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ABSTRACT 

The hydrolysis phenomenon of transition metal (including Si and Ge) magnides, 

aluminides and sodides has been investigated in this study, and has been successfully 

developed to produce both transition metal and semiconductor element nanoparticles. 

Both in-situ synthesized Mg2Ni and as-cast Mg2Ni exhibited a close to zero 

discharge capacity due to hydrolysis of Mg2Ni and Mg2NiH4. The hydrolysis 

characteristics of Mg2Ni and Mg2NiH4 suggest that they are not suitable for use as 

electrodes in rechargeable batteries. 

The hydrolysis byproduct of transition metal and semiconductor element magnides, 

Mg(OH)2, can be easily removed by a dilute acid. After removal of Mg(OH)2 from 

the hydrolysis product of Mg2Ni, Ni nanoparticles were obtained. Besides Ni 

nanoparticles, Cu, Au and Ag nanoparticles have been successfully prepared by this 

method. The hydrolysis byproduct of magnides, Mg(OH)2, has a very small 

solubility in water, and thus the newly-formed Mg(OH)2 precipitates from water in 

the vicinity of the Mg dissolution sites. The existence of the Mg(OH)2 particles, and 

the low mobility of transition metal atoms at room temperature, give rise to the 

formation of very fine transition metal nanoparticles. Therefore, the particle size of 

these transition metal nanoparticles prepared by this method was not sensitive to the 

concentration of the initial materials in aqueous solution. 

iv 



AI3M spontaneously undergoes hydrolysis in water at room temperature, and forms 

Al(OH)3, Ni nanoparticles and hydrogen in distilled water at room temperature. Due 

to chemical characteristics of Al(OH)3 including its low acidity, chemically active 

transition metal nanoparticles, such as Fe, Co, and Ni, can not be produced by using 

dilute hydrochloric acid to remove Al(OH)3. However, chemically inert transition 

metal nanoparticles such as Au and Ag could be prepared by this method. 

The transition metal-sodium intermetallic compounds, i.e. sodides, undergo severe 

hydrolysis in water at room temperature. The reaction byproduct, NaOH, has a high 

solubility and is easier to remove than Mg(OH)2, the hydrolysis byproduct of 

magnides. This method, therefore, offers a simpler method of preparing transition 

metal nanoparticles. The drawback of this method is the difficulty in controlling the 

reaction rate. 

v 
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Chapter I. Introduction 

CHAPTER ONE: INTRODUCTION 

1.1 Characteristics of nanoparticles 

The transition from microparticles to nanoparticles can lead to a number of changes in 

physical properties due to an increase in the ratio of surface area to volume and the size of 

particles moving into the realm where the quantum effects predominate [1]. 

As a particle becomes extremely small, the physical and chemical properties of the 

particles may be dominated by the properties of the surface atoms. In addition, valence 

electrons in a crystalline solid occupy continuous energy bands. However, the valence 

electrons in very small particles (below 10-20nm) occupy discrete, but broadened 

electronic densities. The occupation, width and separation of these bands determine most 

of the fundamental electrical, optical and magnetic properties of the solid. Thus, transition 

metal nanoparticles exhibit many unique properties that are different from those of bulk 

metals when their particle sizes are as small as nanometer size (10"9m) [2]. 

1.2 Properties of nanoparticles 

As the particle size is reduced, more atoms are on the surface, which makes small 

nanoparticles, especially metallic ones, highly reactive catalysts. In general, the high 

surface area of nanoparticles is a critical factor in the performance of catalysts for gaseous 

reactions in the chemical industry [1]. 



Chapter I. Introduction 

Transition metal nanoparticles, in particular, Au, Ag, and Pt, exhibit optical activity in the 

visible range of the spectrum. Si and Ge nanocrystals under the quantum confinement 

effect, exhibit photoluminescence. 

The magnetic domains of the magnetic material nanoparticles may change from multiple 

to single due to the quantum effects. For example, it was reported that Ni nanoparticles 

exhibited a superparamagnetic behaviour above the blocking temperature [2]. 

1.3 Synthesis methods for transition metal or semiconductor nanoparticles 

Various methods have been developed to synthesize transition metal or semiconductor 

nanoparticles. These methods essentially fall into two categories: chemical and physical 

methods. Among the chemical synthesis method, transition metal or semiconductor 

nanoparticles have been conventionally prepared by micro-emulsion, chemical reduction 

of metal-salts, thermal decomposition, electrochemical methods, and the rapid expansion 

of supercritical fluid solutions. Of these methods, chemical synthesis in solution is 

favoured for fabricating nanoparticles because it allows the tailored design of materials at 

the molecular level, and also because it offers a cost-effective method of producing 

nanoparticles in large quantities. In addition, colloidal chemistry offers a possible route 

for the synthesis of a uniform dispersion of fine metallic particles by stabilizing the 

particles in the presence of a surfactant. 

Although these synthesis methods of nanoparticles are, in certain ways, reaching maturity, 

a scaling up synthesis method of these materials is still required. 

2 
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1.4 Focus of this study 

1.4.1 Discovery of hydrolysis behaviour of Mg2Ni 

Rechargeable nickel metal hydride (NiMH) batteries have many advantages for use as 

power sources in electric and hybrid vehicles such as higher power densities and 

environmental friendliness. When compared with conventional AB5 alloys, Mg2Ni 

exhibits a good hydrogen storage capacity (3.6wt%) and lower specific gravity. The 

theoretical discharge capacity of Mg2Ni is as high as 999mAh/g [3]. However, 

polycrystalline Mg2Ni shows a very low electrochemical discharge capacity (less than 

lOmAh/g). It has been reported that the electrochemical discharge capacity can be 

improved through the use of nano-crystalline Mg2Ni. A very high discharge capacity of 

1082mAh/g (exceeding the theoretically calculated value) has even been reported [4]. 

Therefore, Mg2Ni is thus expected to be amongst the next generation of electrode 

materials. 

In general, the hydrogen storage capacity of the alloys prepared by the melting and 

casting method is higher than that of the materials synthesized by the mechanical alloying 

method. However, mechanical alloying can significantly improve both the activation and 

the reaction kinetics of hydrogen storage alloys. Contamination is a major drawback of 

mechanical alloying. No contamination is introduced by in-situ reaction synthesis (or 

combustion synthesis). Its products are porous, and have a high purity and large surface 

areas of "fresh" surface, which results in easy activation of the combustion synthesis 

product. 

During an investigation into the charge/discharge capacity of the in-situ reaction 

synthesized Mg2Ni, the Mg2Ni exhibited a near zero charge/discharge capacity. The 
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hydrolysis reactions of both in-situ reaction synthesized Mg2Ni and Mg2NiH4 were 

examined in detail from the viewpoint of thermodynamics. The analysis results indicated 

that the hydrolysis reactions of both Mg2Ni and Mg2NiH4 were spontaneous in both 

distilled water and a 6M KOH solution, and formed Mg(OH)2, Ni and hydrogen. The 

XRD results showed that the width of the Ni diffraction peaks was fairly broad, which 

reflected the fact that the crystallite size of Ni was extremely small. In addition, the 

hydrolysis byproduct, Mg(OH)2, can be easily removed by dilute acids. Hence, the 

hydrolysis of Mg2Ni had the potential to be developed to produce Ni nanoparticles [5]. 

The initial materials used in this method could easily be produced by a conventional 

melting and casting method or a reaction-synthesis method. The hydrolysis processing of 

the metal and the magnesium intermetallic compounds and the removal of Mg(OH)2 

could potentially be carried out on a large scale. Therefore, compared with conventional 

preparation methods for Ni nanoparticles, the method has a great potential to 

economically produce Ni nanoparticles on a large scale [5]. 

1.4.2 Preparation of magnides, aluminides and sodides 

Of all the magnides, aluminides and sodides used in this research only Mg2Ni and Mg2Cu 

are commercially available. Production of other magnides, aluminides and sodides was 

done in our laboratory. Due to differences in chemical characteristics (reactivity) of 

magnesium, aluminum and sodium, magnides and aluminides were fabricated under a 

protective atmosphere (a mixture gas of sulphur hexafluoride and 0.5% carbon dioxide) 

by a conventional melting and casting method, and the sodides were fabricated under a 

protective atmosphere of 0.5MPa argon by a reaction-synthesis method. 
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1.4.3 Investigation of hydrolysis of magnides 

Besides Mg2Ni, MgNi2 is also formed in the binary Mg-Ni system. The hydrolysis 

reaction of MgNi2 was analyzed from a thermodynamics point of view. The analysis 

results also indicated that the hydrolysis reaction of MgNi2 was spontaneous, which was 

then confirmed by actual hydrolysis experiments. 

Hydrolysis of Mg2Cu, Mg3Au, Mg2Cu, Mg54Agn, MgAg, Mg2Ge, and Mg2Si were then 

investigated. The results showed that all these magnides exhibited hydrolysis behaviour. 

This suggested that hydrolysis is a common phenomenon. The corresponding transition 

metal and semiconductor element nanoparticles were produced by using this phenomenon. 

The size of the nanoparticles prepared by the hydrolysis method was around lOnm. 

1.4.4 Oxidation behaviour of nanoparticles in an aqueous solution 

The oxidation behaviour of their nanoparticles in water was investigated in detail. Due to 

the differences in chemical affinities of the transition metals to oxygen, transition metal 

nanoparticles exhibited different oxidation behaviour in an aqueous solution. For the 

relatively highly chemically active elements, such as Ni and Si, their nanoparticles were 

oxidized into the corresponding hydroxides by the dissolved oxygen in the solution 

during hydrolysis and removal of Mg(OH)2 by using dilute acid. For the relatively low 

chemically active elements, such as Cu and Ge, their nanoparticles were first oxidized 

into the corresponding hydroxides by the dissolved oxygen in the solution during 

hydrolysis and removal of Mg(OH)2 by using dilute acid, and then these hydroxides 

further dissociated into their oxides (CU2O for Cu nanoparticles, and GeC>2 for Ge 
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nanoparticles). For the chemically inert elements, such as Au and Ag, their nanoparticles 

were not oxidized by the dissolved oxygen in the solution during hydrolysis, or during 

removal of Mg(OH)2 using a dilute acid. 

1.4.5 Effect of hydrolysis temperatures on formation of Si and Ge nanoparticles 

A general trend for the formation of crystalline Si and Ge is that the more covalent the 

element, the higher is its crystallization temperature. At low temperatures, amorphous 

phases become more common as the material becomes more covalent. Hence, the effects 

of the hydrolysis temperature on the formation of Si and Ge nanoparticles were 

investigated in detail. 

1.4.6 Investigation of the hydrolysis of aluminides and sodides 

There are many intermetallic compounds that have similar chemical characteristics to 

magnides, for example, aluminides and sodides. Therefore, an investigation of the 

hydrolysis of aluminides and sodides would help us better understand the hydrolysis 

behaviour of intermetallic compounds. 

Among the Ni aluminides, AljNi spontaneously underwent hydrolysis in water at room 

temperature, and formed Al(OH)3, Ni and hydrogen. Although from thermodynamic 

considerations, the negative standard free energy change for the hydrolysis reaction of 

Al3Ni is much larger than that for Mg2Ni, and from a crystal structure point of view, more 

Al atoms surround a Ni atom in M3AI than Mg atoms surround a Ni atom in Mg2Ni, the 

hydrolysis of AI3M seemed to be much easier than that of Mg2Ni. In addition, AI3M2 

barely underwent a hydrolysis reaction under the same conditions. The hydrolysis of AINi 
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and AIM3 in the Ni-Al binary system would be much slower than for AI3M2 due to 

thermodynamic and kinetics factors including crystal structure. Due to the low acidity of 

Al(OH)3, using dilute hydrochloric acid to remove Al(OH)3 would lead to a fairly low 

PH value of solution. As a result, the chemically active transition metals such as Fe, Co, 

Ni, or even Cu nanoparticles will be difficult to produce by this method, in particular, 

when they are exposed to air. 

The hydrolysis reactions of sodides were very fast, and were accompanied by small 

explosions or combustion due to the high chemical activity of sodium. A colloid 

containing the transition metal nanoparticles was formed almost instantaneously. The 

reaction byproduct, NaOH, had a high solubility and was easier to remove than Mg(OH)2, 

the hydrolysis byproduct of magnides. This method offers a simpler method for preparing 

transition metal nanoparticles. The drawback of this method is the difficulty in controlling 

the reaction rate. 
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CHAPTER TWO: LITERATURE REVIEW: 

CHARACTERISTICS, PROPERTIES, APPLICATIONS 

AND PREPARATION OF TRANSITION METAL, Si AND 

Ge NANOPARTICLES 

2.1 Introduction 

This chapter describes general characteristics of nanoparticles, their physical properties, 

application and methods of preparation. Particular emphasis is given to transition metal 

and semiconductor nanoparticles (Si and Ge) in this dissertation due to their potential 

application as catalysts, memories and displays. 

2.2 General aspects of nanoparticles 

It is generally known that nanoparticles exhibit properties that are different from those of 

bulk metals when their particle sizes are as small as the nanometer size (l(Fm). The 

transition from microparticles to nanoparticles can lead to a number of changes in 

physical properties. Two of the major factors contributing to this change in physical 

properties are the increase in the ratio of surface area to volume, and the size of particles 

moving into the realm where the quantum effects predominate [1]. 
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2.2.1 Surface atoms and structure 

The first, very important property of nanoparticles is the large surface-to-volume ratio 

which makes them distinct from larger particles. If a 1cm cube of metal is broken into 

small cubes of lOnm edge length, the overall surface will increase 106 times, although the 

amount of matter remains the same. In general, nanoparticles have a specific surface area 

of 102-103m2/g. From a purely geometrical consideration, in crystalline particles smaller 

than 1 Onm size, the amount of atoms at the surface becomes relevant as it is comparable 

to that of atoms in the interior of the particle. The ratio of surface atoms to volume atoms 

is inversely proportional to the size of the particle [1]. 

The surface is generally considered to take up a thickness of 3 atomic spacings. For a 

lOnm metallic particle, 10% of the atoms are surface atoms; and for a lnm particle, more 

than half of them are surface atoms. Thus, the volume of this surface layer becomes 

significant in nanoparticles [1]. It is known that the composition, or the crystal structure, 

is modified at the free surface of a material. The composition or the crystal structure at 

the surface layer of nanoparticles could be different from those of the particle core. The 

clean surface of crystalline materials relaxes and reconstructs in order to minimize the 

total Gibbs energy, given the new chemical environment of the semi-infinite crystal. 

In metallic nanoparticles, for example, the surface tends to smooth out the electronic 

charge distribution and the atoms on the surface layer respond by reconstruction. Most 

clean surfaces of metallic nanoparticles either contract or expand and in some cases they 

reconstruct. However, there construction is limited by the ability of the atom that 

hybridizes and adapts their bond lengths and angles to the new configuration. These are 

measurable effects in nanoparticles, as the "surface volume" is not negligible. 
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Selected examples of these surface effects are the surface contraction in palladium 

nanoparticles and the crystal lattice distortion for other metal nanoparticles [2]. Nickel is 

a notable example; while the bulk crystal has the face centered cubic (FCC) structure, 

nanoparticles smaller than 4nm are hexagonal close-packed (HCP) [2]. 

While the atoms lying in the core volume of nanoparticles are surrounded by a specific 

number of atoms (which is called the coordination number), on the surface layer their 

coordination number is reduced. Thus, as a particle becomes extremely small, the 

physical properties of the particles may be dominated by the properties of the surface 

atoms. 

The chemistry of the surface can also change owing to environmental conditions. 

Molecules can be adsorbed from the environment. It must be taken into account that 

nanoparticles are always exposed to some kind of atmosphere both during and after their 

production, and during their different applications. The adsorbed molecules may react 

with the surface atoms (chemisorption) to form a new phase [2]. 

The large surface area also results in some interactions between the different components 

in nanocomposites, leading to special properties such as increased strength and/or 

increased chemical/heat resistance. Pure metal nanoparticles can be induced to merge into 

a solid without melting (a process called sintering) at lower temperatures than larger 

particles, leading to improved and "easier-to-create" coatings, particularly in electronics 

applications such as capacitors [2]. 
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2.2.2 Electronic properties 

For individual atoms and molecules, the electronic density of state is discrete, resulting in 

intrinsically sharp spectral line widths (see Fig.2.1a) [2]. In a crystalline solid, valence 

electrons occupy continuous energy bands and the occupation, width and separation of 

these bands determines most of the fundamental electrical, optical and magnetic 

properties of the solid (see Fig.2.1c).The electronic structure of a nanocluster or a 

nanocrystal might fall somewhere between these two extremes. The increasing presence 

of the surface tends to perturb the periodicity of the "infinite" lattice of a regular crystal. 

The electronic configurations in tiny particles (below 10-20nm) are similar to those of the 

particle-in-a-box, exhibiting discrete, but broadened electronic densities (see Fig.2.1b). 

BfCHOMO) 

(a) 
DOS(E) 

E r 

<b) 
DOS{E) - DOS(E) 

Fig. 2.1 Formation of a band structure from (a) a molecular state, (b) a nanoparticle with 

broadened energy states, and (c) bulk materials (HOMO: Highest Occupied Molecular 

orbital; DOS: the electronic density of states) [2]. 

If a piece of metal is reduced by making it thinner and thinner until the electrons can only 

move in two instead of three dimensions, a two dimensional (2D) quantum confinement 
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will be obtained, which is called a quantum well. Further reduction in dimensionality will 

generate a quantum wire (ID). Reducing dimensions will finally end in a quantum dot 

(OD). The energy states in the bulk, a quantum well, a quantum wire and a quantum dot 

are shown in Fig. 2.2 [4]. 

Bnetg>< £«rg>' iaiergy Energy 

Bulk Quantum Well Quantum Wire Quantum Dot 

Fig. 2.2 Formation of a zero-dimensional (OD) quantum dot by the formal reduction of 

dimensions, correlating with the continuing discretization of the energy states [4]. 

In the case of metals, the electrical properties are determined by the electron mean free 

path, which typically ranges from 5 to 50nm for most metals. If the crystal becomes 

comparable in size to the electron mean free path, the electrons are then also scattered at 

the surface, which increases the electronic resistance of the nanoparticles. One of the 

most important consequences of the size confinement is therefore the extremely small 

capacitance of isolated nanoclusters and nanocrystals. This can give rise to an appreciable 

charging energy when a single electron is transferred to the cluster. The very small 

capacitance strongly affects its electronic structure, giving rise to single-electron charging 
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effects. For these reasons metallic nanoparticles and nanowires are promising unit 

elements in building nanoscopic circuits with tunnelling junctions involving jumps of 

single electrons. 

Electronic devices based on nanoparticles (e.g. metal and semiconductor nanoparticles) 

will not function analogously to their macroscopic counterparts. Thus, a conventional 

MOSFET (metal oxide semiconductor field effect transistor) will no longer be able to 

control the flow of electrons as its size reaches the sub-50nm regime. At this dimensions, 

electron transport in n- and p- doped contacts is affected by the quantum mechanical 

probability that electrons will simply tunnel through the interface. These tunnelling 

processes will begin to dominate in the nanometer size regime, causing errors in 

electronic data storage and manipulation [2]. 

2.3 Size-dependent properties 

2.3.1 Catalysis 

With an increase in the ratio of surface area to volume, the behaviour of atoms on the 

surface of a particle will gradually dominate those in the interior of the particle. This 

affects both the properties of the particle in isolation, and its interaction with other 

materials [1]. 

The high surface area of nanoparticles is a critical factor in the performance of catalysts 

for gaseous reactions in the chemical industry and structures such as electrodes, since the 

efficiency of a particular reaction is proportional to the area of the available surface. In a 

catalytic activity, a material is able to speed up a particular chemical reaction without 

changing itself and its properties. As the particle size is reduced, more atoms are on the 

surface and this makes small nanoparticles, especially metallic ones, highly reactive 
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catalysts, as the surface atoms are the active centers for catalytic elementary processes 

that can be used for chemical synthesis, reducing pollutants from domestic environment 

and car exhaust systems [1]. 

For particles smaller than the electron mean free path, the electronic band structure may 

significantly change with particle size and materials such as gold, which are usually 

chemically quite inert, become catalytically active [5]. It has been found that gold 

nanoparticles, supported on a silicate substrate, catalyze the production of propylene 

oxide with a high selectivity of more than 90%. Since the only byproduct of this reaction 

is water, application of gold nanoparticle catalysts is expected to be a clean process for 

partial oxidation. The selective oxidation processes that are used to make compounds 

contained in agrochemicals, pharmaceuticals and other chemical products can be 

accomplished more cleanly and more efficiently with nanoparticle catalysts [5]. 

2.3.2 Optical properties of Au, Ag, Pt, Ge and Si nanoparticles 

The modified electronic configuration of a confined crystal has a great effect on the 

optical transitions between different energy levels. Furthermore, the scattering of light 

from tiny particles is affected by the modified electron cloud which influences the 

dielectric function of the material [6]. 

Transition metal nanoparticles e.g., Au, Ag, and Pt, are optically active in the visible 

range of the spectrum. A colloidal solution of noble-metal nanoclusters has an intense 

color. When the crystal size becomes smaller than the wavelength of the visible light, 

these metal nanoparticles partially transmit the light. A strong optical absorption in the 

visible region arises from the surface plasmon excitation in response to the external 

electromagnetic field. This results in changes of the color of the suspension. A decrease 
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of the nanocluster size gives rise to a significant increase in the surface plasmon 

resonance band width, and results in a shift in the resonance position as known as a red-

shift. For example, the smaller Au nanoparticles exhibit abroad surface plasma absorption 

between the green and yellow wave lengths, and allow only red light to be transmitted. As 

a result, the smaller Au nanoparticles show a red color [4]. 
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Fig.2.3 Blue shift of the band-gap energy AE as a function of particle radius R [6]. 

Where, the Ee+h is the independent confinements of the electrons and holes; EEX is the 

exciton confinement. 
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Bulk Si and Ge are indirect bandgap semiconductors and poor emitters of light. However, 

surface effects, as well as quantum confinement effects are considerably enhanced in Si 

and Ge nanocrystals, which control the photoluminescence. A quantum mechanical 

treatment shows that the eigen-state of particles confined to a small potential well become 

discrete and move up from the bottom of the well, which result in the increase in apparent 

bandgap energy of the semiconductor (blue shift of the bandgap) [6-11]. If the Radius of 

the quantum well R is greater than the exciton Bohr radius a^. the exciton as quasi-

particles are confined to the well; if a& is larger than R, the exitons are no more stable in 

the well [6]. 

The extent of the blue shift as function of particle radius for Si is illustrated in Fig.2.3 [6]. 

o 

It is found that the transition from exciton confinement occurs at a radius of around 100 A. 

Visible light emission from Si particles should only occur in particles with a radius less 

20 A. The particle size in this range is already at the dividing criterion between untrafine 

particles and clusters. 

Fig.2.4 Nanocrystalline Si to emit red light by stimulating it with an argon-ion laser beam 

(green light) [8]. 
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The photoluminescence from Si nanocrystals (see Fig.2.4) was first discovered by 

Canham [8]. Silicon nanocrystals emit light from near IR to visible to ultraviolet due to 

the quantum confinement effect as the size of silicon decrease exciton Bohr radius (4.9 

nm). This also allows for an increase in internal quantum efficiency from 10-20% to 60%. 

2.3.3 Magnetism of Fe, Co and Ni nanoparticles 

The magnetic properties of nanoparticles are different from those of bulk materials. The 

magnetic properties of transition metals such as Fe and Co differ significantly from the 

bulk and depend strongly on the particle size [12]. The experimental results on small 

magnetic clusters in the gas phase have shown that the total magnetic moment depends on 

the size of the clusters, in particular, it is a function of the number of atoms. Both orbital 

and spin moments on the surface of tiny magnetic nanoparticles are strongly enhanced. 

The spin moment then decreases to the bulk value as the size of the particle exceeds a few 

nanometers. This is a consequence of the fact that a high number of atoms with lower 

coordination number sit on the surface and therefore exhibit uncompensated distributions 

of magnetic moments (spins). This effect is very strong only for tiny clusters of less than 

1000 atoms, but in some case it is still present for larger particles. 

As the particle diameter of such magnetic materials as iron and nickel approaches the 

nano range, their magnetic domains are changed from multiple to single due to the 

quantum effects, and their magnetic properties also change. It is highly desirable to use 

particles that are magnetically separated from each other, and where the particle size is 

such that each individual particle can be considered as an elementary magnet [12]. Ni 

nanoparticles exhibit a superparamagnetic behaviour above the blocking temperature 
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[13,14]. The coercivity of the Ni nanowires increases with decreasing wire diameter due 

to the tendency toward single domain nature [15,16]. 

2.3.4 Melting point 
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Fig.2.5 Relation between the size of gold particles and their melting point [17]. 

The majority of metals have a hexagonal or a cubic close-packed structure with a 

coordination number of 12. The surface atoms only have a coordination number of 9 or 

smaller. It is typical for bulk materials that the surface atoms form a negligible part of the 

total number of atoms. A spherical particle of lOnm in diameter has around 10% of 

surface atoms, so that the surface atoms cannot be neglected for the smaller particles. 

These surface atoms with a coordination number of 9 or smaller are more easily 

rearranged than those atoms in the center of particles. In addition, the decrease in the 
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average coordination number of surface atoms leads to a weaker cohesive energy. As a 

consequence, the melting temperature is reduced. According to the calculation by the 

method of Rosenberger, there is a dramatic decrease of melting point for particles smaller 

than 3-4nm (see Fig.2.5) [17]. 

2.4 Applications of nanoparticles 

2.4.1 Catalysts 
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Fig.2.6 Statistics of the number of journal publications per year during the past decade in 

the area of catalysis with nanoparticles [18]. 
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Since nano-metals have a large surface-to-volume ratio compared to bulk materials, they 

are attractive to use as catalysts in fuel cells and organic chemical synthesis. The field of 

nanocatalysis (the use of nanoparticles to catalyze reactions) has undergone an explosive 

growth during the past decade. The number of journal publications that have been 

published in the area of catalysis with nanoparticles for each year in the past decade are 

listed in Fig.2.6 [18], which shows that catalysis with nanoparticles is a growing field of 

research. 

2.4.1.1 Ni nanoparticles 

Nano-nickel has very high catalytic activity, and is physically and chemically robust. 

There is a large potential market for nano-nickel in the chemical processing industry. 

Nickel catalysts, in general, are active for the hydrogenolysis of carbonyl and carbon-

carbon bonds [19]. 

Ni nanoparticles have been used as Raney catalysts for unsaturated vegetable oils to 

margarine and other food products for more than 80 years [1]. The main constituents of 

these vegetable oils are glycerol ester of various un-saturated fatty acids, especially Ci6 

and Ci8 acids. The main process requirement is the hydrogenation of some olefinic bonds, 

not all, together with some isomerization and olefinic bond migration along the carbon 

chain. Batch processes at 150-200°C with 10-70 bar hydrogen are widely used. The 

necessary selectivity is achieved by high surface area (50-100m2g_1) nickel catalysts 

(unsupported or on a silica support) and appropriate process control. 

Methane as the major component of natural gas is being widely used as an energy source 

and in the production of fine chemicals. Ni metal is considered as an excellent catalyst for 

20 



Chapter II: Literature review: Characteristics, properties, applications and 
preparation of transition metal, Si and Ge nanoparticles 

CH4 dissociation [20]. The dissociation of CH4 can be further used to prepare highly pure 

hydrogen, carbon nanotubes and carbon fibers with special properties [20]. 

Several companies are experimenting with the material in fuel-cell catalytic membranes, 

using particle sizes of 10-15nm diameter. Because nickel atoms are about a third of a 

nanometre across, these near-spherical particles are about 30atoms across and contain 

about 3500 atoms — a remarkably low number. This provides very high catalytic activity, 

and is sufficient for most applications. Nano-nickel could replace a significant portion of 

the platinum catalyst market, and sales were expected to be $500m-$lbn in five years 

[21-24]. 

Ni nanoparticles with a high surface area can also be used as catalysts for ketone and 

aldehyde reduction [25], ethylene cracking [26], steam reforming of methanol [27], 

hydrothermal gasification of organic compounds [28], emission control in diesel vehicles 

[29], and for the thermal decomposition of ammonium perchlorate (AP) in composite 

propellants [30]. 

2.4.1.2 Cu nanoparticles 

The water-gas shift (WGS) process at high temperatures (Reaction 2-1) is used for the 

conversion of carbon monoxide to hydrogen in ammonia synthesis plants. 

CO + H20 <=> C02 + H2 (2-1) 

The process is usually followed by a second stage of low-temperature water-gas shift 

reaction (LTWGS). The LTWGS process is typically operated at 200-230°C. The catalyst 

for the second, low-temperature stage (LTWGS) is nanosize copper, usually supported by 

copper/zinc oxide/alumina substrate [1]. 
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Nano-copper catalysts are highly effective catalysts for methanol synthesis [31-33]. The 

methanol synthesis reaction is written as follows 

C02 + 3H2 «- CH3OH + H20 (2-2) 

Nano-copper catalysts are also being used as a catalyst for the synthesis of dimethyl 

carbonate((CH30)2CO) [34]. Dimethyl carbonate is an important chemical in the current 

chemical industry because it can substitute for highly toxic compounds such as phosgene 

and dimethyl sulfate in many reactions. The by-product when dimethyl carbonate is used 

is methanol or carbon dioxide, which is easily separated from the product and leads to 

less pollution. 

4CH3OH + 2CO +02 <=> 2(CH30)2CO + 2H20 (2-3) 

Cu nanoparticles have been also widely used as catalysts for the synthesis of symmetrical 

and unsymmetrical biaryls and polyaryls [35] and for the higher alcohol synthesis from 

syngas [36]. 

2.4.1,3 Au nanoparticles 

Gold, one of the most stable metals, is typically chemically inert including a resistance to 

oxidation. However, Au nanoparticles, in particular supported on very active oxides such 

as C03O4, Fe203, and Ti02, exhibit a significant catalysis for various reactions [37-39]. 

The gold clusters impregnated by Mn, Fe, Co, Ni, Cu, or Cu hydroxides have been found 

to have a catalytic activity in CO oxidation at sub ambient temperatures (below 0°C and 

even at -70°C) [40-42]. It has been suggested that a synergistic mechanism occurs at the 

Au nanopartilces/metal oxide interface, with the oxide support being part of the catalytic 

process. Adsorption of CO would proceed on the Au nanoparticles on a site adjacent to a 
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metal oxide site occupied by an adsorbed O2 molecule. The reaction would involve an 

intermediate carbonate-like species decomposing to CO2 upon desorption from the 

surface. Alkanethiolate-Au nanoparticles, precipitated onto a glassy carbon electrode by 

cross-linking the Au nanoparticles with 9-nonanedithiol and leading to a 3D network thin 

film, exhibited pronounced catalysis in the electro-oxidation of CO [43] and CH3OH [44-

46]. 

CO + 20H" - 2e" <^ H20 + C02 (C03
2" in alkaline medium) (2-4) 

CH3OH + 60H" - 6e" o 5H20 + C02 (C03
2 ' in alkaline medium) (2-5) 

Gold nanoparticles are one of the most effective catalysts yet identified for remediation of 

one of the nation's most pervasive and troublesome groundwater pollutants, 

trichloroethylene (TCE). TCE, which is commonly used as a solvent to degrease metals 

and electronic parts, is one of the most common and poisonous organic pollutants in 

groundwater. It is found at 60 percent of the contaminated waste sites on the US 

Superfund National Priorities List, is considered one of the most hazardous chemicals at 

these sites because of its prevalence and its toxicity [47]. Human exposure to TCE has 

been linked to liver damage, impaired pregnancies and cancer. The catalyst containing Au 

and Pd converts TCE directly into non-toxic ethane. By contrast, breaking down TCE 

with more common catalysts, like iron, produces intermediate chemicals, such as vinyl 

chloride, that is more toxic than TCE [47-48]. 

Au nanoparticles under high dispersion are highly active catalysts for NO reduction [49], 

water-gas shift reaction [50], and C02 hydrogenation [51]. 

Besides Ni, Cu, Au nanoparticles, Ag nanoparticles can also be used as catalysts for 

oxidation of benzyl alcohol [52], and oxidation of methane [53]. In addition, Pt 
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nanoparticles can be used as catalysts for formation of water at room temperature [54], 

and in fuel cell [55,56]. 

2.4.1.4 Photochemistry on metal nanoparticles 

It is well known that a well-defined Fermi edge develops in transition metal or 

semiconductor nanoparticles containing several thousands of atoms, which separates 

occupied and unoccupied electronic states (see Section 2.1.2). Thus, the electrons below 

the Fermi level of a metal nanoparticle can be exited by absorption of photons and form 

electron-hole (e-h) pairs. A transient thermal e-h distribution develops rapidly by 

electron-electron scattering. A quasithermal distribution describable by a distinct electron 

temperature is reached, which is much higher than the lattice temperature. Then, the 

resultant thermal hot electron distribution cools down further by electron-phonon 

interactions. The dynamics depends on the excitation density. The dynamics of the hot 

electrons photo-generated in the metal nanoparticles, play a crucial role in determining 

the dynamics of chemical reactions on their surfaces if these hot electrons trigger the 

chemical processes in the adsorbents [57,58]. 

In addition, metal nanoparticles strongly exhibit the size- and shape-dependent collective 

electronic excitation called Mie plasmon, which leads to strong field enhancement around 

the particles. As a result, a large increase of absorption is generated in all photo-induced 

effects [58]. 

To induce photochemistry, i.e., to convert electronic excitation energy into energy of 

nuclear motion, an optical excitation has to bring the molecule concerned to a potential-

energy curve with large slope in the Franck-Condon region, so that the atoms can be 

accelerated along it. The simplest process usually considered is desorption of an 
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adsorbate or a fragment of it; in a photochemical reaction this may be the starting step. 

On metal and semiconductor surfaces electronically excited adsorbents are deexcited very 

rapidly, which strongly modifies the desorption probability compared to dissociation of a 

similar free molecule. The bond to be broken can be that between the adsorbate and the 

substrate or an internal bond of the adsorbed molecule; neutral or charged molecular and 

atomic fragments can then leave the surface, and fragments can also stay adsorbed [53]. 

Methane physisorbed on Pt (111), Pd (111), and Cu (111) surfaces is readily dissociated 

into methyl and hydrogen by irradiation with a 193 nm (6.42eV) Ar laser. On Cu (111), 

methane photo dissociation leads to ethylene formation. These observations are surprising 

because light absorption in gaseous methane does not occur at wave lengths above 145nm 

(8.55eV). The peculiarity of the methane/transition-metal systems consists of the fact that 

methane on these surfaces is excited by a direct electronic transition localized within the 

adsorbate-substrate complex [59, 60]. 

The excited state responsible for dissociation to CH3+H is formed from mixing of an 

antibonding Rydberg state of methane, localized 1 OeV above the HOMO of gas phase 

methane, and unoccupied states of the metal. The excitation energy depends strongly on 

the cluster size because electron redistribution over the metal cluster plays an important 

role in stabilizing this charge transfer state [61, 62]. 

2.4.2 Magnetic Fluids 

Magnetic fluids, or ferrofluids, are stable suspensions of colloidal ferromagnetic particles 

(e.g. magnetite) in suitable, non-magnetic carrier liquids. The materials used are Fe, Co, 

Ni, and Fe304 with particle sizes of around lOnm. The colloidal particles are covered with 

surfactants in order to prevent agglomeration due to attractive Van der Vaals forces. Due 
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to their small size, the colloidal particles can be considered as ferromagnetic mono-

domain particles [63]. Since the colloidal particles contain several 1.000 atomic magnetic 

moments, the magnetic fluids, are often referred to as superparamagnets. Ni nanoparticles 

exhibited a superparamagnetic behaviour above the blocking temperature as mentioned in 

Section 2.2.3. 

Fig.2.7 Schematic diagram of a magnetic fluid seal [63]. 

Conventional ferrofluid applications use DC magnetic fields from permanent magnets for 

use as a liquid O-ring in rotary (see Fig.2.7) and exclusion seals; almost every computer 

disk drive uses a magnetic fluid rotary seal for contaminant exclusion and the 

semiconductor industry use silicon crystal growing furnaces that employ ferrofluid rotary 
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shaft seals. In addition, magnetic fluid can be used as dampers in stepper motors and 

shock absorbers, and for heat transfer in loud speakers [63]. 

2.4.3 Memories 

A flash cell in memories is a floating gate metal oxide semiconductor (MOS) transistor 

where charge from the channel can be injected or extracted. This requires isolation of the 

floating gate by thin dielectrics that allow the charge to travel in and out the floating gate 

through suitable polarization of the MOS device electrodes. The dielectric that isolates 

the floating gate from the channel is usually SiC^. It has a thickness of 7 - lOnm and it is 

called a tunnel oxide since Fowler-Nordheim tunnelling occurs through it. However, 

further scaling of the memory is limited by the device structure because of storage node 

capacitive coupling and tunnelling oxide scaling limitation [64, 65]. 

A conventional MOSFET (metal oxide semiconductor field effect transistor) will no 

longer be able to control the flow of the electrons as its size reaches the sub-50nm regime. 

The quantum mechanical probability will gradually dominate in the nanometer size 

regime and cause errors in electronic data storage and manipulation as mentioned in 

Section 2.1.2. 

As an alternative of the conductive floating gate node, the conventional polysilicon 

floating gate is replaced by a dense array of silicon nanocrystals embedded in the gate 

oxide as shown in Fig.2.8a, where, CO represents the control oxide (oxide between 

nanocrystal layer and gate), and TO represents the tunnelling oxide (oxide between 

nanocrystal layer and channel). Because of the discontinuous nature of the floating gate 

these approaches allow for thinner tunnel oxide and consequently more aggressive scaling 

of the flash memory. The resistance of metal nanoparticles caused by scattering at their 
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surface and the extremely small capacitance of isolated nanoclusters or nanocrystals due 

to the size confinement can give rise to an appreciable charging energy when a single 

electron is transferred to the cluster [66]. 

In nanocrystal memories, a localized single leakage path due to a defect in the tunnelling 

oxide can only discharge one nanocrystal or a small number of nanocrystals thus allowing 

for the use of thinner insulators. Performance benefits expected from this change in the 

floating gate structure include improved retention times and improved radiation hardness 

due to decreased sensitivity to localized oxide leakage paths as well as improved 

prospects for CMOS integration due to reduce device aspect ratios [67-70]. 

Ge has a higher electron affinity than Si. Thus, the minimum of the conduction band of 

Ge nanocrystals is lower than the minimum of the conduction band of the Si channel of 

the MOS memory device. This allows for the same programming voltages but for better 

retention characteristics for Ge nanocrystals since the back tunnelling probability from 

the NC to the channel is considerably reduced. Therefore, Ge nanocrystals are more 

attractive that Si nanocrystals [71]. 

In principle, the memories built upon metal nanoparticles (see Fig.2.8b) should present 

advantages over silicon nanocrystal memories. The higher electron affinity of metals as 

compared with Si allows for engineering the potential well of the storage nodes in order 

to create an asymmetric barrier between the Si channel and the storage nodes. This form 

of the barrier makes the write operation easier creating a higher energy barrier to the other 

direction for the electron that favours retention characteristics [71]. 
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Fig.2.8 A schematic diagram of a nanocrystal memory device with nanocrystals formed in 

a 2D layer, (a) Si nanocrystals [66], and (b) Metal nanoparticles [71]. 

2.4.4 Displays 

In general, silicon is an inefficient light emitter, but the nanocrystalline silicon particles 

emit high intensity visible light. Depending on the size of the nanocrystalline particles, 

the nanocrystalline silicon particles emit different light colors such as red, green, or blue 

by the electron confinement. Fig.2.9 shows emission from blue, green, and red colloidal 

crystals in top row according to magic sizes of 1.0, 1.67, and 2.9nm diameters when these 

crystals are illuminated by light from a mercury lamp. The background is due to a weak 

bright field. The colloids of the magic family 1.0, 1.67, 2.15, and 2.9nm in diameter from 

right to left in bottom row exhibit different colours under excitation using a commercial 

low intensity UV source with an average wave length of 365nm [72] 
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Fig.2.9 Emission from blue, green, and red colloidal crystals segregated according to 

magic sizes of 1.0, 1.67, and 2.9nm diameters (Top row) and emission of colloids of four 

members of the magic family 1.0, 1.67, 2.15, and 2.9nm in diameter under excitation 

using a commercial low intensity UV source with an average wave length of 365nm 

(Bottom, right to left) [72]. 
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Electrically driven emission of light from semiconductors is the basis of tiny light-

emitting diodes (see Fig.2.10) and lasers (see Fig.2.11). Traditional semiconductor LEDs 

are formed from p-type and n-type semiconductors, which donate positively charged 

'holes' and negatively charged electrons, respectively, when a voltage is applied across 

the structure. Recombination of an electron and hole, within the semiconductor, produces 

a photon and leads to the emission of light. If the efficiency of light emission is high 

enough and the whole structure is placed between two highly reflective mirrors, the LED 

can be turned into a miniature laser. Pavesi, et al [72],have demonstrated good optical 

emission from a layer of silicon nanocrystals stimulated by pulses of ultraviolet light (not 

electrons). Now the challenge is to electrically stimulate these nanocrystals into 

producing LED or a beam of laser light [73]. 

Fig.2.10 A monochromatic 32-by-64-pixel prototype quantum dot LED [74]. 
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In addition, the "light bulbs" built by Si nanocrystals, are expected to last 100 times 

longer than current incandescent light bulbs, and be 10 times more efficient. 

Fig.2.11 A schematic illustration of Si nanocrystal laser [8]. 

2.4.5 Sensors 

A variety of biosensors for detection, diagnosis and monitoring diseases, drug discovery, 

proteomics, and environment pollutants are being developed. A biosensor derives from 

the coupling of a ligand-receptor binding reaction to a signal transducer, which could be 

developed by these methods including optical, radioactive, electrochemical, piezoelectric, 

micromechanical, and mass spectrometric [75]. 
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Metal nanoparticles have excellent conductivity and catalytic properties, which make 

them suitable for acting as "electronic wires" to enhance the electron transfer between 

redox centers in proteins and electrode surfaces, and as catalysts to increase 

electrochemical reactions. Many kinds of transition metal nanoparticles and their oxide 

nanoparticles have been widely used in electro-chemical sensors and biosensors [75-77]. 

Among the nanoparticles, gold nanoparticles are probably the most frequently used. 

Conjugates of Au nanoparticles-oligonucleotides have been applied to biosensors for the 

programmability of DNA base-pairing to organize nanocrystals in space and the multiple 

ways of providing a signature for the detection of precise DNA sequences, which have 

many potential applications in the fields of biosensors, disease diagnosis, and gene 

expression [78]. The principle is shown in Fig.2.12 

Biosensors for immunoassays in human serum using Au nanoparticles have been 

developed, in which the recognition of proteins for diagnostics is based on the interaction 

between Au nanoparticles-antibody conjugates and their antigens. This classic type of 

immunoassay allows the evaluation of Au nanoparticle tags in a standard mode of antigen 

detection [79-81]. 
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Fig.2.12 Preparation of "nanocrystal molecules" consisting of two or three DNA modified 

Au particles attached to a complementary DNA template, using phosphine-stabilized 

1.40nm Au nanoparticles modified with a single thiol-capped oligonucleotide and two 

different DNA template lengths and sequences [78]. 

2.5.6 Nano-inks 

The conventional method for forming fine patterns of lOum or less line widths involved 

vacuum sputtering or evaporation and photolithographic etching. Use of these techniques 

allows the formation of uniform thin films and accurate fine-line patterns, but also 
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requires use of expensive vacuum deposition equipment. However, with the development 

of large-size flat panel displays including LCDs in recent years, there is a growing need 

for the development of an alternative low-cost technology that does not make use of the 

vacuum evaporation/sputtering process. Hence, nano-metal inks have been developed to 

meet the need. In general, nano-metal inks contain metal (Ag, Cu and Ni) nanoparticles 

whose diameters are 30 nm or less [82-84]. 

Ultra fine wiring patterns with a few microns width are directly printed on a given 

substrate and are then fired at high temperatures. The technology is considered a crucial 

factor in the development of surface mounting technology, and will lead to further 

miniaturization of electronic devices, whose development and manufacturing demands 

will be sharply increased. Fig.2.13 shows three examples of the fine pattern having a line 

width of 3um formed on a substrate. 

Fig.2.13 The fine patterns with a line width of 3um printed on a substrate using nano-inks 

(a). An example of fine characters using sub-um dots, (dot pitch 3um); (b). An example 

of fine lattice pattern using sub-um dots, (dot pitch 3um); and (c), Fine circuit of 

conducting polymer, (line width 3um, lOum pitches at lattice area) [82]. 
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There are some applications of nanoparticles in other fields. For example, Ni 

nanoparticles have some potential applications in magnetic drug delivery [85,86], 

magnetic and fluorescent tags in biology [87], hypothermic cancer therapy [88], and 

contrast agents in magnetic resonance imaging [89, 90]. Ag nanoparticles have been 

widely used as antibacterial and anti-fungal agents [91]. Pt nanoparticles can be applied in 

medical diagnosis and therapy [92]. 

The potential applications of Ni, Cu, Ag, Au, Pt, Si and Ge nanoparticles, which has been 

synthesized in work for this dissertation, are summarized in Table 2.1. 
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Table 2.1 Potential applications of Ni, Cu, Ag, Au, Pt, Si and Ge nanoparticles. 

Ni 

Cu 

Au 

Ag 

Pt 

Si 

Ge 

Applications 

Catalysts for: oil hydrogenation [1], dissociation of CH4 [20], ketone and aldehyde 

reduction [25], ethylene cracking [26], steam reforming of methanol [27], 

hydrothermal gasification of organic compounds [28], emission control in diesel 

vehicles [29], for the thermal decomposition of ammonium perchlorate (AP) in the 

composite propellants [30]. synthesis of the carbon nanofibers and nanotubes [21-

24]; Magnetic fluids for seal, dampers in stepper motors and shock absorbers, and 

heat transfer in loud speakers [58]; Nano-inks [82-83]; magnetic drug delivery 

[85,86]; magnetic and fluorescent tags in biology [87]; hypothermic cancer therapy 

[88]; contrast agents in magnetic resonance imaging [89,90]. 

Catalysts for: water-gas shift (WGS) reaction [1], methanol synthesis [31-33], 

synthesis of dimethyl carbonate((CH30)2CO) [34], symmetrical and unsymmetrical 

biaryls and polyaryls [35] and the higher alcohol synthesis from syngas [36], 

photochemical dissociation of methane [61]; hypothermic cancer therapy [88]; and 

nano metallic ink [83]. 

Catalysts for oxidation of CO, H2, alkanes, alkenes and CH3OH [42-46], 

degradation of trichloroethylene [47-48], NO reduction [49], water-gas shift 

reaction [50], CO2 hydrogenation [51]; biosensors [75-77]; disease diagnosis [78]; 

and gene expression [79-81]. 

Catalysts for oxidation of benzyl alcohol [52], oxidation of methane [53]; nano 

metallic ink [79]; antibacterial and anti-fungal agents [91]; 

Catalysts for formation of water at room temperature [54]; fuel cell [55,56], 

photochemical dissociation of methane [59,60]; medical diagnosis and therapy 

[92]. 

Memories [66-70]; Displays [74], lasers [8] 

Memories [71]; lasers [8] 
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2.5 Preparation methods 

A variety of methods have been developed to synthesize transition metal or 

semiconductor nanoparticles. These methods essentially fall into two categories: chemical 

and physical methods. 

2.5.1 Chemical methods 

Among the chemical synthesis methods, transition metal or semiconductor nanoparticles 

have been conventionally prepared by chemical reduction of metal-salts [93-111], micro-

emulsion [112-121], thermal decomposition [122-136], electrochemical methods [137-

139], and rapid expansion of supercritical fluid solutions [140-142]. Of these methods, 

chemical synthesis in solution is favoured for fabricating nanoparticles because it allows 

the tailored design of materials at the molecular level, and also because it offers a cost-

effective method of producing nanoparticles in large quantities. In addition, colloidal 

chemistry offers a possible route for the synthesis of a uniform dispersion of fine metallic 

particles by stabilizing the particles in the presence of a surfactant. 

2.5.1.1 Conventional chemical reduction method 

The chemical reduction of transition metal salts in solution is the most common and 

simplest method of generating colloidal transition metal nanocatalysts. Common reducing 

agents used are ethylene glycol alcohols, mainly ethanol and methanol [93, 94]. Ag 

nanowires have been prepared by the reduction of AgNC>3 with ethylene glycol [93]. In 

this reduction method, the alcohol acts both as a solvent and reducing agent and the 

reduction of the transition metal salt takes place when the solution is refluxed. The use of 

alcohols as a reducing agent results in a fast reduction of the precursor transition metal 

38 



Chapter II: Literature review: Characteristics, properties, applications and 
preparation of transition metal, Si and Ge nanoparticles 

salt with colloid formation occurring quickly. In this reduction process, the precursor 

transition metal salts are reduced to form the transition metal nanoparticles, while the 

alcohols are oxidized to form the corresponding carbonyl compound. There have been 

many studies conducted on how the size of the transition metal colloids is dependent on 

the structure and quantity of alcohol used to reduce the precursor transition metal salt. It 

has also been shown that in the case of the formation of platinum, palladium, and 

rhodium nanoparticles in colloidal solution that the higher the boiling point of the alcohol 

used as the reducing agent, the smaller the size of the nanoparticles formed. 

Sodium borohydride reduction is another common method of preparing transition metal 

and semiconductor nanoparticles. This method of reduction is generally fast with colloid 

formation occurring quickly after the addition of sodium borohydride. Sodium 

borohydride reduction has been used to synthesize Ni [94], Cu [95] Ag [96,97], and Au 

[98]. The as-produced Cu nanoparticles prepared by using NaBH4 are l-2nm in diameter 

and spherical in shape [95]. Thiol-derivatised cubic Ag nanoparticles were prepared by 

adding an AgNC>3 solution containing a trace amount of alkanethiol into a solution of 

NaBH4 and sodium oleate [96]. Gold nanowires with an aspect ratios of up to 200 can be 

obtained through seeding by 4nm gold nanoparticles, then modifying by CATB [99]. A 

number of structural architectures, from rod-, rectangle-, hexagon-, cube-, triangle-, and 

star-like outlines to branched Au nanoparticles have been achieved in the presence of 

CATB. The formation of various shapes is likely the outcome of the interplay between 

the faceting tendency of the stabilizing agent and the growth kinetics [100] 

Some other reducing agents such as hydrazine, NaH2PC»2 and sodium citrate have been 

used to synthesize metal nanoparticles in a solution that involved the chemical reduction 

of the precursor transition metal salt. Hydrazine has been used to synthesize Ni 
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[101,102], Ag [103], and Pt/Ag [104]. The Ni nanoparticles prepared by using hydrazine 

had a mean size of 12 nm, and exhibited superparamagnetic properties [101,102]. 

Hexagonal silver nanoparticles have been obtained by the reduction of Ag2S04 with 

N2H4-H20 [103]. Sodium citrate has been used to synthesize Ag [104]. NaH2P02»H20 

has been used to synthesize Ni nanobelts [105], and hollow Ni nanospheres [106]. In 

addition, Au, Ag, Pd and Pt nanoparticles have been synthesized by the reduction of their 

salts with potassium bitartrate (KHC4H4O6) [107], glucose [108] and even Neem leaf 

broth [109] as the reductant. 

Hydrogen gas [110] and carbon nanotubes [111] have also been used as reducing agents 

for the preparation of transition metal nanocatalysts. The hydrogen reduction method 

involves bubbling hydrogen gas into a solution containing the transition metal salt and 

colloidal nanoparticles are formed through a slow reduction process. Tetrahedral, cubic 

and truncated octahedral shaped platinum nanoparticles have all been formed by the 

hydrogen reduction method. Tetrahedral shaped nanoparticles, which are composed of 

(111) facets, are especially attractive for use as catalysts due to the large fraction of 

surface atoms that are present in the edges and corners [110]. Au, Pd, Pt, Ag and Cu 

nanoparticles and fibres were successfully synthesized by simple solid-state reaction 

between carbon nanotubes and their salts. However, such nanoparticles are rarely formed 

on other carbon substrates such as graphite or active carbon using the same synthesis 

process [111]. 

Synthesis of transition metal nanoparticles through chemical reduction can be enhanced 

by heating [112], radiolysis [113,114] and sonication [115,116]. 
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Chemical reduction synthesis of transition metal nanoparticles enhanced by heating is a 

simple and economical method. Platinum, palladium, silver and copper nanoparticles with 

a narrow size distribution have been synthesized by using the thermal reduction method 

[112]. The thermally derived copper show the presence of irregularly shaped particles 

(200-250nm) having sharp edges and facets [115]. 

The photochemical reduction method of synthesizing colloidal transition metal 

nanoparticles can be conducted in two ways: reduction of precursor transition metal salt 

by radiolytically produced reducing agents, or degradation of an organometallic complex 

by radiolysis. The radiolysis source could be x-ray, y-ray, laser and ultraviolet light. 

Radiolysis of transition metal salts in aqueous solution produces solvated electrons that 

result from radiolysis, which reacts with molecules in solution to form new radicals that 

are able to reduce the transition metal salts. 

It has been reported that the use of UV-visible radiation results in smaller and better 

dispersed transition metal nanoparticles [105]. Au, Ag nanoparticles or nanorods have 

been produced by irradiating an aqueous AgN03 solution with ultraviolet light in the 

presence of poly-(vinylalcohol) [105,113,114]. 

The radiolysis method permits continuous control of the concentration of the 

nanoparticles formed without the addition of reducing agents to the system. 

Sonochemical reduction is another method of synthesizing colloidal transition metal 

nanoparticles. Sonication is an acoustic cavitation phenomenon that involves the 

formation, growth, and explosion of bubbles in liquid media. The sonochemical reduction 

method of precursor transition metal salts involves generation of the active species, 

reduction of the transition metal, and growth of the colloid in a sonicated liquid medium. 
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These steps occur in different compartments: in the gas phase in the cavitation bubbles 

where high temperature and pressure allow water pyrolysis to form H and OH radicals; at 

the interface between the cavitation bubbles and the solution, and finally in the solution. 

The sonochemical reduction method has been applied for the generation of colloidal 

copper, platinum, palladium, gold, and silver nanoparticles [115,116]. The 

sonochemically derived copper powders show the presence of copper oxide (CU2O) 

contamination, and the porous aggregates (50-70nm) that contained an irregular network 

of small nanoparticles [115]. In the case of transition metal salts, the reduction process 

mainly takes place at the bubble/solution interface and in solution and does not take place 

in the gas phase due to the low vapour pressure of the precursor transition metal salts 

[116]. 

2.5.1.2 Micro-emulsion 

Microemulsions are specially formulated heterophase systems in which stable nano 

droplets of one phase are well dispersed in a second, continuous phase (see Fig.2.14). 

Each of the nano droplets can be regarded as a nanoscopic, individual batch reactor, in 

which a whole variety of reactions and processes resulting in transition metal or 

semiconductor nanoparticles can be performed [117,118]. 

To create a stable emulsion of very small droplets, the droplets must be stabilized against 

molecular diffusion degradation (Ostwald ripening) and against coalescence by collisions. 

Stabilization of emulsions against coalescence can be obtained by the addition of 

appropriate surfactants, which provide either electrostatic or steric stabilization to the 

droplets. 
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Fig. 2.14 Schematic illustration of the microemulsion process [118]. 

In direct (oil-in-water) microemulsions, the droplet size is determined by the amount of 

oil and water, oil density, oil solubility, and amount of surfactant. The droplets rapidly 

approach a pseudosteady state throughout the sonication process, because of constant 

fusion and fission processes. Au/Ag and Pt/Ag bimetallic nanoparticles have been 

synthesized in microemulsions of water/Aerosol OT/isooctane by the co-reduction of 

HAuCl4 (or H2PtCl6) and AgN03 with hydrazine [119,120] 

In inverse microemulsions, the osmotic pressure is built up by an agent that is insoluble in 

the continuous oily phase, a so-called lipophobe. Ionic compounds, e.g., simple salts, 

show a low solubility in organic solvents and can be used as lipophobes in water-in-oil 

microemulsions. Fig.2.15 shows the differences between direct microemulsion and 

inverse microemulsion. Monodisperse nickel nanoparticles around 3.7nm have been 

prepared by inverse microemulsions through reduction of Ni(acac)2 (acac: acetyl-acetone) 
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with sodium tetrahydridoborate in a mono-surfactant system, in which hexadecylamine 

(HDA) serves as stabilizer and solvent. The Ni nanoparticles have a mean size of 3.7nm, 

and show the characteristic of a superparamagnet with a blocking temperature of 12K 

[121]. Metastable Co nanorods and superlattices of Co nanocrystals have been obtained in 

a binary passivating ligand system. In these studies, oleicacid, alkylphosphine (oxide) or 

oleylamine was used as the stabilizer. Besides these ligands, long chain alkylamines can 

also be introduced to passivate the surface of nanoparticles [122,123]. Ge nanocubes have 

been prepared by a low-temperature inverse microemulsion using the surfactant 

heptaethylene glycol monododecyl ether as a capping agent [124]. Cylindrical copper 

metallic particles have been obtained when the synthesis is performed in cylindrical 

reverse micelles [125]. 

nonpolar phase polar phase 
and hydrophobe and lipophobe 

surfactant surfactant 

Fig.2.15 Comparison between direct (left) and inverse (right) microemulsion [127]. 
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CO2 also can be used in the continuous phase for the formulation of inverse 

microemulsions [126]. The size of the Cu nanoparticles prepared in SF CO2 was in the 

range 5-15 nm [126]. One of the problems of using water-in-oil microemulsions for 

nanoparticle synthesis is the separation and removal of solvent from products. Silver and 

copper nanoparticles have been also synthesized in sodium bis(2-ethylhexyl) 

sulfosuccinate (AOT) reverse micelles in compressed propane and supercritical ethane 

solutions [127]. 

2.5.1.3 Electrochemical method 

An electrochemical method for preparing size-controlled transition metal nanoparticles in 

colloidal solution has been developed [128-130]. It is based on the dissolution of a 

metallic anode in an aprotic solvent, which consists of the electrolyte and the stabilizer. 

The precursor transition metal ions are reduced at the cathode to yield the colloidal 

transition metal nanoparticles. This method has been successfully used to synthesize 

nickel [128], copper [129] and cobalt nanoparticles [130]. The Cu nanoparticles prepared 

by direct electrochemical reduction from CuO nanoparticles had a size of around 1 OOnm 

[129]. 

An advantage to this method of synthesizing transition metal nanoparticles is that the 

particle size can be controlled by the current density. When the current density is 

increased, smaller transition metal nanoparticles are produced. 

2.5.1.4 Rapid expansion of supercritical fluid solutions 

Supercritical fluids possess properties that are intermediate between liquids and gases. 

The rapid expansion of supercritical fluid solution (RESS) technique (see Fig.2.16) has 
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been used in the production of polymer particles and fibres of narrow size distributions. 

In a classical rapid expansion into vacuum or air, the supercritical fluid solution is 

transferred rapidly to subcritical pressures. The "solution droplets" from the rapid 

expansion through a nozzle are extremely unstable, resulting in rapid solute precipitation. 

Because of the high velocity of the expanding supercritical fluid solution, the microscopic 

conditions at the end of the expansion nozzle are little affected by the receiving medium, 

air or liquid. Nanoscopic metal ion solute droplets produced in the RESS process may be 

chemically reduced in the receiving liquid solution to form Ni nanoparticles [131,132] 

and Ag [104, 133]. Ag nanoparticles with spherical or triangular shape, and nanowires 

have been produced without the use of surfactants [133]. 
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Fig.2.16 Schematic illustration of the RESS process [131] 

H2O, CO2, CH4, and Ar have been utilized as a media to prepare nanoparticles [134]. 
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Supercritical carbon dioxide (SFCO2) has been extensively studied as a solvent for 

chemical synthesis. SFCO2 offers several advantages over conventional organic solvents 

including (i) being one of the most environmentally friendly and low-cost solvents 

available, (ii) rapid separation of dissolved solute from the solvent by reduction of 

pressure, (iii) providing high diffusivity and thus accelerated reaction rates, (iv) enable 

solvent strength through manipulation of the density and thus providing some control of 

the solubility of solutes. The phase diagram and critical constants for the most commonly-

used water and carbon dioxide are shown in Fig.2.17 [135]. 

Supercritical 

22.1 7.38 

Pressure 
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Temperature[:C] -

Fig.2.17 Phase diagram and critical constants for carbon dioxide and water [135]. 

The limiting property of super critical CO2 is that this medium is only capable of 

dissolving nonpolar organic-based solutes. However, the addition of small amounts of a 

co-solvent such as acetone has been shown to significantly improve the solubility of 
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relatively polar solutes. Recently, solubility of ionic compounds such as aqueous metal 

salts has been enhanced through inverse micelle formation using fluorinated surfactants. 

[136]. 

The disadvantages are that production costs are high and the equipment that is used is 

also fairly large due to the high pressure and the cost of pumping. In addition, the RESS 

method can cause aggregation of the particles during expansion, resulting in a wider size 

distribution. 

2.5.1.5 Thermal decomposition 

Many transition metal and semiconductor nanoparticles with different shapes have been 

synthesized by thermal decomposition of transition metal salts or the decomposition of 

the precursor organometallic salt. For thermal decomposition, a transition metal carbonyl 

has often been used as a precursor to generate the nanoparticles since it leads to particles 

displaying a clean and controllable surface and, in some cases, an adjustable size and 

shape [137-140]. However, the carbonyl is strongly toxic and relatively expensive. 

Therefore alternatives such as olefinic complexes [141], and transition metal 

acetatetetrahydrate salts [142] have been used. Olefinic complexes have been used as a 

source of metal atoms. Hydrogenation of the olefinic ligands into the corresponding, 

coordinatively inert alkanes yielded nanoparticles with non-contaminated surfaces [141]. 

It is well know that covalent bonding is a dominant bonding in the semiconductor 

elements such as Si and Ge. A general trend for the formation of crystalline nuclei of 

semiconductor elements is that the more covalent the element, the higher is its 

crystallization temperature. Thus, amorphous phases would become more common as the 

material becomes more covalent when they are prepared at low temperatures. Hence, both 
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high temperature and high pressure are generally required to obtain Si and Ge 

nanocrystals by a solution method. However, solution synthesis at those high 

temperatures pose a serious challenge since most organic solvents, including pentane and 

longer alkyl chains, are unstable. 

For semiconductor Si and Ge nanocrystals, the most successful method is the gas-phase 

decomposition aided with heating [143], laser [144-146], microwave [147] and plasma 

[148]. 

C02-laser-induced decomposition of SiH4 in a gas flow reactor has been shown to be very 

useful for the synthesis of large quantities of silicon nanoparticles [145,146]. In a typical 

reaction set-up, SiH4 in an inert gas is exposed to focused radiation from a pulsed CO2 

laser in the reaction chamber resulting in the dissociation of the silane molecules by 

resonant laser absorption. The growth of the so-formed silicon nuclei is abruptly stopped 

as soon as they leave the hot chamber, and they are subsequently extracted from an 

adjacent high-vacuum chamber through a conical nozzle. The resulting nanoparticles 

have sizes that can be tuned in the 3-20nm range by varying the silane concentration and 

flow rate. Monodisperse, single crystal silicon nanoparticles have been achieved by using 

a SiHVHa mixture in a high density plasma [148].Ge nanocrystals have been synthesized 

by thermal decomposition of diphenylgermane (DPG) and tetraethylgermane (TEG) at 

400-550°C and 20.7MPa in a continuous flow reactor, which modified by Octanol [149]. 

Besides the gas-decomposition, a thermal co-decomposition of KSi and SiCLt (or KGe 

and GeCU) in a suitable solvent has been developed to synthesize Si and Ge nanocrystals 

[150,151]. The reaction for synthesis of Si nanocrystals can be written as follows: 

4 « K S i + « S i C l 4 = Sinanoparticles + 4 « K C 1 (2-6) 
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The synthesis of silicon and germanium nanoparticles from reactions involving alkyl 

semiconductor halides or metal silicides/germanides in solution to find mild conditions, 

higher yields, and better surface manipulation, which are necessary requirements for the 

production of nanoparticles on a large scale. 

The wet chemical methods offer a simple method of producing nanoparticles and allow 

the tailored design of materials at the molecular level. However, subsequent washing, 

filtering, and drying processes lead to significant agglomeration of the final powder. 

Major advantages of gas thermal decomposition are that: it does not require a drying 

process; it is easy to obtain crystalline powders of the desired phase without calcination 

and grain growth; the possibility of scaling up the device for higher production rates; and 

the applicability of measurement techniques for an online determination of particle sizes. 

However, thermal decomposition presents difficulties in modifying the shape and size and 

manipulating the surface of nanoparticles. In addition, the surface of as-prepared 

nanoparticles is sometimes contaminated by the byproduct of thermal decomposition. 

2.5.2 Physical methods 

Physical methods comprising thermal evaporation, magnetron sputtering, laser ablation 

and sonication have been successfully developed to prepare transition metal, Si and Ge 

nanoparticles. 

2.5.2.1 Thermal evaporation 

The thermal evaporation method involves the evaporation of relatively volatile transition 

metals at reduced pressure and a subsequent co-condensation of these transition metals at 

a low temperature with or without the vapors of organic salts [11, 152]. Approximately 
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lnm size gold nanoparticles have been obtained by a thermal evaporation method (at a 

processing condition of 133Pa at 1124°C) [152]. The colloidal Au nanoparticles were 

stable for several months, but a limitation of this method is that there is no precise control 

of the size of the nanoparticles. This is a major limitation in terms of applications in 

catalysis since control of size of the nanoparticles is necessary to conduct reproducible 

catalytic reactions. Silicon nanoparticles with diameters ranging from 3 to 50 nm were 

prepared by thermal evaporation of Si chips [11]. The Si nanocrystals showed visible 

light emissions from 5000 A to 9000 A, with peak intensity at 8000-8200 A [11]. Cu 

nano-rods have been prepared by thermal vapour deposition in vacuum [153]. 

2.5.2.2 Magnetron sputtering 

Magnetron sputtering offers greater freedom with many of the processing variables, 

which then allows one to control the resulting nanoparticle microstructures including size, 

shape and phase, and then determines the characteristics of the end product. Transition 

metals e.g. Co [154], and semiconductors e.g. Si nanoparticles [155,156], have been 

achieved by this method. A broad luminescence band in the red region was observed from 

Si-doped Si02 thin films deposited by co-sputtering of Si and Si02 on p-type Si (100) 

substrates, annealed in an Ar and 0 2 atmosphere [155]. The cost for producing 

nanoparticles using this method is relatively high. 

2.5.2.3 Laser ablation 

In the laser ablation technique, the nanoparticles are generated by irradiation of a solid 

target of by a focused laser beam in a reactor chamber under inert atmosphere where 
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temperature, pressure, and residence time can be accurately controlled, followed by 

deposition on a hard, cold substrate. 

Nd:YAG Laser 

532nm 

Ag Rod 

Surfactants + H20 

Fig. 2.18 Schematic illustration of the laser ablation process [157]. 

The laser ablation method has been further developed in a liquid solution, which was 

introduced by Fojtik et al [157], as a novel method of metal nanoparticle preparation. 

With pulsed laser beam irradiation, chemically pure element nanoparticles are formed by 

continuously ablating a bulk target immersed in a solution as shown in Fig.2.18. The 

fabrication rate and morphology of the nanoparticles are dependent upon laser wave 

length, pulse energy, absorption of laser energy by the liquid environment and ablation 

time. Co [158, 159], Ag [160-162], Si [163] and Ge [164] nanoparticles have been 

produced by the laser ablation method. Well monodispersed Ag colloids could be 

prepared using the laser ablation technique with the aid of surfactants [161]. The Si 
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nanoparticles prepared by a laser ablation method exhibited bright photoluminescence in 

the visible wavelength range [163]. 

The nanoparticles formed in this way usually suffer from inhomogeneous particle sizes 

and aggregation. It has been clearly shown that the interaction between the pulsed laser 

and metal particles leads to severe particle aggregation and a broad size distribution via 

the melting/fragmentation processes [162]. 

2.5.2.4 Sonication 

Ultrasonic synthesis involves the electrochemical etching of a silicon wafer to form 

porous silicon that can be dispersed in a variety of solvents by suspension in an ultrasonic 

cleaning bath for a determined period of time [72,165]. Si nanocrystals in diameters of 

1.0, 1.67, 2.15, 2.9 and 3.7nm have been obtained [72]. They exhibited ultra bright blue, 

green, yellow and red luminescence (see Fig.2.9). 

The main advantages of this method are its product with high degree of crystallinity, low 

particle surface contamination due to employing high-purity semiconductor-grade 

substrates. However, the obtained nanocrystals present irregular shapes and sizes (from a 

few nanometers to several micrometers). 

2.6 Comparison of preparation methods. 

The methods commonly used for preparation of Ni, Cu, Au, Ag, Pt, Si and Ge 

nanoparticles (that will be synthesized and discussed in this dissertation), characteristics 

of the corresponding resultant nanoparticles, and applications of these nanoparticles are 

summarized in Table 2.3. 

53 



Chapter II: Literature review: Characteristics, properties, applications and preparation of transition metal, Si and Ge 
nanoparticles 

Table 2.3 Preparation methods, characteristics and application of Ni, Cu, Au, Ag, Pt, Si and Ge nanoparticles. 

Preparation method 

C
he

m
ic

al
 m

et
ho

ds
 

Chemical 
reduction 

Microemulsion 

Electrochemical 
method 

Rapid 
expansion of 
supercritical 

fluid solutions 

Types 

Ni 

Cu 

Ag 

Au 

Pt 

Ni 

Cu 
Cu 

Ni 
Cu 
Ag 

Characteristics of 
nanoparticles 

12nm, Superparamagnetic 
Hollow nano-sphere 

Spherical in shape, l-2nm 
Irregular shapes, 200-250nm 
Porous aggregates, 50-70nm 

Nanowires 

Cubic Ag nanoparticles 
Hexagonals, 67.3nm 

Nano rods with aspect ratios of 
up to 200 

Cubic, triangle, hexagonal, 
branched, or rod-like 

Tetrahedral, cubic and 
truncated octahedral 

3.7nm, Superparamagnetic 

Nano rods 
About lOOnm 

About 6 nm 
5-15nm 

Triangle, 2-20 nm 

Notes 

NiCl2 and N2H5OH [101,102] 
Ni dodecylsulfate and 

NaH2P04 [106] 
Cu(N03)2andNaBH4[95] 
Enhanced by heating [115] 

Enhanced by ultrasound [115] 
AgNOs with ethylene glycol 

[93] 
Modified by alkanethiol [96] 
Ag2S04 andN2H4H20 [103] 

Modified by CATB [99] 

Modified by CATB [100] 

Reduced by hydrogen [100] 

Ni diacetylacetone and NaBH4 

[121] 
Reverse micelles [125] 

Reduction from CuO [129] 

NiCl2 methanol [131] 
NaCH3CNinSFC02[126] 
In supercritical water [133] 

Advantages and disadvantages 

A: Simple process 
D: Difficult to control size 

A: Easy to obtain particles of 
narrow size distribution 

D: Contamination 
A: Simple process 
D: Large particle size 
A: Easy to obtain particles of 

narrow size distributions 
D: High cost and aggregation 
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Table 2.3 Preparation methods, characteristics and application of Ni, Cu, Au, Ag, Pt, Si and Ge nanoparticles (Continued). 

Preparation method 

C
he

m
ic

al
 m

et
ho

d 
Ph

ys
ic

al
 m

et
ho

d 

Thermal 
decomposition 

Thermal 
evaporation 

Magnetron 
sputtering 

Laser ablation 

Sonication 

Metal 

Ni 

Si 

Ge 

Au 

Cu 

Si 

Au 

Ag 

Si 

Si 

Characteristics of 
nanoparticles 

Nano rods 

Branched nanoparticles 
6nm crystalline 

monodisperse, single crystal 
nanoparticles. 

4-5nm, crystalline 
5nm crystalline 

lnm 

Nano-rods and nanowires 

3 to 50 nm 

Monodispersed Ag colloids 

Exhibit photoluminescence 
[163] 

1.0, 1.67, 2.15, 2.9 and 3.7nm 

Notes 

Ni(COD)2 as precursor, 
modified by HAD [141] 

Nicarbonyl[137] 
Decomposition of silane, aided 

by microwave [147] 
Decomposition of silane, aided 

by plasma [148] 
Co-decomposition [150] 

decomposition of DPG and 
TEG [149] 

133Paatll24°C[152] 

In vacuum [153] 

light emissions from 5000 A to 
9000 A [11] 

Broad luminescence band in 
the red region [155] 

Modified by SDS and CTAB 
[161] 

Exhibited ultra bright blue, 
green, yellow and red 

luminescence [72] 

Advantages (A)and 
disadvantages (D) 

A: Easy to obtain crystalline 
powders 

D: Difficult to control shape, 
size and surface 
contamination. 

A: Simple process 
D: Difficult in size control 

and high cost 

A: Simple process. 
D: High cost. 
A: Simple process. 
D: Inhomogeneous particle 

sizes 

A: high crystallinity and low 
contamination 

D: Irregular shapes and sizes 
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2.5 Summary 

Nanoparticles, which exhibit some unique properties that are different from those of bulk 

metals when their particle sizes are as small as the nanometer size, have various 

applications in catalysts, displays, memories, nanoinks, and biomedicines. Although a 

variety of preparation methods have been developed to synthesize transition metal or 

semiconductor nanoparticles, and some synthesis methods for nanoparticles among them 

are, in certain ways, reaching maturity, an economically-feasible synthesis method for 

these materials that can be scaled up, is still required. 
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CHAPTER THREE: EXPERIMENTAL DETAILS 

3.1 The initial materials for production of magnides, aluminides and sodides 

Magnesium powders (M-0160, ACP Chemicals Inc., Montreal, QC, Canada), -lOOmesh 

99wt% pure nickel powders (M-1358, ACP Chemicals Inc., Montreal, QC, Canada), 

aluminium powder (EMD Chemical Inc, Gibbstown, NJ, USA), -325 mesh 99.99wt% 

pure gold and silver powders(Sigma Aldrich Inc. St. Louis, MO, USA), 99.9wt% pure 

platinum powders with particle sizes ranging from 0.15 micron to 0.45 micron, Ge and Si, 

and 99.95wt% pure sodium cubes in mineral oil were used to produce magnides, 

aluminides, and sodides. 

In addition, Mg2Ni and Mg2Cu pellets (MPD Technology Corporation, Wyckoff, USA) 

were also used as initial materials in this study. The chemical compositions of Mg2Ni and 

Mg2Cu pellets are listed in Table 3.1. 

Table 3.1 Chemical composition of the arc-melted Mg2Ni and Mg2Cu pellets (wt%). 

Elements 

Mg2.35Ni 

Mg 

49.3 

Ni (Cu) 

50.6 

0 

0.042 

N 

0.018 

C 

0.023 

Mg2.08Cu 44.2 55.4 0.020 0.047 0.009 

3.2 Material preparation 

3.2.1 Ball-milling 

The initial material mixtures were ball-milled under an atmosphere of argon in a 

laboratory high-energy ball mill Spex 8000 (Spex Industries, Inc, Edison, NJ, USA). For 
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the purpose of mixing, a 1:1 weight ratio of ball to the initial material and 1 hour milling 

were used. For reducing the particle size, a 2:1 weight ratio of ball to the initial material 

and 2 hour milling were used. The Spex 8000 mill was equipped with two fans for 

cooling. The milling vial is made of tungsten carbide and is 6.35cm in diameter and 

7.62cm long. The milling balls are made from 440C martensitic stainless steel and are 

1.27 cm in diameter. The vial is clamped and shaken at a speed of 1200rpm in a complex 

motion, which combines back-and-forth swings with short lateral movements. To 

minimize any oxygen intake, the Spex 8000 mill was put in a plastic glove bag, which 

was filled with a 99.9wt% pure argon. 

3.2.2 In-situ reaction synthesis of Mg2Ni 

10 grams of a Mg and Ni particle mixture with a 2:1 atomic ratio, which were ball-milled 

for two hours, were loosely laid in a graphite boat, and then were put into a stainless tube 

furnace. The chamber of the furnace was purged by an argon flow for 5 min. The sample 

was heated up to 690°C at a rate of 10°C/min and held for 2 hours, and then cooled down 

to room temperature in furnace. 

3.2.3 In-situ reaction synthesis of MgaNiHU 

10 grams of Mg and Ni particle mixture with a 2:1 atomic ratio, which were ball-milled 

for two hours, were loosely laid in a graphite boat, and then were put into a stainless tube 

furnace. The chamber of the furnace was purged by an argon flow for 5 min. The sample 

was heated up to 690°C at a rate of 10°C/min and held for 2 hours, then, was cooled 

down to 350°C in furnace. Subsequently, the argon in the chamber was replaced by 
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hydrogen. The Mg2Ni formed at high temperatures was hydrogenated for 2h at 350°C 

under a hydrogen pressure of 0.5MPa. It was then cooled down to room temperature in 

the furnace under a 0.5MPa hydrogen pressure. The hydrogen remaining in the chamber 

after preparation of M2N1H4 was burned off using a propane torch. 

3.2.4 Synthesis of MgNi2, Al3Ni, Ni2Al3, Mg3Au, Mg54Agi7, Mg2Ge, Mg2Si, Ag2Na 

and PtNa 

The parameter selection principles for synthesis of MgNi2, Al 3M, Ni2Al3, Mg3Au, 

Mg54Agi7, Mg2Ge, Mg2Si, Ag2Na and PtNa are 1) making sure that there is a total 

transformation of all transition metal, Si and Ge powders into the corresponding 

compounds; 2) avoiding oxidation of transition metal, Si and Ge powders; and 3) 

producing as many types of compounds as possible in one batch. 

Commercially available Mg, Al, Ni, Si, Ge, Au and Ag powders (see Section 3.1) were 

used to synthesize MgNi2, Al3Ni, M2AI3, Mg3Au, Mg54Agn, Mg2Ge and Mg2Si by a 

conventional melting and casting method according to the compositions given in Table 

3.2. 

These initial mixtures were ball-milled for 1 hour under an atmosphere of argon in a 

laboratory Spex 8000 mill. Then, these mixtures were melted at 900°C for 2 hours in 

graphite crucibles and then cooled down to room temperature. To protect the melt from 

excessive oxidation or possible burning, a protective gas (Sulfur Hexafluoride, SF6 0.5% 

+ Carbon Dioxide CO2) was used during both melting and casting. The temperature of the 

molten liquid metal was measured by a digital thermometer (Omega HH509). 
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The mixtures of Ag or Pt powders and small Na pellets with a weight ratio of 1:4 were 

placed into crucibles in a tube furnace. The chamber of the furnace was first purged with 

argon. The mixtures were then heated up to 700°C at a speed of 10°C/min, and held at 

700°C for 2 hours under a protective atmosphere of 0.5MPa argon and cooled down to 

room temperature in the furnace. 

Table 3.2 Synthesis of MgNi2, Al3Ni, Ni2Al3, Mg3Au, Mg54Agi7, Mg2Ge, Mg2Si, Ag2Na 

and PtNa. 

MgNi2 

Al3Ni 

Ni2Al3 

Mg3Au 

Mg54Ag 
17 

Mg2Ge 

Mg2Si 

Ag2Na 

PtNa 

Stoichiometric 
composition 

82.8wt% Ni, 
17.2wt%Mg 

42 wt% Ni, 
58 wt% Al 

58wt%Ni, 
42 wt% Al 

73 wt% Au, 
27 wt% Mg 

57 wt% Ag, 
43 wt% Mg 

60wt% Ge, 
40 wt% Mg 

36.6wt% Si, 
63.4wt%Mg 

90.2wt% Ag, 
9.8wt%Na 

89.6wt% Pt, 
10.4wt%Na 

Composition of 
pellets 

80wt% Ni, 
20wt% Mg 

30wt%Ni, 
70 wt% Al 

70 wt% Ni, 
30wt% Al 

60wt% Au, 
40wt% Mg 

50wt% Ag, 
50wt% Mg 

40wt% Ge, 
60 wt% Mg 

20wt% Si, 
80wt% Mg 

20wt% Ag, 
80wt% Na 

20wt% Pt, 
80wt% Na 

Synthesis 
method 

Melting and 
casting 

(900°C for 2 
hours, 

protected by a 
gas mixture of 
SF6 and C02 

In-situ 
synthesis 

(700°C for 2 
hours, under 
0.5MPa Ar 

Phase composition in 
products 

Mg2Ni and MgNi2 

Al3Ni + Al 

Al3Ni, Ni2Al3 and Ni 

Mg3Au + Mg 

Mg54Agi7+MgAg+MgO 

Mg2Ge +Mg 

Mg2Si + Mg 

Ag2Na+Na+NaOH 

PtNa+Na2PtH6 + NaOH 
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3.2.5 Synthesis of nanoparticles by a hydrolysis method 

The intermetallic pellets were ball-milled under an argon atmosphere for 2 hours in a 

laboratory high energy ball mill SPEX8000 at a speed of 1200rpm. Either 1 gram of the 

ball-milled noble metal intermetallic particles were immersed in 200ml of distilled water 

and stirred for 48h, or 10 grams of the ball-milled transition metal intermetallic particles 

were immersed in 500ml of distilled water and stirred for 120h. Then, the hydrolysis 

product, Mg(OH)2, was carefully removed by adding 0.5M hydrochloric acid. The 

product was rinsed three times using distilled water, followed by three times using 

ethanol. The sample was divided into two samples. Sample one was used for TEM and 

particle size analysis (no drying process). Sample two was used for XRD analysis. The 

ethanol in Sample two was evaporated using a Rotavapor at 60°C. 

3.3 Materials characterization 

3.3.1 Morphology and structure 

Scanning electron microscopy (SEM) using a JEOL JSM-5800LV microscope (see 

Fig.3.1) was used to observe the morphology of raw material particles and reaction-

synthesized Mg2Ni and Mg2NiH4, and roughly measure the average particle sizes of the 

reaction product. The MgaNiFU specimen was coated with a layer of gold to increase its 

conductivity. The accelerating voltage used was 15kV, while SEM image data were 

recorded on the floppy discs and the images were printed on the 11x14 cm sheet 

photograph papers. 
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Fig. 3.1 Scanning electron microscope (JEOL Model JSM-5800LV). 

Fig. 3.2 JEOL 2010 Transmission Electron Microscope with an Energy Dispersive X-ray 

Spectrometer (EDX). 
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TEM investigations were undertaken in McMaster University with a JEOL 2010 

transmission electron microscope (TEM) equipped with an energy dispersive X-ray 

spectrometer (EDX) at an operating voltage of 200 keV, as shown in Fig. 3.2. Selected 

area electron diffraction (SAED) patterns and energy dispersive spectroscopy (EDS) 

spectra were usually used to identify the various phases. 

The phase composition was mostly investigated with the help of John Robinson using a 

Phillips X-ray diffractometer (Mahwah, NJ, USA) with a proportional counter detection 

head. Graphite monochromated CuKa radiation, at a voltage of 40kV and a current of 

20mA, was utilized as the diffracting medium. The structures of the Ag, Au and Pt final 

product sealed in a glass capillary were analyzed by a Siemens D-500 powder 

diffractometer in Department of Chemistry and Biochemistry, University of Windsor 

since the amounts of these noble metal nanoparticles were not enough to meet the needs 

of the Phillips X-ray diffractometer. 

3.3.2 Charge/discharge capacity of Mg2Ni 

The ball-milled Mg2Ni powders were first sieved to a mean size of about 40 microns 

using a 325 mesh sieve. The fine Mg2Ni particles were mixed with a -325 mesh Ni 

particles in a 2:1 weight ratio. A polytetrafluoroethylene (PTFE) dispersion (4wt%) was 

added into the mixture as a binder. The powder mixture of 0.6g was pressed into a porous 

Ni sponge with a diameter of 10.0mm in a mould at a pressure of 500MPa for 2 mins. The 

cylinders were used as the negative electrode in the experimental cells. A sintered 

Ni(OH)2/NiOOH sheets with a dimension of 1.5 cm x 4 cm were used as a positive 

electrode. 
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The electrochemical cell comprised of three compartments. The negative electrode 

(working electrode) was placed in the central compartments, and two positive electrode 

sheets were placed on either side. The electrolyte was 6M KOH aqueous solution. A 

Hg/HgO/6M KOH electrode was used as a reference electrode. 

The charge/discharge behaviour of the experimental cell was conducted using a Solartron 

1285 Potentiostat (see Fig.3.3) with CorrWare for Windows. The constant charge and 

discharge currents were 20mA/g and 2mA/g, respectively. The discharge process was 

ended until the potential of the negative electrode reached -0.5V with respect to the 

Hg/HgO/6MKOH electrode. 

Fig.3.3 The electrochemical measurement system (Soltron 1285) used in this study. 

3.3.3 Hydrogen absorption/desorption capacity of M&Ni 

The hydrogen adsorption/desorption isotherms were measured by a computer controlled 

commercial 'Gas Reaction Controller' manufactured by the Advanced Materials 

Corporation of Pittsburgh, PA. Highly purified hydrogen (99.9995% purity) was used as 
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the adsorbent. Typically the mass required for the hydrogen sorption measurement is 500-

1000 mg. The size of the sample chamber is 2.5 cc. Lightly packed powder materials 

were used for all measurements. Before all measurements the materials, were degassed at 

200°C under high vacuum for at least one day in order to remove any physisorbed water 

or volatile impurities. 

The temperature of the gas reservoir was measured by two AD590 IC thermometers that 

are calibrated against a standard mercury thermometer within ±0.1 °C at room 

temperature. The sample temperature was measured with type K thermocouple by 

converting voltage reading to temperature according to ITS-90 (The International 

Temperature Scale of 1990). The limits of error are ±2 °C or 0.75 % above 0 °C and ±2 

°C or 2 % below 0 °C. The pressure of both the gas reservoir and the sample chamber 

were measured by a Heise model HP0 pressure transducer, which has a fullscale range of 

1500 psi (about 100 atm). The accuracy of this transducer is rated to be 0.05 % of the full 

scale including non-linearity, drift, and hysteresis by the manufacturer. The GRC operates 

by admitting an appropriate amount of gas to the reservoir and determines its molar 

amount from its pressure and temperature. The system then manipulates the valves 

between the reservoir and the reaction chamber and transfers a desired amount of the gas 

from the reservoir to the gas reaction chamber. After equilibrium is attained, the system 

re-calculates the number of hydrogen molecules. The system employs a modified 

Benedict-Webb-Rubin equation of state in calculating the amount of absorbed hydrogen 

from the pressure, temperature, and volume. The apparatus gradually increases the 

hydrogen pressure to the maximum specified value, while summing the absorbed 

hydrogen. The amount of hydrogen released from the sample is then determined by 
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pumping out the gas reservoir and gradually bleeding hydrogen from the sample chamber 

into the gas reservoir. This experiment was carried out with the help of Dr Xin Hu in 

Department of Chemistry and Biochemistry, University of Windsor. 

3.3.4 The specific surface area of nanoparticles 

The specific surface area of nanoparticles was measured by a BET method. Nitrogen 

adsorption and desorption data were collected on a Micromeritics ASAP 2010 apparatus. 

Before the sorption analysis, the sample was subjected to the degassing vacuum system 

under ultra high vacuum (10"9bar) at a temperature of 120°C overnight. The sample was 

backfilled with nitrogen and transferred to the analysis system. The sample was then 

again degassed under ultrahigh vacuum (10"9bar) until analysis. Sorption analysis was 

carried out at liquid nitrogen temperature (77 K). Helium was used for the free space 

determination, after sorption analysis, both at ambient temperature and at 77 K. Apparent 

surface areas were calculated from N2 adsorption data by multi-point BET analysis. This 

experiment was carried out with the help of Dr Xin Hu in Department of Chemistry and 

Biochemistry, University of Windsor. 

3.3.5 The particle size of nanoparticles 

The size distribution of the nanoparticles (no drying) was determined using a Zetasizer 

3000HS instrument. This experiment was carried out with the help of Ms Yanyan Lou in 

Instrumental Analysis and Research Center, Shanghai University, P.R.China. The 

suspended nanoparticles were first taken titration with 0.1M NaCl and 0.25M NaOH 
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solution. The pH value was obtained when the maximum zeta potential has reached. Then, 

the size distribution of nanoparticles was measured at that pH value. 
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CHAPTER FOUR: THE HYDROGEN STORAGE 

PROPERTIES OF Mg2Ni AND THE DISCOVERY OF ITS 

HYDROLYSIS BEHAVIOR 

4.1. Introduction 

Rechargeable nickel metal hydride (NiMH) batteries have many advantages for use as 

power sources in electric and hybrid vehicles such as higher power densities and 

environmental friendliness [166,167]. When compared with conventional AB5 alloys, 

Mg2Ni exhibits a good hydrogen storage capacity (3.6wt%) and lower specific gravity. 

The theoretical discharge capacity of Mg2Ni is as high as 999mAh/g. Mg2Ni is thus 

expected to be amongst the next generation of electrode materials. However, 

polycrystalline Mg2Ni shows a very low electrochemical discharge capacity (less than 

lOmAh/g) [168]. It has been reported that the electrochemical discharge capacity can be 

improved through the use of nano-crystalline Mg2Ni [168-174]. A very high discharge 

capacity of 1082mAh/g (exceeding the theoretically calculated value of Mg2Ni) has even 

been reported [170]: the supporting evidence for this high discharge capacity was not, 

however, provided in the paper. 

In general, the hydrogen storage capacity of the alloys prepared by a melting and casting 

method is higher than that of materials synthesized by a mechanical alloying method. 

However, mechanical alloying can significantly improve activation and reaction kinetics 

of hydrogen storage alloys. Contamination is a drawback in mechanical alloying [175]. 
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No contamination is introduced by in-situ reaction synthesis (or combustion synthesis). 

The reaction synthesis products are porous, and have high purity and large surface areas 

of "fresh" surface, which result in easy activation of the combustion synthesis product. 

During synthesis of Mg2NiH4, an intermediate product (Mg2Ni) with easy activation is 

formed first, which makes the hydriding reaction to Mg2NiH4 much easier. The maximum 

hydrogen storage capacity obtained with the combustion synthesis product in the primary 

cycle without any activation has been reported as 3.4-3.6wt.%, which is close to the 

theoretical value of 3.6wt.% [175-179]. This contrasts with the 10 or more hydriding 

/dehydriding cycles required to produce Mg2NiH4 using conventional ingot material, due 

to its surface oxidation or adsorbed gas [179]. 

In this chapter, the hydrogen storage capacity and the charge/discharge capacity results 

for both in-situ synthesized Mg2Ni and as-cast Mg2Ni will be reported. Both types of 

Mg2Ni exhibited a near zero charge/discharge capacity. Further investigation has shown 

that Mg2Ni spontaneously hydrolyzed in both distilled water and 6M KOH solution, and 

formed Mg(OH)2, Ni and hydrogen. The hydrolysis characteristics of both Mg2Ni and 

Mg2NiH4 suggest that they are not suitable for use as electrodes in rechargeable batteries. 

The hydrolysis of Mg2Ni or Mg2NiH4, however, provides a new and relatively simple 

method for the production of nickel nanoparticles 

4.2 In-situ synthesized Mg2Ni 

The Mg-Ni binary phase diagram contains the intermediate compounds Mg2Ni and 

MgNi2 which are primarily metallically bonded and have fixed compositions and definite 

stoichiometries (see Fig.4.1). Mg2Ni has a hexagonal structure, and is said to be an 
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incongruently melting compound since, upon heating, it undergoes peritectic 

decomposition into liquid and MgNi2 at 760°C. MgNi2 is a congruently melting 

compound since it maintains its composition right up to the melting point. Based on the 

Mg-Ni binary phase diagram, the in-situ reaction temperature for this study was set at 

690°C in order to achieve high conversion and avoid generating a large amount of liquid 

eutectic. 

o 

<V 
<~ 
P 
« 
u 
V 
ft 

1) 

1600 

1400 

1200 

1000 

BOO 

800 

400 

aoo-

70 B0 90 100 
I ' '. 

10 20 W 

Mg 
40 50 60 70 

Weight Percent Nickel Ni 

Fig. 4.1 Mg-Ni binary phase diagram [180]. 
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4.2.1 Preparation procedures for In-situ synthesized Mg2Ni 

Magnesium powders and lOOmesh 99wt% pure nickel powders were used to in-situ 

reaction-synthesize Mg2Ni compound. A 20g mixture of Mg and Ni powders with a 

stoichiometric ratio (2:1) of Mg2Ni was first ball-milled under the protection of 1.1 

atmosphere of argon for lh. The ball-milled mixture of 20 grams was loosely laid in a 

graphite boat, and then was put into a stainless steel tube furnace. The furnace chamber 

was purged by an argon flow for 5 min. The argon pressure in furnace chamber was then 

maintained at a pressure of two atmospheres. The sample was heated up to 690°C at a rate 

of 10°C/min and held for 2 hours, and then cooled down to room temperature in furnace. 

4.2.2 Characteristics of the In-situ synthesized product 

The morphology of the Mg and Ni powders in the initial materials is shown in Figs 4.2a 

and 4.2b. The larger spheres with a rough surface are the Mg powders. The smaller 

spheres with a smooth surface are the Ni powders. The morphology of the ball-milled 

mixture of Mg and Ni with an atomic ratio of 2 to 1 is shown in Figs 4.2c and 4.2d. The 

ball-milled powders were coarse due to cold-welding. Since some liquid eutectic was 

formed above the eutectic transformation temperature, the in-situ synthesized Mg2Ni was 

very coarse, but not as coarse as in the ingot. 
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Fig.4.2 SEM images of the initial mixture ((a) low magnification and (b) high magnification); the ball-

milled mixture ((c) low magnification and (d) high magnification) and the in-situ reaction product ((e) 

low magnification and (f) high magnification). 
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Fig. 4.3 XRD pattern of the initial mixture with a 2:1 atomic ratio of Mg:Ni. 
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Fig. 4.4 XRD pattern of the in-situ synthesized Mg2Ni. 

By comparison with the XRD diffraction pattern of the mixture of the initial materials 

(Fig.4.3), it was noted that besides some lower intensity Mg or Ni peaks, strong Mg2Ni 
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diffraction peaks (JCPDS file No 65-9715) were present in the XRD pattern of the in-situ 

synthesized Mg2Ni as shown in Fig.4.4. This indicates that the Mg and Ni in the initial 

mixture were mostly converted into the Mg2Ni compound. 

4.2.3 Hydrogen storage properties 

The hydrogen absorption/desorption curves of the in-situ synthesized Mg2Ni at 280°C is 

shown in Fig. 4.5. At 280°C, the in-situ synthesized Mg2Ni particles began to absorb 

hydrogen when the hydrogen pressure reached 2.38atms. At the beginning of hydrogen 

absorption, the hydrogen absorption pressure slightly dropped from 2.38atms to 2.16atms 

(AB). With increasing amount of the absorbed hydrogen, the hydrogen absorption 

pressure began to slightly increase up to 2.84atms (AC). At this time, the hydrogen 

concentration in the in-situ synthesized Mg2Ni particles reached 1.05wt%. After that 

point, the relationship of the hydrogen absorption pressure versus the hydrogen 

concentration in Mg2Ni was parabolic from 2.84atms to the preset highest pressure 

(10atms)(CD). The corresponding hydrogen concentration was 1.63wt%. Then, the 

hydrogen pressure began to decrease. At the beginning, while the hydrogen pressure 

abruptly dropped from lOatms to 2.80atms, the hydrogen concentration in the in-situ 

synthesized Mg2Ni particles slightly increased from 1.63wt% to 1.65wt% (DE). After this 

point, the in-situ synthesized Mg2Ni particles started hydrogen desorption. When the 

hydrogen desorption pressure dropped slightly from 1.65atms to 1.40atms (EI), the 

hydrogen concentration dramatically decreased from 1.65wt% to 0.24wt%. At the 

beginning of hydrogen desorption, there is a stage (GH) that the hydrogen desorption 

pressure increased from 1.60atms to 1.80atms. At the point where the hydrogen 
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desorption pressure was 1.40atms, and the hydrogen concentration was 0.24wt%, the 

hydrogen desorption rate became slower. The hydrogen desorption pressure abruptly 

dropped from 1.40atms to zero pressure, while the hydrogen concentration decreased 

slightly from 0.24wt% to 0.1 wt%. 

When the temperature of the hydrogen absorption/desorption test was increased to 300°C, 

the hydrogen absorption/desorption curves of the in-situ synthesized Mg2Ni were as 

shown in Fig. 4.6, which was similar to Fig. 4.5.. The in-situ synthesized Mg2Ni particles 

began to absorb hydrogen at a hydrogen pressure of 3.7atms. The absorption plateau 

pressure ranged from 3.7atms to 4.04atm (AB). The corresponding hydrogen 

concentration increased from 0.01wt% to 1.27wt%. After the plateau region, the 

hydrogen absorption pressure parabolically increased from 4.04atms to lOatms (BC). The 

corresponding hydrogen concentration increased from 1.27wt% to 1.96wt%. When the 

hydrogen pressure abruptly dropped from lOatms to 4.19atms, the hydrogen 

concentration in the in-situ synthesized Mg2Ni particles slightly increased from 1.96wt% 

to 1.99wt% (CD). The hydrogen desorption plateau pressure decreased slightly from 

2.60atm to 2.23atms (EH). The corresponding hydrogen concentration, however, 

significantly decreased from 1.96 wt% to 0.22wt%. At the beginning of hydrogen 

desorption, there is also a stage (EF) that the hydrogen desorption pressure increased from 

2.60atms to 2.65atms. 

It well known that hexagonal Mg2Ni as a solid solution (a-phase) is able to absorb only a 

small amount of hydrogen (up to 0.3wt%), i.e. Mg2NiHo.3 [175,176]. At this time, the 

hydrogen concentration in the Mg2Ni is pressure dependent and can be described as 

follows [177]: 
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CH = kP1/2 (4-1) 

Where, CH is the hydrogen content in the a-phase, k is a temperature dependent constant, 

and P is the hydrogen pressure. 
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Fig 4.5 Hydrogen absorption/desorption curves of the in-situ synthesized Mg2Ni at 280°C. 

As the hydrogen concentration exceeds the saturated concentration in Mg2Ni as a solid 

solution, nucleation and growth of the Mg2NiH4 (|3 phase) will begin. While the two 

phases (a and P phase) coexist, theoretically, the conversion of the saturated solid 

solution to hydride should take place at a constant pressure according to Gibbs phase rule, 

which shows a flat plateau in a PCT curve. The (mean) absorption plateau pressures at 

280°C and 300°C were about 2.61atms and 3.87atms, respectively. The temperature 

dependent pressure is the equilibrium dissociation pressure of the hydride. The plateau or 

equilibrium pressure strongly depends on temperature and is related to the changes of 

enthalpy and entropy, respectively. 
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Fig 4.6 Hydrogen absorption/desorption curves of the in-situ synthesized Mg2Ni at 300°C. 

The relationship can be given by the van't Hoff equation: 

ln(PH2/ PH2°) = -AH/RT + AS/R (4-2) 

where, AS and AH represent the entropy and enthalpy change, respectively, R is the gas 

constant and T is temperature. According to Equation 4-2, an increase of temperature will 

lead to an increase in the absorption /desorption pressure as can be seen in Figs 4.5 and 

4.6. 

However, Mg2Ni like most practical hydriding metals does not show perfectly flat plateau 

and zero hysteresis due to the limitation of kinetics. 

As Mg2Ni transforms to MgaNiFLt due to hydrogen absorption, it undergoes a structural 

rearrangement with an accompanying 32% increase in volume. Mg2NiH4 has a 

antifluorite structure, built up of an tetrahedral [NiH4] complex surrounded by a cube of 
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magnesium ions at temperatures above 237°C [181]. For the cubic phase, there are still 

several basic uncertainties with respect to the location of hydrogen in the lattice. The 

position occupied by the hydrogen atoms in the metal lattice influence the static, dynamic 

electronic and magnetic properties of metal-hydrogen systems. Possible hydrogen atom 

sites in the antifluorite metal lattice structure of Mg2NiH4 are shown in Fig.4.7. 
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Fig.4.7 Possible hydrogen atom sites in the antifluorite metal lattice structure of 

Mg2NiH4 , these sites are indicated in terms of Wyckoff notation [182]. 

Therefore, as the Mg2Ni particles absorbed hydrogen and formed Mg2NiH4 at 280°C or 

300°C, a layer of cubic Mg2NiH4 would be formed as shown schematically in Figs 4.5 
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and 4.6 (The dark and blank area denote Mg2NiH4 and Mg2Ni, respectively). The growth 

of the Mg2NiH4 layer depended on hydrogen diffusion through the layer during 

hydrogenation. However, compressive stress was induced in the Mg2NiH4 layer due to 

the volume expansion that resulted from the phase transformation, which increased the 

activation energy for the diffusion of hydrogen atoms in this layer. As a result, the 

absorption plateau was sloped. 

On the contrary, a layer of Mg2Ni was formed in the hydrogenated particle during 

dehydrogenation. The transformation of Mg2NiH4 to Mg2Ni gave rise to a decrease of 

32% in volume. A tension stress was induced in the Mg2Ni layer, which would aid the 

diffusion of hydrogen atoms from the inner hydride to the particle surface. Therefore, the 

desorption pressure plateau was relatively flat. 

It has been reported that Mg2Ni only exhibits rapid absorption/desorption kinetics above 

350°C [182]. Below this temperature, it has sluggish kinetics for hydrogen absorption/ 

desorption that are mainly controlled by diffusion. Moreover, the PCT test depends on the 

absorption rate to adjust an increase or a decrease of the hydrogen pressure. The hydrogen 

concentration increased from 1.63wt% to 1.65wt% (DE in Fig.4.5) at 280°C or from 

1.96wt% to 1.99wt% (CD in Fig.4.6) at 300°C while the hydrogen pressure abruptly 

dropped from lOatms. At the beginning of the reduction in hydrogen pressure, hydrogen 

still diffuses from the surface to the center, where it could still be Mg2Ni. Therefore, the 

Mg2Ni particles didn't reach their maximum hydrogen storage capacity (3.6wt%) at 

280°C and 300°C. Below 350°C. increasing the temperature will improve the 

absorption/desorption kinetics of Mg2Ni. This is the reason that the maximum hydrogen 

concentration reached in the experiment at 300°C was higher that in the experiment at 
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280°C. Due to equipment limitations (mainly built for low temperature measurements), 

the experiments at 350°C could not be performed. 

In addition, there was pressure drop at the beginning of hydrogenation (AB in Fig.4.5), 

and pressure increases at the beginning of dehydrogenation (GH in Fig.4.5 and EF in 

Fig.4.6), which suggests that the absorption/desorption of Mg2Ni requires an activation. 

This is another reason that the in-situ synthesized Mg2Ni cannot achieve the maximum 

hydrogen absorption capacity (3.6wt%) on the first hydrogen absorption/desorption cycle 

at 280°C or 300°C. It has been reported that Mg2Ni must be activated by over ten 

hydriding/dehydriding cycles under 7MPa hydrogen pressure at 400°C for practical 

application [179]. 

4.2.4 Electrochemical properties 

When a PTFE dispersion was added as a binder to the ball-milled Mg2Ni particles for 

preparing the electrode samples, heat release from these samples was observed. Our first 

thought was that the heat could be coming from the reaction between any remaining Mg 

in the in-situ synthesized Mg2Ni and water in the PTFE dispersion. Therefore, additional 

drops of the PTFE dispersion were needed, or else the mixture was too "dry" to prepare 

the electrodes, which suggested that water was consumed by some chemical reactions 

(this will be discussed in Section 4.5). 

Charge/discharge curves are the basis for the measurement of specific discharge capacity. 

During the charging process, a cathodic current was applied to break down the water in 

6M KOH aqueous solution, and atomic state hydrogen was absorbed by Mg2Ni. At the 
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initial stage of charging, the equilibrium potential rapidly shifted in the cathodic direction 

as the hydrogen content in the electrode increased. 
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Fig.4.8 The initial charge/discharge curves of the in-situ synthesized Mg2Ni at 

galvanostatic conditions at room temperature. 

With further increase of the hydrogen content in Mg2Ni, the equilibrium potential reached 

a plateau, which theoretically means that the hydrogen content reached a saturated level 

in the solid solution (hydrogen occupies the interstitial sites in the lattice). In practice, the 

hydrogen absorption process is affected by many factors including the surface condition 

of the Mg2Ni particles, the particle size, and the temperature. A positive current was 

imposed on the charged Mg2Ni electrodes to release the absorbed hydrogen. 

In this study, the negative electrode was charged under a constant current density of 

20mA/g for two hours. The discharge process was conducted using a current density of 
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2mA/g until the potential of the negative electrode reached -0.5V vs. to the 

Hg/HgO/6MKOH electrode. 

Fig.4.8 presents the initial (1st cycle) charge/discharge curves for the ball-milled Mg2Ni 

particles. The equilibrium potential reached a plateau within 200 seconds. The discharge 

capacity of the in-situ synthesized Mg2Ni was fairly low, less than 5mAh/g, which agrees 

with the results of Cui et al [168], who reported a discharge capacity of 8mAh/g 

measured at a discharge current of 2mA/g after the electrode was charged at a 20mA/g at 

room temperature. 

4.3 Electrochemical properties of as-cast Mg2Ni 

To further investigate the electrochemical properties of Mg2Ni, the as-cast Mg2Ni powder 

was used to prepare the electrodes. When the PTFE dispersion was added as a binder to 

the as-cast Mg2Ni particles for preparing the electrode samples, heat release from these 

samples was observed as the case for the ball-milled, in-situ synthesized Mg2Ni particles. 

The initial charge/discharge curves for the ball-milled, as-cast Mg2Ni powder electrodes 

are shown in Fig.4.9. In comparison with the in-situ synthesized Mg2Ni electrode, the as-

cast Mg2Ni electrode took a much longer time to reach the equilibrium potential (about 

2000 seconds). The discharge capacity of the as-cast Mg2Ni electrode was also fairly low, 

being only about 6mAh/g. 
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Fig.4.9 The initial charge/discharge curves of the as-cast Mg2Ni at galvanostatic 

conditions. 

4.4 In-situ synthesized MgNiH4 

The low temperature (LT) MgNiH4 is a monoclinic antiflurite structure, and exists in two 

modifications, LTi without microtwinning and LT2 with microtwinning [181]. The LTi 

modification is formed by hydriding the alloy well below 235°C, never allowing the 

reorientation motion of hydrogen. The LT2 modification is pressure sensitive and readily 

transforms into LTi when subjected to isostatic pressure [181]. The x-ray powder 

diffraction patterns of the two LT modifications are very similar. The main difference is 

that the LT2 yields some extra peaks due to the micro-twining. The micro-twinning could 

increase in the LT lattice if there is no excess of magnesium in the compound. There is a 

distinct color difference between the two modifications. The LT2 modification is orange 

to rust color, while the LTi modification is brownish grey. 
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4.4.1 Preparation of Mg2NiH4 

The as-cast Mg2Ni pellets were ball-milled under an argon atmosphere for 2 hours in a 

laboratory high energy ball mill (SPEX8000). Mg2NiH4 particles were synthesized by 

hydrogenating the ball-milled Mg2Ni particles under a hydrogen atmosphere of 6atm at 

350°C for 2 hours in a tube furnace, then cooling down to room temperature in furnace. 

The synthesized Mg2NiH4 particles were rust brown in colour, which is the distinct color 

of the LT2 modification. 

There was 10wt% surplus Mg in the initial as-cast Mg2Ni pellets. Therefore, besides the 

Mg2Ni peaks, some small Mg diffraction peaks were observed in the XRD pattern for the 

ball-milled particles (see FigAlOa). Some weak MglHb diffraction peaks ((JCPDS file No. 

12-0697) were observed in the XRD pattern for the synthesized Mg2NiH4 particles, 

together with strong Mg2NiH4 diffraction peaks (JCPDS file No. 38-0792), but no Mg2Ni 

peaks as shown in FigAlOb. These results suggest that after hydrogenation under a 

hydrogen atmosphere of 6atm at 350°C for 2 hours in a tube furnace, the ball-milled 

Mg2Ni and the surplus Mg particles had transformed into LT2 Mg2NiH4 and MgH2, 

respectively. 
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Fig.4.10 XRD powder diffraction patterns for a) the as-cast Mg2Ni alloy, b) the in-situ 

synthesized Mg2NiH4. 

4.4.2 Electrochemical properties of Mg2NiH4 

When a PTFE dispersion was added as a binder to the ball-milled synthesized MgaNiFLj 

particles for preparing the electrode samples, both heat release and gas bubbles were 

observed. More drops of PTFE were needed for preparing the electrodes. 

The Mg2NiH4 electrodes exhibited a near zero discharge capacity. Thus, the in-situ 

synthesized Mg2Ni electrode, the as-cast Mg2Ni electrode, and the synthesized Mg2NiH4 

electrode all exhibited a near zero charge/discharge capacity. We believed that there was 

possibly a dynamic limitation, eg. hydrogen diffusion in the compound lattice at room 

temperature, that was the reason for the near zero charge/discharge capacities. 

In order to further investigate the discharge capacity of Mg2NiH4j the in-situ synthesized 

Mg2NiH4 was then directly pressed into an electrode without any binder in order to avoid 
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the above phenomena. This Mg2NiH4 electrode was unable to maintain its shape in a 6M 

KOH solution and broke into many pieces with the generation of numerous gas bubbles. 

In some instances, the Mg2NiH4 electrode caught fire when the sample contacted the 

surface of the alkaline solution. 

4.5 Hydrolysis behavior of as-cast Mg2Ni 

A rapid degradation of Mg2Ni alloys in alkaline solutions during the charge-discharge 

process has been observed by a number of researchers [171-174]. The degradation has 

generally been attributed to the corrosion of Mg2Ni alloy in the highly corrosive 

electrolyte. Kuji et al [174], observed the hydrolysis phenomenon of Mg2Ni in both 

distilled water and a KOH solution. They assumed that Mg2Ni alloys were easily 

hydrogenated by simply immersing the alloys in 6M KOH solution or in distilled water. 

In fact, the increase in hydrogen concentration in their samples resulted from the 

hydrolyzed Mg(OH)2 since it was not removed from their samples. 

In this study arc-melted Mg2Ni was used to investigate the hydrolysis behaviour of 

Mg2Ni and Mg2NiH4. The thermodynamics and mechanisms of the hydrolysis of Mg2Ni 

and Mg2NiH4 are discussed in detail. 

While the ball-milled as-cast Mg2Ni particles were immersed in 500ml of 6M KOH 

solution or distilled water, there was initially a rapid release of hydrogen bubbles. Then, 

the release rate of hydrogen bubbles gradually slowed down. The pH value of the solution, 

determined using pH papers, rapidly reached a value of 10-11 in the samples immersed 

in water, and thereafter retained that level. 
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After the ball-milled Mg2Ni was immersed in 500ml of distilled water or 6M KOH for 

120h, the solid product was filtered out, and then dried in a Rotavapor at 60°C (no rinse 

cycle). Brucite (Mg(OH)2), and Ni peaks were observed in the XRD pattern for the 

hydrolysis product of the ball-milled Mg2Ni in distilled water (see Fig.4.1 la). Thus, 

Mg2Ni had hydrolyzed into Mg(OH)2 and Ni after being immersed in distilled water for 

120h. The width of the Ni peaks was fairly broad, which reflects the fact that the 

crystallite size of Ni was extremely small. 

Besides Brucite, some weak Mg2Ni peaks were observed in the XRD pattern for the 

hydrolysis product of the ball-milled Mg2Ni in the 6M KOH solution (see Fig.4.1 lb). The 

amount of Mg(OH)2, reflected by the peak intensities in Fig.4.1 lb, is much more than that 

resulting from the hydrolysis of the surplus Mg. Although, no significant Ni peaks can be 

identified in Fig.4.1 lb, a paramagnetism test showed that there were some Ni particles in 

the hydrolysis product. 
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Fig.4.11 XRD powder diffraction patterns for the hydrolysis product of the as-cast Mg2Ni 

particles a) in distilled water, b) in 6M KOH solution. 

Mg can react with water and form Mg(OH)2 thereby releasing hydrogen gas. The reaction 

can be written as follows: 

Mg(s) + 2H20(7) -> Mg(OH)2(s) + H2(g) (4-3) 

where, s, I, and g in brackets denote the solid, liquid and gas state, respectively. The 

standard free energy change for Mg(OH)2 and H20 are -833.7KJ/mol and -237.14KJ/mol, 

respectively [184] The standard free energy change, AGi°, of Reaction (4-3) is about -

359.42KJ/mol. The free energy change AGi of Reaction 4-3 is given as 

AG4_3 = -359 A2KJI mol + RTIn-
a>,ts

aH20 
(4-4) 

where, a is activity, and P is partial pressure. 

Under the conditions of hydrolysis (abundant water and a limited amount of Mg2Ni), two 

possible reactions for the hydrolysis of Mg2Ni are as follows: 
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Mg2Ni(.y) + 3H20(/) -> 3/2Mg(OH)2(s) + l/2MgNi2+3/2H2(g) (4-5) 

Mg2Ni(s) + 4H20(/) -> 2Mg(OH)2(» + Ni +2H2(g) (4-6) 

Reaction (4-5) can be thought as an intermediate step of Reaction (4-6) if the further 

hydrolysis of MgNi2 can take place. This reaction is given as follows: 

MgNi2 (s) + 2H20(/) -> Mg(OH)2(s) +2Ni +H2(g) (4-7) 

The standard free energy change for Mg2Ni and MgNi2 are -51.9KJ/mol and -61.1KJ/mol, 

respectively [185]. The free energy changes AG4.5, AG^and AG4.7> are given as follows: 

AG4.5 = -517.7SKJ I mol + RT In <^"^f^ (4_g) 
airg2XiaH20 

AG, 6 = -666.94KJ I mol + RT In a^°»^afSl (4-9) 
aMslNiaH10 

AG4_7 = -298.32i^ / mol + RT In "^'"^f"1 (4-10) 
ahtgXl2aH20 

The hydrolysis conditions in this study are room temperature and one atmosphere 

pressure. Therefore, the free energy changes for the reactions can be approximately 

considered as the standard free energy changes, if the activities are neglected. The 

negative standard free energy changes for Reactions 4-3, 4-4, 4-5 and 4-6 indicate that 

these reactions are spontaneous. The chemical affinities for Reactions 4-5, 4-6 and 4-7 are 

in the following order: 

AG4-6 < AG4.5 < AG4.7 (4-11) 

Therefore, Reaction 4-6 is more favourable than Reaction 4-5. In addition, if there is an 

intermediate Reaction 4-5, MgNi2 should not start to hydrolyze until the hydrolysis is 

complete for all Mg2Ni since Mg2Ni is more active than MgNi2. Both Mg2Ni and Ni, but 
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not MgNi2, were found in the hydrolysis product. Thus, Mg2Ni probably directly 

hydrolyzed into Ni. 

When the ball-milled Mg2Ni particles were immersed in the distilled water, a small 

amount of the surplus Mg and a larger amount of Mg2Ni gave rise to many small cells 

with small cathodes and large anodes. Thus, Reaction 4-3 is enhanced, and the hydrolysis 

reaction for Mg2Ni was inhibited until all the Mg was consumed. At that stage, the 

hydrolysis of Mg2Ni would begin. 

There is not a large difference in the thermodynamics for hydrolysis between the ball-

milled Mg2Ni particles in water and in the 6M KOH solution. However, the activities of 

Mg(OH)2 and H20 are significantly affected. 

Reaction 4-6 can be written as two ionic reactions: 

Mg2Ni(s) + 4H+ -> 2Mg2+ + Ni+2H2(g) (4-12) 

Mg2+ + 20H' o Mg(OH)2(s) (4-13) 

The solubility of product constants of Mg(OH)2 is 5.6x10"12. The OH" concentration is 

estimated as 2.237x10"4. The corresponding pH value is 10.4, which agrees with the pH 

value (10 -11) of the solution in the samples immersed in distilled water. Kuji et al, 

reported that the pH value is 11.2 [174]. The pH value of the 6M KOH solution is higher 

than 14. Hence, the concentration of the H+ ions in the samples immersed in the 6M KOH 

solution is much lower than that of the samples immersed in water. Therefore, the 

hydrolysis rate of Mg2Ni in the 6M KOH solution is much slower that that in water. In 

other words, if the pH value of the solution is reduced (adding some acid), the hydrolysis 

rate of Mg2Ni will be greatly increased. 
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The morphology of the hydrolyzed product of Mg2Ni is shown in Figs.4.12. There are 

many spread membranes and needle-like rods shown in Fig.4.12a. These needle-like rods 

are rolled-up membranes (see Fig.4.12b). High-resolution TEM image of the membranes 

(see Fig.4-13) shows that there are many small crystallites in these membranes. The 

spacing of the lattice fringes for these crystallites ranges from 0.208nm to 0.248nm. The 

spacings of the (101) planes in Mg(OH)2 and the (111) planes in Ni are 0.23 67nm and 

0.2035nm, respectively. Therefore, those crystallites with a lattice fringe spacing close to 

0.208nm are from the (111) planes of the Ni nanoparticles and the crystallites with a 

lattice fringe spacing to 0.248nm are from the (111) planes of crystalline Mg(OH)2. The 

EDS spectrum (see Fig.4.14) shows that these membranes contained a large amount of 

Mg and O and a small amount of Ni. In addition, these membranes should contain some 

hydrogen that cannot be detected by EDS. EDS examination always caused a hole in the 

membranes due to burning off, which suggests that the membranes contained something 

that can dissociate on bombardment by the electron beam. 
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Fig.4.12 TEM images of the hydrolysis product of Mg2Ni, a) Low magnification, b) High 

magnification. 
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Fig.4.13 HRTEM image of the hydrolysis product of Mg2Ni (membranes). 

93 



Chapter IV: The hydrogen storage properties of Mg2Ni and the discovery of its 
hydrolysis behavior 

Mg 

1 
O 

IW Cu 

5 iUn «? 

0 200 400 600 800 1000 
Energy (lOeV) 

Fig.4.14 EDS spectrum of the hydrolysis product of Mg2Ni (membranes). 

Mg is more active than Mg2Ni. Thus, Mg2Ni will be protected from reaction with water 

by hydrolysis of Mg when the ball-milled Mg2Ni particles were immersed in distilled 

water. Therefore, the hydrolysis reaction for Mg2Ni was not initiated until all the Mg was 

consumed. 

Mg2Ni has a hexagonal structure with a = 0.519nm and c=1.322nm [186]. The structure is 

built up by square antiprisms of magnesium that are centered by Ni atoms. The antiprisms 

are connected via the square faces to columns [186]. Each Ni atom is surrounded by two 

Ni atoms at a distance of 0.26nm and eight Mg atoms at a distance of 0.27nm. Each Mg 

atom is surrounded by four Ni atoms at a distance of 0.27nm and eleven Mg atoms at a 

distance from 0.295 to 0.33nm [186]. Thus, the larger magnesium atoms form a 
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continuous skeleton, in the voids of which are situated the smaller Ni atoms. Therefore, 

Mg atoms in the Mg2Ni compound are still very active. 

When Mg2Ni comes into contact with water, Mg atoms on the surface of Mg2Ni particles 

will react with the OH" ions in water, and form Mg(OH)2. At the same time, the Ni atoms 

were released from the Mg2Ni. The Ni atoms have a very weak affinity to the excess H+ 

ions resulting from the consumption of the OH" ions. However, the Ni atoms combine 

together to form Ni nanoparticles under the action of surface energy, and the H+ ions 

combine together to generate hydrogen gas. 

The solubility of Mg(OH)2 in water is very small. The newly-formed Mg(OH)2 has to 

precipitate from water in the vicinity of the Mg dissolution sites. The existence of the 

Mg(OH)2 particles, and the low mobility of Ni atoms at room temperature, give rise to the 

formation of very fine Ni nanoparticles (see Fig.4.13).Therefore, the particle size of Ni 

nanoparticles prepared by this method was not sensitive to the concentration of Mg2Ni in 

aqueous solution. 

The byproduct of Mg2Ni hydrolysis, Mg(OH)2, can be easily removed by a dilute acid. 

After the Mg(OH)2 in the hydrolysis product of Mg2Ni in distilled water was carefully 

removed using dilute hydrochloric acid, Ni nanoparticles in the hydrolysis product were 

left. The hydrolysis of Mg2Ni could thus provide a new and relatively simple method for 

the production of nickel nanoparticles. This will be discussed in more detail in Chapter 5. 

4.6 Hydrolysis behavior of the in-situ synthesized MgiNiELt 

While the synthesized Mg2NiH4 powders were immersed in 500ml of 6M KOH solution 

or distilled water, the hydrogen release from the Mg2NiH4 samples was much more severe 
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than for the Mg2Ni samples. Sometimes, the Mg2NiH4 samples would catch fire due to 

the severe hydrolysis reaction. The release rate of hydrogen bubbles then gradually 

slowed down. After the synthesized Mg2NiH4 particles was immersed in 500ml of 

distilled water or 6M KOH for 120h, the solid particles were filtered out, and then dried 

in a Rotavapor at 60°C (no rinse cycle). 

Only Brucite, Ni and few Mg2NiH4 peaks were found in the XRD pattern for the 

hydrolysis product of the synthesized Mg2NiH4 in distilled water (see Fig.4.15a). No 

Mg2Ni peaks were detected, which shows that Mg2NiH4 had hydrolyzed into Mg(OH)2 

and Ni after being immersed in distilled water for 120h. 
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Fig.4.15 XRD powder diffraction patterns for a) the hydrolysis product of the synthetic 

Mg2NiH4 particles in distilled water, b) the hydrolysis product of the synthetic Mg2NiH4 

particles in 6M KOH solution. 
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Mg(OH)2, Mg2Ni, and Mg2NiH4 peaks were observed in the XRD pattern for the 

hydrolysis product of Mg2NiH4 in the 6M KOH solution (see Fig.4.15b). As was the case 

for the Mg2Ni sample in the alkaline solution, no significant Ni peaks were observed in 

the XRD pattern, Fig.4.15b. However, Ni particles were detected in the hydrolysis 

product using the paramagnetism test. 

This may be explained as follows: The hydrolysis products (Mg(OH)2 and Ni particles) 

are extremely fine. Hence, their diffraction peaks are of low intensity, and are broad. The 

amount of Mg(OH)2 is relatively higher than Ni because of the surplus Mg in the initial 

material. Some of the Ni peaks also overlap with peaks from Mg(OH)2 and Mg2Ni. 

MgH2 and Mg2NiH4 in the hydrogenated samples can react with water and form 

Mg(OH)2, and release hydrogen gas. The reaction can be written as follows: 

MgH2(s) + 2H20(/) -> Mg(OH)2C?) + 2H2(g) (4-14) 

The XRD patterns for the hydrolysis product of Mg2NiH4 in water and the alkaline 

solution suggest that Mg2NiH4 first dissociated into Mg2Ni and hydrogen. The 

dehydrogenation of Mg2NiH4 can be written as: 

Mg2NiH4(s) -> Mg2Ni(s) + 2H2(g) (4-15) 

The Mg2Ni will further hydrolyze into Mg(OH)2 and Ni in water or an alkaline solution 

(Reaction 4-6). The overall reaction for the Mg2NiH4 hydrolysis is: 

Mg2NiH4(s) + 4H20(/) - • 2Mg(OH)2(s) +Ni +4H2(g) (4-16) 

The standard free energy change for MgH2 and Mg2NiH4 are -35.9KJ/mol, -64.4KJ/mol, 

respectively [187]. The free energy changes AG4-14.AG4.15 and AG4-i4for Reactions 4-14, 

4-15 and 4-16 are given as: 
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AG... = -323.52KJ / mol + RTln a"g"M)2/'"2 (4-17) 
aMgH2

 aH 2 0 

AG4 15 = 12.5KJ I mol + RT In yx,P"2 (4-18) 

AG4 .6=-654A4KJ/mol + RT\na!wm"-aKf^ (4-19) 
aMg2MH4aH20 

From a thermodynamics point of view, the hydrolysis of Mg is easier than Mgffj since 

AG4.3 < AG4.15. However, it was observed that the hydrolysis of MgH2 is more severe 

than for Mg regardless of whether it is in water or in an alkaline solution. Possible 

reasons for this behaviour are as follows: There is a volume expansion of 32% 

accompanying the transition from hep Mg to rutile MgH2. Hence, the chemical bonds in 

MgH2 are greatly weakened. In addition, MgH2 is an ionic compound, which is relatively 

easily affected by the ionic water molecules. 

Mg2NiH4 has a monoclinic antifluorite structure, built of an irregular tetrahedral [MH4] 

complex surrounded by a distorted cube of magnesium ions [169]. H atoms prefer to be 

located in the neighbourhood of the Ni atoms and are covalently bonded with Ni forming 

a complex of nominal composition NiH4. The MH4 is ionically bonded to magnesium 

[188]. The ionic characteristic of Mg2NiH4 may be the reason for the release of hydrogen 

on immersion in water. 

The hydrolysis characteristics of Mg2Ni and Mg2NiH4 in water and in alkaline solutions 

may be the reason for the rapid degradation and a poor cycle life of Mg2Ni in alkaline 

solution. Hence, Mg2Ni is not suitable for use as electrodes in rechargeable batteries. In 

addition, their electrochemical discharge capacities cannot be improved through 

98 



Chapter IV: The hydrogen storage properties of Mg2Ni and the discovery of its 
hydrolysis behavior 

generating nano-crystalline Mg2Ni since reducing the Mg2Ni particle size will accelerate 

the hydrolysis rate. 

4.6 Summary 

The main conclusions from this study are as follows: 

1. The in-situ synthesized Mg2Ni particles did not reach their maximum hydrogen 

storage capacity (3.6wt%) on the first hydrogenation cycle at 280°C and 300°C due to 

the limitations of the hydrogen diffusion kinetics. 

2. Both the in-situ synthesized Mg2Ni and the as-cast Mg2Ni exhibited a near zero 

charge/discharge capacity. 

3. When Mg2Ni is immersed in water or in an alkaline solution, it will spontaneously 

react with water to form Mg(OH)2, Ni and hydrogen. 

4. When Mg2NiH4 is immersed in water or in an alkaline solution, it will spontaneously 

first dissociate into Mg2Ni and hydrogen. The Mg2Ni will then further hydrolyze into 

Mg(OH)2 and Ni. 

5. Reducing the pH value of the solution (adding an acid) will accelerate the hydrolysis 

of Mg2Ni and Mg2NiH4. 

6. The hydrolysis characteristics of Mg2Ni and Mg2NiH4 suggest that they are not 

suitable for use as electrodes in rechargeable batteries. 
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CHAPTER FIVE: HYDROLYSIS BEHAVIOUR OF Ni 

MAGNIDES AND ITS APPLICATION TO THE SYNTHESIS 

OF Ni NANOPARTICLES 

5.1 Introduction 

As has been discussed in Chapter 4, High-resolution TEM images show that there were 

many nanocrystallites in the hydrolysis product of Mg2Ni. Besides amorphous Mg(OH)2, 

some of these nanocrystallites were Ni. If the hydrolysis byproduct of Mg2Ni, Mg(OH)2, 

is carefully removed by a dilute acid, Ni nanoparticles are left. Therefore, the hydrolysis 

of Mg2Ni can be utilized to produce Ni nanoparticles. The characteristics of the Ni 

nanoparticles prepared by a hydrolysis method are reported in detail in this chapter. 

Besides Mg2Ni, there is another intermetallic compound, MgNi2, in the binary Mg-Ni 

system. MgNi2 has a hexagonal C36 structure. The stacking of the Mg dimers is 

ABACABAC. Although, MgNi2, a Ni-rich phase, does not have a continuous Mg 

skeleton like Mg2Ni, Mg atoms form a series of continuous layers in the MgNi2 

structure[189]. This kind of lattice structure may be helpful for the hydrolysis of MgNi2. 

It was thus thought that an investigation of the hydrolysis of MgNi2 would help us further 

understand whether hydrolysis is a common phenomenon for magnides. 
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5.2 Synthesis of Ni nanoparticles by hydrolysis of Mg2Ni 

The Mg(OH)2 in the hydrolysis product of Mg2Ni in distilled water for 120h was 

carefully removed using dilute hydrochloric acid. After the soluble MgCl2 was rinsed 

away, three characteristic peaks in the XRD pattern for the final solid product were 

indexed as the face-centered cubic (FCC) structure of Ni, in accordance with the reported 

XRD data (JCPDS file No. 65-2865) as shown in Fig.5.1. Some very small theophrastite 

(Ni(OH)2, JCPDS file No. 14-0117) peaks were identified (see Fig.5.1), which suggests 

that the final product consisted of Ni and a small amount of Ni(OH)2. 
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Fig.5.1 XRD powder diffraction patterns for Ni nanoparticles produced by hydrolysis of 

Mg2Ni. 
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Fig.5.2 TEM images of Ni nanoparticles, a) a cluster of Ni nanoparticles, b) discrete Ni 

nanoparticles. 
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Since no surfactant was used in these experiments, and the Ni particles resulting from the 

hydrolysis of Mg2Ni were very small, the Ni particles generally agglomerated together 

after they were stored in solution for several days (see Fig.5.2a). However, some discrete 

Ni particles could occasionally be observed (see Fig.5.2b). These discrete Ni particles are 

close to spherical in shape and have a size of about 10 nm. Fig.5.3 shows that these 

nanoparticles are Ni nanoparticles because the spacing of the lattice fringes was about 

0.208nm (the spacing of the (111) planes). The spacing of the lattice fringes for the 

particles in Fig.5.4 was 0.174nm, which is close to 0.176nm, the spacing of the (200) 

planes in Ni. Five small facets can be observed in the Inverse Fast Fourier Transform 

image at the upper-right corner of Fig.5.4, which suggests that some Ni nanoparticles 

were polyhedrons. 
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Fig.5.3 HRTEM image of individual Ni nanoparticles. 
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Fig. 5.4 HRTEM image of individual Ni nanoparticle (corresponding Inverse Fast Fourier 

Transform image at the upper-right corner). 
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Fig.5.5 EDS spectrum of Ni nanoparticles produced by hydrolysis of Mg2>Ji. 

10 15 

Diameter (nm) 

25 

Fig.5.6 Particle size distribution of Ni nanoparticles produced by hydrolysis of Mg2Ni. 
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The result of EDS analysis(see Fig.5.5) shows that some Mg and oxygen impurities are 

present in the Ni nanoparticles. Some of these impurities came from any remaining 

Mg(OH)2, and some oxygen impurities could come from Ni(OH)2. 

Fig.5.6 shows that the size of the Ni particles ranged from several nanometers to around 

20nm with a mean size of 11.7nm. 

Fig. 5.7 shows the nitrogen adsorption and desorption curves for the Ni particles. 

Calculations based on the curves suggest that the specific surface area of the Ni particles 

is 43.99m2/g. The theoretical mean diameter is about 15.3nm on the basis of the specific 

surface area if the Ni nanoparticles were assumed to be a spherical with the same 

diameter, which is slightly higher than the mean diameter (11.7nm ) measured by a 

Zetasizer 3000HS instrument (no drying). The difference could result from the drying 

process. 
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Fig.5.7 Nitrogen adsorption (•) and desorption (V) curves of Ni nanoparticles at 77.2 K. 

The high chemical affinity of the magnesium atoms in the Mg2Ni compound to oxygen 

leads to the selective oxidation of magnesium and protects the newly formed Ni 

nanoparticles from oxidation. Hence, before the Mg2Ni particles are totally consumed by 

hydrolysis, the Ni nanoparticles will not oxidize and will have an opportunity to grow in 

size. After all the Mg2Ni particles are consumed, the protection of Ni nanoparticles from 

oxidation will be lost. The Ni nanoparticles could then be oxidized by the dissolved 

oxygen in the solution during hydrolysis and removal of Mg(OH)2 by using dilute acid. 

The oxidation reaction is as follows: 

2Ni<» + 2H20 (0 + 0 2 (g) -» 2Ni(OH)2(s) (5-1) 
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Ni(OH)2 is a weak alkali. A decrease in the acidity of the solution would reduce the 

oxidation rate of the Ni nanoparticles. 

It is generally thought that Ni(OH)2 is formed on the surfaces of Ni nanoparticles because 

of the oxidation of Ni nanoparticles in the solution. Only very small Ni crystallites were 

observed in the hydrolysis product. This means that Ni nanoparticles could be growing in 

size during removal of Mg(OH)2-

The formation of a layer of Ni hydroxide on the surface of the Ni nanoparticles might 

give rise to a growth arrest of the Ni nanoparticles. Hence, the Ni nanoparticle size is 

determined by the temperature and the concentration of both Mg2Ni and oxygen. 

The oxidation of any Ni nanoparticles prepared by the hydrolysis method requires 

dissolved oxygen. If there is no dissolved oxygen in solution, Reaction 5-1 can not take 

place. Therefore, if all preparation procedures were carried out in a near-zero oxygen 

environment, Ni nanoparticles with low oxygen content could be synthesized by this 

method. 

5.3 Hydrolysis of MgNi2 

Mg and Ni powders with a 1:3 weight ratio were blended for 1 hour under an argon 

atmosphere. The mixture was melted at 900°C for 2 hours in a mild steel crucible under a 

protective gas (Sulfur Hexafluoride SF6 0.5% + Carbon Dioxide C02). 
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Fig.5.8 Powder XRD patterns for a) the as-cast MgNi2 alloy, b) its hydrolysis product in 

distilled water for 120h, c) Ni nanoparticles. 

In order to avoid formation of the Ni solid solution phase due to the segregation of Ni, 

and the loss of magnesium (evaporation and oxidation) at high temperatures during 

preparation, a composition of 75wt% Ni and 25wt%Mg was selected in this study. As a 

result, the as-cast MgNi2 alloys consist of both Mg2Ni and MgNi2 compounds (see 

Fig.5.8a). No Ni diffraction peaks were observed in Fig.8a, which shows that all Ni 

powders in the initial materials were totally converted into Mg2Ni or MgNi2 during 

melting and casting. 

The as-cast MgNi2 ingot was ball-milled for 2 hour under an argon atmosphere. 10 grams 

of the ball-milled as-cast MgNi2 powders was used for the hydrolysis experiment. Once 

the ball-milled MgNi2 powders were immersed in 500ml distilled water, many fine 

hydrogen bubbles were immediately released. The hydrolysis of MgNi2 was similar to 
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that of Mg2Ni, but milder. The PH value for the solution is also about 10 to 11 because 

the solubility of product constants of Mg(OH)2 is 5.6x10"12. 

The XRD results (see Fig.5.8b) suggest that the hydrolysis product of the ball-milled 

MgNi2 particles consisted of Mg(OH)2 and Ni. In other words, both Mg2Ni and MgNi2 

were hydrolyzed into Mg(OH)2 and Ni at room temperature. The broad Ni diffraction 

peaks suggest that the crystallite size of Ni nanoparticles prepared by hydrolysis ofMgNi2 

was fairly small. No MgNi2 diffraction peaks were observed in Fig.5.8b, which shows 

that the hydrolysis of MgNi2 was complete after being immersed into distilled water and 

stirred for 120h. 

A possible reaction for the hydrolysis of MgNi2 is given as follows: 

MgNi2 (s) + 2H20(/) -> Mg(OH)2(s) +2Ni +H2(g) (5-2) 

The standard formation enthalpies and the standard entropies for Mg(OH)2, H2O, and 

MgNi2 are -924.7KJ/mol and 63.24J/°Omol, -285.53 KJ/mol and 69.95J/°Omol[184, 

185], and are -56.47 KJ/mol and 88.68 J/°Omol, respectively. The standard entropies for 

Ni and H2 are 29.85J/°Omol and 130.68 J/°Omol, respectively. The free energy change 

AGi for Reaction 5-2 is as follows: 

AG5_2 = -304.65KJ/mol + i? r in^ ( ° t f ) 2 f^ (5-3) 
aMgNi2

aH20 

From a thermodynamics viewpoint, the hydrolysis reaction of MgNi2 is spontaneous. 

The morphology of the hydrolysis product of MgNi2 is shown in Fig.5.9. There are many 

membranes and needle-like rods in the hydrolysis product. In fact, these needle-like rods 

are rolled-up membranes. The morphology of the hydrolysis product of MgNi2 was very 

similar to that of Mg2Ni. 
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High-resolution TEM images of the membranes (see Figs.5.10a and 5.10b) shows that 

there are many small crystallites in these membranes. The spacing of the lattice fringes 

for these crystallites in the rim of the membranes (see Fig.5.10a) ranged from 0.228nm to 

0.247nm, which is close to 0.2367nm, the spacings of the (101) planes in Mg(OH)2. 

Sometimes, irregular crystallites can be observed in the membranes as shown in Fig.5.10b. 

The spacing of the lattice fringes for these crystallites was about 0.208nm, which close to 

0.2035nm, the (111) plane spacing in Ni. Therefore, those crystallites with a lattice fringe 

spacing close to 0.208nm were from the (111) planes of the Ni nanoparticles and the 

crystallites with a lattice fringe spacing ranged from 0.228nm to 0.247nm were from the 

(111) planes of crystalline Mg(OH)2. 
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Fig.5.9 TEM image of the hydrolysis product of MgNi2. 
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Fig.5.10 High resolution TEM image of (a) Mg(OH) 2, and b) Ni nanoparticles in the 

hydrolysis product of MgNi2. 
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The EDS spectrum of the hydrolysis product (see Fig.5.11) shows that these membranes 

contained Mg and O and Ni. In addition, these membranes should contain some hydrogen 

that cannot be detected by EDS due to the limitation of test technology. 
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Fig.5.11 EDS spectrum of the hydrolysis product of MgNi2 (membranes). 

5.4 Synthesis of Ni nanoparticles by hydrolysis of MgNi2 

After the ball-milled MgNi2 powders were immersed in distilled water and stirred for 48h, 

0.5M hydrochloric acid was very slowly added in the solution till the pH value of the 

solution remained stable at 5-6. As a result, the by-product (Mg(OH)2) was totally 

dissolved and formed soluble MgCl2. Subsequently, the MgCb was rinsed out using 

distilled water, followed by ethanol. 

The XRD results show that Ni and a small amount of Ni(OH)2 were present in the final 

product (see Fig.5.8c). The crystalline nature of the Ni nanoparticles was confirmed from 

these Ni peaks in the XRD pattern in Fig.5.8c. 
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The oxidation behavior of Ni nanoparticles prepared by hydrolysis of MgNi2 was very 

similar to that produced by Mg2Ni. The newly formed Ni nanoparticles in an aqueous 

solution would readily react with the dissolved oxygen to form Ni(OH)2 after the 

hydrolysis of MgNi2 was totally complete. Any oxidation of the Ni nanoparticles requires 

the presence of dissolved oxygen. Therefore, Ni nanoparticles with a low oxygen content 

can be produced by this method in a near-zero oxygen environment. 

The morphology of Ni nanoparticles after removal of Mg(OH)2 were close to spherical in 

shape with a size of about lOnm (see Figs 5.12a and 5.12b). High-resolution TEM image 

(see Fig.5.13) confirm that these nanoparticles were Ni nanoparticles because the spacing 

of the lattice fringes was about 0.208nm. The spherical shape of the Ni nanoparticles was 

significantly different from the irregular Ni nanoparticles in the hydrolysis product 

(Fig.5.10). The results suggest that the Ni atoms on the surface of the Ni nanoparticles 

had undergone rearrangement during removal of Mg(OH)2. 

115 



Chapter V. Hydrolysis behaviour of Ni magnides and its application to the 
synthesis of Ni nanoparticles 

i i 

* .>«*«? *;*r .rf„..., 

•.<&*•• ; ** * r < 5 » - # ' .-

. 2 ^ •*3E*I •••••** ^ 

• ^ 

a 

W W 

b 

i lMH t f& t ^ , & M I 
9H - # . 

JftK ' - # * « 

•'0 
* .IW^" 

;.*-**ari 

•fe 
c jfJW 

i 

* * 
«• » * • • * 4 • 

* 

: * . . . • * • ; 

Fig.5.12 TEM images of the Ni nanoparticles prepared by hydrolysis of MgNi2, a) a 

cluster of Ni nanoparticles, b) discrete Ni nanoparticles. 
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Fig.5.13 High resolution TEM image of individual Ni nanoparticles prepared by 

hydrolysis of MgNi2. 
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Fig.5.14 EDS spectrum of the cluster of Ni nanoparticles prepared by hydrolysis of 

MgNi2 

A large amount of Ni, a small amount of O, and traces of Mg and CI were detected by 

EDS in the cluster of Ni nanoparticles (see Fig.5.14). The Mg and CI probably came 

from the remnants of the dissolved product of Mg(OH)2 after rinsing in dilute acid. 

The size of the Ni nanoparticles ranged from 8.3nm to 22.2nm with a mean diameter of 

16.1nm as shown in Fig.5.15, which was slightly coarser than the Ni nanoparticles 

derived from the hydrolysis of Mg2Ni. It is generally thought that the newly-formed 

Mg(OH)2 has to precipitate from water in the vicinity of the Mg dissolution sites due to 

small solubility of Mg(OH)2 in water. Therefore, the existence of the Mg(OH)2 particles 

will assist the formation of very fine Ni nanoparticles. The concentration of Mg(OH)2 

particles in the hydrolysis product of MgNi2 is less than that in the hydrolysis product of 
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Mg2Ni. Thus, the Ni nanoparticles have more opportunity to grow during hydrolysis of 

MgNi2. 
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Fig.5.15 Particle size distribution of the Ni nanoparticles prepared by hydrolysis of MgNi2 

The initial materials used in this hydrolysis method can be readily fabricated using a 

melting-casting method on a large scale. The hydrolysis processing of the metal and 

magnesium intermetallics, and the removal of Mg(OH)2, can also be scaled up. Therefore, 

compared with conventional preparation methods for Ni particles, this method has a 

greater potential for economical production of Ni nanoparticles on a large scale. 

Compared with using Mg2Ni, using the hydrolysis behavior of MgNi2 to produce Ni 

nanoparticles offers a higher efficiency, saves raw materials (esp. Mg) and reduces the 

pollution resulting from the dissolution of the hydrolysis byproduct (Mg(OH)2) by using 

an acid. 
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5.5 Summary 

The main conclusions from this chapter are summarized as follows: 

1. MgNi2 spontaneously undergoes hydrolysis in water at room temperature, to form 

Mg(OH)2, Ni and hydrogen as is the case for the hydrolysis of Mg2Ni. Therefore, Ni 

nanoparticles can be produced by hydrolysis of either MgNi2 or MgNi2. 

2. The Ni nanoparticles prepared by hydrolysis of both Mg2Ni and MgNi2 were spherical 

in shape (or polyhedrons). The size of the Ni nanoparticles prepared by hydrolysis of 

MgNi2 ranged from 8.3nm to 22.2nm with a mean diameter of 16.1nm, which was 

slightly coarser than the Ni nanoparticles derived from the hydrolysis of Mg2Ni, 

which had a mean size of around 10 nm. The size difference could be related to the 

fact that the concentration of Mg(OH)2 in the hydrolysis product of MgNi2 is less than 

that in the hydrolysis product of Mg2Ni. Hence, the Ni nanoparticles prepared by 

hydrolysis of Mg2Ni have more opportunities to grow during hydrolysis of MgNi2. 

3. Compared with conventional preparation methods for Ni nanoparticles, the hydrolysis 

of either Mg2Ni or MgNi2 has the potential to inexpensively produce Ni nanoparticles 

on a large scale. 

4. Before the Mg2Ni or MgNi2 particles are totally hydrolyzed, the Ni nanoparticles are 

protected from oxidation due to the higher chemical affinity of the magnesium atoms 

in both Mg2Ni and MgNi2 to oxygen. 

5. After the Mg2Ni or MgNij particles are consumed, the newly formed Ni nanoparticles 

will be readily oxidized into Ni(OH)2 by the dissolved oxygen in solution during 

hydrolysis and the removal of Mg(OH)2 using a dilute acid. 
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6. If all preparation procedures were conducted in a near-zero oxygen environment, Ni 

nanoparticles with low oxygen content could be synthesized by hydrolysis of both 

Mg2Ni and MgNi2. 

7. Compared with using Mg2Ni, using the hydrolysis of MgNi2 to produce Ni 

nanoparticles offers a higher output efficiency, saves raw materials and reduces the 

pollution resulting from the dissolution of the hydrolysis byproduct (Mg(OH)2) by 

using an acid. 
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CHAPTER SIX: APPLICATION OF THE HYDROLYSIS 

BEHAVIOUR OF MAGNIDES IN THE SYNTHESIS OF 

NANOPARTICLES 

6.1 Introduction 

In Chapter Five, it was described how both the Mg-rich compound (Mg2Ni) and the Ni-

rich compound (MgNii) in the Mg-Ni binary system, spontaneously undergo hydrolysis 

in water at room temperature. There were many similar transition metal (or 

semiconductor element) - magnesium intermetallic compounds that could have possibly 

exhibited a hydrolysis behavior. In this Chapter, the hydrolysis behavior of Mg-Cu, Mg-

Ag, Mg-Au, Mg-Ge, and Mg-Si intermetallic compounds will be described in detail. Cu, 

Au, Ag, Si and Ge nanoparticles were produced by hydrolysis of their magnides. 

6.2 Synthesis of Cu nanoparticles by hydrolysis of Mg2Cu 

Arc-melted Mg2Cu pellets were used in this study. The chemical analysis of the arc-

melted Mg2Cu pellets (nominal formula: Mg2.o8Cu) is given in Table 3-1. There was 

surplus Mg in the initial Mg2Cu pellets. The pellets were ball-milled for 2 hours in a 

laboratory high energy ball mill SPEX8000. No significant Mg diffraction peaks were 

observed in the XRD pattern for the ball-milled Mg2Cu (see Fig.6.1a). 

Then, 10 grams of the ball-milled Mg2Cu particles were immersed in 500ml of distilled 
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water and stirred for 48h. Initially, there was a rapid release of hydrogen bubbles. The 

release rate of hydrogen bubbles then gradually slowed down. The pH value of the 

solution, determined using pH papers, rapidly reached a value of 10 to 11 in the samples 

immersed in water, and thereafter remained at that level. The hydrolysis behavior for 

Mg2Cu was thus almost identical to that of Mg2Ni. 

Brucite (Mg(OH)2) and some Mg2Cu diffraction peaks (JCPDS file No.65-1116) were 

observed in the XRD pattern for the hydrolysis product of the ball-milled Mg2Cu in 

distilled water (see Fig.6. lb). Thus, part of the Mg2Cu had hydrolyzed into Mg(OH)2 and 

Cu after being immersed in distilled water for 48h. Small diffraction peaks from Cu could 

be seen in the XRD pattern: Fig.6.1b. 

A reaction for the hydrolysis of Mg2Cu is as follows: 

Mg2Cu(s) + 4H20(/) -+ 2Mg(OH)2(s) + Cu+2H2(g) (6-1) 

The standard formation enthalpies and entropies for Mg(OH)2, H2O and Mg2Cu are -

924.7KJ/mol and -149.1J/°Omol, -285.53 KJ/mol and 69.95J/°Omol, and -29.1KJ/mol 

and 92.32 J/°Omol, respectively[185]. The standard entropies for Cu and H2 are 

33.16J/°Omol and 130.68 J/°Omol, respectively. The free energy change of the 

hydrolysis reaction (6-1) is given as follows: 

AG,, = -566.5 \KJ I mol + RT In <^>afh (6-2) 
a\iglCuaHlO 

The hydrolysis conditions in this study were room temperature, one atmosphere pressure, 

abundant water and a limited amount of Mg2Cu. The effects of the activities can, 

therefore, be neglected. The free energy change for Reaction 6-1 can be approximated as -

566.51 KJ/mol. 
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Fig.6.1 XRD powder diffraction patterns for a) ball-milled Mg2Cu particles, b) 

hydrolysis product of the ball-milled Mg2Cu particles, c) the final product (Cu 

nanoparticles). 

Thus, the thermodynamic analysis results suggest that Mg2Cu could spontaneously 

hydrolyze into Mg(OH)2, Cu and hydrogen similar to the hydrolysis of Mg2Ni. Our XRD 

results confirm the existence of a hydrolysis reaction for Mg2Cu. 

The hydrolysis process of Mg2Cu should be similar to the case of Mg2Ni. First, the 

surplus Mg in the Mg2Cu alloy reacts with water at room temperature, forms Mg(OH)2 

and releases hydrogen before Mg2Cu starts to hydrolyze. 

Mg2Cu has an orthorhombic structure (C15) with a = 0.5273nm, b=0.905nm and 

c=1.829nm. Each Cu atom is surrounded by two Cu atoms and eight Mg atoms. Each Mg 
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atom is surrounded by four Cu atoms and eleven Mg atoms[189]. A continuous skeleton 

of the larger magnesium atoms is formed in the Mg2Cu structure. Thus, Mg atoms in the 

Mg2Cu compound are still very active. Therefore, Mg atoms have a larger affinity to the 

OH' ions in water. 

When the Mg2Cu particles contact water, Mg atoms on the surface of the Mg2Cu particles 

will combine with the OH" ions and form Mg(OH)2. At the same time, Cu atoms in 

Mg2Cu will be released. However, the Cu atoms have a very weak affinity to the excess 

H+ ions resulting from the OH" ions being consumed by the combination of Mg atoms and 

OH' ions. Thus, the Cu atoms and H+ ions prefer to combine with like-species to form Cu 

particles and hydrogen gas, respectively. 

However, when dilute hydrochloric acid was carefully added into the solution, the 

hydrolysis of the ball-milled Mg2Cu particles was accelerated, and some fine hydrogen 

bubbles were released. Additional dilute hydrochloric acid was slowly added into the 

solution until the pH value of the solution reached 5-6. After the resulting MgC^ was 

rinsed out, the XRD diffraction pattern, Fig.6.1c, shows that the final product consisted of 

Cu and Cuprite (Cu20, JCPDS file No.05-0667). The widths of both Cu and Cu20 peaks 

were fairly broad, which reflects that the crystallite sizes of both Cu and CU2O were 

extremely small. 

Selective oxidation of magnesium in the Mg2Cu compound will give rise to protection of 

the newly formed Cu nanoparticles from oxidation during the hydrolysis of Mg2Cu, as is 

the case for Ni nanoparticles and Mg2Ni. Hence, until the Mg2Cu particles were totally 

consumed by hydrolysis, the Cu nanoparticles will not be attacked by the dissolved 

oxygen in solution. Once the hydrolysis of Mg2Cu is complete, the oxidation of the Cu 
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nanoparticles will readily take place due to the affinity of Cu to oxygen. 

Only C112O, but no Cu hydroxides, was found in the final product based on the XRD 

results. The oxidation reaction of Cu nanoparticles in an aqueous solution seems to be as 

follows: 

4CuO) + 02(g) ->2Cu20(s) (6-3) 

In general, the oxidation product of Ni nanoparticles in water is their hydroxides. The 

above oxidation reaction of Cu nanoparticles in water is different from that of Ni 

nanoparticles. 

However, the oxidation rate of Cu nanoparticles was sensitive to the pH value of the 

solution. The lower the pH value, the higher the oxidation rate, which is in agreement 

with the oxidation behavior of Ni nanoparticles. In addition, some yellow particles were 

observed on the surface of the deposited particles after removal of Mg(OH)2. CuOH is 

yellow, and unstable, in particular at higher temperatures. Therefore, the oxidation 

reaction of Cu nanoparticles in an aqueous solution should be as follows: 

4Cu(.y)+O2(g)+2H20(0^4CuOH(s)->2Cu2O(s)+2H20(/) (6-4) 

The oxidation of Cu nanoparticles prepared by this hydrolysis method requires the 

presence of dissolved oxygen. Theoretically, if all preparation procedures were carried out 

under a near-zero oxygen environment (under nitrogen or argon protection), Reaction 6-4 

would not take place. In other words, Cu nanoparticles with low oxygen contamination 

could be produced by this method. 
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IflOnm 

Fig.6.2 TEM images of Cu nanoparticles produced by hydrolysis of Mg2Cu, a) a cluster 

of Cu nanoparticles, b) discrete Cu nanoparticles. 
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Fig.6.3 High-resolution TEM image of an individual CU2O nanoparticle. 
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No surfactant was used in these experiments. The Cu nanoparticles were generally 

agglomerated together (see Fig.6.2a) due to the surface energy. Some discrete Cu 

nanoparticles were occasionally observed (see Fig.6.2b). These discrete Cu nanoparticles 

were close to spherical in shape and had a size of about 10 nm. 

The high-resolution TEM images for individual particles indicated that the spacing for the 

lattice fringes in Fig.6.3 was about 0.308nm, which is close to 0.302nm (the spacing of 

the (110) planes in Cu20). 

The result of particle size analysis shows that the particle size of Cu nanoparticles ranged 

from 7.7nm to 24.2nm and was about 12.3nm (see Fig. 6.4). The specific surface area of 

Cu nanoparticles, as determined by a nitrogen adsorption and desorption method (see 

Fig.6.5), was about 38m2/g. The theoretical mean diameter of Cu nanoparticles is about 

17.7nm on basis of the specific surface area if the Cu nanoparticles were assumed to be 

spherical. The differences in the mean size of the Cu nanoparticles determined by the two 

methods may have come from the agglomeration of Cu nanoparticles during evaporation 

processing. 
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Fig. 6.4 Particle size distribution of Cu nanoparticles produced by hydrolysis of Mg2Cu. 
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Fig.6.5 Nitrogen adsorption (V) and desorption curves(D) for Cu nanoparticles at 77.2 K. 
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6.3 Synthesis of Au nanoparticles by hydrolysis of Mg^Au 

Mg3Au alloy was prepared by a conventional melting and casting method using 

commercially available Mg and gold powders from Aldrich. Surplus Mg was added in 

order to improve the castability of the Mg3Au alloy. The weight ratio of Mg to Au was 

2:3. 

Mg3Au (JCPDS file No. 65-0732) and Mg diffraction peaks were observed in the XRD 

patterns for the ball-milled Mg3Au powders (see Fig.6.6). No Au peaks were observed, 

which shows that all the gold particles in the initial materials were totally converted to 

Mg3Au after the conventional melting and casting process. 

1 gram of ball-milled Mg3Au powders was immersed in 200ml of distilled water, with the 

immediate release of many fine hydrogen bubbles. The pH value of the solution, 

determined using pH strips, rapidly reached values of 10~11. The phenomenon was the 

same as previously observed for the hydrolysis of Mg2Ni and Mg2Cu. The above results 

suggest that Mg3Au should spontaneously undergo a hydrolysis in water. A possible 

reaction for the hydrolysis of Mg3Au is as follows: 

Mg3Au(s) + 6H2O(0 -> 3Mg(OH)2(s) + Au(s) +3H2(g) (6-5) 

After the ball-milled Mg3Au powders were immersed in 200ml of distilled water and 

stirred for 48h, Mg(OH)2, which is derived from the hydrolysis, was carefully dissolved 

by adding 0.5M hydrochloric acid. The soluble product, MgCl2, was rinsed out using 

distilled water and 99% pure ethanol. Due to the chemical inertness of Au, gold 

nanoparticles will not be dissolved by the dilute hydrochloric acid, and will not be 
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oxidized by the dissolved oxygen in solution, which was the cases for the Ni or Cu 

nanoparticles. Therefore, the XRD results show that the final product consisted only of 

Au particles (see Fig.6.7). The crystalline nature of the Au nanoparticles was confirmed 

from the XRD diffraction patterns. 

Since no surfactant was used in this study, most of the Au nanoparticles were 

agglomerated because of the high surface energy (see Fig.6.8a). Discrete Au 

nanoparticles were sometimes observed (see Fig.6.8b). The high-resolution TEM image 

for individual nanoparticles (see Fig.6.9) shows that the spacings for the lattice fringes of 

two indicated nanoparticles are 0.23 lnm and 0.235nm, respectively. This is close to the 

interplanar spacing for the (111) planes of Au (0.2355nm). In addition, the fringes for 

individual particles indicate that some of the small Au nanoparticles are single crystals. 

The Au nanoparticles were predominantly spherical in shape and had a size of about 10 

nm, which agrees with the results of the particle size analysis (see Fig.6.10). The size of 

the Au nanoparticles ranged from 6. lnm to 15.3nm with an average size of about 8.4nm. 

The EDS spectrum shows that the Au nanoparticles have around 1.5wt% Rb impurities 

(see Fig.6.11). The most probable source of the Rb impurities was from the initial Au 

powders. Except for Au, Rb, C and Cu, no other elements were observed in the EDS 

spectrum. The absence of characteristic peaks from elemental oxygen and nitrogen 

indicates that these Au nanoparticles were pure and free of oxides. In addition, the 

amount of Rb is not high enough to form the Au-richest intermetallic compound (Au5Rb) 

between Au and Rb. The solubility of Rb in Au is negligible. Hence, Rb might segregate 

within the Au nanoparticles. 
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Fig.6.6 XRD powder diffraction pattern of as-cast Mg3Au pellets showing excess Mg. 
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Fig.6.7 XRD powder diffraction pattern of the Au nanoparticles produced by hydrolysis 

ofMg3Au. 
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.•*. 

Fig.6.8 TEM images for Au nanoparticles produced by hydrolysis of Mg3Au, a) a cluster 

of Au nanoparticles, b) discrete Au nanoparticles. 
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Fig.6.9 High-resolution TEM image of individual Au nanoparticles produced by 

hydrolysis of Mg3 Au. 
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Fig.6.10 Particle size distribution of Au nanoparticles produced by hydrolysis of Mg3Au. 
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Fig.6.11 EDS spectrum for Au nanoparticles produced by hydrolysis of Mg3Au (C and 

Cu peaks resulted from Cu grid). 
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6.4 Synthesis of Ag nanoparticles by hydrolysis of Mg-Ag intermetallics 

The Mg-Ag intermetallic cast ingots were prepared by a conventional melting and casting 

method using commercially available Mg and silver particles. The weight ratio of Mg to 

Ag was 1:1. The Mg-Ag intermetallic ingots were broken into small pellets, and then ball-

milled under an argon atmosphere for 2 hours in a laboratory high energy ball mill 

SPEX8000 

1 gram of the ball-milled particles were immersed in 200ml of distilled water and stirred 

for 48h. Mg54Agi7 (JCPDS file No.65-8314), MgAg (JCPDS file No.29-0871) and 

periclase (MgO, JCPDS file No.45-0946) diffraction peaks were observed in the XRD 

pattern of the as-cast Ag-Mg pellets (see Fig.6.12). No Ag diffraction peaks were seen in 

the XRD pattern, indicating that all the silver in the initial material has been totally 

converted into Mg-Ag intermetallics after melting and casting. In addition, although a 

small amount of surplus Mg was added to the initial materials, no Mg diffraction peaks 

were observed in the XRD pattern. The XRD results suggest that part of the Mg was 

oxidized during the melting and casting, leading to the formation of MgO. Due to the 

oxidation of some Mg, some MgAg phase was formed, which should not have been 

present based on the composition of the initial materials. 
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Fig.6.12 XRD powder diffraction pattern of as-cast Ag-Mg pellets. 

As 1 gram of the ball-milled particles was immersed in 200ml of distilled water, many 

fine hydrogen bubbles were immediately released. The pH value of the solution, 

determined using pH papers, rapidly reached 10 to 11. This behavior was the same as for 

the hydrolysis of Mg2Ni, Mg2Cu and Mg3Au. The results suggest that both Mg54Agn and 

MgAg could spontaneously undergo hydrolysis in water. Possible reactions for the 

hydrolysis of Mg54Agn and MgAg are as follows: 

Mg54Ag17(5)+108H2O(0->54Mg(OH)2(5)+17Ag(5)+54H2(g) (6-6) 

MgAgCy)+2H2O(0^Mg(OH)2Cy)+Ag(s)+H2(g) (6-7) 

Since the solubility of Mg(OH)2 in water is very small, the newly formed Mg(OH)2 

precipitates from the water at a site close to where Mg dissolved. It is thought that the 

formation of Mg(OH)2 particles, and the low mobility of Ag atoms at room temperature, 
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assist in the formation of very fine Ag nanoparticles. Adding a dilute acid to reduce the 

pH value of the solution during the hydrolysis should accelerate the hydrolysis rate of 

both Mg54Agi7 and MgAg. 

The XRD pattern showed that the final product consisted only of Ag particles (see 

Fig.6.13). The crystalline nature of the Ag nanoparticles can be seen from the XRD 

diffraction peaks. No silver oxide diffraction peaks were observed in the XRD pattern. 

This result indicates that Ag is inert in an aqueous solution, which is different from the 

behavior we have seen with Ni and Cu. Ni and Cu nanoparticles in an aqueous solution 

exposed to air were first oxidized to their hydroxides, but CuOH further dissociated into 

Cu20. 
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Fig.6.13 XRD powder diffraction pattern of Ag nanoparticles produced by hydrolysis of 

Mg54Agn and MgAg. 
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Fig.6.14TEM images of Ag nanoparticles produced by hydrolysis of Mg54Agn and 

MgAg, a) a cluster of Ag nanoparticles, b) and c) discrete Ag nanoparticles, respectively. 
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Fig.6.15 HRTEM image of individual Ag nanoparticles produced by hydrolysis of 

Mg54Agi7 and MgAg. 

Since no surfactant was used in this study, most of the Ag nanoparticles in the as 

prepared condition aggregated due to surface energy considerations as shown in 

Fig.6.14a. Discrete Ag nanoparticles were occasionally observed (see Figs.6.14b and 
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6.14c). High-resolution TEM images (e.g. Fig.6.15) for the individual Ag 

nanoparticles indicates that they are highly crystalline and are single crystals. The 

interplanar spacings for the two nanoparticles shown in Fig.6.18 are 0.2355nm 

(smaller particle) and 0.2268nm (larger particle), respectively, which are close to the 

(111) planar spacing of Ag (0.2359nm). No obvious oxide layers were observed on 

the surface of the Ag nanoparticles. 

These discrete silver nanoparticles were close to spherical in shape with a size of about 

lOnm, which agrees with the results of particle size analysis by Zetasizer 3000HS where 

it was found that the size of the Ag nanoparticles ranged from 5.4nm to 21.5nm with an 

average size of 8.4nm (see Fig.6.16). The chemical composition of the Ag nanoparticles 

as determined by EDS show no significant amounts of oxygen and Mg (see Fig.6.17), 

which further confirms that the Ag nanoparticles are resistant to oxidation from the 

dissolved oxygen in aqueous solution. 

142 



Chapter VI. Application of the hydrolysis behaviour of magnides in the 
synthesis of nanoparticles 

5 10 15 20 

Diamter (nm) 

30 

Fig.6.16 Particle size distribution of Ag nanoparticles produced by hydrolysis of 

Mg54Agi7 and MgAg. 
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Fig.6.17 EDS pattern of Ag nanoparticles produced by hydrolysis of Mg54Agn and MgAg. 
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6.5. Study on hydrolysis behavior of Mg2Ge 

Mg2Ge was synthesized by a conventional melting and casting method. Some surplus Mg 

was added in order to improve the castability of the Mg2Ge alloy. The weight ratio of Mg 

to Ge was 3:2. 10 gram of the ball-milled Mg2Ge particles were immersed into 500ml of 

distilled water and stirred for 48h at room temperature or 80°C. Then, the hydrolyzed 

product, Mg(OH)2, was carefully removed from the hydrolysis product by adding 0.5M 

hydrochloric acid. The sample was rinsed three times using distilled water, then three 

times using 99% pure ethanol. 
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Fig.6.18 XRD powder diffraction pattern of the Mg2Ge ingots. 

Besides surplus Mg and periclase (MgO, JCPDS file No.45-0946)) diffraction peaks, 

Mg2Ge diffraction peaks (JCPDS file No.65-2990) were observed in the XRD pattern for 

the ball-milled Mg2Ge powders (see Fig.6.18). No Ge diffraction peaks were observed in 

Fig. 18, which shows that all Ge powders in the initial materials were totally converted 
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into Mg2Ge during conventional melting and casting. Since part of the surplus Mg was 

oxidized to periclase during the melting and casting, MgO was found in the Mg2Ge 

pellets. 

When 1 gram of the ball-milled powders was immersed in 200ml distilled water, many 

fine hydrogen bubbles were immediately released. The pH value of the solution, 

determined by pH papers, rapidly reached about 10 to 11, which is in agreement with the 

10.4 pH value for a saturated Mg(OH)2 solution based on the solubility of product 

constants of Mg(OH)2, which is 5.6x10"12. 
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Fig. 19 XRD powder diffraction pattern of hydrolysis product of the ball-milled Mg2Ge 

powders. 

The XRD diffraction pattern of hydrolysis product of the ball-milled Mg2Ge particles, Fig. 

6.19, shows that there are Mg2Ge(JCPDS file No.34-0669), Mg(OH)2 and 

Mg2Ge04(JCPDS file No. 11-0013). In addition, there is strong diffraction of an unknown 
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amorphous phase in Fig.6.19, which has not been observed in the diffraction patterns for 

the hydrolysis product of transition metal magnides (see Figs.4.1 la, 5.8b and 6.1b). 

A hydrolysis reaction is assumed to have take place because of the presence of Mg2GeC>4 

in the product. A large amount of Mg2Ge in the hydrolysis product suggests that the 

hydrolysis of Mg2Ge is very sluggish. The unknown amorphous phase was assumed to be 

newly-formed amorphous Ge particles. 

A possible reaction for the hydrolysis of Mg2Ge is thus as follows: 

Mg2Ge(s) + 4H20(/) -> 2Mg(OH)2(s) + Ge(»+ 2H2(g) (6-8) 

This reaction spontaneously takes place at room temperature under one atmosphere, but 

proceeds fairly sluggishly. After the ball-milled Mg2Ge powders were immersed in 200ml 

distilled water and stirred for 48 hours, 0.5M hydrochloric acid was slowly added in the 

solution. A release of many fine hydrogen bubbles were observed, which means that the 

hydrolysis of Mg2Ge was not completed within 48h. As the pH value of the solution was 

reduced by adding the hydrochloric acid, the hydrolysis rate of Mg2Ge was significantly 

accelerated. The "hydrolysis" reaction of Mg2Ge then changes into an acid dissolution 

reaction as follows: 

Mg2Ge(s) +4HC1(/) -> 2MgCl2(s) + Ge(s)+ 2H2(g) (6-9) 

Dilute hydrochloric acid was slowly added into the solution until the pH value of the 

solution remained stable at 4. As a result, the remained Mg2Ge and the by-product 

(Mg(OH)2) were totally dissolved and formed MgCl2. Subsequently, MgCl2 was rinsed 

out using distilled water, followed by ethanol. The Ge diffraction peaks (JCPDS file No. 

65-0333) and some small germania (Ge02) diffraction peaks (JCPDS file No.36-1463) 
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were observed in the XRD pattern for the final product as shown in Fig.6.20. The Ge 

diffraction peaks suggest that it is crystalline, but has a poor crystallinity since the lattice 

fringes in the high-resolution TEM images of the individual Ge nanoparticles were very 

weak (see Fig.6.21) 
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Fig.6.20 XRD powder diffraction pattern of the Ge nanocrystals derived from 

hydrolysis and acid rinsing of Mg2Ge at room temperature. 

It was worth noting that the Ge was amorphous in the hydrolysis product, but was 

crystalline in the final product after acid rinsing. The difference could be caused by the 

evaporation process of the solution at 60°C. 

In general, the newly formed transition metal nanoparticles can be protected from 

oxidation before hydrolysis of transition metal magnides was complete. However, in this 

case, the existence of both Mg2Ge and Mg2Ge04 in the hydrolysis product suggests that 

there is no such protection during hydrolysis of Mg2Ge. 
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The overall hydrolysis reaction of magnides and the protection reaction of the newly-

formed nanoparticles from oxidation can be written as follows; 

T x M g » + 2yU20(l) -> ^Mg(OH)2(5) + xT(s)+yU2(g) (6 -10) 

T ,Mg»+J>H 2 0( / )+y20 2 (g)^ yMg(OH)2(s) + xT(s) (6-11) 

Where, T is transition metal, Ge or Si. 

These reactions occur at room temperature under one atmosphere pressure. Therefore, the 

free energy changes for the reactions can be approximately considered as the standard 

free energy changes, if the activities are neglected. Therefore, the free energy changes 

AG6-10 and AG6-11 are given as follows: 

AG6-io=yAG°Mg(OH)2 + xAG°T+ yAG°m - AG0
TxMgy - 2yAG°B20 (6-12) 

AG6.i i=yAG°Mg(OH)2 + xAG°T - AG0
T*Mgy - MG°H2o - jV2AG°02 (6-13) 

The difference in the standard free energy changes between Reaction 6-11 and Reaction 

6-10 is: 

AG6.i4= AG6-n - AG6.1o=^AG°H20 - i/2AG°02 - AG°H2 ) (6-14) 

Therefore, AG6-14 is approximately equivalent to y times the standard free energy change 

for water formation. Hence, AG6-14 is negative at room temperature under one atmosphere 

pressure. In other words, Reaction 6-11 is more favorable than Reaction 6-10. 

However, due to very small solubility and slow dissolution rate of oxygen in water (the 

controlling step of Reaction 6-11) and the high decomposition rate of transition metal 

magnides in water, the hydrolysis reaction of transition metal magnides still dominates 

the decomposition of these magnides in water. 
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In the case of Mg2Ge, its sluggish decomposition means that Reaction 6-11 is comparable 

with, or even dominant over, Reaction 6-10. Thus, the newly formed Ge particles could 

be readily attacked by the dissolved oxygen in the solution. 

Only germania, and no Ge hydroxides, was found in the final product. Hence, the 

oxidation reaction of Ge nanocrystals seems to be as follows: 

GeO) + 0 2 (g) -+ Ge02(s) (6-15) 

The pH value of the aqueous solution of Ge nanoparticles, determined by pH paper, was 

around 5, which suggests the existence of Ge(OH)4. The reaction can be written as 

follows: 

Ge(s) + 02(g) + 2H20(/) -+ Ge(OH)4(s) (6-16) 

Ge(OH)4 is an weak alkali. Mg(OH)2, the byproduct in Reactions 6-10 and 6-11, is a 

weak acid. Ge(OH)4 will react with Mg(OH)2, and form Mg2Ge04. As a result, Mg2Ge04 

was found in the hydrolysis product of Mg2Ge. 

In addition, Ge(OH)4 is an unstable intermediate product, and would dissociate into 

germania and water during the evaporation of ethanol. The dissociation reaction of 

Ge(OH)4 can be written as follows: 

Ge(OH)4(s) -> Ge02(s) + 2H2O(0 (6-17) 

When Mg2Ge was rinsed by a dilute acid, Reaction 6-9 dominated the overall process, 

and Reactions 6-10 and 6-11 were negligible. Thus, oxidation of the newly formed Ge 

could be minimized. 

The as-prepared Ge nanoparticles were generally aggregated together as shown in 

Fig.6.21. The chemical composition of the Ge nanoparticles determined by EDS shows 
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that only oxygen and Ge, no Mg was detected (see Fig.6.22). The results indicate 

Mg(OH)2 or MgCb was totally removed from the final product. No discrete Ge 

nanoparticles were observed unlike transition metal nanoparticles prepared by the 

hydrolysis method. Therefore, the aggregation of the Ge nanoparticles cannot be totally 

attributed to high surface energy, and may be related with the intrinsic chemical 

characteristics of Ge(OH)4. The unstable Ge(OH)4 has a strong tendency to undergo self 

condensation reactions to give compounds containing the Ge-O-Ge linkage. Thus, there is 

a chemical affinity among the unstable Ge(OH)4 layers on different Ge nanocrystals, 

which may be the reason that the as-prepared Ge nanoparticles were always aggregated 

together. 

A general trend for the formation of crystalline nuclei of semiconductor elements, eg. Ge 

and Si, is that the more covalent the element, the higher is its crystallization 

temperature[190]. At low temperatures, amorphous phases become more common as the 

material becomes more covalent. Hence, it has been reported that both high temperature 

and high pressure are generally required to obtain Ge and Si nanocrystals by a solution 

method[191]. 
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Fig.6.21 The newly formed Ge produced from hydrolysis of Mg2Ge at room 

temperature, a) TEM image, b) HRTEM. 
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Fig. 6.22 EDS spectrum for the newly formed Ge produced from hydrolysis of Mg2Ge at 

room temperature. 

Thus, to improve the crystallinity of the newly formed Ge derived from the hydrolysis of 

Mg2Ge, the hydrolysis temperature should be increased. To test this hypothesis, ball-

milled Mg2Ge particles were hydrolyzed at 80°C for 24h and then cooled down to room 

temperature. 0.5M hydrochloric acid was carefully and slowly added to the solution to 

remove the Mg(OH)2 from the hydrolysis product. Initially, many fine hydrogen bubbles 

were released. The result suggests that the hydrolysis of Mg2Ge was not complete after 24 

hours. When the pH value of the solution reached 4, the addition of the dilute acid was 

stopped. The final product was rinsed three times using distilled water, then three times 

using 99% pure ethanol. 
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The XRD powder diffraction pattern, Fig. 6.23, shows that the final product derived from 

hydrolysis of Mg2Ge at 80°C for 24h consisted of Ge ((JCPDS file No. 65-0333) and 

Mg3Ge205(OH)4 (JCPDS file No. 11-0250). Compared with the result for hydrolysis at 

room temperature, a new product, Mg3Ge205(OH)4, was found in the final product 

hydrolyzed at 80°C. The result suggests that hydrolysis at high temperatures promoted 

Reaction 6-11 rather than Reaction 6-10. As a result, more Ge(OH)4 was generated 

compared with hydolysis at room temperature. Ge(OH)4 reacted with Mg(OH)2 and 

formed Mg3Ge20s(OH)4. The reaction can be written as follow: 

2Ge(OH)4 (s) + 3Mg(OH)2<» -> Mg3Ge205(OH)4 (s) + 5H20 (/) (6-18) 

Compared with Mg(OH)2, Mg3Ge205(OH)4 was relatively difficult to remove by adding a 

dilute acid till the pH value reached a value of 4. As a result, Mg3Ge2C>5(OH)4 was 

always found in the hydrolysis product of Mg2Ge at high temperatures, i.e. 80°C. 

If Mg2Ge underwent hydrolysis at higher temperatures under a zero oxygen environment, 

Reactions 6-11,6-17 and 6-18 would not take place, and Ge nanocrystals could probably 

be produced. 
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Fig.6.23 XRD powder diffraction pattern of the product after hydrolyzing and acid 

rinsing at 80°C for 24h. 

6.6. Study on hydrolysis behavior of Mg2Si 

Mg2Si was synthesized by a conventional melting and casting method. Some surplus Mg 

was added in order to improve the castability of the Mg2Si alloy. The weight ratio of Mg 

to Si is 3:1. 10 gram of the ball-milled Mg2Si particles were immersed into 500ml of 

distilled water and stirred for 48h at room temperature, 60°C or 80°C. Then, the 

hydrolyzed product, Mg(OH)2, was carefully removed from the hydrolysis product by 

adding 0.5M hydrochloric acid. The sample was rinsed three times using distilled water, 

then three times using 99% pure ethanol. 

Due to a small amount of surplus Mg in the initial materials, Mg and Periclase (MgO) 

diffraction peaks were observed in the XRD pattern for the ball-milled Mg2Si particles 

(see Fig.6.24a). In addition, the Mg2Si diffraction peaks ((JCPDS file No. 65-9365), but 
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no Si peaks, were observed, which shows that all the Si particles in the initial materials 

totally converted into Mg2Si after melting and casting. Some of the surplus Mg was 

oxidized during the melting and casting, which gave rise of the formation of MgO. 

AMg8Sii203o(OH)4 v Ms 

20 (Decree) 

Fig.6.24 XRD patterns for: a) the ball-milled Mg2Si particles, b) the hydrolysis product of 

the ball-milled Mg2Ni particles at room temperature, c) the solid product after acid rinsing 

at room temperature, d) the solid product after hydrolyzing for and acid rinsing at 60°C, e) 

the solid product after hydrolyzing and acid rinsing at 80°C. 

As the ball-milled particles of lOgram were immersed in 500ml of distilled water at room 

temperature, many fine hydrogen bubbles were immediately released. The pH value of 

the solution, determined using pH papers, soon reached about 10-11, which agrees with 

the pH value for a saturated Mg(OH)2 solution. 
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After the ball-milled Mg2Si particles were immersed into 500ml of distilled water and 

stirred for 48h at room temperature, Mg2Si, and Mg(OH)2 peaks were found in the XRD 

pattern for the hydrolyzed product (see Fig.6.24b). Diffraction from the amorphous phase 

is much weaker than that observed for the hydrolysis product of Mg2Ge. This result 

indicates that the hydrolysis rate of Mg2Si was much slower than that of transition metal 

magnides and Mg2Ge.. 

After the Mg2Si powders were immersed in water for 48h, 0.5M hydrochloric acid was 

very slowly added to the solution, and the hydrolysis of the ball-milled Mg2Si particles 

was accelerated. Many fine hydrogen bubbles were continuously released, which shows 

that the hydrolysis of Mg2Si can be promoted by increasing the pH value of the solution. 

More dilute hydrochloric acid was slowly added to the solution till the pH value of the 

solution remained stable at 4-5, and hydrogen bubbles were no longer released. This 

indicated that decomposition of the remaining Mg2Si, and the removal of Mg(OH)2 by the 

acid, were complete. 

After MgCl2 was rinsed out using distilled water and ethanol, Si (JCPDS file No.25-1402), 

H2Si205 (JCPDS file No. 27-0606) and Mg8Sii203o(OH)4 (JCPDS file No.26-1227) were 

found in the final product (see Fig.6.24c). It was worth noticing that there is a strong 

amorphous phase background, especially at the low diffraction angles. However, some 

weak Si diffraction peaks were observed, which reflects the fact that there are some Si 

crystals in the hydrolyzed product of Mg2Si. The results suggest that the Si derived from 

decomposition of Mg2Si consisted of a large amount of amorphous Si phase and a small 

amount of Si crystals. 
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During decomposition of Mg2Si by adding an acid, the newly formed Si will readily react 

with the dissolved oxygen in solution due to the strong affinity of Si to oxygen. 

The oxidation reaction of the Si nanoparticles can be written as follows: 

2Si(5) + H20(/) + 202(g) ->H2Si205(s) (6-18) 

H2Si2C>5 is called silicic acid (a weak acid with a pH value between 4 and 5). Therefore, 

the new formed H2Si205 will further react with Mg(OH)2 (a weak alkali) and form some 

magnesium silicate hydroxide. The reaction can be written as follows: 

6H2Si205 (s) + 8Mg(OH)2(s) -> Mg8Si1203o(OH)4 (s) + 12H20 (/) (6-19) 

Therefore, Mg8Sii2C>3o(OH)4 was always found in the product. 

As was the case for Ge, the as-prepared Si nanoparticles always formed aggregates as 

shown in Fig.6.25. The aggregation of the Si nanoparticles may be related to the intrinsic 

chemical characteristics of the silicon hydroxides. The silicon hydroxides (Si(OH)4) have 

a strong tendency to undergo self condensation reactions to form H2Si205. Thus, there is a 

chemical affinity between the unstable hydroxide layers on different Si nanoparticles, 

which may be the reason that the as-prepared Si nanoparticles always formed aggregates. 

The EDS analysis result (see Fig.6.26) indicates that Si, O and a small amount of Mg 

were presented in the final product. This result is in accord with the XRD analysis results. 
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Fig.6.25 TEM image of the product after hydrolysis and acid rinsing at room temperature. 
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Fig.6.26 The EDS spectrum for the membrane in Fig 6.25. 
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The XRD analysis results (see Figs.6.24c, d and e) show that the final product of 

hydrolysis at room temperature, 60°C and 80°C. consisted of both amorphous and 

crystalline Si, and MggSii203o(OH)4. There is no significant difference among the final 

product of the three samples hydrolyzed at room temperature, 60°C and 80°C. The 

hydrolysis at such low temperatures could not significantly produce the crystalline Si 

nanoparticles. 

6.7 Summary 

The main conclusions from this section of the work are as follows: 

1. Besides Ni nanoparticles, other transition metal nanoparticles (Cu, Ag and Au) have 

been successfully synthesized by hydrolysis of their magnides. These nanoparticles 

were all close to spherical in shape and had a mean size of around lOnm. 

2. Au and Ag nanoparticles prepared by this method are resistant to oxidation from the 

dissolved oxygen in an aqueous solution. The oxidation rate of Cu nanoparticles was 

sensitive to the pH value of the solution: The lower the pH value, the higher the 

oxidation rate. Cu nanoparticles in an aqueous solution were first oxidized into CuOH 

by the dissolved oxygen, which then quickly dissociated into CU2O. 

3. The hydrolysis of Mg2Ge was sluggish at room temperature under one atmosphere, 

but the hydrolysis rate of Mg2Ge can be significantly promoted by adding the 

hydrochloric acid. 

4. The hydrolysis rates of both Mg2Ge and Mg2Si are very slow. 
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CHAPTER SEVEN: STUDY ON THE HYDROLYSIS 

BEHAVIOUR OF ALUMINIDES AND SODIDES AND ITS 

APPLICATION IN PRODUCTION OF NANOPARTICLES 

7.1 Introduction 

The hydrolysis behavior of magnides has been described in detail in Chapters IV, V and 

VI. It seemed likely that the aluminides and sodides would have the same hydrolysis 

behaviour as the magnides. In this chapter, we have extended our investigation from 

magnides to aluminides and then the sodium intermetallic compounds (sodides). AI3N1 

and AI3M2 were chosen as representatives of the aluminides. Ag2Na and PtNa were 

chosen as representatives of the sodides. 

7.2 Hydrolysis of Ni aluminides 

Al3Ni, and AI3N12 alloys (nominal compositions: AI3.4M, and AIN12, respectively) were 

prepared by a conventional melting and casting method. 10 grams of the ball-milled 

Al3Ni particles were then immersed in 500ml distilled water for 120h. Since Al3Ni2 

underwent a very slow hydrolysis, the hydrolysis test of the ball-milled AI3M2 particles 

was extended to 720h. 
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7.2.1 Hydrolysis of Al3Ni 

The as-cast Al3Ni pellets consisted of Al3Ni (JCPDS file No.02-0416) and Al (see 

FigJ.la). The XRD pattern (FigJ.lb) indicates that there was some bayerite (Al(OH)3, 

(JCPDS file No.20-0011) and un-hydrolyzed Al and Al3Ni in the hydrolysis product of 

the ball-milled Al3Ni particles in water. Although, no significant Ni diffraction peaks 

were found in Fig.7.lb, the hydrolysis product of Al3Ni exhibited paramagnetism when 

examined using a magnet. Only Ni of all the potential hydrolysis products is known to 

exhibit paramagnetism. These results showed that Al3Ni can spontaneously hydrolyze at 

room temperature. When the ball-milled Al3Ni particles were immersed in distilled water, 

the pH value of the solution rapidly reached a stable value of 5~6, and thereafter 

remained at that level. 
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Fig.7.1 XRD powder diffraction patterns for a) as-cast Al3Ni alloy, b) its hydrolysis 

product in distilled water for 120h. 
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Generally, Al is more active than AI3NL Therefore, AI3M would be protected from water 

attack by hydrolysis of Al. In other words, AI3M should theoretically not be hydrolyzed 

before Al was totally converted into Al(OH)3. In this case, part of the AI3M had been 

hydrolyzed into Al(OH)3, Ni and H2 while some Al was still present. 

The hydrolysis reaction for the hydrolysis of AI3M is given as follows: 

Al3Ni(s) + 9H20(/) -> 3 Al(OH)3(s) + Ni(s) +9/2H2(g) (7-1) 

The standard formation enthalpies and the standard entropies for Al(OH)3 and AI3M are -

1284KJ/mol and 71J/°Omol, -149.5K.T/mol and 110.64 J/°C»mol, respectively [184,185]. 

The standard free energy change AG7.1 is as follows: 

AG7 , =-\21%.\lKJImol + RT\nalKO"*af"2 (7-2) 

The negative standard free energy change indicates that Reaction 7-1 is spontaneous. 

The standard free energy change for the hydrolysis reaction of AI3M is much smaller than 

that for Mg2Ni. Thus, from thermodynamic considerations, the hydrolysis of AI3M should 

be much easier than that of Mg2Ni. From a crystal structure point of view, more Al atoms 

surround a Ni atom in M3AI than Mg atoms surround a Ni atom in Mg2Ni. However, the 

hydrolysis rate of AI3M was much slower than that of Mg2Ni. This might be caused by 

the fact that the hydrolysis product, Al(OH)3, covered the whole surface of the Al 

particles and inhibited their further hydrolysis. 

7.2.2 Hydrolysis of Al3Ni2 

In order to systematically investigate the hydrolysis behavior of aluminides, the 

hydrolysis behaviour of AI3M2 was then studied. AI3M2 has a hexagonal D5i9 structure. 
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Either 3 Al atoms, or one Al atom and two Ni atoms form a trigonal omega structure, 

which can be viewed as a five-layer close-packed unit cell with stacking ABCBCA [189]. 

AI3M2 ((JCPDS file No.65-9699), Ni and some small Al3Ni diffraction peaks were 

observed in the XRD pattern of as-cast AI3M2 (Fig 7.2a). AI3M2, Ni and small amount of 

Al(OH)3 were found in the hydrolysis product (see Fig.7.2b). The pH value of the 

solution was in the range of 5 to 6. Comparing the XRD patterns before and after the ball-

milled AI3M2 particles were immersed in water for 720h, the change in intensity of the 

AbNi2 diffraction peaks was very small, which suggests that AI3M2 barely undergoes 

hydrolysis. The small amount of Al(OH)3 in the hydrolyzed product could probably result 

from the hydrolysis of the small amount of A^Ni in the initial material. 
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Fig.7.2 XRD powder diffraction patterns for a) as-cast Al3Ni2 alloy, b) its hydrolysis 

product in distilled water for 720h. 
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If Al3Ni2 were to undergo hydrolysis, the hydrolysis reaction would probably be as 

follows: 

Al3Ni2(s) + 9H20(/) -> 3Al(OH)3(s) + 2Ni(s) +9/2H2(g) (7-3) 

The standard formation enthalpy and the standard entropy for AI3M2 is -1284KJ/mol and 

71J/°Omol. The standard free energy change AG7.3 is given as follows: 

AG7 , = -U1ZA1KJImol + RT\n<0H^l;P"2 (7-4) 

From a thermodynamics viewpoint, the negative standard free energy change suggests 

that Reaction 7-3 is spontaneous. However, our experimental results showed that AI3M2 

barely undergoes hydrolysis in distilled water at room temperature. Therefore, the 

hydrolysis of AI3M2 was limited by other factors, which may include the reaction kinetics 

and crystal structure factors. From a thermodynamics viewpoint and crystal structure 

factor, the hydrolysis of AINi and AlNi3 in the Ni-Al binary system would be much 

slower than for AI3M2. 

The solubility of product constants of Al(OH)3 is 1.3 x 10"33 [184]. The corresponding 

theoretical pH value is 4.3. The experimental pH value that we measured using pH papers 

was between 4 and 5. Therefore, increasing the pH value of the solution (adding some 

alkali) will accelerate the hydrolysis of AI3NL Although the hydrolysis of Al3Ni2 barely 

proceeds in water, it can be carried out in a concentrated, hot NaOH solution [185]. 

There are two means of removing the Al(OH)3 in the hydrolysis product of aluminide, 

that is by using acids or alkalis. Due to the low acidity of Al(OH)3, using dilute 

hydrochloric acid to remove Al(OH)3 will lead to a fairly low pH value of solution. As a 

result, the chemically active transition metals such as Fe, Co, Ni, or even Cu 
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nanoparticles cannot survive in the solution, especially when it is exposed to air. Only 

chemically inert transition metals such as Au could be prepared by this method. 

The method which directly uses alkali to promote the hydrolysis of the aluminides and to 

remove Al(OH)3; is similar to the Raney method: The Raney method, which uses 

concentrated hot NaOH solution to dissolve the aluminum in the finely ground alumindes 

with the evolution of H2, will give rise to very finely divided transition metal particles. 

The method was first described in detail in 1927 in a patent issued to Raney [1]. 

7.3 Hydrolysis of sodides 

Many small Ag-Na and Pt-Na pellets (about 0.05g each) were cut from the two ingots. 

The Ag-Na or Pt-Na pellets with a total weight of about 0.5g were put into 500ml 

distilled water in a matrass (having a fine and long neck to avoid splashes resulted from 

small explosions) one by one. 

7.3.1 Hydrolysis of Ag2Na 

Both Ag2Na and PtNa pellets were synthesized at 600°C for 2 hours under a protection of 

argon and cooled down to room temperature in furnace. Ag2Na (JCPDS file No. 29-1146), 

Na and NaOH (JCPDS file No. 35-1009)diffraction peaks were observed in the XRD 

patterns for the Ag-Na pellets prepared at 600°C for 2 hours (see Fig.7.3). No Ag peaks 

were observed, which shows that all the Ag powders in the initial materials were totally 

converted to Ag2Na after in-situ synthesis. The presence of NaOH suggests that some Na 

in the pellets was oxidized by either oxygen and/or moisture in the air during testing. 
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Fig.7.3 XRD powder diffraction pattern of the Ag-Na pellets prepared at 600°C for 2 

hours. 

The oxidation product of sodium in the Ag-Na pellets was NaOH. The possible oxidation 

reactions in air are as follows: 

2Na(s) + 2H20(g) -> 2NaOH(y) + H2(g) (7-5) 

4Na(s) + 02(g) + 2H20(g) -> 4NaOH(s) (7-6) 

When the small Ag-Na pellets were dropped into a matrass, which contained 500ml 

distilled water, the hydrolysis reactions were very severe, sometimes, accompanied by 

small explosions or combustion. The solution in the matrass instantaneously became a 

colloid. 

After being rinsed in water and ethanol, and dried in flowing air, Ag nanoparticles were 

obtained. The XRD result (see Fig.7.4) indicates that the final solid product in the Ag-Na 
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sample only consisted of Ag particles (JCPDS file No. 04-0783) after rinsing with 

distilled water and ethanol. 
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Fig.7.4 XRD powder diffraction pattern of the Ag nanoparticles prepared by hydrolysis of 

Ag2Na. 

Discrete Ag nanoparticles were observed (see Fig.7.5a). The Ag nanoparticles were 

predominantly spherical in shape and had a size of around 10 nm, which agrees with the 

results of the particle size analysis (see Fig.7.6). The size of the Ag nanoparticles ranged 

from 5.4nm to 17.2nm with a mean size of 8.3nm. The high-resolution TEM image for 

individual nanoparticles (see Fig. 5b) shows that the spacing for the lattice fringes of the 

indicated nanoparticles is 0.230nm. This is close to the (111) interplanar spacing for Ag 
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(0.2259nm). In addition, the fringes for the individual particles indicate that some of the 

small Ag nanoparticles are single crystals. The EDS spectrum shows that no significant 

oxygen or Na was present (see Fig.7.7). Their result suggests that the Ag nanoparticles 

are resistant to oxidation from both the dissolved oxygen in an aqueous solution, and 

oxygen in flowing air. 
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Fig.7.5 Morphology of Ag nanoparticles prepared by hydrolysis of Ag2Na, a) TEM image, 

b) HRTEM image. 
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Fig.7.6 Particle size distribution of the Ag nanoparticles prepared by hydrolysis of Ag2Na. 
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Fig. 7.7 EDS pattern of the Ag nanoparticles prepared by hydrolysis of Ag2Na. 
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7.3.2 Hydrolysis of PtNa 

Na, PtNa (JCPDS file No. 50-2018), NaOH and Pt (JCPDS file No. 65-2868) diffraction 

peaks were observed in the XRD patterns for the Pt-Na pellets prepared at 600°C for 2 

hours (see Fig.7.8). The Pt peaks in Fig.7.8 were fairly broad, which reflects the fact that 

the crystallite size of Pt particles was extremely small (much smaller than 500nm for the 

initial Pt particles). 

It has been reported that Pt and Na with a atomic ratio of 1:1 are totally converted into 

PtNa at 350-400°C, and a lower transformation temperature can be achieved when the Pt 

concentration was less than 50 atomic percent [192]. 

According to the compositions of the initial materials in the two samples, a close to 

homogeneous alloy melt would be generated at 600°C. In other words, Pt should be 

completely converted into PtNa after cooling down. Therefore, the Pt particles in the Pt

Na pellets do not come from the initial Pt powders. In addition, the Pt diffraction peaks in 

Fig.7.8 were fairly broad, which reflects the fact that the crystallite size of the Pt particles 

was extremely small. Hence, the Pt particles in the Pt-Na pellets resulted from the 

dissociation of PtNa (Further TEM and particle size analysis results presented at this end 

of this Chapter will further verify this point). 

NaOH was observed in the Pt-Na pellets, which suggested that both sodium and PtNa 

react with moisture rather than with oxygen. 

A possible reaction of PtNa is given as follows: 

PtNa(s) + H20(g) -> Pt(s) + NaOH(s) + H2(g) (7-7) 

Only a part of the Na was oxidized in the Ag-Na pellets during storage. In comparison 

with the Ag-Na pellets, all Na in the Pt-Na pellets had oxidized into NaOH, even a part of 
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PtNa was converted into Pt. Therefore, the oxidation rate of the Pt-Na pellets in air was 

much higher than that of the Ag-Na pellets under the same conditions. 
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Fig.7.8 XRD powder diffraction pattern of the Pt-Na pellets prepared at 600°C for 2 

hours. 

Pt is a catalyst for the formation reaction of H2O from hydrogen and oxygen at room 

temperature. Sodium and PtNa prefer to react with moisture rather than with oxygen, and 

spontaneously generate hydrogen. The hydrogen under the existence of the newly formed 

Pt nanoparticles could react with oxygen and form water again. Thus, Pt is able to 

accelerate the oxidation of sodium in the Pt-Na pellets. 

When the Pt-Na pellets were dropped into a matrass, which contained 500ml distilled 

water, the reactions were very fast, sometimes, accompanied by small explosions or 

combustion. Water in the matrass instantaneously became a colloid. 

The reactions of Ag2Na and PtNa in water can be written as follows: 
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2Ag2Na (s) + 2H2O(0 -» 2NaOH(/) + 4AgO) + H2(g) 

2PtNa(s) + 2H20(/) -> 2NaOH(/) + 2Pt<Y> + H2(g) 

(7-8) 
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Fig.7.9 XRD diffraction pattern of the Pt nanoparticles prepared by hydrolysis of PtNa. 

After rinsing with water and ethanol, and evaporation in flowing air, Pt nanoparticles 

were obtained. The XRD diffraction pattern, Fig.7.9, shows that the solid final product in 

the Pt-Na sample consisted only of Pt particles. The morphology of the Pt nanoparticles 

(see Fig. 7.10a) was similar to that of the Ag nanoparticles (close to spherical in shape and 

a size of around 10 nm). The high-resolution TEM images for individual nanoparticles 

(see Fig.7.10b) show that the spacings for the lattice fringes of the nanoparticles are 

0.235nm. This is close to 0.2265nm, the interplanar spacing for the {111} planes in Pt. 

The result of particle analysis (see Fig.7.11) shows that the size of the Pt nanoparticles 

ranged from 5.6nm to 17.9nm with a mean size of 8.7nm. The size of the initial Pt 

particles used for the preparation of the Pt-Na pellets ranged from 150nm to 500nm, 
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which confirmed that these Pt nanoparticles resulted from the hydrolysis of the Pt-Na 

intermetallic compounds. 

No significant oxygen and Na was detected by EDS as shown in Fig.7.12, which indicates 

that Pt nanoparticles are resistant to oxidation from both the dissolved oxygen in an 

aqueous solution and oxygen in flowing air. 

Compared with the hydrolysis of magnides, the reaction byproduct, NaOH, has a high 

solubility and is easily removed. This method offers a simpler method for preparing 

transition metal nanoparticles than the use of magnides or alumindes. The drawback of 

this method is the difficulty in controlling the reaction rate. 

Besides the transition metal (and semiconductor element) - sodium intermetallic 

compounds, there are many other alkali metal or alkali earth metal intermetallic 

compounds. Due to their high chemical activity, they could exhibit a similar hydrolysis 

behavior in water. Hence, they could also have a potential to produce transition metal and 

semiconductor element nanoparticles. 
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Fig.7.10 Morphology of the Pt nanoparticles prepared by hydrolysis of PtNa 

a) TEM image, b)HRTEM image. 
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Fig.7.11 Particle size distribution of the Pt nanoparticles prepared by hydrolysis of PtNa. 
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Fig.7.12 EDS pattern of the Pt nanoparticles prepared by hydrolysis of PtNa. 
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7.4 Summary 

The main conclusions from this study of aluminides and sodides can be summarized as 

follows: 

1. Among the Ni aluminides, AI3N1 spontaneously undergoes hydrolysis in water at 

room temperature, and forms Al(OH)3, Ni and hydrogen in distilled water at room 

temperature. However, AI3M2 barely undergoes hydrolysis under the same conditions. 

The hydrolysis of AINi and AlNi3 in the Ni-Al binary system would be much slower 

than for AI3M2 due to the thermodynamics and kinetics including crystal structure 

factors. 

2. Although from thermodynamic considerations, the negative standard free energy 

change for the hydrolysis reaction of AI3N1 is much larger than that for Mg2Ni, and 

from a crystal structure point of view, more Al atoms surround a Ni atom in M3AI 

than Mg atoms surround a Ni atom in Mg2Ni, the hydrolysis of A^Ni should be much 

easier than that of Mg2Ni. In fact, the hydrolysis rate of A^Ni was much slower than 

that of Mg2Ni, which may result from the relative reaction kinetics. 

3. Due to the low acidity of Al(OH)3, using dilute hydrochloric acid to remove Al(OH)3 

will lead to a fairly low pH value of the solution. As a result, the chemically active 

transition metals such as Fe, Co, Ni, or even Cu nanoparticles would not survive in 

the solution, especially when it is exposed to air. Only chemically inert transition 

metals such as the noble metals could be prepared by this method. 

4. The oxidation of sodium in the Pt-Na pellets were much faster than that in the Ag-Na 

pellets since Pt is able to accelerate the oxidation of sodium in the Pt-Na pellets. 
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5. The Ag and Pt nanoparticles prepared by hydrolysis of either Ag2Na or PtNa were 

crystalline in nature. The size of the Ag and Pt were spherical in shape with a mean 

size of around lOnm. 

6. The reaction byproduct of sodide hydrolysis, NaOH, has a high solubility and is easier 

to remove than Mg(OH)2, the hydrolysis byproduct of magnides. This method thus 

offers a simpler method for preparing transition metal nanoparticles than hydrolysis of 

magnides. The drawback of this method is the difficulty in controlling the reaction 

rate. 

7. There are many transition metal (and semiconductor element) - alkali metal or alkali 

earth metal intermetallic compounds besides sodides. Due to their chemical activity, 

they could exhibit a similar hydrolysis behavior in water. Hence, they could also have 

the potential to produce transition metal and semiconductor element nanoparticles. 
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CHAPTER EIGHT: DISCUSSION AND CONCLUSIONS 

The particle size distributions of Ni, Cu, Ag and Au nanoparticles prepared by hydrolysis 

of Mg2Ni, MgNi2, Mg2Cu, Mg45Agn and Mg3Au, respectively, are shown in Fig.8.1. The 

particle size distribution of Ni nanoparticles produced by hydrolysis of Mg2Ni (Curve 

Ni(Mg2Ni) in Fig.8.1) resembles that of Cu nanoparticles prepared by hydrolysis of 

Mg2Cu(Curve Cu(Mg2Cu) in Fig.8.1). The particle size distribution of Au nanoparticles 

(Curve Au(Mg3Au) in Fig.8.1) is close to that of Ag nanoparticles prepared by hydrolysis 

of Mg54Agn (Curve Ag(Mg54Agn) in Fig.8.1). The particle size distributions of the Ni 

and Cu nanoparticles are larger than that of the Ag and Au nanoparticles, but smaller than 

that of Ni nanoparticles produced by hydrolysis of MgNi2 (Curve Ni(MgNi2) in Fig. 8.1). 

Particle size (nm) 

Fig.8.1 A comparison of particle size distribution of Au, Ag, Cu and Ni nanoparticles 
prepared by hydrolysis of Mg2Ni, MgNi2, Mg2Cu, Mg45Agi7 and Mg3Au, respectively. 
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All above results indicate that the particles size distributions of the transition metal 

nanoparticles prepared by the magnides with higher atomic ratios of Mg to transition 

metal are smaller than that of the transition metal nanoparticles prepared by the magnides 

with lower atomic ratios of Mg to transition metal. 

Since the solubility of Mg(OH)2 in water is very small, the newly-formed Mg(OH)2 has to 

precipitate from water in the vicinity of the Mg dissolution sites. The existence of the 

Mg(OH)2 particles, and the low mobility of the transition metal atoms at room 

temperature, could be the reason that the particle size distribution of the transition metal 

nanoparticles prepared by this method appears not to be sensitive to the concentration of 

the initial magnides in aqueous solution and the type of transition metal elements. 

The atomic ratios of Mg to transition metal in magnides determine the contact 

opportunities of transition metal atoms derived from hydrolysis of magnides. More 

contact opportunities mean that transition metal nanoparticles have more chances to grow 

large. Higher atomic ratios of Mg to transition metal cause less contact opportunities of 

transition metal atoms derived from hydrolysis of magnides, and smaller sizes of 

transition metal nanoparticles. 

A comparison of transition metal (including semiconductor elements: Ge and Si) 

nanoparticle synthesis by hydrolysis of magnides, aluminides and sodides is given in 

Table 8.1. In comparison with hydrolysis of sodides, the hydrolysis reactions of magnides 

are mild, and suitable for applying to produce transition metal nanoparticles. The 

disadvantage of the magnide hydrolysis method is the need to remove Mg(OH)2 by an 

acid. Si and Ge magnides undergo extremely slow hydrolysis. 
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The Ge and Si nanoparticles prepared by hydrolysis of Si and Ge magnides have either 

poor crystallinity or are amorphous, and are easily oxidized to their oxides. Hence, the 

hydrolysis method of Si and Ge magnides is not suitable for production of Si and Ge 

nanoparticles. 

There is a large difference in hydrolysis rates between AI3M and Al3Ni2 due to the 

thermodynamic and kinetic, and crystal structure factors. Because of the difficulty in 

removal of Al(OH)3, the hydrolysis method of aluminides is also not suitable for 

production of transition metal nanoparticles. 

The sodide hydrolysis method offers a simpler method preparing transition metal 

nanoparticles than the hydrolysis of magnides. The drawback of this method is the 

difficulty in controlling the reaction rate. 
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Table 8.1 Comparison of nanoparticle synthesis by hydrolysis of magnides, aluminides and sodides 

Starting 
Materials 

Mg2Ni 

Mg2Cu 

Mg3Au 

Mg54Agi7 

MgNi2 

Mg2Ge 

Mg2Si 

Al3Ni 

Al3Ni2 

Ag2Na 

PtNa 

Hydrogen 
evolution 

Fast 

Fast 

Fast 

Fast 

Slow 

very slow 

Extremely 
slow 

Slow 

Extremely 
slow 

Extremely 
fast 

pHof 
solutio 

n 

10-11 

10-11 

10-11 

10-11 

10-11 

10-11 

10-11 

5-6 

5-6 

14 

14 

Product of 
hydrolysis 

Ni+Mg(OH)2+H2 

Cu+Mg(OH)2+H2 

Au+Mg(OH)2+H2 

Ag+Mg(OH)2+H2 

Ni+Mg(OH)2+H2 

Ge+Mg(OH)2+H2 

Si+Mg(OH)2+H2 

Ni+A1(0H)3+H2 

— 

Ag+NaOH+H2 

Pt+NaOH+H2 

Solid 
byproduct 

Mg(OH)2 

Al(OH)3 

— 

NaOH 

Characterization of 
nanoparticles 

Around 12nm; close to 
spherical in shape 

Around 8nm; close to 
spherical in shape 

Around 16nm; close to 
spherical in shape 

Poor crystallinity 

amorphous 

— 

Around lOnm 

Around lOnm 

Advantages (A) and disadvantages(D) 

A: mild hydrolysis reaction; 

D: need to remove Mg(OH)2 by an 
acid 

A: Higher efficiency than Mg2Ni; 
D: relatively coarse; need to remove 

Mg(OH)2 by an acid; 

D: Amorphous or poor crystallinity 

The newly formed nanoparticles are 
easily oxidized. 

D: Difficult to remove Al(OH)3 

— 

A: No need of acid bath; 

D: severe hydrolysis reaction; 
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The main conclusions from this dissertation are summarized as follows: 

1. The in-situ synthesized Mg2Ni particles can not reach their maximum hydrogen 

storage capacity (3.6wt%) at the first hydrogenation at 300°C and 320°C due to the 

limitation of hydrogen diffusion kinetics. 

2. Both the in-situ synthesized Mg2Ni and the as-cast Mg2Ni exhibited a near zero 

charge/discharge capacity. 

3. When Mg2Ni or Mg2NiH4 were immersed in water or in an alkaline solution, they 

spontaneously reacted with water to form Mg(OH)2, Ni and hydrogen. Reducing the 

pH value of the solution (adding an acid) will accelerate the hydrolysis of Mg2Ni and 

Mg2NiH4. 

4. The hydrolysis characteristics of Mg2Ni and Mg2NiH4 suggest that they are not 

suitable for use as electrodes in rechargeable batteries due to their hydrolysis behavior. 

However, the hydrolysis behavior can be utilized to produce Ni nanoparticles. 

5. As well as Mg2Ni, MgNi2, Mg2Cu, Mg3Au, Mg2Cu, Mg54Agi7, and MgAg were also 

shown to spontaneously undergo hydrolysis in water at room temperature. The 

corresponding transition metal nanoparticles can be produced by hydrolysis of these 

compounds. 

6. The hydrolysis byproduct of magnides, Mg(OH)2, has a very small solubility in water. 

The newly-formed Mg(OH)2 precipitates from water in the vicinity of the Mg 

dissolution sites. The existence of the Mg(OH)2 particles, and the low mobility of 

transition metal atoms at room temperature, give rise to the formation of very fine 

transition metal nanoparticles. In addition, the particles size of these transition metal 
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nanoparticles prepared by this method was not sensitive to the concentration of the 

initial materials in aqueous solution. 

7. Compared with conventional preparation methods for transition metal nanoparticles, 

the hydrolysis method has the potential to inexpensively produce transition metal 

nanoparticles on a large scale. 

8. Compared with using the Mg-rich compounds, using the hydrolysis behavior of 

transition metal-rich magnides to produce transition metal nanoparticles offers a 

higher output efficiency, saves raw materials and reduces the pollution resulting from 

the dissolution of the hydrolysis byproduct (Mg(OH)2) by using an acid. 

9. Before the initial particles of transition metal magnides are totally hydrolyzed, the 

transition metal nanoparticles will be protected from oxidation by the dissolved 

oxygen because of the higher chemical affinity of the magnesium atoms in these 

magnides to oxygen. 

10. The newly formed transition metal (including semiconductor elements Si and Ge) 

nanoparticles will be readily attacked by the dissolved oxygen in the aqueous solution 

during hydrolysis and removal of Mg(OH)2 by using a dilute acid. Au and Ag 

nanoparticles prepared by this method are able to resist oxidation from the dissolved 

oxygen in an aqueous solution. Ni, Cu, Si and Ge nanoparticles are oxidized into their 

hydroxides. The Cu and Ge hydroxides are unstable, and will further dissociate into 

their corresponding oxides (CuO and GeC^). 

11. If all preparation procedures were conducted in a zero oxygen environment, transition 

metal nanoparticles with low oxygen content could be synthesized by hydrolysis of 

these transition metal magnides. 
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12. Transition metal nanoparticles synthesized by hydrolysis of their magnides were close 

to spherical in shape and had a mean size of around lOnm. 

13. Hydrolysis of Mg2Ge was sluggish at room temperature under one atmosphere, but 

the hydrolysis rate of Mg2Ge can be significantly promoted by adding hydrochloric 

acid. The Ge prepared by the hydrolysis method exhibited poor crystallinity. 

14. Mg2Si barely underwent hydrolysis in water at room temperature. Hydrolysis of the 

Mg2Si particles was accelerated by adding hydrochloric acid. The hydrolysis product 

was amorphous Si. 

15. Among the Ni aluminides, AI3M spontaneously undergoes hydrolysis in water at 

room temperature, and forms Al(OH)3; Ni and hydrogen in distilled water at room 

temperature. However, AI3M2 barely undergoes a hydrolysis under the same 

conditions. The hydrolysis of AINi and AlNi3 in the Ni-Al binary system would be 

much slower than for AI3M2 due to thermodynamic, kinetic and crystal structure 

factor considerations. 

16. Although from thermodynamic considerations, the negative standard free energy 

change for the hydrolysis reaction of AI3M is much larger than that for Mg2Ni, and 

from a crystal structure point of view, more Al atoms surround a Ni atom in N13 Al 

than Mg atoms surround a Ni atom in Mg2Ni, and therefore the hydrolysis of AI3M 

should be much easier than that of Mg2Ni, in fact, the hydrolysis rate of AI3M was 

much slower than that of Mg2Ni, This may result from the relative reaction kinetics. 

17. Due to the low acidity of Al(OH)3, using dilute hydrochloric acid to remove Al(OH)3 

will lead to a fairly low pH value of solution. As a result, the chemically active 

transition metals such as Fe, Co, Ni, or even Cu nanoparticles would not survive in 
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the solution, especially when it is exposed to air. Only chemically inert transition 

metals such as the noble metals can be prepared by this method. 

18. The oxidation of sodium in the Pt-Na pellets were much faster than that in the Ag-Na 

pellets since Pt is a catalyst for water formation. 

19. The Ag and Pt nanoparticles prepared by hydrolysis of either Ag2Na or PtNa were 

crystalline in nature. The Ag and Pt nanoparticles were close to spherical in shape 

with a mean size of around lOnm. 

20. The reaction byproduct of sodide hydrolysis, NaOH, has a high solubility and is easier 

to remove than Mg(OH)2, the hydrolysis byproduct of magnides. This method offers a 

simpler method preparing transition metal nanoparticles than the hydrolysis of 

magnides. The drawback of this method is the difficulty in controlling the reaction 

rate. 
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CHAPTER NINE: RECOMMENDATIONS FOR FUTURE 

WORK 

Based on the results of the present investigation, the following areas are suggested for 

future work: 

1. In this study, all our experiments were conducted in air. Hence, the newly formed 

transition metal nanoparticles (including those of the semiconductor elements: Si and 

Ge) prepared by hydrolysis of magnides are attacked by the dissolved oxygen in the 

aqueous solution during hydrolysis and removal of Mg(OH)2 by using dilute acid. 

Chemically active transition metals (including Si and Ge) nanoparticles were always 

contaminated by oxygen. In particular, the hydroxides of the semiconductor elements 

Si and Ge are weak acids, they easily react with the hydrolysis byproduct of 

magnides, Mg(OH)2 and form some complex oxides, which are difficult to remove 

from the final product. Thus, further investigation of hydrolysis of magnides under a 

zero oxygen environment is needed to improve the purity of these nanoparticles. 

2. The morphology and the size distribution of transition metal nanoparticles are 

particularly important to their properties. Modifying their shape and size distribution 

by solution chemical methods could significantly improve their properties and 

enhance the stability of these properties. 

3. Both silicon and germanium nanocrystals exhibit size dependent photoluminescence 

resulting from quantum confinement effects. However, preparation of Si and Ge 
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nanocrystals at high temperatures is needed to promote crystallization due to their 

strong covenant bonding. Ge nanoparticles produced by hydrolysis of Mg2Ge at room 

temperature have poor crystallization. Most Si nanoparticles produced by hydrolysis 

of Mg2Si at room temperature were amorphous. Although we increased the 

hydrolysis temperature to help improve crystallinity, higher hydrolysis temperatures 

promoted the oxidation of Ge and Si nanoparticles by the dissolved oxygen since our 

experiments were conducted in air. More work is needed to improve crystallization of 

Ge and Si nanoparticles by high temperature hydrolysis under a zero oxygen 

environment, perhaps through the use of supercritical fluids (high pressure and 

temperatures higher than 100°C). 

4. As well as sodides, many transition metal (and semiconductor element) - alkali metal 

or alkali earth metal intermetallic compounds are expected to have a similar 

hydrolysis behavior in water due to their chemical reactivity. Hence, they also have a 

potential to produce transition metal and semiconductor element nanoparticles 

through hydrolysis. However, the investigation of their hydrolysis behavior was not 

conducted in this dissertation due to time limitations. 

5. The hydrolysis product of transition metal magnides (transition metal nanoparticles 

and Mg(OH)2) has a potential to be directly made into catalysts (a porous composite 

of transition nanoparticles and magnesia). 
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CHAPTER TEN: STATEMENT OF ORIGINALITY 

Aspects of this study that constitute, in the author's opinion, new and distinct 

contributions to knowledge, include: 

1. The hydrolysis behaviors of Mg2Ni and Mg2NiH4 in water, or in an alkaline solution, 

were first detailed in this dissertation work. The hydrolysis characteristics of Mg2Ni 

and Mg2NiH4 determine that they are not suitable for use as electrodes in 

rechargeable batteries due to their hydrolysis behavior, even though Mg2Ni exhibits a 

good hydrogen storage capacity (3.6wt%) and has a theoretical discharge capacity as 

high as 999mAh/g. 

2. Since Mg2Ni spontaneously reacts with water to form Mg(OH)2, Ni and hydrogen, a 

simple hydrolysis method has been successfully developed to produce Ni 

nanoparticles. 

3. Further investigation reveals that the hydrolysis behavior is a common phenomenon 

for both the magnesium-rich and the transition metal-rich magnides. Transition metal 

and the semiconductor Si and Ge nanoparticles can be produced by this hydrolysis 

method. 

4. The intermetallic compounds between transition metals (and some the semiconductor 

elements) and alkali metals (or the alkali earth metals) also exhibit hydrolysis 

behavior, which could also be utilized to produce transition metal and semiconductor 

nanoparticles (or nanocrystals). 
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5. Among the aluminides, only Al-rich aluminides such as A^Ni undergo hydrolysis in 

water at room temperature. However, due to the low acidity of Al(OH)3, using dilute 

hydrochloric acid to remove Al(OH)3 will require a lower pH value of the solution. 

As a result, the chemically active transition metals such as Fe, Co, Ni, or even Cu 

nanoparticles cannot survive in the solution, especially when exposed to air. Only 

chemically inert transition metals such as the noble metals can be prepared by this 

method. 
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