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ABSTRACT

This thesis investigates the adhesion, friction and wear behaviour of diamond-like 

carbon (DLC) coatings and boron carbide (B4C) coatings. Both temperature and 

environmental stability of these coatings were investigated. Pin-on-disc tests against a 

319 A1 alloy revealed that tungsten carbide (WC) doped hydrogenated DLC coatings 

displayed lower coefficient of friction (COF) and wear rates than monolithic 

nonhydrogenated DLC coatings. WC-DLC coatings with a top layer of DLC 

(DLC/WC-DLC) withstood higher temperatures than WC-DLC coatings. Aluminum 

adhesion with the WC-DLC and DLC/WC-DLC coatings was observed at 300 and 

350 °C, respectively. B4C coatings exhibited higher COF and more aluminum adhesion 

under all test conditions. While testing under the N2 atmosphere reduced COF values for 

all the coatings, the humidity level o f the test environment exerted various influence on 

each coating. The mechanisms o f adhesion, friction and wear o f the tribosystems were 

discussed based on the A1 alloy-coating interactions under specific test conditions.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to Dr. A. T. Alpas for his supervision 

and support throughout my study at the University of Windsor. Dr. E. Konca provided 

invaluable perspectives to wear tests and Dr. X. Meng-Burany is acknowledged for the 

FIB characterization of DLC coatings. I am grateful to all my colleagues in the Tribology 

of Lightweight Materials group for their opinions, support and friendship. In particular, I 

thank A. Abougharam for his help with many experiments at the GM Global Research & 

Development Center.

Dr. Y.-T. Cheng, Dr. X. Perry, Dr. J. Dasch as well as Dr. M. Lukitsch of GM are 

appreciated for their precious discussion. Dr. M. Lukitsch is also acknowledged for his 

support for surface mechanical characterization.

Mr. J. Barvinek of IonBond Inc. Cambridge ON is greatly appreciated for supplying 

the samples.

Finally, the financial support from NSERC, General Motors of Canada is greatly 

appreciated. I also acknowledge the scholarship provided by the University of Windsor 

(International Graduate Student Scholarship).

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



TABLE OF CONTENTS

ABSTRACT................................................................................................................................. iii

ACKNOWLEDGEMENTS........................................................................................................iv

LIST OF ABBREVIATIONS.................................................................................................... ix

LIST OF TABLES........................................................................................................................x

LIST OF FIGURES.....................................................................................................................xi

CHAPTER 1 INTRODUCTION................................................................................................ 1

1.1. Driving Force for Dry Machining and Manufacturing.................................................1
1.2. Dry Machining of Aluminum and Associated Problems.............................................2
1.3 Substitution of Coatings for Metal Working Fluids to Reduce the Material 
Adhesion to Tool Surfaces.......................................................................................................3
1.4 The Need for Current Study.............................................................................................. 5
1.5 Scope and Objectives.........................................................................................................6

1.5.1 Adhesion of A1 to the Coatings................................................................................. 8

1.5.2 Tribological Behaviour of DLC Coatings and B4C Coating against 319 A1 8

1. 6  Thesis Outline.....................................................................................................................9

CHAPTER 2 LITERATURE SURVEY.................................................................................. 10

2.1 Review of the Literature on the Tribological Behaviour o f the Boron Carbide 
Coatings................................................................................................................ ....................11

2.1.1 Introduction to Boron Carbide and Boron Carbide (B4 C) Coatings.................. 11
2.1.2 Deposition o f Boron Carbide Coatings.................................................................. 17
2.1.3 Self-Lubricity o f Boron Carbide Coatings: Effect o f Relative Humidity 22

2.1.3.1 Crystal Chemistry of Boric A cid .................................................. ................ 22
2.1.3.2 Self-lubrication o f Boron Containing Surfaces.............................................24

2.1.4 Study on the Abrasiveness o f Boron Carbide Coatings...................................... 28
2.2 Review of the Literature on the Tribological Behaviour o f the Diamond-like 
Carbon Coatings......................................................................................................................37

2.2.1 Hybridisation States of Carbon.............................................................................37
2.2.2 Introduction to DLC Coatings................................................................................38
2.2.3 Transfer Layer Formation and Friction-induced Graphitization........................ 42
to the friction-induced graphitization o f the coating......................................................53
2.2.4 Effect of Hydrogen Content o f the DLC Coatings............................ ................ 53
2.2.5 Effect of Test Environment on the Tribological Behaviour o f DLC Coatings 57
2.2.6 Thermal Stability and the Effect of Temperature on the Tribological Behaviour 
o f DLC Coatings.................................................................................................................65

V

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



2.2.7 Effect of Doping and Alloying................................................................................71
2.3 Survey Summary of the Literature.................................................................................75

CHAPTER 3 EXPERIMENTAL PROCEDURES.................................................................79

3.1 Characterization of Test Materials.................................................................................79
3.1.1 Thickness Measurements o f Coating Using Radical Sectioning Method 79
3.1.2 Mechanical Property Measurement Tools............................................................ 81

3.1.2.1 Rockwell Hardness Measurements.................................................................81
3.1.2.2 Vickers Micro Hardness Measurements...................................  82
3.1.2.3 Nanoindentation of Coatings......................................................  82

3.1.3 Structural Characterization M ethods..................................................................... 85
3.1.3.1 Sample Preparation by Cryogenic Fracture Method................  85
3.1.3.2 Sample Preparation by Focused Ion Beam .........................................  85
3.1.3.3 X-ray Diffraction........................................................................... 87
3.1.3.4 Raman Spectroscopy....................................................................  87

3.1.4 Surface Profilometry................................................................................................ 8 8

3.1.5 Elastic Recoil Detection...........................................................................................89
3.2 Description of the Coatings and the Substrate M aterial............................................. 89

3.2.1 M2 Steel Substrates....................................................................    89
3.2.2 Hardness Response o f the Coatings over Varying Contact Severity.................91
3.2.3 Boron Carbide Coating........................................................................  95
3.2.4 Diamond-like Carbon Coatings..............................................................................97

3.2.4.1 WC-DLC Coatings............................................................................................97
3.2.4.2 DLC/WC-DLC Coating................................................................................. 100

3.3 Description of 319 A1 Alloy Counterface................................................................... 104
3.4 Description of 52100 Steel Counterface..................................................................... 104
3.5 Pin-on-disc Tribometer......................................................................................... 107
3.6 Test Conditions......................................................................................................  109

3.6.1 Loading Conditions........................................................................................ 109
3.6.2 Control of Test Temperature................................................................................. 109
3.6.3 Control o f Test Atmosphere................................................................. 109

3.7 Evaluation Tools and Procedures........................................................................  110
3.7.1 Optical and Scanning Electron Microscopy, Energy Dispersive Spectroscopy 
 1 1 0

3.7.2 Quantification o f the Amount of Adhesion......................................................... 110
3.7.2.1 Area Fraction of the Wear Track Covered by Adhered M aterial 112
3.7.2.2 Thickness of the Adhered Material.............................................................114

3.7.3 Measurement o f Wear Rates................................................................................. 118

vi

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



CHAPTER 4 TRIBOLOGICAL BEHAVIOUR OF B4C COATINGS AGAINST 319 AL

ALLOY.......................................................................................................................................121

4.1 Pin-on-disc Tests in Ambient Air against 319 A1......................................................122
4.2 Pin-on-disc Tests at Elevated Temperatures against 319 A1.....................................129
4.3 Pin-on-disc Tests Against 52100 Steel....................................................................... 137
4.4 Pin-on-disc Tests in Varied Environments against 319 A1....................  142
4.5 Discussion....................................................................................................................... 148

4.5.1 B4C Coating Wear Mechanism (against 319 Al) and A1 Adhesion onto B4C at 
Room Temperature.......................................................................................................... 148
4.5.2 Effect of Test Temperature on the Tribology and Material Transfer of 319 
A1-B4C Coating System...................................................................................................151
4.5.3 Comparison of the Friction Behaviour o f the 319 Al -  B4C Pair and 52100 
Steel -  B4C pair..............................................................................................  154
4.5.4 Effect of Test Environment on the Friction and Material Transfer o f 319 
A1-B4C Coating System...................................................................................................155

4.6 Summary and Remarks..................................................................................................157

CHAPTER 5 TRIBOLOGICAL BEHAVIOUR OF DLC COATINGS AGAINST 319

AL ALLOY................................................................................................................................159

5.1 Pin-on-disc Tests in Ambient Air at 51% R H ............................................................160
5.2 Pin-on-disc Tests at Elevated Temperatures.............................................  163
5.3 Hardness and Elastic Modulus of Tested Samples....................................................176
5.4 Pin-on-disc Tests in Low Humidity (14% RH) and Nitrogen Environments 181
5.5 Discussion....................................................................................................................... 183

5.5.1 Transfer of 319 Al onto DLC Coatings.............................................  183
5.5.2 Effect o f Transfer Layer Formation: Wear Mechanisms DLC Coatings against 
319 Al in Ambient Air (51% RH)................................................................. 187
5.5.3 Effect of Test Temperature on the Tribological Behaviour of DLC Coatings 
............................................................................................................................................. 191
5.5.4 Effect of Test Environment on the Tribological Behaviour o f DLC Coatings 
............................................................................................................................................. 196

5.6 Summary and Remarks..................................................................................................197

CHAPTER 6  CONCLUSIONS.............................................................................................. 199

6.1 Coating Structure........................................................................................................... 199
6.2 Transfer of 319 Al to Various Coating Surfaces....................................................... 199
6.3 COF of the B4C Coatings..............................................................................................200

6.3.1 Against 319 A l........................................................................................................200
6.3.2 Against 52100 Steel............................................................................................... 201

vii

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



6.4 Tribological Behaviour of the DLC Coatings............................................................ 201
6.5 Industrial Significance of Conclusions: Practical Conclusion................................. 203
6 . 6  Suggestions for Future W ork....................................................................................... 203

APPENDICES.......................................................................................................................... 207

A 1 Friction of Coefficient C urves.................................................................................... 207
A 2 Ashby’s Method of Flash Temperature Calculation................................................ 218

REFERENCES......................................................................................................................... 225

VITA AUCTORIS....................................................................................................................238

viii

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



LIST OF ABBREVIATIONS

DLC Diamond-Like Carbon
H-DLC Hydrogenated DLC
NH-DLC Non-Hydrogenated DLC
MWF Metal Working Fluid
HSS High Speed Steel
PVD Physical Vapour Deposition
CVD Chemical Vapour Deposition
PACVD Plasma Assisted CVD
PECVD Plasma Enhanced CVD
PLD Pulsed Laser Deposition
SEM Scanning Electron Microscopy
ERDA Elastic Recoil Detection Analysis
RH Relative Humidity
Ra Surface Roughness
Rc Hardness in Rockwell C Scale
XRD X-Ray Diffraction
COF Coefficient of Friction
VHN Vickers Hardness Number

ix

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



LIST OF TABLES

Table 2. 1 Properties of boron carbide compiled by Sezer and Brand [16]........................ 15
Table 2. 2 Mechanical properties of boron carbide coatings................................................ 15
Table 2. 3 Comparison of experimental and modeling data for the Al/NH-DLC coating
pair tested in H2 , N2 and air with 40% RH [100].................................................................... 64
Table 2. 4 Average friction coefficient and total wear values for the various 
coating/counterface combinations studied by Gilmore and Hauert [114]........................... 72

Table 3. 1 Nominal chemical composition (wt.% of the M2 steel substrates....................90
Table 3. 2 Coating properties...............................................................................  105
Table 3. 3 Nominal chemical composition (wt%) of the 319 Al alloy.............................106

Table A 2. 1 a) Nomenclature, and b) expressions and assumptions for the equivalent heat
diffusion distances.....................................................................................................................223
Table A 2. 2 The material properties used to calculate the bulk and flash temperatures.
..................................................................................................................................................... 224
Table A 2. 3 The measured steady-state COF and radius of nominal contact area values in 
ambient air (25 °C, 51% RH).................................................................................  224

X

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



LIST OF FIGURES

Figure 1. 1 Uncoated HSS drill after dry drilling of 319 Al alloy.................... 4
Figure 1. 2 Ranking of various coatings in terms of amount of aluminum adhesion onto 
the coating [7].......................................................................................................... 7

Figure 2. 1 Phase diagram for the B-C system by Elliott [10]...............................................12
Figure 2. 2 The rhombohedral crystal structure o f boron carbides [12]...............................13
Figure 2. 3 Schematic diagram of the PACVD system used by Tsou et al. [30]................ 18
Figure 2. 4 The friction behaviour of B4C coatings (with various CH4  ratios in the
processing gas) dry sliding against 52100 steel [19].............................................................. 21
Figure 2. 5 Layered triclinic crystal structure of H3BO3 [32]................................................23
Figure 2. 6  Raman spectra of as-received and annealed B4C [40]........................................27
Figure 2. 7 COF curves of B4C coating sliding against steel balls at different relative
humidity levels [37].................................................................................................................... 27
Figure 2. 8  Average abrasive rate vs. number of ball-on-disc cycles for the 52100 steel
ball against B4C coating [42].................................................................................. 30
Figure 2. 9 Average abrasion rate as a function of number of cycles for different loads
[43]................................................................................................................................................ 32
Figure 2. 10 SEM images o f the a) as deposited B4C surface and b) heavily worn surface
after testing at 100 g load for 500 cycles against 52100 steel [43]....................................... 33
Figure 2. 11 Average asperity radius of curvature for the two coating roughness values as
a function of sliding circles [46]................................................................................................36
Figure 2. 12 The sp3, sp2 and sp1 bonding of carbon [48]......................................................39
Figure 2. 13 Ternary phase diagram of bonding in amorphous carbon-hydrogen alloys
[48]................................................................................................................................................ 39
Figure 2. 14 Variation of the coefficient o f friction as a function of number of wear cycles
[71]................................................................................................................................................ 45
Figure 2. 15 Typical Raman spectra taken from a) as-deposited DLC film and b) wear
track region after testing [71].................................................................................................... 46
Figure 2. 16 In situ Raman spectra versus sliding cycles for DLN coating at low contact
stress (0.7 GPa) in -40%  RH air [76]....................................................................................... 50
Figure 2. 17 Micro-Raman spectra of the worn and unworn regions o f the
non-hydrogenated DLC that was run against the 319 Al alloy in hydrogen [79]..............52
Figure 2. 18 Relationship between friction coefficients o f DLC films and
hydrogen-to-carbon ratios of various source gases used to deposit the films [82].............55
Figure 2. 19 Summary of frictional behaviour of NH-DLC (open diamonds) and H-DLC 
(full squares) as a function of water vapour pressure [93].....................................................61

xi

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Figure 2. 20 Schematic o f the compression-spin test used by Reisel et al. [113]...............70

Figure 3. 1 a) Side view of the radical sectioning configuration; b) Top view of the
resulting worn crater of the DLC/WC-DLC coating.............................................................. 80
Figure 3. 2 The indentation load-displacement curve for the as-received B4C coating.... 83 
Figure 3. 3 Schematic drawing of the cutting scheme for cryogenic sample creation: a)
Isometric view; b) Right view....................................................................................................8 6

Figure 3. 4 Optical microstructure o f M2 steel....................................................................... 90
Figure 3. 5 Measured hardness plotted against relative indentation depth (the ratio of 
maximum indentation depth to the coating thickness) for a set of micro-macro indentation
results for a 20-pm-thick nickel coating on copper substrate [131]..................................... 93
Figure 3. 6  The hardness o f the studied coatings plotted against the relative indentation
depth (RID)...................................................................................................................................94
Figure 3. 7 XRD pattern of the B4 C coating............................................................................96
Figure 3. 8  Cross section o f the B4C coating........................................................................... 98
Figure 3. 9 The Raman spectra o f the as-deposited WC-DLC coating and DLC/WC-DLC
coating...........................................................................................................................................99
Figure 3 .10 XRD pattern of the WC-DLC coating............................................................... 99
Figure 3.11 Schematic drawing of WC-DLC coating structure (not to scale)................. 101
Figure 3. 12 a) Plane view SEM image demonstrating the layered structure of 
DLC-WC-DLC coating; b) FIB cross-section (courtesy of Dr. Meng-Burany) o f the
DLC/WC-DLC coating.............................................................................................................102
Figure 3.13 EDS spectrum obtained from the whole area shown in Figure 3. 12 a) 103
Figure 3. 14 Schematic drawing of DLC/WC-DLC coating structure.............................. 105
Figure 3. 15 The optical image o f the micro structure o f the 319 Al pin material 106
Figure 3. 16 The high temperature tribometer (CSM, Switzerlanf) at the University of
Windsor.......................................................................................................................................108
Figure 3. 17 A typical screen of the pin-on-disc test setup procedure................................108
Figure 3. 18 Schematic drawing o f the locations where surface profile pictures were taken.
......................................................................................................................................................I l l
Figure 3. 19 Typical surface profile of the wear track on B4 C coating after tested at 
120 °C against 319 Al. a) Spectral colour representation of the profile; b) A gray scale
version of a ) ............................................................................................................................... 113
Figure 3. 20 A two dimensional surface profile of an evaluation length L  ................116
Figure 3.21 a) Bearing ratio curves of the unworn B4 C coating and B4C coating tested at
120 °C; b) Truncation o f a) as indicated by the dashed rectangle.......................................117
Figure 3. 22 a) The surface and b) the cross-sectional profiles o f a region of the wear 
track on the WC-DLC coating tested against 319 Al at 120°C.......................... 119

xii

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Figure 4. 1 COF curve o f the B4 C coatings against 319 Al as a function o f number of 
revolutions tested at room temperature (25 °C) in ambient air (51% RH) for 104

revolutions.................................................................................................................................. 123
Figure 4. 2 a) Secondary electron SEM image o f a region of the wear track o f the B4C 
coating tested against 319 Al in ambient air (51% RH) for 104 revolutions; b) An 
enlargement of the framed region in a)................................................................................ 126
c) Backscattered SEM image of the same region in a)...................................................... 127
d) EDS spectrum of the area indicated by the frame in c), which shows the elements in 
the substrate material; e) EDS spectrum of the adhered material as marked by the frame
in a), which is oxidized aluminum.........................................................................  126
Figure 4. 3 Wear debris collected after tested against 319 Al in ambient air (51% RH) for 
104 revolutions. Two kinds of morphology were observed (plate-wedge like (a) and small 
round particles (b)). The EDS (c) spectrum of the debris showed that they consisted of
oxidized aluminum.................................................................................................................... 127
Figure 4. 4 a) Secondary electron SEM image o f a 319 Al pin tip tested in ambient air 
(51% RH) for 104 revolutions. EDS spectra o f regions labelled as 1 (b)) and 2 (c)) are
also presented.............................................................................................................................128
Figure 4. 5 Secondary electron SEM image of a region of the wear track o f the B4 C
coating tested against 319 Al at room temperature (51% RH) for 103 revolutions 130
Figure 4. 6  a) COF curves o f the B4C coatings against 319 Al as a function o f number of 
revolutions at different temperatures; b) Mean COF values calculated from the curves
shown in a) for different test temperatures.............................................................................131
Figure 4. 7 Secondary electron SEM image of a region of the wear track o f the B4C
coating tested against 319 Al at 120 °C for 103 revolutions................................................ 133
Figure 4 . 8 Secondary electron SEM image of a region of the wear track o f the B4C
coating tested against 319 Al at 300 °C for 103 revolutions................................................ 133
Figure 4. 9 3-D surface profile images o f B4 C coatings: a) Unworn coating; b) Tested at
25 °C; c) Tested at 120 °C; d) Tested at 300 °C....................................................................134
Figure 4. 10 Effect of test temperature on the percentage o f the wear tracks on B4C
coatings covered by aluminum................................................................................................135
Figure 4. 11 The bearing ratio curves o f the sampling region used to measure the amount
of aluminum coverage at different test temperatures........................................................... 135
Figure 4. 12 Hardness and elastic modulus plotted as a function of test temperature.... 136 
Figure 4. 13 SEM cross-sectional image of the B4C coating after annealing at 300 °C for
90 min. A columnar structure was revealed........................................................................... 138
Figure 4. 14 EDS line scan of a) as-received and b) annealed boron carbide coating.... 139 
Figure 4. 15 a) COF curves of the B4C coatings against 52100 steel as a function of 
number of revolutions at different temperatures; b) Mean COF values calculated from the 
curves shown in a) for different test temperatures................................................................ 140

xiii

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Figure 4. 16 Comparison of mean COF values o f B4 C coatings sliding against 319 Al and
52100 steel at different test temperatures............................................................................... 141
Figure 4. 17 COF curves of the B4C coatings against 319 Al as a function o f number of
revolutions in different test atmospheres................................................................................143
Figure 4. 18 SEM image of a region of the wear track of the B4C coating tested against
319 Al at 14.4% RH for 103 revolutions..............................................................  144
Figure 4. 19 SEM image of a region o f the wear track o f the B4C coating tested against
319 Al in N2 for 103 revolutions.............................................................................................. 145
Figure 4. 20 3-D surface profile images of B4C coatings: a) Unworn coating; b) Tested at
51% RH; c) Tested at 14.4% RH; d) Tested in nitrogen....................................  146
Figure 4. 21 The percentage of the wear tracks on B4C coatings covered by aluminum as
a function of different test environments................................................................................147
Figure 4. 22 The bearing ratio curves of the sampling region used to measure the amount
of aluminum coverage in different test environments...................................................147
Figure 4. 23 Ranking of the coatings according to amount o f aluminum adhesion. The
results on materials other than B4C are from [7 ]...........................................................152

Figure 5. 1 COF curves for the WC-DLC and DLC/WC-DLC coatings tested in ambient
air at 51% RH.............................................................................................................................161
Figure 5. 2 a) The secondary SEM image of the wear track on the WC-DLC coating 
against 319 Al after 104 revolutions o f test at room temperature and 51% RH; b) 3-D
surface profile image of the same wear track........................................................................ 162
Figure 5. 3 a) SEM image of the 319 Al pin tip after test at room temperature under 51% 
RH for 104  revolutions against WC-DLC coating; b) EDS spectrum of the location
indicated in a)............................................................................................................................. 164
Figure 5. 4 a) The secondary SEM image of the wear track on the DLC/WC-DLC coating 
against 319 Al after 104 revolutions o f test at room temperature and 51% RH; b) 3-D
surface profile image of the same wear track.........................................................................165
Figure 5. 5 a) SEM image of the 319 Al pin tip after test at room temperature under 51% 
RH for 104  revolutions against DLC/WC-DLC coating; b) EDS spectrum of the location
indicated in a ).............................................................................................................................166
Figure 5. 6  COF curves of the WC-DLC coatings against 319 Al as a function of number
of revolutions at different temperatures..................................................................................168
Figure 5. 7 a) The secondary electron SEM image of a section of the wear track o f the 
WC-DLC coating tested at 300 °C; b) The back scattered electron SEM image of the
same region;............................................................................................................................... 169
c) The EDS spectrum of the light spot indicated in a); d) 3-D surface profile image of the 
same wear track..........................................................................................................................172

xiv

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Figure 5. 8  The Raman spectra of the as received WC-DLC coating and the region within
the wear track on the WC-DLC coating after tested at 300 °C........................................... 171
Figure 5. 9 COF curves of the DLC/WC-DLC coatings against 319 Al as a function of
number o f revolutions at different temperatures................................................................... 173
Figure 5 .10 The wear rates of DLC based coatings as a function of test temperature.. 173 
Figure 5. 11 a) The secondary electron SEM image o f a section of the wear track of the 
DLC/WC-DLC coating tested at 350 °C; b) The back scattered electron SEM image of
the same region.........................................................................................................................174
c)The EDS spectrum of the location indicated in a); d) 3-D surface profile of the same
wear track....................................................... 177
Figure 5. 12 a) SEM image of the 319 Al pin tip after test at 350 °C for 103 revolutions
against DLC/WC-DLC coating; b) EDS spectrum of the location indicated in a ) 177
Figure 5. 13 The Raman spectra of the as received DLC/WC-DLC coating and the wear
track on the DLC/WC-DLC coating after tested at 350 0 C................................................ 178
Figure 5. 14 Load-displacement curves recorded during Nanoindentation tests o f a)
WC-DLC and b) DLC/WC-DLC coatings after testing at elevated temperatures 179
Figure 5. 15 The a) Hardness and b) Elastic modulus of the WC-DLC coatings and
DLC/WC-DLC coatings as a function o f test temperature.................................................. 180
Figure 5. 16 COF curves o f the WC-DLC coatings against 319 Al as a function of
number o f revolutions at different test atmospheres...........................................  182
Figure 5. 17 COF curves of the DLC/WC-DLC coatings against 319 Al as a function of
number o f revolutions in different test atmospheres.............................................................182
Figure 5.18 Section of the wear track on the WC-DLC coating after tested against 319 Al
a) in air with 14% RH and b) in N2 .........................................................................................184
Figure 5. 19 Section of the wear track on the DLC/WC-DLC coating after tested against
319 Al a) in air with 14% RH and b) in N2 ............................................................................185
Figure 5. 20 Ranking of various coatings according to the amount of Al adhesion onto the
wear tracks in ambient a ir........................................................................................................ 186
Figure 5. 21 Back scattered SEM images o f the 319 Al pin tips tested against a) WC-DLC 
and b) DLC/WC-DLC coatings at room temperature under 51% RH for 104  revolutions
......................................................................................................................................................190
Figure 5. 22 Comparison of COF values o f various coatings during dry sliding against a
319 Al alloy at different test temperatures.............................................................................193
Figure 5. 23 Wear rates of DLC coatings as a function o f test temperature. The results on 
H-DLC andNH-DLC are from [111] and [109] respectively............................................. 193

Figure A 1. 1 The COF curves between the B4C coating and a 319 Al alloy during sliding 
in ambient laboratory air (25 °C, 51% RH). a) Up to 10000 cycles of sliding; b) First 
1000 cycles shown in a)........................................................................................................... 207

XV

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Figure A 1. 2 The COF curves between the B4C coating and a 319 Al alloy during sliding
at 120 ° C .................................................................................................................................... 208
Figure A 1. 3 The COF curves between the B4C coating and a 319 Al alloy during sliding
at 300 ° C .................................................................................................................................... 208
Figure A 1. 4 The COF curve between the B4C coating and a 319 Al alloy during sliding
at 25 °C under 14% RH............................................................................................................ 209
Figure A 1. 5 The COF curves between the B4C coating and a 319 Al alloy during sliding
in N2 ............................................................................................................................................ 209
Figure A 1. 6  The COF curves between the B4C coating and 52100 steel during sliding in
ambient laboratory air (25 °C, 51% RH).................................  210
Figure A 1. 7 The COF curves between the B4C coating and a 319 Al alloy during sliding
at 120 ° C .................................................................................................................................... 210
Figure A 1. 8  The COF curves between the B4C coating and a 319 Al alloy during sliding
at 300 ° C .................................................................................................................................... 211
Figure A 1. 9 The COF curves between the WC-DLC coating and a 319 Al alloy during 
sliding in ambient laboratory air (25 °C, 51% RH). a) up to 10000 cycles of sliding; b)
First 1000 cycles shown in a)................................................................................  212
Figure A 1. 10 The COF curves between the WC-DLC coating and a 319 Al alloy during
sliding at 120 °C...................................................................................................... 213
Figure A l . l l  The COF curves between the WC-DLC coating and a 319 Al alloy during
sliding at 300 °C........................................................................................................................213
Figure A 1. 12 The COF curve between the WC-DLC coating and a 319 Al alloy during
sliding under 14% RH............................................................................................  214
Figure A 1. 13 The COF curves between the WC-DLC coating and a 319 Al alloy during
sliding in N 2 ............................................................................................................................... 214
Figure A 1. 14 The COF curves between the DLC/WC-DLC coating and a 319 Al alloy
during sliding in ambient laboratory air (25 °C, 51% RH)................................................. 215
Figure A 1. 15 The COF curves between the DLC/WC-DLC coating and a 319 Al alloy
during sliding at 120 °C ...........................................................................................................215
Figure A 1. 16 The COF curves between the DLC/WC-DLC coating and a 319 Al alloy
during sliding at 300 °C ........................................................................................................... 216
Figure A 1. 17 The COF curve between the DLC/WC-DLC coating and a 319 Al alloy
during sliding at 350 °C ........................................................................................................... 216
Figure A 1. 18 The COF curve between the DLC/WC-DLC coating and a 319 Al alloy
during sliding under 14% RH..................................................................................................217
Figure A 1. 19 The COF curves between the DLC/WC-DLC coating and a 319 Al alloy
during sliding in N2 ..................................................................................................................217

Figure A 2. 1 A typical pin-on-disc configuration [147]....................................................219

xvi

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



CHAPTER 1 INTRODUCTION

Many methods have been taken into consideration in order to accomplish the goal of 

dry machining of aluminum alloys; among them is the development o f coatings that can 

be applied to the tool surfaces in order to reduce aluminum adhesion. Coatings that 

withstand high temperature and maintain their frictional stability in various environments 

are required for this purpose. This chapter briefly describes the driving force behind the 

current research and presents the need to better characterize promising tribological 

coatings such as B4C and DLC.

1.1. Driving Force for Dry Machining and Manufacturing

The growing magnitude of environmental issues has prompted the reduction and

eventual elimination o f metal working fluids (MWF) in the manufacturing industry—an 

aim reinforced by anticipated government regulations and potential economical benefits. 

In the United States alone, the National Institute for Occupational Safety and Health 

(NIOSH) recommends that occupational exposures to cutting fluid aerosols be limited to 

0.5 mg/m3—a marked departure from the current standard value of 5 mg/m3 [1]. This 

recommendation stems from the detrimental effects o f cutting fluid aerosols suffered by 

machine shop workers as well as the work environment at large. NIOSH presented solid 

evidence that workers who are constantly exposed to MWFs have an increased risk of 

non-malignant respiratory and skin diseases [1]. Consequentially, machining methods

1
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that eliminate the use o f MWFs will have a substantial positive impact on the overall 

quality of the working environment.

Replacing cutting fluids will also potentially bring about secondary economic 

benefits in addition to direct cost savings, because the process of recycling dry chips does 

would not require a cleaning operation before their reuse. It has been estimated that the 

cost o f the cutting fluid system’s fluid filtration, disposal and maintenance makes up 

approximately 17% of the overall manufacturing cost [2-4],

1.2. Dry Machining of Aluminum and Associated Problems

North American automotive manufactures are constantly seeking new ways to

increase the fuel efficiency o f their vehicles by reducing vehicle weight in order to fight 

their foreign competitors. Substituting steel or cast iron with aluminum alloys provides 

approximately a 6 6 % reduction in weight due to the lower density o f the Al alloys (2.7 vs.

7.8 g/cm ). For this reason, automotive companies have been interested in this type of 

component replacement wherever possible. Presently, most engine components and some 

chassis parts are made out o f different aluminum alloys. For example, a 319 Al grade cast 

aluminum alloy is used to manufacture engine blocks. While reducing the vehicle weight 

is always a goal, environmentally friendly machining and shaping technologies are also 

being explored—among them is dry machining.

Dry machining o f aluminum alloys presents challenges. In the absence o f MWFs, 

aluminum chips that are formed during the machining process adhere to the tool surfaces.

2
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This type of adhesion has also been also observed in other forming operations such as 

sheet forming and deep drawing, and causes tool failures which—in turn—leads to poor 

product surface quality. This adhesion problem is amplified during dry drilling operations 

when aluminum chips adhere to the surfaces of the drill flutes—clogging them in a very 

short time and ceasing the process of chip evacuation. The clogged drills do not last long 

in service. The average number of holes that an uncoated high speed steel (HSS) drill can 

achieve in the dry drilling of a 319 Al alloy block is less than 50—far from the expectation 

of lxlO4 holes set by the industry [5]. The severity of aluminum adhesion to an uncoated 

HSS drill after the dry drilling of a 319 Al alloy is illustrated in the example o f Figure 1. 

1.

1.3 Substitution of Coatings for Metal Working Fluids to Reduce the Material 
Adhesion to Tool Surfaces

Heat generation is one o f the most important factors to consider in any kind of 

machining process. The heat produced during machining originates from plastic 

deformation of the workpiece material and the friction between the tool and the 

workpiece. A great deal o f heat is dispersed by the removal o f the workpiece material, 

and another part is conducted into the deeper regions o f both the workpiece and the tool 

during mechanical contact. The application of a MWF has three main purposes: first, to 

reduce friction by separating the two rubbing surfaces of the tool and the workpiece 

(lubrication effect), second, to assist in the removal of chips from the cutting area

3
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Figure 1. 1 Uncoated HSS drill after dry drilling of 319 Al alloy. Aluminum was 
severely adhered to drill flutes (courtesy o f GM R&D Center). The drill was 6.35 mm 
diameter, 2-flute, high helix, with 118° point angle. Drilling was done at 61 m/min speed 
and 0.13 mm/rev. feed.
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(flushing effect), and third, to dissipate the heat both by increasing the contact areas and 

simply flowing away (cooling effect).

The use of a tool coating in place of the traditional MWF intends to achieve the 

lubrication effect and flushing effect provided by the fluid and many efforts have been 

undertaken to develop coating materials that fulfil the demands o f high hardness, low 

friction and low tendency of adhesion to workpiece material. Hard coatings deposited by 

physical vapour deposition (PVD)—specifically TiN, CrN, TB2 , TiCN and 

TiAIN—usually have some friction-reducing effect, but the COF value during dry sliding 

against metals remains in the range of 0.3 to 0 .8-still too high for dry machining [6-7]. 

According to previous tribological tests against aluminum, these hard coatings are not as 

good as DLC coatings in terms of aluminum adhesion mitigating properties [7].

1.4 The Need for Current Study

As explained above, developing a tool coating that does not adhere to aluminum and

exhibits a low COF when dry sliding against aluminum is the primary requirement to 

successfully perform the dry machining o f Al alloys. Considering the frictional heat 

generated during dry machining and the heating requirements of other applications such 

as aluminum hot forming, an effective coating must have significantly high temperature 

stability.

While B4C coatings have been successfully applied to tools for the machining of 

aluminum alloys, the reported applications were under lubrication [8-9] and as far as the

5
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author is aware, their tribological behaviour against Al alloys has not been studied.

Examining the Al adhesion and tribological behaviour of B4C coatings during dry sliding

under different test conditions is necessary in order to investigate its suitability as a tool

coating for the dry machining of Al alloys. Such studies might reveal that a specific

condition is optimal for the operation o f B4C coatings.

Previous studies have shown that a DLC coating is better than other hard coatings for

reducing aluminum adhesion (Figure 1. 2) and for lowering the COF when dry sliding

against a 319 Al alloy [7]. However, said coating exhibited a COF -0.3 at 120 °C and

was totally removed from the substrate after testing at 300 °C [7]. Such poor thermal

stability is undesirable in dry machining, stamping and rolling processes where heat is

generated or presented—creating the need for more stable DLC coatings.

Aluminum has also been reported to adhere to nonhydrogenated DLC (NH-DLC)

coatings in inert atmospheres such as argon and vacuum, but it exhibits a much lower

tendency towards adhesion in ambient air [7]. The testing environment also affects the

friction behaviour of DLC coatings. Studies on the ways in which testing environments

affect the tribological behaviour of DLC coatings are presented in Section 2.2.5.

1.5 Scope and Objectives

The 319 Al alloy was chosen as a counterface material for this work because o f its

wide application in the automotive industry. Three coating were examined—boron carbide

coatings (B4 C), tungsten carbide doped hydrogenated DLC coatings (WC-DLC) and

6

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



40

35 -

TiAIN

Figure 1. 2 Ranking of various coatings in terms of amount of aluminum adhesion onto 
the coating 7. 319 Al did not adhere to the NH-DLC coating. The results were measured 
from wear tracks generated on various coatings after testing at room temperature in 
ambient air (33-51% RH) at 5 N applied load and 0.12 m/s sliding speed.

7

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



tungsten carbide doped hydrogenated DLC coatings with a top DLC layer

(DLC/WC-DLC). 52100 steel (AISI) was tested against B4C coatings for comparison to 

319 Al.

Considering both the background and motivation described in the previous sections, 

the scope and objectives of this work are listed in the following two main groups:

1.5.1 Adhesion of Al to the Coatings

To study the influence o f factors such as testing temperature and environment on Al

transfer to the coatings, and to rank the coatings according to the amount o f Al adhesion 

they exhibit under various testing conditions.

1.5.2 Tribological Behaviour of DLC Coatings and B4C Coating against 319 Al

To investigate the tribological behaviour of the DLC coatings and B4C coatings

against Al by studying the effects of testing temperature and environment on said 

behaviour.

The investigation began by running unlubricated pin-on-disc tests under various test 

conditions, and then subjecting the tested sample to inspection using methods such as 

scanning electron microscopy (SEM) and optical surface profilometry in order to analyze 

the surface changes induced by the tests and, in turn, quantify the material adhesion. The 

details o f the methodology used are presented in Chapter 3.
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1.6 Thesis Outline

Chapter 2 provides a survey of the open literature on i) the tribological behaviour of 

B4C coatings including the controlling factors and ii) the tribological behaviour o f DLC 

coatings including controlling factors. Chapter 3 describes the experimental methods and 

procedures used to characterize the test materials used in this work, then gives details 

regarding the material studied, the pin-on-disc machine, wear test conditions and the 

procedures that were applied to evaluate the test results.

Chapters 4 and 5 display the results and discuss the pin-on-disc tests that were 

performed to investigate the transfer of 319 Al alloy to the coatings and the tribological 

behaviour of the coatings when dry sliding against 319 Al. The effects of both testing 

temperature and environment are discussed in each chapter. Comparison with previous 

work on the transfer and adhesion of Al to various coating surfaces and the corresponding 

tribological behaviour is also presented in these chapters.

Chapter 6 closes this thesis with conclusions and suggestions for future work.
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CHAPTER 2 LITERATURE SURVEY

Two different types of coatings, namely boron carbide and diamond-like carbon were 

studied in this work because of their anticipated beneficial tribological properties when 

sliding against aluminum. There is little prior work on this topic. However, it is 

instructive to do a general survey of structures and mechanical properties o f these 

coatings. Investigations on the friction and wear behaviour against mostly steel 

counterfaces are also reviewed.

Literature on the tribological behaviour of B4C coatings is scarce compared to the 

more established application o f ceramic boron carbide. The first part of this chapter 

focuses on boron carbide (B4C) coatings and their tribological aspects with a brief review 

o f the B4C structure followed by an introduction to B4C and its coating form. Then a 

survey of the published works on the deposition of B4C coatings and their tribological 

behaviour is given—finishing with a summary of the papers on the “abrasiveness” of B4C 

coatings that describe one of the current major applications of B4C coatings.

The second part o f this chapter gives an account of the three hybridisation states of 

carbon atoms to introduce DLC coatings, then reviews previous studies that investigate 

the tribological behaviour of DLC coatings as well as the effects of influencing factors 

such as coating composition, test temperature and environment—ending with a brief 

literature summary.

10

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



2.1 Review of the Literature on the Tribological Behaviour of the Boron Carbide 
Coatings

2.1.1 Introduction to Boron Carbide and Boron Carbide (B4C) Coatings

Boron carbide exists as a stable single phase compound in a large homogeneity range

from 8  up to 20 at.% C concentration~as shown in the phase diagram (Figure 2. 1) 

proposed by Elliot [10]. The most stable boron carbide structure is rhombohedral with a 

stoichiometry o f B13C2, B12C3 or B4C. These rhombohedral structures of boron carbide 

consist of 1 2  icosahedral clusters of atoms linked by direct covalent bonds and through 

3-atom inter-icosahedral chains along the longest diagonal of the rhombohedron. The 

boron-rich icosahedral structures reside at the vertices of a rhombohedron as shown in 

Figure 2. 2. The B and C atoms can easily substitute for each other within both the 

icosahedra and the intericosahedral chains — the main reason for boron carbide’s large 

homogeneity range [11-13]. The most widely accepted structural model for B4C with 20 

at.% C has BnC icosahedra with C-B-C intericosahedral chains. As the carbon content 

decreases, the C-B-C chains are replaced with C-B-B chains until they are nearly 

depleted. Further decreases in the carbon content result in the replacement o f BnC 

icosahedral with B 12 icosahedral. In the case of the amorphous boron carbide, it is 

believed that the structure is still based on a random icosahedral network at a carbon 

content less than 50 at.% [14].
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Figure 2. 2 The rhombohedral crystal structure of boron carbides. A twelve-atom 
boron-rich icosahedron resides at the comers of a rhombohedron. Each icosahedron is 
bonded to six other icosahedra through direct bonds (a). In addition, three-atom 
intericosahedral chains (b) connect icosahedra. Each chain links six different icosahedra 
since the end atoms of each chain are bonded to three different icosahedra. Atoms are 
placed at the vertices of the icosahedra and within the three-atom intericosahedral chain 
[12].
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Boron carbide is the third hardest material (VHN 4828) known, surpassed only by 

diamond (VHN 12000) and cubic boron nitride (6500 VHN). It is characterized by a high 

melting point (2350 °C), high thermal stability, high elastic modulus (360-460 GPa) and 

a low density. The mechanical properties of boron carbides, compiled by Sezer and Brand 

[15], are presented in Table 2. 1. Boron carbide has been used in a wide range of 

industrial applications, from grinding wheels for sharpening cutting tools to 

super-abrasives in polishing and grinding media, as well as rotor bearings. The intrinsic 

brittleness however, combined with its highly abrasive nature against metallic parts has 

limited the extended application of boron carbide.

Since the inception of thin hard coating technologies in the 1970’s, a number of hard 

materials such as TiN, CrN, TiB2 etc. have been applied as tribological coatings. Among 

these hard coatings, boron carbide films have received attention. The properties of the 

coating, however, can vary significantly depending on the deposition method and 

properties. Generally, boron carbide coatings deposited at room temperature are 

amorphous and display a low hardness value (as low as 13 GPa) [16], while coatings 

prepared at high temperatures can reach a hardness value comparable to that o f bulk 

boron carbide (-47 GPa) or higher (i.e. 100 GPa)—due to crystallization [17-20]. The 

mechanical properties (hardness and elastic modulus) of boron carbide coatings measured 

by different investigators are summarized in Table 2. 2.
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Table 2 .1  Properties o f boron carbide compiled by Sezer and Brand [15].

■3
Density (g/cm ) 2.52

Vickers hardness 
(kg/mm2)

4828 (20 °C)-2170 (900 °C)

Toughness (MPa.m1/2) 2.9-3.7
Elastic modulus (GPa) 360-460

Poisson ratio 0.14-0.18
Shear modulus (GPa) 158-188

Tensile strength 
(N/mm2)

155 (980 °C)-162 (1425 °C)

Table 2. 2 Mechanical properties of boron carbide coatings.

Hardness GPa Elastic modulus GPa Reference
15-43 Not reported Yang et al. [16]
20-41 162-283 Eckardt et al. [17]
13-18 120-144 Ahn et al. [18]

15.6-25.6 162-210 Monteiro et al. [ 19]
19-100 Not reported Salimijazi et al. [20]

42.5-50.4 300-420 Han et al. [21]
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It is interesting to note that the amount of literature published on the tribological 

properties of B4 C coatings is considerably less than the attention paid to other hard 

coatings of the C-B-N coating system. However, this relative shortage of knowledge on 

said properties has not prevented the industrial application o f B4C coatings from enjoying 

an Edisonian approach. Diamond Black Technology, Inc., (Conover, NC) held the 

world-wide patent rights for the magnetron sputtering deposition o f boron carbide 

(trademarked as DiamondBLACK™) and had successfully commercialized its deposition 

[22-27], Other manufactures, such as IonBond, also provide customers with B4C coatings 

(including the ones studied in this work). Boron carbide coatings are being used in a wide 

range of applications such as gears, molds, tools and cutting edges. In fact, a 3-10 time 

improvement in tool life compared to the uncoated tools (as high as 2 0  times in some 

situations) could be achieved when DiamondBLACK™ was applied to tools used for the 

machining of various grades o f aluminum alloys (314, 319, 356, 30, 6061, 7075). For 

example, studies have shown that a tap coated with DiamondBLACK has lasted for 2000 

taps, while the same tap coated with TiN lasted only 20 taps when tapping a high silicon 

aluminum [9]. The application of boron carbide coatings to the cobalt drills used for 

machining titanium and aluminum alloys, and to the cutting tool used for machining of 

aluminum alloys can be found in [8 ]. None o f these cases, however, reported the absence 

of MWF during the machining process.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Section 2.1.2 provide a brief summary of the deposition process o f boron carbide 

coatings for tribological applications, followed by an account of studies on the 

self-lubricity of boron containing surfaces (Section 2.1.3). Work analyzing the 

abrasiveness of boron carbide coatings (in order to design a finite life run-in coating to 

improve the fatigue resistance of machine parts) is summarized at the end (Section 2.1.4).

2.1.2 Deposition of Boron Carbide Coatings

The two most extensively studied methods for the deposition of B4C coatings are

chemical vapour deposition (CVD) and physical vapour deposition (PVD) by sputtering. 

During various CVD processes, BCI3 [28-29] or boranes (e.g. B2H6) [30] are used as 

boron sources and the deposition process is carried out in a reducing (hydrocarbons and 

H2) atmosphere at a high temperature (>  300 °C). A schematic drawing of the 

plasma-assisted chemical vapour deposition (PACVD) system used in [29] is shown in 

Figure 2. 3. A wide composition variation similar to that of bulk boron carbide has been 

observed in the boron carbide coatings prepared using these methods (from B4 .7C to 

B 13C2). A review of the CVD of boron carbide that includes a compilation of various 

BxCy phases prepared can be found in [15]. Several factors such as usage of hazardous 

gas (like BCI3 and boranes), difficulty in controlling o f the coating stoichiometry, and 

requirements for relatively high deposition temperature have limited the application of 

CVD processes.
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Figure 2 .3  Schematic diagram of the PACVD system used by Tsou et al. [29]
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The sputtering deposition of B4C coatings are conducted at relatively low 

temperatures—when compared to CVD—using Ar as a sputtering gas. Usage of B4C 

targets as source material eliminates the unwanted variation in coating composition. The 

sputtering deposition of B4C coatings is studied for the manufacturing of B4C coatings 

intended for tribological purposes [17-18],

Eckardt et al. [17] deposited B4C coatings using d.c. magnetron sputtering deposition 

with a B4C target and Ar sputtering gas. Small amounts of acetylene (flow rate between 1 

and 8  seem) were added as a reactive gas and the boron content o f the coatings decreased 

nearly linearly with the acetylene gas flow while carbon content simultaneously increased 

also nearly linearly. The produced coatings displayed a coefficient of friction that was 

investigated using a pin-on-disc tester against 100Cr6 balls (4.76 mm in diameter) under 

a load of IN and with a sliding speed of 0.04 m/s. The test temperature and relative 

humidity were kept at 21 °C and 45-50%, respectively. The COF decreased from 0.9 

(without C2H2) to a lowest value o f 0.15 at a QzEhflow rate o f 4 seem. However, this 

decrease in COF could not be related to any detectable coating structure change. It was 

also observed that a peak value of 41 GPa for hardness and 283 GPa for elastic modulus 

occurred at 2 seem C2 H2 . The authors suggested that hydrogen was embedded in 

microvoids and defects, causing internal stress that resulted in less ductile material with 

increased hardness. Continued incorporation of hydrogen into the B4C coating formed 

additional hydrogen bondings (i.e. B-H and C-H), resulting in a less rigid structure. The

19
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authors also presented a comparison between modified B4C and Ti doped DLC coatings 

deposited in the same chamber. The results showed that they had comparable COF values 

(0.25 for modified B4C vs. 0.20 for Ti doped DLC) and wear rates (4.5-7.5 

n ^ N 'W ’xlO "15 for modified B4C vs. 5-10 for n ^ N 'W 'x lO ' 15 Ti doped DLC).

Ahn et al. [18] studied the tribological behaviour o f sputtered boron carbide coatings 

and the influence o f processing gas. The B4C coated coupons were tested against 3 mm 

diameter steel balls using micro-oscillating tests in ambient air (40-45% RH). A load of 

0.3 N, sliding speed of 4.43 mm/s and stroke length o f 3 mm were used. The tested 

coatings were deposited by d.c. magnetron sputtering deposition with a B4C target and 

various amounts of methane gas. The hardness, elastic modulus and roughness of the 

coatings decreased with the increase in CH4 gas concentration—an observation attributed 

to the formation o f an increasing amount o f crystalline phase combined with the 

reduction o f the polymeric C-H bond within the B4C coating. The sample deposited 

without CH4  showed a high and unstable COF (0.4) from the beginning o f the test, 

whereas the COFs were significantly lower and stable for other films due to the 

introduction o f CFL (Figure 2. 4). The lifetime of the coating was also increased, and the 

friction coefficient of deposited boron carbide films considerably decreased from ~0.4 to 

0.1 for coatings deposited without CH4 and coatings deposited with 1.2 vol.% CH4, 

respectively. An examination of the wear tracks on the sample with 1.2 vol.% CH4 

exhibited material transfer from the steel ball and a low wear rate. The authors concluded
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processing gas) dry sliding against 52100 steel [18]. a) Friction coefficient as a function 
of number o f sliding cycles; b) Steady state friction coefficient as a function o f CH4  ratio.
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that the greater amount of graphite phase in the film deposited with an increasing CH4 

addition might contribute to the lower friction and higher wear resistance of the boron 

carbide coating.

2.1.3 Self-Lubricity of Boron Carbide Coatings: Effect of Relative Humidity

Erdemir et al. [31-33] conducted extensive studies on boric acid, boron and boron

oxide containing surfaces, as well as boron carbide surfaces. They proposed a lubrication 

mechanism for the boric acid forming surfaces based on the inter-layer slip between the 

crystal layers of boric acid. Their study has been cited in later work on the tribological 

behaviour of tribo-systems containing boron carbide [34-36]. The following section 

introduces the crystal chemistry o f boric acid then reviews studies that attribute the 

tribological behaviour o f boron containing systems to the formation o f boric acid on the 

sliding surfaces.

2.1.3.1 Crystal Chemistry of Boric Acid

Despite minor variations in measured atomic position, investigators agree that the

unit cell of boric acid (3 H2O B 2O3 or H3BO3) is triclinic and made up of boron, oxygen 

and hydrogen arrayed in layers parallel to the basal plane of a triclinic crystal [31]. The 

cell parameters and the triclinic crystal structure of boric acid are presented in Figure 2. 

5.

The volume of the unit cell is 0.263 nm3, which accommodates four boric acid 

molecules and the c-axis is inclined to the basal plane at an angle of 1 0 1 °—causing
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Figure 2. 5 Layered triclinic crystal structure of H3BO3 [31],
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alternate layers to shift along the c-axis. The layers are 0.318 nm apart, held together by 

weak van der Waals forces. This layered crystal structure and unique bonding of boric 

acid resemble those of graphite, leading investigators to hypothesize that boric acid 

should also be applied as a solid lubricant. Erdemir [31] tested cold pressed boric acid 

pins against AISI 52100 steel discs and observed a COF of approximately 0.1—proving 

that boric acid was an effective solid lubricant. SEM results also revealed that the worn 

pin tips of pressed boric acid exhibited some preferred alignment of its platelike 

crystallites as a result o f the sliding contact.

2.1.3.2 Self-lubrication of Boron Containing Surfaces

The effect of boric acid film formation on the friction behaviour o f boron and boron

oxide containing surfaces has been studied by Erdemir et al. [32], The authors deposited 

boron oxide and boron on AISI M50 steel discs and conducted pin-on-disc tests in 

ambient air (23 °C, 50% RH) against AISI M50 steel balls under a combination of 1 N 

applied load and 0.1 m/s sliding speed. For the steel pin/boron oxide coated disc pair, a 

steady-state COF value o f 0.05 was reached. Large colonies o f platelike crystallites 

aligned parallel to the contact surface were revealed by SEM inspection of wear tracks 

after the tests. The Raman spectra o f the platelike crystallites and the near-surface region 

of the boron oxide coating were found to be similar to that of a boric acid standard. Thus, 

the authors concluded that boron oxide reacted spontaneously with the water molecules in 

an open environment at room temperature due to a negative standard heat of reaction
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(-45.1 kJ/mol). The reaction produced a thin boric acid film on top of the boron oxide

coating. Under sliding contact, the layers of boric acid could align themselves parallel to

the direction of relative motion. Once aligned, the layers slid over one another with

relative ease, providing low friction. For the steel pin/boron coated disc pair, a steady

state COF of 0.07 was measured. The authors [32] suggested that this was due to the

reaction of the boron with the oxygen in the air, followed by boric acid formation with

water. The same mechanism of boric acid formation was also used to explain the low

COF of -0.05 observed for annealed borided steel surfaces [37-38]. The process

formation of boric acid lubricating layer on boron or boron oxide containing surface can

be summarized by the following sequential chemical reactions [32][37]:

3
2f? + —0 2—» B20 3, AH 1023 = -1218 kJ/mol, Equation 2 .1

1 3—B20 3 + —H20  -»  H3B03, AH298 = -45.1 kJ/mol. Equation 2. 2

It should be noted that boron carbide is not low friction material on its own merit. It 

needs boric acid formation. In order to achieve boric acid lubrication, either 

pre-annealing of the boron carbide coating in air [34] [3 9] or presence of sufficient water 

vapour within the environment is necessary [35-36]. By annealing in the presence of 

oxygen, boron oxide is formed by the following chemical reaction:

BAC + 0 2 B20 3 +C + CO(g) t  +C02(g )T  Equation 2. 3

During this reaction, more solid carbon is produced at lower partial pressure o f oxygen, 

while higher partial pressure o f oxygen results in the favourable formation o f gaseous
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products. Once a layer of boron oxide is formed on the surface o f boron carbide, the 

adsorption of water by this layer results in the formation of boric acid following the 

chemical reaction described above. The oxidation of B4C is not thermodynamically 

favourable, however, because it is stable up to 600 °C in the presence of oxygen [39].

Erdemir et al. [39] demonstrated the difference in the friction behaviour o f boron 

carbide and annealed boron carbide (800 °C in air for lh) by testing them against 440C 

steel balls. For the steel/boron carbide pair, a COF of 0.7 was observed while the value 

for the annealed boron carbide/steel pair was 0.04. Raman peaks identical to those 

observed for the boric acid standard were detected on the surface of the annealed boron 

carbide, but did not appear on the as-received boron carbide (Figure 2. 6). The authors 

concluded that the low COF of the boron carbide surfaces could be achieved as a direct 

consequence of the sequential formation of a boron oxide layer on the boron carbide 

surface during annealing, followed by the formation of a boric acid film during cooling.

Cuong et al. [36] studied the effect o f relative humidity on the tribological properties 

o f boron carbide coating against steel. The experiments were conducted on d. c. 

magnetron sputtering deposited B4C coatings against 3 mm diameter steel balls using an 

oscillating tester under a 0.3 N load, 4.43 mm/s sliding speed and a stroke length o f 3 mm. 

Three relative humidity (RH) levels o f 5%, 45% and 85% were used. At 5% RH, the COF 

was -0.42—decreasing considerably to 0.11 and 0.09 at 45% and 85% RH, respectively 

(Figure 2. 7). At 85% humidity, the coating remained remarkably intact even after
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10,000 sliding cycles. By contrast, the coating suffered a virtually complete removal at 

45% RH after 10000 cycles. At 5% RH, complete coating removal occurred after 5000 

cycles. The presence of boron oxide/boric acid and graphitic carbon was detected by 

X-ray photoelectron spectroscopy (XPS) within the wear track of the boron carbide 

coating at 45% after 5000 cycles. The authors attributed this low and stable friction 

characteristic o f boron carbide coatings in medium and high humidity environments to 

the boric acid formation and formation o f carbon in the graphite phase at the top layer of 

the boron carbide coating’s wear track.

2.1.4 Study on the Abrasiveness of Boron Carbide Coatings

Erdemir [40] suggested that hard coatings could increase the fatigue resistance o f a

coated part by polishing mating surfaces during sliding contact. Polishing could remove 

asperities on the mating surface that would have otherwise caused high local stresses, and 

eventually contact fatigue failure. Boron carbide increases the contact fatigue life of a 

coated component because it polishes the counterface. In order to effectively design a 

“finite life run-in” boron carbide coating which would stop polishing the counterface 

after a designed period, a series o f papers studying the system of 52100 steel sliding 

against B4 C coated, case carburized low carbon steel coupons have been published in the 

open literature [41-45]. These papers employed a parameter termed coating 

abrasiveness—i.e. counterface abrasion rate—to characterize the ability o f the coatings to 

polish their counterface. Thus, in the case of sliding against 52100 steel, the average
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coating abrasiveness during n cycles A(n) is defined as the total volume of the steel 

removed, divided by the total distance traveled:

Equation 2 .4

where V is the volume of steel removed, d  is the distance traveled and n is the number of

cycles. The instantaneous abrasion rate on the nth cycle is defined as An.

Accordingly, Harris et al. [41] analyzed the surface topology variations of B4C 

coatings. Changes in the surface’s statistical properties such as asperity height are 

monitored for the 52100 steel counterface as the sliding distance increased. They found 

that the average abrasion rate of the steel balls decreased as the sliding distance increased, 

and obeyed a power law scaling relationship (Figure 2. 8). Because of their linear 

relationship in a log-log scale, it can be shown that An is given by

where A] is the abrasion rate on the first cycle and /? is the slope of the line in Figure 2. 8.

first cycle. No material transfer was observed between the sliding counterfaces. Three 

regions of wear were identified—i) run-in, where the ball surface experiences significant

Equation 2. 5

The roughness of the steel surface decreased as the sliding distance increased after the
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Figure 2. 8 Average abrasive rate vs. number of ball-on-disc cycles for the 52100 steel 
ball against B4 C coating. The line is a linear least square fit [41].
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modification; ii) polishing, where the worn surface becomes stable; and iii) over run-in, 

where the run-in wear features reappear.

Harris et al. [42] published a follow-up paper that measured the abrasion rate of the 

52100 steel under loads ranging from 5 to 1100 g and found that the average abrasion rate 

at and above 1 0 0  g of load showed a simple power law dependence on the number of 

cycles, but a deviation from this type of dependence was observed at lower loads (Figure 

2. 9). The loss of the boron carbide’s abrasiveness was correlated with a reduction o f the 

asperity sharpness on the boron carbide surface, which eventually became nearly 

atomically smooth (Ra = 2nm) as shown in Figure 2. 10. No transfer of boron carbide 

coating onto the steel ball was detected during the entire test, while the transfer of iron 

onto the coating was observed by iron Auger map after 100 cycles—only to disappear 

after 500 cycles. Boron was detected in an oxidized form within the worn track on the 

coating after 500 cycles, but not after 100 cycles. The authors proposed that the process 

was a chemical-mechanical polishing in which the steel is mechanically abraded by the 

boron carbide, while the boron carbide is chemically polished by the steel.

Other factors that might influence the abrasiveness o f B4C carbide coatings have 

been studied, such as the load [43], contact conditions [44], coating thickness and 

roughness, substrate roughness [45], Borodich et al. [43] proposed a model by solving a 

Hertzian type contact problem and the results were consistent with experiments 

conducted under loads of 5, 10, 20, 100, 500 and 1100 g. It was found
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Figure 2 .10  SEM images o f the a) as deposited B4C surface and b) heavily worn surface 
after testing at 100 g load for 500 cycles against 52100 steel [42].
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experimentally that a higher load only resulted in a higher initial (first cycle) abrasiveness 

(Aj) but had no effect on the rate at which the coating abrasiveness decreased. Their 

model predicted that Aj should approximately scale as (load) 2/3 and a depencence of 

(load) 0 6 9  was observed in the experiments. The effects o f the B4C coating’s contact 

condition on its abrasiveness were studied by Siniawsi et al. [44] by running experiments 

using various contact conditions—i.e. ball-on-disc, pin-on-disc and cone-on-disc—at the 

same load of 10 g. The results revealed that the rate at which the coating abrasiveness 

decreased was independent of the macro-scale contact conditions. Their study supported 

the classic Greenwood-Williamson model [46], which states that the number of 

micro-scale contacts and the total actual area of contact between two surfaces remain 

constant for a given load. Thus for a constant actual area of contact caused by the same 

load, the number o f B4C asperities within also remained constant, resulting in the same 

rate at which coating abrasiveness decreased regardless o f macro-scale contact 

conditions.

Among all the factors studied, coating roughness alone was found by Siniawski et al. 

[45] to be capable o f influencing both the initial abrasiveness of the coating and the rate 

at which the coating abrasiveness decreased. The average asperity radius of curvature ( R ) 

was calculated for both the smooth coating (r.m.s. 1 0  nm) and rough coating (r.m.s. 

330 nm) and the rougher coating had an initially smaller value of R , indicating that the 

asperities were sharper—a fact that corresponded to a larger initial average coating
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abrasiveness. The smoother coating, on the other hand, had an initially larger value of R , 

indicating that the asperities were blunter—corresponding to a smaller initial average 

coating abrasiveness. For both coatings, R increased as the sliding cycle increased, 

indicating that the asperities became blunter as the sliding process progressed (Figure 2. 

11). However, the authors provided no explanation as to why the rate at which the coating 

abrasiveness decreased was higher for the rough coating than the smooth coating.

A survey of the literature on the tribological behaviour of B4C coatings thus suggests 

that the completed work was mostly conducted to obtain a better understanding of the 

abrasive interaction between a B4C coating and a steel counterface material. The 

lubricating mechanism between a boron containing surface and steel has been clarified. 

However, for the purpose o f tool coating development for the dry machining of 

aluminum alloys, it is essential to investigate the transfer and adhesion behaviour 

between the B4C coating and A 1 alloy as well as the effect o f influencing factors such as 

test temperature and environment on this material pair. No report on the tribological 

behaviour of the B4C coating/A 1 pair has been published to take account of these factors. 

Thus the current study, which is aimed at understanding the friction and wear of B4C at 

elevated temperatures and various environments, is fully justified.
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2.2 Review of the Literature on the Tribological Behaviour of the Diamond-like 
Carbon Coatings

2.2.1 Hybridisation States of Carbon

The term Diamond-Like Carbon (DLC) generally refers to a metastable form of

<3 'y
amorphous carbon containing a significant fraction of sp bonds mixed with sp bonds. 

Carbon exists in a great variety of crystalline and disordered structures because of its 

three hybridisations: sp3, sp2 and sp1 (Figure 2. 12) [47]. In the sp3 configuration, a

-3
carbon atom’s four valence electrons are each assigned to a tetrahedrally directed sp 

orbital, which makes a strong o bond to an adjacent atom. Diamond consists of 100% sp3 

hybridised carbon atoms and its extreme physical properties derive from this type of 

strong and directional a  bonds. In the three-fold coordinated sp2 configuration, three of 

four valence electrons enter triagonally directed sp2 orbitals, which form a  bonds in a 

plane. The fourth electron of the sp2 atom lies in a n orbital, which sits normal to the a  

bonding plane. This n orbital forms a weaker bond with a n orbital on one or more 

neighbouring atoms. As another most common allotrope of carbon, graphite is formed by 

sp2 hybridized atoms and inherits its strong intra-layer o bonding and weak van der 

Waals bonding between its layers from this bonding structure. These basal planes of 

graphite can align themselves parallel to the direction of relative motion and slide over 

one another with relative ease, thus providing low friction and the strong interatomic 

bonding and packing in each layer is thought to help reduce wear in the presence of water

37

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



in the atmosphere [48]. In the sp1 configuration, two of the four valence electrons enter o 

orbitals, each forming a a  bond directed along the ±x-axis, and the other two electrons 

enter 71 orbitals in the y and z directions.

2.2.2 Introduction to DLC Coatings

The first hard amorphous carbon coatings were deposited by a carbon ion beam

produced in an argon plasma onto room temperature substrates by Aisenbeirg and Chabot 

[49]. Following their work, explosive growth has occurred in this field over the past three 

decades and now the expression “DLC” subsumes a variety o f coatings with ranging 

composition and properties. The structure o f these coatings can be interpreted as a 

random network of covalently bonded carbon in hybridized tetragonal (sp3) and trigonal 

(sp2) local coordination. The compositions o f the various forms o f amorphous C-H alloys 

can be displayed on a ternary phase diagram as in Figure 2. 13 [47]. There are many 

amorphous carbons with disordered graphitic ordering—namely soot, char, glassy carbon 

and evaporated amorphous carbon. These are located in the lower left comer of Figure 2. 

13. The two hydrocarbon polymers—polyethylene ((CH2),,) and polyacetylene 

((CH)n)—define the limits o f this triangle in the right comer beyond which 

interconnecting C-C networks cannot form, and only linear polymer molecules develop. 

The open literature tends to favour the nomenclature of DLC coatings used by Grill [50]. 

In this system, the “DLC” term is commonly used to designate the hydrogenated form of
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diamond-like carbon (a-C:H), which contains up to approximately 50 at.% hydrogen with

•3
sp fractions smaller than 50%, while the “ ta-C” (tetrahedral carbon) term is used to 

designate the non-hydrogenated carbon (a-C), which contains less than 1 at.% hydrogen

-3

with sp fractions up to 85% or more. An overlap of these two major sub-categories of 

diamond-like amorphous carbon—both in hydrogen content and sp3 fractions-is 

represented by the term “ta-C:H”, although it is seldom used in literature. For 

simplification, H-DLC is used to denote hydrogenated DLC, and NH-DLC represents 

non-hydrogenated DLC in this work.

The structure and properties o f a DLC coating depend on the deposition technique 

and the parameters used during deposition. The commonly used techniques to deposit 

DLC coatings are i) DC/RF magnetron sputtering, which is the most common industrial 

process for the deposition o f DLC [51-55], ii) plasma enhanced chemical vapour 

deposition (PECVD), which is a popular laboratory method [56-57], iii) ion beam 

deposition [49], iv) arc ion plating [58] and v) pulsed laser deposition (PLD) [59-60]. 

These deposition techniques share a common feature—specifically that ions containing 

carbon are generated and condensed on the substrates to form coatings. The methods used 

to produce deposition species, and the plasma characteristics do differ significantly. In 

DC/RF magnetron sputtering, carbon ions are formed during the sputtering o f the 

graphite target by argon ion plasma while the substrate can be either biased or just 

grounded, which results in a difference in the driving force on the ions towards the
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substrate. Hydrocarbon species are produced by the plasma decomposition of 

hydrocarbon gases (e.g. acetylene) and then accelerated towards a DC-biased substrate in 

the PECVD processes. Ion beam methods are characterized by ion sources which produce 

carbon ions from methane while a vacuum arc discharge between a graphite cathode and 

grounded anode is utilized to generate energetic carbon ions in an arc ion plating process. 

Pulsed laser deposition vaporizes carbon targets using pulsed excimer lasers to form 

intense plasmas, which then extends towards the substrate. A comprehensive reference on 

the deposition techniques is available [61].

Studies report that sp /sp ratio in the deposited coatings are in the decreasing order 

for arc ion plating, pulsed laser deposition, ion beam deposition, plasma-enhanced 

chemical vapour deposition, and DC/RF magnetron sputtering [62-63]. The common 

feature of these techniques is that the deposition is energetic—i.e. carbon species strike the 

substrate with an energy significantly greater than that represented by the substrate 

temperature. Particles with excessive energies are then subjected to rapid thermal 

quenching, resulting in amorphous DLC coatings characterized by high hardness, high 

elastic modulus and high internal stresses.

The mechanical properties mentioned above directly correlate with the fraction of sp3 

C in the coatings. Compilations of the mechanical properties of DLC coatings show that 

the hardness of H-DLC coatings is in the range 10-30 GPa, with a corresponding elastic 

modulus 6-10 times higher. The coatings are characterized by internal compressive
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stresses in the range 0.5-7 GPa. Due to their higher sp3 C fraction, the hardness of 

NH-DLC can reach higher values (in the range of 40-80 GPa), and their elastic modulus 

can reach values up to 900 G Pa-but the residual stress can also reach high values, up to 

13 GPa [47] [50]. The stresses in DLC coatings can be reduced by either incorporating N, 

Si, O or metals in the coatings [64-66] or by building multilayered structures with both 

soft and hard layers [67-68]. Such coating composition and structure modification has 

resulted in families o f DLC coatings known as doped/nanocomposite DLC coatings and 

multilayer DLC coatings.

DLC coatings are most widely used to exploit the low friction coefficients and high 

wear resistance of these materials. Many efforts have been made to characterize the 

tribological behaviour o f various types of DLC coatings. The friction and wear 

characteristics of these coatings depend strongly on both intrinsic factors, such as coating 

composition and structure (sp3/sp2 ratio, hydrogen content, etc.) and external conditions, 

such as varying test environments (test temperature, humidity level, gaseous species 

present in the test atmosphere, etc.). The following sections provide a detailed account of 

previous studies on the tribological behaviour of the various types of DLC coatings and 

the influencing factors.

2.2.3 Transfer Layer Formation and Friction-induced Graphitization

Summarizing the tribological properties o f various DLC coatings is difficult because

of the generally poor definition of deposition conditions o f a specific coating. The
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challenges o f structurally characterizing the amorphous materials and the lack o f any 

standardization of tribological characterization are the other major difficulties. In most 

cases observations suggested that the tribological behaviour of DLC appears to be 

controlled by a transferred layer formed during the sliding of the surfaces in contact. This 

layer generally is a mixture of both materials from the coating and its counterface and 

interacts with the gaseous species within the sliding environments. The easy shearing of 

this interfacial layer is the most frequently quoted mechanism for the low COF and wear 

rates o f the DLC coatings [69-78],

Ronkainen et al. [69] studied the effect o f tribofilm formation on the tribological 

performance of a H-DLC coating (-26 at.% hydrogen) deposited by RF PECVD from 

methane on AISI 330 B steel substrates. Pin-on-disk tests were performed at room 

temperature at RH = 50±5%. The applied load was varied from 5 to 40 N, and the sliding 

velocities were 0.1-3.0 m/s. The COF of DLC against both steel and alumina was found 

to decrease with increasing load and speed. This behaviour correlated with the observed 

formation of a transfer layer on the pin surface, consisting mainly o f pin material oxides. 

Carbon appeared only in the debris found in the front of the contact area and its content 

increased with increasing load and sliding velocity, producing the low friction 

coefficients. Evidence o f carbon enrichment on the pin surface was also detected, 

although the amount of carbon was rather low. The carbon formed a low shear strength 

surface layer on the sliding surface—suggesting that the low coefficient o f friction is
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caused by a combination of a tribolayer containing stable oxide and a low shear strength 

carbon layer.

Erdemir et al. [70] studied the tribological behaviour of H-DLC coatings deposited 

by a methane ion beam on substrates of Ti6A14V. Pin-on-disk experiments showed that 

the films had low COFs (p < 0.1). This frictional response was characterized by an initial 

break-in period followed by an intermediate constant friction stage (COF -0.05, Figure 2. 

14). The presence o f a carbon transfer layer was observed on the wear scars of the pin 

surfaces. Transmission electron microscope images and electron diffraction patterns from 

the transfer layer indicated that it contained a distribution of fine graphite nanoparticles 

(<5 nm) in a distorted diamond-like structure. Micro-laser Raman spectroscopy showed 

that the transfer layer had a disordered graphite structure different from the original DLC 

film. Raman spectra taken from the wear track o f the DLC film also revealed evidence 

for graphitization (Figure 2.15). It has been shown that a typical DLC Raman spectra are 

composed o f two main peaks located at about 1540 cm'1 (G band) and about 1360 cm '1 

(D band) respectively. The G band has been assigned to the graphitic sp2-bonded carbon

2 3 2and the D band to the disordered graphitic phase and sp sites [47]. As the sp /sp ratio 

decreases in the H-DLC coating, the G band will shift positively accompanied by an 

increase of the intensity of the D band [79]. Figure 2 .15  makes it evident that the G peak 

of the material within the wear track (after 1000 m of sliding at room temperature under
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diameter) [70],
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Figure 2 .15  Typical Raman spectra taken from a) as-deposited DLC film and b) wear 
track region after testing. (Wear testing conditions: M50/DLC-M50, ION load and 1 km 
sliding distance.) [70]
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5N, 0.05 m/s and 30% RH) was shifted to higher frequency and coincided with G peak of 

graphite (1580 c m 1). There was also a significant increase in the intensity of the low 

frequency peak due to the contribution from D band graphite. In light o f these 

observations, the intermediate friction stage was mainly attributed to the formation of the 

transfer layer. During experiments with long durations, a further reduction in friction was 

observed—a steady- state low friction of 0.02-0.03 and ultra-low wear rate of about 1.6 x

9 310' mm /(Nm) (calculated from the cross sectional surface profiles of the wear tracks) 

were reached. The steady-state low friction was related to the complete transformation of 

diamond-like to graphite-like carbon by a friction-induced annealing.

Liu and Meletis [73] also presented evidence of the graphitization of DLC coatings 

during dry sliding. They conducted pin-on-disc tests on H-DLC coatings deposited on 

Ti-6A1-4V substrates at room temperature by methane ion-beam deposition against Ti- 

6A1-4V pins in ambient air (about 30% RH). For the as-deposited DLC coating, the 

debris from the wear track region and the transfer film present on the pin counter surfaces 

were examined by a transmission electron microscope (TEM). The TEM diffraction 

pattern of the as-deposited coating revealed an amorphous structure with medium-range 

sp3 domains while the debris exhibited a distorted DLC coating structure as well as a 

graphite structure. Small graphite particles (0.5-1.0 nm) were found to form clusters 

within the transfer film. The authors attributed this particular cluster formation to 

friction-related effects o f heat and strain. The authors concluded that friction-induced
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graphitization occurred during sliding. They suggested that the transformation proceeds 

with a precursor hydrogen atom release stage and shear deformation that converts the 

( I H ) d l c  into ( 0 0 2 ) g r a p h i t e  planes, facilitating the nucleation of graphite, which is 

supported by the fact that ( I I I ) d l c  and ( 0 0 2 ) g r a p h i t e  planes have identical atomic 

arrangements with only a slight difference in atomic spacing (0.257 nm for (lll)DLcand 

0.246 nm for graphite). The low friction observed was attributed to the low shear strength 

of the hexagonal graphite planes.

The effects of sliding speed and applied load on the friction and graphitization 

behaviour of ion beam (methane) deposited H-DLC coatings were studied by Liu et al. 

[74] by performing pin-on-disc tests against ZrCL. The sliding speed was varied from 

0.06 to 1.6 m/s and the applied load was in the range of 1 to 10 N—resulting in a 

decreased COF and DLC coated disc wear with the increase in sliding speed and applied 

load. The steady-state COF was 0.18 at a sliding speed of 0.06 m/s and an applied load of 

IN, whereas the COF dropped to 0.05 when the sliding speed and load were increased to 

1.6 m/s and 10 N. The authors believed that the combination of low sliding speed and 

applied load was not enough to promote graphitization-a necessary phenomenon for 

achieving a low steady-state COF. It was also suggested that a higher sliding speed 

facilitates the hydrogen release from the DLC structure by increasing the temperature at 

the contact asperities (flash temperature over 1000 °C were predicted for their system). 

The applied load was thought to shear and transform the DLC layer into graphite after
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hydrogen release.

Scharf and Singer [75] developed an in situ Raman tribometer to study the friction 

behaviour of amorphous diamond-like nanocomposite (DLC) coatings containing four 

elements C, H, Si, O deposited by plasma-enhanced chemical vapour deposition. The 

tests were conducted in a reciprocating configuration at normal loads of 6.4 and 23.9 N 

against sapphire balls in either dry (-4%  RH) or humid (-40%  RH) air at room 

temperature. They observed that a transfer film quickly formed on the sapphire surface 

and the tribosystem exhibited very low COF values in the range of 0.03-0.05. They 

identified several processes including thickening, thinning and loss of the transfer films. 

They correlated observed friction instability to transfer film loss. The iin-situ Raman 

spectra showed that the graphitic peak intensity o f the transfer film increased as the 

sliding process proceeded compared with the as-deposited coating, which was evidence 

of coating graphitization and transfer film thickening (Figure 2.16).

Sanchez-Lopez et al. [76] studied the structural changes that occurred during the dry 

sliding of DLC coatings with different hydrogen contents (H/C ratio varied from 0 to 10 

in the precursor gases) against uncoated 52100 steel balls under 10N  load with a sliding 

speed of 0.1 m/s for a distance of 500 m. Examination of the transfer layers on the 

counterface material by Raman spectroscopy indicated the presence of a disordered 

graphite-like structure and diamond-like structure for the hydrogenated DLC coatings and 

the non-hydrogenated coating respectively. The transfer layer, however, was found to be
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Figure 2 .16  In situ Raman spectra versus sliding cycles for DLN coating at low contact 
stress (0.7 GPa) in -40%  RH air [75],
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amorphous just like the as-deposited coating by TEM and electron diffraction. The 

authors concluded that these graphitic regions must be smaller than 2 nm since they could 

not detect any of the typical features of nanocrystalline graphite by TEM and electron 

diffraction.

Konca et al. [78] tested NH-DLC (1 at.% H) in inert atmospheres (vacuum of 

6.65x1 O'4 Pa, argon, helium and nitrogen), ambient air (47% RH) and a 60% He-40% H2 

mixture (referred to as “hydrogen” hereafter in the text) using a pin-on-disc configuration 

under a constant load of 5N and a sliding speed of 0.12 m/s against a 319 Al alloy. The 

average COF values o f the NH-DLC coating were found to be in the range of 0.56-0.74 

and the recorded COF values never went below 0.4 in inert gases. A significant amount 

of wear of the NH-DLC coating occurred in all the tests conducted in the inert 

atmospheres. The average COF value dropped to 0.12 when the test was conducted in 

ambient air. The lowest average value (0.03) for the studied NH-DLC coating was 

observed when the test was performed in hydrogen environment. The COF curve 

recorded during sliding in this condition featured a very low and steady COF regime of 

0.010-0.016. A carbonaceous transfer layer was observed by SEM after testing in 

hydrogen, which was correlated to the very low COF exhibited by the coating. 

Micro-Raman investigation revealed that both the wear track produced in hydrogen and 

the transferred film on the corresponding pin tip contained carbon that was more 

graphite-like than the original coating (Figure 2. 17). The authors attributed this change
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Figure 2. 17 Micro-Raman spectra of the worn and unworn regions of the 
non-hydrogenated DLC that was run against the 319 Al alloy in hydrogen [78]. The 
increase in the peak intensity around 1370 and 1550 cm'1 was correlated to 
friction-induced graphitization by the authors.
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to the friction-induced graphitization of the coating.

2.2.4 Effect of Hydrogen Content of the DLC Coatings

A compilation of COFs of DLC coatings recorded for room temperature tests has 

shown that the COF values span a range of 0.007-0.8 in vacuum (P < 1(f4 Pa), while in 

ambient air at 20% < RH < 60% they span a range of 0.05-0.7 with ranges between 0.007 

and 0.02 in vacuum and between 0.1 and 0.4 in ambient air being most typical [80-86]. 

The large spread in friction coefficient values is mainly caused by variations in the 

hydrogen contents o f the coatings. Several studies have shown that the presence of a 

sufficient amount of hydrogen in a DLC coating is the most critical intrinsic factor 

determining its tribological behaviour in various environmental conditions [81-83], For 

example in vacuum, the DLC coatings containing a large amount o f hydrogen (~40 at.%) 

have very low COF values (0.007-0.02) [81][83][85], On the other hand, the 

non-hydrogenated DLC coatings (< 5 at.%) exhibit high COF values (0.5-0.8) in vacuum 

[83][86], It is generally agreed that the high COF of the non-hydrogenated DLC coatings 

in vacuum is due to the strong interactions between the “dangling bonds” of surface 

carbon atoms and the counterface materials [83][85-86]. For the hydrogenated DLC 

coatings, hydrogen prompts the formation of C-H bonds and hence passivates the 

dangling carbon bonds on the DLC surfaces, resulting in a low COF in vacuum 

[83][87-88],

Erdemir [81][87] studied the effects of hydrogen on the tribological properties of 

diamond-like carbon films by measuring the friction coefficient o f DLC coating against 

itself. PECVD deposited hydrogenated DLC coatings were produced with varying
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hydrogen to carbon (H/C) ratios up to 10 by varying the source gases (i.e. C2H2 , C2H4 , 

CH4 and CH4+H2). An arc-PVD method was then employed to deposit non-hydrogenated 

DLC coatings. The coatings were applied to both AISI-H13 steel disks and M50 steel 

balls and tested in a ball-on-disc configuration under 10 N (sliding velocities of 0.3-0.5 

m/s) in both dry nitrogen and open air. They reported an almost direct relationship 

between the H/C ratios of the source gases and the friction and wear coefficients of the 

resultant DLC coatings in nitrogen. The COFs of the coatings grown in source gases with 

very high H/C ratios (e.g. 10) were very low (0.003), whereas the COFs of the 

hydrogen-free DLC coatings (with essentially zero H/C ratio) was very high (0.65). The 

COFs of coatings grown in source gases with intermediate H/C ratios were between 

0.003 and 0.65 (Figure 2. 18). Experiments also revealed that the frictional properties of 

these coatings were very sensitive to testing environments. Specifically, vs/hen tested in 

open air, the COF of hydrogen-free DLC dropped to 0.25, whereas that of highly 

hydrogenated DLC increased to 0.06. The very low friction o f the coatings produced with 

a high H/C ratio of the source gas was attributed to the presence o f excessive hydrogen 

within the coating. It was suggested that hydrogen atoms—either bonded to carbon or in 

the form of interstitials— eliminated strong covalent and n-n* interactions at sliding DLC 

interfaces and provided shielding of carbon atoms by di-hydration (i.e. two hydrogen 

atoms bonded to one carbon atom).

Donnet and his colleagues [83][89] showed that hydrogen in the testing environment 

could help hydrogenated DLC coatings (34 and 40 at.% H) reach very low COFs. The 

authors investigated the friction behaviour o f hydrogenated DLC coatings deposited by 

PECVD. Tests were performed against 52100 steel pins using a reciprocating sliding
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Figure 2. 18 Relationship between friction coefficients of DLC films and 
hydrogen-to-carbon ratios o f various source gases used to deposit the films [81].
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machine under vacuum (10'9 hPa), hydrogen and argon environments at 25 and 150 °C. 

In vacuum, the DLC coating with the lower hydrogen content (34 at.%) exhibited a low 

COF of 0.01 for the first 100 cycles—after which the COF increased to 0.6, whereas the 

coating with the higher hydrogen content (40 at.%) maintained a low COF of 0.03 

throughout the test. When the DLC with lower hydrogen content (34 at.%) was tested 

under a hydrogen gas pressure of 1000 Pa, the COF did not increase as it did under 

vacuum—only reaching 0.006 by the end of the test. The friction behaviour at a lower 

hydrogen pressure of 100 Pa, however, was similar to that observed during the vacuum 

test as the COF increased to a high value of 0.6 after a short, very low COF period. 

Repeating the same test at 150 °C resulted in an even lower COF value o f 0.002 at the 

end of the test. The authors concluded that a very low COF could be attained only when 

there is enough hydrogen (either provided by internal or external sources) at the sliding 

interface and that the lower COF caused by the elevation of the testing temperature is due 

to the more profound thermal-assisted diffusion of hydrogen towards the sliding surface.

The presence of hydrogen in a carbon bonding network has also been found to 

influence the chemical affinity of carbon atoms toward aluminum atoms. Qi and Hector 

[90] used a first principles methodology based on density function theory to calculate the 

work of separation (Wsep) between Al/clean reconstructed diamond and Al/H-passivated 

diamond surfaces. The Wsep of the former interface was found to be 4.08 J/m2 and the 

latter was 0.02 J/m2. Electronic structure analysis revealed strong covalent bonding
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between Al and C, but no bonds exist between Al and the H-passivated diamond surface. 

The work required for the decohesion of aluminum was computed to be 1.56 J/m2, less 

than the Wsep between Al/clean reconstructed diamond. Thus under uniform tensile strain, 

the clean Al/diamond interface fractured within the Al slab at 12 GPa, with two layers of 

Al transferring to the diamond surface. The Al/H-terminated diamond interface separated 

at the interface under 0.4 GPa with no adhesive transfer. Such results were in general 

agreement with their observation that Al adhered to a clean diamond surface, but not to 

H-passivated diamond.

2.2.5 Effect of Test Environment on the Tribological Behaviour of DLC Coatings

DLC coatings have demonstrated high sensitivity to water vapour in the environment

[86][91-92], which depends on hydrogen content of the coatings (as described in the 

previous section). Under most environmental conditions, hydrogenated DLC coatings 

show lower COF values than hydrogen-free DLC coatings. Interestingly, high humidity 

increases the COFs of the hydrogenated DLC coatings while decreasing those of the 

hydrogen-free DLC coatings. The increase in the hydrogenated DLC’s COFs caused by 

increasing humidity has been ascribed to the progressively strong bonding of 

hydrocarbons [93] or H atoms [94] at the surface—a phenomenon that causes viscous drag 

and even the formation o f capillary forces between the sliding surfaces. The inhibition of 

wear-induced graphitization mechanisms by adsorbed water molecules has also been 

proposed as the cause [95]. The low COF at high humidities seen in non-hydrogenated
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DLC coatings has been attributed to the passivation of the dangling carbon n bonds by 

adsorbed water molecules, as well as the graphitic nature of the transfer layer that results 

in a tribological behaviour comparable to that o f graphite—which is known to require the 

presence of adsorbable species such as water to provide lubrication [86].

Konca et al. [80] studied the tribological behaviour of non-hydrogenated DLC 

coatings (2% H) deposited by unbalanced magnetron sputtering deposition in both 

vacuum (1.07x10' Pa) and ambient air (52% RH) using pin-on-disc tests against a 319 

Al alloy (the same alloy studied in the current work). The tests were conducted under a 

combination of 4.9 N load and 0.12 m/s sliding speed. The coatings displayed a high 

COF of 0.52±0.06 and high wear rates (4.05xl0-4 mm3/m) in vacuum when compared to 

ambient air (for which COF = 0.16±0.04, wear rate = 4.05x10 4 mm3/m were obtained). 

In a specific experiment, the test was started in ambient air and then the test chamber was 

pumped down later during the course of sliding and the COF decreased from 0.15 to very 

low values (0.006-0.02) with the decreasing pressure (from 105 Pa to 1.07x1 O'2 

Pa)-keeping its low value for some period of time. These were the lowest COF values 

recorded for HN-DLC. Finally, the COF increased to values typically encountered in 

straight vacuum tests (COF = 0.50-0.80). It was observed that increasing the duration of 

ambient air running-in increased the duration of the very low COF regime under vacuum. 

The authors suggested that the causes o f the subsequently observed very low COF regime 

in vacuum were the creation of C -H  bonds containing an easy-shear tribolayer on the
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contact surface of the pin during the ambient air running-in period. The passivation of the 

coating surface by the desorption of residual water molecules on the chamber wall 

(adsorbed during ambient air running-in) during the vacuum test helped to maintain low 

COF.

Miyoshi [96] studied the tribological behaviour o f hydrogenated DLC coatings (44.4 

at.% H) deposited by the PACVD method under different power densities. A low COF of

0.1 was observed when testing occurred in nitrogen rather than in air with 40 % RH (COF 

= 0.2). The DLC coating deposited at 300 W power density was annealed at 700 °C in 

vacuum and the test was repeated. The resulting behaviour o f the annealed coatings 

resembled that o f the non-hydrogenated DLC coatings: the COF in air was initially lower 

than in nitrogen. The author attributed this observation to the formation of a graphitic top 

layer on the coating surface during annealing. However, as the test continued the COF in 

air increased and became equal to the value for the as-deposited coating—suggesting that 

the friction behaviour of the DLC coatings was dependent on the mechanical and 

chemical interactions between the sliding pairs and the testing environment.

Andersson et al. [86] [92] demonstrated the varying effects of water vapour pressure 

on the friction behaviour o f NH-DLC and H-DLC (39 at.% H) coatings by conducting 

self-mating tests using a ball-on-flat configuration under a normal force o f 1 N and 

velocities in the range o f 0.025 and 0.075 m/s for approximately 100 revolutions. The 

COF values for the NH-DLC and H-DLC coatings tested in vacuum (5x1 O'6 Pa) were 0.6

59

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



and 0.01, respectively. When water vapour was introduced into the test chamber, 

however, the DLC coatings exhibited opposite COF value trends. Specifically, the COF 

of the NH-DLC coatings decreased from 0.6 in vacuum to -0 .2  at 3 Pa of water vapour 

pressure and further to 0.07 at 2000 Pa of water vapour pressure. In contrast, the COF of 

the H-DLC coatings increased from 0.01 in vacuum to 0.035 at 460 Pa o f water vapour 

pressure and further to 0.08 at 2000 Pa of water vapour pressure. The difference in the 

friction behaviour o f the coatings under the influence of water vapour pressure is 

summarized in Figure 2. 19. The authors suggested that the decreasing COF of the 

NH-DLC coatings was caused by the passivation o f dangling carbon bonds on the coating 

surface by adsorbed water molecules. The increase in the COF of H-DLC was attributed 

to the dipole-like interactions between the counterfaces induced by adsorbed water 

vapour.

DLC coatings are sensitive to the presence of oxidizing species (oxygen, water 

vapour) during sliding [97], Donnet et al. [98] studied the respective role of oxygen and 

water vapour on the tribology of hydrogenated DLC coatings (42 at.% FI). Within the 

pressure range they studied (vacuum to 6000 Pa), oxygen had no significant effect on the 

COF value (0.01) of the DLC coatings while the testing with water vapour revealed an 

increase in COF from 0.01 to 0.1 as the water vapour pressure increased from zero to 500 

Pa. The authors attributed the change in the COF to the thickness of the carbonaceous
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Figure 2. 19 Summary of frictional behaviour o f NH-DLC (open diamonds) and H-DLC 
(full squares) as a function of water vapour pressure [92].
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transfer film formed on the counterface material (steel). A considerable amount of 

transfer film) had formed under vacuum, and this became thinner as the water vapour 

pressure increased. It follows that water vapour affects the kinetics of the formation of 

this carbonaceous transfer layer by preventing the accumulation of more transferred 

material from the original coating.

Kim et al. [84] performed friction measurements on a hydrogenated DLC film in 

ultra-high vacuum (UHV with a base pressure of ~ lx lO '11 Pa) using self-mating 

ball-on-flat tests to investigate its intrinsic friction properties without the effects of 

environmental impurities—a state achieved by rigorously controlling the testing 

environment. They exposed the coating to systematically varying vapour pressures of 

H2O, O2 , and N2 to understand the nature and extent o f the effect that each gas had on the 

coatings’ friction. The results showed that the COFs in the low-pressure regime (from 

~lx lO ‘n to 1.33 Pa) were extremely low (~ 0.004) and no notable change was observed 

for H20  vapour pressures up to approximately 1.33 Pa. At about 1330 Pa of water vapour 

pressure, the COF of the coating reached approximately 0.07. The effect of 0 2 on the 

hydrogenated DLC friction showed the same trend. At 19950 Pa—the oxygen vapour 

pressure in ambient air-CO F was about 0.03. However, a much higher O2 pressure was 

needed to induce a similar increase in friction compared to that induced by water vapour. 

Sufficiently pure nitrogen gas has virtually no effect on the COF even at atmospheric 

pressure. It was noted that the H2O and O2 effect on the friction increase observed in this
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study was reversible: the friction coefficient returned to the ultralow value when the 

excess H20  or 0 2 in the chamber was pumped out. This implied that the nature of the 

interaction between H20  or 0 2 molecules and the DLC surface consisted of physical 

adsorption, rather than a chemical reaction that permanently affected the surface 

chemistry. The difference in the strength o f the influence induced by H20  and 0 2 was 

explained by the authors as that water layers possessed greater cohesive energy than the 

0 2 layers, due to greater dipole interactions that resulted in a stronger physical barrier.

Qi et al. [99] conducted the first principles investigation of the adhesion and friction 

between NH-DLC coatings and aluminum by using density function theory (DFT) 

calculations. The experimental part of this work was done by performing pin-on-disc tests 

in ambient and dry air (40% RH and 0% RH), N2 and H2-He mixture (40 vol.% H2 - 60 

vol.% He) environments using the experimental setup in [77]. Modelling work simulated 

the adsorption of the H2, N2 and H20  at the diamond (111) surface (C surface simulating 

sp3 bonds o f DLC) in an effort to understand whether or not surface passivation would 

occur due to chemical reaction, then the work o f separation at the interface between Al 

and the reacted C surfaces (Al/C interface) as well as that between the same reacted C 

surfaces (C/C interface) was calculated. The comparison of experimental and modelling 

data is summarized in eobserved 2. 3. It is obvious that the observed experimental results 

could be successfully explained by the strength o f interactions between varying surface 

bonding structures induced by different test environments. Specifically, the highest
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air with 40% RH [99],



COF observed in N2 could be attributed to the highest work o f separation between Al/C 

(111) while the intermediate and lowest frictions obtained in air (40% RH) and in H2 

were due to the surface passivation by C-OH bonds and C-H bonds, respectively—which 

resulted in a lower work of separation.

2.2.6 Thermal Stability and the Effect of Temperature on the Tribological 
Behaviour of DLC Coatings

Hydrogenated and non-hydrogenated DLC are metastable materials with structures 

that will convert towards graphite-like carbon by either thermal activation or irradiation 

with energetic photons or particles. Heating hydrogenated DLC coatings results in the 

loss of hydrogen and CHX species, starting at about 400 °C or lower, depending on the 

deposition conditions and the dopant contained in the coatings [73][100-102], This 

prompts changes in the compositions and properties of the material-limiting the use of 

DLC in applications where elevated temperature is present. The lack of thermal stability 

is generally attributed to the loss of hydrogen, resulting in a collapse of the structure into 

a mostly sp -bonded network for H-DLC coatings. It has been reported that thermal 

activation can also induce changes in ta-C (NH-DLC) coatings—causing the conversion of

3 2sp carbon bonds to sp bonds [103]. This work suggests that the onset o f structural 

relaxation began at temperatures as low as 100 °C with near full relaxation observed at 

600 °C.
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Modifications of the DLC coatings such as doping [104-105] or bias grading [106],

i.e. varying the deposition power during manufacturing, have been carried out in order to 

increase the thermal stability, but the resulting coatings did not exhibit significant 

improvement when compared to pure DLC coatings [73][100-102]. Moreover, these 

studies have been conducted on thermally annealed DLC coatings by structural 

characterizations such as SEM, TEM and Raman spectrometry or mechanical property 

characterization. The reported maximum stable temperatures are obtained without the 

presence of tribological loading (e.g. sliding) during the tests.

Vanhusel et al. [107] studied the wear behaviour of H-DLC coatings (containing 

35 at.% H measured by elastic recoil detection analysis (ERDA)) that were produced by 

PACVD in ambient air. Wear experiments were conducted up to a maximum temperature 

of 300 °C and the investigation was conducted by running low-amplitude oscillatory 

ball-on-flat tests using corundum (AI2 O3) as the counterface. They observed a decrease in 

COF value when the test temperature was increased beyond 100 °C—from 0.13 at room 

temperature to 0.07 at 300 °C—and the wear scars became larger and deeper. The same 

tests were performed on annealed samples (300 °C for 16 h) and similar results were 

recorded. They proposed that the dehydrogenation and/or structural change from sp3- to 

sp2- bonded carbon o f a very thin top layer o f the coating were the reason for the decrease 

in COF and the increase in wear rate at elevated temperatures.
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Bermond et al. [108] performed elevated temperature pin-on-disc tests on DLC 

coated 100C6-steel (equivalent to AISI 52100) couples at elevated temperatures up to 

400 °C. The DLC coatings studied had a multilayer structure containing silicon deposited 

by combined PVD and PACVD processes, which resulted in an estimated hydrogen 

content of 10 at.%. At room temperature and up to 200 °C, the COF values did not 

exceed 0.3 and the maximum wear track depth did not exceed 2 pm. A transfer layer of 

graphite and graphite-silica was found to act as a solid lubricant and reduced both 

friction and wear. At 400 °C, wear was catastrophic with a depth o f 15 pm on a 4 pm 

coating. They concluded that the failure of the DLC coating was due to the softening of 

the substrates and suggested that the DLC-coated 100C6-steel discs not be used at 

temperatures higher than 200 °C.

Konca et al. [109] studied the tribological behaviour of NH-DLC coatings at elevated 

temperatures against 319 Al alloy at 25, 120, 300 and 400 °C in air using a 

high-temperature tribometer. Three kinds of coatings containing 1.28 at.% 

hydrogen-namely 80-V DLC (H=10.0 GPa, E=142 GPa), 60-V DLC (H=7.8 GPa, E=99 

GPa) and Teer Coatings Graphit-iC™ (H=12.0 GPa, E=175 GPa)—were deposited by 

unbalanced magnetron sputtering deposition, then studied under an applied load of 4.9 N 

and a sliding speed of 0.12 m/s. All three coatings exhibited a trend of increasing COF 

values and wear rates as the testing temperature was elevated. For example, the steady 

state COF and wear rate for the 80-V coating were 0.17 and 1.25x1 O'6 mm3/m at 25 °C,
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respectively. At 120 °C, the values increased to a COF of 0.30 and a wear rate of 

3.08><10"5mm3/m. The COF o f the 80-V coating was 0.55 and the wear rate was 

3.36x10~4mm3/m at 300 °C, in addition to observed coating removal from the substrate, 

and Al adhesion. For the 60-V DLC, coating penetration was observed at 120 °C. Al 

adhesion onto the Graphit-iC™ occurred at 400 °C. The authors suggested that the 

degradation of the coating’s wear resistance was due to i) inefficiency of the DLC coating 

surfaces’ passivation mechanism by water vapour and ii) loss o f the coating’s room 

temperature stability at elevated temperatures.

Krumpiel et al. [110] tested three different DLC coatings (NH-DLC, H-DLC and 

titanium doped H-DLC) against M2 steel balls at elevated temperatures (up to 450 °C) 

and in vacuum (10~3 Pa). The DLC coatings showed low wear rates (<2.7xl O'7 mm3 

N 'W 1) at room temperature in ambient air. The NH-DLC failed within 10 m (with a 

rapid increase of the friction coefficient from 0.35 to 0.6). Ti doped H-DLC and H-DLC 

failed within a 100 m sliding distance where a slow increase o f the friction coefficient 

from 0.3 to 0.55 was observed. The authors also noted a severe decrease in hardness to 

less than 50 HV for all coatings after heating them to 450 °C in ambient air—a result 

related to the lack o f hydrogen content in the carbon network as well as drastic oxidation 

of the coating.

Ni et al. [ I l l ]  studied the friction, wear and tendency towards aluminum adherence 

for both imbalanced magnetron sputtering deposited hydrogenated (14 at.% H) and
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non-hydrogenated DLC coatings at room and elevated temperatures by testing them 

against 319 aluminum pins. At room temperature (40% relative humidity, 25 °C), the 

friction coefficient of the NH-DLC was 0.1, and that of the H-DLC decreased from 0.22 

to 0.13 after a running-in period. The H-DLC maintained its low friction coefficient of 

about 0.18 at 240 °C, but the COF of the NH-DLC increased dramatically to about

0.65-approximately the same value as the friction coefficient of the A319 aluminum 

alloy against itself. Aluminum transfer to the NH-DLC coating at 240 °C was confirmed 

by SEM and EDS results. The wear coefficient o f the NH-DLC was approximately 40 

times higher than that of the H-DLC at 240 °C. The authors concluded that graphitization 

was responsible for the accelerated wear.

High temperature tests on DLC have also been conducted using a more 

application-oriented setup. Reisel et al. [112] used a compression-spin test configuration 

that simulated the forming processes with rotating tools and a high compression load (an 

axial force of 5000 N) to study the behaviour of DLC under high mechanical and thermal 

loads. H-DLC and silicon doped DLC (Si-DLC)—both deposited by PE-CVD—were 

tested in the experiments. Other low wear friction coatings as well as industrial lubricants 

(graphite, molybdenum disulfide and hexagonal boron nitride) were tested to provide a 

comparison. A hardened steel (62 HRC) was used as the substrate, and the coated, 

respectively, pre-lubricated punch was pressed with an axial force o f 5000 N into the 

sleeve, which was heated up to the contact temperature of the modelled forming process.
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Figure 2. 20 Schematic of the compression-spin test used by Reisel et al. [112]. This 
experimental setup was adapted by the authors to simulate the forming processes with 
rotating tools and high compression load.
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They reported that at test temperatures o f 500 and 700 °C, DLC showed the best 

performance of all tested coatings and lubricants for a punch rotating speed of 

approximately 1 0 0  mm/min for the longest sliding distance and without failing. 

Si-DLCseemed only suitable at high temperatures for the given load conditions of the 

compression-spin test because it presented a similar behaviour like an unlubricated punch 

between room temperature and 500 °C.

2.2.7 Effect of Doping and Alloying

From a technological point of view, a DLC coating capable o f providing a low,

predictable and stable COF across a wide range of relative humidities is important to 

many applications. As stated above, DLC in its pure (monolithic) form cannot comply 

with such a demand. Non-metallic additive atoms such as Si and F and metal have been 

incorporated into DLC coatings [113-114] to reduce the moisture sensitivity of 

hydrogenated DLC coatings. By systematically controlling the content o f various dopants 

in DLC coatings, Gilmore and Hauert [113] explored the possibilities for optimising and 

tailoring the humidity sensitivity o f the tribological properties o f DLC coatings. Three 

alloying elements, Si (up to 35.5 at.%), F (up to 18.6 at.%) and Ti (up to 20 at.%) were 

added to H-DLC coatings. The friction and wear properties for the resulting coatings 

were studied by sliding against 100Cr6 steel balls and aluminum pins in a relative 

humidity range between 5 and 85% —recorded and summarized in Table 2. 4. It is 

notable that through the addition of a few percent o f Si (approx. 4 at.% in the case of a
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JJ-Bi t i e s 4 Wear rate 

X10 '}

F-ss Si«fi 1*53% Wear rate 
( W - J T 1 n t" 1 
X 10 7)

None 0.0 0.10 0.16 0.20 1.1 0.051 0.14 0.14 1.2
None 0.0 0.046 0.059 0..T3 1.3 0.025 0.061 0.082 1.0
Ffoae 0.0 0.066 0.083 0.16 1.7 0.034 0.082 0.097 1.3
Nose 0.0 0.034 0.14 c u e 0.94 0.026 0.078 0.089 1.3
Nooe 0.0 0.073 0.079 0.092 2.1 0.038 0.082 0.077 1.7
Si 1.6 0.057 0.11 0.097 3.9 6.060 0.099 0.10 4.3
Si 1.6 0.0SS6 0.073 0.085 4.3 0.0.57 0.092 0.095 32
Si 2.7 0.073 0.089 0.11 5.6 0.062 0.078 0.088 4.3
Si 3.9 0..080 0.059 0.063 7.7 0.049 0.056 0.073 5.1
Si 3.9 0.082 0.066 0.079 8.0 0.046 0.080 o .u S.S
Si 4.4 0.066 0.063 0.081 6.5 0.046 0.066 0.078 6.0
Si 5.7 Failed 0.054 Failed Failed 0.045 0.064 0.088 5.3
Si 5.7 0.094 0.064 0.070 7.5 0.0S2 0.070 0.088 6.5
Si 22.1 0.60 0.032 0.049 2.3 0.6! 0.063 0.056 25
Si 35.5 0.55 007 Failed Failed 0.61 0.059 Failed Failed
Si 35.5 0.59 Failed Failed Failed 0.52 Failed Failed Failed
F 1.2 0.11 0.13 0.16 1.6 0.043 0.10 0.11 1.8
F 2.6 0.22 0 16 0.15 0.89 0.11 0.12 0.11 2.4
F 3.5 0.76 0.23 0.17 0.77 0.093 0.14 0.098 1..6
F 18.6 0.85 0.51 0.43 1.1 0.18 0.27 0.23 1.3
Ti 0.0 0.069 0.12 0.14 3.0 0:041 0.078 0.1© 2.0
Ti 0.0 0.057 0.14 - 2.9 6.050 0.09© 0.12 2.4
Ti 0.0 0.11 0.12 0.14 1.3 0055 0.092 0.11 2.0
Ti 5.8 0.055 0.13 0.13 1.2 0.052 0.1! 0.098 1.7
Ti 7.9 0.062 0.1© 0.12 1.3 0.040 0.091 0.098 1.2
Ts 14 0.065 O H 0.12 1.7 0.032 0.095 0.11 2.2
Ti 20 0.040 O H 0.11 2.6 Failed Failed Failed Failed

Table 2. 4 Average friction coefficient and total wear values for the various 
coating/counterface combinations studied by Gilmore and Hauert [113]. The effect of 
different dopants and dopant concentrations on the humidity sensitivity o f the coatings 
are reflected.
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steel counterface and approx. 6  at.% in the case of an aluminum counterface), it was 

possible to render the DLC practically insensitive to changes in ambient humidity. Its 

COF was essentially stabilized at approximately 0.075 against steel as well as aluminum 

over the relative humidity range of 5-85%. With the addition of approximately 2-3 at.% 

F, the COF of F-DLC could be stabilised at approximately 0.15 against steel and 0.11 

against aluminum for the relative humidity range o f 5-85% [113]. The addition of Ti 

appears to be ineffective for controlling the tribological humidity sensitivity o f DLC. In 

the case o f Si alloyed DLC, the improvement in moisture sensitivity comes at a 

price-namely a decrease in wear resistance (almost 2 0 -fold increase in wear rate with 

20% Si addition). On the other hand, the addition of F or Ti did not diminish the wear 

resistance and even slightly improved it for concentrations up to 10 at.%. It is interesting 

to mention that by adding higher concentrations (above approx. 10 at.% in the case o f Si 

and above approx. 3 at.% in the case of F) it was possible to obtain inverted moisture 

sensitivity (decreased COF with increasing humidity level) when rubbing against both 

steel or aluminum in the case o f Si-DLC, and against steel only for F-DLC (Table 2. 4).

Generally, metal doped DLC (Me-DLC) coatings with low metal content (atomic 

ratios of Me/C up to approx. 0.3) have lower compressive stress than pure DLC (< lGPa 

[115-116]). These properties make metal doping a promising method for the 

improvement of DLC coatings, and studies on Me-DLC have focused more on the 

synthesis and characterization o f the coatings than on exploring their tribological
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mechanisms [51][117-119], A brief account of the tribological studies on 

tungsten-containing DLC coatings is presented in this section, due to its relevancy to the 

current work.

Strondl et al. [120] studied the tribological properties of tungsten-containing H-DLC 

coatings deposited by magnetron sputtering deposition under different plasma densities 

applied during deposition by testing the coatings against alumina balls under 0 . 0 1 0  m/s 

for 15000 revolutions (testing load was not specified by the authors). The COF for all the 

samples deposited under different plasma densities was a uniform 0 .1 -0 .2 , while the wear 

resistance of the coating was measured with a Calo tester operating with an aluminum 

suspension. A slight decrease occurred—from 6.4* 10~15 m3N-lrrf1 for the coating 

deposited under the lowest plasma density, to 4 .5xl0 " 15 m3N"lm"lfor the sample deposited 

under the highest plasma density.

Hieke et al. [121] compared the mechanical and tribological properties o f two types 

of tungsten-containing H-DLC coatings (W-H-DLC) against an H-DLC coating reference. 

The tungsten containing DLC coatings studied by the authors are the same types of 

coatings studied in this work. The first type of W-H-DLC was deposited by a PVD 

process (denoted as WC-DLC). The second type of sample was produced by applying an 

H-DLC top layer by r.f. PACVD on the W-H-DLC coating of the first type (denoted as 

DLC/WC-DLC). The thickness of the top layer on the DLC/WC-DLC coating and the 

reference H-DLC coating were both 1.5±0.1 pm. The COF values o f the coatings were
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measured by pin-on-disc tests against 100Cr6 steel balls under 3N load and 30 rpm 

rotation speed in ambient air (19 °C, 50% RH), and the wear rates were measured by ball 

cratering method. It was observed that the wear rate of both the reference H-DLC and the 

DLC/WC-DLC coating was 0.7 xlO ' 15 n^N ’W 1 with a six fold increase to 4.2x 10 15 

m3N '1m 1 observed for the WC-DLC coating. However, the COF values of the three types 

o f coatings were similar-specifically 0.2±0.06. Nanoindentation measurements revealed 

that the hardness of the WC-DLC coating was 11 GPa while the values for H-DLC and 

DLC/WC-DLC were 22 and 21 GPa, respectively.

As observed in [121], tungsten containing DLC provided desirable tribological 

properties under ambient condition. Hence, given the fact that doping may increase 

temperature and environment stability, it is important to characterize the friction and wear 

o f WC-DLC and DLC/WC-DLC under these conditions. This is one of the main 

objectives o f the work undertaken in this thesis.

2.3 Survey Summary of the Literature

The structure and properties of two important carbon based coatings, namely B4C

and DLC have been surveyed in this chapter. The present literature survey on the 

tribological behaviour of B4 C coatings revealed the following:

1. Boron carbide coatings vary in structure and composition due to the large B-C 

homogeneity range.
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2. Magnetron sputtering deposition produces boron carbide coatings with a B/C 

ratio of nearly 4, and their tribological properties can be tailored through the 

addition of reactive gas.

3. The self-lubricity of boron-containing surfaces is caused by the sequential 

formation on the boron-containing surface of boron oxide, and then boric acid.

4. A finite life run-in coating, which wears out after a certain specific period of 

sliding, can be achieved by utilizing the high abrasiveness of boron carbide 

coatings to increase the fatigue resistance o f the coated parts.

5. The most widely used counterface materials for the study of the tribological 

behaviour of B4 C coatings were different types of steel (52100, 440C). No 

report on B4C against aluminum has been presented, signifying a need for the 

present work in order to investigate the transfer and adhesion of an Al alloy 

onto a B4C coating as well as to analyze the tribological behaviour of a B4 C 

coating dry sliding against an aluminum alloy for the purpose o f tool coating 

development.

The literature on the tribological behaviour of the DLC coatings was more extensive 

and the survey provided the following information:

1. DLC is a metastable form of amorphous carbon containing a significant

fraction of sp3 bonds mixed with sp2 bonds. The mechanical properties of
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"5

DLC coatings directly correlate with the fraction o f sp hybridised carbon in 

the coatings.

2. The friction and wear behaviour of DLC coatings depends strongly on the 

formation of an easy-to-shear, carbonaceous material at the sliding interface 

and the interaction of the carbon containing material with the gaseous species 

present in the test environment.

3. Sufficient hydrogen content (40 at.%) within the DLC coating (H-DLC) leads 

to very low COF and wear rates in inert environments while the introduction 

of oxygen and especially water vapour adversely affects their tribological 

behaviour.

4. DLC coatings with low hydrogen content (< 2 at.%, NH-DLC) show high

COF and high wear rates in an inert environment. The presence of appropriate 

reactive gaseous species in the test environment is necessary for them to 

exhibit low COF and wear rates. They have about the same friction and wear 

under ambient conditions as H-DLC coatings.

5. Increasing the test temperature increases the wear rate of DLC coatings

regardless of their hydrogen content and structure.

6 . There is a temperature limit above which the DLC coatings graphitize and

oxidize significantly. This temperature depends on the structure and

composition of the coating.
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7. Doped DLC coatings have mostly been studied for their deposition and 

characterization rather than to discover their tribological properties under 

different temperature and environment conditions. Limited work suggest that 

they extend the temperature and environment stability o f DLCs.

8 . The most used counterfaces for the study of the tribological behaviour o f DLC 

were different steels (52100, 440 C, M52 etc.), ceramic-based materials or 

their coated versions.

9. Sliding against aluminum, while well reported, has not been extensively 

studied. It is essential to explore the tribological behaviour o f WC doped DLC 

coatings dry sliding on an Al alloy in order to fulfill the objectives of the 

current work. Particularly, the effect of WC addition needs to be studied.

78

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



CHAPTER 3 EXPERIMENTAL PROCEDURES

This chapter describes the experimental methods and analysis techniques that have 

been used to characterize the materials tested in this work. The pin and substrate 

materials used in the wear tests are introduced in terms of their preparation and structure. 

Boron carbide (B 4 C) coatings and two types of DLC coatings are studied in this 

work—namely WC-DLC and DLC/WC-DLC—and their preparation, mechanical 

properties and structural and surface characteristics are presented. Finally, the tools and 

procedures used for the evaluation of the test results, including the calculation of coating 

wear rates and the quantification of material adhered to a coating sample, are explained.

3.1 Characterization of Test Materials

3.1.1 Thickness Measurements of Coating Using Radical Sectioning Method

Ball cratering is a conventional method used to measure the thickness of coatings. In

this technique, the coated surface is subjected to wear by rotating a sphere (with a 

diameter of R) pressed against it (Figure 3. 1 a)). An abrasive suspension, usually 

diamond, is fed into the contact region between the sphere and the coating surface to 

induce three-body abrasive wear o f the coated sample. This process results in the 

formation of a wear crater on the coated sample. For example, the crater on the 

DLC/WC-DLC sample is shown in Figure 3. 1 b). By measuring the inner diameter (d)
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Figure 3. 1 a) Side view of the radical sectioning configuration. A hard ball is pressed 
against the coated sample and abrasive suspension is fed to the contact region to remove 
material by three-body abrasive wear.b) Top view of the resulting worn crater of the 
DLC/WC-DLC coating. The diameters of the inner and outer circles (d and D) are 
measured to calculate the coating thickness (t) using Equation 3.1.
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and outer diameter (D) of the circles, the thickness o f the coating (t) can be calculated 

from the geometry of the wear scar using the following equation,

In this study, the CSM CALOTEST® machine—located at General Motors Global 

Research and Development Center in Warren, Michigan, USA (referred as GM R&D 

Center hereafter in the text)—was used to measure the thickness o f the coatings tested. 

The CSM CALOTEST® used hardened steel balls with 25.4 mm diameters to create the 

craters in this work. In Figure 3. 1 b), D = 668 pm, d = 492 pm which, according to 

Equation 3.1, makes t = 2.006 pm. Mean values o f the thicknesses of the coatings were 

determined by averaging three measurements.

3.1.2 Mechanical Property Measurement Tools

3.1.2.1 Rockwell Hardness Measurements

A Rockwell Macromet® (Model 1800-5100T) hardness tester at the University of

Windsor was used to measure the Rockwell C hardness (HRC, Rc) of the M2 tool steel 

substrates. The Rockwell C test uses a conical diamond indenter (0.2 mm tip radius) with 

a major load of 150 kg. An average of eight measurements was taken to obtain the 

reported value.

Equation 3 .1
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3.1.2.2 Vickers Micro Hardness Measurements

A Buehler Micromet II® (Model 1600-9000) hardness tester at the University of

Windsor was used to measure the Vickers microhardness values (HV) of the pin material 

as well as the coatings using a square-base diamond pyramid indenter (136 ° tip angle). 

The indentation load applied to measure the pin material was 100 g. All pre-set loads 

between 5 g and 1000 g (inclusive) o f the tester were applied.

3.1.2.3 Nanoindentation of Coatings

To investigate a broad range o f hardness responses for the coatings—specifically at

very low loads—nano-indentation o f the coatings was performed. An MTS Nano indenter 

XP located at GM R&D was employed to measure the hardness. In addition, elastic 

moduli were also determined. In this technique, a small diamond tip (Berkovich indenter) 

is progressively forced into the coating to a certain depth (hmax) or until a preset load 

(Fmax) is reached. The entire loading and unloading process is recorded as a 

load-displacement curve. As an example, the indentation load-displacement curve for the 

B4 C coating is shown in Figure 3. 2. The hardness and elastic modulus values o f a 

sample are extracted from its indentation load-displacement curve using the analysis 

methods developed by Oliver and Pharr [122]. This analysis requires knowledge of the 

area function of the indent, i.e. the expression of the contact area (A) of the indent in 

terms of the distance from its tip (h). The area of a perfect Berkovich indent is A = 24.5h2. 

The indentation of a sample of known hardness and elastic modulus (most commonly
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Figure 3. 2 The indentation load-displacement curve for the as-received B4 C coating.
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fused silica) is used to calibrate the instrument. The hardness H  of the sample can simply 

be calculated from the ratio of the maximum applied load Fmax to the contact area of the 

indent:

where E, and vt are the elastic modulus and the Poisson’s ratio of the indenter and v, is the 

Poisson’s ratio of the sample. During the nanoindentation measurements of the coatings, 

the maximum depth o f indentation (hmax) was kept at less than 1 0 % of the total coating 

thickness in order to minimize the substrate effect. Each nanohardness value reported in 

the current work is averaged from at least ten measurements.

H = max Equation 3 .2
A

To calculate the elastic modulus of the sample, the slope o f the initial part of the

unloading curve is calculated:

Equation 3 .3

where E* is called the combined modulus. The elastic modulus of the sample (Es) is then

calculated using the following equation:

Equation 3. 4
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To cover a broader range of hardness responses for the coatings, the results of the 

Vickers hardness tests were converted into metric units (GPa) and plotted together with 

the nanoindentation results. The combination of the two test scales enables the hardness 

response of the coatings be examined comprehensively—at both the coating response 

dominated region and substrate response dominated region. The results are presented in 

Section 3.2.2.

3.1.3 Structural Characterization Methods

3.1.3.1 Sample Preparation by Cryogenic Fracture Method

Cryogenic fracture method was used to create a cross sectional view of the B4 C

coating in order to investigate the coating’s microstructure. The coated steel disc was cut 

from the uncoated side using an electrical discharge machine (wire EDM) to create a 

narrow groove (0.6 mm width) as shown in Figure 3. 3. A layer o f 0.5 mm thickness of 

material was left uncut. The sample with the groove was then submerged into liquid 

nitrogen (T = -196 °C) and fractured by driving a chisel into the groove.

3.1.3.2 Sample Preparation by Focused Ion Beam

A state of the art focused ion beam apparatus located at the University of Michigan

Ann Arbor, (Michigan, USA) was applied as a micromachining tool to create a 

cross-section of the DLC/WC-DLC coating and image it to clarify the coating layer 

structure. In this focused ion beam micro-machining process, a beam of gallium was 

accelerated to an energy of typically 30 keV, and then focused on the sample by

85

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Coated surface

*--------------------- 25.4 mm---------------  *

Figure 3 .3  Schematic drawing of the cutting scheme for cryogenic sample creation: a) 
Isometric view; b) Right view.
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electrostatic lenses. When the high-energy gallium ions struck the sample, they removed 

the sample atoms from the surface by sputtering. Controlling the location of the ion beam 

allowed for the formation o f trenches to be cut into the coatings, revealing the 

cross-sectional structure o f interest. The ion beam was then used to image the 

cross-sectional structure.

3.1.3.3 X-ray Diffraction

A Siemens D5000 diffractometer using a Cu Ka (A. = 1.5406 nm) source tube at the

GM R&D Center was used for the X-ray diffraction studies. Sample data was collected 

over a two-theta range, from 1 0 - 1 0 0  degrees for the studied materials.

3.1.3.4 Raman Spectroscopy

Raman spectroscopy is a technique that uses light to obtain structural information of

materials utilizing the Raman effect. It is a standard, non-destructive technique for the 

characterization of carbon-based materials 79. When a beam of light impinges on a 

carbon substance, most o f the photons are elastically scattered without an energy shift. 

However, a small portion of the photons exite the molecules in the sample and are then 

scattered inelasticaly. Briefly, the Raman effect is the shift in the energy o f the 

inelastically scattered light from the incident light by the various vibration modes of the 

inspected substance. Such shifts in energy can be related to the different atomic 

arrangements induced by the complex bonding structures of carbon [123],

The Raman spectrum is a plot of the intensity o f the scattered light against the energy
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difference between the elastically and inelastically scattered light. For amorphous carbon, 

the Raman spectra are characterized by a peak centered around 1300-1380 cm ' 1 (D band) 

and a peak centered around 1520-1580 cm ' 1 (G band). The D band is correlated to the 

breathing mode of sp2 sites only in carbon chains and the G band is derived from the 

stretch vibration of any pair of sp2 sites. The unususal fact is that G and D bands of 

varying intensity, position and width dominate the spectra of DLC coatings even when no 

widespread graphitic structure is present [124], The thorough interpretation o f Raman is a 

well studied topic and beyond the scope of this work. Thus a general guideline is applied 

to extract structural information from the spectra obtained: the G band frequency 

increases with decreasing sp3/sp2 ratio and the D band intensity decreases with increasing 

sp3/sp2 ratio [79][124],

The Raman spectra o f the DLC coatings tested in this work were obtained using the 

spectrometer at the GM R&D Center. The Raman spectra were collected by a Dilor 

microprobe system fitted with a 10X objective. Approximately 25 mW of YAG laser 

light (532 nm) was focused onto the samples, and at least two 60-second exposures were 

signal-averaged for each spectrum.

3.1.4 Surface Profilometry

A Wyko NT 1100 optical surface profilometer at the University of Windsor was used

to characterize the surface topographies of the samples before and after the 

tests—including measurements of sample surface roughness and profile acquisition of the
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wear tracks.

3.1.5 Elastic Recoil Detection

Elastic recoil detection (ERD) is a method used specifically to detect hydrogen in

surface layers of up to approximately 1 pm thickness. This technique is non-destructive, 

absolute, fast and independent of the host matrix and its chemical bonding structure 

[125].

In ERD, a beam of 4He+ ions are accelerated to 1-2 MeV and directed at the sample 

surface in a glancing angle geometry. The hydrogen atoms are knocked out o f the sample, 

and form recoiled hydrogen ions. The concentration of hydrogen is then extracted from 

an analysis of the energy spectrum of the detected hydrogen ions.

In the current work, the hydrogen content measurement of the DLC coatings were 

conducted at Michigan Ion Beam Laboratory for Surface Modification and Analysis 

located at the University of Michigan Ann Arbor (Michigan, USA).

3.2 Description of the Coatings and the Substrate Material

3.2.1 M2 Steel Substrates

An annealed M2 tool steel bar, 2.54 cm in diameter, was machined to provide the

substrates. The nominal composition (wt.%) of M2 steel (AISI type M-2) is shown in 

Table 3. 1. The M2 steel bar was first cut into 1 cm thick discs. The discs were then 

subjected to a heat treatment procedure that consisted of austenizing at 12,00 °C for 3-4 

minutes followed by air cooling to 25 °C and then tempering at 560 °C for 120 minutes.
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Table 3 . 1 Nominal chemical composition (wt.% of the M2 steel substrates

% c % Cr % V % W % Mo % Mn % Si % Fe
0.83 4.0 2.0 6.0 5.0 0.27 0.35 Balance

Figure 3. 4 Optical microstructure of M2 steel. The small particles are various carbides.
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The purpose of the heat treatment was to increase the hardness of the substrates to 

provide better support to the coatings.

Coarse grinding of the hardened M2 steel discs was conducted by a grinding machine 

to remove the burr marks from previous cutting, followed by fine grinding in running 

water using SiC emery papers (120, 240, 400 and 600 grit). Water-based diamond 

suspensions of 3 and 1 pm were used to polish the disc surfaces. The final hardness of the 

M2 steel discs was 63±2 Rc. The final surface roughness of the polished M2 steel discs as 

measured by the optical surface profilometer was 9.5 ±4.1 nm (Ra). The optical image of 

the microstructure o f the M2 steel after polishing is shown Figure 3. 4. The polished 

discs were sent to Ionbond© Toronto (1315 Industrial Road, Unit 10 CA-Cambridge, 

Ontario N3H 4W3) for the deposition of coating samples.

3.2.2 Hardness Response of the Coatings over Varying Contact Severity

Hardness is one of the longest used and most widely accepted parameters cited to

characterize the contact response o f tribological materials. The relationship between 

hardness and the material’s wear rate is straightforward. Many different testing scales 

have been developed to better describe the hardness response of a particular material. 

Among these are Rockwell scales and the Vickers microhardness scale. A thorough 

treatment of the issues o f hardness testing can be found in [126].

The hardness response of a coated system is more complex than that of bulk 

materials. The measured hardness of a coating on its substrate is strictly a “composite”
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value consisting of both contributions from the coating and from the substrate beneath it. 

On contact scales that are less than the coating’s thickness, the coating dominates the 

coating response while the substrate response dominates much more severe scales. The 

typical hardness response with respect to varying contact scales for a system consisting of 

a hard coating and a soft substrate is shown in Figure 3. 5. Modelling work combined 

with experimental studies has been conducted in order to measure and explain the 

composite behaviour o f coated systems for the purpose of better understanding and 

controlling their wear properties [127-130].

In the current study, a unitless parameter, relative indentation depth (RID), as 

proposed by Korsunsky et al. [127] is chosen to represent the contact severity during 

hardness measurements. RID is defined as the ratio of the maximum indentation depth 

(hmax) to the coating thickness (t),

RID = hmm / 1 Equation 3. 5

The hardness responses of the three types of coatings studied were plotted against 

RID (Figure 3. 6). The first two points presented for each coating were measured by 

nanoidentation and proved significantly higher than those measured using a Vickers 

hardness tester. The best exclusion of substrate contribution was obtained at 200 nm 

indentation depth (approx. 1 0 % coating thickness), thus the corresponding values were
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results for a 2 0 -pm-thick nickel coating on copper substrate 130.

93

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



30

(0
CL
0
</></)
(1)c“D
cu1

25

20 -

15 -

10 -

b 4c

W C -D L C
D L C M /C -D L C

X

0.01 0.1 10
RID
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reported as “coating hardness.” As the indenter penetrated deeper into the coated system, 

a drastic drop in the hardness value was observed for all the coatings, converging at 

-7.76 GPa—approximately equivalent to the M2 substrate hardness (63±2 Rc). However, 

no abrupt decrease in the measured hardness was observed for the coatings tested, which 

indicated that catastrophic coating failure by delamination and coating removal did not 

occur even when the coatings were penetrated by the indenter (RID > 1). This is 

indicative o f good coating adhesion to the substrate.

3.2.3 Boron Carbide Coating

Boron carbide (B4 C) coatings were provided by Ionbond© Toronto. The commercial

designation of said B4 C coating is TriboCote® 50. The coating was deposited by the 

planar magnetron sputtering o f a B4 C target using Ar as the sputtering gas [131] on 

polished M2 steel discs as described in Section 3.2.1. The thickness of the B4 C coating 

was measured to be 2.0 ± 0.2 pm. The hardness and elastic modulus values of the B4 C 

coating were measured as 18.5±1.3 GPa and 273.2±10.8 GPa, respectively. The surface 

roughness (Ra) of the B4 C coating was measured as 10.8 ±1.2 nm.

The XRD pattern of the coated sample (Figure 3. 7) exhibited strong peaks from the 

M2 substrate. The B4 C phase was observed, but only slightly above the background at 20 

values o f 23, 34 and 36 degrees. This was indicative of a partially crystallized coating 

structure. The SEM image of the B4C coating cross-section created by cryogenic fracture 

method was interpreted as exhibiting both a “glassy” amorphous region and a
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“crystallized” columnar region (Figure 3. 8). The B4C coating, in turn, was defined as a 

partially crystallized coating.

3.2.4 Diamond-like Carbon Coatings

3.2.4.1 WC-DLC Coatings

Tungsten doped hydrogenated diamond-like coatings (WC-DLC) were deposited on

hardened M2 steel discs (63±2 Rc) by Ionbond© Toronto using the reactive planar 

magnetron sputtering deposition of tungsten carbide targets with Ar and a hydrocarbon 

reactive gas [131]. The commercial designation o f said coating is TriboCote® 40.

The thickness of the WC-DLC coating was measured to be 2.4±0.008 pm. At an 

indentation depth of 200 nm, the hardness and elastic modulus values of the WC-DLC 

coating were measured as 21.8±1.9 GPa and 167.2±9.7 GPa, respectively. The surface 

roughness (Ra) o f the WC-DLC coating was measured as 11.1±1.9 nm while their 

hydrogen content was measured to be 25 at.%.

The Raman spectrum of the as-deposited WC-DLC coating (Figure 3. 9) exhibited a

1 n
well defined peak around 1526 cm' , indicating the coating had a considerable ratio of sp 

bonded carbon.

The XRD pattern of the as-deposited WC-DLC coating (Figure 3.10) did not exhibit 

any sharp peaks, but a diffuse peak around 38° indicated that the coating had an 

amorphous structure. Combined with information disclosed by [131], the WC-DLC 

coating was defined as a coating consisting of tungsten carbide particles embedded in an
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Figure 3. 8  Cross section o f the B4 C coating.
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Figure 3. 10 XRD pattern of the WC-DLC coating. The broad peak spans 30-50° is 
indicative of an amorphous structure.

99

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



amorphous hydrogenated carbon matrix. The schematic drawing of the WC-DLC coating 

structure is presented in Figure 3.11.

3.2.4.2 DLC/WC-DLC Coating

The second type of DLC coating was designated as DLC/WC-DLC, which was a

multilayered coating provided by Ionbond© Toronto, commercially designated as 

TriboCote® 40/41. It was prepared by depositing a layer of WC-DLC coating using the 

same procedure as the WC-DLC coating, followed by the application of a top DLC layer 

using plasma assisted chemical vapour deposition [131]. The layered structure of the 

DLC/WC-DLC coating is confirmed by both plane view SEM image and FIB 

cross-section image (Figure 3. 12) The EDS spectrum obtained from the entire imaging 

area as shown in Figure 3 .13. Tungsten was detected, which was probably in the form of 

WC particles.

The thickness of the DLC/WC-DLC coating was measured to be 2.1±0.2 pm. At an 

indentation depth o f 2 0 0  nm, the hardness and elastic modulus values of the 

DLC/WC-DLC coating were measured as 26.0±1.0 GPa and 220.4±6.8 GPa, respectively. 

The surface roughness (Ra) of WC-DLC coating was measured as 8.9±1.3 nm while the 

hydrogen content of DLC/WC-DLC coatings was measured to be 24 at.%.

The Raman spectrum of the as-deposited DLC/WC-DLC coating (Figure 3. 9) 

exhibited a well defined peak around 1530 cm '1, indicating that the top DLC layer had a 

amorphous carbon structure with considerable ratio of sp3 bonded carbon. The schematic
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Figure 3 . 11 Schematic drawing of WC-DLC coating structure (not to scale).
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Figure 3. 12 a) Plane view SEM image demonstrating the layered structure of 
DLC-WC-DLC coating (in this deliberately selected view, the coating’s top layer 
(H-DLC) was delaminated during deposition) b) FIB cross-section (courtesy o f Dr. 
Meng-Burany) of the DLC/WC-DLC coating. A platinum protective layer was deposited 
on top of the coating before the ion milling process. A layered structure of the 
DLC/WC-DLC coating can be recognized.
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Figure 3. 13 EDS spectrum obtained from the whole area shown in Figure 3. 12 a), 
which presents the evidence of tungsten content in the coating (within WC-DLC layer).
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drawing o f the DLC/WC-DLC coating structure is presented in Figure 3. 14. The 

properties of the three studied coatings were summarized in Table 3. 2.

3.3 Description of 319 A1 Alloy Counterface

The tribological behaviour o f the coatings was investigated against an A1 319 alloy

because it is widely used throughout the automotive industry to manufacture components 

such as engine blocks. 319 A1 alloy pins o f 15 mm in length were made out of a cast alloy 

brick. One end of the pin was machined into a hemisphere o f 3 mm in diameter. The 

machined pins were then heat treated in air to T5 condition (200 °C for 8  hours). The 

nominal composition of the 319 A1 alloy is given in Table 3. 3. The optical 

microstructures of the 319 A1 pins are shown in Figure 3. 15. The average hardness of 

the 319 A1 pins was 96.2±11.7 HVioo-

3.4 Description of 52100 Steel Counterface

The friction behaviour o f B4 C coatings was studied against SAE/AISI 52100 bearing

steel (referred to 52100 steel hereafter in the text) because it is the most widely used 

counterface material for studying the tribological behaviours o f B4C coatings [36][41-45]. 

The composition (wt%) of the 52100 steel is as follows: 0.98 to 1.1% C, 0.25 to 0.45% 

Mn, 0.15 to 0.35% Si, 1.3 to 1.6% Cr, and Fe to the balance. 52100 balls, 3 mm in 

diameter, were provided by National Precision Ball Group of Mechatronics, Inc. (WA, 

USA). The hardness o f the ball was reported to be 700 HV25 by Chen et al. [132].

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



DLC Layer

o c-c
0*=
o O

ft 0 ^ ° 0  o> 0 8 V  ° — 
O  o  J ^ o = 0 o S  %  O o o O -

Matrix

*WC
Particle

Figure 3 .14  Schematic drawing o f DLC/WC-DLC coating structure.

Table 3. 2 Coating properties

Sample Thickness (pm) Hardness (GPa)
Elastic Modulus 

(GPa)
Ra (nm)

B4C 2.0±0.2 18.5±1.3 273.2±10.8 10.8±1.2

WC-DLC 2.4±0.008 21.8±1.9 167.2±9.7 11. 1±1.9

DLC/WC-DLC 2.1±0.2 26.0±1.0 220.4±6.8 8.9±1.3
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Table 3 .3  Nominal chemical composition (wt%) of the 319 A1 alloy

%s % Cu % Fe % Mg % Zn % Mn % Ni % Ti % A1
6 3.5 0.26 0.08 0.01 <0.01 <0.01 0.08 Balance

50 |jm

Figure 3 .15  The optical image of the micro structure of the 319 A1 pin material.
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3.5 Pin-on-disc Tribometer

A high temperature tribometer (CSM, Switzerland) at the University o f Windsor was

used for the pin-on-disc tests under varying test conditions (Figure 3.16). The tribometer 

is connected to a computer that controls the sliding speed using the number of revolutions 

per minute of the driving motor. The test duration can be set by the total number of 

revolutions, sliding distance or time elapsed. A computer controlled heating module 

underneath the sample holder heats the sample for the elevated temperature tests (capable 

o f heating to up to 800 °C).

A standard test routine is established and followed for each test. First the pin and 

coated disc are cleaned in an ultrasonic hexane bath and installed in corresponding 

holders attached to the tribometer. Then, the diameter of the sliding track is adjusted by 

turning the knob which moves the friction arm horizontally. The friction arm is built with 

a position sensing capacity so that the sliding track diameter can be displayed on the 

computer. Both the friction arm and disc holder are levelled horizontally using a pocket 

level (Starrett® EDP 50570) for precise loading. The test load is applied on top of the pin 

holder. All test information (load applied, sliding speed, test duration, test temperature, 

file identification) are keyed into the computer program and the test is started. A typical 

screen shot of the test configuration step is shown in Figure 3. 17. The friction force is 

measured by a built-in strain gauge from the very small deflections o f the friction arm.
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Figure 3. 16 The high temperature tribometer (CSM, Switzerland at the University of 
Windsor.
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Figure 3 .17  A typical screen of the pin-on-disc test setup procedure.
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3.6 Test Conditions

3.6.1 Loading Conditions

All pin-on-disc tests used a constant combination of a load o f 5 N and a linear sliding

speed of 0.12 m/s. The total number o f revolutions used in a particular test depended on 

the purpose of that test. Typically, a total of 103 revolutions was used when the main 

focus of the test was to observe the general trend of the coefficient of friction curve and 

observe the adhesion and material transfer phenomenon. A total of 104 revolutions were 

chosen when the aim was to cause a measurable amount of coating wear in that particular 

test condition.

3.6.2 Control of Test Temperature

To study the tribological behaviour of the coatings at elevated temperatures, the

value of the desired test temperature was first keyed into the controlling program. The 

computer-controlled heating module underneath the sample holder was then activated to 

heat the sample. The test was started once the preset temperature was reached. The 

elevated test temperatures (120, 300 and 350 °C) were maintained at a set value by the 

tribometer.

3.6.3 Control of Test Atmosphere

The actual relative humidity in the lab was 14±5% (referred to as 14% RH thereafter

in the text) in autumn and winter and 5 1±6% (referred to as 51% RH thereafter in the text) 

in summer—as determined using a handheld hydrometer. The two humidity levels chosen
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by this work are 51% and 14% in order to study the effect o f relative humidity on the 

tribological behaviour of the coatings. A nitrogen flow at the rate of 1 litre/s was 

introduced into the test chamber through a pipe to create a nitrogen atmosphere. The test 

chamber was sealed by a transparent acrylic glass cover lined with foam during the N2 

test.

The COF curves reported in this work are chosen from at least two tests under each 

condition as a representative, while all the COF curves recorded are presented in 

Appendix A of this thesis.

3.7 Evaluation Tools and Procedures 

3.7.1 Optical and Scanning Electron Microscopy, Energy Dispersive Spectroscopy

Optical microscopy of the samples was performed using the Zeiss Axiovert 25 CF

inverted microscope at the University of Windsor. A scanning electron microscope (SEM, 

JEOL JSM-5800LV) and an SEM equipped with an energy dispersive spectroscope (EDS) 

were used to characterize the pin and disc surfaces.

3.7.2 Quantification of the Amount of Adhesion

The surface profiles o f the wear tracks were obtained using the Wyko NT 1100

optical surface profilometer described in Section 3.1.4. At least eight pictures were taken 

from each wear track at different locations (Figure 3. 18). The following methodology 

was used to analyze the surface profile in order to evaluate the amount of material that 

adhered to the coatings (Sections 3.6.2.1 and 3.6.2.2).
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Figure 3. 18 Schematic drawing of the locations where surface profile pictures were 
taken.
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3.7.2.1 Area Fraction of the Wear Track Covered by Adhered Material

A standard routine has been developed and followed in this work in an attempt to

measure the area fraction of the wear track covered by adhered material. The procedure 

for doing this is outlined below.

1) Acquisition of the surface profile at the locations indicated in Figure 3. 18. A 

typical surface profile of the wear track taken from one of the locations indicated for the 

B4 C coating tested at 120 °C is shown in Figure 3.19. The red particles shown in Figure 

3 .19  a) are adhered aluminum after the test. The width of the wear track was measured. 

The area o f the wear track (At) was calculated by multiplying the measured track width 

by the length of the profiling area. This approximation is justified by the fact that the 

length o f each profiling area was ~ 1 mm, while the radius o f the wear track was typically 

9 to 11mm. The area o f the whole imaging area (A) was also calculated using the same 

method to determine the area fraction (A 7) of the image covered by the wear track,

Ax = . Equation 3. 6

2) Conversion of the surface profile into gray scale image. By converting the color 

mode, the contrast caused by the height difference between the adhered material and 

worn track in a surface profile image was enhanced for more precise analysis by an image 

analysis program (Buehler Omnipotent) to determine the percentage o f the area covered
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Figure 3. 19 Typical surface profile o f the wear track on B4C coating after tested at 
120 °C against 319 Al. a) Spectral colour representation of the profile; the red areas are 
adhered Al. b) A gray scale version of a), which was processed by image analysing 
software to measure the amount of Al adhesion.
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by adhered aluminum (A 2) (Figure 3 .19  b)),

A2 = - j -  Equation 3. 7

where AAi is the area covered by adhered aluminum and A is the area covered by the 

image. The result was then divided by the area fraction covered by the wear track to 

determine the wear area fraction covered by adhered material, Acover:

A°~‘r = ^ A = l i J J  = i t  Equation 3. 8

3.7.2.2 Thickness of the Adhered Material

Bearing ratio curves were adapted in the current study to provide an estimation o f the

thickness o f adhered material. Basically, bearing curves represent how much material will 

“bear” an incoming plane at a certain depth in a 3-D space. However, a 2-D diagram is 

used below to explain these concepts. Figure 3. 20 shows a two-dimensional surface 

profile o f an evaluation length L. The profile is bounded by a line labelled 0%—which is 

even with the highest peak—and a line labelled 100%, which is even with the lowest 

valley. A line at a depth p  below the highest peak is also shown. The bearing length (Lb) 

is defined as the sum of the profile lengths where the line at depth p  intercepts the 

surface,
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4 = 2 > , Equation 3. 9
M

As a three-dimensional extension of this concept, if  a plane were to intercept the 

profile surface at this depth p, individual areas would be created as A], A2, A3,. .., An. The 

sum of these areas would make up the bearing area At»

Thus the bearing area ratio tp, is defined as the ratio of the bearing area to the total 

evaluation area (A),

The bearing ratio curve is simply a graphical presentation o f the tp parameter in 

relation to the surface level. Figure 3. 21 shows the average bearing ratio curves of the 

unworn B4C coating and the B4C coating tested at 120 °C. The highest peak—as bounded 

by 0% bearing ratio—increased significantly due to material adhesion. It should be noted 

that a large portion o f the curves are flat, indicating the mean “flat” surface of the coating. 

This feature of the curves enables the truncation (marked by the dashed rectangle) of the 

curve to emphasize only the height increase caused by the adhesion. The curves reported 

in this work are the truncated form as shown in Figure 3. 21 b).

n

Equation 3 .10

Equation 3.11
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100%

Figure 3. 20 A two dimensional surface profile of an evaluation length L. The bearing 
length is defined as the sum of the profile lengths (bh b2, b3,..., b„) where the line at 
depth p intercepts the sampled profile.
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Figure 3. 21 a) Bearing ratio curves of the unworn B4C coating and B4C coating tested at 
120 °C; b) Truncation o f a) as indicated by the dashed rectangle. The purpose of this 
truncation is to emphasize the height increase caused by material adhesion.
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3.7.3 M easurem ent of W ear Rates

The wear rate (W) o f a sample is expressed as mm3/m, i.e. the volume loss of

material per unit sliding length. For a circular track, the volume of the material removed 

(Vw) can be calculated by multiplying the average cross-sectional area (Across) of the wear 

track with the perimeter o f the circle (2xR) passing through the center o f the wear track. 

Thus

Vw = 2xRAcross Equation 3 .12

The average Across is found by measuring the Across of the wear track at twelve 

different locations using the optical surface profilometer. As an example, the surface and 

cross-sectional profiles o f a region of the wear track on the WC-DLC coating tested 

against 319 Al at 120 °C are shown in Figure 3. 22. The wear rate can be expressed as

W = and Equation 3 .13

L = 2 nRN Equation 3 .14

where L is the sliding distance and N  is the number o f revolutions slid respectively. Thus,

w  =  2 ; r R A c n , s Equation 3 .15
2 nRN
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Figure 3. 22 a) The surface and b) the cross-sectional profiles of a region o f the wear 
track on the WC-DLC coating tested against 319 Al at 120°C.
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Cancellation of the 2nR term results in

A
jY _ cross Equation 3 .16

N

The average results were plotted against test temperature and presented in Sections 5.1 

and 5.2.
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CHAPTER 4 TRIBOLOGICAL BEHAVIOUR OF B4C 

COATINGS AGAINST 319 AL ALLOY

While B4C coatings are successfully used on tools for the machining o f aluminum 

alloys [8-9] and on automotive gear boxes [133] to improve fatigue resistance, their 

tribology against Al is not known. This chapter reports on the tribological behaviour of 

B4C coatings deposited on M2 steel substrates subjected to dry sliding against a 319 Al 

alloy. These experiments aim to evaluate whether or not B4C is suitable as a tool coating 

material for the dry machining of Al alloys by determining their COF and their tendency 

to adhere to aluminum. The effects of test temperature and working atmosphere on the 

amount of aluminum adhesion and friction were studied in particular, and the 

morphology of the wear tracks was examined using SEM. Optical surface profilometry 

was also employed in order to quantify the amount of Al transfer and the severity of wear 

damage. Another goal of this study was to compare the aluminum adhesion mitigating 

performance of B4C coatings against Al with that of other industrial coatings. 52100 steel 

balls were also used as counterfaces against B4C coatings. The friction behaviour of 319 

Al and 52100 steel against B4C coatings at different test temperatures was compared.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



4.1 Pin-on-disc Tests in Ambient Air against 319 Al

At 25°C (51% RH) B4C coatings tested against 319 Al were characterized by COF

values fluctuating between 0.4 and 0.7 (Figure 4. 1), and a pronounced squeak 

accompanied the entire testing period. SEM observation showed that there were chunks 

of adhered material distributed inside the worn track after 1 0 4  revolutions of testing 

(Figure 4. 2 a) and b)) and the coating was removed as shown in a back scattered SEM 

image (Figure 4. 2 c)) and the EDS spectrum of the exposed substrate (Figure 4. 2 d)). 

The EDS results revealed that the adhered material was oxidized aluminum that had been 

transferred from the pin tip onto the coating surface (Figure 4. 2 e)). The wear debris 

produced after the test was confirmed to be oxidized Al exhibiting two main morphology 

types: larger plate-wedge like chips and smaller rounded particles (Figure 4. 3). Some of 

the plate-wedge like chips seemed to be agglomeration of small round particles. An 

examination of the worn pin tip after testing in ambient air for 1 0 4 revolutions showed 

that there were loosely attached chips at the exit side of the pin tip (Figure 4. 4 a)). EDS 

composition analysis was conducted on the worn pin tip at different locations, and only a 

negligible amount of carbon could be detected beyond the expected aluminum oxide. The 

wear rate of the pin was calculated to be 9.73 xl0~4 mm3/m~data achieved by measuring 

the size of the wear scar on the pin tip and following the wear rate definition in Section 

3.7.3. Because the coating was removed from the substrate, efforts to measure the wear 

rate of the coating were practically rendered meaningless. Thus, another test with the
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Figure 4. 1 COF curve of the EkC coatings against 319 Al as a function o f number of 
revolutions tested at room temperature (25 °C) in ambient air (51% RH) for 104 
revolutions.
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Figure 4.2 a) Secondary electron SEM image of a region of the wear track of the B4C 
coating tested against 319 Al in ambient air (51% RH) for 104 revolutions; b) An 
enlargement of the framed region in a), showing adhered Al pieces.
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Figure 4.2 c) Backscattered SEM image of the same region in a), showing that B4C 
coating was removed
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Figure 4. 2 d) EDS spectrum of the area indicated by the frame in c), which shows the 
elements in the substrate material; e) EDS spectrum of the adhered material as marked by 
the frame in a), which is oxidized aluminum.
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Figure 4. 3 Wear debris collected after tested against 319 Al in ambient air (51% RH) for 
104 revolutions. Two kinds o f morphology were observed (plate-wedge like (a) and small 
round particles (b)). The EDS (c) spectrum of the debris showed that they consisted o f 
oxidized aluminum.
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Figure 4. 4 a) Secondary electron SEM image of a 319 Al pin tip tested in ambient air 
(51% RH) for 104 revolutions. Extruded aluminum chips can be observed at the exiting 
side of the worn region. EDS spectra of regions labelled as 1 (b)) and 2 (c)) are also 
presented.
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same conditions was conducted and then stopped at 1 0 3 revolutions to study the transfer 

and adhesion of aluminum. Figure 4. 5 shows that aluminum transfer to the coating 

occurred even after 1000 revolutions. The corresponding COF curve recorded is shown in 

Figure 4. 6 a). The area fraction o f the wear track covered by transferred aluminum was 

measured to be 0.84±0.40% and the wear rate of the B4C coating was 4 .2 x 1 O' 5 mm3/m.

4.2 Pin-on-disc Tests at Elevated Temperatures against 319 Al

To investigate the effect of temperature on the material adhesion and friction

behaviour o f B4C coatings, the B4 C coatings were also tested against 319 Al at 120 and 

300 °C. The COF curves recorded during the course o f sliding contact between the 319 

Al pins and B4C samples are presented in Figure 4. 6 a). When tests at elevated 

temperatures were conducted, the pin-on-disc machine made a disturbing noise 

throughout the test, so the test duration was limited to 1 0 3 revolutions in order to protect 

the equipment. At 120°C, the COF curve exhibited the same trend it displayed at room 

temperature—fluctuating between 0.4 and 0.7. The variation of the COF curve was 

enlarged from 0.3 to 0.8 at 300°C, and as the test temperature was increased, the COF 

curve of the coating seemed to fluctuate around a slightly lower mean value. In an 

attempt to quantify this observation, the mean COF values were calculated for three 

different temperatures. The average COF values were 0.48±0.06, 0.44±0.06 and 

0.44±0.09 at 25, 120 and 300 °C, respectively (Figure 4. 6 b)). SEM images (Figure 4. 7
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Figure 4. 5 Secondary electron SEM image of a region of the wear track of the B4 C 
coating tested against 319 Al at room temperature (51% RH) for 103 revolutions.
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Figure 4. 6  a) COF curves o f the B4C coatings against 319 Al as a function o f number of 
revolutions at different temperatures; b) Mean COF values calculated from the curves 
shown in a) for different test temperatures.
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and Figure 4. 8 ) showed that as the test temperature was increased, the amount of 

transferred aluminum also drastically increased. The adhered aluminum appeared in the 

form of small, discrete flakes on the wear tracks tested at 25 °C after 103 revolutions 

(Figure 4. 5). At 120 °C, an increase in the size o f adhered aluminum platelets could be 

readily observed, characterized by a change in the shape from flakes to patches. The 

patches grew considerably at 300 °C and overlapping of adhered aluminum patches 

occurred as shown in Figure 4. 8 . This growth from small aluminum islands at 25 °C into 

chunks of overlapping aluminum slabs at 300 °C was also confirmed by 3-D profile 

images of the wear tracks (Figure 4. 9). The wear track area fraction covered by adhered 

aluminum was measured to be 3.9±1.4% at 120 °C and 16.3±1.7% at 300 °C (Figure 4. 

10). The bearing ratio curves of the same area reveal that the thickness o f adhered 

aluminum increased in tandem with the test temperature (Figure 4.11).

In an attempt to elucidate the frictional behaviour o f B4 C coatings tested at elevated 

temperatures, the mechanical properties of the coatings were measured after testing the 

samples at 300 °C using nano-indentation. The hardness and elastic modulus o f the 

sample tested at 300 °C were 16.0±1.1 GPa and 257.3±15.4 GPa, respectively-a 7 % 

decrease in both the coating hardness and elastic modulus when compared to those of the 

as-deposited coatings (Figure 4. 12). The coating was annealed in an Ar atmosphere at 

300 °C for 90 min and investigated by SEM and EDS line scans across the 

coating-substrate interface in order to investigate the possible change in coating
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Figure 4. 7 Secondary electron SEM image of a region of the wear track of the B4 C 
coating tested against 319 Al at 120 °C for 103 revolutions.

Figure 4. 8 Secondary electron SEM image o f a region of the wear track o f the B4 C
<5

coating tested against 319 Al at 300 °C for 10 revolutions.
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Figure 4. 9 3-D surface profile images o f B4C coatings: a) Unworn coating; b) Tested at 
25 °C; c) Tested at 120 °C; d) Tested at 300 °C.
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Figure 4. 10 Effect of test temperature on the percentage of the wear tracks on B4 C 
coatings covered by aluminum. The test performed at 25 °C was under 51% RH.
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Figure 4.11 The bearing ratio curves of the sampling region used to measure the amount 
o f aluminum coverage at different test temperatures. The test performed at 25 °C was 
under 51% RH.
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composition and structure. A columnar structure with well defined column boundaries 

was observed for the annealled B 4 C sample (Figure 4. 13). The EDS line scan 

results (Figure 4. 14 b)) displayed that the boundary between the coating and substrate 

was less sharp after annealing—a detail indicated by a smoother change in the carbon 

counts over the coating-substrate boundary when compared to that o f the as-received 

coating (Figure 4 .14  a)).

4.3 Pin-on-disc Tests Against 52100 Steel

The friction behaviour of B4 C coatings dry sliding against 52100 steel at different

test temperatures was studied for comparison with that o f 319 A1 against B4 C coatings.

The COF values o f 52100 steel against B4 C coating varied between 0.7 and 0.9 when 

tested at room temperature at 51% RH. At 120 °C, the COF values fluctuated between 1.2 

and 0.8. When tested at 300 °C, the COF curve fluctuated between 0.7 and 1.1 at the 

beginning of the testing course and stabilized (relatively) at approximately 1.0 (Figure 4. 

15 a)). The average COF values were 0.80±0.05, 1.03±0.09 and 0.94±0.10 at 25, 120 and 

300 °C, respectively (Figure 4 .15  b)). A comparison between the average COF values of 

B4 C coatings tested against 319 A1 and 52100 steel is presented in Figure 4. 16. The 

friction of 52100 steel against B4 C coatings was conspicuously higher than that of 319 A1 

against B4 C coatings, which never surpassed 0.5.
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Figure 4 .13  SEM cross-sectional image of the B4 C coating after annealing at 300 
90 min. A columnar structure was revealed.
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Figure 4 .14  EDS line scan of a) as-received and b) annealed boron carbide coating. The 
scan was conducted over the coating-substrate interface. In both figures, zero position 
denotes the interface and the coating located at the positive direction o f the Distance axis.
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Figure 4. 15 a) COF curves of the B4 C coatings against 52100 steel as a function of 
number of revolutions at different temperatures; b) Mean COF values calculated from the 
curves shown in a) for different test temperatures.
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Figure 4 .16  Comparison of mean COF values of B4C coatings sliding against 319 Al 
and 52100 steel at different test temperatures.
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4.4 Pin-on-disc Tests in Varied Environments against 319 Al

The COF curve became more stable when tested at a lower relative humidity of 14 %

compared to that tested at 51% RH with a mean COF value of 0.45±0.04 was observed at 

the end of the testing period. The fluctuations of the curve were effectively reduced to 

between 0.4 and 0.5, but the COF curves for the test conducted at 14.4% RH displayed a 

gradually increasing trend (Figure 4.17). Aluminum adhesion was observed on the wear 

tracks after testing at 14% RH for 103 revolutions (Figure 4.18). 0.49±0.07% of the wear 

track area was covered by aluminum transferred from the pin.

The most favourable friction behaviour of a B4 C coating dry sliding against 319 Al 

was recorded when the coating was tested in nitrogen. A steady state COF of 0.36 was 

attained throughout the test (Figure 4.17), and the SEM image of the wear track after the 

test in N2 showed adhered aluminum with a more uniform shape and spatial distribution 

(Figure 4. 19). The fraction of the wear track covered by transferred aluminum was 

measured at 1.8±0.5%. The 3-D surface profile images of the wear tracks on the samples 

tested in different atmospheres, the plot o f wear track fraction covered by adhered 

aluminum against test atmosphere and the corresponding bearing ratio curves o f the 

sampling regions are presented in Figure 4. 20, Figure 4. 21 and Figure 4. 22 

respectively.
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Figure 4. 18 SEM image of a region of the wear track of the B 4C  coating tested against
319 Al at 14.4% RH for 103 revolutions.
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Figure 4. 19 SEM image of a region of the wear track of the B4C coating tested against
319 Al in N2 for 103 revolutions.
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Figure 4. 20 3-D surface profile images of B4C coatings: a) Unworn coating; b) Tested at 
51% RH; c) Tested at 14.4% RH; d) Tested in nitrogen.
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Figure 4. 21 The percentage of the wear tracks on B4C coatings covered by aluminum as 
a function of different test environments.
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Figure 4. 22 The bearing ratio curves o f the sampling region used to measure the amount 
of aluminum coverage in different test environments.

147

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4.5 Discussion

4.5.1 B4 C Coating Wear Mechanism (against 319 Al) and Al Adhesion onto B4 C at 
Room Temperature

In previous studies, the COFs of B4 C coatings were reported to be in the range of 

0.1-0.9 [17-18][134] at room temperature. However, those studies were conducted by dry 

sliding steel (usually 52100 steel) against B4 C coatings, and no transfer and adhesion of 

steel onto B4 C coating was reported at the end o f the tests. The wear mechanism of steel 

sliding against a B4C coating at room temperature was proposed as an abrasion and 

chemical-mechanical polishing process. Steel was abraded during this process due to the 

highly abrasive nature of B4 C coatings while boron carbide reacts chemically with 

oxygen and water according to Equation. 2.3 and Equation 2.2 under load from steel, 

forming softer material that can then be removed from the surface [36][42],

The author is unaware of any work in the literature that reports on the dry sliding 

behaviour of a B4 C-AI pair. In the current study, the wear mechanism between the 

aluminum pin and B4 C coating at room temperature is proposed to be an 

adhesion-delamination three body abrasion process. When the two surfaces were brought 

into contact, high local pressure between contact asperities resulted in plastic deformation 

of the Al asperities and adhesion and consequently the formation of junctions. This 

process can be thought to be analogous to forcing a B4C indenter into an aluminum 

surface on an asperity-asperity scale. During sliding, the contact junctions were destroyed
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and reformed repeatedly, resulting in the transfer and adhesion o f Al alloy onto the B4 C 

surface as well as causing the ploughing of B4 C asperities through the weaker Al alloy 

[135]. The significance o f the interaction between contact junctions and repetitive plastic 

deformation of the near surface Al alloy is discussed in the following text.

Generally, the separation of a contact junction might occur in either of the materials 

that are coming into contact. According to the current observation, the disengagement of 

a junction is more likely located within the Al asperities. On an atomic level, this might 

be due to the low cohesive energy of Al atom layers compared to the work needed to 

separate an AI/B4C interlayer (work of separation, Wsep). The cohesive energy of Al has 

been calculated and compared with the calculated work o f separation between Al/ceramic 

layers using a first principles simulation. The results successfully explained the adhesion 

and transfer behaviour of Al/various ceramic material pairs such as Al/WC, AI/AI2O3 , 

Al/CrN and Al/TiN [136-139]. However, no data on the AI/B4C interface is 

available—perhaps due to the complexity o f the B4C structure. For the studied A1/B4C 

pair, the initial transferred aluminum platelets grew in size, forming; “islands” of 

aluminum on the B4C coating as the sliding process continued.

The cyclic sliding contact resulted in material loss o f the pin through delamination. A 

hydrostatic pressure field was superimposed during sliding wear on the Al material layers 

adjacent to the contact surface in addition to the shear stress applied [140]. The plastic 

shear deformation of the Al on a macrolevel in the subsurface region might have been

149

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



induced by the cyclic loading. Such plastic deformation accumulated with repeated 

loading until the hydrostatic pressure under the contact zone was surpassed by the shear 

strain, forming cracks below the contact surface in the vicinity of pre-existing voids and 

second phase particles. Detached metallic flakes could have formed as a result o f crack 

propagation parallel to the surface. A similar observation has been reported by Zhang and 

Alpas on an aluminum-7% silicon alloy [141]. These detached flakes were probably 

harder than the original bulk 319 Al alloy due to work hardening caused by plastic 

deformation or even grain refinement on a nanocrystalline level. The hardened flakes 

were then extruded from the pin tip at the exit side of the wear zone in the form of 

plate-wedge like chips, evidenced by Region 2 as marked on Figure 4. 4. Some of the 

freshly detached chips were caught between the sliding surfaces—initiating a three-body 

abrasion mechanism while others were pushed out of the contact region in the form of 

loose debris. The chips that remained in the contact region were subjected to sequential 

mechanical grinding in which the hard Si phase within 319 Al, oxidized aluminum phase 

and hardened Al grains all served as polishing particles against the B4C coating. The final 

products of this abrasion-grinding process were the small, rounded debris particles. Some 

of the small particles might have been pressed together and left the contact region as a 

new flake. The whole process continued until the coating was completely worn and Al 

adhered to the M2 substrate as reported in [7].
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The above speculation on aluminum hardening is supported by the observations of 

Meng-Burany and Alpas [142] on the same 319 Al pin tip after sliding against a NH-DLC 

surface under a 5 N load at a sliding speed of 0.12 m/s where aluminum transfer and 

adhesion onto the NH-DLC coating was detected by the authors. Both the transferred Al 

and Al located at the contact surface of the worn pin were characterized by a refined 

nanocrystaline structure with an average grain size under 100 nm. A 75% increase in 

hardness was noted for the worn pin tip.

Al adhered to the currently studied B4C coating. However, it should be noted that the 

B4 C coating still managed to reduce the amount of Al adhesion to approximately 30% of 

the Ti2B coating, which exhibited the least Al adhesion among other industrial coatings 

(Figure 4. 23).

4.5.2 Effect of Test Temperature on the Tribology and Material Transfer of 319 
AI-B4C Coating System

The measured mechanical properties o f B4 C coatings underwent a 7% decrease in 

both elastic modulus and hardness (Figure 4. 12) as the test temperature was increased 

from 25 °C to 300 °C. Such deterioration is attributed to the possible segregation of the 

free carbon within the coating towards the coating surface. Generally, disordered carbon 

phase with graphitic characteristics coexists with the B4 C phase in both bulk boron 

carbide ceramics and deposited coatings [12] [19] [20] [145]. In its as-deposited state, the 

free carbon phase was believed to be distributed among the partially crystalline structure
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of the B4 C phase, blurring the boundaries between B4 C columns and lending the coating a 

“glassy” appearance (Figure 3. 8). After the coating was annealed at 300 °C, the free 

carbon phase gained enhanced mobility due to the high energy nature of grain boundaries 

and segregated towards the surface. This migration of carbon was the probable reason for 

more diffused carbon concentration over the coating-substrate interface after annealing 

(Figure 4. 14 b)). The more defined columnar structure shown in Figure 4. 13 could be 

the result of “thermal etching” caused by free carbon movement. Consequentially, the 

coating grows weaker as a result o f sapped bonding between the B4 C columns. Thermal 

softening and oxidation of the Al alloy at an elevated temperature rather than the 

softening of the coating, however, were the main causes for the decrease in the mean 

COF (Figure 4. 6 b)) as the test temperature was elevated-since the softened coating was 

still much harder than the 319 Al pin.

At elevated temperatures, the asperities on the B4 C coating retained a large part of 

their hardness while the contact surface o f the Al 319 pin was considerably softened. As 

the sliding load was applied, the softened Al asperities were more easily deformed and 

removed from the pin surface by the B4 C asperities. Once transferred to the coating, these 

aluminum islands acted as growing points for future Al accumulation until big chunks of 

transferred material were formed on the B4 C coating. As indicated in Figure 4.10, about 

3.9% and 16.7% of the wear track area was occupied by adhered aluminum at 120 °C and 

300 °C, respectively. These adhered aluminum islands were also in contact with the pin.
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The friction force (F) could be treated as the real area of contact between surfaces (Ar) 

times the overall shear strength (r) of the contact junctions,

F = Arz Equation 4 .1

It followed that the low shear strength of the contacting Al asperities could cause a 

reduction in friction force. It was also expected that the real area of contact would 

increase as a result of the Al softening, but the effect was not large enough to overcome 

the decrease in shearing strength for the Al asperities in contact. The final result was a 

slight decrease in COF value.

On the other hand, aluminum oxidizes more readily at high temperatures (AG° = 

-1582.3 kJ/mole at 300K [143]). The quick-forming oxide layer prevented further 

adhesion of Al to itself, which might lead to a higher COF or even seizure o f the sliding 

surfaces. The oxide layer also facilitated the relative sliding o f the counterfaces by 

providing easy shearing contact junctions.

4.5.3 Comparison of the Friction Behaviour of the 319 Al -  B4C Pair and 52100 
Steel -  B4C pair

The current observed COF value o f ~0.8 for 52100 steel dry sliding against B4C 

coatings in ambient air (23.5 C, 51% RH) is consistent with those reported for the same 

material pair. Since the normal load was the same—5 N for both 319 Al and 52100 

steel~it follows that the difference in their COF values was caused by the frictional force
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that occurred during sliding contact. According to Equation 4.1, the higher COF value 

for 52100 steel in ambient air can be explained by its significantly higher shear strength 

than 319 Al.

When the 52100 steel balls were tested at elevated temperatures, however, an 

opposite trend was observed for the average COF value. While the 319 Al exhibited a 

slight decrease in the average COF value, those for 52100 steel against the B4 C coating 

exhibited an obvious increasing trend when testing at 120 °C. The observed increase 

might be attributed to the formation o f a hard, patchy oxide layer on the steel ball surface 

that affected the contact conditions at the real area of contact. A more detailed 

characterization of the wear track and the worn ball surface is needed before any 

conclusion can be made.

4.5.4 Effect of Test Environment on the Friction and Material Transfer of 319 
AI-B4C Coating System

The study showed that the COF curve of a B4 C coating dry sliding against 319 Al 

exhibited a lower mean value and variation when tested in air at a lower humidity level 

Figure 4.17.

While a few papers have discussed the effect of relative humidity on the tribological 

behaviour of B4C based materials, the reported trend directly opposes the present 

observation [34-36][134], They attributed such behaviour to the lubrication effect of 

boric acid film formed between the sliding surfaces, but such a mechanism is not
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applicable to the present experimental setup because the counterface materials they used 

against the B4C based materials were sapphire [34], ceramic B4C [35] and steel 

[36][134]—none of which are soft and adhesive the way Al alloy is. After the transfer and 

adhesion o f aluminum onto the B4C coating surface occurred, the pin material came in 

sliding contact against B4C coatings that were partially covered by oxidized Al, 

suggesting that the tribochemical conditions required to form boric acid were unlikely to 

be fulfilled. The present study indicates that an increase of COF with respect to an 

increasing relative humidity level is attributed to grit sharpening caused by 

moisture-assisted grit microfracture as proposed by Larsen-Basse and Sokoloski [144], 

Since B4C has a low fracture toughness (2.9-3.7 MPa m 1/2 [145]), this increase in asperity 

microfracture tends to occur with increasing humidity. Such a process supplies fresh 

abrasives while the sharpened B4C surface provides more sites to interact with the 

relatively soft Al, causing deeper cuts on the Al pin surface. Due to an increased real area 

of contact, inferior tribological behaviour was observed at higher relative humidity 

levels-characterized by a higher and more fluctuating COF curve. This argument is 

indirectly supported by the results reported in Siniawski et al. [134] which showed a 

constant lower value of average asperity radius (sharper and more abrasive asperities) of 

curvature value for B4C coatings at high RH level than at low RH level. At lower 

humidity levels, the asperities are less sharp—decreasing the abrasion of the soft
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aluminum and resulting in a lower COF. The reason why the best tribological behaviour 

was observed when testing was done in nitrogen is still unknown at this stage.

The test conducted in nitrogen—compared to testing in low humidity-resulted in a 

larger area of aluminum adhesion (Figure 4. 21) and a thicker adhered aluminum layer 

(Figure 4. 22). Compared to tests conducted at 51% RH, the adhered Al after testing in 

N2 is larger in area fraction (Figure 4. 21) but possibly thinner (Figure 4. 22). There 

seemed to be no simple relationship between the COF values and the morphology of the 

adhered aluminum. No report on the tribological behaviour o f B4 C coatings against Al 

alloys in a N2 atmosphere have been found by the author.

4.6 Summary and Remarks

The effect of test temperature and atmosphere on the tribological behaviour o f a B4 C

coating dry sliding against 319 Al was studied using pin-on-disc tests. Both temperature 

and atmosphere were identified as significant factors. The findings of the current work 

are as follows:

1. Compared to other industrial coatings [7], the B4 C coating has a slightly lower 

tendency to adhere to 319 Al in ambient air under 51% RH.

2. Increasing the test temperature from 25 °C (51% RH) to 300 °C results in a 

slightly lower COF value (8 % lower) while the amount o f aluminum adhesion is 

increased (1800% higher). Such behaviour is attributed to the thermal softening and 

oxidation o f the aluminum.
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3. Water vapour has been found unfavourable for reducing the COF-possibly 

because of grit sharpening of the B4 C coating that results in a higher COF value and more 

aluminum adhesion.

4. Tests run in N2 effectively reduced and stabilized the COF value o f the tested 

material pair, resulting in a steady state COF value of 0.36.

5. B4 C coatings are not entirely suitable for tool coatings in the dry machining of 

aluminum alloys with the current structure and composition, due to adhesion problems 

and high friction when compared to the DLC coatings presented later in this work.

6 . The COF values of 52100 steel dry sliding against a B4 C coating are 

considerably higher than those tested against 319 Al under the same test conditions, 

namely in ambient air and at elevated temperatures. The higher strength o f 52100 steel 

compared with 319 Al is proposed to be the reason.

158

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 5 TRIBOLOGICAL BEHAVIOUR OF DLC 

COATINGS AGAINST 319 AL ALLOY

The previous chapter illustrated why B4 C coatings are not the most promising 

coating for application to tools for the dry machining of Al. While they did reduce 

aluminum adhesion when compared to other industrial coatings at room temperature, they 

did not completely prevent aluminum adhesion—not to mention the fact that the COF 

value exhibited during dry sliding against 319 Al was slightly high even when tested in 

N2.

Studies have shown that aluminum has a lower tendency toward adhesion to 

NH-DLC coatings when compared to other industrial coatings such as TiN, TiB2 and 

TiAIN in ambient air test conditions [7]. Previous work has demonstrated that the 

tribological behaviour o f DLC coatings deteriorates at elevated temperatures—a 

breakdown that features unstable COF curves, high friction and high wear rates [107-111]. 

These facts make it necessary to improve the performance of the DLC coatings at 

elevated temperatures in order to meet the need for better tool coatings.

In an attempt to effectively comprehend the tribological behaviour of the DLC 

coatings in cutting tool applications, WC-DLC and DLC/WC-DLC coatings were tested 

against 319 Al, and the structures and properties of these coatings are presented in 

Section 3.2. In summary, the WC-DLC coating is a H-DLC coating (25 at.?/o H) with WC
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particles embedded in its amorphous matrix. DLC/WC-DLC (24 at% H) is a multilayered 

coating consisting of an H-DLC top layer (approx. 0.1 pm) and a (hydrogenated) 

WC-DLC layer underneath. The coatings were tested in air at room temperature (14% 

RH and 51% RH). The effect o f the temperature on the tested material was investigated at 

120, 300 and 350 °C. The worn pin tip tested against the DLC coatings and the 

corresponding wear tracks were characterized to understand possible wear mechanism of 

the tested coatings. The observed results are discussed in terms of interaction between the 

DLC coating surface and the gaseous species in the environment, the material transfer to 

counterfaces and the graphitization of the coatings.

5.1 Pin-on-disc Tests in Ambient Air at 51% RH

Both WC-DLC and DLC/WC-DLC coatings exhibited low and stable COFs during

testing in ambient air at 51% RH (Figure 5. 1) as compared to previously tested B4 C 

coatings.

The WC-DLC coatings displayed low COF values and wear rates when tested against 

319 A1 in ambient laboratory air at 51% RH. The COF was initially 0.3, but quickly 

decreased as the test proceeded. After approximately 600 revolutions (41.5 m of sliding) 

a steady-state COF value o f -0 .14 was attained and maintained throughout the rest of the 

test. The WC-DLC showed an average wear rate o f 1.75x10-6 mm3/m. Figure 5. 2 a) 

illustrates a region of the wear track on the WC-DLC coating tested against 319 A1 in 

ambient air with 51% RH for 104  revolutions. The coating remained on the
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Figure 5. 1 COF curves for the WC-DLC and DLC/WC-DLC coatings tested in ambient 
air at 51% RH.
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Figure 5. 2 a) The secondary SEM image of the wear track on the WC-DLC coating 
against 319 A1 after 104 revolutions of test at room temperature and 51% RH. No A1 
adhesion is observed on the worn surface. The coating remained on the substrate; b) 3-D 
surface profile image of the same wear track.
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substrate after the test, and no transfer o f aluminum to the wear track could be detected. 

The wear track had a smooth, polished appearance with accumulated debris along both 

sides. A layer of transferred material was observed on the 319 A1 pin tip after the test 

(Figure 5. 3 a))—a mixture of mainly aluminum oxide and a small amount of 

carbonaceous material (Figure 5. 3 b)).

The DLC/WC-DLC coatings exhibited low COF values and wear rates that were 

similar to those recorded for WC-DLC coatings when tested against a 319 A1 in ambient 

laboratory air at 51% RH. The COF was initially 0.17, but decreased as the test 

proceeded. After approximately 600 revolutions (41.5 m of sliding) a steady-state COF 

value of -0.13 was attained and sustained throughout the rest o f the test. DLC/WC-DLC 

coatings exhibited low average wear rate (3.72x10~7 mm3/m). Figure 5. 4 shows a region 

of the wear track on the DLC/WC-DLC coating tested against 319 A1 in ambient air with 

51% RH for 104 revolutions. The features of the wear track were similar to those 

observed on WC-DLC coatings while the corresponding worn pin tip (Figure 5. 5 a) and 

b)) was characterized by a layer of similar transferred material.

5.2 Pin-on-disc Tests at Elevated Temperatures

To investigate the effect of temperature on DLC coatings, both WC-DLC and

DLC/WC-DLC coating were tested against a 319 A1 at 120 °C and 300 °C—or until the 

the coating failed to reach a steady-state COF value. The sliding of each sample was 

continued for 10 revolutions.
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Figure 5. 3 a) SEM image of the 319 A1 pin tip after test at room temperature under 51% 
RH for 104 revolutions against WC-DLC coating. A layer o f transferred material was 
observed; b) EDS spectrum of the location indicated in a), which shows that the 
transferred layer consisted of mainly oxidized A1 alloy and a small amount of carbon.
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Figure 5. 4 a) The secondary SEM image of the wear track on the DLC/WC-DLC 
coating against 319 A1 after 104 revolutions of test at room temperature and 51% RH. No 
A1 adhesion is observed on the worn surface. The coating remained on the substrate; b) 
3-D surface profile image of the same wear track.
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Figure 5. 5 a) SEM image of the 319 A1 pin tip after test at room temperature under 51% 
RH for 104 revolutions against DLC/WC-DLC coating. A layer of transferred material 
was observed; b) EDS spectrum of the location indicated in a), which shows that the 
transferred layer consisted o f mainly oxidized A1 alloy and a small amount o f carbon.
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The COF curves representing the WC-DLC coatings sliding against 319 A1 pins at 25, 

120 and 300 °C are presented in Figure 5. 6. The COF curves recorded at 120 °C were 

characterized by an initial running-in period where the COF values were high (0.6), 

followed by a rapid decrease to a steady-state value o f 0.09 after approximately 100 

revolutions— lower than the room temperature steady-state COF of 0.14. However, the 

wear rate of the WC-DLC coating increased from 1.75 * 10 6 mm3/m at 25 °C to 2.29 

x 10-5 mm3/m at 120 °C (1200% increase) while the COF curve obtained at 300 °C did not 

reach a steady-state value—fluctuating between 0.24 and 0.6 throughout the test. The wear 

rate of the WC-DLC coating tested at 300 °C was measured as 1.20x1 O'4 mm3/m.

An examination o f the wear tracks created by elevated temperature testing revealed 

clean wear tracks after testing at 120 °C, and the formation of a strip of lighter contrast 

region in the middle of the wear tracks on the sample tested at 300°C (Figure 5. a)). 

The back scattered electron SEM image of the same region revealed that the difference 

between the atomic weight o f the coating material and the adhered material was small 

since the contrast between the two was rather low (Figure 5. 7 b)). The EDS spectrum of 

the adhered spot (Figure 5. 7 c)) shows that the adhered material was actually a mixture 

of both materials from the coating and the pin, since carbon, aluminum and oxygen peaks 

were detected. The wear track was much deeper than that after testing at 25 °C (Figure 5. 

7 d). The Raman spectrum of the wear track (Figure 5. 8) exhibited a slight shift o f the 

peak located at -1526 cm4 to -1535 cm4 compared to the as-received.
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Figure 5. 7 a) The secondary electron SEM image of a section of the wear track of the 
WC-DLC coating tested at 300 °C; b) The back scattered electron SEM image o f the 
same region;
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Figure 5. 7 c) The EDS spectrum of the light spot indicated in a); d) 3-D surface profile 
image of the same wear track.
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Figure 5. 8 The Raman spectra of the as received WC-DLC coating and the region within 
the wear track on the WC-DLC coating after tested at 300 °C.
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The COF curves of the DLC/WC-DLC coatings sliding against 319 A1 pins at 25, 

120 and 300 °C are presented in Figure 5. 9. At 120°C the COF value was initially as 

high as 0.70— dropping to a low steady-state value of 0.08 after only -100 revolutions. 

The wear rate of the DLC/WC-DLC coating increased from 3.72xl0"7 mm3/m at 25 °C to 

6.69x10"5 mm3/m at 120 °C. At 300°C the fluctuations on the COF curve became more 

significant than those at lower temperatures and it took -300 revolutions to reach the 

onset o f steady state COF regime, which featured a steady state value of 0.10. Since the 

DLC/WC-DLC coating was able to reach a steady state COF value at 300 °C, the test 

temperature was increased to 350 °C. At 350 °C, the coating failed to attain a steady state 

friction even after 103 revolutions. The average COF was calculated as 0.52±0.07. The 

wear rate o f the DLC/WC-DLC coating was 9.30xl0 '5 mm3/m at 350 °C, which was 

lower than that o f the WC-DLC coating at 300 °C (1.20x10'4 mm3/m). The wear rates of 

DLC based coatings as a function of test temperature are presented in Figure 5.10.

At temperatures up to 300°C, the 319 A1 transfer onto the DLC/WC-DLC coatings 

was undetectable by SEM observation. For these coatings, a noticeable amount of 

material transfer onto the worn surface was detected at 350°C in the form of a continuous 

strip in the middle of the wear track (Figure 5. 11 a)). The wear track on the 

DLC/WC-DLC coating after testing at 350 °C shared the similar composition 

characteristics to that of the WC-DLC coating after testing at 300 °C— as demonstrated 

by back scattered SEM image and EDS spectrum (Figure 5. 11 b) and c)). The
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Figure 5. 9 COF curves of the DLC/WC-DLC coatings against 319 A1 as a function of 
number of revolutions at different temperatures.
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Figure 5 .10 The wear rates o f DLC based coatings as a function o f test temperature.
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Figure 5. 11 a) The secondary electron SEM image o f a section of the wear track o f the 
DLC/WC-DLC coating tested at 350 °C; b) The back scattered electron SEM image of 
the same region.
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Figure 5. 11 c) The EDS spectrum of the location indicated in a); d) 3-D surface profile 
o f the same wear track.
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observation o f a much deeper wear track than that after testing at 25 °C was consistent 

with the profound increase in the coating wear rate (Figure 5.11 d))..

A transferred film was found on the pin tip after testing against a DLC/WC-DLC 

coating for 103 revolutions at 350 °C (Figure 5 .12  a)). Compared to the transferred films 

formed on the pin tips at room temperature (Figure 5. 3 a) and Figure 5. 5 a)), it had a 

loose appearance and its carbon content was considerably higher (Figure 5. 12 b)). The 

higher amount of transferred material was also consistent with the deeper wear track 

observed (Figure 5. d)) compared to that produced after testing at 25 °C. The Raman 

spectrum of the wear track after being tested at 350 °C exhibited a slight shift o f the peak 

located at 1530 cm’1 to 1541 cm '1 compared to the spectrum of the as-received coating 

(Figure 5. 13). The significance of Raman spectra readings for both WC-DLC and DLC 

WC-DLC coatings is discussed in Section 5.5.3.

5.3 Hardness and Elastic Modulus of Tested Samples

As Section 2.2.6 explained, the tribological behaviour o f DLC coatings tends to

deteriorate as the test temperature is elevated, characterized by an increase in COF values 

and/or wear rates. The same trend was observed in the current study. In an attempt to 

correlate the variation in the tribological behaviour with possible mechanical properties 

variation, room temperature nanoindentation tests were also performed on the samples 

tested at elevated temperatures. Some of the load-displacement curves recorded during 

the measurement are shown in Figure 5 .14  The results are plotted as a function of test
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Figure 5 .12  a) SEM image of the 319 A1 pin tip after test at 350 °C for 103 revolutions 
against DLC/WC-DLC coating. A layer o f transferred material was observed; b) EDS 
spectrum of the location indicated in a), which features a strong carbon peak.
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Figure 5. 13 The Raman spectra of the as received DLC/WC-DLC coating and the 
wear track on the DLC/WC-DLC coating after tested at 350 ° C.
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Figure 5. 14 Load-displacement curves recorded during Nanoindentation tests of a) 
WC-DLC and b) DLC/WC-DLC coatings after testing at elevated temperatures
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Figure 5. 15 The a) Hardness and b) Elastic modulus of the WC-DLC coatings and 
DLC/WC-DLC coatings as a function o f test temperature.
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temperature as presented in Figure 5.15.

The hardness of the WC-DLC coatings decreased from 21.8±1.9 GPa at 25 °C 

(as-received coating) to 17.1±1.2 GPa at 120 °C, but increased to 20.1±2.9 GPa after the 

test was performed at 300 °C. On the other hand, the hardness of DLC/WC-DLC coatings 

also decreased slightly after testing at 120 °C and then increased after being tested at 

300 °C. The hardness was 26.0±1.0, 25.5±0.9, and 28.9±1.4 GPa for the as-received 

coating and the coatings tested at 120 °C and 300 °C, respectively. After testing at 350°C, 

the hardness of the coating was 28.1±0.9 GPa—higher than that measured for the 

as-received coating. The elastic modulus values of both coatings followed the trend of 

hardness values for each coating.

5.4 Pin-on-disc Tests in Low Humidity (14% RH) and Nitrogen Environments

At room temperature, the DLC based coatings showed steady state COF values after

running-in periods of various lengths, regardless of the test environment in which the test 

was performed. When tested in air under a low humidity of 14% RH, the COF curve of 

the WC-DLC coating did not display a recognizable shift when compared to the curve 

recorded under 51% RH (Figure 5.16). The DLC/WC-DLC coating, however, exhibited 

a drop in the steady state COF value from 0.12 at 51% RH to 0.09 (Figure 5.17). Under 

a nitrogen atmosphere, the COF values of both DLC based coatings decreased to 

approximately half o f the values recorded in ambient air under -51%  RH—0.06 for 

WC-DLC coatings and 0.05 for DLC/WC-DLC coatings.
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Figure 5. 16 COF curves o f the WC-DLC coatings against 319 A1 as a function of 
number o f revolutions at different test atmospheres.
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Figure 5. 17 COF curves of the DLC/WC-DLC coatings against 319 A1 as a function of 
number of revolutions in different test atmospheres.
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The wear tracks on both coatings that were tested at room temperature in different 

atmospheres showed no trace of adhered material (Figure 5 .18 and Figure 5.19).

5.5 Discussion

This section discusses the observed adhesion phenomenon and tribological behaviour 

of a 319 A1 alloy dry sliding against WC containing H-DLC coatings—in accordance to 

the coating composition and structure. A comparison of the results to those from 319 A1 

against a B4C coating and the relevant literature is also presented.

5.5.1 Transfer of 319 A1 onto DLC Coatings

At room temperature, NH-DLC, H-DLC and the WC containing H-DLC coatings

studied in this work exhibited no adhesion o f 319 Al, unlike the B4C coatings studied, 

which suffered 0.84% area coverage o f the wear track. Figure 5. 20 illustrates the 

ranking of various coatings according to the amount o f Al that adhered to the wear tracks 

in ambient air (40-51% RH, 25 °C). All three of the coatings tested in this study are 

clearly superior industrial candidates for the dry machining of Al.

The aluminum adhesion mitigating property of studied DLC coatings are attributed 

to the hydrogen content within the coatings. For the WC-DLC and DCL/WC-DLC 

coatings, the dangling carbon bonds on surfaces are terminated with hydrogen atoms due 

to their ~ 24 at% carbon content—leading to a weakened interaction between the DLC 

coating and the aluminum pin material that acts as a shielding effect induced by the 

hydrogen atoms—prompting the anti aluminum adhesion of the hydrogenated DLC
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Figure 5. 18 Section of the wear track on the WC-DLC coating after tested against 319 
Al a) in air with 14% RH and b) in N2. The wear tracks were free of adhered materials.

184

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 5 .19 Section of the wear track on the DLC/WC-DLC coating after tested against 
319 A1 a) in air with 14% RH and b) in N2 . The wear tracks were free of adhered 
materials.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 5. 20 Ranking of various coatings according to the amount o f A1 adhesion onto 
the wear tracks in ambient air. The result for H-DLC is from [111] and the rest of the 
results are adapted from [7] for purpose o f comparison.
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coatings. The first principles quantum mechanics calculations done by Qi et al. [90] 

support this opinion by showing that the work of separation is higher between Al/clean 

diamond (4.08 J/m2) than Al/H-passivated surface (0.02 J/m2). The decohesion work 

within Al atomic layers is calculated to be 1.56 J/m2, so as long as the hydrogen 

passivation of the DLC surface is in effect, Al will not adhere to H-DLC coatings.

The current work shows that material containing Al only slightly adheres to 

hydrogenated DLC coatings at the maximum tested temperatures (300 °C for WC-DLC 

coating and 350 °C for DLC/WC-DLC coating. This observation implies that the 

shielding effect provided by the H atoms is sustainable even at elevated temperatures up 

to 300 °C. However, the ability o f NH-DLC coatings to prevent Al adhesion stops when 

the test temperature is increased. It has been reported that aluminum adheres onto 

NH-DLC coatings at elevated temperatures as low as 240 °C [111].

5.5.2 Effect of Transfer Layer Formation: Wear Mechanisms DLC Coatings against 
319 Al in Ambient Air (51% RH)

Current studied DLC based coatings exhibited low COF and wear rates when tested 

against 319 Al in ambient laboratory air under 51 % RH. When testing was complete, a 

well defined layer of transferred material consisting of oxidized aluminum and 

carbonaceous material (Figure 5. 3 and Figure 5. 5) was observed on the pin tips that 

had come into sliding contact with the coatings. Such observations are consistent with the
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well documented formation of carbonaceous transfer layers on the counterface slid 

against various DLC coatings in previous studies [69] [71-76],

In its as-received state, a DLC coating is unlikely to be worn by a counterface 

material softer than itself (-20 GPa for DLC coatings vs. -0.94 GPa for Al 319). Thus, 

the present work proposes a tribochemical process in which 1) the frictional-heat-induced 

structural transformation of the topmost surface of the DLC coatings and 2) the chemical 

reaction o f the pin material with oxygen, function synergistically. When the surfaces of 

the DLC coatings and Al pins were brought into sliding contact, frictional heat was 

generated between the contact asperities—resulting in a flash temperature increase that 

rose much higher than room temperature. In order to estimate the temperature rise caused 

by frictional heating, the method developed by Kong and Ashby [146] was applied to 

calculate the flash temperature o f 319 Al running against WC-DLC and DLC/WC-DLC 

coatings at the same conditions as the experiments presented in Section 5.1. The detailed 

calculation procedure is described in Appendix 2. The estimated flash temperature at the 

contact asperities was 165 °C for WC-DLC coating and 84 °C for DLC-WC-DLC 

coatings—neither of which were high enough to initiate the H release from the bulk 

coating [73] [100],

The above estimation is, however, far from accurate due to the fact that a vigorous 

treatment of the equivalent length of heat diffusion, the thermal conductivity o f the 

coatings and the partition of the heat between the coatings and their substrates is absent.
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It is highly possible that the flash heating of the coating was localized into “hot 

spots”-resulting in the hydrogen release from the DLC coating only at the contact 

asperities. It is believed that hydrogen within an amorphous carbon network that contains 

both sp3 and sp2 bonded carbon atoms stabilizes the tetrahetrally coordinated carbon 

atoms—promoting the cross-linking strength o f the coating’s relatively sp2 rich domains 

[73][147-148]. Further shearing of this weakened, hydrogen-depleted DLC provided the 

energy needed to overcome the energy barrier so that the coating was converted into a 

more stable graphitic structure according to the wear-induced graphitization mechanism 

proposed by Liu and Meletis [73]. A very thin top layer of graphitic material was thus 

formed by the repetitive contacts between the pin and the coating.

On the pin side, aluminum oxidized readily in the presence of oxygen (AG° = 

-1582.3 kJ/mole at 300K [143]) so that a layer of relatively hard, oxidized (14.71 GPa for 

alumina) pin material formed quickly in ambient air. This hardened pin surface picked up 

the top most layer of graphitic material on the DLC coatings as the sliding proceeded, as 

displayed in Figure 5. 21. The oxide layer on the Al 319 surface, however, tended to 

crack, delaminate and break into loose debris so that the oxide layer sustained a dynamic 

equilibrium thickness. Some of the debris was caught between the sliding contact 

region—initiating a three-body abrasion of the graphitized coating’s top surface while the 

hardness of the underneath DLC coatings prevented the abrasive particles from ploughing 

too deeply into the coating.
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Figure 5. 21 Back scattered SEM images of the 319 Al pin tips tested against a) 
WC-DLC and b) DLC/WC-DLC coatings at room temperature under 51% RH for 104 
revolutions. The dark material in both pictures is presumably graphitic carbon formed by 
friction induced graphitization of the coatings.
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The end result of the processes described above is that the actual sliding contact 

occurred between an oxidized aluminum layer topped with graphitic material and a thin 

layer of graphitic material located on the coating surface. Under the lubrication of 

adsorbed water molecules within the test atmosphere, this easy shear graphitic layer acted 

as a solid lubricant, resulting in low and steady COF values and low wear rates. The pins 

were also protected from excessive wear by the formation of these layers.

The process explained above did not occur during the sliding of B4C against 319 Al, 

so the wear of both the pin and coating materials increased continuously until the coating 

was totally removed from the substrate and the pin was severely flattened after 104 

revolutions. The fact that studied DLC coatings remained on the substrate after testing for 

104 revolutions implies better wear resistance than the B4C coating against the dry sliding 

of 319 Al alloy

5.5.3 Effect of Test Temperature on the Tribological Behaviour of DLC Coatings

In this work, the lowest steady state COF values for both WC-DLC and

DLC/WC-DLC coatings were recorded at 120 °C. As the testing temperature was 

increased further, the fluctuation of the COF curve became more conspicuous and no 

steady state friction behaviour occurred at 300 °C for the WC-DLC coating, or at 350 °C 

for the DLC/WC-DLC coating. Both the WC-DLC and DLC/WC-DLC coatings 

exhibited higher wear rates as the test temperature is elevated. The findings of the present 

work are consistent with previous studies on hydrogenated DLC coatings that observed a
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decrease in COF from the room temperature values when testing temperatures entered the 

range o f 100-200 °C. This situation was followed by an abrupt change to high and 

unsteady friction (failure o f the DLC coatings) while monotonically increasing wear rates 

by elevating the temperature [107][111][149-150]. A comparison of the COF values and 

wear rates exhibited during dry sliding against 319 Al by H-DLC [111], NH-DLC [109] 

and the three coatings studied in this work as functions of test temperature is presented in 

Figure 5. 22 and Figure 5. 23. It is noted that DLC/WC-DLC coating succeeded to attain 

a low COF value at 300 °C, which is a significant improvement of the friction behaviour 

of DLC coatings sliding against 319 Al alloys. The studied tungsten containing DLC 

coatings also exhibited higher wear resistance than monolithic NH-DLC coatings at 

temperatures higher than 25 °C. However, the wear rates of the WC containing H-DLC 

coating were approximately one order of magnitude higher than that of H-DLC coating at 

the highest test temperature. The lowest wear rate exhibited by DLC/WC-DLC coating at 

25 °C (51% RH) and lower wear rates than coatings except N i’s H-DLC imply the benefit 

of multilayering.

O f particular note, this work revealed evidence of coating graphitization. The Raman 

spectra of the studied DLC coatings after being tested at 300 (WC-DLC) and 350 °C 

(DLC/WC-DLC) only showed a slight shift o f the peak towards higher wavenumber 

compared to the spectrum of the as-received coating sample (Figure 5. 8 and Figure 5. 

13). This could be indicative o f the transformation of the carbon bonding structure into a
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Figure 5. 22 Comparison of COF values o f various coatings during dry sliding against a 
319 Al alloy at different test temperatures. The results on H-DLC and NH-DLC are from 
[111] and [109] respectively. The superimposed standard deviation bars reflect the 
fluctuation of the COF curves.
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Figure 5. 23 Wear rates of DLC coatings as a function of test temperature. The results on 
H-DLC and NH-DLC are from [111] and [109] respectively.
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more graphitic nature, since the peak located at 1580 cm'1 is characteristic of sp2 bonded 

carbon atoms [47], The graphitization of the coating is also implied by the transferred 

film that was fluffy and loose in appearance found on the 319 Al pin tip after testing 

at350 °C, exhibiting a high carbon content that was presumably graphitic (Figure 5.

12 b)).

Figure 5. 15 illustrates how the mechanical properties of the DLC coatings did not 

deteriorate significantly even after being tested at 300 and 350 °C. Thus the observed 

increase in the wear rates o f the DLC coatings is attributed to increased graphitization of 

only the top layer o f the DLC coatings at elevated temperatures. This graphitic top layer 

was more readily removed, exposing a nascent DLC surface which was then subjected to 

the same process. The higher wear rate o f the WC-DLC coating compared to the 

DLC/WC-DLC coating is considered to be a possible result of its lower hardness 

combined with the more severe degradation of the coating’s mechanical properties.

Possible reasons for the relatively high and unstable COF values exhibited by the 

DLC coatings at temperatures above 120 °C are:

a. Lack of lubrication between the sliding surfaces. As a metastable material, DLC 

coatings tend to transform into stable graphite after an energy barrier is 

overcome. At elevated temperatures, such graphitization processes occur at a 

higher rate, generating more graphitic carbon between the contact surfaces. 

However, it is well known that an adsorbed layer of water molecules is required
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in order to sustain the graphite’s low friction and adsorbed species tend to 

evaporate from a surface as the temperature is increased. At 120 °C, there was 

enough adsorbed water between the sliding surfaces to provide a lubrication 

effect to a higher amount of graphitic material than at 25 °C, so the lowest 

steady-state COF values were observed. As the test temperature further increased, 

the amount of water adsorption on the sliding surfaces further decreased and the 

ease at which the lamella graphitic layers of carbon slide over each other is 

destroyed—resulting in high and unstable friction around 0.4-0.5, which is close 

to the value for dry sliding between clean graphite layers [151].

b. Interaction between the pin material and the WC particles. As the surrounding 

hydrogenated DLC coating was worn by the graphitization process mentioned 

above, the Al pin could have come into contact with the WC particles embedded 

in the coating. The minimum work of separation between Al/WC has been 

calculated to be 3.14 J/m2 [139]—higher than the cohesive energy o f aluminum 

[90]. The contact between the Al pin and the WC particles would probably 

prompt the transfer and adhesion of aluminum onto the coating surface. The WC 

content in the DLC coatings is presumed to be low so that adhesion of materials 

containing aluminum only occurs on a small scale.

The presence of the top H-DLC layer on the DLC/WC-DLC coating provided an 

extra barrier layer so that the first proposed explanation becomes the principle one for the
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unsteady friction observed before the top H-DLC layer was removed. Once the top 

H-DLC layer was removed, the pins were more likely to interact with the WC particles 

according to the second proposed process. For the WC-DLC coating, the interaction 

between the Al pin and the WC particles after the removal of graphitic carbon became the 

cause for the variation of the COF curve. The current observations also imply that the 

hydrogen shielding of carbon atoms provided by the top H-DLC layer could be effective 

up to 300°C.

5.5.4 Effect of Test Environment on the Tribological Behaviour of DLC Coatings

Variations in the testing environment’s relative humidity level exert different 

influences on the friction behaviour of WC-DLC and DLC/WC-DLC coatings. For 

WC-DLC coatings, the steady state COF remained practically the same while an increase 

in the COF value with increasing humidity value was observed for the DLC/WC-DLC 

coating (Figure 5. 16 and Figure 5. 17). Testing in a nitrogen atmosphere reduced the 

COF values of both coatings to nearly half o f the value obtained at 51% RH.

The observation for the DLC/WC-DLC coatings is typical o f the results exhibited by 

non-doped H-DLC coatings. It is generally accepted that hydrogenated DLC coatings 

exhibit higher COF values in the presence of water vapour and/or oxygen [84-86][95], 

Water and/or oxygen molecules in the environment can be adsorbed onto the coating 

surface, resulting in a stronger interaction between the coating and the sliding counterface.

196

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Under high relative humidity (-50%), adsorbed water is more likely to form multiple 

layers, which could result in viscous drag and capillary forces. Current findings on 

DLC/WC-DLC coatings have verified this mechanism.

The possible reduction of the WC-DLC coating’s moisture sensitivity is considered a 

result of WC incorporation into the amorphous H-DLC coating. Similar results on Ti 

doped H-DLC coatings have been reported by Gilmore and Hauert [113]. While the 

mechanism for this phenomenon is unclear at this stage, doping with WC does not 

eliminate the effect o f oxygen adsorption on the friction behaviour of the hydrogenated 

DLC matrix because the COF of the WC-DLC coating decreased to -0.06 when the 

oxygen pressure was reduced by the introduction of an N2 atmosphere.

5.6 Summary and Remarks

The effects of test temperature and atmosphere on the tribological behaviour o f DLC

coatings dry sliding against 319 Al were studied using pin-on-disc tests to investigate said 

coatings’ suitability for the dry machining of aluminum alloys. Both temperature and 

atmosphere were shown to be significant factors in the tribological behaviour o f DLC 

coatings. The findings of the current work are:

1. No transfer and adhesion of pin material were observed under all test conditions 

except at the maximum tested temperatures for DLC coatings. It is suggested that 

passivation of the carbon atoms by hydrogen is responsible for this result.
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2. Both the WC-DLC and DLC/WC-DLC coatings displayed low and steady COF 

values around 0.12 and low wear rates in the range of 10"6 -  10'7 mm3/m at room 

temperature in ambient air. This observation is attributed to the formation of a 

carbonaceous transfer layer on the counterface.

3. DLC/WC-DLC coatings exhibited a lower COF than WC-DLC coatings at 

elevated temperatures. DLC/WC-DLC coatings presented a steady state COF value of

0.10 at 300 °C whereas the WC-DLC coating failed to reach steady state COF at the same 

temperature.

4. At 120 °C the steady state COF values for the DLC/WC-DLC (0.08) and 

WC-DLC (0.09) coatings were lower than the corresponding values at 25 °C (0.12 and

0.14, respectively) at 51% RH.

5. The wear rate of the DLC/WC-DLC coatings was lower at 350 °C (9.30><10 5 

mnrVm) than that of WC-DLC coatings at 300°C (1,20><10"4 mm3/m).

6. The fact that coating wear rates increased with elevated temperatures is attributed 

to the graphitization of the top most layer of the coating for DLC/WC-DLC coatings, 

while the softening o f the coating might also be a contributing factor for the WC-DLC 

coatings.

7. At room temperature, WC-DLC coatings exhibited the lowest steady state COF 

values (0.06) in an N2 atmosphere. WC-DLC showed less sensitivity to atmospheric 

humidity than DLC/WC-DLC.
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CHAPTER 6 CONCLUSIONS

The tribological behaviour of B4C and DLC (DLC/WC-DLC and WC-DLC) coatings 

during dry sliding contact with a 319 Al alloy has been investigated under various test 

conditions in order to probe their suitability as tool coatings used for the dry machining of 

aluminum alloys. The main conclusions and industrial significance o f this study can be 

summarized as follows:

6.1 Coating Structure

1) The B4 C coating is a partially crystallized coating.

2) The WC-DLC coating is an H- DLC coating containing WC dopants.

3) The DLC/WC-DLC coating is a multilayer coating that combines one layer of 

WC-DLC coating and one top layer o f H-DLC coating.

6.2 Transfer of 319 Al to Various Coating Surfaces

1) In ambient air (51% RH), no Al transfer occurred to the DLC coatings tested in the 

current work, while Al transfer was observed for the B4C coatings. However, compared 

to other industrial coatings, the B4C coating still managed to reduce the amount o f Al 

adhesion to only 31% of the TiB2 coating, which exhibited the least Al adhesion among 

other industrial coatings.

2) Al transferred to B4C coatings at low humidity (14.4% RH) and in N 2 , but not to the 

H-DLC coatings.
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3) The amount o f Al transfer increased dramatically at elevated temperatures for the B4C 

coatings—namely a 1900% increase was observed at 300 °C compared to 25 °C. For the 

studied DLC coatings, a small amount of Al transfer occurred only at the maximum 

temperatures tested (300 °C for the WC-DLC coating and 350 °C for the DLC/WC-DLC 

coating). Compared to NH-DLC, the Al adhesion mitigating property of tungsten 

containing H-DLC is superior.

4) A possible explanation for the Al transfer to the B4C coating surface is that the work of 

separation between the AI/B4C interface is higher than the decohesion energy of an Al/Al 

interface. The excellent Al adhesion mitigating property of the DLC coatings is due to the 

hydrogen passivation of dangling carbon bonds on the surface.

6.3 COF of the B4C Coatings

6.3.1 Against 319 Al

1) The mean COF value of B4C against an Al 319 alloy is 0.48±0.06 at room temperature 

under 51% RH. The coating was removed from the substrate after 104 revolutions of 

sliding contact. An adhesion-delamination-three body abrasion mechanism involving 

delaminated, possibly hardened and oxidized Al micro chips from the pin tip is proposed 

by the author.

2) The mean COF of 319 Al sliding against a B4C coating decreases slightly (1%) as the 

test temperature is elevated—perhaps due to the thermal softening of Al and the
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self-welding prevention provided by the enhanced formation of oxidized Al at high 

temperatures (especially at 300 °C).

3) B4C exhibited a larger fluctuation in COF values at a higher relative humidity 

level—possibly stemming from the further roughening of the contact surface due to 

micro-fracturing of the asperities with the presence of more water vapour.

4) The lowest COF—a steady-state value of 0.36—was observed for B4C coatings when 

tested in N2 .

6.3.2 Against 52100 Steel

1) The mean COF value of 52100 steel dry sliding against a B4C coating at room 

temperature under 51% RH is much higher than that of 319 Al against a B4 C coating 

(0.80±0.05 vs. 0.48±0.06). This difference is attributed to 52100 steel’s higher strength.

2) The mean COF value increased as the test temperature was elevated for the 52100 

steel-B4C coating material pair.

6.4 Tribological Behaviour of the DLC Coatings

1) Both WC-DLC and DLC/WC-DLC coatings displayed low COF 

values—approximately 0.12—and low wear rates at room temperature. These observations 

are attributed to the formation of a carbonaceous transfer layer on top o f the 319 Al pin, 

as well as the hydrogen passivation of the DLC coating surfaces.
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2) Higher wear rates were observed for both DLC coatings when tested at elevated 

temperatures—explained by intensified surface graphitization and the sequential, more 

ready removal of the resulting low-strength graphitic top layer.

3) The steady state COF value was lower when tested at 120 °C, compared to tests run at 

room temperature (51% RH). Enhanced graphitization of the top most surface of the 

coatings and lubrication from the surrounding water vapour might be the cause of these 

results.

4) DLC/WC-DLC coatings exhibited a steady state COF value of 0.10 at 300 °C, whereas 

the WC-DLC coatings failed to reach steady state COF at the same temperature. The 

wear rate o f the DLC/WC-DLC coatings was lower at 350 °C (9.30x10"5 mm3/m) than 

that of the WC-DLC coatings at 300°C (1.20x1 O'4 mm3/m). The presence o f a top H-DLC 

layer is believed to be responsible for the superior high temperature behaviour of 

DLC/WC-DLC coating.

5) The WC-DLC and DLC/WC-DLC coatings failed to attain a steady state COF at 300 

°C and 350 °C, respectively. Such failure could be explained by i) desorption of water 

from the sliding interfaces at elevated temperatures, leading to insufficient lubrication of 

the graphitic sliding interface; and/or ii) a stronger interaction between the Al pin tip and 

the WC particles.

6) The thermal stability of the studied coatings is improved when they are doped by W, 

compared to non-doped DLC coatings.
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7) Doping by WC may reduce the moisture sensitivity of WC-DLC coatings. 

DLC/WC-DLC is sensitive to the presence of water vapour due to its H-DLC top layer.

6 ) Testing in N2 reduced the COF values of both coatings to a very low value of -0.06. 

This suggests that N2 might reduce the amount of oxygen and water molecule adsorption 

onto the coating surface, resulting in weaker interaction between the coating and the 319 

Al pin.

6.5 Industrial Significance of Conclusions: Practical Conclusion

1) The B4 C coating is not totally suitable for the purpose of dry machining Al alloys

because its COF value—high compared to that of DLC coatings—and its inability to 

prevent Al adhesion even at room temperature makes it not as good a choice.

2) WC containing H-DLC coatings are more promising candidates as tool coatings for the 

dry machining of Al alloys thanks to their low COF values when tested up to 300 °C and 

the low wear rates exhibited at room temperature.

3) The observation that N2 gas in the test atmosphere could effectively reduce the COF 

values o f all the tested coatings suggests that the best approach would be “N2 

lubrication”—using nitrogen gas instead of MWF to achieve successful dry machining.

6.6 Suggestions for Future Work

For B4 C coating systems:

1. TEM investigation o f the coating structure will provide deeper insight into the 

relative amount o f amorphous and crystalline phase within the coating. The presence
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of deposition defects such as graphitic phase between the columnar structures will 

also be revealed.

2. AI-B4C coating interface study using TEM to discover structure changes in adhered 

Al, such as grain refinement. This investigation will provide information on whether 

the adhesion of Al is caused by chemical bonding or just mechanical interaction.

3. Calculation of the energy required to separate AI/B4 C interface will help us 

understand the adhesion on an atomic level.

4. Annealing the B4C coating at a high temperature (600 °C, for example) in air and then 

testing it against 319 Al in different humidity levels will explain if the tribological 

properties of B4C coatings might be improved by introducing a thin boric oxide top 

layer.

5. Further investigation of the 52100 steel-B4C coating material pair following the 

routing used in this work and items 1 to 4 mentioned above.

For the DLC based coatings:

1. The DLC coatings remained effective at providing a low COF in ambient air for 104 

revolutions. Future studies will extend the duration of the tests to determine how long 

this desirable property lasts. Testing would continue until penetration o f the DLC 

coatings to provide an estimation o f coating life.
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2. A detailed TEM investigation of the coating structure will provide a better 

understanding of the doped WC particles-including determining the amount o f WC 

doped and whether the particles are well crystallized.

3. Anneal the DLC coatings at different temperatures and then conduct the TEM 

characterization described above. Understanding the structural change o f the WC 

dopants will be essential for a comprehensive explanation of the tribological 

behaviour of DLC coatings at elevated temperatures.

4. The good tribological behaviour o f DLC coatings are attributed to the formation of a 

carbonaceous transfer layer on the counterface, but in real application (such as 

drilling), the coating comes into contact with nascent counterface material instead of 

passing through one point repeatedly. The design of a new test configuration that 

represents such contact better will simulate a real application. Sliding tests that result 

in a spiral track would be an excellent choice for this purpose.

5. Further investigation of the transfer layer on the counterface is 

recommended—including the determination of the shear strength of this layer to better 

support the low friction mechanism it induces. Detailed structural information on the 

carbon content in this layer will provide a fuller understanding of the transfer layer 

formation mechanism.

6. Conduct drilling tests using drills coated with DLC coatings. What if  the applied 

shear stress is increased by at least one order of magnitude? In real drilling, the thrust
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force applied is far higher than 5 N. A detailed characterization of the drill after the 

tests will reveal the operation mechanism of the DLC coating in a real application.
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APPENDICES

A 1 Friction of Coefficient Curves

All the COF curves recorded in the current work are presented in this section. All the

tests were conducted under 5 N load and 0.12 m/s sliding speed.

A 1.1 319 Al dry sliding against B4C coatings.

a)

£  0.4

2000 4000 0000 8000

Number of Revolutions

10000

b)

2 0.4

200 400 600 800 1000

Number of Revolutions

Figure A 1 .1  The COF curves between the B4C coating and a 319 Al alloy during sliding 
in ambient laboratory air (25 °C, 51% RH). a) up to 10000 cycles of sliding; b) First 
1000 cycles shown in a).
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Figure A 1. 2 The COF curves between the B4C coating and a 319 Al alloy during sliding 
at 120 °C
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Figure A 1 .3  The COF curves between the B4 C coating and a 319 Al alloy during sliding 
at 300 °C
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Figure A 1. 4 The COF curve between the B4C coating and a 319 Al alloy during sliding 
at 25 °C under 14% RH.
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Figure A 1. 5 The COF curves between the B4C coating and a 319 Al alloy during 
sliding in N2 .
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A 1.2 52100 steel dry sliding against B4C coatings
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Figure A 1. 6 The COF curves between the B4C coating and 52100 steel during sliding in 
ambient laboratory air (25 °C, 51% RH).
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Figure A 1. 7 The COF curves between the B4 C coating and a 319 A1 alloy during sliding 
at 120 °C
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Figure A 1. 8 The COF curves between the B4 C coating and a 319 A1 alloy during sliding 
at 300 °C
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A 1.3 319 A1 alloy dry sliding against DLC coatings
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Figure A 1. 9 The COF curves between the WC-DLC coating and a 319 A1 alloy during 
sliding in ambient laboratory air (25 °C, 51% RH). a) up to 10000 cycles of sliding; b) 
First 1000 cycles shown in a).
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Figure A 1.10 The COF curves between the WC-DLC coating and a 319 A1 alloy during 
sliding at 120 °C
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Figure A 1.11 The COF curves between the WC-DLC coating and a 319 A1 alloy during 
sliding at 300 °C
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Figure A 1.12 The COF curve between the WC-DLC coating and a 319 A1 alloy during 
sliding under 14% RH.
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Figure A 1.13 The COF curves between the WC-DLC coating and a 319 A1 alloy during 
sliding in N2 .
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Figure A 1 .14  The COF curves between the DLC/WC-DLC coating and a 319 A1 alloy 
during sliding in ambient laboratory air (25 °C, 51% RH)
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Figure A 1. 15 The COF curves between the DLC/WC-DLC coating and a 319 A1 alloy 
during sliding at 120 °C
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Figure A 1. 16 The COF curves between the DLC/WC-DLC coating and a 319 A1 alloy 
during sliding at 300 °C
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Figure A 1. 17 The COF curve between the DLC/WC-DLC coating and a 319 A1 alloy 
during sliding at 350 °C
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Figure A 1. 18 The COF curve between the DLC/WC-DLC coating and a 319 A1 alloy 
during sliding under 14% RH.
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Figure A 1. 19 The COF curves between the DLC/WC-DLC coating and a 319 A1 alloy 
during sliding in N2 .
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A 2 Ashby’s Method of Flash Temperature Calculation

The methodology developed by Ashby and his co-workers [146] were applied to

calculate the temperature increase at the sliding interface due to the heat generated by 

friction between WC-DLC coating, DLC/WC-DLC coating and a 319 A1 pin, 

respectively. This section presents a description o f their model as well as the procedure 

that has been taken to calculate the values displayed in Section 5.5.2.

When two contacting solids slide on each other, heat is generated and then 

distributed between the sliding surfaces according to their geometry and thermalphysical 

properties. The rate of heat generation (q) due friction per unit nominal contact area (A„) 

at the sliding surface is given by

uFvq = —— Equation A 2 .1
A

where fi is the coefficient of friction (COF), F is the applied load, v is the sliding 

velocity. In the current study, the temperature calculation was done for a pin-on disc 

configuration as shown in Figure A 2 . 1. Subscript 1 is used for the pin and subscript 2 is 

used for the disc.

Two important variables are defined: the mean or bulk temperature (7*) and the flash 

temperature (7}). The bulk temperature is defined as the surface temperature due to the
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Figure A 2 . 1 A typical pin-on-disc configuration [146],
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uniformly injected frictional heat across the nominal contact area (A„). The flash 

temperature is the local temperature of the asperities on the sliding surface and is almost 

always higher than the bulk temperature. Tb is given by

T = i o
fjFv 1

kL + k1

V hb hb J

Equation A 2. 2

where To represents the temperature of the remote heat sink, k} and k2 are the thermal 

conductivities of the materials in sliding contact, and hb and hb are the equivalent linear 

heat diffusion distances from the sliding surface to the heat sink for surfaces 1 and 2.

Tf is expressed as

T _ T' =
1 b

liFv
Equation A 2. 3

' 2/

where Ar is the real contact area that consisting of contact asperities, ///and h jare the new 

equivalent linear heat diffusion distances and Tb ’ is the effective sink temperature that is

given as
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Th =Th ~ —  (Tb -T 0), where Equation A 2. 4
A

A F= —  Equation A 2. 5
A  Fs

Fs is defined as the seizure load at which Ar becomes equal to A„ and is given by

Fs ~  7— m/2 Equation A 2. 6
(i + i V /

H0 is the hardness o f the softer of the two surfaces. Since the disc is coated with a layer o f 

DLC coating with different thermal properties from the substrate M2 steel, an effective 

thermal conductivity, foe was used in place of fo, which is expressed as

r 7  \  
1-

V P Va J

k ksteei mat-----------  where, Equation A 2 .7

k | ^ kcoat, ^  steel

fi = —  and Z is a constant with a value o f 10'6.

The nomenclature and expressions for the equivalent linear heat diffusion distances 

Iib, hb, ///and /2/a re  listed in Tables A 2.1 a) and b). The assumptions applied to calculate 

the variables are also presented. The material properties and the values o f other 

parameters used to calculate the bulk and flash temperatures that were discussed in
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Section 5.5.2 are listed in Table A 2. 2 and Table A 2. 3. Properties of pure A1 insteady

of 319 A1 alloy was used for calculation.
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Table A 2 .1  a) Nomenclature, and b) expressions and assumptions for the equivalent 
heat diffusion distances.

ai, a2, Thermal diffusivities o f surfaces 1 and 2, (m2/s)

Ho Hardness o f the softer material at 25 °C

n, m ,n 2
A measure of the lifetime of a contacting asperity; which survives a sliding 
distance, (7t/2)nra. n t was taken as 1 for Al asperities and n2 was taken as 
100 for DLC asperities

ra Radius of a single isolated asperity junction (m), assumed to be 1><10'4 m.

ri
Radius of a contact junction that can be made up of many unit asperities 
(ra<rj<r0) (m)

ro
Radius of nominal contact area (m), measured from the SEM image of the 
pin tips after sliding against DLC coatings under conditions described in 
Section 5.1.

a)

Bulk Temperature

lib, set to be the physical length o f the pin, 15 mm

r* \ 1/2
hb = -T 7 T ta n " n v r » v  j

Flash Temperature

lU = 3 7 T tan“1 n

L = —4rtan 1
n

rj = ro

1/2

r 0 V/2nxlm 2

v r J v  j

r  ̂ a 1/2n22m 2

v r J v  J

+ 1
V S a

- M l

b)
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Table A 2. 2 The material properties used to calculate the bulk and flash temperatures.

A1 [152] DLC [153] M2 [152]
Density (kg/m ) 2700 1750 7900

Heat Capacity (J/kg-K) 904 711 450
Thermal Conductivity (W/m-K) 229 15 48

Thermal Diffusivity (m2/s) 9.38xl0 '5 9.17xl0'6 5xl0~6

Table A 2 .3  The measured steady-state COF and radius of nominal contact area values 
in ambient air (25 °C, 51% RH).

Coating COF ro(m )

WC-DLC 0.14 2.86X10-4
DLC/WC-DLC 0.12 1.58X1Q-4
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