 

coefficients  of the other variables because the lower bound is rather close to coefficient value 

This kind of examination of impact of the original price on the output results was important for a 

decision maker since he might be interested in the impact of market variations in the cost of 

insecticides.  

4.3.4.2 Right Hand Side Sensitivity Analysis 

           Right hand side values normally represent a limitation on a resource. Resources change as 

business and marketing conditions change (Hillier and Lieberman, 2001). Sensitivity analysis of 

the right hand side values provides information on how the optimal solution will change if right 

hand side values change. The RANGERHS option is used with LP procedure to analyze the 

sensitivity of the solution to changes in right hand sides of constraints. The SAS program 

statement could be written as follows:  

PROC LP SPARSEDATA  RANGERHS; 

            Table 4.7 showed the results of right hand side sensitivity analysis. The “leaving” column 

identified the leaving variable. The leaving variable indicated the basic variable that first reaches 

either the lower bound or the upper bound as the objective function value reaches its minimum.  
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This was the basic variable that would leave the basis to maintain primal feasibility (SAS 

Institute Inc. 1999). 

The right hand side sensitivity analysis provided the range over which each right hand 

side value could vary while the optimal solution remained unchanged (Salassi, 2004). Thus when 

we change each mortality constraint by one unit (one percent) in the allowable range (right hand 

side value), the optimal solution remained feasible.  For example, in the problem presented in 

Table 4.7, the percent mortality of week 1 (originally at 0.5) could vary anywhere between 

infinity (0, non-negative constraint value) and 0.598 and the current optimal solution would 

remain feasible. Outside of this range, pesticide combinations of each week were not feasible 

because one or more of the model constraints would be violated. 

Table 4.7 Sensitivity analysis of right hand side value from the linear programming model for 
thrips control of impatiens in greenhouse     

RHS range analysis 
Variable name Minimum phi Maximum phi 

 RHS Leaving Objective RHS Leaving  Objective
Mortality1  infinity . . 0.598 mortality1  59.75 
Mortality2  infinity . . 0.631 mortality2  59.75 
Mortality3  infinity . . 0.648 mortality3  59.75 
Mortality4  infinity . . 0.648 mortality4  59.75 
Mortality5  infinity . . 0.631 mortality5  59.75 
Mortality6  infinity . . 0.598 mortality6  59.75 
Mortality7  infinity . . 0.678 mortality7  59.75 

 

As discussed in the previous section, the shadow price associated with a particular 

constraint was the change in the optimal value of the objective function per unit increase in the 

right hand side value for that constraint, all other problem data remaining unchanged (Reeb and 

Leavengood, 2000).   For our example, the shadow prices were 0 dollars per unit of production 

cost (Table 4.5).  As the shadow prices were associated with the constraints of the problem, but 



84 
 

not the variables, the value of shadow price indicated the marginal change of an additional unit 

of a particular right hand side value (Reeb and Leavengood, 2000). 

The original assumption of mortality of each week was 0.5. The difference between the 

upper bound and the original value of mortality 1 was 0.098. Similarly, the difference of 

mortality 7 was 0.178. Thus mortality 1 was more sensitive than the others since it had the 

smallest range between the original and upper bound of right hand side.  As mentioned before, 

the percent mortality of each pesticide was the average value of the experimental data from IR-4. 

The value might have a wide variability since the collected data were affected by the number of 

observations, the sampling parts and plants and thrips calculation equations. Therefore, a 

decision maker may be more confident about the result when th outcome was based on more 

observations. Based on the sensitivity analysis, a decision maker could determine which data had 

a significant impact on the results and concentrate on getting a more reliable data for that item. 

In summary, in this study, the optimal solution for pesticides application strategy for each 

week is:  Avid is applied at weeks 1 and week 6. Safari is applied at weeks 3 and 4. Tristar is 

applied at weeks 2 and 5.  Conserve is applied at week 7. This strategy leads to the minimum 

production cost of impatiens in greenhouse which is $59.75 for total 8 weeks’ cycle. 

This linear programming model is based largely on product prices, application rates, and 

incorporates a weekly mortality requirement. The schedule changes as the prices of pesticides 

and application inputs change, and this could also influence a decision on WFT management.  
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Chapter 5.  Summary and Implications 

 

5.1 Summary of Research Problem 

Pests continue to damage ornamental plants and crops. Thrips (mainly western flower 

thrips, Frankliniella occidentalis) were ranked among the top three arthropod pests (with two 

spotted spider mite and aphids) for three consecutive years from 2006 to 2008 (IR-4 Ornamental 

Research Priority Summary, 2008). WFT is one of the most serious pests in the ornamental 

industry (Lewis, 1997). It is a common pest on almost all crops, causing a wide range of crop 

damage due to its feeding pattern (Lewis, 1997).  The direct damage to crops includes surface 

blemishes, distorted growth, sunken tissues on leaf undersides, and deformation of flowers (Van 

Dijken, 1994). The indirect damages include  pathogens easily invading plants through the 

feeding wounds created and  transmitting plant viruses (tomato spotted wilt virus and impatiens 

necrotic spot wilt virus) to other crops (Terry, 2010).  

Impatiens is one of the most popular warm-season bedding plants in the U.S.  Based on 

USDA’s survey data, the wholesale value of impatiens in the U.S. was around $153 million in 

2008 (USDA, NASS, 2008).  

 The general objective of this project was to estimate the production cost of an optimal 

WFT control strategy. The specific objectives of this research were: (1) to identify thrips control 

options for impatiens (alternative impatiens WFT control programs, including biopesticides used 

alone, in combination, and conventional products alone) and to estimate the production cost of 

each scheme; (2) To determine optimal thrips control programs using linear programming 

procedures.  
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A partial budget method was implemented to estimate the change of production cost that 

would occur from each of 6 control strategies on impatiens in the greenhouse. The components 

of these partial budgets included fertilizer, labor, scouting, fuel and pesticide costs. The sum of 

the five costs provided the total production cost of each strategy. Thus the effect of each item and 

the changes of production cost were determined.  

 The linear programming methodology was implemented to identify pesticides that 

minimized cost and satisfied production system constraints of impatiens in a greenhouse. To 

make the linear programming model more useful, sensitivity analysis was performed.   

5.2 Partial Budget Results Summary  

Six pesticide schemes were designed by using conventional pesticides or biopesticides to 

estimate production cost of thrips control on impatiens in greenhouse production.  A partial 

budget analysis was conducted to evaluate the cost of the six pesticide schemes. The components 

of these partial budgets included fertilizer cost, labor costs, pesticides cost and fuel cost. Among 

them, strategies 3, 4 and 5 were the schemes to compare costs of QRD 452 and Met 52. 

Strategies 1, 2 and 6 were schemes commercially available in the market. 

 The results showed that strategy 6 had the highest total production cost ($197.44). 

Strategy 5 had the second highest cost which was $180.75. Strategies 3, 4 and 5 were similar in 

total production cost, which were $174.83, $175.02 and $175.12, respectively. The total 

production cost of strategy 2 was $162.96.  Strategy 1 had the lowest total cost ($153.28). The 

difference between strategies 1 and 6 was $44.16. Strategy 2 used least pesticides and had the 

lowest pesticide cost ($26.27) among the 6 strategies.  Strategy 2 was the only scheme 

containing scouting cost.   The scouting cost in strategy 2 was $73, which accounted for 44.8% 

of the total production cost. Scouting offset part of the pesticides cost, labor cost and fuel cost. 
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Strategy 6 had the highest pesticides cost among the 6 programs as BotaniGard is more 

expensive than any other in the group.  Compared to conventional pesticides, biopesticides, such 

as BotaniGard, Met 52 and QRD, have a higher market price. Thus, the schemes containing 

biopesticides usually have a higher total production cost than those only applied with 

nonbiopesticides.   

The partial budget procedure showed the main factors influencing the total cost were the 

cost of labor, pesticides cost and fertilizer. Among them, labor cost was the most important 

component since it had a high percentage in total cost. These strategies could reduce or control 

WFT populations to levels that allow greenhouse producers to grow and sell a high quality crop 

with minimal aesthetic injury. Thus, partial budget analysis could provide decision makers with 

additional information with which to make more informed decisions regarding production cost 

and revenue. 

5.3 Linear Programming Results Summary 

 The optimal WFT control program for pesticide applications on impatiens in a 

greenhouse was based on the assumption that thrips mortality must be at least 50% for each week. 

Avid was applied at week 1 and week 6. Safari was applied at weeks 3 and 4. Tristar was applied 

at weeks 2 and 5.  Conserve was applied at week 7. This strategy led to the minimum pesticide 

cost of impatiens in a greenhouse, which was $59.75. This linear programming model was based 

largely on product prices and application rates, and incorporated a weekly mortality constraint 

which, in reality, could differ among growers and locations.  Thus, this schedule would change as 

the prices of pesticides and application inputs change, and this could also influence a decision on 

WFT management. The results highlight the importance of strategic choices for growers.  
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5.3.1 The cost scope of partial budget and linear programming 

In partial budget analysis, the range of total production costs of the six strategies was 

from $153.28 to $197.44 and the range of the pesticide costs was from $26.27 to $81.43. The 

optimal solution from the LP model indicated that the minimum cost was $59.75, which was 

within the range of pesticide costs calculated in the partial budget. The LP solution was higher 

than the pesticide costs of strategies 1 and 2 and very close to the pesticide costs of strategies 3, 4 

and 5. The lowest pesticide cost scheme was from grower strategy 2, where growers did not 

apply pesticides in the first four weeks but scouted daily to monitor the thrips situation. 

Pesticides were applied only at weeks 5 and 6. Thus, the lowest pesticide cost was obtained from 

this strategy. The optimal pesticide cost ($59.75) from the LP model was higher than pesticide 

costs of grower strategies (1 and 2) from the partial budget. The reasons were that in the LP 

model, the optimal scheme was not only concerned about cost, but also minimizing thrips 

resistance. Also, the number of permitted applications, the pattern of consecutive applications 

and minimum mortality constraints restricted the optimal scheme. Growers might choose only 

the cheapest scheme but not the least resistant scheme. The optimal scheme was not the lowest 

cost, but might reduce the environmental cost and help with the resistance issue.  

The linear programming procedure also conducted an objective function (price) range 

and right hand side range (constraints) sensitivity analysis for the optimal WFT control program. 

For objective function sensitivity analysis results, results indicated that the cost for Avid for 

week 1 (or for week 6) could vary from $5.86 to infinity ($1.12 to $6.98) and the optimal 

solution would remain unchanged. Results for Conserve indicated that its cost could vary from 

$5.86 to infinity and the optimal solution would remain unchanged. Results for Safari indicated 

that its cost could vary from $5.86 to infinity and the optimal solution would remain unchanged. 
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Results for Tristar indicated that its cost could vary from 0 (non-negative value) to infinity, and 

the optimal solution would remain unchanged.  Results from the right hand side sensitivity 

analysis provided showed that the mortality of each week could vary anywhere between infinity 

(0, non-negative constraint value) and the percent mortality of each pesticide and the optimal 

solution would remain unchanged.  

This analysis provides a starting point for quantitative input to the production cost over 

future WFT management in greenhouse. However, the strategies considered here represent only 

WFT control in greenhouse impatiens. These results can be used as a stepping stone to further 

economic analyses of alternative thrips management strategies in this field, as well as others.  

4.3 Implications 

The fundamental issue in the USDA/PMAP grant that funded this project was the 

problem of increasing resistance to conventional pesticides that had provided effective control of 

WFT and other pests on ornamental plants including impatiens. Impatiens is economically 

important as one of the top three warm-season bedding plants.  WFT and other pests consistently 

caused substantial losses to the nursery industry. The principal method used to deal with thrips in 

greenhouses was conventional pesticide applications, sometimes at high rates of frequency.  This 

contributed to resistance, possible plant injury, and environmental contamination.  

The primary way to prevent or minimize development of resistance and to prolong the 

effectiveness of currently available insecticides is a rotation of insecticides with different modes 

of action (Cloyd, 2010). Given the goal of the PMAP project, alternative, biologically-based 

WFT control strategies that combined resistant cultivars, levels of available plant foods (nitrogen 

and phosphate), and biopesticides, were evaluated as production systems. Figure 1 (Chapter 2) 

provides a schematic view of a plan to evaluate these relationships, and to incorporate impacts on 
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plant quality. From these experimental results, no difference was found between the resistant and 

susceptible cultivars. Both nitrogen and phosphorus affected thrips population on impatiens. The 

biopesticides QRD 452 and Met 52 were evaluated and appeared effective in reducing thrips 

populations after application. However, comprehensive experiments leading to results that 

revealed quality differences among plants produced using the strategy branches from the tree in 

Figure 1 were not part of the experimental strategy adopted by the grant investigators.  

This cost analysis contributes to understanding of the relationships between costs, 

resistance and grower motivations, and complements the objectives of the PMAP grant work. 

Partial budgets were based on three strategy approaches: (i) research of experts in the field who 

have proposed control strategies based on the need for alternative modes of action; (ii) two 

commercial grower control strategies, and (iii) assumed use of the biopesticides. Important 

results and implications are discussed below.  

5.4.1 Biopesticide Strategies   

These products potentially are effective. They work in different ways and work slower 

than conventional pesticides. Met 52 and QRD 452 are registered and have been in use for some 

time in European countries, but information about efficacy and plant quality was not located for 

this study. The mode of action is growth of spores, so reproduction to levels sufficient to control 

insects is required. Growers interviewed were not familiar with biopesticides or the way they 

work. The price strategies of companies producing these biopesticides appears to be based on the 

assertion that these are premium products that have unique attributes in terms of deferring 

resistance and offering environmental benefits. However, prices used for these calculations were 

based on one or two observations, or were taken from manufacturer representatives who gave 

anticipated prices. These prices might decline when they are in competition with other control 
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product strategies. Partial budgets indicated these strategies are higher cost compared to the 

conventional product strategies. 

 5.4.2 A Research-based Strategy  
 

The researcher-recommended strategy was from Cloyd (2010), who suggested rotation 

strategies based on using pesticides with different modes of action. One was chosen as a typical 

WFT control scheme and was analyzed by using partial budgeting (strategy 6 in Chapter 3). The 

scheme was as follows: BotaniGard (weeks 1 and 2); Pedestal (weeks 3and 4); Orthene (weeks 5 

and 6); and Conserve (week 7). Each pesticide was applied once per week over a two-week 

period, then a new pesticide with a different mode of action was used. The consecutive two-week 

(or three weeks period) use of one insecticide  was based on the assertion that intense use of one 

pesticide within one pest generation would suppress the population, and the selection pressure 

would be counteracted in the next generation by the use of an alternative pesticide (Broughton 

and Herron, 2007).  This scheme was effective in controlling thrips with biopesticide and 

nonbiopesticide combinations in greenhouses.  This scheme included BotaniGard, which was the 

most expensive among all pesticides considered.  BotaniGard was suitable for the early stages 

and light population of pest control. This strategy had the highest pesticide cost and total 

production cost among the 6 programs.   

5.4.3 Grower Strategies  

Strategy 1was based on popular conventional pesticides, and had the lowest cost among 

the strategies budgeted (Chapter 3).  The same pesticides were rotated at weeks 2, 6 and 3, 7 

respectively. No pesticide was used in the first week. These pesticides had a low cost which 

contributed to the lowest production cost of all strategies.  Growers are expected to consider cost 

first when they choose a scheme.  The mixture of two pesticides was applied once each week, a 
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common industry practice.  Growers might use mixtures to control more than one target pest, and 

perhaps to better control particular pests. Given that multiple pesticides were in the mixture, the 

strategy’s position of lowest cost was not expected. This scheme also was attractive since it 

reached the thrips control goal by rotating the conventional pesticides. The recommended 

rotation practice may suggest that growers are aware of the resistance issue and are acting to 

address the problem. 

The second strategy included scouting, maintaining clean areas around greenhouses, and 

a shorter production period based on a specialized market. The second strategy used a smaller 

quantity of pesticides, but was not least cost among the budgeted strategies. However, scouting 

was included as a specific activity by managers and was given a cost. Managers probably did not 

view the scouting activity as separate from their routine activities, and would not count the 

scouting activity as a separate cash cost against the crop income. Scouting is an important way to 

determine numbers of thrips in the greenhouse, and could be used to forecast diseases and assess 

the effectiveness of management strategies (Cloyd, 2010). Production cost from partial budgeting 

of the scouting strategy was second lowest among the six strategies. This strategy would have the 

least environmental impacts among the 6 strategies since it used the smallest quantity of 

pesticides, and it reduced or prevented the development of resistance due to the fewer pesticide 

applications and cultural control.  

5.4.4 Minimum Cost Strategy from the Linear Program  

The set of pesticides in the solution from linear programing did not include biopesticides. 

The critical issues were both cost and efficacy. Cost based on price per unit was noted. Rates of 

biopesticide application were larger compared to conventional pesticides.  Such a comparison 

may be irrelevant because biopesticide efficacy rates were far below the threshold used in the 
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program.   Differences in rates of mortality reported in IRAC summaries do not seem to be 

consistent with use of these products in other countries, and perhaps should be re-evaluated.  

5.4.5 Relationship to Results from the Linear Programming Analysis.  

  The linear programming solution’s optimal scheme included the conventional pesticides 

Avid (applied at week 1 and week 6), Tristar (applied at weeks 2 and 5), Safari (applied at weeks 

3 and 4) and Conserve (applied at week 7). The mortality of each pesticide in the solution was at 

least 50%. The application cost of this scheme provided the minimum pesticide cost for this 

specific problem. Use of conventional pesticides was reasonable since generally they were 

cheaper than biopesticides, and sufficiently effective. This optimal scheme was similar to 

strategy 1 in that both consisted of many conventional pesticides.  The difference between them 

was that only one pesticide was used per application per week in the optimal scheme while a 

combination of two pesticides was used per application per week in strategy 1. Partial budgets 

indicated that strategy 1 had a pesticide cost of $46.20. This was lower than the optimal scheme 

because of the constraints written into the program and the relatively low price of the 

conventional pesticides in strategy 1. Growers might consider cost first. If the efficacy of one 

pesticide was not enough to suppress thrips, they might mix pesticides because it was believed 

that a mixture was more effective in controlling thrips and other pests than a single one. The 

optimal scheme could achieve the efficiency of thrips control and delay the development of 

resistance since they reduced the overall pesticide input compared to strategy. Therefore the 

optimal strategy could reduce WFT thrips population, delay the development of resistance, and 

allow growers to grow a high quality plant with minimum cost.    
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5.4.6 Environmental Implications  

Although using pesticides raises agricultural productivity, repeated pesticide use may 

lead to resistance and environmental problems. Three actions might reduce or delay the 

development of resistance and /or damages: 

 — use less pesticides. The amount of pesticide that reaches the target pest is less than 0.1 %, 

and more than 99.9% of the pesticide moves into the ecosystem (Silver and Riley, 2001). 

Reducing the amount of pesticide was the most direct and effective way to prevent resistance and 

reduce water pollution and soil pollution.  

— use biopesticides to replace conventional ones. Biopesticides posed fewer risks than 

conventional pesticides. Schemes including biopesticides were expected to reduce environmental 

pollutions due to their natural origin, and because they usually degraded quickly. Therefore, 

using biopesticides such as BotaniGard to replace conventional pesticides in a scheme could 

reduce soil pollution while maintaining the crops quality. It will be necessary to educate growers 

to learn to use biopesticides. Growers might accept biopesticides if they knew that costs of 

pesticides were based not only on direct product cost, but on indirect environmental and 

economic costs. 

 — use rotation programs containing pesticides with different modes of action.   

5.4.7 Grower Implications  

Growers were expected to be more focused on cost and profitability, with pesticide 

resistance and environmental impacts as secondary concerns. In the case of the scouting strategy, 

action was taken when a problem was spotted. At that point, a product that acted quickly was 

necessary to solve the problem. Biopesticides were not as useful in that situation because of the 

delayed response. In addition, they appear to be more expensive, as noted above.  
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Growers should learn to use biopesticides to comply with clean water objectives of 

society.  An approach might be to apply the recommended rotation approach as well as using 

lowest recommended rate from the product label rather than higher rates such as the midpoint of  

the recommended range. The logic would be that with the resistance issue addressed, application 

rates might be lower with subsequent environmental benefits. 

5.4.8 Research Implication 

Use of the biopesticides considered in this research in some European countries suggests 

they are effective products. On the other hand, IRAC results from which mortality measures 

were taken for this study indicated low mortality. Biopesticides seemed not as effective as 

conventional pesticides.  The reason might be associated with points at which mortality is 

measured. Conventional pesticides act quickly and results are observed in a short time frame. 

Biopesticides, with a different action, may require a period of several days before spore 

populations are sufficient to affect the pest. Thus, standard experimental approaches might 

obscure the effectiveness of biopesticides, and researchers should be aware of this kind of 

different action     

The total production cost of the six strategies analyzed by partial budget and the optimal 

pesticide scheme developed by linear programming provides guidance to growers in choosing 

programs and helps them make better management decisions.  This also provided growers 

templates on how to develop their new pest management programs based on their situations and 

calculate the total production cost of their new pest management programs. Findings from this 

project helped growers make management decisions regarding both fertilization and pesticide 

programs. Growers were more aware of the cost and benefits of pesticides in pest management. 
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5.5 Suggestions for Further Research 

This study involved schemes from impatiens growers in the state of Louisiana. The 

results obtained in this study could be adapted by the industry to be useful across the U.S.  

No performance measures, such as a quality index, were included in the partial budget analysis 

or linear programming. In the literature review, a few researchers used grades to indicate quality, 

but there was little discussion of the connection between plant quality and thrips mortality. 

Growers and researchers need better tools to examine and manage the quality index information 

which can be used to measure the production benefits.   

This study’s focus was on the growers’ point-of-view. However, since there is no large 

dataset, many of the results reported here are not unconstrained grower choices.  To ensure that 

the results of this study are useful and substantial, sampling to understand grower behavior may 

be needed to determine acceptable commercial control strategies. Future research with data 

collected from both producers and researchers could improve the understanding of production 

and marketing situation in the ornamental industry. 
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Appendix: Tables of Mortality and SAS output of Linear 
programming 

Table A.1 The application rate, sampling parts, subject species and  mortality of pesticides from IR4 
Insecticides Application rate 

(oz/100gal) Mortality (%) 
Species 
 

Sampling Part 
 

Average 
Mortality(%)

 
Avid 0.15 EC 

7.7  72 impatiens three leaves  
59.8 7.7  53.7 Marigold six leaves 

7.7  53.7 Marigold six leaves 
 

BotaniGard 22 
WP 

32 85.7 Impatiens whole plant  
48.0 

32 47.7 Impatiens whole plant 

32  10.7 Marigold six leaves 
 
 

Conserve SE 

8  79.1 Gerbera five leaves  
 
 
 
 
 
 

69.7 

8  26.2 Gerbera flower 
6  65.8 impatiens whole plant 

6  61.8 Marigold six leaves 
11 59.6 Gerbera whole plant 
8  100 Gerbera flower 

6 88.3 Impatiens whole plant 

6 61.8 Marigold six leaves 
6 75.7 Marigold 8whole plant 

6 95.5 Impatiens whole plant 

6 75.9 Marigold 8whole plant 

8 35.7 Marigold 2 flowers 

8 93.8 Verbena 18 leaves 

11 56.2 Marigold six leaves 

 
Met 52 

29  16.2 Marigold 2 flowers  
 

24.2 
29  58.1 Verbena 18 leaves 
29  0.63 Marigold six leaves 

29  16 Gerbera flower 
29  29.8 Marigold five leaves 

 
Mesurol 

16  52.4 Gerbera 13 whole plants  
58.5 16  50.0 Marigold five leaves 

8  69.7 Marigold six leaves 
16 61.8 Marigold six leaves 
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Table A.1 continued 
Insecticides Application rate 

(oz/100gal) 
Mortality (%) Species Sampling Part Average 

Mortality(%)
Ornazin 3% 

EC 
8 

7.8 
49±15 

38 
Gerbera 
Ornament 

Flower 
flower 

 
43.5 

Overture 
 

8  
8  

52.7 
20.1 

Gerbera 
Gerbera 

five leaves 
flower 

 

 8  71 Gerbera flower 52.9 
 8  63.8 Portulaca five flowers 

12  56.8 Portulaca five flowers 
 

Pylon 
10  53.9 Gerbera five leaves  

 
 
 

59.02 

5 59.0 Gerbera 13 whole plants 

10  70.4 Gerbera 13 whole plants 
2.6  56.0 Impatiens whole plant 

5.2   58.9 Impatiens whole plant 

10.4  47.0 Impatiens whole plant 
5  71.6 Impatiens whole plant 

10  87.8 Impatiens whole plant 
10  24.3 Portulaca five flowers 
5  61.3 Portulaca five flowers 

 
QRD 452 EC 

0.16  18 Daisy flower  
22.1 

290  34 Daisy flower 
128   14.4 Marigold six leaves 

 
Safari 

8   95 Gerbera flower  
 

66.6 
8   66.8 Impatiens three leaves 
8  32.6 Marigold five leaves 
8  71.9 Rose five flowers 

 
Tristar 30 SG 

2.26  81.1 Marigold six leaves  
 
 
 

60.1 

3.39  74.3 Marigold six leaves 
8  36.8 Gerbera whole plants 

2.26 81.1 Marigold six leaves 
3.39  74.3 Marigold six leaves 
3.39 85.2 ornament leaves 

8 47.2 Marigold eight plants 
8 47.2 Marigold eight plants 

3.39  21.7 Portulaca five flowers 
3.39  47.8 Rose five flowers 
3.39  64.6 Ornament leaves 
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        Table A.2 Solution summary SAS output from linear programming 

Solution Summary 

Integer Optimal Solution 

Objective Value 59.75 

Phase 1 Iterations 11 

Phase 2 Iterations 9 

Phase 3 Iterations 23962 

Integer Iterations 8923 

Integer Solutions 23 

Initial Basic Feasible Variables 26 

Time Used (seconds) 3 

Number of Inversions 4596 

Epsilon 1.00E-08 

Infinity 1.797693E308 

Maximum Phase 1 Iterations 100 

Maximum Phase 2 Iterations 100 

Maximum Phase 3 Iterations 99999999 

Maximum Integer Iterations 10000000 

Time Limit (seconds) 120 
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   Table A.3 Variable summary SAS output from linear programming 

Variable Summary 

Col 
Variable 
Name Status Type Price Activity 

Reduced 
Cost 

1 X1-1 BINARY 6.98 1 1.12 

2 X1-2 BINARY 6.98 0 5.69 

3 X1-3 BINARY 6.98 0 1.12 

4 X1-4 BINARY 6.98 0 1.12 

5 X1-5 BINARY 6.98 0 1.12 

6 X1-6 BINARY 6.98 1 5.69 

7 X1-7 BINARY 6.98 0 1.12 

8 X10-1 BINARY 30 0 24.14 

9 X10-2 BINARY 30 0 28.71 

10 X10-3 BINARY 30 0 24.14 

11 X10-4 BINARY 30 0 24.14 

12 X10-5 BINARY 30 0 24.14 

13 X10-6 BINARY 30 0 28.71 

14 X10-7 BINARY 30 0 24.14 

15 X11-1 BINARY 5.86 0 0 

16 X11-2 BINARY 5.86 0 4.57 

17 X11-3 DEGEN BINARY 5.86 0 0 

18 X11-4 BINARY 5.86 0 0 

19 X11-5 BINARY 5.86 0 0 

20 X11-6 BINARY 5.86 0 4.57 

21 X11-7 BINARY 5.86 0 0 

22 X12-1 BINARY 7.5 0 1.64 

23 X12-2 BINARY 7.5 0 6.21 

24 X12-3 BINARY 7.5 0 1.64 

25 X12-4 BINARY 7.5 0 1.64 

26 X12-5 BINARY 7.5 0 1.64 

27 X12-6 BINARY 7.5 0 6.21 
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  Table A.3 Continued 

Variable Summary 

Col 
Variable 
Name Status      Type Price Activity 

Reduced 
Cost 

28 X12-7 BINARY 7.5 0 1.64 

29 X2-1 BINARY 17.88 0 12.02 

30 X2-2 BINARY 17.88 0 16.59 

31 X2-3 BINARY 17.88 0 12.02 

32 X2-4 BINARY 17.88 0 12.02 

33 X2-5 BINARY 17.88 0 12.02 

34 X2-6 BINARY 17.88 0 16.59 

35 X2-7 BINARY 17.88 0 12.02 

36 X3-1 BINARY 2.48 0 -3.38 

37 X3-2 BINARY 2.48 0 1.19 

38 X3-3 BINARY 2.48 0 -3.38 

39 X3-4 BINARY 2.48 0 -3.38 

40 X3-5 BINARY 2.48 0 -3.38 

41 X3-6 BINARY 2.48 0 1.19 

42 X3-7 BINARY 2.48 0 -3.38 

43 X4-1 BINARY 1.29 0 -4.57 

44 X4-2 DEGEN BINARY 1.29 0 0 

45 X4-3 BINARY 1.29 0 -4.57 

46 X4-4 BINARY 1.29 0 -4.57 

47 X4-5 BINARY 1.29 0 -4.57 

48 X4-6 DEGEN BINARY 1.29 0 0 

49 X4-7 BINARY 1.29 0 -4.57 

50 X5-1 BINARY 12.96 0 7.1 

51 X5-2 BINARY 12.96 0 11.67 

52 X5-3 BINARY 12.96 0 7.1 

53 X5-4 BINARY 12.96 0 7.1 

54 X5-5 BINARY 12.96 0 7.1 

55 X5-6 BINARY 12.96 0 11.67 

56 X5-7 BINARY 12.96 0 7.1 

57 X6-1 BINARY 26.72 0 20.86 
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  Table A.3 Continued 

Variable Summary 

Col Variable 
Name Status Type Price Activity 

Reduced 
Cost 

58 X6-2 BINARY 26.72 0 25.43 

59 X6-3 BINARY 26.72 0 20.86 

60 X6-4 BINARY 26.72 0 20.86 

61 X6-5 BINARY 26.72 0 20.86 

62 X6-6 BINARY 26.72 0 25.43 

63 X6-7 BINARY 26.72 0 20.86 

64 X7-1 BINARY 17.01 0 11.15 

65 X7-2 BINARY 17.01 0 15.72 

66 X7-3 BINARY 17.01 0 11.15 

67 X7-4 BINARY 17.01 0 11.15 

68 X7-5 BINARY 17.01 0 11.15 

69 X7-6 BINARY 17.01 0 15.72 

70 X7-7 BINARY 17.01 1 11.15 

71 X8-1 BINARY 12.95 0 7.09 

72 X8-2 BINARY 12.95 0 11.66 

73 X8-3 BINARY 12.95 1 7.09 

74 X8-4 BINARY 12.95 1 7.09 

75 X8-5 BINARY 12.95 0 7.09 

76 X8-6 BINARY 12.95 0 11.66 

77 X8-7 BINARY 12.95 0 7.09 

78 X9-1 DEGEN BINARY 1.44 0 0 

79 X9-2 BINARY 1.44 1 4.57 

80 X9-3 DEGEN BINARY 1.44 0 0 

81 X9-4 DEGEN BINARY 1.44 0 0 
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  Table A.3 Continued 

Variable Summary 

Col 
Variable 
Name Status Type Price Activity 

Reduced 
Cost 

82 X9-5 BASIC BINARY 1.44 1 0 

83 X9-6 BINARY 1.44 0 4.57 

84 X9-7 DEGEN BINARY 1.44 0 0 

85 mort1 BASIC SURPLUS 0 0.098 0 

86 mort2 BASIC SURPLUS 0 0.131 0 

87 mort3 BASIC SURPLUS 0 0.148 0 

88 mort4 BASIC SURPLUS 0 0.148 0 

89 mort5 BASIC SURPLUS 0 0.131 0 

90 mort6 BASIC SURPLUS 0 0.098 0 

91 mort7 BASIC SURPLUS 0 0.178 0 

92 pest11 DEGEN SLACK 0 0 0 

93 pest22 BASIC SLACK 0 2 0 

94 pest42 BASIC SLACK 0 2 0 

95 pest52 BASIC SLACK 0 2 0 

96 pest62 BASIC SLACK 0 2 0 

97 pest71 DEGEN SLACK 0 0 0 

98 pest72 DEGEN SLACK 0 0 0 

99 pest82 DEGEN SLACK 0 0 0 

100 pest92 SLACK 0 0 4.42 

101 pest102 BASIC SLACK 0 2 0 
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Table A.4 Constraint summary SAS output from linear programming 

Constraint Summary 

Constraint 
Name Type S/S Co Rh Activity 

Dual 
Activity 

1 cost OBJECTIVE . 0 59.75 0 

2 mort1 GE 85 0 0.598 

3 mort2 GE 86 0.5 0.631 0 

4 mort3 GE 87 0.5 0.648 0 

5 mort4 GE 88 0.5 0.648 0 

6 mort5 GE 89 0.5 0.631 0 

7 mort6 GE 90 0.5 0.598 0 

8 mort7 GE 91 0.5 0.678 0 

9 pest11 LE 92 2 2 0 

10 pest22 LE 93 2 0 0 

11 pest42 LE 94 2 0 0 

12 pest52 LE 95 2 0 0 

13 pest62 LE 96 2 0 0 

14 pest71 LE 97 1 1 0 

15 pest72 LE 98 0 0 0 

16 pest82 LE 99 2 2 0 

17 pest92 LE 100 2 2 -4.42 

18 pest102 LE 101 2 0 0 

19 week1 EQ . 1 1 5.86 

20 week2 EQ . 1 1 1.29 

21 week3 EQ . 1 1 5.86 

22 week4 EQ . 1 1 5.86 

23 week5 EQ . 1 1 5.86 

24 week6 EQ .. 1 1 1.29 

25 week7 EQ . 1 1 5.86 
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Table A.5 Sensitivity analysis of right hand side SAS output from linear programming 

RHS Range Analysis 

            Minimum Phi     Maximum Phi 

Row Rhs Leaving Objective Rhs Leaving Objective

mort1 -INFINITY . . 0.598 mort1 59.75 

mort2 INFINITY . . 0.631 mort2 59.75 

mort3 INFINITY . . 0.648 mort3 59.75 

mort4 INFINITY . . 0.648 mort4 59.75 

mort5 INFINITY . . 0.631 mort5 59.75 

mort6 INFINITY . . 0.598 mort6 59.75 

mort7 INFINITY . . 0.678 mort7 59.75 

pest11 2 pest11 59.75 INFINITY . . 

pest22 0 pest22 59.75 INFINITY . . 

pest42 0 pest42 59.75 INFINITY . . 

pest52 0 pest52 59.75 INFINITY . . 

pest62 0 pest62 59.75 INFINITY . . 

pest71 1 pest71 59.75 INFINITY . . 

pest72 0 pest72 59.75 INFINITY . . 

pest82 2 pest82 59.75 INFINITY . . 

pest92 2 X9-3 59.75 2 X11-3 59.75 

pest102 0 pest102 59.75 INFINITY . . 

week1 1 X11-3 59.75 1 X9-3 59.75 

week2 1 X4-2 59.75 2 X4-2 61.04 

week3 1 X11-3 59.75 2 X11-3 65.61 

week4 1 X11-3 59.75 1 X9-3 59.75 

week5 1 X11-3 59.75 1 X9-3 59.75 

week6 1 X4-6 59.75 2 X4-6 61.04 

week7 1 X11-3 59.75 1 X9-3 59.75 

 

 

 

 

 



109 
 

Table A.6 Sensitivity analysis of price range analysis SAS output from linear programming 

Price Range Analysis 
                    Minimum Phi                                     Maximum Phi 
Col  Variable Name         Price         Entering     Objective         Price       Entering       Objective  

1 X1-1 5.86 X1-1 58.63 INFINITY . INFINITY 

2 X1-2 1.29 X1-2 59.75 INFINITY . 59.75 

3 X1-3 5.86 X1-3 59.75 INFINITY . 59.75 

4 X1-4 5.86 X1-4 59.75 INFINITY . 59.75 

5 X1-5 5.86 X1-5 59.75 INFINITY . 59.75 

6 X1-6 1.29 X1-6 54.06 INFINITY . INFINITY 

7 X1-7 5.86 X1-7 59.75 INFINITY . 59.75 

8 X10-1 5.86 X10-1 59.75 INFINITY . 59.75 

9 X10-2 1.29 X10-2 59.75 INFINITY . 59.75 

10 X10-3 5.86 X10-3 59.75 INFINITY . 59.75 

11 X10-4 5.86 X10-4 59.75 INFINITY . 59.75 

12 X10-5 5.86 X10-5 59.75 INFINITY . 59.75 

13 X10-6 1.29 X10-6 59.75 INFINITY . 59.75 

14 X10-7 5.86 X10-7 59.75 INFINITY . 59.75 

15 X11-1 5.86 X11-1 59.75 INFINITY . 59.75 

16 X11-2 1.29 X11-2 59.75 INFINITY . 59.75 

17 X11-3 2.48 X3-1 59.75 5.86 X11-1 59.75 

18 X11-4 5.86 X11-4 59.75 INFINITY . 59.75 

19 X11-5 5.86 X11-5 59.75 INFINITY . 59.75 

20 X11-6 1.29 X11-6 59.75 INFINITY . 59.75 

21 X11-7 5.86 X11-7 59.75 INFINITY . 59.75 

22 X12-1 5.86 X12-1 59.75 INFINITY . 59.75 

23 X12-2 1.29 X12-2 59.75 INFINITY . 59.75 

24 X12-3 5.86 X12-3 59.75 INFINITY . 59.75 

25 X12-4 5.86 X12-4 59.75 INFINITY . 59.75 

26 X12-5 5.86 X12-5 59.75 INFINITY . 59.75 

27 X12-6 1.29 X12-6 59.75 INFINITY . 59.75 
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Table A.6 Continued 

Price Range Analysis 
Minimum Phi                                     Maximum Phi 

  Col  Variable Name     Price            Entering       Objective               Price           Entering      Objective 
28 X12-7 5.86 X12-7 59.75 INFINITY . 59.75 

29 X2-1 5.86 X2-1 59.75 INFINITY . 59.75 

30 X2-2 1.29 X2-2 59.75 INFINITY . 59.75 

31 X2-3 5.86 X2-3 59.75 INFINITY . 59.75 

32 X2-4 5.86 X2-4 59.75 INFINITY . 59.75 

33 X2-5 5.86 X2-5 59.75 INFINITY . 59.75 

34 X2-6 1.29 X2-6 59.75 INFINITY . 59.75 

35 X2-7 5.86 X2-7 59.75 INFINITY . 59.75 

36 X3-1 -INFINITY . 59.75 5.86 X3-1 59.75 

37 X3-2 1.29 X3-2 59.75 INFINITY . 59.75 

38 X3-3 -INFINITY . 59.75 5.86 X3-3 59.75 

39 X3-4 -INFINITY . 59.75 5.86 X3-4 59.75 

40 X3-5 -INFINITY . 59.75 5.86 X3-5 59.75 

41 X3-6 1.29 X3-6 59.75 INFINITY . 59.75 

42 X3-7 -INFINITY . 59.75 5.86 X3-7 59.75 

43 X4-1 -INFINITY . 59.75 5.86 X4-1 59.75 

44 X4-2 -INFINITY . 59.75 2.48 X3-2 59.75 

45 X4-3 -INFINITY . 59.75 5.86 X4-3 59.75 

46 X4-4 -INFINITY . 59.75 5.86 X4-4 59.75 

47 X4-5 -INFINITY . 59.75 5.86 X4-5 59.75 

48 X4-6 -INFINITY . 59.75 2.48 X3-6 59.75 

49 X4-7 -INFINITY . 59.75 5.86 X4-7 59.75 

50 X5-1 5.86 X5-1 59.75 INFINITY . 59.75 

51 X5-2 1.29 X5-2 59.75 INFINITY . 59.75 

52 X5-3 5.86 X5-3 59.75 INFINITY . 59.75 

53 X5-4 5.86 X5-4 59.75 INFINITY . 59.75 

54 X5-5 5.86 X5-5 59.75 INFINITY . 59.75 
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Table A.6 Continued 

Price Range Analysis 
Minimum Phi                                     Maximum Phi 

Col    Variable Name  Price         Entering    Objective            Price      Entering      Objective 
55 X5-6 1.29 X5-6 59.75 INFINITY . 59.75 

56 X5-7 5.86 X5-7 59.75 INFINITY . 59.75 

57 X6-1 5.86 X6-1 59.75 INFINITY . 59.75 

58 X6-2 1.29 X6-2 59.75 INFINITY . 59.75 

59 X6-3 5.86 X6-3 59.75 INFINITY . 59.75 

60 X6-4 5.86 X6-4 59.75 INFINITY . 59.75 

61 X6-5 5.86 X6-5 59.75 INFINITY . 59.75 

62 X6-6 1.29 X6-6 59.75 INFINITY . 59.75 

63 X6-7 5.86 X6-7 59.75 INFINITY . 59.75 

64 X7-1 5.86 X7-1 59.75 INFINITY . 59.75 

65 X7-2 1.29 X7-2 59.75 INFINITY . 59.75 

66 X7-3 5.86 X7-3 59.75 INFINITY . 59.75 

67 X7-4 5.86 X7-4 59.75 INFINITY . 59.75 

68 X7-5 5.86 X7-5 59.75 INFINITY . 59.75 

69 X7-6 1.29 X7-6 59.75 INFINITY . 59.75 

70 X7-7 5.86 X7-7 48.6 INFINITY . INFINITY 

71 X8-1 5.86 X8-1 59.75 INFINITY . 59.75 

72 X8-2 1.29 X8-2 59.75 INFINITY . 59.75 

73 X8-3 5.86 X8-3 52.66 INFINITY . INFINITY 

74 X8-4 5.86 X8-4 52.66 INFINITY . INFINITY 

75 X8-5 5.86 X8-5 59.75 INFINITY . 59.75 

76 X8-6 1.29 X8-6 59.75 INFINITY . 59.75 

77 X8-7 5.86 X8-7 59.75 INFINITY . 59.75 

78 X9-1 -1.94 X3-1 59.75 1.44 X11-1 59.75 

79 X9-2 -3.13 X9-2 55.18 INFINITY . INFINITY 

80 X9-3 1.44 X11-1 59.75 4.82 X3-1 59.75 

81 X9-4 -1.94 X3-4 59.75 1.44 X11-4 59.75 
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Table A.6 Continued 

Price Range Analysis 
                                       Minimum Phi                                     Maximum Phi 
Col  Variable Name      Price            Entering           Objective           Price         Entering      Objective 

82 X9-5 -1.94 X3-5 56.37 1.44 X11-5 59.75 

83 X9-6 -3.13 X9-6 59.75 INFINITY . 59.75 

84 X9-7 -1.94 X3-7 59.75 1.44 X11-7 59.75 

85 mort1 -17.2449 X3-1 58.06 0 X11-1 59.75 

86 mort2 -17.6448 X9-2 57.4385 20.04386 X11-2 62.37575 

87 mort3 0 X11-7 59.75 6.9404517 X3-1 60.77719 

88 mort4 -17.2449 X3-4 57.1978 0 X11-4 59.75 

89 mort5 -17.2449 X3-5 57.4909 0 X11-5 59.75 

90 mort6 -17.6448 X9-6 58.0208 20.04386 X11-6 61.7143 

91 mort7 -17.2449 X3-7 56.6804 0 X11-7 59.75 

92 pest11 -INFINITY . 59.75 1.12 X1-3 59.75 

93 pest22 -INFINITY . INFINITY 12.02 X2-1 83.79 

94 pest42 -1.19 X3-2 57.37 INFINITY . INFINITY

95 pest52 -INFINITY . INFINITY 7.1 X5-3 73.95 

96 pest62 -INFINITY . INFINITY 20.86 X6-1 101.47 

97 pest71 -INFINITY . 59.75 11.15 X7-7 59.75 

98 pest72 -INFINITY . 59.75 11.15 X7-1 59.75 

99 pest82 -INFINITY . 59.75 7.09 X8-3 59.75 

100 pest92 -4.42 pest92 59.75 INFINITY . 59.75 

101 pest102 -INFINITY . INFINITY 24.14 X10-1 108.03 
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