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ABSTRACT

The main focus of this research was to investigate force/displacement response
and energy absorption performances of axially loaded AA6061-T4 and -T6 circular
aluminum alloy extrusions under cutting deformation mode.

Quasi-static experimental investigation on load/displacement and energy
absorption characteristics under cutting deformation mode was completed utilizing
specially designed heat-treated 4140 steel alloy cutters and two different geometries of
the cone-shaped deflectors, namely, straight and curved. An almost constant force during
cutting was observed, which eliminated high peak crush force associated with progressive
folding or global bending deformation modes. The average mean cutting force, as a result
of the cutting deformation, was observed to be 29.8 kN and 43.2 kN for the AA6061-T4
and -T6 extrusions with a wall thickness of 3.175 mm respectively. For the extrusions
with a wall thickness of 1.587 mm, the average mean cutting force was observed to be
14.9 kN for T4 temper and 19.6 kN for T6 temper tubes under the cutting deformation.

Additionally a dual stage cutting process was initiated using two cutters in series
in this research. In addition to cutters and deflectors, spacers of different geometries
between the cutters were also incorporated in this study. The force/displacement
responses illustrated that the dual stage cutting was the superposition of two single-stage
cutting processes. As spacing between the cutters increased the stability of the cutting
progress degraded.

Additionally, controlling the load/displacement response through varying
extrusions wall thickness along the length of the specimens was investigated. Results
from the experimental testing illustrated that the force/displacement response was
dependent upon the extrusion thickness and an almost linear relationship was observed to
exist between wall thickness and the steady state cutting force.

Finally to this research, a numerical study of the axial cutting deformation process
was simulated employing an Eulerian and Smoothed Particle Hydrodynamic (SPH)
methods. Good predictive capabilities of the numerical model employing the Eulerian

element formulation were observed.
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1. INTRODUCTION

Vehicle occupant safety and addressing strict environmental regulations are
significant challenges for automotive manufacturers. Over the years, safety, styling,
comfort and handling were the primary concerns for consumers. However,
environmental consciousness and dramatic increase of fuel prices in recent years shifted
consumer choice towards more environment friendly fuel efficient vehicles.
Globalization of auto industry, new government regulations and consumer demand has
led to a greater emphasis towards more research on vehicle crashworthiness as well as
incorporation of light weight materials in vehicle structures.

Government agencies, insurance underwriters, automotive manufacturers and the
media provide consumers with significant amounts of safety information regarding
vehicles. Most vehicles manufactured in recent years have incorporated safety features
such as energy absorbing front and side structures, air bags, seats with integrated seat
belts and various crash avoidance devices, such as anti-lock braking system, traction
control devices, daytime running lamps, engine immobilizer, fog lamps, onboard
monitoring system of tire pressures and rear view cameras to satisfy regulatory
requirements. The National Highway Traffic Safety Administration (NHTSA) and the
Insurance Institute for Highway Safety (IIHS) provide crashworthiness ratings of new
vehicles and has ranked all tested vehicles in different categories according to crash test
results. The ITHS conducts fully instrumented crash tests using the 50™ percentile male
Hybrid IIl dummy on a variety of new vehicle models each year. Frontal offset crash
tests are a good assessment of a vehicle’s structural design. Side impact crash tests are
good assessments of occupant protection when vehicles are struck in the side by SUVs or
pickups. Rear crash protection ratings focus on how well seat’head restraint
combinations protect against whiplash injury. Photographs in Figure 1.1 illustrate the
effectiveness of crashworthiness engineering during frontal offset crash and side impact
crash tests conducted by the ITHS [1].

Depending upon the crash situation, different degrees of energy dissipation must
occur in a controllable fashion to minimize the potential for injury to the occupants. In

other words, energy dissipative structures are designed to absorb kinetic energy while



other structures are expected to maintain a safe survival region for the occupants. One
way of achieving this objective is through use of structural members that absorb energy
through plastic deformation. The frontal rails of the vehicle frame act as the main energy
absorber during frontal impact and side A, B pillars and energy absorbing side door
panels absorb a major portion of the kinetic energy during side impact. Efforts from
industry and academic areas are trying to control the deformation mode of structural

members and dissipation of energy in a controlled fashion during impact.

Figure 1.1. Structural damage after frontal offset and side crush tests of Audi A6 2008
model. (a) view after frontal impact, (b) driver’s survival space maintained well, (c) view
of side impact and (d) driver dummy's head was protected from being hit by hard
structures by the side curtain airbag {1].



The other major challenge for the auto industry is to introduce more fuel efficient
vehicles to address environmental concerns of their products through use of lightweight
materials without compromising occupant safety. Material selection is critical to achieve
the goals of weight versus strength. The basic requirements for automotive structural
materials include good formability, lightweight, corrosion resistance and recyclability.
Traditionally steels account for the majority of parts in a vehicle structure. Conventional
high strength steel (HSS) (carbon-manganese, bake hardenable, high-strength
interstitial-free, and high-strength, low-alloy steels) are replaced with the newer types of
advanced high strength steel (AHSS) (dual phase, transformation-induced plasticity,
complex phase, and martensitic steels) to achieve goals of mass reduction and improved
material properties [2]. The strength to weight ratio and material properties of aluminum
made it even more attractive in the design of vehicle structures. According to a study
conducted by FKA [2], aluminum designs provide 5% to 20% mass savings compared to
an advanced steel design as shown in Figure 1.2. Aluminum alloys have been widely
used in vehicular structures as a result of the material’s favourable strength to weight
ratio, material and mechanical properties, recyclability, and relative low cost. In 2006,

aluminum overtook iron to become the second most used material in new cars and trucks

[3].
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Figure 1.2. Potential mass savings using advanced steel and aluminum compared to
conventional steel in vehicle design [2].



The research presented in this thesis involves the study of energy absorbing
structural components made of extruded aluminum. The objective of this research is to
examine the influence of geometrical parameters and temper conditions on the
crashworthiness characteristics of axially loaded extruded AA6061 tubes. Experimental
quasi-static crush tests have been used to determine the collapse mode, load/displacement
characteristics, and energy absorption ability of round aluminum specimens. Specially
designed cutters and deflectors have been utilized to achieve higher crush force efficiency
and steady state load/displacement response under cutting deformation. Furthermore,
investigations considering the use of cutters in series, as a potential adaptive energy
absorber, and variations in the extrusion wall thickness (in the axial direction) have been
considered in this research. The experimental results have been compared with the
results of non-linear finite element (FE) simulations employing an Eulerian element
formulation. A comparison between experimental results and analytical models
developed by other researchers has been completed and will be presented for quasi-static

axial cutting tests of round aluminum extrusions.



2. LITERATURE REVIEW

The ability to dissipate kinetic energy in the form of plastic deformation in a
controlled manner by structural members of a vehicle is critical for occupant safety
during an accident. A significant amount of theoretical, experimental and numerical
research work has been performed on structural crashworthiness of thin-walled structures.
The literature, related to the present study, dealing with energy absorption characteristics
and crashworthiness of tubular structures are presented in this chapter. Section 2.1
discusses the collapse modes of axially loaded tubular structures under different loading
conditions. Section 2.2 details the factors such as geometric variations, material
properties and cross-sectional shape which influence the collapse mode of axially loaded
tubes. Section 2.3 illustrates the influence of crush initiators in the form of geometric
discontinuities and material imperfections on energy absorption characteristics. Section
2.4 discusses some of the analytical models developed by various researchers to predict
peak buckling load and mean crush load for square tubes. Section 2.5 details the work

performed by researchers using finite element analysis.



2.1 Modes of deformation for axially loaded tubes

The main physical mechanisms associated with energy absorption of metal
structures are plastic deformation and fracture. The effectiveness of an energy absorbing
device largely depends on its plastic deformation mode. A wide range of these modes
exist, including, global bending, progressive folding, external inversion and axial
splitting/cutting for thin-walled structures. Figure 2.1 illustrates the pattern of different

deformation modes during axial crushing of circular tubes.

(@ (® (©

Figure 2.1: Deformation modes during axial crushing of circular tubes. (a) progressive
folding, (b) global bending and (c) mixed mode.

2.1.1 Axial plastic collapse

There are a few possible patterns of collapse modes available during axial plastic
collapse depending on geometrical parameters and material characteristics of the
structure. The geometric parameters which govern the deformation mode are the ratios of
L/D (length/diameter) and D/t (diameter/thickness) for circular tubes and L/C
(length/width of side) and C/t (width of side/thickness of wall) for square tubes. The
possible deformation modes within axial plastic collapse include progressive folding and
global bending.

Abramowicz and Jones [4] characterized in detail the progressive collapse modes
of axially loaded square tubes and divided the progressive collapse mode into three

distinct crushing modes: symmetric, asymmetric, and transition. Possible symmetric



modes of deformation for square extrusions include (1) four individual lobes deforming
inwards, (2) three lobes inwards and one outwards or (3) two opposite lobes deforming
inwards with the other two opposite lobes deforming outwards. In contrast with
symmetric mode, the asymmetric mode of deformation has the following deformation
characteristics: (1) a layer of three individual lobes deforming outwards and one inwards
or (2) two adjacent lobes deforming outwards with the other two adjacent lobes
deforming inwards. The transition mode from progressive axial crushing to overall
bending occurred when the asymmetry of the deformation gives rise to an inclination of
the undeformed part of the column relative to the vertical axis.

Guillow et al. [5] experimentally investigated axial compression of thin-walled
circular 6060 aluminum tubes with T5 tempered conditions and with different geometry
variations. The range of D/t considered in these investigations was between 10 and 450
and L/D was selected < 10. The observed different modes of collapse corresponding to

D/t and L/D ratios are presented in Figure 2.2.
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Figure 2.2. Classification chart for different deformation modes associated with circular
6060-T5 aluminum tubes [5].

They observed the ratio of maximum to average crush force increased
substantially with an increase in the D/f ratio. They also found reasonable agreement
between experimental findings and theory developed by Abramowicz and Jones [6] for

axi-symmetric and non-symmetric modes.



Langseth and Hopperstad [7] experimentally investigated the crush behaviour of
axially loaded square thin-walled AA6061 extrusions with T6 and T4 as well as modified
T4 tempered conditions under static and dynamic loading. The geometry of the
extrusions considered in this investigation had a length of 310 mm, width of 80 mm and
wall thicknesses of 1.8 mm, 2.0 and 2.5 mm. All tubes considered in this study collapsed
in a progressive symmetric deformation mode under static loading conditions regardless
of wall thickness and tempered conditions. However, the number of lobes formed during
the deformation process was found to be a function of the hardening properties of the
material. When the specimens were fully compressed, approximately 6 lobes were
formed in the tubes with T4 temper, between 6 and 7 lobes were formed in the tubes with
modified T4 temper and 7 lobes were formed in the tubes with T6 temper.

The mean crush force and energy absorbed were reported higher for the tubes
with T6 tempered condition. It was believed this finding was a result of the higher yield
strength of the T6 temper. However, the ratio of the mean crush forces associated with
T6 and T4 tempered conditions was observed highest for extrusions with 1.8 mm wall
thickness and the ratio decreased with an increase of extrusion wall thickness. The
authors attributed this towards difference hardening properties of two temper conditions.
With the increase of wall thickness, strains are increased and thus gave a significant
growth in the flow stress for T4 temper material which does not occur for T6 temper
material due to low hardening modulus. Figure 2.3 illustrates the ratio between the mean

loads for T4 and T6 tempered conditions as a function of wall thickness and axial

displacement.
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Figure 2.3. Ratio between mean loads for tubes with T4 and T6 tempered conditions [7].



Langseth and Hopperstad [7] also observed mixed mode of deformation during
dynamic tests on similar extrusions used for static tests. The dynamic mean force was
significantly higher than the corresponding static force for the same axial displacement.
As the strain rate effects have minor importance, they indicated the observed difference
had to be associated with inertia effects set up at the instant of impact due to lateral
movement of sidewalls in order to initiate the folding process. A representative
comparison between dynamic and static force versus displacement response for T6

tempered condition is presented in Figure 2.4.
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Figure 2.4. Comparison between dynamic and static force versus displacement response
for the extrusions with T6 tempered conditions [7].

Singace [8] developed an analytical model. The theoretical work was also

validated with experimental findings to evaluate the crushing load of tubes deformed in
the multi-lobe mode using an eccentricity factor which is the proportion of the inside and
the outside length of the fold. Singace reported analytical observations for the mean
collapse load, value of eccentricity factor and the critical folding angles obtained for
tubes of different materials and geometric ratios. These were in good agreement with

those obtained from experimental results. It was discovered that the eccentricity factor



was independent of the tube’s material and geometric ratio. Figure 2.5 represents the
load/displacement profile for the axial crushing of HT-30 aluminum alloy tube with
50 mm outside diameter and 1.6 mm wall thickness crushed up to the fourth inward fold

in axisymmetric deformation mode.
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Figure 2.5. Load/displacement profile for the axial crushing of HT-30 aluminum alloy
tube under axisymmetric deformation mode [8].

Hsu and Jones [9] conducted experimental investigations on the circular
thin-walled 304 stainless steel, 6063-T6 aluminum alloy and mild steel tubes under
quasi-static and dynamic loading conditions to identify critical slenderness ratios at the
transition between progressive folding and global bending deformation modes. They
reported that the stainless steel tubes absorbed the most energy, but they were the least
efficient of the three materials for both quasi-static and impact loads according to energy
absorption effectiveness factor. The effectiveness factor is the ratio of the energy
absorbed by the extrusion to the product of the volume of the extrusion and the area
below the o/¢ curve. The aluminum alloy tubes were the most efficient on the basis of
energy absorption effectiveness factor. They also concluded that the specimen lengths
for a transition from an energy efficient progressive folding to a potentially catastrophic

global bending behaviour for quasi-static load were similar for the three materials.
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2.1.2 External inversion

Tube inversion involves the turning inside out or outside in of a thin circular tube
made of ductile material. There are two interesting stages in the tube inversion process,
the first stage is the curling phase when the tube end is forced to conform to the shape of
the curved die and begins to curl up. The second stage involves the formation of a
second wall after the curling process. Inversion of tubes for energy absorbers was
pioneered by General Motors as indicated in reference [10]. The main advantage of this
mode of deformation is the constant load of axial compression and the axial shortening of
the tube which can be achieved for a uniform tube. However, tube inversion is limited by
die radius. If the die radius is small, progressive buckling of the tube will result and if the
radius is larger than some limiting value, tube splitting will occur [11].

External inversion of a tube using a die is characterized by the axial compression
of a tube over a die with appropriate radius as shown in Figure 2.6 [12]. The plastic
deformation of the tube is the result of three different mechanisms: bending, stretching
and friction [13]. Bending takes place at the point where the tube contacts the die,
stretching along the circumferential direction progresses while the tube turns around the
corner of the die and the interface friction occurs in the contact region between tube and
die.
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Figure 2.6. Schematic representation of the external inversion of tubes using a die [12].
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Miscow and Al-Qureshi [10] performed an experimental and theoretical analysis
of tube inversion under quasi-static and dynamic loading conditions. The specimens used
in this investigation were copper and 70:30 brass tubes having an outside diameter of
50.8 mm, wall thickness of 1.58 mm and length of 88.9 mm. The quasi-static tests were
carried out using a 200 kN capacity hydraulic testing machine at ram velocity of
20 mm/min. The die assembly was attached to the lower platen of the hydraulic testing
machine and the hollow punch was fixed to the movable upper arm. A typical load
versus displacement profile for copper and 70:30 brass tubes using a die radius of
4.76 mm is presented in Figure 2.7. From initial flaring of the material covering the die
radius until the final steady-state inversion the tube passed through many stages. Typical
samples of the tubes at various stages of external inversion are shown in Figure 2.8 for
the quasi-static testing of copper tubes. Letters depicted in Figure 2.8 correspond with

the stages that are shown in Figure 2.7.
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Figure 2.7. Load/displacement profile of copper and 70:30 brass tubes for quasi-static
inversion process [10].
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Figure 2.8. Various stages of the inversion of a copper tube in quasi-static method [10].

The authors concluded that materials in the as received and/or the partially
work-hardened conditions were more appropriate to this technique than in annealed state,
which generally demonstrated premature buckling. They also observed a considerable
increase in the overall hardness along the inverted tube, in addition, an increase in wall
thickness of approximately 8% throughout the inverted tube.

Leu [12] analyzed the curling behaviour of quasi-static inside-out inversion of
tubes using a theoretical energy method technique on the critical condition for more
precise design. The effects of geometric and material parameters, such as strain
hardening exponent, friction coefficient and half-apex angle of die were investigated on
the basis of the work by Kitazawa [14]. It was observed that the strain hardening
exponent and half-apex angle of the die had a significant influence on critical bending
radii. However, the friction coefficient dependence was not as great as that of the strain
hardening exponent. Comparison between theoretical and experimental observations for
the influence of half-apex angle of die on critical bending radius is presented in

Figure 2.9.
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Figure 2.9. Experimental and theoretical results comparison for the critical radius [14].

2.1.3 Axial splitting/cutting

Splitting mode of deformation is a special case of tube inversion where the die
radius is large enough to cause splitting instead of inversion [15]. The splitting
deformation mechanism has advantages from the viewpoint of energy absorption
capabilities. It has a long stroke of over 90 percent of the total length while maintaining a
steady crush force after an initial transition period. The cutting deformation mode can be
achieved by axially compressing the tube through specially designed cutters. The
advantages of cutting deformation mode are the almost constant cutting force and the
high CFE of over 95 percent that can be achieved.

Stronge et al. [16] conducted an experimental study on a passive crashworthy
system that dissipates impact energy by fracture and plastic deformation. They
considered square HE30 aluminum tubes having length of 50 mm and wall thicknesses of

1.6 mm as well as 3.2 mm. They reported three primary sources of energy dissipation
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namely work done in plastic deformation, fracture propagation and curling during
splitting and curling of tube by pressing the tube against flat plate.

Reddy and Reid [17] studied the splitting behaviour of circular cold drawn mild
steel and HE30 aluminum tubes compressed axially between a plate and a die. They
reported that different load levels can be achieved by varying the die radius and friction
conditions as well as allowing the strips to curl, or being prevented from doing so. They
also observed constant load/displacement profiles after an initial transition period and
stroke efficiency of as high as 95 percent. The load/displacement profiles with or without
using stopper plates are presented in Figure 2.10.

Lu et al. [18] conducted experimental studies on splitting square aluminum and
mild steel tubes of thicknesses ranging from 0.47 mm to 1.67 mm. The experiments were
carried out by driving four rollers, each attached to the side of the tube, leading to the
bending of the wall to a constant curvature and, at the same time, tearing the material
along the four corners. They determined tearing energy by pre-cutting some corners to a
different length and found that the tearing energy per unit area may be related to the
ultimate extrusion material stress and fracture strain. Figure 2.11 illustrates the

experimental set up associated with this study
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Figure 2.10. The load-displacement profiles with or without using stopper plate [17].
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Figure 2.11. Sketch of the experimental set up. The bottom and top plates were attached
to the base and crosshead of Instron machine [18].

Huang et al. [19] investigated the axial splitting and curling behaviour of mild
steel and aluminum circular tubes by axially pressing the tubes onto a series of conical
dies with different semi-angle (@). The specimens selected for this investigation were
200 mm long and the ratio of the diameter to thickness ranged from 15 to 60. In order to
establish the split and curl mode while preventing other collapse modes, initial 5 mm
saw-cuts were made into the specimen which were evenly spaced around the lower
circumference. A cone-shaped die was fixed to the bottom bed of the testing machine
and a short cylindrical mandrel was placed inside the tube to prevent the tube from tilting.
Quasi-static testing conditions existed. Three different semi-angles of 45, 60 and 75 were

selected for the conical die. The experimental set-up is illustrated in Figure 2.12.
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Figure 2.12. Sketch of the experimental set-up, with 8 evenly spaced 5 mm initial saw-
cuts around lower circumference [19].

Typical force-compression curves for mild-steel tubes (D = 74.0 mm and
¢t = 1.8 mm) and aluminum tubes (D = 77.9 mm and ¢ = 1.9 mm) with three different dies

are presented in Figure 2.13 and Figure 2.14 respectively.
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Figure 2.13. Load/displacement curves for mild steel tubes with D = 74.0 mm and
t = 1.8 mm against dies with semi-angle o= 45°, 60° and 75° respectively [19].
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