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ABSTRACT

The purpose of this study was to improve the Quality Assurance (QA) System at the 

Nemak Windsor Aluminum Plant (WAP). The project used Six Sigma method based on 

Define, Measure, Analyze, Improve, and Control (DMAIC). Analysis of in process melt at 

WAP was based on chemical, thermal, and mechanical testing. The control limits for the 

W319 A1 Alloy were statistically recalculated using the composition measured under stable 

conditions. The “Chemistry Viewer” software was developed for statistical analysis of alloy 

composition. This software features the Silicon Equivalency (SieQ) developed by the IRC. 

The Melt Sampling Device (MSD) was designed and evaluated at WAP to overcome 

traditional sampling limitations. The Thermal Analysis “Filters” software was developed for 

cooling curve analysis of the 3XX A1 Alloy(s) using IRC techniques. The impact of low 

melting point impurities on the start of melting was evaluated using the Universal 

Metallurgical Simulator and Analyzer (UMSA).

iii
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1 INTRODUCTION
A continuous improvement in quality is required to ensure that metal casting will 

continue to play a vital role in today’s manufacturing industry. The need for high quality 

castings requires the use of more complex processes like the Cosworth Precision Sand 

Process (CPSCP). Comprehensive and effective QA must be enforced to closely control 

the known critical-to-quality parameters. This study focused on the development of 

analysis software and testing equipment for QA of the W319 Al Alloy. The Six Sigma 

DMAIC methodology was followed to conduct experiments at WAP for improvement of 

the QA system. Known critical to quality parameters were monitored through analysis of 

ingots, melts, and castings. Valid process control limits for the W319 Al Alloy 

composition were established based on the statistical analysis of data collected at WAP. 

The proposed solutions developed in this study are ready to be commercially 

implemented at any other Al foundry facility. Two software applications were developed 

during this study for 3XX Al Alloy(s) OES melt composition analysis and cooling curve 

analysis. The first software called “Chemistry Viewer” was developed for statistical 

analysis of the multi-component alloy composition. The SiEQ method developed by the 

IRC was integrated into the “Chemistry Viewer” to predict as cast material properties for 

the 3XX Al Alloy(s). The second software called “Filters” was developed for the data 

post processing required to perform 3XX Al Alloy(s) cooling curve analysis. The IRC 

analysis techniques to determine the baseline equation were integrated into the “Filters” 

software to determine the fraction solid and the latent heat. The experimental literature 

data from the IRC and from other sources was integrated into the “Filters” software to 

predict as cast material properties for the 3XX Al Alloy(s). Heating curve experiments 

were conducted using the UMSA to determine the effect of the alloy chemical 

composition at the start of the melting temperature. The approach used in this study for 

conducting experiments and data analysis could be implemented at any foundry to 

improve the QC system.

1
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1.1 The Ford - Nemak Windsor Aluminum Plant

WAP is a joint venture between the Nemak of Canada Corporation and the Ford 

Motor Company, and is a state of the art foundry producing a variety of V6 and V8 

engine blocks. This plant uses one of the first applications of the CPSCP in North 

America. The original process was improved by Ford engineers after using the roll over 

technique to reduce casting cycle time. The casting process at WAP is described in 

Figure 1.1. Originally the Electromagnetic (EM) pump filled the mold from bottom to 

top, and then maintained pressure until solidification was complete. The improved 

process is based on the rollover technique where the filled mold is rotated 180° along the 

axis of the runner system. This allows for the transfer of the mold away from the casting 

station while solidification continues just like a traditional casting. The mold assembly at 

is automated with robots except for a few delicate manual assemblies. WAP was the first 

casting plant in the world to achieve certification for the ISO 14001 Environmental 

Management Standard. Many environmental initiatives have been included such as 

99.8% sand recycling, and dry machining without coolant (WAP, 2004). The Duratec 

3.0L V6 casting is the most produced product at WAP, see Figure 1.2 (WAP, 2004).

1.2 Cosworth Precision Sand Casting Process

The CPSCP is a low pressure process developed for production of premium 

quality Al Alloy(s) castings for the automotive industry. The sand precision casting term 

implies a near net shape designed to minimize machining. This process grew as a result 

of problems in the car racing industry during the 1970s such as porosity, random 

dimensional errors, and early fatigue failures, which limited design performance and 

reliability. After achieving success in the racing industry, the CPSCP process was 

extended into high volume production. This section further describes the CPSCP 

process.

2
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1.2.1 Sand Core Making

Zircon Sand is used instead of traditional Silica sand due to low thermal 

expansion, resistance to metal reactions, reduced cleaning of the casting, low binder 

requirements, high thermal conductivity, and high bulk density. Low thermal expansion 

results in less core movement during casting as shown in Figure 1.3 (Dupont, 2006). The 

high bulk density of Zircon is much closer to Al than Silica requiring less core glue and 

allowing for ability to cast thin walls (Cosworth, 2005). More than 99% of recycled sand 

is used for making new cores. Sand quality is controlled through the American Society 

for Testing and Materials (ASTM) sieve test to determine grain size distribution. The 

sand particles are mixed with a two part binder and formed into a core shape in the cold 

box process at room temperature to form cores with good tensile strength, hot strength, 

and dimensional stability. Ashland Specialty Chemical Company produces a patented 

two part binder called ISOCURE, which is used at WAP. The typical blend is 55% of 

Part I Phenol-Formaldehyde, and Part II Polymeric Isocyanate with solvents and 

additives. The sand binder mixture hardens instantly after purging Triethyl-Amine as a 

catalyst gas to produce Phenolic Urethane polymer (Bakhtiyarov, 2000). This is followed 

by air purging to distribute and remove the residual catalyst gas.

1.2.2 Mold Package Assembly

Molding consists of the operations necessary to prepare the mold to receive the 

melt such as the assembly of internal cores, adding in-mold grain refiners, adding cast in 

components, and closing the mold. Sand cores placed inside the mold cavity form the 

casting interior surfaces. A fully assembled mold consists of several interlocked cores as 

shown in Figure 1.4 (WAP, 2004). The mold is designed to eliminate pressure build up 

during filling by venting air out through the clearance between the cores. In mold liners 

made of cast iron are integrated as part of the complete mold package. These liners must 

be carefully handled to avoid surface contamination (CMI, 2005). The liner shot blasting 

strengthens the liner to casting surface interface. It is important to add new shot media to 

avoid liner surface contamination caused by fine shot. The grain size distribution of the 

Shot blast media could be controlled through the ASTM sieve analysis. The liners are 

preheated just before casting to reduce the effects of thermal shock on the melt.

3
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Figure 1.2 The ford 3.0L V6 duratec engine (WAP, 2003).

(left) the assembled ford’s 3.0L V6 duratec engine

(right) the WAP engine block casting for ford’s 3.0L V6 Duratec engine
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Figure 1.3. Thermal expansions of zircon, chromite, olivine, and silica (Dupont, 2006).

Figure 1.4. WAP 3.0L V6 engine block sand mold package (WAP, 2004).
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1.2.3 W319 Al Alloy Melt Processing

The important advantage of using the CPSCP melt process is the quiescent flow 

that avoids unnecessary disturbances of the melt as shown in Figure 1.5 and Figure 1.6. 

The dry charges of solid metal consisting of ingots and casting returns are positioned on a 

sloping hearth above the level of molten metal so that the entire charge is completely 

enveloped by hot gases. The solid metal rapidly absorbs the melting heat and drains from 

the sloping hearth into the wet holding basin. Although reverberatory furnaces normally 

rely on fuel for heating, dry hearth furnaces may use electric energy instead. The melt is 

protected against oxidation and thermal shock by using a blanket of inert Nitrogen gas 

that allows longer times for furnace melt holding. There is no limit on the type or size of 

melt holding furnace since the system is not pressurized, and could be easily accessed for 

cleaning, and analysis. Holding the melt for several hours in a large furnace allows for 

sufficient time for suspended oxides and other insoluble inclusions to either float or sink. 

The separation process occurs very slowly as oxides with entrapped air have small 

differences in density. A significant proportion of inclusions may have, by chance, 

neutral buoyancy and may never separate. Therefore, effective removal of the residual 

inclusions is achieved by melt filtering and degassing. Melt degassing with an inert gas 

such as Argon is used to remove the dissolved Hydrogen that forms gas porosity and 

exaggerates shrinkage porosity. The most common degassing method is rotary impeller 

degassing using Argon gas as shown in Figure 1.7 (Pyrotek, 2005). Mono-atomic 

dissolved hydrogen either diffuses into the gas bubbles or forms diatomic hydrogen gas at 

the bubble surface. The diffusion occurs due to a difference in partial pressure between 

the melt and the Argon bubbles. At the same time, oxides are captured by the rising 

bubbles and float to the top surface.

1.2.4 Electromagnetic Pump

The EM pump is used to inject the cleanest melt into the mold from the middle 

depth of the furnace as shown in Figure 1.9Figure 1.8. The EM pump is based on 

Faradays principle to pump the melt without using any moving parts. The melt is drawn 

from the middle depth of the furnace to avoid the risk of oxide transfer into the mold. A 

ceramic porous disk placed at the base of the pump filters the melt before entering the
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pump intake opening. The melt flow rate must be controlled to reduce turbulence inside 

the mold and eliminate the formation of harmful oxide films (Cosworth, 2005). The IRC 

researched root causes of pump clogging and developed practical solutions to avoid 

problems in production (Sokolowski, et al., 2005). The computerized pump control 

system adjusts pump power based on the fill level inside the mold, which is indirectly 

detected by a capacitive antenna placed on the top of the mold. The fill profile analysis 

of the pump voltage and the level signal voltage can be performed for each produced 

casting, see Figurer 1.10. The fill level signal is affected by the initial contact between 

the rising melt and the in-mold cast iron liners. The roll over operation of the mold is 

automated by the rotating carousal station positioned in front of the pump station. The 

carousal has four rotating cages that perform the following steps shown in Figure 1.11 

and Figure 1.12.

1. Mold Receive:

• A robot loads the empty mold package inside the mold cage.

• A level antenna plate is pressed on top to lock the mold in position.

• A carousal rotates 90° to position the mold in front of the pump station.

2. Mold Fill and Roll Over:

• A launder system is pressed against the mold to eliminate leaks during filling.

• A pump injects the melt into the mold until the full level is reached.

• The mold is overturned by rotating the cage 180° along the axis of the runner

system, which reduces the damaging effects of the convection loops.

• The pump pressure is maintained to achieve pressure assisted feeding.

• The pump is turned off to allow for drain back of the melt in the runner system,

which reduces the amount of scrap metal and simplifies the riser cut off.

• The carousal rotates 90° degrees to index the filled mold.

3. Mold Index:

• The filled mold continues to solidify with the hottest metal at the top section 

just like a traditional gravity casting with a riser feeding system.

4. Mold Remove:

• A robot removes the filled mold from the cage.

• A carousal rotates 90° degrees to position the mold cage for the next cycle.

7
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Figure 1.7. Argon rotary impeller degassing unit (Pyrotek, 2005).

Cooling
Duct

C
c

omputer Puirn; 
ontrol System

3

i

Capacitive Antenna Fill Sensor
iiiiiiiiiimiiimmiiiiimf

180° Roll Over

Electrical
Heating

I’s

ical Resistance 
Heating Elements

Holding Furnace 

Clean Molten Metal

Ceramic Filter
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Figure 1.9. Mold fill profile analysis pump voltage vs. fill time plot.
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1.2.5 Thermal Sand Removal (TSR)

The casting solidifies in the sand mold package that is transferred to the TSR 

continuous furnace set at 500°C for 6 hours. The casting goes through partial solution 

treatment in the TSR furnace while the sand is thermally separated from the casting. The 

applied heat breaks down the resin holding the sand particles together. The fallen sand is 

collected using a conveyer belt system and then reconditioned by removing fine particles 

and burning off residual resin. New cores are made using 99% of the reconditioned sand 

mixed with 1% new sand. The castings exit the TSR furnace with an air quench. Air 

quench is used to eliminate concerns about residual stresses and dimensional variations 

caused by using a more severe quench media like water. The furnace heat allows Cu rich 

phases to partially dissolve into the Al matrix (Djurdjevic, et al., 2001). The risers on 

each casting are cut with a band saw. The castings go through cleaning by shot blasting 

to remove any sand from the internal passages. The cut risers along with production 

scrap castings are returned to the melting furnace.

1.2.6 Heat Treatment

Aluminum casting alloys develop their properties as a result of heat treatment that 

generally involves solution treatment, quench, and aging. In solution treatment, the 

casting is heated into the single-phase zone on the phase diagram without exceeding the 

eutectic temperature. Segregation must be avoided to take the most advantage of the 

solution treatment to avoid local melting of low melting point segregation pockets. These 

areas melt during heat treatment but do not re-solidify with the proper structure, thereby 

substantially decreasing casting properties. After solution heat treatment, the castings are 

quenched to retain strengthening alloying elements in a supersaturated solution. The 

quenched castings go through an aging treatment at intermediate temperatures. The 

aging treatment could be varied to control specific properties to a desired specification. 

The reheating during aging results in precipitation of Super Saturated Solid Solution 

(SSSS) phases that strengthen the casting. An annealing treatment could be employed to 

remove residual stresses; however, annealing destroys the effects of the aging treatment. 

The final properties developed depend on the cast component chemical composition, 

structure and heat treatment settings.

11

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Melt Holding Furnace

Remove

Index

Figure 1.10. WAP casting pump carousal system.

Mold Fill - Cos worth 
Electromagnetic Pump

x

Roll Over
180° Rotation

Riser Cut Off & 
Casting Cleaning 
(Shot Blasting)

Continuous Natural Gas Fired Furnace for Partial 
Solution Treatment & Thermal Sand Removal (TSR)

Robot Mold Transfer
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1.2.7 Casting Process Quality Assurance

The task of QA is to regulate the quality of the raw materials, assemblies, 

products and components as well as management of production and inspection processes. 

The goal is to ensure that the product fulfills or exceeds customer expectations. There are 

several critical to quality inspections performed at WAP at different processing stages as 

described in Figure 1.13Figure 1.12, which include:

• Ingot -  Received from approved suppliers 

o Chemical composition analysis

• Melt- In process at melt holding furnaces 

o Chemical composition analysis

o Hydrogen content analysis 

o Solidification characteristics analysis

• Sand -  Zircon Sand

o Grain size distribution analysis for new and used sand

• Cylinder Liners

o Grain size distribution analysis for new and used shot blast media

• Casting -  Engine block inner bulkhead sections

o Hardness analysis before artificial aging treatment 

o Hardness analysis after artificial aging treatment 

o Porosity analysis near surface exposed after rough machining 

o Porosity analysis (gas and shrinkage)
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1.3 Research Objectives

The major objectives of this thesis were to develop QC analysis software 

programs and testing equipment for processing A1 Alloy(s) melt. The following is a list 

of the tasks required to achieve the major objectives:

1. To develop software for statistical analysis of the chemical composition for multi- 

component A1 Alloy(s). The software should also predict as cast material properties 

for 3XX A1 Alloy(s) using the S iEQ technique, which was developed by the IRC.

2. To develop software for cooling curve analysis of 3XX A1 Alloy(s). The software 

must automatically detect characteristic points on the cooling curve and on the 

corresponding first derivative curve. The latent heat and fraction solid must be 

calculated using the baseline techniques developed by the IRC.

3. To develop a testing device for collecting melt furnace samples and perform online 

cooling curve analysis. The device must overcome the limitations of the traditional 

melt sampling techniques that use a steel ladle and a sand test cup.
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2 REVIEW OF THE LITERATURE

2.1 Ten Rules for Good Casting

Casting is the process used to produce objects by pouring molten material into a 

cavity called a mold, which is the negative of the object, and allowing them to cool and 

solidify. The ten rules for producing good quality castings are outlined by Dr. John 

Campbell which are discussed in this section (Campbell, 2004).

Rule one is to provide a good quality melt. Immediately prior to casting, the melt 

shall be prepared and treated, if necessary, using the best current practices. The aim is to 

provide a melt at the correct temperature, correct chemistry, low residual levels of 

dissolved gas, and insoluble inclusions. Inclusions like oxide films may be introduced 

into the melt by poor handling techniques such as pouring the melt from furnaces and 

ladles. The recommendation is to reduce the melt drop distance below 100 mm and 

preferably below 50 mm where melt pouring is a must. The melt must be degassed as the 

solubility of the dissolved hydrogen in the melt abruptly decreases as shown in Figure 

2.1Figure 2.1 (Campbell, 2004), and may encourage the formation of porosity. Filtering 

of the melt oxides is required to avoid harmful effects on the casting mechanical 

properties as shown in Figure 2.2 (Campbell, 2004). Holding the melt for several hours 

may improve quality by allowing the suspended oxides to either sink to the bottom or 

float to the surface for skimming.

Rule two is to avoid liquid metal front damage. The velocity of the liquid metal 

front or the meniscus should be less than 0.5 m/s. It is difficult to control melt velocity in 

a traditional gravity casting without causing turbulence and melt splashing as shown in 

Figure 2.3Figure 2.3 (Campbell, 2004). The damaging effect of high melt velocity is 

shown in Figure 2.4 (Campbell, 2004) as oxide film and air are entrapped in the bulk of 

the melt. This maximum melt velocity may be raised only in sections thinner than the 

critical sessile height to avoid droplet formation and splashing.
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Rule three is to avoid liquid front stop. The liquid metal front should not go too 

slowly, or more exactly, not stop at any time. The advancing melt meniscus must be kept 

"alive" or moving and free from thick oxide film that gets entrapped in the casting. The 

meniscus must experience continuous uninterrupted upward advances without extensive 

horizontal sections or waterfall effects as shown in Figure 2.5 (Campbell, 2004). The 

concept is to allow oxide formation on the melt front to break up and slide off to form a 

casting skin. If the melt front stops for a long time it may freeze creating a “cold lap” 

that acts as a crack in the casting. The mold gates should be placed at a very low point in 

the casting to avoid the "waterfall" condition. Horizontal surfaces in castings should be 

avoided by casting design, or by tilting the mold, or by filling at a sufficient speed.

Rule four is to avoid bubble damage. No air bubbles should be entrained in the 

casting runner system that eventually pass through the melt into the mold. The result of 

this defect is a mixture of oxide bubble trails, together with residual bubbles in the 

casting as shown in Figure 2.6 (Campbell, 2004). This is by far the most common source 

of porosity defect in castings, and is commonly mistaken for shrinkage porosity as 

bubbles trails are often irregularly shaped. The fill system should be designed to reduce 

bubble formation.

Rule five is to avoid core gas blow out. Gases from cores should not be allowed 

to pass through the melt in the mold. Core blows cause a rather different type of defect 

than the entrained air bubbles leading to huge defects, filling whole areas at the top of the 

castings. Even a small blow from a core can leave a bubble trail that can create a leak 

defect as shown in Figure 2.7 (Campbell, 2004). This is avoided by using cores with low 

gas content and proper mold ventilation.

Rule six is to avoid shrinkage damage. Avoid using uphill feeders because of an 

unreliable pressure gradient. Gravity aided downhill feeding should be used by 

positioning risers well above the top of the casting. This could be avoided by using a 

reliable computer modeling package to properly design the riser feeding system. The 

simulation software could be used to identify distinct feeding areas that must be served 

by risers as shown in Figure 2.8 (Cast Solutions, 2006). The software is then used to 

determine the size of the risers that would be sufficient to eliminate formation of the 

internal shrinkage porosity in the casting as shown in Figure 2.9 (Cast Solutions, 2006).
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Figure 2.5. Slow moving melt results in undesired horizontal flow (Campbell, 2004).

Figure 2.6. Bubble damage caused by a badly designed fill system (Campbell, 2004).
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Figure 2.7. Bubble damage caused by core out gassing (Campbell, 2004)

Figure 2.8. Software used to identify distinct feeding areas (Cast Solutions, 2006).

Figure 2.9. Software used to determine the proper size of risers (Cast Solutions, 2006).
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Rule seven is to avoid convection damage. The casting may freeze within several 

minutes allowing for a sufficient time for convection currents of the hot and cold melts to 

occur and start re-melting the casting. Problems due to convection loops are most 

encountered in investment castings as shown in Figure 2.10 (Campbell, 2004). This may 

be eliminated by careful horizontal transfer as in tilt casting or counter-gravity filling 

followed by immediate mold roll-over. In traditional stationary molds this is achieved by 

using oversized gravity feeders placed on top of the casting as shown in Figure 2.11 

(Campbell, 2004). Thin casting sections freeze quickly before convection becomes 

significant. Thick casting sections freeze over a long time period allowing the convection 

sufficient time to evenly redistribute the temperature.

Rule eight is to avoid segregation. The segregation of alloying elements in the 

casting may result in significant differences in material properties. Most alloys segregate 

to a small extent causing no noticeable problems. However, some alloys segregate 

excessively, to the point where parts of the casting will be well outside the chemical 

specifications. Parts of the casting that cools quickly may easily rise above the maximum 

specification limit. Parts of the casting that cools slowly fail to reach the minimum 

specification limit. Segregation may occur at abrupt thickness section changes that also 

represent critical stress concentration regions as shown in Figure 2.12 (Campbell, 2004).

Rule nine is to avoid Residual Stress. Severe quench using water should 

definitely be avoided during heat treatment of Al Alloy(s) castings. The water quench 

may effectively reduce the total strength of the castings by half and may cause a major 

failure while in service. The desired quench could be achieved using a polymer or air, 

which only causes less than a 10% loss of strength or ductility as shown in Figure 2.13 

(Campbell, 2004).

Rule ten is to properly select locating points on the casting. Datum and pick-up 

points need to be agreed upon prior to machining to avoid unnecessary scrap after the 

casting has been produced. This agreement has to be put in place before ordering parts. 

Once the pick-up points have been set, the tool makers, foundry, and machinists have to 

work from the same datum points. The incorporation of lugs that simultaneously provide 

clamping points is helpful. The more expensive option is to use a Computerized 

Measurement Machine (CMM) to acquire several casting measurements.
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Figure 2.10. Convection loops re-melt casting during solidification (Campbell, 2004).

Figure 2.11. Convection loops eliminated by oversized risers (Campbell, 2004).
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Specification Mas:

Figure 2.12. Segregation in different areas due to a slow or fast cooling rate (Campbell.
2004).
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Figure 2.13. Effect of cooling rate from the solution treatment temperature on the 
ductility of the as cast Al bar (Campbell, 2004).
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2.2 Hypoeutectic Aluminum Silicon Alloys

Al-Si alloys are mainly used to produce castings, although some sheet or wire is 

made for welding and brazing, and some of the piston alloys are extruded for forging 

stock. The copper free alloys are used for low to medium strength castings with good 

corrosion resistance; the copper bearing for medium to high strength castings, where 

corrosion resistance is not critical. Because of their excellent castability, it is possible to 

produce reliable castings, even in complex shapes, in which the minimum mechanical 

properties obtained in poorly fed sections are higher than in castings made from higher 

strength but lower castability alloys. Automotive parts like engine blocks, cylinder 

heads, and pistons are commonly cast using Al-Si alloys like 319 (Al-Si-Cu) and 356 

(Al-Si-Mg).

2.2.1 W319 Aluminum Alloy

This alloy is "heat-treatable" and generally used for castings that could be significantly 

strengthened through precipitation heat treatment. It has excellent casting characteristics 

and good mechanical properties. In the last decade the use of Al Alloy(s) for engine 

block castings increased from 13% to 50% in passenger cars and from 5% to 20% in light 

trucks (Sehitoglu, 2005). The W319 Al Alloy is considered as a commercial grade of the 

319 Al Alloy with a higher Si content. This alloy provides excellent torque loading 

ability, a close mechanical flatness tolerance, close machined micro finishes, and 

excellent natural age hardenability. There are several codes that refer to the specific heat 

treatment designed for different purposes as described in Table 2.1 (Matweb, 2005). 

Material properties of the most common heat treated Al Alloy(s) are compared in Table

2.2 (Matweb, 2005), Table 2.3 (Matweb, 2005), Table 2.4 (Matweb, 2005). These 

properties could be affected by the presence of important alloying and impurity elements. 

The solidification process of this alloy starts with the formation of a dendritic a 

aluminum network followed by precipitation of an Aluminum-Silicon eutectic phase, 

then Iron-Manganese phases, and finally Copper rich phases see Figure 2.14 (Kasprzak, 

et al., 2001). The amount of each phase depends strongly on the composition and 

solidification conditions.
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2.2.2 Key Alloying and Impurity Elements

Silicon is added as one of the major alloying elements in Al Alloy(s). It improves 

melt fluidity in the mold during casting. The addition of Silicon is important to readily 

and easily fill the thinnest sections of the mold. The improved castability helps to 

minimize metal shrinkage during solidification. In a solidified alloy, Silicon tends to 

increase the strength with improvements in wear resistance at moderate-to-high levels. 

However increasing Silicon without modification causes a decrease in ductility as the 

natural morphology of unmodified eutectic Aluminum Silicon is acicular or plate like. 

Generally, chemical modification by addition of Na or Sr is used to refine the brittle plate 

like Aluminum Silicon eutectic into a more ductile fine fibrous morphology as shown in 

Figure 2.15 (Guthy, 2002). Thermal modification could be used to fragment and 

spherodize the Silicon through a heat treatment driven by the solid state diffusion 

process.

Copper is added to form Copper rich phases that show higher hardness and 

strength even at elevated temperatures. However, Copper may decrease corrosion 

resistance (Key to Metals, 2006). Precipitation heat treatment is used to develop 

maximum hardness and strength. Depending on service conditions the peak aged state 

may not be optimum due to dimensional stability. Often castings are over aged to 

provide a compromise between strength and dimensional stability. The IRC has 

introduced over aging of the W319 engine block cast at WAP for the same reasons 

mentioned (Caceres, et al., 1999). Heat treatment with over aging beyond peak strength 

stabilizes the precipitation hardened alloy against thermal growth. Rich eutectic phases 

may take several forms depending on alloy composition, solidification conditions, and 

heat treatment. The most common Copper rich phases in the W319 Al Alloy are listed 

below and shown in Figure 2.16 (Djurdjevic, et al., 2001).

• “Blocky” shape AI2CU

• “Eutectic” Al-Cu-Si

• “Fine Eutectic” AljMgsC^Sis

Iron is an unwanted element in Al Alloy(s) as it has significantly limited solid 

solubility below 655°C that leads to a decrease in feeding during solidification. This 

causes a drastic reduction in ductility and toughness through the formation of brittle
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intermetallic phases that act as severe stress risers. Alloys produced from recycled 

materials have more iron than primary alloy. The Iron phases formed in Al Alloy(s) are 

largely dependent on local solidification rates and melt holding temperatures. The most 

common Iron phases are (3-Al5FeSi, and a-Ali5Fe3 Si2 as shown in Figure 2.17 (Mei, et al. 

2003). The morphology of the a-phase is described as “Chinese script”, which is multi­

armed or semi-symmetrical in shape. This is less harmful to ductility and stable during 

heat treatment. The morphology of the (3-phase is described as thin plates. This is 

undesirable because it is known to reduce casting ductility and increase shrinkage 

porosity by blocking feed paths during solidification. Addition of transition elements 

such as Manganese promotes formation of the less harmful a-Chinese script phase.

Manganese increases strength either in solid solution or as a finely precipitated 

intermetallic phase. It has no adverse effect on corrosion resistance. The solid solubility 

of Manganese is very limited in Aluminum. The addition of Manganese significantly 

increases strength without decreasing ductility. This refinement is possible through the 

heat treating process that forms Manganese rich precipitates such as Mg2 Si or Al2CuMg.

Magnesium is the major alloying element in the 5XXX series of Al Alloy(s). Its 

maximum solid solubility in Aluminum is 17.4%, but below 5.5% in wrought alloy. The 

addition of Magnesium markedly increases the strength of Aluminum without unduly 

decreasing the ductility while offering good corrosion resistance and weldability (Key to 

Metals, 2006).

Nickel is added to an Al-Si alloys to improve hardness and strength at elevated 

temperatures and to reduce the coefficient of expansion. The solid solubility of nickel in 

Al does not exceed 0.04% (Key to Metals, 2006). If Nickel is over the solid solubility 

limit, it is present as an insoluble intermetallic, usually in combination with iron.

Tin is a metallic element considered as an impurity element that has restricted 

solid solution solubility in Al and forms soft low melting temperatures phases. Even at 

low levels, it determines heat treatment response after the age hardening process. A 

recently presented invention study related to the W319 Al Alloy indicated that the 

addition of Tin in trace amounts increased the heat treatment response. The study found 

that even trace amounts of Tin, up to 0.1 wt.% affect thermal growth kinetics and heat 

treatment response (Key to Metals, 2006).
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Table 2.1. Heat treatment codes (Matweb, 2005).

Code Thermal Processing Condition

F As Fabricated - No special control has been performed to the heat treatment or strain hardening 
after the shaping process such as casting, hot working, or cold working.

W Solution Heat Treated - This is seldom encountered because it is an unstable temper that applies 
only to alloys that spontaneously age at ambient temperature after heat treatment.

T Solution Heat Treated -  Applies to products which are thermally treated, with or without 
additional strain-hardening, to produce stable tempers.

T1 Cooled from an elevated temperature shaping process and naturally aged to a substantially 
stable condition.

T2 Cooled from an elevated temperature shaping process, cold worked, and naturally aged to a 
substantially stable condition.

T3 Solution heat treated, cold worked, and naturally aged to a substantially stable condition.
T4 Solution heat treated, and naturally aged to a substantially stable condition.
T5 Cooled from an elevated temperature shaping process then artificially aged.
T6 Solution heat treated then artificially aged.
T7 Solution heat treated then overaged/stabilized.
T8 Solution heat treated, cold worked, and then artificially aged.
T9 Solution heat treated, artificially aged, and then cold worked.
T10 Cooled from an elevated temperature shaping process, cold worked, then artificially aged.

Table 2.2. Mechanical properties of common Al alloys (Matweb, 2005).

201 T v 414 345 290 3 Min
319 F 159 90 150 1.5 Min
319 T6 214 138 200 1.5 Min

W319* T v 200 170 152 .05 Min
356 T v 214 200 165 2 Min
390 T6 275 275 166 1 Max
390 T v 250 250 152 1 Max

* Limits based on Ford Specification WSE-M2A151-A2.

Table 2.3. Chemical specil Ication limits for common A alloys (Matweb, 2005).

A lloy Si Cu Fe M g Mn N i Ti Zn Ag Sn Pb
Other,
Each

Other,
Total

Min - 4 - 0.15 0.2 - 0.15 - 0.4 - - - -

201 M ax 0.1 5.2 0.15 0.55 0.5 - 0.35 - 1 - - 0.05 0.1
Min 5.5 3 .5

319 Max 6.5 4 1 .1 .5 .35 .25 1 - - - - -

Min 6.5 3 - .2 - - - - - - - - -

W 319* M ax 8 4 .4 .35 .3 .1 .25 .25 - .1 .1 .05 .5
Min 6.5 - - 0.2 - - - - . - - - -

356 M ax 7.5 0.25 0.6 0.45 0.35 0.25 - 0.35 - - 0.05 0.15
Min 16 4 .45 - . - -

390 M ax 18 5 .5 .65 .1 - .2 .1 - - .1 .2
* Per Ford Specification W SE -M 2A 151-A 2.
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Table 2.4. Relative Characteristics of Common Al Alloys (Matweb, 2005).

201 3 4 3 4 4 1 2
319 2 2 2 3 2 3 2

W319 2 2 2 3 2 3 2
356 1 1 1 2 1 3 2
390 3 3 3 2 3 4 2

1. Rating: 5 b e s t/I  poorest.
2. Ability of melt to flow and fill thin sections.
3. Ability to withstand stress from contraction while cooling through hot short or brittle temperature range.
4. Composite rating based on ease of cutting, chip resistance, quality of finish, and tool life based on T6 temper.
5. Decrease in volume accompanying freezing and measurement of compensating feed metal required in the form of risers.
6. Based on ability to be fusion welded with a filler rod of the same alloy.

M m ::■ *

■•Vv -< « V jTT-
/  ’ &  J

#1 Unmodified Si Plates [black]
#2 “Chinese Script” Fe Rich Phase [Gray] 
#3 Cu Rich Phase [Light Gray]

Figure 2.14. Micrographs of typical as-cast W319 Al sample (Kasprzak, et al., 2001).

Figure 2.15. Modified and unmodified Silicon in 319 and 380 Al alloys (Guthy, 2002).
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2.2.3 Silicon Equivalency Algorithm

The SigQ algorithm is a analytical approach developed by the IRC for the foundry 

industry. The concept of SiEQ is based on equilibrium phase diagrams similar to Carbon 

Equivalency for ferrous alloys (Djurdjevic, et al., 2003). The major alloying element is 

Silicon instead of Carbon where the matrix is Aluminum instead of Iron. The SiEQ for a 

specific element can be calculated using a combination of the corresponding element Al, 

and Al-Si phase diagrams. For example, the binary phase diagram of Al-Cu indicates 

that at 4%wt. Cu, the Liquidus temperature is 640°C. The binary phase diagram of Al-Si 

indicates that the Liquidus temperature 640°C occurs at 7wt% Si. Therefore the 4wt% of 

Cu can be translated into 7wt% Si using the SiEQ method. The relationship between the 

concentration of any given element Xi and corresponding SiEQ can be expressed in the 

form of a second degree polynomial equation. The SiEQ for a multi component 

hypoeutectic Al-Si alloy is the sum of all individual SiEQ calculated for each element as 

defined in Table 2.5 (Djurdjevic, et al., 2003). Valid correlations were established by 

IRC between the SiEQ and solidification characteristics along with as cast mechanical 

properties; see Table 2.6 (Djurdjevic, et al., 1998).

2.2.4 Grain Refinement

Careful control of the microstructure is a major requirement in the production of 

high quality castings. The most effective way to provide a fine and uniform as-cast grain 

structure is to add grain refiners that act as artificial nucleating agents in the melt to 

control crystal formation during solidification. A large dendritic grain structure generally 

is undesirable as smaller grain size usually results in significant improvement in strength, 

ductility, castability, porosity size distribution, and machinability. Chemical additions 

using master alloys provide a particularly convenient method to introduce nucleation 

agents. This type of grain refinement is based on constitutional under-cooling where 

many small solid particles precipitate at high temperatures and act as nucleation and 

growth sites. The most common grain refiners include Al-Ti or Al-Ti-B master alloy. 

The addition of Boron in the master alloy improves the effectiveness of TiAl3 particles as 

a grain refiner in Al-Si alloy. The grain refiner master alloy could be either added to the 

melt directly or introduced in-mold prior to casting.
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Figure 2.16. Micrographs of Copper rich phases in a W319 sample (Djurdjevic, et al„ 2001).
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Figure 2.17. Micrographs of Iron phases in a W319 sample (Djurdjevic, et al., 2001).

Table 2.5. Algorithm to calculate SiEQ in multi component hypoeutectic Al alloys 
(Djurdjevic, et al., 2003).

Definition Equation
SiEQ for Individual Element 
SiEQ for Multicomponent Alloy

SiEQAl = b0. Xi + c0.Xiz 
SiEQ=Si+ ̂ SigQ

Al-Xi Alloy (wt. %) bo Co
Al-Cu 0.529 -0.0004

Al-Mg 0.0258 -0.0088
AI-Mn 0.8221 -0.0349

Al-Fe 0.6495 0.0003
Al-Zn 0.1227 -0.0002

Al-Sn 0.7849 -0.0313

Al-Bi 0.9076 -0.0092
Al-Pb 0.859 0.02976

Al-Sb 0.8255 -0.0327

Al-Ni 0.5644 0.0285

Al-Sr 0.7854 -0.0157

Al-Ti -0.8159 0.00993

Al-B 0.00075 7.5 E-05
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Table 2.6. 3XX Al Alloy Solidification Characteristics and As Cast Mechanical 
Properties Predicted Using SiEQ (Djurdjevic, et al., 1998).

Predicted Parameter Prediction Equation
a-Al Dendrite 
Nucleation 
Temperature, Tliq 
[Deg°C]

= 660.452-6.11 SiEQ-0.057 SiEQ2

a  Al dendrite 
Coherency Point 
Temperature [Deg°C]

= 668.83-8.2756*X

Fraction Solid Al-Si 
Eutectic Nucleation

= Al_Primary_Vol_Frac/[Al_Primary_Vol_Frac+ 
Al_Secondary_V ol_Frac+ Eutectic_Si_V ol_Frac]

Where
Primary-Al = [11.874-SiEQ]/[l 1.874-1.543]*100 
Eutectic = [SiEQ-1.5437]/[l 1.874-1.5437]*100 
Secondary-Al = [98.9633- SiEQ]/[98.9633-1.5437]*Eutectic 
Eutectic_Si = [SiEQ-1,5437]/[98.9633-1.5437] *Eutectic 
Al_Total = Primary_Al+Secondary_Al 
Al_Primary_Vol-Frac = Primary_Al/2.7 
Al_Secondary_Vol-Frac = Secondary_Al/2.7 
Eutectic Si Vol Frac = Eutectic Si/2.33

Al-Si Eutectic 
Nucleation 
Temperature [Deg°C]

= 660.452-[6.11 SiEQ+ 11.57 SiEQ2]*[12.3/ SiEQ]

Al-Cu Rich Eutectic 
Nucleation 
Temperature 
[Deg°C]

= Tliq-[6.11 SiEQ+ 11.57 SiEQ2]*[12.3/ SiEQ]

Grain Size 
[AFS GS #]

= 83.484+324.5*X

Secondary Dendrite
Arm Spacing
[am]

= 120.54-4.62*Si-10.16*Cu+0.56*Si*Cu

As Cast Ultimate 
Tensile Strength 
[MPa]

= -545.27+157.83*X-7.12*XA2

As Cast Yield Strength 
[MPa]

= -216.73+73.54*X-3.52*XA2

Where X = Si+[[0.35*Cu-0.027*CuA2]+ 
[0.6495*Fe+0.0003*FeA2]+ 
[0.0258*Mg-0.0088*MgA2]+ 
[0.8221 *Mn-0.0349*MnA2]+ 
[0.1227*Zn-0.0002*ZnA2]]
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2.3 Porosity

Porosity in Al castings is detrimental to mechanical properties, especially 

ductility, fracture toughness, fatigue life, surface finish, and corrosion resistance. The 

type of porosity in casting could be either shrinkage porosity or gas porosity or 

combination of both, see Figure 2.18 (Triveno, et al., 2003), and Figure 2.19 (Triveno, et 

al., 2003). Porosity results in a significant reduction of mechanical properties in Al 

Alloy(s) castings as shown in Figure 2.20 (Monroe, 2004). Castings have limited 

ductility, so small amounts of porosity can have a large effect on strength.

Gas porosity is attributed to the presence of Hydrogen gas as it is the only gas that 

is appreciably soluble in Al Alloy(s) at high temperatures. A common possible source of 

hydrogen gas is water vapor in the atmosphere, which also produces Al oxides at the 

exposed liquid surface. The critical level of Hydrogen dissolved in the melt has been 

reported to be 0.1 ml/100 g Al (Du). The formation of Hydrogen gas bubbles contributes 

to the considerable decrease in solubility between the liquid and solid state as shown in 

Figure 2.21 (Monroe, 2004). Shrinkage porosity is attributed to shrinkage of liquid metal 

during mushy zone solidification as it lacks inter dendritic feeding. Most metals shrink 

by a range of 3.5 to 8.5% during transformation from liquid to solid. In addition, the 

remaining liquid metal contracts at a far greater rate than the solidified metal. The 

combined effect of volumetric shrinkage and the difference in contraction rate results in 

substantial hydrostatic tensile stresses. Ultimately voids form in the liquid metal as it 

struggles to maintain coherency under increasing stresses that exceed interface surface 

tension. The presence of a nucleus helps in the formation of pores to relieve stress and 

return to a previous stable status. The affected area of porosity grows due to an increase 

of hydrostatic tension caused by shrinkage of the areas around the pore, and shrinkage of 

the areas far away from the pore (Monroe, 2004). Combined gas shrinkage porosity is 

the most common case encountered in Al Alloy(s) castings. Gas evolution and shrinkage 

occurs simultaneously in the same volume of liquid metal. As a result, an interaction 

between the two phenomena can be expected. Both the gas and shrinkage pressure aid in 

the nucleation and growth of the pore as the pressure pushes from the inside and the 

shrinkage pressure pulls from the outside (Monroe, 2004).
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a) Shrinkage Porosity [Micro Porosity] b) Gas Porosity [Macro Porosity]
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Figure 2.18. Micrographs of various types of porosity in the w319 al alloy sample 
(Triveno, et al., 2003).

a) b)

Figure 2.19. a) Schematic of a shrinkage pore in 3D and

b) Corresponding 2D section (Triveno, et al., 2003).
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Figure 2.20. Effect of porosity on Al alloys ultimate tensile strength (Monroe, 2004).
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Figure 2.21. Effect of dissolved hydrogen on casting porosity (Monroe, 2004).
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2.3 Heat Treatment

The term “heat treating” refers to specific operations employed to achieve specific 

properties such as an increase strength and hardness or dimensional stability. 

Precipitation heat treatment starts with solution treatment followed by age hardening. The 

T6 heat treatment produces higher strengths because of greater amounts of fine Mg2 Si 

and CuAl2 precipitates formed during aging. However, the T7 heat treatment exhibits 

higher ductility and minimum internal stresses. The castings at WAP go through T7 heat 

treatment starting with a partial Solution Treatment at 500°C for six hours, and then 

Artificial Aging at 260°C for four hours. The T7 heat treatment results in an over aged 

castings, which is aimed at improving dimensional stability, and mechanical properties. 

The heat treatment steps are described below and are shown in Figure 2.22.

1. Solution heat treatment: Heat and hold at an elevated temperature at about 500°C 

until a sufficient amount of soluble Cu rich phases are dissolved into the Al matrix.

2. Quench: Air quench to room temperature to achieve coherency stress strengthening 

by development of a SSSS. The SSSS matrix contains clusters of Cu atoms “G-P 

zones” surrounded by strong strain and stress fields, see Figure 2.23 (Roberts, 2006).

3. Age Hardening: Age hardening at room temperatures for days and then Artificial 

Age at an elevated temperature below melting for several hours. This results in 

precipitation of Cu rich phases that form fine, closely spaced, precipitates 0". The 

Yield Strength (YS) is noticeably improved as the finely distributed precipitates 

with complicated “intermetallic” crystal structure must be “cut” by dislocations; see 

Figure 2.24 (Roberts, 2006).

4. Over Age: Continue to hold at the previous elevated temperature as the last step to 

achieve a balance between improved dimensional stability and strength. Further 

precipitates form 0' and finally 0 by continuing to hold at an elevated temperatures 

for a longer time. The material strength is decreased as widely spaced larger 

precipitates could be “bypassed” by dislocations; see Figure 2.24 (Roberts, 2006).
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Figure 2.22. WAP Melt Thermal Treatment and Cast Component Heat Treatment T7 
Temperature Time Schedule.
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Figure 2.23. Phase Diagram and TTT Diagram for Aluminum Copper Alloy (Roberts, 
2006).

37

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



0.5 fxm0.05 [xm 2 |xm 10 (im

b)

Cutting stress V
? ) GP-I

‘v-Coherency stress

— Solid solution

c)

o06oooc& gg

tS ttP S t
OAl •  Cu

GP zones : Mono-atomic layers of Cu on [001 ] a i

■4-OU—4.0iA

a -m a tr ix

,10q, 0“ : Thin discs, fully coherent with Aluminum matrix
All s id e s coherent

: Disc-shaped, semi-coherent on [001]6-Body

(001) Coherent or Centered Tetragonal [BCT]. 
sem icoheren t

•4*o4A (100) \  not coheren t(010) J

0 : Incoherent interface with spherical and complex BCT

I ncoherent
- 6 - 0 7 A -

Structure and morphology of 0", O' and 0 in A l-Cu (O Al, •  Cu).
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diagram of Al-Cu precipitates (a) and (c) (Roberts, 2006).
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2.4 Cooling Curve Analysis

Thermal Analysis using cooling curves of a solidifying metal sample is the study 

of latent heat released during phase formation of the alloy. The liberation of latent heat 

affects the cooling rate, which allows the formation of each phase to be detected by a 

change in the slope of the cooling curve. Small volume phases are difficult to detect on 

the original curve and for this purpose the 1st derivative of the cooling curve is calculated. 

Each A1 Alloy has a characteristic cooling curve in which metallurgical reactions are 

manifested by features such as inflection points and slope changes. The recorded cooling 

curve, along with its calculated time derivatives can yield useful information about the 

characteristics of the solidification process. These characteristic points could be related 

to alloy composition through phase diagrams as shown in Figure 2.25 (Sparkman, et. al., 

1994). It is a common foundry practice to use this method to quantify the degree of grain 

refinement and the Silicon Modification Level (SiML). The algorithm developed by the 

IRC could be directly applied for cooling curve post processing (Sparkman, et. al., 1994).

The temperature signal should be recorded using a proper Data Acquisition 

System. One of the major limiting factors in the sensitivity of the temperature 

measurements is the analog to digital conversion electronics. The converter can only 

measure to a given accuracy that is determined by its internal electronics. If the signal is 

recorded using a 12 bit Analog-Digital converter it has an inherent sensitivity of 0.4995 

degrees Celsius over a 1400-degree range. This could be improved by using a more 

sensitive 16-bit converter with better than 0.03 degrees Celsius sensitivity. This 

sensitivity, like an increase in magnification reveals smaller features in the signal as 

shown in Figure 2.26 (Sparkman, et. al., 1994). An increase in sampling rate may also 

reveal shorter time features improve efficiency of the data filtering. Similar to most 

experimental data, the cooling curve may include noise in varying degrees. Noise can 

obscure important features like peaks or valleys.
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2.5 Chemical Spectroscopy Analysis

Analysis and positive material identification of metals is necessary in nearly all 

industries involving metal production or processing. The most common and trusted 

method is Optical Emission Spectrometry (OES). The test surface is burned using a high 

energy spark created across an argon-filled gap between the sample and the electrode. 

The created emissions radiate from the excited sample surface with wave lengths 

characteristic of the elemental composition as shown in Figure 2.27 (ARL, 2006). The 

spectrum of radiation is separated into distinct element lines and the intensity of each line 

is measured. Finally, these are precisely converted into concentration values for each 

element present. The unmatched combination of accuracy, high speed, precision, 

stability and reliability have made it an indispensable tool for production and verification 

of quality metallurgical products. The chemical composition of the samples representing 

the in-coming and in-process alloy is determined using the OES method per the ASTM 

E l251 “Test Method for Analysis of Aluminum and Aluminum Alloy by Atomic 

Emission Spectrometry”. The IRC has developed guidelines for performing OES 

analysis as a QC tool in the production foundry (Sokolowski, et al., 2001). The 

advantages of OES analysis over metallographic investigation allow for proper detection 

and correction steps to be carried out during production to avoid cost. Metal samples are 

typically ground to produce a flat uncontaminated surface for analysis. The small area on 

the sample test surface is vaporized by a spark discharge under an argon protective 

atmosphere. The atoms and ions contained in the atomic vapor are excited by a second 

spark to emit radiation. The optic disperses the emitted radiation into spectral 

components. Photomultipliers measure the most suitable line from the range of 

wavelength emitted by each element. Concentration of each element is determined 

internally using a stored set of calibration curves for the known composition. Computer 

software is used for easy calculation and display of results. The energies of the outer 

shell electrons on which OES is based can be substantially influenced by the surrounding 

atoms to which they are bonded in solid samples. As a result, these bonds need to be 

completely broken for OES spectra to appropriately reflect the energies of the elements 

present in the sample.
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Figure 2.25. Phase diagram (a) correlation to the cooling curve (b) for Al-Si Alloys 
(Sparkman, et. al., 1994).
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Figure 2.26. Increase of sensitivity using a 16 bit instead of a 12 bit AD converter 
(Sparkman, et. al., 1994).
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Figure 2.27. Spark emissions represent precise element concentrations (ARL, 2006).
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2.6 Gas Comparative Analysis

One of the simplest and oldest methods for gas comparative analysis is the 

Straube-Pfeiffer Test commonly known as the Reduced Pressure Test (RPT). This test is 

comprised of a melt in a metal crucible the size of an eggcup placed under a low pressure 

vacuum at less than one tenth of one atmosphere pressure, see Figure 2.28. The reason 

for carrying out the test under reduced pressure is simply for the convenience of 

extension of the evolved gas volume by a factor of at least ten. The gas pores appear to 

be larger and easily visible after the sample is cut in half for visual evaluation, see Figure 

2.29 (Campbell, 2004). The cut section could be qualitatively evaluated based on a 

visual standard. This test is interesting, as a high level of Hydrogen gas may still be 

retained in the supersaturated solution even if no bubbles are visible. The reason is that 

even at a high level of dissolved hydrogen, the gas may only precipitate if sufficient 

nuclei are present such as oxides with non-wetted interfaces. It should be noted that well 

wetted interfaces such as TiA13, TiB2, and Al solid particles are considered good nuclei 

for grain refining during solidification, but of no use as nuclei for forming pores. 

Therefore, the RPT is good for evaluating the combined effects of Hydrogen and the 

presence of non wetted nuclei in the melt. The RPT is really a "pore forming potential" 

test, in other words, a porosity test. Unfortunately the RPT test is misunderstood as a gas 

test, and unjustly criticized when the test fails to agree with other fundamental techniques 

for measurement of gas content.

2.7 Radiography Analysis

Internal porosity can be detected by using X-Ray analysis. This method becomes 

a destructive test for relatively large castings such as engine blocks and cylinder heads. 

The large casting is saw cut into discrete sections with a specified thickness around one 

inch. Each section of the casting is cleaned by sand blasting and then radiographed to be 

graded for the amount and distribution of porosity. The grading is done in accordance 

with ASTM E l55. Each section is graded from 1 to 8 with grade 1 having the least and 

grade 8 having the most porosity.

42

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



2.8 Brinell Hardness Analysis

One of the oldest hardness test methods still being used today is the Brinell test, 

which was invented by Dr. J. Brinell in 1900 in Sweden (Instron, 2006). The Brinell test 

is frequently used to determine the hardness of forgings and castings that have a grain 

structure too course for smaller indenters used in Rockwell or Vickers testing. Therefore, 

Brinell tests are frequently done on large parts. By varying the test force and ball size, 

nearly all metals can be tested using a Brinell test. Brinell values are considered test 

force independent as long as the ratio of ball size to test force is the same.

The Brinell hardness test method consists of indenting the test material with a 10 

mm diameter hardened steel ball subjected to a certain load. When testing soft metals 

such as Al Alloy(s), a load of 500 kg for 10 seconds is applied to avoid excessive 

indentation. The diameter of the indentation left in the test material is measured with a 

low powered microscope. The Brinell Hardness Number (BHN) is calculated by dividing 

the load applied by surface area of the indentation, as shown in Figure 2.30 (Instron, 

2006). The indentation diameter is the average using two readings perpendicular to each 

other. The calculation of hardness is simplified by using a table relating mean diameter 

to the BHN. This test method makes the deepest impression compared to other methods, 

which averages the hardness reading over a wider volume of material. As the test is 

performed on a wider area, it can more accurately account for multiple grain structures 

and any material irregularities. This method is the best for achieving bulk or macro­

hardness, particularly materials with heterogeneous structures. The Brinell hardness test 

measurement is considered valid if the diameter of the permanent impression is in the 

range of 2.5 to 4.75 mm. As a result, the 3000 kgf load yields a BHN between 160 and 

600; the 1500 kgf load yields a BHN of 80 to 300; and the 500 kgf load yields a BHN of 

26 to 100 (eFunda, 2006). According to the ASTM Standard E10-66, a steel ball may be 

used up to a BHN of 450, and carbide may be used up to a BHN of 630. It is 

recommended to avoid using the Brinell test on materials harder than a BHN of 630. 

These limits were set to avoid errors introduced by the deformation of the indenter itself.
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Figure 2.28. Reduced pressure test or Straube-Pfeiffer test used for hydrogen analysis.
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Figure 2.29. X-Ray radiographs of Al alloy solidified under 0.01 atm (left), and 1 atm 
(right) (Campbell, 2004).
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BHN = Load (kgf) / Surface Area of Indentation (mm2)

Where
D -  Diameter of the ball indenter 
D -  Diameter at the rim of the permanent impression 
F -  Load
t -  Depth of impression

Figure 2.30. Calculation of BHN for the brinell hardness test (Instron, 2006).
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2.9 Six Sigma DMAIC Method for Process Improvement

Unlike other complex quality methods, Six Sigma relies only on tried and true 

methods that have been used for decades. These tools are applied within a simple 

performance improvement framework known as DMAIC, which is described in Figure 

2.32 (i Six Sigma, 2006). This method is used to guide Six Sigma projects like process 

improvement. It may be necessary to apply DMAIC as an iterative approach. For 

instance, it may be noticed after performing data analysis that not enough data was 

gathered to isolate the root cause of the problem, and the measured step may be iterated. 

In addition, prior knowledge of the tools and techniques is necessary in determining 

which tools are useful in each phase. Only certain tools may be used for a correct and 

effective approach.

2.10 Statistical Quality Control

Controlling a process usually means maintaining its output parameters to within 

certain specifications by providing a correct set of inputs. Statistical techniques provide a 

set of tools to detect whether the process being observed is “stable”. Statistical Process 

Control (SPC) charts may be employed to closely observe and predict significant 

deviations that may result in scrap or rejects. However, no matter how good or bad the 

process, SPC can only ensure that the product is being manufactured consistently as 

designed. Thus, SPC will not improve reliability of a poorly designed product or process. 

The choice of control chart for continuous data analysis is between the Individuals and 

Moving Range (XmR), and TUKEY as shown in Figure 2.33. The statistical probability 

for observed data to fall within XmR control limits is 99.3%, and 99% for TUKEY 

control limits. The most preferred is the TUKEY chart for cases where outlier data could 

radically shift the mean and standard deviation as shown in Figure 2.34 (i Six Sigma 

2005). The TUKEY approach is more robust since no data distribution is assumed.

Keeping process inputs within defined specifications is not enough to ensure that 

production output will always be acceptable. Other factors not initially considered in the 

process design can come into play and degrade performance, even if the inputs follow the 

specifications. Therefore control limits should be established based on process
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capabilities and fixed to control the process. It is an advantage to benchmark future 

production using fixed limits established under normal conditions. However, fixed 

control limits may become invalid after certain process changes. If the process improves, 

fixed limits must be recalculated to properly reflect an acceptable range as shown in 

Figure 2.35 (i Six Sigma 2005). Continuing to use wide limits may result in a lost 

opportunity to realize and maintain process improvement. If the process becomes worse 

due to material changes for example, the control limits may become too narrow. This 

results in false reporting of an out of control condition that reflects poorly on the process 

control methodology. It is best to avoid spending time addressing conditions that simply 

are part of a common process variation. Fixed limits should be evaluated regularly to 

minimize errors. Each limit could be evaluated separately by calculating the 

Performance Index (PI) as shown in Figure 2.32 (i Six Sigma 2005). In the ideal case the 

fixed control limit equals the calculated limit such that PI equals one. If PI is larger than 

one, the limits may be too wide, and if less than one, the limit may be too narrow.
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Capability OK? No

Modify Plan? Yes

Capability OK?

DEFINE
D - Define project goals and customer deliverables 
Define Customers and Requirements CTQ 
Develop Problem Statement, Goals and Benefits 
Develop Project Plan and Milestones 
Develop High Level Process Map

MEASURE 
M - Measure process to determine performance 
and quantify problems
Define Defect, Opportunity, Unit and Metrics 
Detailed Process Map of Appropriate Areas 
Develop and Implement Data Collection Plan 
Develop Y=f[x] Relationship 
Determine Process Capability and Sigma Baseline

IMPROVE 
I -  Improve Process by Eliminating Defects 
Perform Design of Experiments 
Develop Potential Solutions, and Operating Tolerances 
Assess Failure Modes of Potential Solutions 
Correct/Re-Evaluate Potential Solution 
Implement Identified Solution

CONTROL 
C - Control future process performance 
Define and Validate Monitoring and Control System 
Develop Standards and Procedures 
Implement SPC and Process Capability 
Verify Benefits, Cost Savings/Avoidance, Profit Growth 
Close Project, Communicate Final Documentation

ANALYZE
A - Analyze and determine the root cause[s] of the defects 
Define Performance Objectives 
Identify Value/Non-Value Added Process Steps 
Identify Sources of Variation - Root Cause Analysis 
Determine Vital Few x's, Y=f[x] Relationship 
Identify Potential Solutions

Figure 2.31. Define Measure Analyze Improve Control (DMAIC) road map (i Six Sigma, 
2006).

Limit Performance Index = Fixed Range (Fixed Limit - Average 1
Calculated Range (XmR or Tukey Limit - Average)

Upper Specification Limit

User Fixed UCL

-  XmR UCL

Tukey UCL
raraO

Average Line 

Tukey LCL£
-  XmR LCL

User Fixed LCL

Lower Specification Limit

Time

Figure 2.32. Control charts using individual moving average XmR and Tukey method.
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C ontrol C hart

DATA
XmR UCL/LCL 
TUKEY UCL/LCL

Outlier data points

statistical control condition

Out of control data

Only Tukey limits detect out of control conditions despite the precesnce of outlier 
data while XmR limits shift too much

- Tukey LCL = 25th Percentile -1.5 (75th Percentile - 25th Percentile) 
Tukey UCL = 75th Percentile + 1.5 (75th Percentile - 25th Percentile)

Time

Figure 2.33. Advantage of using tukey control charts (i Six Sigma 2005).

Process Change 1 Process Change 2

Upper Specification Limit

User Fixed UCL

Original XmR UCL

Revised XmR UCL■2cdo
T3<D
3

Revised XmR UCL

Average Line

Revised XmR LCL
Revised XmR LCL

Original XmR LCL
User Fixed LCL

Lower Specification Limit

Time

Figure 2.34. Danger of using fixed limits instead of statistically calculated limits (i Six 
Sigma 2005).
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3 METHODOLOGY OF EXPERIMENTS

3.1 Introduction

This chapter discusses the experimental setup and data collection plan used in this 

thesis. The experiments for this study were conducted using samples collected from 

different stages of the WAP production process. Statistical analysis of the in process 

W319 Al Alloy measured composition was used to calculate valid chemical control limits 

established under stable process conditions. The process was determined to be stable 

based on the results of the casting quality testing that focused on hardness and x-ray 

porosity data. Cooling curve experiments were conducted to establish control limits for 

the W319 Al Alloy solidification characteristics. The melt samples for cooling curve 

analysis were collected using Melt Sampling Device (MSD) that was redesigned and 

constructed during the course of this study. Heating and cooling curve experiments were 

conducted using Universal Metallurgical Simulator and Analyzer (UMSA) samples from 

ingots, melt, and castings as described in Figure 3.1 (Kasprzak, et al., 2002). The UMSA 

experiment was used to establish the start of the melting point control limit that is critical 

for the heat treatment process. The collected samples are summarized in Table 3.1.

3.2 Chemical Analysis

The alloy composition used at WAP was measured using OES spark analysis 

performed per ASTM E l251. Samples for chemical analysis were collected every four 

hours during production from each melt furnace as shown in Figure 3.2. In addition a 

representative sample was shipped by the supplier along with each ingot heat batch. The 

spectrometer used at WAP was the ARL 3460 Metals Analyzer shown in Figure 3.3 

(ARL, 2006). The OES test samples were cast using ASTM type B mold that conforms 

to the ASTM E176 shown in Figure 3.4 (ARL, 2006). This sample is approximately 

64mm in diameter and 10 mm in thickness. The sample is mill machined on the riser side 

to prepare the surface for analysis. An average of at least three measurements on each 

sample were calculated and stored in a quality records database. The chemical analysis 

test can be performed along a band just inside the sample’s circumference.
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Ingots Melt Engine Block

DMAIC Statistical Analysis

Data Collection

Cooling-Heating Curve 
Analysis [UMSA] 
Cooling Curve Analysis 
[MSD]
Cooling Curve Analysis 
[Alu-Delta]
Hydrogen Analysis [RPT] 
Chemical Analysis [OES]

Cooling-Heating Curve 
Analysis [UMSA]
Cooling Curve Analysis 
[In-Situ T/A]
Porosity Analysis 
[Radiography X-Ray] 
Hardness Analysis [Brinell 
Hardness]

Heating-Cooling Curve 
Analysis [UMSA] 
Chemical Analysis [OES]

Analysis of Experimental Results and Corrective Action Plan
• Develop Valid W319 Al Alloy Control Limits for

o Chemical Composition 
o Cooling Curve Solidification Characteristics 
o Heating Curve Start of the Melting Point

• Develop Software for Analysis of the 3XX Al Alloy
o Statistical Analysis of the Chemical Composition and Prediction 

of Material Properties Based on the SiEQ Method 
o Cooling Curve Analysis using the IRC Method for Baseline 

Equation and Fraction Solid Curve Fit
• Develop and Evaluate the Design of MSD for Collecting the Melt 

Samples to Perform Online Cooling Curve Analysis

Figure 3.1. Design of experiments for WAP plant wide quality assessment.

Table 3.1. Summary of data collected from the WAP production process.

Sample
Type

Sample Origin Test
Method

Analysis Type Number, of 
Samples

Ingot Ingots from Two 
Approved Suppliers

UMSA Heating-Cooling Curves 6
OES Spark Chemical Analysis 300

Melt Melt Holding 
Furnace after 
Filtering and 
Degassing

UMSA Heating - Cooling Analysis 3
MSD Cooling Analysis 25
OES Spark Chemical Analysis 300
RPT Hydrogen Analysis 300

Casting 3.0L V6 Engine 
Block Inner 
Bulkhead Sections

UMSA Heating - Cooling Curves 6
Brinell Macro Hardness Analysis 144
X-Ray Porosity Analysis 69
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West Reverb Furnace

< D (

North Melt 
Holding Furnace

Middle Melt 
Holding Furnace

South Melt 
Holding Furnace

Melting
Natural Gas Jet Furnace

/V .

y — W W  1
(w\_ 1

Reverb
Furnace

Cut Risers and 
Scrap Castings

North 
Cosworth Pump

Middle 
Cosworth Pump

South 
Cosworth Pump

Ingots

Ingots

Ingots

Ingots

North TSR 
Furnace

Mid TSR 
Furnace

South TSR 
Furnace

Chemical Analysis Sample 

Reduced Pressure Test

Melt Degassing 

Melt Filtering

Figure 3.2. Sampling plan for OES analysis and Hydrogen analysis at WAP.
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OES sample

Counter-efectrode

Analysis and 
Control Computer

Test StandPhotomultiplier and 
Detector Unit

Figure 3.3. ARL 3460 Metal Analyzer Spectrometer for Metal Analysis (ARL, 2006).

ASTM Type B Die Cast Mold As Cast Sample Analysis Area

Figure 3.4. ASTM Type B Mold and OES Test Sample (ARL, 2006).
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3.3 Dissolved Hydrogen Gas Analysis

The RPT test was used to evaluate the tendency of the melt to form porosity as a 

result of dissolved hydrogen content and melt cleanliness. The melt samples for the RPT 

were collected every four hours during production from each melt furnace. Each RPT 

sample was rated from one to twelve with grade one having the least and grade twelve 

having the most porosity as shown in Figure 3.5 (WAP, 2004). The UCL used for rating 

the porosity of the RPT sample is four where up to three is still considered acceptable.

3.4 Radiography Analysis

Radiography analysis was used at WAP to rate the level of internal casting 

porosity. This test was performed at the beginning of each day shift by randomly 

sampling two castings from each production line. The selected castings were saw cut 

into discrete sections of about one inch in thickness. Each section was rated from one to 

eight with grade one having the least and grade eight having the most porosity per ASTM 

standard E155. The WAP acceptable maximum limit for section porosity rating was 

grade level four where grade two was the most common under normal production 

conditions. The most critical radiography analysis measurements are performed on the 

inner bulkhead sections as shown in Figure 3.6.

3.5 Hardness Analysis

Hardness analysis of the engine blocks cast at WAP was measured after partial 

solution heat treatment and after artificial aging heat treatment. The hardness was 

measured using a Brinell hardness test per ASTM E10 standard with a 10mm ball, 500kg 

load, and 15 seconds loading time. The WAP acceptable hardness measurements were 

between 85 to 115 BHN as defined in the customer specification. The most critical 

hardness test points are located on the bottom surface of the inner bulkhead sections as 

shown in Figure 3.7.
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Figure 3.5. Visual Rating Standard for the Reduced Pressure Test (WAP, 2004)
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Shrinkage / 
Gas Porosity

Gas Porosity

Figure 3.6. X-Radiography Porosity Analysis of Engine Block Bulkhead Sections.

FRONT

0
Inner Bulkhead Section

REAR

Figure 3.7. Hardiness Analysis of Engine Block Bulkhead Sections.
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3.6 Heating Curve Analysis

Heating curve analysis was performed to detect the start of the melting point for samples 

collected from the WAP production process. The start of the melting point was detected 

using the UMSA equipment. The UMSA sample was machined and placed inside a 

ceramic test cup that was then heated using an electrical heating coil. Temperature 

variations during heating and cooling were detected using a thin low mass thermocouple 

inserted in the center of the sample, as shown in Figure 3.8 (Kasprzak, et al., 2002). The 

start of melting could be detected by an abrupt change in the calculated first derivative of 

the recorded temperature signal as described in Figure 3.9. The advantage of using 

UMSA was the ability to conduct melting and solidification analysis on samples collected 

from different stages of the production process as shown in Figure 3.10 (Kasprzak, et al., 

2002). The UMSA samples were machined out of the following:

• Ingots: sectioned ingots from two supplier sources released for use in production.

• Melt: bars die cast using a filtered and degassed melt from the middle of the 

holding furnace.

• Casting: Inner bulkhead sections cut from the 3.0L V6 engine block castings.

The UMSA test equipment could be used to perform metallurgical simulations of 

thermal processes at different heating and cooling rates.
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Water Cooling System 
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High Sensitivity Thermocouple f  Top Insulation 
shielded by Ceramic n .  A-. /

I—  s i i —
Induction LPower Supply

Ceramic Cup

Test Chamber

UMSA [1KW Output Power] 
Patent, PC / .  ■

Figure 3.8. Heating and cooling curve analysis using UMSA (Kasprzak, et al. 2002).
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The main metallurgical reactions that occur during heating are:
1. Start temperature for melting of Cu enriched phases
2. Start temperature for Al-Si eutectic dissolution
3. Start temperature for Al dendrite network dissolution

P

»

m

<8
15 115I •*13

I

!
1

300 70(5

-5 1

Figure 3.9. Heating / cooling curves and 1st derivative for the W319 Al alloy sample 
(Kasprzak, et al., 2002).

58

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

¥3
 ̂

"uPffiP 
p

ig
;



V6 3.0L Engine Block

ft

Cooling-Heating Curve Melt m Holding Furnace

■

i\m
Saw Cut Ingot Section

I
Melt Die Cast Bar Inner Bulkhead Section

t

i

014 mm

13.5 mm
16 mm

UMSA Machined Sample

Figure 3.10. Description of UMSA Samples Extracted from Ingots, Melts, and Castings 
(Kasprzak, et al., 2002).
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3.7 Cooling Curve Analysis

Cooling curve experiments were performed using the MSD that was constructed during 

the course of this study. The solidification characteristics for the W319 Al Alloy are 

listed in Table 3.2 and were detected through cooling curve analysis calculations and are 

described in Figure 3.11 and Figure 3.12. The melt samples were collected from the 

WAP Middle melt holding furnace. The design of the MSD shown in Figure 3.13 

features a hollow test cup with a moving end cap. The advantage of the MSD design is 

the ability to collect the melt sample from a depth of up to six inches below the top 

surface without causing any harmful disturbance, see Figure 3.14. The cooling curve 

signal for each sample was recorded using the Aluminum Thermal Analysis Platform 

(A1TAP) software developed by the IRC. The thin wall steel test cup was coated with a 

graphite-water based solution and preheated to 200°C for at least 10 minutes. The melt 

top surface was carefully skimmed before sampling to remove the top floating oxides. 

The bottom end cap was first submerged into the melt followed by a hollow test cup until 

both contact each other and form a two piece test cup with a sealed interface inside the 

melt. The two piece test cup was raised out of the melt together until it reached the top 

plate that held a thermocouple to measure the cooling curve of the solidifying melt 

sample. The key to prevent melt leakage during sampling was to use flexible ceramic 

insulation between the test cup and the end cap that would form a seal when the two 

pieces were pressed against each other. The National Instrument 16 MIO data acquisition 

equipment was used to record the temperature signal at a rate of five readings per second. 

The recorded cooling curves for samples collected with the MSD were compared to 

cooling curves recorded by the Alu-Delta test equipment. The Alu-Delta procedure used 

at WAP was used transfer the melt from the furnace to the sand test cup using a steel 

ladle as shown in Figure 3.15.

60

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Table 3.2. Cooling curve characteristics for the W319 Al alloy ()
Symbol Critical Temperature Metallurgical Significance
'-pttDEN 
1 NUC a-Al Dendrite 

Nucleation
Beginning of Solidification as stable a-Al dendrites nucleate, 
where only mass feeding occurs.

rpctDEN 
1 MIN a-Al Dendrite Under 

cooling
In the absence of grain refiners the molten Aluminum is under­
cooled to a minimum temperature below the equilibrium 
solidification temperature. At this point the Latent heat 
generated during dendrite nucleation equals the sample heat 
loss. After this point the temperature rises until it reaches a 
steady state growth temperature.

rpCxDEN 
A G a-Al Dendrite Growth 

Recalescence
The solid nuclei start to grow beyond a critical size and act as 
nucleation particles for new crystals slowing down the cooling 
rate of the metal. In the meantime the previously formed 
crystals start to grow. The solidifying melt reaches a steady 
state growth temperature as more latent heat is released by the 
nucleation of new a-Al crystals. After this point the 
temperature decrease resumes.

«T,aDEN 
1 COH Dendrite Coherency 

Point (DCP)
The dendrite structure starts to coarsen until neighbouring 
dendrites start to impinge upon one another and further growth 
occurs only by dendrite coarsening. At this point transition 
from mass feeding to interdendritic feeding occurs. This point 
is considered as an indicator of the feeding efficiency which 
marks the beginning of possible feeding problems resulting in 
shrinkage pore formation.

rp A l-S l
1 E.NUC Al-Si Eutectic 

Nucleation
As the dendrites become coarser, Al is depleted out of the 
liquid in the solidification front until it reaches a eutectic 
composition. At this point the Al-Si eutectic starts to solidify 
in the interdendritic regions.

'T 'A l-Jil
1 E.MIN Al-Si Eutectic Minimum The latent heat generation from co-precipitation of stable Al 

and Si equals the sample heat loss. After this point the 
temperature rises until reaching a steady state growth.

Al-Si 
1 E,G Al-Si Eutectic Growth Considerable eutectic growth occurs indicated by a long 

plateau in temperature. As the Al-Si eutectic solidification 
proceeds and the fraction solid increases, feeding becomes 
more tortuous in the reduced interdendritic channels.

rp A l-C u  
1 E,NUC Al-Cu Rich Eutectic 

Nucleation
Formation of the Al-Cu rich eutectic as the remaining liquid 
becomes enriched with Cu and Si. This point is critical to 
establish adequate solution treatment parameters.

f-pA l-C u 

MIN

Al-Cu Rich Eutectic 
Minimum

The latent heat generation from precipitation of the Copper rich 
phases equals the sample heat loss. After this point the 
temperature rises until it reaches a steady state growth.

rpA l-C U  
1 E,G Al-Cu Rich Eutectic 

Growth
The relatively small presence of Copper results in a small 
amount of latent heat released after reaching the steady state 
growth. The solidification of these phases is critical for 
formation of micro-porosity since the deposits of ternary liquid 
solidify when the rest of the bulk of the casting is already solid 
and the volumetric shrinkage in these deposits is difficult to 
feed.

T s o l Solidus End of the solidification process.
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Figure 3.11. Cooling curve analysis temperature -  time with baseline plot and 
temperature 1st derivative -  time plot for the W 319 A1 alloy Sample from WAP.
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Figure 3.12. Cooling curve analysis - temperature 1st derivative - temperature with 
baseline plot and fraction solid -  temperature plot for the W319 A1 alloy Sample from 
WAP.
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Figure 3.13. Schematic diagram of the MSD.
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Figure 3.14. Cooling curve analysis using the MSD.
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Figure 3.15. Sand cup used for cooling curve analysis with the Alu-Delta equipment.
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4 RESULTS AND DISCUSSION

4.1 Recalculation of the W319 A1 Alloy Control Limits

The fixed control limits used at WAP for the in process W319 A1 Alloy were 

exclusively established based on Ford Material Specification WSE-M2A151-A2. In 

addition, there was no procedure enforced at WAP to regularly evaluate control limit 

performance. It is important to distinguish between process control limits and material 

specifications limits. The limits defined in the material specification must be wide 

enough to be used in more than one specific application. On the other hand, process 

control limits must be calculated statistically to reflect expected variations under stable 

conditions. As a rule the limit was considered too wide if PI was above 3.5, and too 

narrow if PI was below 1.0. The author proposed UCL and LCL that were recalculated 

such that the PI for each limit would be between an acceptable range of 1.2 and 2.8 as 

summarized in Table 4.1. The most alarming finding was that the fixed UCL for Tin was 

17 times more than the Six Sigma limit, and 20 times more than the average measured 

value. The Tin content increased to more than twice the average measured value as 

shown in Figure 4.1. This increase in Tin content was identified as the only root cause 

for the hardness decrease in the bulkhead sections of the heat treated 3.0L V6 engine 

block casting as shown in Figure 4.2. The bulkhead hardness decreased to a level below 

the Six Sigma LCL and became dangerously too close to the LCL defined in the 

customer specification. The engine block casting hardness returned to normal levels only 

after using ingots with Tin content less than 100 ppm instead of 1000 ppm, which was 

implemented as a permanent corrective action. Statistical analysis using normal 

probability, histogram, and box plots shown in Figure 4.3, Figure 4.4, and Figure 4.5 

indicate that any amount of Tin above 200ppm could be considered as suspect and out of 

normal distribution. The soft phases with a low melting point may form with the addition 

of Tin in A1 Alloy(s) causing a decrease in hardness after heat treatment. The UMSA 

was used to perform heating curve analysis for the WAP samples collected from ingots, 

melts, and engine castings to measure the start of the melting point temperature as shown 

in Figure 4.6, and Figure 4.7. Summary of the heating curve analysis confirmed that an 

increase in Tin content noticeably lowers the start of the melting point temperature as
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shown in Figure 4.8. High temperatures must be avoided during heat treatment of the 

casting to avoid localized melting that solidifies and forms weak grain boundary layer 

phases. It is suggested that the addition of Tin may suppress formation of the hardening 

particles during aging (Key to Metals, 2006). The Tin atoms may interact with vacancies 

more strongly than the solute atoms added specifically for strengthening such as 

Magnesium, Silicon, and Copper. The Tin atoms trap more quenched in vacancies. This 

results in a reduction of the number of free vacancies available as the potential solute 

atom carriers. This results in a diffusion delay of the solute atoms causing a suppression 

of precipitation during aging. However, it should be considered that the response may be 

different for each case depending on the type and concentration of precipitation formed 

during the aging processes. Special care must be taken when dealing with low melting 

point elements that are higher than historical levels. The high amount of low melting 

point element such as Tin introduced into the furnace as an ingot charge may not only 

melt but also vaporize. If the Tin vapor enters the porous refractory, it may condense 

especially in the lower temperature areas near the furnace walls and then solidify. When 

the furnace is next heated, the solid metal expands and cracks the refractory.

The wide control limits identified in this study were recalculated such that the PI 

would be in an acceptable range between 1.2 and 2.8 as shown in Table 4.2. The alloy 

composition used for the recalculation of the limits was measured under stable process 

conditions. The recalculated control limits reflect the chemical variations that still yield 

acceptable casting quality. The casting quality was based on two critical tests performed 

on the inner bulkhead sections as summarized in Table 4.3. The critical to quality 

bulkhead hardness after heat treatment was well within the historical range as shown in 

Figure 4.9. The critical quality bulkhead porosity based on radiography analysis was 

acceptable and never exceeded the maximum historical ratings as shown in Figure 4.10. 

Statistical analysis of the collected WAP quality test results ensured that the recalculated 

limits would be valid for further benchmarking.

The author proposed that the Silicon LCL to be 7.0 wt.% instead of a 6.5 wt.% 

since the Silicon content for the WAP never decreased below 7.18 wt. %. There is no 

assurance indicating that engine blocks cast with only 6.5 wt.% Silicon in the W319 A1 

Alloy would have acceptable levels of strength and wear. The author proposed that the
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Iron LCL to be increased from 0.00 wt.% to 0.30 wt.% as this may actually be an 

advantage for improving strength. The Iron content at WAP was never below 0.31 wt.% 

and never caused any harmful effect on casting quality. The author proposed that the 

Manganese LCL to be increased from 0.00 wt.% to 0.2 wt.% to insure that a sufficient 

amount of Manganese is present and effective to reduce the effects of high amounts of 

iron. In fact Ford Material Specification WSE-M2A151-A2 requires the ratio of Mn to 

Fe to be maintained at a minimum of 1:2. The Manganese content at WAP was never 

below 0.2 wt. %. Titanium is considered as an impurity element in the W319 A1 Alloy 

that may form stable particles. These Titanium particles are stable and may cause EM 

pump failure by clogging as reported previously at WAP during 2000. The author 

proposed that the Titanium UCL to be decreased from 0.25 wt.% to 0.14 wt.% to 

decrease the potentially harmful effects caused by the stable Titanium particles formed 

during melt processing. The Titanium content at WAP was never above 0.125 wt. %. 

The author proposed that the Nickel UCL to be decreased from 0.10 wt.% to 0.07 wt.% 

as the content of this element at WAP was never above 0.04 wt. %. Lastly the author 

proposed that the UCL for Lead, a soft element with low melting point, to be decreased 

from 0.10 wt.% to 0.06 wt.% to avoid potential harmful effects caused by soft low 

melting point lead rich phases formed during solidification and heat treatment. The Lead 

content at WAP was never above 0.05 wt. %. Increasing amounts of Lead are undesired 

as the formed low melting point phases reduce hardness especially after heat treatment, 

and increase grain boundary segregation during solidification.
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Table 4.1. Evaluation Analysis of the WAP Chemical Control Limits.
Statistical Analysis o f W AP 

composition based on 2220 samples
Performance Evaluation of W AP 

Lower Control Limit
Perform ance Evaluation of W AP 

U pper Control Limit

Chemical
Element

Mean 
(wt. %)

Standard
Deviation

Min 
(wt. %)

Max 
(wt. %)

L C L * 
(wt. %)

Performance
Index

Limit
Status

U C L * 
(wt. %)

Performance
Index

Limit
Status

Si 7.50 0.09 7.18 7.83 6.5 3.8 Too Low 8 1.9 OK
Cu 3.46 0.07 3.22 3.78 3 2.1 OK 4 2.5 OK
Fe 0.36 0.01 0.31 0.40 0 10.4 Too Low 0.4 1.3 OK
Mg 0.27 0.01 0.24 0.31 0.2 2.9 OK 0.35 2.9 OK
Mn 0.24 0.01 0.21 0.27 0 10.8 Too Low 0.3 2.5 OK
Zn 0.145 0.026 0.082 0.199 0 1.9 OK 0.250 1.4 OK
Ti 0.113 0.004 0.096 0.125 0 9.8 Too Low 0.250 11.9 Too High
Ni 0.026 0.006 0.013 0.044 0 1.5 OK 0.100 4.2 Too High
Cr 0.029 0.007 0.014 0.061 0 1.4 OK 0.100 3.3 OK
Pb 0.018 0.005 0.006 0.044 0 1.1 OK 0.100 5.2 Too High
Sn 0.005 0.002 0.002 0.016 0 0.9 OK 0.100 17.1 Too High

Limit needs to be changed * Control limits based on Ford M aterial Specification W SE-M2A151-A2

Tin Content of W319 A1 Alloy Processed at WAP

0.11

0.10 - UCL Specification

0.09 -

0.08 -

0.07 -

0.06 -

Tin Content Above 
Historical Levels

0.05 -a
H

0.04

0.03 -

0.02  - UCL Six Sigma

0.01 -
Average

0.00 <NO o s rs
© o rrt

© e

Cast Date

Figure 4.1. Run Chart for Tin in the W319 A1 Alloy Processed at WAP.
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WAP Block Brinell - 3.0L, Inner Bulkhead Hit Location 6

s  100

[Engine Block Hardness Below Historical Levels
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Figure 4.2 Hardness Analysis of the Engine Block Bulkheads Cast at WAP.
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Normal Distribution
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Figure 4.3. Normal Probability of Tin in the W 319 A1 Alloy Processed at WAP.
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Figure 4.4. Histogram Plot of Tin in the W319 A1 Alloy Processed at WAP.
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Figure 4.5. Box Plot of Tin in the W 319 A1 Alloy Processed at WAP.
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Figure 4.6. Heating Curve Analysis Featuring Temperature -  Time Plot.
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Figure 4.7. Heating curve analysis featuring temperature 1st derivative -  temperature plot.
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Table 4.2. Evaluation analysis of the proposed WAP chemical control limits.
Statistical Analysis o f  W AP 

composition based on 340 samples
Performance Evaluation o f 

Proposed W AP 
Lower Control Limit

Performance Evaluation of 
Proposed W AP 

Upper Control Limit

Element

M ean 
(wt. %)

Standard
Deviation

M in 
(wt. %)

Max 
(wt. % )

LCL 
(wt. %)

PI
LCL

Performance
LCL

UCL 
(wt. %)

PI
UCL

Performance
UCL

Si 7.51 0.09 7.23 1.11 1 • 1.9 OK 8 1.8 OK

Cu 3.49 0.07 3.31 3.74 3 2.3 OK 4 2.4 OK

Fe 0.36 ' 0.01 0.32 0.39 : 0.3 7 "  2.1 OK 0.45 2.8 OK

M g 0.28 0.01 0.25 0.31 0.2 2.7 OK 0.35 2.4 OK

Mn 0.25 0.01 0.23 0.27 0.2 2.4 OK 0.3 2.4 OK

Zn 0.125 0.017 0.082 0.174 0 2.4 OK 0.250 2.4 OK

Ti 0.111 0.003 0.102 0.119 0.09 2.0 OK 0.140 2.8 OK

Ni 0.028 0.006 0.017 0.042 0 1.7 OK 0.070 2.5 OK
Cr 0.037 0.012 0.021 0.060 0 1.0 OK 0.100 1.8 OK

Pb 0.020 0.005 0.010 0.038 0 1.3 OK 0.060 2.5 OK
Sn 0.006 0.002 0.003 0.011 0 1.2 OK 0.015 1.9 OK

Proposed limits to replace the original limit in Ford M aterial Specification W SE-M 2A151-A2

Table 4.3. Statistical analysis of the WAP brinell hardness and porosity.
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Figure 4.9. Run chart for brinell hardness of engine blocks cast at WAP.
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4.2 Development of “Chemistry Viewer” Software for 3XX AI Alloy(s)

The chemical composition of cast components must be closely monitored and 

controlled during melt processing to meet customer product quality requirements. 

Statistical analysis of in process melt composition is critical to insure that the cast 

products meet customer material specifications. The original procedure used in the WAP 

Spectrometer lab requires the operator to print the measured composition data sheet for 

each sample and then manually enter the value for each element in an Excel file called 

“Melt Data.xls” as shown in Figure 4.11. This manual entry method for archiving alloy 

composition measurements consumes too much time and creates additional sources of 

error that should be avoided.

The author developed the stand alone “Chemistry Viewer” software to perform 

statistical analysis, and to predict as cast materials properties for the 3XX Al Alloy(s) 

composition based on the IRC methodology (Djurdjevic, et al., 2003). The alloy 

composition data is loaded for analysis using the “Refresh” button to browse and select 

the user defined data file that may contain multiple spectrometer test results as shown in 

Figure 4.12. The loaded spectrometer test results are segregated by the software based on 

the spectrometer analysis date, and on the sample source location. The manual for the 

“Chemistry Viewer” shown in Figure 4.13 explains the graphical user interface with 

examples for each built in function. The most unique feature of the “Chemistry Viewer” 

is the ability to predict critical solidification parameters and as cast mechanical properties 

using the SIeq algorithm, which was explained in Chapter Two. The SieQ algorithm can 

be used for hypoeutectic Al-Si alloy in an approach similar to the well known Carbon 

equivalency for Fe-C alloy. Statistical analysis tools built into the “Chemistry Viewer” 

software include the following:

• Run chart with Tukey limits, user defined control limits, and descriptive statistical 

summary, see example in Figure 4.14.

• Histogram plot, see example in Figure 4.16

• Box and Whisker Plot, see example in Figure 4.17.

• Normal Probability Plot, see example in Figure 4.18.

• Running Variance Plot, see example in Figure 4.18.
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of the alloy’s chemical composition.
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Figure 4.11. 2003 WAP Original OES Chemical Analysis Procedure.
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Figure 4.12. Proposed New Chemical Analysis Procedure for the in Process W319 Al 
Alloy.
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Click on Refresh to select 
input data file that was 
extracted from the 
spectrometer computer

W IM IM IK  A '- l 'M J 'i i  II l‘!.A M  
C b tii i is lry  V ie w er
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Start Date, and End Date

T
Check one or more 
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« \  01/09/2006 02/08/2006 »
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Liquidus Temp Grain Size

Box Plot Fs AlSi Nuc, E

T A lS iN uc. ENormal Probability

T AlCo Nuc. E Yield Strength

Single Component analysis 
Check one or more chemical elements

Multi Component analysis
Check one or more predicted material properties

Check statistical analysis plots and click Plot
e Tukey Plot control run chart with descriptive summary example in Figure 77 
e Histogram frequency distribution plot, example in Figure 78
• Box Plot quartiles box and whisker plot, example in Figure 79
• Normal Probability normal probability plot, example in Figure 80
• Variance running variance plot, example in Figure 81

Figure 4.13. Screen Shot of the Control Window in the “Chemistry Viewer” Software.
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Figure 4.14. “Chemistry Viewer” Example of the Tukey Control Chart.
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Figure 4.15. “Chemistry Viewer” Example of Histogram Plot.
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Box and Whisker plot only shows 
certain statistics rather than all. The 
Five-number summary consists of 
median, quartiles, and smallest and 
greatest values in distribution. Inter- 
Quartile Range [IQR] is the difference 
between the upper quartile and the 
lower quartile. The IQR is a very 
useful measurement as it is less 
influenced by extreme values, and it 
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Figure 4.16. “Chemistry Viewer” Example of Box and Whisker Plot.
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Figure 4.17. “Chemistry Viewer” Example of Histogram Plot.
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Figure 4.18. “Chemistry Viewer” Example of Running Variance Plot.
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4.3 Development of Thermal Analysis “Filters” Software for 3XX Al Alloy(s)

Calculations performed as part of TA can become time consuming and tedious 

leaving less time for interpretation of the obtained results. The calculations involve 

filtering the noise from the recorded temperature signal and detecting critical 

solidification parameters. Accuracy and processing time can be greatly improved using 

software with a built in algorithm to perform cooling curve and its first derivative 

analysis leaving more time for interpretation of the obtained results. The “Filters” stand 

alone software was developed to automatically perform cooling curve analysis for 3XX 

Al Alloy(s), and to perform statistical analysis on archived cooling curve parameters. 

The solidification characteristics for a typical W319 Al Alloy cooling curve are described 

in Chapter Three. The algorithms built in “Filters” were either developed or selected 

based on the IRC’s extensive knowledge in this field. The sequence of calculations 

performed for cooling curve analysis is explained in Figure 4.19. The instructions for 

using the software are explained in Figure 4.20 and Figure 4.21. The “baseline” equation 

was developed by the IRC and the published in a paper that was awarded best paper by 

AFS in 1999 (Kierkus, et al., 1999). The Dendrite Coherency Point (DCP) was 

determined by using the IRC’s technique with only one thermocouple placed in the center 

of the sample (Jiang, et al., 1999). Copper enriched phases were quantified using the area 

fraction under the reaction peaks on the cooling rate vs. time plot developed by the IRC 

(Djurdjevic, et al., 2001). The recorded signal noise was removed using the Savitsky- 

Golay filter method, which essentially performs a local polynomial regression to 

determine the smoothed value for each data point. This method is superior to adjacent 

averaging because it tends to preserve signal features such as peak height and width that 

otherwise would be 'washed out' (OriginLab, 2006). Statistical Process Control (SPC) 

tools built into the “Filters” could be used to archive detected cooling curve 

characteristics, and perform statistical analysis.
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Figure 4.19. Procedure for Cooling Curve Analysis of Al-Si Alloys.
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Click on
• START: Perform cooling curve for a 
single file
• Multiple Analysis: Perform cooling 
curve analysis for multiple files in a 
single folder
• SPC: Perform statistical analysis on 
archived results, see Figure 84
• Help: View user tips and instructions
• Exit: Terminate the program

Enter analysis settings and click Done
• Smooth Data Number of times to smooth recorded 
temperature signal
• Smooth 1st D Number of times to smooth calculated 
first time derivative
• Smooth 2nd D Number of times to smooth calculated 
second time derivative
• Poly Deg of Baseline Polynmial degree to calculate 
baseline fit
• SG Smooth Poly Deg Polynomial degree for 
Savitsky-Golay smoothing filter
• Window Size [sec] Width of moving window for 
signal filtering

I
Browse and Open cooling curve input data file, 
and click on
• Standard Plot: Cooling curve, 1st derivative, 
fraction solid, baseline and summary table, 
example in Figure 4.22
• Cooling Rate vs. Time: Cooling rate profile with 
zoom option, example in Figure 4.23
• File Save: Export analysis results as a *.CSV
data file
•  Cooling rate vs. Temp: Cooling rate vs. 
Temperature with baseline line curve, see example 
in Figure 4.24
• Update Database Archive detected characteristic 
points in user specified *.CSV data file
• Temp vs. Time Temperature vs. time cooling 
curve with zoom option, example in Figure 4.25
• Restart Terminate program and start new 
analysis session
• Subplot: Plot three separate plots in one single 
window including; temperature vs. time, cooling 
rate vs. time, and cooling rate vs. temperature, 
example in Figure 4.26

■t—

Smooth uala 

Smooth 1stD 

Smooth 2nd D 

Poly Deg ot BaseLine 

SG Smooth Poly Deg 

Window Size (sec) 

Window Offset %

_____

Cooling Rate vs. Timeoi__ j—_ jotanwra jript

File Save /  Cooling Rate vs. Temp 

Temp vSiTimeUpdate Oaf

Restart Subplot

Figure 4.20. Quick Reference User Guide for “Filters” Software.
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Enter range for sample date 
Start Date, and End Date

Check statistical analysis plots
• Tukey Plot control run chart 
with descriptive.
• Histogram frequency 
distribution plot.
• Box Plot quartiles box and 
whisker plot.
• Normal Probability normal 
probability plot.
• Variance running variance
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~  CuVolJ4
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Check one or more of the following Cooling Curve characteristics and click Plot

• T Alpha DEN, NUC Temperature at a-Al Dendrite Nucleation
• Alpha DEN, NUC CR Cooling rate at a-Al Dendrite Nucleation
• T Alpha DEN, MIN Minimum temperature at a-Al Dendrite Nucleation
• T Alpha DEN, G Temperature at a-Al Dendrite Growth
• DEN Undercooling Thermal under-cooling at a-Al Dendrite Nucleation
• T Alpha DEN, COH Temperature at a-Al Dendrite Coherency Point
• fs Alpha DEN, COH Fraction solid at a-Al Dendrite Coherency
• T Solidus Temperature at 100% solid
• Solidus CR Cooling rate at Solidus
• Mean CR Average solidification cooling rate
• Latent Area Area under cooling curve 1st derivative and solidification baseline, which is 

proportional to Latent Heat
• Cu Vol% Area under cooling curve 1st derivative and baseline for Cu rich phases, 

which is proportional to volume fraction of the Cu rich phases
• T AlSi E, NUC Temperature at Al-Si Eutectic Nucleation
• AlSi E. NUC CR Cooling rate at Al-Si Eutectic Nucleation
• T AlSi E, MIN Minimum temperature at a-Al Dendrite Nucleation
• T AlSi E, G Temperature at Al-Si Eutectic Growth

Figure 4.21. Control Window for SPC Analysis of Archived Cooling Curve 
Characteristics.
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Figure 4.22. Cooling Curve Analysis Featuring Temperature -  Time Plot (Left Y Axis) 
and Temperature 1st Derivative -  Time Plot with Baseline (Right Y Axis), and Summary 
of the Solidification Characteristics.
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Figure 4.23. Cooling Curve Analysis Featuring Temperature 1st Derivative -  Time Plot 
with Baseline and Fraction Solid -  Time Plot.
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Cooling Rate vs. T em perature
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Figure 4.24. Cooling Curve Analysis Featuring Temperature 1st Derivative -  Temperature 
Plot with Baseline and Fraction Solid -  Temperature Plot.
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Figure 4.25. Cooling Curve Analysis Featuring Temperature - Time Plot.
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Figure 4.26. Cooling Curve Analysis with Time, Temperature, and Temperature 
Derivative.
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4.4 Development of Melt Sampling Device

The WAP QC procedure for cooling curve analysis for the WAP process melt was 

originally established using the Alu-Delta microprocessor based test equipment. 

Unfortunately, the Alu-Delta equipment using a thick wall sand test cup is considered 

outdated and only offers limited capabilities to perform grain structure analysis and 

determine the Silicon Modification Level. Limited analysis capabilities fail to fulfill the 

growing demands of the modern casting industry. Traditionally the melt sample must be 

manually transferred using a small ladle from the furnace to the test cup. Heat lost during 

ladle transfer results in a large melt temperature drop prior to the start of the cooling 

curve recoding. The IRC developed the MSD, described in Chapter Three, to overcome 

limitations of traditional melt sampling techniques. The different designs were developed 

and built as part of this study to conduct cooling curve experiments at WAP. The design 

of the MSD introduces three significant advantages over traditional techniques. First, the 

melt sample could be collected from any desired depth with a minimum melt disturbance. 

Even with careful skimming the melt sampled from the top surface could be relatively 

more contaminated compared to the melt sampled from the lower depths. Second, the 

temperature of the solidifying melt sample could be recorded immediately after the filled 

tests cup emerge above the furnace melt surface. This eliminates significant heat lost 

during traditional melt ladle transfer before cooling curve recording. Third, sensitivity of 

the recorded cooling curve temperature signal is greatly improved by using a low thermal 

mass steel sheath protected K-type thermocouple, and a thin wall steel test cup. The 

cooling curve recorded using In-Situ TA of the WAP V6 3.0L engine block casting is 

very similar to the cooling curve recorded using the MSD instead of the Alu-Delta as 

shown in Figure 4.27. The MSD test equipment design was based on recommendations 

documented in the IRC comparative study of cooling curve parameters for different 

thermal mass crucibles and thermocouple assemblies (Kierkus, et al., 2002). However 

more work is needed to further improve design reliability, and safety in order to be ready 

for commercial use on the production floor.
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Comparison of Cooling Curves for Different T.A Test Configurations

Alu-Delta started to record cooling curve 
" only after the melt already started to
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Figure 4.27. Comparison of the Cooling Curve Sensitivity Between the Alu-Delta TA 
System, the MSD developed by IRC, and the 3.0L Engine Block In-Situ TA.
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4.5 Results Summary

Chemical elements in W319 A1 Alloy with a control limit PI of less than 1.0 or 

higher than 3.5 were considered poor based on the literature recommendations. The 

control limits for the W319 chemical composition were recalculated to improve the limit 

performance. The W319 limits were recalculated such that the limit PI would be between

1.2 and 2.8.

The chemical analysis software “Chemistry Viewer” was developed and used for 

statistical analysis and silicon equivalency analysis of the W319 A1 Alloy composition. 

The software was successfully implemented at WAP and could be potentially utilized at 

other foundries. The software features comprehensive statistical analysis capabilities as 

well as the unique SieQ to predict as cast material properties.

The Thermal Analysis software “Filters” was developed and used for cooling 

curve analysis of the W319 A1 Alloy test samples. The software was successfully 

implemented to replace all manual calculations performed as part of the cooling curve 

analysis and could potentially be utilized at other foundries using Al-Si-Cu alloys. The 

software features comprehensive statistical analysis capabilities as well as the IRC 

methods to determine baseline, fraction solid, and latent heat.

The Melt Sampling Device was redesigned, constructed, and used to collect test 

samples from the WAP melt furnaces for cooling curve analysis. The prototype melt 

sampling device may require more design work before being ready for production floor 

applications.
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5 CONCLUSIONS

The declared objectives of this thesis were achieved based on the following 

accomplishments that could be useful for improving QC at any A1 Alloy(s) foundry:

1. Development of “Chemistry Viewer” software for statistical analysis of the chemical 

composition for multi-component A1 Alloy(s). The software should also predict as 

cast material properties for the 3XX A1 Alloy(s) using the SiEQ technique.

2. Development of “Filters” software for cooling curve analysis of the 3XX A1 Alloy(s). 

The software automatically detects characteristic points on the cooling curve and 

corresponding 1st derivative curve. The latent heat and fraction solid are calculated 

using the “baseline” techniques developed by the IRC.

3. Development of the MSD testing device for collecting melt furnace samples to 

perform online cooling curve analysis. The device overcomes limitations of 

traditional melt sampling techniques that use a steel ladle and sand test cup.

Other accomplishments achieved in the course of this study were:

1. Development of chemical control limits for the WAP in process W319 A1 Alloy.

2. Development of cooling curve control limits for the WAP in process W319 A1 Alloy.

3. Recommendation to recalculate control limits at least once a year or when a known 

change occurs that may impact quality.

4. Recommendation to properly distinguish between the control limits specific to one 

process and the limits in material specifications established for various applications.

5. Recommendation to use the UMSA for qualifying ingot suppliers to ensure that the 

start of melting and solidification characteristics satisfy the established control limits.
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APPENDIX I
WAP Experimental Data

Please explore the content of the attached CD for all recorded measurement data that 

includes:

• Cooling curves of the in process W319 A1 Alloy.

• Chemical Composition of the in process W 319 A1 Alloy.

• Brinell hardness readings of cast engine block - bulkhead sections.

•  Porosity radiography ratings of the cast engine block - bulkhead sections.
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