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ABSTRACT 

Friction and material transfer mechanisms during sliding between 319 Al pin and 

hydrogenated diamond-like carbon (H-DLC) and non-hydrogenated diamond-like carbon 

(NH-DLC) coatings were investigated under ambient, humid air and vacuum. The 

coefficients of friction (COF) of H-DLC and NH-DLC were governed by the formation 

of carbon rich layers on the counterface. 

H-DLC produced a lower COF of 0.05 in dry sliding compared to 0.1 in boundary 

lubricated sliding, indicating that this coating is more effective without the addition of 

lubricants. During lubricated sliding testes against AISI 52100 steel NH-DLC produced a 

lower COF compared to H-DLC and induced an earlier transition from the boundary to 

the mixed lubrication regime. This early transition was a result of the NH-DLC wearing 

down the steel counterface and increasing the contact area, prompting a reduction in 

contact pressure. 
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CHAPTER 1 

Introduction 

Tribology, or the effect of friction and wear on moving components, has been a 

topic of interest since the dawn of civilization when humans discovered that generating 

friction between a wooden stick and a wooden plank produced enough heat to start a fire. 

An understanding of friction phenomena developed with the Sumerians and Egyptians 

who first used lubricants to move heavy objects efficiently. As civilizations advanced, so 

did their tools, and in this day and age, difficult tasks like metal forming, machining and 

drilling have been made possible with the help of tools and machines. Limited resources 

and high demand have made tool life and machine performance the current issues, and 

innovative technology has lead to hard surface coatings, such as TIN and CrN, which 

protect surfaces against wear and corrosion and extend tool life. In some applications, 

however, (such as the dry machining of aluminum) a low friction, non-stick surface is 

required to prevent the chip build up that typically leads to failure. Studies prove that 

aluminum has a low tendency of adhesion towards diamond-like carbon (DLC) coatings, 

so it follows that their use would prevent chip build up and extend tool life [1] [2]. 

DLC coatings were first introduced back in 1953 when Schmellenmeier produced 

the first DLC coating with unusual and unique low friction (reaching 0.001) and low 

wear rates (below 1x10" mm /Nm when hydrogenated DLC coatings are tested in high 

vacuum) [3], [4], [5]. These characteristics made DLC coatings suitable for addressing a 

wide range of applications, from space and medical devices to car engine parts and razor 

blades [3]. Also their mechanical properties (hardness reaching up to 90 GPa) allows the 
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coating to withstand high loading conditions and protect the substrate, qualifying them 

for tool and die applications. In addition, DLC's chemical inertness, offers substrate 

protection against oxidation and corrosion making it ideal for the food processing 

industry [6]. 

1.1 DLC in Dry Sliding 

Studies have shown that the DLC coatings applied in dry-sliding are very 

sensitive to the environment, producing a wide range of COF, spanning (from 0.001 to 

0.7) [3]. This broad range is due to the combination of DLC mechanical and chemical 

properties. For instance, 319 Al sliding against NH-DLC in ambient air (25 %RH) found 

to produce a COF of 0.1 [7], but when humidity in the air increased to 90% RH, the COF 

of a AI2O3 ball sliding against NH-DLC decreases to 0.05 [8]. Conversely, testing NH-

DLC in vacuum or inert atmosphere produced a high COF of 0.6, while, A^Oi/TiC 

sliding against H-DLC produced a very low COF of 0.01 when tested in ultra high 

vacuum [9]. It follows that humidity and hydrogen content play an important role in 

reducing friction for NH-DLC and H-DLC, and studies have shown that very low friction 

can be achieved for NH-DLC in vacuum (similar to H-DLC). It was found that running 

319 Al against NH-DLC in ambient air initially generated a COF of 0.1. When the 

chamber was evacuated, a very low COF of 0.01 was produced, unlike the COF of 0.6 

when NH-DLC was tested in vacuum, without an initial running-in in ambient air [7]. 

However, it remains unclear what precisely is happening at the sliding interface, which 

causes this intriguing tribological behaviour. 
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1.2 DLC in Lubricated Sliding 

Three friction regimes are observed during lubricated sliding: hydrodynamic, 

elasto-hydrodynamic and boundary lubrication regimes [10]. In hydrodynamic and 

elasto-hydrodynamic lubrication regimes, the lubricant carries most of the applied load, 

creating an easily sheared medium that separats the sliding surfaces. As for the boundary 

regime, high loads and low speeds result in the formation of a very thin lubricating film 

on the mating surfaces. Consequently, a considerable amount of contact occurs between 

the asperities, leading to higher COF relative to the values produced at the hydrodynamic 

and elasto-hydrodynamic lubrication regimes. 

Various studies have explored the effects of coating the surface with DLC to 

lower the friction at the asperity junctions and reduce the total COF under boundary 

lubrication. Other studies have examined the effect of additives and oil chemistry on the 

friction of DLC under boundary lubrication. How DLC will behave in a fully formulated 

oil, specifically automatic transmission fluid (ATF), remains unclear. 

1.3 Objective and Scope of the Study 

1) Investigate the tribological behaviour of 319 Al sliding against both NH-DLC and 

H-DLC coatings to improve and optimize the drilling and machining of 319 Al, 

which is a common aluminum alloy used in the automotive industry for its 

potential in the development of engine blocks. 

2) Examine the friction behaviour of AISI 52100-grade steel sliding against both 

NH-DLC and H-DLC coatings under boundary lubrication (BL) in the presence 

of ATF. This part of the study will enhance our understanding of BL in the 

presence of surface coatings to determine whether it would be beneficial to coat 
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transmission components made of AISI 52100-grade steel, such as planetary gears 

to lower the COF under BL. 

1.4 Thesis Organization 

Chapter 2 provides a literature survey on what is DLC and how it is commonly 

produced. Chapter 2 also explores previous studies conducted on the tribological 

behaviour of DLC coatings that investigate the effects of hydrogen content, humidity, 

inert atmosphere and temperature on DLC friction and wear. The literature survey will 

cover the different lubrication regimes, oil based lubricants and information about the 

tribological behaviour of DLC under lubricated conditions that has resulted from other 

studies. 

Chapter 3 describes the materials used in this study, along with the experimental 

procedures that were carried out to characterize the DLC coatings as well as test friction 

and wear in dry and lubricated conditions. Chapters 4: Part I and Part II present the 

experimental results along with discussions of the dry and lubricated sliding of DLC 

coatings, respectively. Finally, Chapter 5 summarizes and outlines the study's 

conclusions and recommendations for future work. 
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CHAPTER 2 

Literature Survey 

Diamond-like carbon (DLC) is a metastable amorphous form of carbon whose 

excellent tribological behaviour has attracted many industries and has been incorporated 

into applications like medical devices, hard discs and automobile engine components [6]. 

This chapter provides a literature survey of past studies that have contributed to our 

understanding of the tribological behaviour of DLC coatings under various conditions, 

such as a hydrogen atmosphere, humidity, vacuum, high temperature and lubricated 

contacts. 

2.1 Diamond-like Carbon Coatings 

DLC coatings consist of two main types; the first is amorphous carbon (a-C) with 

an sp2 hybridized bonding structure (Figure 2-1) and a hardness ranging between 15 and 

50 GPa [6]. The second type is tetrahedral amorphous carbon (ta-C), where the carbon 

atom is surrounded by four atoms at the corners of the tetrahedron, forming a sp3 

hybridized diamond-like structure with strong o bonds connecting the neighboring atoms 

(Figure 2-1). The resulting coating exhibits high hardness ranging from 30 to 80 GPa, due 

to its strong, diamond-like structure [6]. 

Both DLC types, ta-C and a-C, can be alloyed with hydrogen, to create a 

hydrogenated, tetrahedral amorphous carbon (ta-C:H) or a hydrogenated, amorphous 

carbon (a-C:H). Figure 2-2 is a schematic diagram, representing DLC coatings with 

respect to sp3, sp2 and hydrogen that illustrate where DLC coatings fall compared to 
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diamond (sp ) and graphite (sp ). The typical chemical and mechanical properties of DLC 

coatings are presented in Table 2-1. 

From here on, amorphous carbon and hydrogenated amorphous carbon will be 

referred to as NH-DLC and H-DLC respectively. 

sp3 sp2 

Figure 2-1: Schematic for sp2 and sp3 hybridized bonding structures 

Figure 2-2: Schematic for different forms of amorphous carbon [11] 
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Table 2-1: Typical mechanical and chemical properties of various types of DLC 
coatings [3] [6] 

Property 
sp3 content % 
Hydrogen Content (at%) 
Hardness (GPa) 

a-C 
5-25 

0 
15-50 

a-CH 
40 

20-60 
10-20 

ta-C 
80 
<5 
<80 

2.2 Deposition of DLC 

2.2.1 Chemical Vapour Deposition 

Chemical vapor deposition (CVD) deposits solid coatings on substrates using 

chemical reactions with rates ranging from 1 to 40 jj,m/h. During deposition, the substrate 

is heated to temperatures up to 850°C, then the precursor gas and a carrier gas, such as 

hydrogen and argon, are introduced into the reactor as shown schematically in Figure 2-3. 

The precursor molecules then adsorb or react with the substrate, forming a protective 

coating on the surface of the substrate. Carrier gases such as nitrogen or argon ensure 

even mixing of the reactant gases for uniform deposition. They also helps maintain the 

deposition rate by providing an ample total flow rate through the reactor and by 

suppressing the nucleation in the gas phase [12]. 

However, CVD has limitations; high operating temperatures may deform or 

change substrate properties, so radio-frequency glow discharge or plasma is combined 

with CVD to allowing the deposition process to operate at lower temperatures (e.g. 

150°C). This technique is referred to as plasma assisted (PA) or plasma enhanced (PE) 

CVD (Figure 2-3). There are two types of plasma sources; direct-current (DC) and 

alternating-current (AC) or radio-frequency (RF). Plasma is generated by applying a 

current through electrodes, where the precursor gas is ionized. Since plasma generation 

by DC depends on the substrate being one of the electrodes, depositing insulating 
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coatings diminishes the plasma, so insulating coatings utilizes RF, which applies an AC 

between the electrodes and the conductive walls of the chamber to maintaining the 

plasma. 

DLC coatings are commonly deposited at low temperatures, because DLC 

coatings have a low tolerance for high temperatures and often require a PACVD 

technique. A wide range of hydrocarbons can be used as precursor gasses (methane, 

butane and propane), which are dissociated by the plasma to form radicals that are 

deposited onto the substrate. The hydrogen content of the DLC coating depends on the 

ratio of H/C in the hydrocarbon precursor gas [22], which will be described in Section 

2.4.2. 
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Figure 2-3: Schematic for CVD system 

2.2.2 Physical Vapour Deposition 

There are three processes that fall under the term physical vapour deposition 

(PVD); these are i) evaporation, ii) sputtering and iii) ion plating, shown in Figure 2-4. In 

all these processes, the target/source is evaporated and deposited on the substrate at rates 

ranging between 0.5 and 5 \im/h. In the evaporation process, coatings are deposited by 
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condensation of vapour. However, in Sputtering technique, argon glow discharge, in 

other words, plasma is generated in front of the target, ionized argon collide with the 

target at 100-1000 eV, ejecting atoms from the target. The ejected atoms then accelerate 

towards the substrate with a kinetic energy of 10-40 eV, much higher than that of the 

evaporated atoms (0.2-0.3 eV), forming a stronger adhesion to the surface. As for ion 

plating, the plasma is formed in front of the substrate, so that it is bombarded by argon. 

Meanwhile, coating atoms evaporate (by resistance, electron beam heating or arc 

evaporation) and enter the plasma, which is the deposited on the substrate [12]. 

A fourth PVD technique called closed field unbalanced magnetron sputtering 

(Figure 2-5) is utilized by the industry to mainly produce DLC coatings. This technique, 

magnetrons of opposite polarity are arranged adjacent to each other, producing a closed 

magnetic flux. In addition, the magnetrons are unbalanced, meaning that one magnetic 

pole is stronger than the other to expand the plasma. This unique setup traps all electrons, 

thus increasing ion bombardment of the substrate, which improve deposition efficiency 

[13]. High internal stresses and poor adhesion remain problematic with DLC coatings, 

however, and are investigated in the next section. 
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Figure 2-4: Schematics for various PVD systems 

Figure 2-5: Schematic for closed field, unbalanced magnetron sputtering with six 
magnetrons arranged next to each other with opposite polarity [13] 
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2.2.3 Adhesion and Internal Stress of DLC 

Poor adhesion of DLC coatings on substrates such as steel are commonly observed 

due to high compressive stresses and difference in elastic modulus, hardness and 

coefficient of thermal expansion at the interface. 

Wei et al. [14] studied the stress relief effect of introducing dopants such as Cu, 

Ti and Si to NH-DLC. The authors deposited NH-DLC by pulsed laser deposition on Si 

(100) wafer, and the adhesion was assessed by scratching the surface coating. Results 

revealed that pure non-doped NH-DLC displays poor adhesion due to large compressive 

stresses. Internal stresses were calculated from the Raman shift of the G peak located at 

1500 cm"1 wave number, which is related to the internal stress by Equation 2-1. The 

theory is that if the material is stressed, the interatomic separation change, thus the 

vibration frequency also change, leading to a shift in the wave number. With this in mind, 

the larger the shift towards a smaller wave number, the lower the internal compressive 

stresses [14]. 

Where a is the internal stress, G is the shear modulus, v is the Poisson's ratio and, 

ACQ and CO are the wave number and wave number reference respectively of the coating. 

The Raman results suggest that Ti was more effective in internal stress reduction than Cu 

and Si dopants. 

Non-metallic dopants like hydrogen have also been reduced internal stresses. For 

instance, Iyer et al. [15] studied the compressive stresses of H-DLC that had been 

deposited using PACVD on thin Si substrates with a mixture of propane and butane 

precursor gas. Internal stresses were identified from the curvature deformation of the 
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substrate caused by the coating. Then the stresses were calculated using the Stoney 

Equation 2-2 from the substrate curvature; 

Et2 

<7 = — ^ 2-2 
6(1-vs)dR 

where a is the internal stress, Es is the elastic modulus of the substrate, v* is the poissons 

ratio of the elastic modulus, ts is the thickness of the substrate, d is the thickness of the 

coating and R is the curvature of the substrate. The authors learned that compressive 

stresses decreased as the volume percentage of hydrogen increased (Figure 2-6), because 

hydrogen relives stresses by promoting a medium range order that encourages the 

formation of sp2 clusters. 

Another study, investigated the effect of Si on the internal stress of H-DLC, 

which was found to reduce the compressive stresses. Ban and Hasegawa [16] deposited 

H-DLC on Si (100) wafer using electron beam-excited plasma CVD with CH4 and SiH* 

precursor gas. Results prove that internal compressive stresses have decreased from 2.5 to 

1 GPa as the flow ratio of SitL, during deposition increased to 40 % (Figure 2-7). Thus 

indicating that as Si content increases internal compressive stresses decrease. 

The use of Ti was investigated by Wang et al. [17], who studied its effects as an 

interlayer and a dopant on the internal stresses of H-DLC. The H-DLC was deposited on 

Si (100) and steel substrates using DC PECVD with methane as a precursor gas. Internal 

stresses were calculated from the substrate curvature after deposition using the Stoney 

Equation 2-2. Results showed that the Ti was more effective as an interlayer in reducing 

the internal stresses for steel than for the Si substrate (Figure 2-8). The authors attributed 

this behaviour to be due to the coefficient of thermal expansion. When Ti was added on 
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top of the Si wafer, for example, it produced a great mismatch in the coefficient of 

thermal expansion between the substrate (Si) and the H-DLC coating. Adding a Ti 

interlayer on the steel, however, substrate brought the coefficients of thermal expansion 

closer between the steel substrate and the H-DLC coating. As for Ti as a dopant, results 

have shown that it reduces the internal compressive stresses of H-DLC on both Si and 

steel substrates, which is attributed to the decrease in sp content and promoting sp type 

bonds which relive the internal stresses (Figure 2-9). 

Other metallic dopants like Cr were investigated as possible internal stress 

reduction interlayer. Chen and Hong [18] studied the effects of Cr interlayer thickness on 

the internal stress reduction of H-DLC. The H-DLC was deposited on a steel substrate 

with CH4 and Ar precursor gas using a hybrid system of magnetron sputtering and PA 

CVD. Internal stresses of various the Cr interlayer were calculated using the Stoney 

Equation 2-2 revealing that a 0.3 u.m Cr interlayer produced the lowest internal stress (1.4 

GPa). Furthermore, the authors investigated the effects of intermixing Cr with the steel 

substrate prior to the Cr interlayer. Intermixing was achieved by increasing the substrate 

bias to 700 V and reducing the Cr target current to 0.25 A, which promoted high energy 

Ar to bombard the steel surface and thus allowing Cr to diffuse through the steel. Next, a 

0.3 [xm of Cr interlayer was deposited on the substrate by increasing the current for the Cr 

target. As a result of intermixing, the internal stress of H-DLC decreased to 0.5 GPa. 

Therefore, adhesive carbide formers interlayer or dopants such as Cr, Si and Ti are 

commonly introduced before depositing the DLC coating on the substrate to insure strong 

adhesion and prevent spallation. 
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Figure 2-6: Internal compressive stress as a function of hydrogen concentration [15] 
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Figure 2-7: Internal stress as a function of precursor gas (SiH) flow ratio [16] 
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Figure 2-8: Influence of Ti interlayer thickness on H-DLC internal stress when 
deposited on (a) Si wafer and (b) stainless steel [17] 
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Figure 2-9: Influence of Ti as a dopant on the H-DLC internal stress when deposited 
on (a) Si wafer and (b) stainless steel [17] 
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2.3 Tribological Behaviour 

The tribological behavior of DLC is greatly influenced by testing conditions and 

the nature of the surrounding atmosphere, like presence of hydrogen and water vapour. 

2.3.1 Effect of Deposition Parameters 

Deposition parameters such as substrate bias, precursor gas flow and deposition 

time affect the chemical and mechanical properties of the DLC coating, which alters the 

tribological behaviour. Zhang et al. [19] studied the effect of substrate bias on the 

chemical, mechanical and tribological properties of NH-DLC. NH-DLC was deposited on 

440C stainless steel substrate using a magnetron sputtering technique. The authors 

observed that as the substrate bias voltage increased from -20 to -160 V, the COF 

increased from 0.09 to 0.21, when an alumina ball was tested against NH-DLC at 75% 

RH for 0.3 km. Furthermore, surface hardness increased up to 30 GPa as bias increase to 

-150 V. Meanwhile, the surface roughness was observed to decrease as bias voltage 

increase. In addition, Raman spectrum showed that the intensity ratio of the disorder peak 

to the graphitic peak (ID/IG) decreased as the bias voltage increased, which indicates an 

increase in the sp3 fraction. Higher sp3 fraction, however, lead to higher residual stress in 

the coating. 

Another study by Zhang and Tanaka [20], investigated the effects of high 

substrate bias voltage on the tribological behaviour of H-DLC. H-DLC was produced by 

PA-CVD with benzene as a precursor gas. Three coatings were produced at different 

substrate bias, -1 kV, -2 kV and -3 kV. A 6 mm SiC ball was tested against H-DLC for 

10000 cycles, with a 1 N load, a RH ranging from 4-6% and 0.1 m/s sliding speed in dry 

air, N2, O2 and vacuum atmospheres. The COF was observed to be insensitive to high 

17 



bias voltage changes. In dry air, for example, the COF was 0.05 and 0.04 for H-DLC 

produced with -2 and -3 kV, respectively. Similarly, in N2, O2 and vacuum atmospheres 

experiments the COF was 0.06, 0.1 and 0.15, respectively, at both -2 and -3 kV. 

Deposition parameters like bias voltage significantly influence the chemistry of 

the NH-DLC coating. Increasing the bias to -150 V lead to an increase in the sp3 fraction. 

As a result, the hardness increased to 30 GPa and the COF reached 0.21. A high bias 

voltage, in the order of thousands, however, does not seem to affect the tribological 

behaviour of H-DLC. 

2.3.2 Effect of Dopants 

Based on DLC's chemical composition, their tribological behaviour varies 

significantly. For instance, Donnet and Grill [21] explored the influence of hydrogen 

content on the friction of DLC coatings. H-DLC coatings were deposited using a DC 

PACVD on 440C steel with 5 nm Si interlayer. The authors examined the influence of 

hydrogen that was being induced in the coating from acetylene and cyclohexane 

precursor gases. The study concluded that cyclohexane is a more efficient gas than 

acetylene for producing higher hydrogen content in the DLC coating, because 

cyclohexane has a higher hydrogen-to-carbon ratio compared to acetylene. The study also 

explored the effect of hydrogen content on the friction behaviour of DLC coatings in 

vacuum (lxlO8 Pa) and ambient air (40-60 %RH). Results showed that in vacuum the 

COF was approximately 0.5 or higher, when hydrogen content reached up to 34 at%. The 

DLC containing 42 at% hydrogen lead to a very low COF of 0.02 when sliding in 

vacuum. As for ambient air results, hydrogen content did not influence the COF in 

ambient air fluctuating from 0.1 to 0.2, as shown in Figure 2-10. 
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Another study conducted by Erdemir [22] investigated the influence of hydrogen 

content in the DLC coating deposited by PE CVD as a function of source gas and 

tribological performance. The author concluded that the higher the hydrogen content in 

the gas mixture or the higher the H/C ratio, the higher the hydrogen content in the DLC 

coating, resulting in lower friction. For instance, DLC produced by C2H2, CH4, 

75%CH4+25%H2, 50%CH4+50%H2 and 25%CH4+75%H2, generated a COFs of 0.3, 

0.014, 0.01, 0.004 and 0.001, respectively, when tested against itself at 10 N load and 0.5 

m/s speed, in dry nitrogen atmosphere. 

Other dopants have different effects on the tribological behaviour and the 

mechanical properties of the coating. For example, metallic dopants such as Ti, Nb, Ta, 

Cr, Mo, W, Ru, Fe, Co, Ni, Al, Cu, Au and Ag, increase hardness and improve wear 

resistance [23]. Non-metallic dopants such as N, F, O, P and Si influence the surface 

energy. For instance, F and Si increase the contact angle on the surface, resulting in a 

lower surface energy while N, P and O increase the surface energy [24]. 
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Figure 2-10: Effect of hydrogen content on the COF in ambient air and vacuum [21] 
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2.3.3 Effect of Hydrogen Atmosphere 

The presence of hydrogen inside the DLC coating, as previously discussed 

reduced the COF significantly under inert and vacuum atmospheres. Other studies 

explored the effect of hydrogen gas on the friction behaviour of DLC in testing 

atmospheres. Fontaine et al. [25] studied the healing effect of hydrogen gas on the 

tribological performance of H-DLC. The authors tested a 52100 steel pin against H-DLC 

with 34 at% of hydrogen deposited on a Si (100) substrate with a 5 N load and 0.5 m/s 

sliding speed. When H-DLC was tested in vacuum (lxlO6 Pa), the COF reached a very 

low value of 0.01. After 100-200 cycles, the COF increased, reaching a value of 0.1. This 

sudden increase in the COF is attributed to the strong adhesion between the steel sliding 

pin and the H-DLC coating due to the depletion of the carbon transfer layers. On the 

contrary, when hydrogen partial pressure was increased inside the test chamber to 500 

and 1000 Pa, the very low COF of 0.01 was maintained, lasting for 1000 cycles. As 

observed by the authors, the increase in hydrogen pressure preserved the carbon transfer 

layers, which prevented adhesion and leading to a weak, van der Waals type of 

interactions. 

Konca et al. [26], conducted another study on this topic that explored the role of 

hydrogen atmosphere on the friction behaviour of NH-DLC. A 319 Al pin was tested 

against NH-DLC coating in a 60% He - 40% H2 atmosphere. The reported COF was as 

low as 0.01 (Figure 2-11), meaning that the H2 efficiently passivate the unoccupied 

carbon bonds on the NH-DLC surface, minimizing surface interactions that produce a 

very low COF. To confirm whether the low friction was a result of H2 passivation rather 

than He, the 319 Al was tested against NH-DLC in a pure He atmosphere. The test 
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produced a COF of 0.74 (Figure 2-12), indicating that He does not lower the COF and 

supporting the claim that H2 passivates the unoccupied carbon bonds on the surface. 

The literature confirms that hydrogen is the key element for maintaining a low 

COF in H-DLC, and the solution for the high COFs produced by NH-DLC in vacuum. 
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Figure 2-11: Influence of 40%H2 -60% He gas mixture in the atmosphere on the 
COF of 319 Al against NH-DLC at 5 N load and 0.12 m/s speed [26] 
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2.3.4 Effect of Humidity 

Relative humidity (RH) has been found to be a major contributor to the changes 

observed in the tribological behavior of DLC coatings. For instance, Donnet et al. [27] 

explored the role of oxygen and water vapor on H-DLC, deposited with DC PACVD on 

Si wafer using cyclohexane precursor gas and producing 42 at% of hydrogen. The 

authors tested 52100 steel against the H-DLC coating at 1 m/s speed and 1 GPa 

maximum Hertzian contact pressure. Oxygen tests were conducted by evacuating the 

chamber and increasing the partial pressure of oxygen. Results showed that varying the 

oxygen partial pressure from 10"10 hPa and 60 hPa (lower than an atmospheric pressure of 

210 hPa) had no influence on the friction behaviour, producing a low COF of 0.01, as 

observed in vacuum. On the other hand, water vapor clearly affected the COF, where as 

the water vapor pressure increased from 0% to 100% RH, the COF increased (Figure 

2-13). Likewise, the COF decreased as the water vapour pressure decreased (Figure 2-14) 

confirming the relationship between the COF and RH. The analyses of the steel ball 

shown in Figure 2-15, illustrate that rich, thick carbon transfer layers formed on the 

52100 steel ball in vacuum (0% RH), while at a higher vapour pressure, less pronounced 

carbon transfer layers were observed. The study concluded that a low RH induces H-DLC 

to form carbon transfer layers on the counter surface, reducing the COF while at high 

water vapour pressure, carbon transfer layers are suppressed, causing the COF of H-DLC 

to increase. 

Other studies investigated the influence of humidity on the NH-DLC coating. 

Konca et al. [28], conducted a pin-on-disc wear test with a 319 Al pin and WC ball 

against a NH-DLC coating with a 5 N load and a 0.12 m/s linear speed. The results 
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revealed a great COF dependency on the RH, for instance as RH increased the COF 

decreased (Figure 2-16). The authors concluded that the NH-DLC adsorb water and 

together with carbon transfer layer formation, the COF drop to 0.07 in humid air from 

0.55 in dry air. 

This relationship was confirmed by Qi et al. [29] when they simulated gas 

molecule adsorption at the surface level of a (111) diamond surface and work of 

separation. The simulation compared the adsorption of N2 and H20 gases and results 

proved that water molecules dissociated to H and OH as they approached the surface, 

passivating the unoccupied carbon bonds. The calculated work of separation between C-

OH and C-OH surfaces is 0.02 J/m2. In the case of an inert gas like N2, no dissociation 

occurred because N2 did not passivate the C surface and the calculated work of separation 

between Al and C surfaces was much higher than the passivate surface with a carbon 

transfer (4.5 J/m2). This indicates that the presence of carbon transfer on the mating 

surface reduces the work of separation, which reduces the COF. 

A more recent study by Liu et al. [8] compared the friction behaviour of diamond 

to H-DLC and NH-DLC. The authors conducted a linear reciprocating wear test of a 

aluminum oxide ball against diamond, H-DLC and NH-DLC coatings at a 2 N load with 

a 100 um stroke at 8 Hz frequency for 100,000 cycles. The resulting COF decreased from 

0.09 to 0.03 as the RH increased from 10% to 85% respectively, for the diamond surface. 

Similar behavior was observed for NH-DLC. As the RH increased from 5% to 90%, the 

COF decreased from 0.1 to 0.04 (Figure 2-17). H-DLC, however, behaved contrarily to 

diamond and NH-DLC, with the COF increasing from 0.07 to 0.13 (Figure 2-18) as the 

RH increased from 5% to 85%. From the study, it was concluded that water was adsorbed 
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by diamond and NH-DLC, decreasing the shear stress at the interface, while the 

interactions between hydrogen and oxygen played an important role in the tribological 

behaviour of the H-DLC. 

Therefore, it was observed that humidity has a negative effect on the COF of H-

DLC and prevent carbon transfer from forming on the counterface. While higher 

humidity levels terminate the unoccupied carbon bonds by dissociating to H and OH and 

forming easily sheared carbon transfer, the work of separation between the sliding 

surfaces is reduced, promoting a low COF. 
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Figure 2-13: Effect of water vapor pressure increase on the COF of 52100 steel ball 
sliding against H-DLC with 0.1 m/s speed and 1 GPa contact pressure [27] 

24 



« l U 

^ 0 4 
c .§ 

£0,3 o> o u 
F
ric

tio
n

 
o 

o 

0 1 
•4 

1 1 — 

W 

" 

I 

i f r " • - . . . • 

1.E+02 

1.E+0I f 
x: 

1.E+00 ^ 

l.E-01 | 

1.E-02 ^ 
MM 

l.E-03 \ 

l.E-04 * 

l.E-06 | 

l.E-06 200 400 600 
Cycles 

600 1000 
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Figure 2-15: Transfer layers on 52100 steel from H-DLC coating [27]. 
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Figure 2-16: Environmental effect on NH-DLC at 5 N load and 0.12 m/s speed [28]. 
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2.3.5 Vacuum and Inert Atmosphere 

The tribological behavior of H-DLC and NH-DLC coatings differs significantly 

under vacuum or inert atmosphere (i.e. N2 or Ar). Erdemir [22] tested H-DLC and NH-

DLC in dry nitrogen atmosphere. The H-DLC coatings were tested against a H13 steel 

disc with a 10 N load and a 0.3 m/s speed. The results showed that the H-DLC produced 

a COF of 0.005, while NH-DLC produced a COF of 0.75 (Figure 2-19). The author 

attributed the difference to be due to the hydrogen content inside the coating, which 

prevented cross-linking or double bonds between the carbon atoms. Hydrogen was also 

seen to eliminate n-n interactions in the graphite phase and passivate free o-carbon bonds. 

Konca et al. [7], noted similar NH-DLC results while testing a 319 Al pin against 

NH-DLC under vacuum with a 5 N load and a 0.12 m/s linear speed to produce a COF of 

0.52. The relatively high COF (Figure 2-20) was explained by a lack of passivants such 

as hydrogen or water under vacuum. In this enviroment, free a-carbon bonds on the NH-

DLC surface interact with the aluminum counterface, which cause aluminum to transfer 

on the NH-DLC track. Aluminum transfer prompts the sliding behaviour to change to 

metal/metal contact, leading to the observed high COF. 
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Figure 2-20: 319 Al pin against NH-DLC under vacuum and ambient air with 5 N 
applied load and 0.12 m/s linear speed [7]. 

28 



2.3.6 Why does Aluminum Adhere to Carbon? 

Tribological studies of aluminum sliding against NH-DLC coatings [28] have 

revealed that aluminum adheres to the non-terminated carbon surface. Qi and Hector [30] 

explained this observation with a study that computed and compared the work required to 

separate aluminum/carbon (Al/C) at the interface (Wsep). Three different Al/C interfaces 

were investigated, Al(l l l ) /C(l l l )- lxl , Al(lll)/C(lll)-2xl and Al(lll)/C(lll)-lxl:H, 

where the bonds are terminated with hydrogen (Figure 2-21). The adhesive strength was 

then investigated using tensile strain calculations where the interface was stretched to 

failure. 

Wsep was calculated using Equation 2-3, where ow is the surface energy of the 

material i and <Jl2 is the energy of the interface. Ef is the total energy of the material, 

E[°2 is the total energy of the interface and A is the total area at the interface. The 

computed value of Wsep for the Al(l l l ) /C(l l l )- lxl , Al(lll)/C(lll)-2xl and 

Al(ll l)/C(lll)-lxl:H interfaces were 4.08 J/m2, 0.33 J/m2 and 0.02 J/m2 respectively. 

The calculation indicate that the Al(l l l ) /C(l l l )- lxl interface is much stronger than the 

interface with hydrogen termination. 

Wsep = <rw + <J2V -on = (E? + E? -E£) / A 2-3 

The study used an electron localization function (ELF) was utilized to 

characterize the bonding type, for example ELF = 1, corresponds to covalent bond and 

ELF = 0.5 corresponds to metallic bond. ELF simulation indicate that the bonding 

between Al(l l l) /C(ll l)- lxl is covalent, while for Al(lll)/C(lll)-2xl interface, the 

bonding is a mix between covalent/metallic and for Al(ll l)/C(ll l)-lxl:H interface the 

ELF indicate that it is dispersion interactions. 

29 



The work of decohesion at the interface, was defined as the energy difference per 

unit area (E/A) between the fractured system and the interface structure. The calculated 

decohesion work for Al(l l l) /C(ll l)- lxl (covalently bonded) was 1.56 J/m2 (Figure 

2-22) about 2.5 times higher than the work required to separate at the interface (Wsep = 

4.08 J/m2). It became clear that fracture would occur at the Al bulk before reaching the 

Al/C(lll)-lxl interface (Figure 2-23 (a)). The calculated E/A for Al(lll)/C(lll)-2xl 

was 0.49 J/m2, more than the computed Wsep of 0.33 J/m2, indicating that fracture will 

occur at the interface first (Figure 2-23 (b)). Finally the E/A for Al(ll l) /C(ll l)-lxl:H 

was computed to be close to zero confirming that there is no adhesion between the 

surfaces (Figure 2-23 (c)). 

To summarize, the aluminum transfers to the carbon surface due to lack of 

terminating species that occupying the c-carbon bonds. Computer simulations confirmed 

that as the aluminum surface approaches the non-terminated carbon surface, strong 

covalent bonds are formed between the carbon and aluminum. When the surfaces were 

pulled perpendicular to the interface, the aluminum separated at the bulk before the 

carbon-aluminum would separate at the interface, due to the fact that metallic bonds (Al 

bulk) are weaker than covalent bonds (Al/C interface), which confirms the presence of 

aluminum adhesion to the NH-DLC surface. 
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2.3.7 Friction during Transition from Air to Vacuum 

As seen in the previous section the COF for H-DLC and NH-DLC can be 

manipulated by altering the testing atmosphere. Konca et al. [7] studied the tribological 

behaviour of 319 Al on NH-DLC and the effect of initial running-in period in ambient 

air, on the COF in vacuum. The authors observed that when the chamber evacuation 

started, the COF dropped from a steady state COF regime of 0.1 (in ambient air) to a low 

COF regime (LFR) under vacuum, producing a COF ranging from 0.006 to 0.02. The 

drop in the COF was believed to be a result of the formation of a carbonaceous layer on 

the aluminum surface, in addition to an increase in water vapour concentration inside the 

test chamber as the pressure decreased, which promoted an effective passivation of the 

unoccupied carbon sigma bonds. In the same study, Konca et al [7] also noted that as the 

duration of initial sliding in the steady state regime increased the duration of the LFR 

regime increasesed as well (Figure 2-24 and 2-25). In Figure 2-24, 319 Al slid against 

NH-DLC initially for 850 revolutions (rev) in the steady state regime, initially and 

produced a LFR regime that lasted 2000 rev. Figure 2-25 illustrates how, 319 Al slid 

against NH-DLC for 2900 rev in the steady state COF regime while maintaining a similar 

speed and load as in the previous test Figure 2-24, resulting in a LFR regime that lasted 

for 4000 rev. 

Test speed also has an affects the LFR regime. As the speed increases, the LFR 

regime's duration decreases. In experiments where 319 Al is sliding against NH-DLC at a 

speed of 0.04m/s speed for 850 rev in the steady state regime, a LFR regime was 

produced that lasted for 2000 rev (Figure 2-24). However, when the test was repeated at 
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a higher speed of 0.15 m/s (Figure 2-26) the LFR regime only lasted for 300 rev, despite 

a longer initial steady state COF regime of 1200 rev. 

The duration of the LFR regime is also influenced by the counterface material 

[28] and [31]. When Ti was tested against NH-DLC for a 2000 rev initial steady state in 

ambient air, for example it produced a 300 rev of LFR was produced. When the Al 

counterface was used with a shorter initial steady state in ambient air (1200 rev), it 

produced the same LFR duration of 300 rev was produced, even though speed and load 

were the same. This observation contradicts claims made by previous studies that the 

longer the steady state COF duration, the longer the LFR regime. It follows that the LFR 

duration must also depend on the counterface material. This conclusion was confirmed 

when Al (Figure 2-25) was compared to WC (Figure 2-27) while sliding against NH-

DLC. Both counterface materials had similar initial steady state COF regime durations of 

2900 rev and 3000 rev for Al and WC respectively. However, WC produced a much 

shorter LFR duration of 2200 rev compared to Al's 4000 rev, which was almost half and 

verified that the counterface material played an important role in LFR duration. 
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Figure 2-24: 319 Al sliding against NH-DLC at 0.04 m/s and 5 N load: 850 rev in air 
and 2000 rev of ultra low COF regime [7] 
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2.3.8 Lubricated Sliding of DLC Coatings 

Previous sections have provided insights into how DLC coatings behave during 

dry-sliding, and how the friction behaviour can be manipulated by altering the testing 

atmosphere. DLC coatings are not limited to dry applications; they are also used in 

lubricated contacts, such as engine components and artificial joints. DLC coatings are 

usually introduced in areas that experience severe conditions or encounter boundary 

lubrication (Appendix A) as a way to minimize wear and friction at the metal/metal 

junctions. Ronkainen et a/.[32] studied 52100 steel sliding against uncoated steel, NH-

DLC, H-DLC and Ti-doped H-DLC. The experiments were conducted at a 10 N load and 

a 0.004 m/s speed for 300 m, with mineral base oil and an extreme pressure (EP) additive 

under boundary lubrication. The NH-DLC coating produced a lower friction under BL 

(0.08) compared to the 0.12 produced by the uncoated steel, H-DLC and Ti-doped H-

DLC when in the presence of a mineral base oil and EP additive. NH-DLC and Ti-doped 

H-DLC produced a lower COF of 0.13 when sliding in a mineral base oil, compared to 

H-DLC which displayed a COF of 0.2. The authors concluded that Ti improves the 

friction behaviour of H-DLC in BL, while NH-DLC significantly improves friction in the 

presence of an EP additive under BL. 

Bouchet et al. [33] investigated the influence of lubricants (with and without 

additives) on the tribological behavior of DLC. Results revealed a significant difference 

between coating one of the mating surfaces and coating both surfaces under lubricated 

conditions. The author preformed a reciprocating cylinder-on-flat test to observe mild and 

severe tribological conditions. Three types of DLC coatings were used, H-DLC (50 at% 

hydrogen), Ti doped H-DLC (35 at% hydrogen) and NH-DLC. The coatings where 
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deposited on 52100 steel flat and cylinder with diameter and length of 6 and 5 mm 

respectively. Tests were conducted for 1 hour at 100 °C at a sliding speed of 0.2 m/s and 

a load that increased gradually to 50 N, where it was maintained for 5 min (run in period) 

then increased to 350 N. Three types of lubricants were used; PAO, PAO + MoDTC and 

PAO + MoDTC + ZnDTP. Figure 2-28 and 2-29 illustrate the differences between oil 

interactions and COF when just one of the mating surfaces is coated with DLC, and when 

both are coated. Test results indicated that coating one of the mating surfaces with H-

DLC, produced a COF of 0.1, while coating both surfaces with H-DLC reduced the COF 

under the BL regime to produce a COF that was less than 0.1 in the presence of PAO oil. 

Furthermore, the presence of MoDTC and ZnDTP reduced the friction even more to 0.05 

for H-DLC sliding against H-DLC. The addition of a Ti dopant to the H-DLC coating 

only appeared beneficial in the presence of PAO oil, leading the authors to conclud that 

MoDTC and ZnDTP additives react with the carbon surface to form easily sheared layers 

that lower the COF. 
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Kalin et al. [34] conducted another study on the influence of dopants have on the 

tribological behavior of DLC under boundary lubrication. In this study, a 10 mm ball slid 

on a coated stationary DIN 100Cr6 steel disk. Tests were performed at a 0.1 m/s speed, 

10 N load for 100 m sliding distance corresponding to lambda ratio of 0.06. DLC 

coatings are listed in Table 2-2. Results (Figure 2-30) proved that the behavior was 

independent of the dopant, but the COF behavior was linked to the additives, with 

mineral (M) oil + AW and EP additives producing the highest COF, and M oil and a EP 

additive generated the least amount of friction, regardless of the DLC type. 

Kalin et al. [35] also compared the influence of mineral oil and biodegradable oils 

on the tribological behavior of steel against steel, steel against DLC and DLC against 

DLC. Tests were performed using a ball-on-flat machine with a 0.1 m/s speed, a 10 N 

load at a 100 m distance, with contacts preheated to 80°C. The ball and flat are made of 
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DIN 100Cr6 steel and two types of coatings were used; H-DLC with Si interlayer, and 

W-DLC with multilayer WC, carbon and a Cr interlayer. Test results appear in Figure 

2-31 and 2-32 for mineral and biodegradable oils respectively. Comparing Figure 2-31 

and 2-32, sunflower oil promotes a significant drop of 30 % in the COF compared to 

mineral oil, because the sunflower oil features large amounts of unsaturated molecules 

and polar components or Fatty Acids, as described in Appendix B. 

As for lubricated sliding under the BL regime, friction is governed by 

temperature, surface morphology, surface chemistry, the presence of polar groups and 

chain length in the oil. The authors discovered that coating the sliding surfaces with a 

lubricious coating, such as DLC, reduced the COF in the BL regime. The literature has 

not clarified what mechanism is dominating the tribological behavior of DLC coatings 

under BL conditions during sliding , but studies have shown that friction modifiers and 

additives like ZnDTP and MoDTC work well with H-DLC to produce a COF of 0.05 

under BL. In addition, dopants such as Ti and W seem to decrease the COF even further. 

This thesis investigates the tribological behaviour of 319 Al sliding against both 

NH-DLC and H-DLC coatings in an effort to improve and optimize the drilling and 

machining of the common automotive alloy, 319 Al, by identifying the friction 

mechanisms. The study examines the friction behaviour of AISI52100 grade steel sliding 

against both NH-DLC and H-DLC coatings under BL in the presence of ATF. The 

following section of this dissertation will provide a comprehensive understanding of BL 

in the presence of surface coatings to illustrate whether or not it is beneficial to coat 

transmission components made of AISI 52100-grade steel, such as planetary gears, when 

aiming to lower the COF under BL. 
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Table 2-2: DLC types [34] 

Coating 
type 

DLC-1 

DLC-2 

Ti-DLC 

W-DLC 

Si-DLC 

Deposition 
method 

RF PACVD 
(13.56 MHz) 
Hybrid process 
PVD/CVD 
Hybrid process: 
reactive magnetron 
sputtering + PACVD 
Reactive magnetron 
sputtering 
Low-frequency 
PACVD 

Layer structure 

a-C:H single 
layer 
a-C:H single 
layer 
Ti-C:H single 
layer 

a-C:H/a-C:H-W 
multilayer 
a-C:H/a-Si:G 
single layer 

Thickness 
(u,m ) 

1.78± 0.09 

2.67 ± 0.04 

2.38± 0.29 

2.61 ± 0.05 
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Figure 2-30: COF of 52100 steel sliding against DLC coatings under boundary 
lubrication with 10 n load and 0.1 m/s [34]. 
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Figure 2-31: COF for (Steel/steel, Steel/a-DLC, Steel/W-DLC, a-DLC/a-DLC and 
W-DLC/W-DLC) with various oils, Mineral Oil (M), Mineral Oil+ Anti wear 

/Extreme pressure (M+ AW+EP) and Mineral Oil+ Extreme Pressure (M+EP) at 10 
n load and 0.1 m/s [35]. 
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Figure 2-32: COF for (Steel/steel, Steel/a-DLC, SteelAV-DLC, a-DLC/a-DLC and 
W-DLC/W-DLC) with various oils, Sunflower Oil (S), Sunflower Oil+ Anti wear 

/Extreme pressure (S+ AW+EP) and Sunflower Oil+ Extreme Pressure (S+EP) at 10 
n load and 0.1 m/s [35]. 
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CHAPTER 3 

Experimental Procedures 

This chapter describes the materials used, as well as the analyses techniques and 

testing equipment applied in this study. 

3.1 Materials 

3.1.1 DLC Coatings 

H-DLC and NH-DLC were picked for this study because they are commonly 

used by industry as protective coatings for drill bits and to identify the benefits of 

hydrogen on DLC coatings. Both coatings were deposited on M2 steel discs (0 25 mm) 

by Teer Coatings Ltd. by a closed-field, unbalanced magnetron PVD sputtering system 

described in Section 2.1.2. The PVD system had two chromium target and two graphite 

targets (Figure 3-1), and approximately 0.6 u,m of Cr interlayer was deposited before the 

NH-DLC coating to promote adhesion to the steel substrate [36]. The power to the Cr 

target was then decreased gradually while increasing the power to graphite targets to 

obtain the desired 1 to 1.5 um thick layer of NH-DLC coating as shown in Figure 3-2 (a). 

As for the H-DLC coating, a 0.8 to 1 um Cr interlayer, was followed by a gradual 

decrease in power to the Cr target during an increase in power to the graphite targets. The 

process was similar to the NH-DLC deposition procedure, but with the addition of a 

butane precursor gas to achieve 40 at% of hydrogen content, which resulted in a 0.8-1 

urn-thick H-DLC (Figure 3-2 (b)). 
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Figure 3-1: Schematics for a closed field, unbalanced magnetron sputtering system 
[36] 

Figure 3-2: Cross section of the (a) NH-DLC and (b) H-DLC coatings after 
cryogenic fracture 
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3.1.2 Counterface Materials 

Two counterface materials, 319 Al and AISI 52100 were used in this study. 319 

Al was chosen for it is widely used in automotive applications due to its lightweight and 

relatively high hardness of 80 HB [37] compared to pure aluminum. The alloy mainly 

consists of 6 wt% Si, 4wt% Cu and aluminum, the actual composition of the alloy is 

presented in (Table 3-1). 319 Al was drawn into a 4 to 5 mm rods at 700 °C and was T5 

(200 °C for 8h) heat treated. The rods were then cut to a 15 mm length and one end of the 

pin was rounded to a 4 mm 0. 319 Al pins were run as a counterface material against the 

DLC coatings to study the friction behaviour under dry sliding. 

The second counterface was AISI 52100 steel, with a hardness of 197 HB [38]. 

This type of steel is commonly used for ball bearings and transmission gears for its good 

machinability. AISI 52100 steel was purchased in the form of 6 mm 0 balls, which were 

also run as counterface materials against the DLC coating. The chemical composition of 

AISI 52100 steel is presented in Table 3-2. 

Table 3-1: Chemical composition of SAE 319 Al [37] 

319 Al 

Element 
Composition 
[wt%] 

Cu 
3.00-
4.00 

Mg 

0.1 

Mn 

0.5 

Si 
5.50-
6.50 

Fe 

1 

Zn 

1 

Ti 

0.25 

Ni 

0.35 

Others 

0.5 

Al 

Balance 

Table 3-2: Chemical composition of AISI 52100 steel and AISI M2 steel [38] 

Element 
52100 
steel 
M2 
steel 

Composition [wt% 

C 
0.98-
1.10 
0.78-
0.88 

Mn 
0.25-
0.45 
0.15-
0.40 

P 

0.025 

S 

0.025 

Si 
0.15-
0.35 
0.20-
0.50 

Cr 
1.30-
1.60 
3.50-
4.00 

Ni 

0.30 
max 

Mo 

8.20-
9.20 

W 

1.40-
2.10 

V 

1.00-
1.25 

Fe 

Balance 

Balance 
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3.2 Material Characterization 

3.2.1 Light Microscope 

This study used a VHX-600 digital microscope with a large depth of field that 

proved useful for analyzing surfaces with large height differences. This digital 

microscope was used to analyze the pin/ball contact area, as well as the wear track after 

testing, to clearly identify surface features. 

3.2.2 Coating Thickness 

3.2.2.1 Radial Sectioning 

A CALOTEST machine, made by CSM, measured the coating thickness using a 

radial sectioning method. The surface coating was pressed against a rotating steel ball 

with a known radius, creating a crater Figure 3-3. The thickness was then determined 

using the following calculation. The crater depth is represented by "P", which is 

calculated from the chord of a circle using Equation 3-1. The crater depth, minus the 

coating thickness, is "p", which was calculated in a way that was similar to the manner 

shown in Equation 3-2. R is the rotating ball radius, Douter and Dinner are the outer and 

inner diameters of the two concentric circles and T is the coating thickness (calculated 

using Equation 3-3). 

( 

P = R- outer 

v 2 j 
R' 3-1 

p = R 
D } 

inner 

v 2 , 
R' 3-2 

T = P-p 3-3 
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Figure 3-3: Schematics for coating thickness measurement using a CALOTEST 

3.2.2.2 Cryogenic Fracture 

Another way that coating thickness was measured was by fracturing the coating 

cryogenically and investigating the cross section of the fractured surface using a scanning 

electron microscope (SEM). Prior to cryogenic fracture, the specimen was cut from the 

uncoated side using an electrical discharge machine (EDM) that created a narrow cut (0.6 

mm width). The EDM cut did not travel all the way through the disc, but left about 0.5 

mm of material from the coated side. The sample was then submerged into liquid 

nitrogen and fractured by holding the bottom half of the disc with a vice and tapping the 

coated side with a hammer, which broke the specimen in half. 
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3.2.3 Mechanical Properties 

The TI 900 Tribolndentor, made by Hysitron and equipped with a Berkovich 

(three sided pyramid) nano-indenter, performed 40 indents on H-DLC and NH-DLC. 

These indents were less than 200 nm deep from the surface in an effort to eliminate 

substrate effect on the measurement. Nano-hardness and elastic modulus were calculated 

from the loading and unloading curves, according to the Oliver and Pharr method [39] 

described in Appendix C. 

3.2.4 Surface Energy 

The surface energy of the DLC coatings was determined by the wetability of the 

surface (Figure 3-4). A water droplet of a 10 x̂l volume was dropped on the surface 

coatings (H-DLC and NH-DLC) using a sessile drop machine made by KRUSS. The 

surface energy (y) is defined by the following equation: 

7sv = rsL + rLv^s^ 3-4 

Where ySL is the surface energy of the solid (S) liquid (L) interface, yLV is the 

surface energy of the liquid (L) vapour (V) interface and ysv is the surface energy of the 

solid (S) vapour (V) interface. From Equation 3-4, it is understood that as ft decreases the 

ysv increases. 
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Sample 

Figure 3-4: Contact angle measurement schematics for water droplet applied to the 
surface 

3.2.5 Chemical Composition 

3.2.5.1 X-Ray Diffraction 

The composition of the H-DLC and NH-DLC coatings was measured using a 

Siemens D5000 X-Ray diffraction (XRD) machine. The source incident angle was set to 

4° to minimize the X-Ray's penetration depth, and the detector was set to gather the 

reflected rays from 10° to 100° in 0.04° increments every 2 seconds. 

3.2.5.2 Electron Microprobe (EMPA) 

The chemical composition of the surface coating was determined by Electron 

microprobe (EMPA), a non-destructive analytical tool that works like an SEM. Electrons 

bombard the sample surface to generate X-Rays and elements that are present on the 

surface are determined from their wave length, while the concentration is calculated from 

the intensity level. 
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3.2.5.3 Energy Dispersive X-ray Spectroscopy (EDS) 

Energy dispersive X-ray spectroscopy (EDS) is a non-destructive analytical 

technique used to determine the elemental composition of the sample surface. EDS 

analyses in this study were obtained while taking SEM micrographs to identify the 

elemental composition of the transfer layers on the 319 Al pin and the wear debris 

observed inside the DLC coating's wear track. EDS uses the electron gun present in the 

SEM that bombards the surface atoms, to excite and eject the inner electrons of the atoms 

essentially creating a hole. The outer-most electrons then jump down and fill the hole, 

releasing energy in the form of X-rays as shown in Figure 3-5. The X-rays are then 

analyzed by the spectrometer to identify which element each atom belongs to. 

X~Ray*~\ 

Electron 

Figure 3-5: Schematics for X-ray generation by electron excitation 
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3.2.5.4 Elastic Recoil Detection [ERD] 

Hydrogen content in the DLC coatings was measured using Elastic Recoil 

Detection [ERD], which is a nuclear particle accelerator. ERD technique uses He ions, 

which are accelerated towards the sample, as a result surface molecules are recoiled 

towards the mass spectrometer, which identifies the recoiled atoms from their atomic 

weight (Section 3.2.7). The theory behind this technique is based on the conservation of 

the kinetic energy (Equation 3.5). Where the energy of the He ions (E0) is equal to the 

sum of the deflected He ions (Ed) and the recoiled atoms from the surface (Er). Therefore, 

the energy of the recoiled atom from the surface is calculated by Equation 3.6, where Mi 

and M2 are the masses of the projectile atom (He) and reflected atoms from the surface 

respectively, while #is the recoil angel. The recoil angel can be calculated from Equation 

3.7, where <z>is the deflection angel of He ions as shown in Figure 3-6 [40], [42]. 

E0=Ed+Er 3-5 

,=EnJMJM1_Cos20 
'r ~ ^ 0 (M1+M2) 

3-6 

cos2e -. 
(Afi + M2)-(M1Cos<p±^](M2 -MlSin7'<f>))2 

AMXM2 

3-7 

Figure 3-6: Schematics for elastic recoil detection technique 
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3.2.5.5 Fourier-Transform Infrared Spectroscopy (FTIR) 

Infrared (IR) light is divided into three regions according to their wave frequency, 

i.e. far-IR (5-500 cm"1), mid-IR (500-4000 cm"1) and near-IR (4000-14000 cm"1). Fourier-

Transform Infrared (FTIR) spectroscopy uses mid-IR light because most molecular 

vibration levels fall within 500 and 4000 cm"1 frequency. This technique relies on the fact 

that all molecules absorb IR waves that corresponds to their natural vibration frequency 

and what is not absorbed is reflected to the detector. Absorbance is then calculated from 

the reflected frequencies, using Beer-Lambert Law (Equation 3.8), which correlate 

absorbance to reflectance. The reason it is called Fourier transform IR, because data are 

gathered in the form of absorption vs time. Therefore, Fourier transform operation is 

applied to transform the data to absorption vs frequency plot, so that the type of bond and 

species can be identified by the infrared frequency, which is absorption upon exposure to 

the IR (Figure 3-7) [41]. In this study, FTIR was utilized to identify the chemistry of the 

transfer layers found on the 319 Al after sliding against NH-DLC. 

Absorbance = 1 / log[Re flee tan ce] 3-8 

Figure 3-7: Schematics for FTIR spectroscopy 
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3.2.6 Surface Profilometry 

Surface topography of the samples was measured with an optical surface 

profilometer, which was also used for wear rate calculations. Optical surface profilometry 

provides non-destructive measurements of surface roughness, width and depth of the 

wear track, that was later used in wear rate calculations. The profilometer operates in two 

modes; VSI (Vertical Scanning Interference) used for rough surfaces up to 1mm and PSI 

(Phase Shift Interference) used on smooth surfaces up to 150 nm. 

The machine operates by reflecting beams of white light off the sample surface that 

intercept each other, forming fringes (altering light and dark bands) when the image is 

focused on a plane (Figure 3-8). In VSI mode, the machine measure fringe consistency, 

but in PSI mode, a piezoelectric transducer (PZT) moves the objective downwards, 

leading to a shift in the fringes when the focus moves to other planes. Data is then 

recorded and compiled, producing an image [43]. 

Detector Array 

Filters all but the red 
lighi from 'jvkite 

light of halogen lamp, 

Itlumtnator 

Light Source 

Aperture 
Stop 

Digitized Intensity 
Data 

Beamsplitter 

^Translator 

Microscope 
# Objective 

Sample 

Mhau 
Interferometer 

Figure 3-8: Schematics for optical surface profilometer [43] 
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3.2.7 Residual Gas Analyzer (RGA) 

In this study, RGA produced by Hiden was used to measure the residual gases 

present inside the vacuum chamber. The RGA consist of an electron gun, which produce 

an electron beam and ionizes gas molecules inside the chamber. Because the electron 

beam is produced by a hot filament, the RGA can only operate at low pressures (0.05 Pa 

or 4xl0"4 Torr), since reactive species such as oxygen would destroy the filament. 

The ionized gas species are then analyzed by a quadruple mass spectrometer, 

which identifies the species from their atomic mass. The quadruple mass spectrometer 

consists of four conductive rods with direct current (DC) and alternating current (AC) 

running through them. The ions then oscillate between the rods due to the electric field 

between the rods, the mass of the ions is then determined from their oscillation by an ion 

sensor (Figure 3-9) [44]. 

AC 

(TV/ J'' V-.-v* Detractor 

DC 

Figure 3-9: Schematics for ion oscillation between the four rods of the Quadruple 
mass spectrometer 
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3.3 Tribological Tests 

3.3.1 Dry Sliding Tests 

A high vacuum/high temperature CSM pin-on-disc tribometer (Figure 3-10) 

measured the friction force between the mating surfaces (319 Al and DLC surface 

coatings). The tribometer is equipped with mechanical and turbo pumps, allowing the 

system to reach vacuum levels as low as 7.5xl0"8 torr (lxlO7 Pa). The machine is also 

equipped with a residual gas analyzer (RGA described in Section 3.2.7) that identifies gas 

species inside the chamber during high vacuum experiments (Figure 3-11). All tests were 

conducted at 5 N load and a 0.1 m/s linear speed. 

This study compared the tribological behaviour of 319 Al sliding against H-DLC 

and NH-DLC in ambient air (40% RH) and in vacuum (0.04 Pa or 3x10~4 torr, where 

RGA is operational) for 5000 sliding cycles was compared. The effect of humidity on 

NH-DLC was also explored by running three separate tests of 319 Al against a NH-DLC 

coating for 5000 sliding cycles at 25%, 40% and 77% RH. 

The effect of the initial atmosphere on the COF in vacuum was also investigated, 

when 319 Al slid against NH-DLC for 1500 sliding cycles in ambient air (25% RH), dry 

air, dry nitrogen and dry oxygen environments. Then chamber was then evacuated while 

the test was running to observe the COF changes during the transition from the initial 

atmosphere to vacuum. 
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Figure 3-10: CSM high temperature/vacuum tribometer 
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Figure 3-11: Schematic for CSM high vacuum/temperature tribometer with a 
residual gas analyzer (RGA) 
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3.3.1 Lubricated Sliding Tests 

Lubricated sliding tests were conducted using a CSM bench tribometer (Figure 

3-12) that measured the COF of AISI 52100 steel ball sliding against uncoated AISI 

52100 steel, H-DLC and NH-DLC surface coatings. 

An automatic transmission fluid (ATF), specifically Mobil 1 Dexron III fluid (34 

cSt @ 40°C) [45] was used as a lubricant in this study to mimic transmission operation. 

ATF is a mixture of natural and synthetic oils with 10-20% additive content. Natural oils 

could be vegetable oils or lard oil, while synthetic oils would include hydrocarbon oils 

such as oligomerized, polymerized and interpolymerized olfines. As for the additives, 

they are broken into 8 groups such as viscosity modifiers, dispersants, detergents, anti-

wear, oxidation inhibitors, corrosion inhibitors, anti foam and friction modifiers 

described in Appendix B. 

First, the Stribeck curves were generated for three couples; 52100 steel against 

52100 steel, 52100 steel against H-DLC and 52100 steel against NH-DLC couples to 

identify the lubrication regimes. The curves were generated by testing each couples at 

various speeds (0.5, 1.0, 10.0, 100.0, 200.0, 500.0 and 600.0 mm/s) while maintaining the 

constant 5 N load for only 150 sliding cycles at each speed. The average COF value for 

each speed was used to plot the Stribeck curve. 

Two of the couples, 52100 steel against H-DLC and 52100 steel against NH-DLC 

were tested at 10 cm/s, 5 N load in dry ambient conditions for 4000 sliding cycles, at 

which point Dexron III was added. The tests were performed to compare the friction 

behavior of DLC in dry and lubricated sliding and observe the effect of initial run in 

period in ambient air of lubricated sliding, specifically boundary lubrication. 
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Figure 3-12: Pin on disc bench tribometer 

3.3.2 Wear Rate 

The wear rate of was calculated according to Archard in 1953, where he 

introduced the concept of wear rate (W) from a relationship between volume loss (V), 

sliding distance (d) and load (F). 

V 
W = —- 3-9 

dF 

The volume loss of the wear track was calculated by measuring the cross sectional 

area of the wear track using surface profilometer and multiplying the area with the 
parameter of the track. 
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V = 2m.{area) 3-10 

As for the ball, the volume was calculated by measuring the wear scar radius (r) 

and the ball radius (/?). 

V=-nh[3r2+h2] 
6 

Where h is the material loss height, as shown in Figure 3-13 

h = R-ylR2-r2 

3-11 

3-12 

In Stribeck curve experiments, the sliding speed was varied and in this case, the 

wear rate cannot be used compared. Therefore, the wear rate was normalized for speed by 

dividing the wear rate by sliding speed (v) for comparison. 

V 
W=-

dFv 
3-13 

Figure 3-13: Schematic for ball parameters used in wear rate calculation 
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CHAPTER 4: PART I 

Dry Sliding 

This chapter presents material characterization results and explore dry-sliding 

behaviour of H-DLC and NH-DLC coatings in ambient air, vacuum and initial running-in 

in dry air, oxygen and nitrogen prior to sliding in vacuum. 

4.1 Coating Characterization 

4.1.1 Coating Thickness 

Thickness of both H-DLC and NH-DLC coatings thickness were measured in two 

ways, radial sectioning (CALOTEST) and the conventional cross-sectioning of the 

coating. In radial sectioning, a 20 mm 0 ball was rotated against the H-DLC and NH-

DLC coatings for 20 and 80 seconds respectively at 800 rpm. Two measurements 

resulted; the thickness of H-DLC was 1.164 ± 0.177 [xm, and the thickness of NH-DLC 

was 1.485 ± 0.134 nm. 

Coating thickness was also measured using SEM after cryogenically fracturing 

the DLC coatings. Figure 4-1 (a) and Figure 4-2 (a) provide micrographs of the fractured 

H-DLC and NH-DLC surfaces respectively. Figure 4-1 (b), illustrates how the H-DLC 

coating reaches 0.12 |im with a 0.60 |im chromium interlayer, confirming with the 

CALOTEST measurement. As for the NH-DLC coating, Figure 4-2 (b) indicates that the 

chromium interlayer is about 0.30 (im, with a total thickness of 1.30 |j,m, remaining 

within one standard deviation of the CALOTEST measurement. 
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Figure 4-1: Micrographs of the H-DLC cross section (a) illustrates the presence of 
Cr interlayer (b) indicate that Cr is about as thick as the C coating 

Figure 4-2: Micrographs of the NH-DLC cross section (a) illustrates the presence of 
Cr interlayer (b) indicate that Cr is Hess than half of the C coating 
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4.1.2 Chemical Composition 

4.1.2.1 X-Ray Diffraction 

The crystal structure of the surface coating was analyzed by XRD. Figure 4-3 

shows the XRD spectra of H-DLC and NH-DLC coatings, both spectras observed to over 

lap each other. Thus, NH-DLC intensity was offset by 150 counts to compare peak 

positions with H-DLC. The diffraction patterns for H-DLC and NH-DLC coatings are 

clearly similar, with no evidence of carbon (Graphite or Diamond) and only Cr peaks 

observed, indicating that the carbon-based coating was too thin for XRD analysis. 
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Figure 4-3: XRD spectra of H-DLC and NH-DLC. NH-DLC spectra was offset by 
150 counts to compare with the H-DLC spectra 
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4.1.2.2 Electron Microprobe Analysis 

The chemical composition of the DLC coatings was measured using Electron 

probe microanalysis (EPMA). The microanalysis was conducted on the crater in the H-

DLC coating, created by the CALOTEST, producing a backscattered image of the crater 

(Figure 4-4 (a)). Carbon concentration was 95.5 wt% and Figure 4-4 (b) illustrates how 

that the concentration decrease from the edge of the crater (top surface) to the bottom of 

the crater. While Cr concentration is observed to be localized below the carbon coating 

Figure 4-4 (c), confirming the presence of Cr interlayer with concentration of 4 wt%. As 

for Fe, Figure 4-4 (d) demonstrates that the concentration is localized at the bottom of the 

crater, which is the M2 steel substrate. H-DLC EPMA analyses shown in Figure 4-4 (e), 

illustrate an insignificant Ar concentration, less than 0.5 wt%. 

Similarly Figure 4-5 (a) displays the backscattered image of the NH-DLC crater, 

while Figure 4-5 (b), (c), (d) and (e) provides maps of the C, Cr, Fe and Ar respectively. 

Carbon concentration (80 wt%) and intensity shown in Figure 4-5 (b) however, was 

found to be less than the 95.5 wt% observed in H-DLC (Figure 4-4 (b)). While the 

chromium and argon concentrations in the NH-DLC coating found to be 11 wt% and 9 

wt% respectively, which is significantly higher that 4 wt% of Cr and 0.9 wt% of Ar, 

observed in the H-DLC coating. 
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Figure 4-4: EPMA chemical analyses of the H-DLC coating, (a) Back scattered 
image of the crater, map of (b) Carbon (c) Chromium (d) Iron and (e) Argon 
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(b) 

(d) 

Figure 4-5: EPMA chemical analyses of the NH-DLC coating, (a) Back scattered 
image of the crater, map of (b) Carbon (c) Chromium (d) Iron and (e) Argon 

65 



4.1.3 Mechanical Properties 

Hardness and elastic modulus were measured by performing nano-indentation on 

the coated surface, and calculation procedure is described in Appendix C. Figure 4-6 

shows a typical loading and unloading curve of the indentations performed on the H-DLC 

and NH-DLC coatings. The average of 40 indents performed on the H-DLC coating, 

result in a hardness average of 11.467 ± 0.835 GPa and an elastic modulus average of 

103.319 ± 3.854 GPa. Similarly, for NH-DLC coating the average of 40 indents produced 

a hardness average of 13.151 ± 1.095 GPa and elastic modulus average of 158.592 ± 

6.928 GPa. Calculated hardness and elastic modulus values of the NH-DLC (Graphit-iC) 

confirm with values from literature [46]. 
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Figure 4-6: Indentation loading and unloading curves for H-DLC and NH-DLC 
with a Berkovich indentor 

66 



4.1.4 Surface Energy 

The surface energy was quantified by measuring the contact angle of water and 

Dexron III oil droplets on the surfaces (Table 4-1). The highest contact angle was 

observed on the 52100 steel surface at 98.42° (Figure 4-7 (a)), followed by the H-DLC 

surface at 76.03° (Figure 4-7 (c)) and the lowest angle was observed for the NH-DLC 

surface at 70.96° as shown in Figure 4-7 (b). Low contact angle according to the surface 

energy Equation 3-4 represent high surface energy, suggesting that, NH-DLC has the 

highest surface energy in respect to H-DLC. Implicate that the NH-DLC coating is more 

reactive when compared to the H-DLC coating, making it more likely to form bonds with 

water molecules to lower its surface energy. 

The results of Dexron III oil, also show that NH-DLC has the lowest contact 

angle, at 5.90° (Figure 4-8 (b)), indicating high surface energy. The H-DLC surface, it 

had the highest contact angle at 29.38° (Figure 4-8 (c)), resulting in lowest surface 

energy. Meanwhile, the 52100 steel surface fell somewhere in between with a 16.94° 

contact angle as shown in Figure 4-8 (a). Results also confirm that NH-DLC is highly 

reactive compared to H-DLC, and is more likely to bond with molecules in the oil to 

lower its surface energy. 

Table 4-1: Dihedral angles at room temperature 

Surface 
52100 Steel 
H-DLC 
NH-DLC 

Water 
98.42° 
76.03° 
70.96° 

Dexron III 
16.94° 
29.38° 
5.90° 
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Figure 4-7: Sessile drop results for water droplets on (a) 52100 steel (b) NH-DLC 
and (c) H-DLC surfaces 

16.94° 5.90' *> 

NH-DLC (Dexron III) 

29.33" 

Figure 4-8: Sessile drop results for Dexron III oil droplets on (a) 52100 steel (b) NH-
DLC and (c) H-DLC surfaces 
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4.2 Dry Sliding of 319 Aluminum against DLC Coatings under Various 
Atmospheric Conditions 

4.2.1 NH-DLC and H-DLC Friction in Vacuum 

Figure 4-9 illustrates the friction behaviour of 319 Al sliding against NH-DLC 

and H-DLC with a 5 N load, at a 0.1 m/s speed for 5000 cycles in vacuum at 0.04 Pa 

(3xl0~4 torr). The COF of the 319 Al pin sliding against NH-DLC began at 0.45 ± 0.03 

for the first 600 cycles, then the friction increased to 0.7 with a high fluctuation of ± 0.2. 

When the H-DLC coating was tested under the same conditions as the NH-DLC, 

however, the friction was a very low 0.02 ±0.01, indicating that the addition of hydrogen 

to DLC coatings plays a significant role in COF reduction under vacuum. 

After the experiments, optical images of the 319 Al pins and the wear tracks were 

captured. In Figure 4-10 (a), the 319 Al pin ran against NH-DLC is shown to have wore 

excessively, generating a wear track that is 464.69 [xm wide and about 0.6 \im deep, 

almost half the coating thickness (Figure 4-10 (b)). As for the 319 Al pin that ran against 

H-DLC, revealed that the tip is covered with material transfer (Figure 4-11 (a)) and a 

wear track 80 u,m wide and about 0.3 u.m deep (Figure 4-11 (b)). 

Surface profile images of the wear tracks after each experiment illustrate that the 

NH-DLC coating (Figure 4-12 (a)) is less wear resistant with a wear rate of 1.6xl0"5 

mm3/Nm in vacuum compared to the H-DLC coating's wear rate of 7.6xl0~7 mm3/Nm 

(Figure 4-12 (b)). A comparison of Figure 4-12 (a) and (b) it might suggest that H-DLC 

is the less wear-resistant coating, but since both DLC coatings were tested for different 

durations, so wear rates give a true indication of wear resistance because they were 

normalized by distance. 
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Figure 4-9: 319 Al sliding against H-DLC and NH-DLC at 5 N load and 0.1 m/s 
linear speed in vacuum (0.04 Pa) 

Figure 4-10: Optical microscopy images of (a) 319 Al pin and (b) NH-DLC wear 
track, after sliding in vacuum for 1200 cycles 
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Figure 4-11: Optical microscopy images of (a) 319 Al pin and (b) H-DLC wear 
track, after sliding in vacuum for 5000 cycles 
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Figure 4-12: Surface profile images of the wear track generated in vacuum for (a) 

NH-DLC and (b) H-DLC coatings with W as the wear rate, normalized sliding 
distance 
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4.2.2 Friction of NH-DLC and H-DLC in Ambient Air 

The friction behaviour of NH-DLC and H-DLC in ambient air at 40% RH is 

completely different than that observed in vacuum. Figure 4-13, shows 319 Al sliding 

against NH-DLC in ambient air, starting with a run in period lasting 600 cycles with the 

COF beginning at 0.15 and slightly decreasing to 0.11. After the run in period, the COF 

increased again, producing a steady-state COF of 0.129 ± 0.015 and at 3000 cycles, the 

friction slightly decreased to 0.108 ± 0.005. Similar run in behaviour was observed when 

319 slid against H-DLC in ambient air (40% RH). The COF initially started at 0.18, then 

decreased to 0.15 subsequent to the 600 cycles of run in period, with the COF reaching a 

steady state at 0.21 ± 0.02. 

Optical images of the aluminum pin after sliding for 5000 cycles against NH-DLC 

(Figure 4-14 (a)) reveal that the tip is covered with material transfer and the generated 

wear track is 411.45 ^m wide (Figure 4-14 (b)). Visual inspection of the 319 Al pin, 

indicated that the material transfer formed by the NH-DLC (Figure 4-14 (a)) covers a 

relatively larger surface area of the aluminum pin, compared to the material transfer 

coverage generated on the aluminum counterface by the H-DLC coating (Figure 4-15 

(a)). Surface profiles of the wear tracks after the experiments (Figure 4-16), show that the 

wear rate for the NH-DLC coating is 3.25xl0"7 mm3/Nm (Figure 4-16 (a)), which is 

slightly lower than the wear rate of H-DLC (4.4xl0~7 mm3/Nm) shown in Figure 4-16 (b). 
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Figure 4-13: 319 Al sliding against H-DLC and NH-DLC at 5 N load and 0.1 m/s 
linear speed in ambient air with 40% RH 
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Figure 4-14: Optical microscopy images of (a) 319 Al pin and (b) NH-DLC wear 
track, after sliding in ambient air for 5000 cycles 
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Figure 4-15: Optical microscopy images of (a) 319 Al pin and (b) H-DLC wear 
track, after sliding in ambient air for 5000 cycles 
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Figure 4-16: Surface profile images of the wear track generated in ambient air for 
(a) NH-DLC and (b) H-DLC coatings with W as the wear rate, normalized by 

sliding distance 
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4.2.3 Friction of 319 Al against NH-DLC at Various Humidity Levels 

The experiments conducted in Sections 4.2.1 and 4.2.2, illustrates how friction 

can be manipulated by changing the testing atmosphere. Consequently, one might wonder 

what would happen if the humidity was changed, as it might in a real application, where 

operating atmosphere is constantly changing, for instance in the summer time humidity 

increase up to 50% RH, while in winter time humidity drops to less than 20% RH. This 

real-world challenge prompted us to explore the effect of humidity on the friction 

behaviour of 319 Al sliding against an NH-DLC coating was explored. Pin-on-disc wear 

tests were performed by sliding the mating surfaces at various humidity levels (22%, 40% 

and 77% RH) with a 5 N load, at 0.1 m/s for 5000 cycles. Figure 4-17, illustrates how 

relative humidity has a positive effect on the NH-DLC coating's COF. As the relative 

humidity increased from 22% to 40% to 77% RH the COF of 319 Al against NH-DLC 

decreased from 0.19 ± 0.05 to 0.12 ± 0.02 to 0.09 ± 0.01 respectively, this observation 

confirms with literature [28] and [8]. 

Optical images of the 319 Al pin after each humidity test (Figure 4-18), illustrate 

that aluminum pins tested at 22% and 40% RH (Figure 4-18 (a) and (b)) reveal material 

transfer on the tip, while at 77% RH (Figure 4-18 (c)), no clear evidence of material 

transfer can be seen in optical microscopy images. The composition of this material 

transfer, or how it was formed, is currently unknown. Consequently, these aluminum pins 

were analyzed at a higher magnification using SEM. Micrographs of the aluminum pin 

tested against NH-DLC at 22% RH (Figure 4-19 (a), (b) and (c)) also reveal material 

transfer covering the aluminum tip. In Figure 4-19 (d), the pin was tilted to 78°, 

demonstrating how the material transfer formed a layer covering the contact surface. EDS 
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was also conducted on the transfer layer as indicated in Figure 4-19 (c), which illustrates 

that the transfer layer consists of mainly of carbon that can only be generated from the 

NH-DLC coating. Other peaks, such as aluminum, silicon, copper and oxygen, were also 

identified. The aluminum, silicon and copper are from the 319 Al pin underneath the 

carbon transfer layer, while the oxygen is a result of aluminum oxide on the pin. 

Material transfer is again confirmed by micrographs of the 319 Al pin tested 

against NH-DLC at 40% RH, transfer material is again confirmed (Figure 4-21 (a) and 

(b)). Figure 4-21 (c) illustrates that the material transfer forms stacked layers on the tip of 

the 319 Al pin. Figure 4-22 (a), (b) and (c) display one of these layers delaminating in a 

separate area of the pin. A closer look at the layer in Figure 4-22 (d) shows to be about 

0.75 \im thick. EDS of the layer (Figure 4-23) captured from Figure 4-22 (c), confirms 

that these transfer layers consists of carbon with aluminum, silicon, copper and oxygen 

peaks resulting from 319 Al underneath the carbon transfer layers. 

Micrographs of the 319 Al pin tested against NH-DLC at 77% RH, micrographs 

(Figure 4-24 (a) and (b)) give clear evidence of a carbon transfer layer forming on the tip 

of the aluminum counterface, despite the lack of proof from the optical image (Figure 

4-18 (c)). EDS of this transfer layer shown in Figure 4-25 verifies the presence of carbon, 

which is transferred from the NH-DLC coating. Micrographs of the NH-DLC coating 

after the experiment at 77% RH also shows that the wear track is covered with debris 

(Figure 4-26). EDS analyses (Figure 4-27) reveal that the debris consists of carbon, 

oxygen, copper, aluminum and silicon. As for other peaks like argon, it is from the 

coating as confirmed by the EMPA analysis and chlorine is from the water, which was 

evapourated inside the chamber to increase the humidity. 
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Figure 4-17: Influence of 22%, 40% and 77% RH on the COF of 319 Al sliding 
against NH-DLC at 5 N load and 0.1 m/s sliding speed for 5000 sliding cycles 
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Figure 4-18: Optical microscopy images of 319 Al pin after sliding against NH-DLC 
for 5000 cycles in air with (a) 22% RH (b) 40% RH and (c) 77% RH 
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Figure 4-19: Micrographs of 319 Al pin after sliding against NH-DLC for 5000 
cycles in air at 22% RH (a) top view of the aluminum pin with material transfer on 
the tip, (b) closer image of the material transfer, (c) pin tilted at 45 ° angle and (d) 

side view of the material transfer from 78 ° angle 
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Figure 4-20: EDS analyses taken from Figure 4-19 (c) of the material transfer 
formed on the tip of the 319 AI after slid against NH-DLC at 22% RH for 5000 

sliding cycles 

Figure 4-21: Micrographs of 319 Al pin after sliding against NH-DLC for 5000 
cycles in air at 40% RH (a) side view of the aluminum pin with material transfer on 

the tip, (b) higher magnification of the material transfer and (c) higher 
magnification of the transfer layers 
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Figure 4-22: Micrographs of 319 Al pin after sliding against NH-DLC for 5000 
cycles in air at 40% RH (a) top view of the aluminum pin with material transfer on 

the tip, (b) closer image of the material transfer and (c) view of the transfer layer (d) 
higher magnification of the transfer layer. 
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Figure 4-23: EDS analyses taken from Figure 4-22 (c) of the material transfer 
formed on the tip of the 319 Al after slid against NH-DLC at 40% RH for 5000 

sliding cycles 
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Figure 4-24: Micrographs of 319 Al pin after sliding against NH-DLC for 5000 
cycles in air at 77% RH (a) top view of the aluminum pin with carbon transfer layer 

on the tip and (b) higher magnification of the material transfer 
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Figure 4-25: EDS analyses taken from Figure 4-24 (b) of the material transfer 
formed on the tip of the 319 Al after slid against NH-DLC at 77% RH for 5000 

sliding cycles 
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Figure 4-26: Micrographs of the NH-DLC wear track after sliding for 5000 cycles in 
air at 77% RH (a) wear track (b), (c) and (d) are higher magnifications showing the 

debris inside the wear track 
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Figure 4-27: EDS analyses of the debris found inside the NH-DLC wear track after 
sliding in 77% RH atmosphere for 5000 sliding cycles 
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4.2.4 Effect of Initial Run-in in Ambient Air on the COF in Vacuum 

As observed earlier in Section 4.2.1, the COF of NH-DLC was relatively high 

(0.7 + 0.2) compared to H-DLC with a COF (0.02 ±0.01) in vacuum. In addition to the 

difference in the hydrogen content, it was observed that NH-DLC did not form carbon 

transfer layers, while H-DLC did. However, in Sections 4.2.2 and 4.2.3, carbon transfer 

layers were formed by the NH-DLC on the 319 Al pin in ambient and produced a COF of 

1.29 ± 0.15. Thus, it is apparent that carbon transfer layers lead to COF reduction. To 

validate this statement, carbon transfer layers must be present on the counter surface 

sliding against NH-DLC in vacuum and show the COF decrease to values below 0.7 ± 

0.2. Consequently, Konca et al. [7] and [28], who originated the idea, tested 319 Al 

against NH-DLC in ambient air initially to form the carbon transfer layers, and then 

evacuate the test chamber to vacuum while the test is running to observe how the 

presence of carbon transfer would affect the friction in vacuum. 

The same experiment was conducted in this study, with 319 Al sliding against 

NH-DLC coating at 0.1 m/s speed, 5 N load and an initial running-in period in ambient 

air (25% RH) for 13000 cycles, followed by 5000 sliding cycles in vacuum. Figure 4-28, 

presents the test results in ambient air (25% RH) after 300 cycles of run in period, at 

which point a steady state COF of 0.11 ± 0.02 was reached. As the chamber pressure 

decreased to 0.133 Pa (vacuum), the COF dropped to 0.03 ± 0.02. At 13000 cycles, the 

COF shifted between 0.15 and 0.06 due to a pressure fluctuation prompted by the valves 

switching from mechanical to turbo pump evacuation. After 3000 sliding cycles at a low 

friction regime (LFR) with a COF of 0.03 ± 0.02, the COF spiked to 0.75, which is 

typical for NH-DLC in vacuum if tested without initial running-in in ambient air. 
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The residual gas analyzer (RGA) was switched on at 14000 cycles, when pressure 

inside the chamber dropped below 0.133 Pa, where the RGA is operational to identify the 

gas species present inside the vacuum chamber. Analyses results shown in Figure 4-29 

indicate that the chamber mainly consists of moisture, hydrogen and nitrogen with partial 

pressures of 3xlO"3, 3xl0"4 and lxlO"4 Pa, respectively. Other species were also present, 

such as carbon dioxide and oxygen, but at low partial pressure (< 2xl0"5 Pa). 

The surface profile image of the pin contact surface after sliding against NH-DLC 

for 18000 cycles (Figure 4-30 (a)), suggests that the aluminum pin was worn off, which 

produced a large wear scar (1.2 x 1 mm). As for the wear track, the surface profilometry 

images shown in Figure 4-30 (b), also demonstrate that the coating was worn off. The 

wear track measured 0.931 mm wide with non-uniform scars (peaks and valleys) and a 

maximum depth of 2.5 [xm, much deeper than the coating thickness (1.6 \am). 

Micrographs of the aluminum tip after the 18000 cycles (Figure 4-31 (a)) shows no 

evidence of transfer layers, while the EDS shown in Figure 4-32 obtained from inside the 

wear scar (Figure 4-31 (b)), indicate the presence of aluminum, silicon and oxygen, 

which is from the 319 Al pin. Micrographs of the wear track (Figure 4-33 (a) and (b)) 

also illustrate the presence of material transfer inside the wear track and the EDS of the 

material transfer inside the wear track (Figure 4-34) confirms that the carbon coating was 

penetrated, reaching to the chromium interlayer which lead to a high COF. 

The LFR behaviour in vacuum after initial running-in in ambient air was also 

observed for 52100 steel counterface running against NH-DLC. Figure 4-35 illustrates 

that in air, the COF was 0.1 ± 0.03 and once the chamber was evacuated, the COF 

dropped to 0.02 ± 0.02. Again, the low friction regime did not last for long. After 6000 
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cycles, the COF spiked to 0.9. Micrographs of the 52100 steel ball after the experiment 

(Figure 4-36 (a) and (b)), presents no evidence of material transfer, only small carbon 

debris particles confirmed by EDS (Figure 4-37). In addition, micrographs of the wear 

track (Figure 4-38) shows patches inside the wear track. EDS (Figure 4-39) of these 

patches picked up chromium and iron peaks, indicating that the patches were areas where 

the coating is worn out. Consequently, from the results it was shown that the LFR could 

also be produced by 52100 steel. Furthermore, Konca et al. [28], [31] confirmed that the 

low friction regime produced by other counter surfaces such as WC and Ti running 

against NH-DLC in ambient air initially then vacuum. 

These experiments have shown that the friction of NH-DLC can be reduced under 

vacuum if it was initially run-in in ambient air, and is entirely dependant on the 

counterface material. However, no clear evidence of what is behind the LFR. For that 

reason, the same experiment was conducted again with 319 Al sliding against NH-DLC. 

However, the test was stopped right after the chamber was evacuated in the middle of the 

LFR, when the COF dropped to 0.03 ± 0.01 (Figure 4-40). Running 319 Al pin against 

NH-DLC initially in ambient air at 25% RH, lead to a COF of 0.18 ± 0.05. After 1700 

sliding cycles in ambient air the chamber was evacuated, causing the COF to drop down 

to 0.03 ± 0.01, then the test was stopped at 2100 cycles to analyze the pin surface. RGA 

analyses of the vacuum chamber between 1900 and 2000 cycles (Figure 4-41) illustrate 

that partial pressures of water, nitrogen, oxygen and hydrogen were constant at 4x10" , 

2xl0"3, 2xl0"4 and 3x10"* Pa respectively. 

The surface profile of the pin tip at the LFR (Figure 4-42 (a)), demonstrate that 

the wear scar is not uniform but has elevated areas that indicate material transfer. The 
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wear track in this regime is 0.1987 mm wide and 0.54 u,m deep (Figure 4-42 (b)), suggest 

that the NH-DLC coating is still intact. Micrographs of the pin surface, confirms the 

presence of material transfer during the LFR (Figure 4-43 (a)). Furthermore, (Figure 4-43 

(c) and (d)) indicate that the material transfer forms a layered structure. A cross section of 

theses layers (Figure 4-43 (d)) indicate that they are in the order of 2.25 pirn thick. This 

type of material transfer layers were seen to form in ambient air, as described in Section 

4.2.3 and EDS confirmed that they consist of mainly carbon. However, this time the 

material transfer layers were analyzed by Fourier-Transform Infrared spectroscopy 

(FTIR) to give more insight about the chemistry of these layers. FTIR analyses presented 

in Figure 4-44 confirm that they consists of carbon, what is also interesting is that 

hydroxyl (OH) and hydrocarbons (C-H) were detected. The significance of these species 

will be described in the discussion. 
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Figure 4-28: Pin-on-disc wear test of 319 Al sliding against NH-DLC at 5 N and 0.1 
m/s sliding speed: effect of initial ambient air running-in period on the COF in 

vacuum 
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Figure 4-29: RGA analyses of gas species inside the test chamber during the low 
friction regime 
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Figure 4-30: Surface profile of the (a) 319 Al pin and (b) wear track after 18000 
cycles 

Figure 4-31: Micrographs of the (a) 319 Al pin tip (b) edge of wear scar of 319 Al 
pin after 18000 cycles 
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Figure 4-32: EDS analyses of the Al pin worn surface shown in Figure 4-29 (b), after 
sliding for 18000 cycles 

Figure 4-33: Micrographs of (a) wear track of NH-DLC (b) material transfer on the 
wear track after 18000 cycles 
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Figure 4-34: EDS analyses of the NH-DLC wear track shown in Figure 4-31 (d) after 
sliding for 18000 cycles 
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Figure 4-35: Effect of carbon transfer on the COF in vacuum for 52100 steel sliding 
against NH-DLC at 5 N load and 0.1 m/s sliding speed 
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Figure 4-36: Micrographs of the (a) 52100 steel ball wear scar (b) debris inside the 
ball wear scar, after the experiment 

Figure 4-37: EDS analyses of the wear debris particles on the ball wear scar, 
obtained from Figure 4-36 (b) 
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Figure 4-38: Micrographs of the (a) NH-DLC wear track (b) worn out coating, after 
the experiment 

Figure 4-39: EDS analyses of the NH-DLC wear track patches obtained from Figure 
4-38(a) 
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Figure 4-40: Effect of carbon transfer on the COF in vacuum for 319 Al sliding 
against NH-DLC at 5 N and 0.1 m/s sliding speed 
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Figure 4-41: RGA spectra of water, nitrogen, oxygen and hydrogen partial 
pressures during the low friction regime after sliding in ambient air. RGA was 

turned on from 1900 to 2000 cycles 
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Figure 4-42: Surface profile of the (a) 319 Al pin and (b) wear track during the low 
friction regime 

Figure 4-43: Micrographs of the 319 Al pin wear scar during the low friction regime 
(a) tilted 60° (b) Carbon transfer layers tilted 60° (c) Carbon transfer layers on the 

319 Al pin tilted 80° (d) cross section of the Carbon transfer layers on the 319 Al pin 
tilted 90° 
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Figure 4-44: FTIR analyses of the Carbon transfer on the 319 Al pin after running-
in in ambient air 
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4.2.5 Effect of Running-in Gas Species on Friction in Vacuum 

At this point, it is clear that the presence of carbon transfer layers reduces the 

COF of NH-DLC as shown in Section 4.2.4. However, it is not known how and why 

carbon transfer layers, which lead to low friction regime. Thus, dry sliding experiments 

were performed using 319 Al pins sliding against NH-DLC coatings with initial testing 

period in dry air, dry nitrogen and dry oxygen. Then the chamber was evacuated while 

continuing the friction rest. The purpose of these tests was to observe the effects of initial 

run in gas species such as dry air, dry nitrogen and dry oxygen, on the transfer layer 

formation and friction behaviour in vacuum. 

4.2.5.1 Effect of Initial Running-in in Dry Air on COF in Vacuum 

When 319 Al was initially tested against NH-DLC in dry air initially, it was 

observed that the COF started at 0.1 ± 0.01 and increased to 0.7 ± 0.2. After 500 cycles 

the COF reached a steady value of 0.55 ± 0.1 (Figure 4-45). Which was expected of NH-

DLC due to the absence of moisture in the atmosphere as observed in Section 4.2.3, 

proven to be an important factor in reducing the COF of NH-DLC. As the chamber 

pressure was reduced to reach vacuum, the COF dropped to 0.04 ± 0.02. The RGA was 

turned on at 2000 cycles (under vacuum), to identify the partial pressure of gas species 

inside the chamber (Figure 4-46), particularly moisture, nitrogen, oxygen and hydrogen. 

The spectra presents the partial pressures as a function of time during the LFR and it is 

shown that the partial pressures of oxygen drifted with time, while water, nitrogen and 

hydrogen partial pressures remained steady inside the chamber at 5xlO"3, 6xl0"5 and 

6xl0"5 inside the chamber through out the analysis period of 4000 cycles. 
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Optical images of the aluminum pin after 6000 cycles shown in Figure 4-47 (a) 

illustrate the presence of material transfer on the pin contact surface. In addition, Figure 

4-47 (b) displays the NH-DLC wear track with no evidence of adhesion on the surface. 

Micrographs of the pin after the test (Figure 4-48 (a)) confirms the presence of material 

transfer on the tip. Figure 4-48 (b) and (c) illustrate that the material transfer is in layer 

formation. Furthermore, EDS verifies that the material transfer layers consists of carbon 

(Figure 4-49). Besides EDS, the carbon transfer layers on the 319 Al pin were analyzed 

using FTIR spectroscopy. Results shown in Figure 4-50, confirm that the layers consist of 

hydrocarbons, hydroxyl and carbonyl groups. Consequently, test results and analyses of 

the aluminum pin support the findings in Section 4.2.4, that the formation of carbon 

transfer layers on the countersurface serves to reduce the COF of NH-DLC in vacuum. 

c 
o 

LL. 

C 
<D 
"5 
Qi 
O 

o 

1000 2000 3000 4000 

Number of Sliding Cycles 

5000 6000 

Figure 4-45: Influence of vacuum on the COF after an initial run in period in dry 
air for 319 Al sliding against NH-DLC at 5N load and 0.1 m/s speed 
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Figure 4-46: RGA spectra of water, nitrogen, oxygen and hydrogen partial 
pressures during the low friction regime after sliding in dry air. RGA was turned on 

from 2000 to 6000 cycles 
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Figure 4-47: Optical image of (a) 319 Al pin surface (b) NH-DLC wear track after 
1400 cycles running in dry air and 4600 laps in vacuum 
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carbon transfer layers 

Figure 4-49: EDS spectra of the dry air to vacuum pin contact surface, obtained 
from area in Figure 4-48(c) 
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Figure 4-50: FTIR analyses of the Carbon transfer on the 319 Al pin after dry air to 
vacuum experiment 
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4.2.5.2 Effect of Initial Running-in in Dry Nitrogen on COF in Vacuum 

Unlike air-to-vacuum, and dry air-to-vacuum, the COF did not drop in the 

transition from dry nitrogen to vacuum. Results from a 319 Al pin sliding against NH-

DLC tested first in dry nitrogen revealed that the COF started at 0.2 and climbed to 0.1 

after 140 cycles (Figure 4-51). The COF reached a steady value of 0.9 ±0 .1 , which is 

similar to the COF produced under vacuum shown in Section 4.2.1 (Figure 4-9). When 

the chamber was evacuated at 1600 cycles, the friction did not drop to a LFR, suggesting 

that carbon transfer layers did not form. RGA analyses of the gas species inside the 

vacuum chamber (Figure 4-52) do not show any significant deviation in the partial 

pressure of water, oxygen and hydrogen compared to the partial pressures of dry air to 

vacuum observed in the previous section's experiment. 

The optical image of the 319 Al pin after the experiment (Figure 4-53 (a)) gives 

no indication of material transfer to the tip, while images of the wear track (Figure 4-53 

(b)) demonstrates material transfer inside the wear track. A micrograph of the pin contact 

surface (Figure 4-54 (a)) confirms the absence of material transfer and a micrograph of 

the wear track illustrates adhered layers inside the track (Figure 4-54 (b)). EDS analyses 

(Figure 4-55) indicate that the adhered layer consists of aluminum and silicon, which 

suggest that it is from the 319 Al counterface. The FTIR analyses shown in Figure 4-56, 

did not pick up any spectra. The only peak identified belongs to carbon dioxide, which is 

picked up from the surrounding atmosphere during FTIR analyses and indicates a lack of 

lubricious carbon species on the pin sliding surface. Therefore, from dry nitrogen to 

vacuum experiment indicates that nitrogen does not promote carbon transfer layers on the 

countersurface, explaining the absence of LFR. 
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Figure 4-51: Influence of vacuum on the COF after an initial run in period in dry 
nitrogen for 319 Al sliding against NH-DLC at 5N load and 0.1 m/s speed 
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Figure 4-52: RGA analyses of the water, nitrogen, oxygen and hydrogen partial 
pressures inside the vacuum chamber after sliding in dry nitrogen. RGA was turned 

on from 1700 to 1900 cycles 
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Figure 4-53: Optical image of (a) 319 AI pin surface (b) NH-DLC wear track after 
1550 laps running-in in dry nitrogen and 1350 laps in vacuum 

Figure 4-54: Micrographs of the (a) 319 Al pin and (b) NH-DLC track after dry 
nitrogen to vacuum test 
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Figure 4-55: EDS spectra of the dry nitrogen to vacuum wear track, obtained from 
designated area in Figure 4-54 (b) 
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Figure 4-56: FTIR analyses of the Carbon transfer on the 319 Al pin after dry 
nitrogen to vacuum experiment 
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4.2.5.3 Effect of Initial Running-in in Dry Oxygen on COF in Vacuum 

Initial testing of 319 Al against NH-DLC in an oxygen atmosphere lead to a COF 

of 0.42 ±0.15 (Figure 4-57). Similar to dry nitrogen to vacuum experiment, friction 

generated after the initial run in dry oxygen did not produce a LFR. The initial sliding 

period in dry oxygen produced a fluctuating COF that started with a friction of 0.2 for the 

first 1000 cycles and increased to 0.45 ±0.1 within 200 cycles. The COF dropped slightly 

at 1100 cycles to 0.35 ± 0.05, and then dropped again to 0.25 ± 0.05, but when the 

chamber was evacuated at 2100 cycles the COF increased to 0.75 ± 0.2, indicating that 

carbon transfer layers did not form, which explains the absence of LFR in vacuum. The 

partial pressure of gases inside the vacuum chamber shown in Figure 4-58 did not vary 

from what was observed in previous experiments either, as presented in Sections 4.2.5.1 

and 4.2.5.2. It follows that the gases inside the vacuum chamber did not influence the 

LFR, while the presence of carbon transfer layers induced by the presence of air lead 

directly to a LFR. 

An optical image of the 319 Al pin after the experiment (Figure 4-59 (a)) shows 

no indication of transfer layers, but the wear track (Figure 4-59 (b)) reveals some material 

adhesion, suggesting aluminum transfer. Similarly, the micrograph of the aluminum pin 

(Figure 4-60 (a)), gives no sign of transfer layers, while in Figure 4-60 (b) evidence of 

aluminum transfer inside the wear track is apparent and later confirmed by EDS Figure 

4-61). EDS spectra also demonstrate a strong carbon peak as evidence that the NH-DLC 

coating was not penetrated. Like the dry nitrogen to vacuum experiment, the FTIR 

spectroscopy results presented in Figure 4-62, did not show any signs of carbon species 

on the pin surface, only carbon dioxide picked up from the surrounding atmosphere. 
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Figure 4-57: Influence of vacuum on the COF after an initial run in period in dry 
oxygen for 319 Al sliding against NH-DLC at 5N load and 0.1 m/s speed 

io-2 

—i 1 1 1 j 1 1 1 1 1 { 1 1 r 1 1 ( 1 r— 

00:00:00 00:00:30 00:01:00 00:01:30 00:02:00 

Time [hh:mm:ss] 

Figure 4-58: RGA analyses of water, nitrogen oxygen and hydrogen partial 
pressures inside the vacuum chamber after sliding in dry oxygen. RGA was turned 

on from 2300 to 2400 cycles 
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Figure 4-59: Optical image of (a) 319 Al pin surface (b) NH-DLC wear track after 
2000 laps running-in in dry oxygen followed by 500 laps in vacuum 
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Figure 4-60: Micrographs of the (a) 319 Al pin and (b) NH-DLC track after dry 
oxygen to vacuum test 

107 



Figure 4-61: EDS spectra of the dry nitrogen to vacuum wear track, obtained from 
designated area in Figure 4-60(b) 
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Figure 4-62: FTIR analyses of the Carbon transfer on the 319 Al pin after dry 
oxygen to vacuum experiment 
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4.3 Discussion 

4.3.1 Friction Behaviour of DLC in Vacuum 

Dry sliding in vacuum, the friction behaviour of 319 Al sliding against NH-DLC 

and H-DLC was seen to be very different. NH-DLC produced a COF of 0.7 ± 0.2 while 

H-DLC produced a very low COF of 0.02 ± 0.01 (Figure 4-9), despite similar test 

conditions (5 N load, 0.1 m/s speed and vacuum (0.04 Pa)). However, it was observed 

that the 319 Al tip was covered by material transfer (Figure 4-11 (a)), that was more 

likely to be carbon from the H-DLC coating; consequently the contact was altered from 

Al/H-DLC to C/H-DLC. The NH-DLC coating experiment, the aluminum pin tip was 

completely worn, with no evidence of material transfer layer was found, only black dust 

(Figure 4-10 (a)) and a high COF of 0.7 ± 0.2 was produced. In addition to the presence 

of material transfer, the hydrogen content inside the coating was significantly different. 

H-DLC contains 40 at% of hydrogen, while NH-DLC only had 1.3 at% of hydrogen. The 

presence of hydrogen was proven to be a key factor as mentioned in literature [3], [5] 

hydrogen reduce friction by minimizing surface interactions through reducing the binding 

energy. Sliding 319 Al against H-DLC resulted in the formation of material transfer to 

the aluminum pin. As a result, the contact changed from Al/H-DLC to C/H-DLC and the 

presence of hydrogen lead to low binding energy between C/H-DLC, as calculated by 

Gardos, to 0.08 eV (COF = 0.02), compared to the 0.4-0.8 eV for C/C layers without 

hydrogen termination. 

As for friction behaviour of 319 sliding against NH-DLC in vacuum, Savage [49] 

observed the same behaviour in graphite sliding against copper in vacuum. Tests results 

have shown that the graphite rapidly disintegrated into black dust, producing a COF of 
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0.8 was produced. The similarity between the tribological behaviour in Savage's results 

with graphite and those from the current study using NH-DLC illustrates how the NH-

DLC coating generates a graphite-like material during sliding that causes similar friction 

behaviour. Graphite is only lubricious in the presence of water, reducing the atomic 

interactions between the adjacent stacked hexagonal structures and lubricating the 

graphitic layers [49], [50]. Thus, the same reasoning can be applied to NH-DLC, 

attributing the high COF of 0.7, to the collapse of the graphite like structure formed by 

NH-DLC during sliding and generating black dust. 

4.3.2 Friction Behaviour of DLC in Ambient Air 

The friction behaviour of both H-DLC and NH-DLC during dry-sliding in 

ambient air was similar, producing COFs of 0.21 and 0.13, respectively. The 0.08 

difference in the COFs for H-DLC and NH-DLC, can be attributed to the difference in 

the area of material transfer coverage on the aluminum pin observed in the optical images 

shown in Figure 4-14 (a) and Figure 4-15 (a). The material transfer was proven by 

literature to be graphite, as Liu and Meletis [48] illustrated TEM analyses and diffraction 

patterns of the material transfer, showing rings with d-spacing at 0.33 and 0.18 nm, which 

coincide with (002) and (012) diffractions of graphite. The presence of graphite transfer 

then modified the contact conditions from Al/DLC to graphite/DLC, which subsequently 

lead to a lower COF. 

The dry-sliding of 319 Al against NH-DLC in an ambient atmosphere at various 

humidity levels, confirmed the earlier statement regarding NH-DLC's ability to form a 

graphite-like structure that is lubricious in the presence of water. Results have shown that 

the COF decreased as the humidity level increased (Figure 4-17), indicating friction 
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mechanism dependence on water. In addition, the micrographs of the pins after sliding in 

22%, 40% and 77% RH presented in Figure 4-19, Figure 4-21, Figure 4-22 and Figure 

4-24, which illustrate the presence of carbon transfer layers, stacked similar to a graphite 

structure. For that reason, it follows that NH-DLC form graphite like layers, which 

lubricate the sliding interface thus reducing the friction to approximately 0.1 due to 

presence of water molecules, lubricating the adjacent graphite likes layers. 

4.3.3 Why the COF Drops in Vacuum After Initial Running-in in Air 

Figure 4-28 shows how 319 Al sliding against NH-DLC produces low friction in 

vacuum after initial sliding in ambient air. The LFR with a COF of 0.03 ± 0.02 only 

lasted for 1000 cycles, however, following a high friction regime with a COF of 0.75. 

Micrographs of the aluminum pin after the high friction regime (Figure 4-31) illustrate 

that the pin tip was worn off. On the other hand, micrographs of the aluminum during the 

LFR Figure 4-43, illustrate the presence of carbon layers stacked similarly to a graphite 

structure. FTIR analyses of these layers revealed the presence of hydrogen (C-H). Section 

4.3.1 in the discussion, confirmed that the presence of hydrogen to minimized 

interactions between the graphite-like layers, which reduce the COF to 0.03 ± 0.02, like 

the COF produced by H-DLC in vacuum. Other peaks such as (O-H) and (C-O) shown in 

Figure 4-44, prove the first principle calculation of Qi et al. [29] that water dissociate 

(H2O = OH + H) as it approaches the carbon surface, bonding with the carbon atom and 

promoting (O-H) and (C-O) peaks in the FTIR spectra. Therefore, during the initial 

running-in period in ambient air water dissociated to OH and H and occupied the carbon 

a bonds, thus minimizing interactions between the graphite layers and producing a COF 

of 0.11 ± 0.02. When the chamber pressure dropped, reactive species like oxygen were 
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evacuated, thus leaving only hydrogen and hydroxyl groups terminating the carbon atoms 

between the layers. As a result of sliding, the graphite like layers are easily sheared with 

minimum interactions between adjacent layers due to hydrogen and hydroxyl 

termination, hence lowering the COF to 0.03± 0.02. This LFR does not last for long, 

however, due to the depletion or consumption of the lubricious graphite-like layers. 

4.3.4 Effect of Initial Running-in Atmosphere on the LFR 

It is unclear whether humidity alone is behind the COF drop when the chamber is 

evacuated, or if some other gas in ambient air is responsible, such as nitrogen or oxygen. 

Therefore, 319 Al was slid against NH-DLC with an initial running-in in dry air to 

produce a COF of 0.55 ±0.1, confirming the importance of water to the sliding graphite 

layers in ambient air. Once the chamber was evacuated, the COF dropped to 0.05 ± 0.03. 

FTIR of the pin carbon transfer (Figure 4-50) showed hydroxyl (OH) and carbonate (C-

O) peaks, as evidence of water dissociation (H2O = OH + H). This could only mean that 

there was enough moisture in the dry air was enough to passivate and lubricate the 

graphite-like sliding layers. 

As for the initial running-in in dry nitrogen and dry oxygen, followed by sliding 

in vacuum, test results showed no sign of a LFR, which indicates that graphite-like layers 

were not formed. This is confirmed by micrographs of the aluminum pin Figure 4-54 and 

Figure 4-60. Furthermore, FTIR analyses of the aluminum tip shown in Figure 4-56 and 

Figure 4-62, confirm the absence of carbon and hydrogen. The RGA of the chamber 

during vacuum in both tests reveal no deviation from analyses performed during vacuum 

with prior initial sliding in dry air and ambient air, confirmation that gas species inside 

the vacuum chamber are at very low concentrations and do not influence the LFR. 

112 



Chapter 4: Part II 

Lubricated Sliding 

This study investigated the lubricated sliding behaviour of H-DLC and NH-DLC 

by generating the boundary lubrication (BL) portion of the Stribeck curve for each 

coating to identify the lubrication regimes and the range of speeds at which BL occur. 

Then, friction behaviour under BL regime was then further explored by analyzing the 

counterface before and after sliding, to get an idea what is happening to the couterface. 

Finally, both H-DLC and NH-DLC were initially tested dry, in ambient air and then 

Dexron III lubricant was added to observe the possible influence of carbon transfer that 

were formed in ambient air on the COF in lubricated sliding. 

4.4 Stribeck Curve 

The boundary and mixed lubrication portion of Stribeck curve was generated. 

Balls with 6 mm 0 of AISI52100 steel were tested against H-DLC, NH-DLC coatings as 

well as uncoated 52100 steel for reference at 0.5, 1.0, 10.0, 100.0, 200.0, 500.0 and 600.0 

mm/s for 150 cycles at a 5 N normal load at each speed, as shown in Figure 4-63. The 

average COF of each test was plotted against the corresponding lambda ratio (X = oil film 

thickness / surface roughness), then calculated using the oil film thickness for point 

contact, Equation A.2 in Appendix A. 

Figure 4-64 illustrates the BL regime (X < 1) of the Stribeck curve for uncoated 

52100 steel, NH-DLC and H-DLC coatings. At X of approximately 0.3, the COF 

experiences a regime transition from BL to mixed lubricated (ML). At X < 0.3, the COF 

of the uncoated steel and both DLC coatings followed the same trend, starting with a 

COF of 0.11 at X = 0.004 and as the X increased to 0.25, the COF gradually decreased to 
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0.085 (Figure 4-64). The COF in this region (X < 0.3) falls within 0.7 and 0.2, which is 

the typical range for COF under BL [54]. 

However, at X > 0.3, the COF NH-DLC dropped, while H-DLC and steel 

maintained the steady decrease observed at X < 0.3. For example, the COF dropped from 

0.085 at X = 0.25 to 0.063 at X = 0.4 in the presence of the NH-DLC coating, while the 

COF only dropped from 0.085 at X = 0.25, to 0.072 at X = 0.4 for uncoated steel and H-

DLC. These Stribeck curve results illustrate that the NH-DLC coating has a greater 

influence on the COF reduction past the transition regime line. 

Surface profile of the ball after the 150 cycles at X = 0.03 (Figure 4-65) illustrate 

that the highest amount wear observed on the steel ball which ran against NH-DLC and 

the least wear observed for the steel ball which ran against H-DLC. The same trend was 

seen for all lambda ratios (i.e. X = 1.5 shown in Figure 4-66). Overall, it was found that 

wear rates decreased as lambda ratio increased (Figure 4-67). This trend was expected, 

since higher lambda ratio means thicker oil film from Equation A.2 in Appendix A, 

which prevents metal/metal contact and lowers wear rate. 
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Figure 4-63: Friction results for 52100 steel sliding against NH-DLC, in the presence 
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Figure 4-65: Surface profile of the 52100 steel ball wear scar after the wear test at 0. 
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Figure 4-66: Surface profile of the 52100 steel ball wear scar after the wear test at 0. 
600 mm/s, which corresponds to te 1.5 
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Figure 4-67: Wear rates of the 52100 steel ball after running against 52100, NH-
DLC and H-DLC for 150 laps at X= 0.03 and 1.5, "fr represents an undefined wear 

rate or the wear rate could not be quantified 
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4.5 Boundary Lubrication 

A 52100 steel ball was tested against DLC coatings for 5000 laps, at 100 mm/s 

and 5 N load, corresponding to X = 0.2. Results presented in Figure 4-68 reveal that H-

DLC has a steady COF of 0.11 ± 0.01, meanwhile NH-DLC generated a steady-state 

COF of 0.07 ± 0.005 after 1000 cycles of run-in period, indicating a change in the 

lubrication regime. 

Optical images (Figure 4-69) of the ball after the wear test show no sign of a 

tribolayer on either ball, but the steel ball that ran against H-DLC had a scar diameter of 

150 Jim (Figure 4-69 (a)), which is half of the 300 |j,m ball scar diameter produced by the 

NH-DLC (Figure 4-69 (b)). 

The hertzian pressure (Appendix C) was calculated initially before sliding (Pi) 

and after sliding (Pf), presented in Table 4-2. The initial hertzian pressure for 6 mm 0 

52100 steel ball against H-DLC and NH-DLC were 0.85 and 1.02 GPa respectively. After 

5000 sliding cycles, the hertzian pressure was calculated to be 0.42 and 0.11 GPa, by 

calculating the contact area from the ball wear scar diameter shown in Figure 4-69. The 

calculation reveals that the contact pressure dropped significantly, about one order of 

magnitude for 52100 steel against NH-DLC, which could be behind the friction drop 

shown in Figure 4-68. 
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Figure 4-69: Wear scar of the 52100 steel ball after running against (a) H-DLC (b) 
NH-DLC for 5000 sliding cycles, with 5N load and 100 mm/s speed 

Table 4-2: Calculated hertzian contact pressure and contact area before and after 
sliding in BL 

Coating 

52100 steel/H-DLC 

52100 steel/NH-DLC 

A, [m2] 
Calculated 

8.79xl0"9 

6.65xl(T9 

Af[m2] 
Measured 

1.77xl0"8 

7.06xl0"8 

Pi [GPa] 

0.85 

1.02 

Pf [GPa] 

0.42 

0.11 
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4.6 Effect of Initial Dry Running-in on Lubricated Sliding 

A 52100 steel ball was slid against NH-DLC and H-DLC at 100 mm/s at a 5 N 

load, corresponding to A, = 0.2. The experiment initially ran dry in ambient air without 

any fluid or oil, and then Dexron III oil was added. Figure 4-70 shows that the COF of 

52100 sliding against NH-DLC starts at 0.15 and climb 0.23. At 2500 cycles, the COF 

reaches a steady state of 0.16 ± 0.005, then at 3700 cycles, Dexron III was added and the 

COF immediately responded by dropping to 0.098 ± 0.005. As for 52100 steel sliding 

against H-DLC, the friction started relatively high at 0.2 and within 500 cycles, it 

dropped to a low steady state COF of 0.051 ± 0.004. However, once Dexron III was 

added, the COF immediately increased to 0.1 ± 0.002. 

Optical images of the ball wear scar before adding the oil, reveal the presence of 

carbon transfer on both steel balls slid against H-DLC (Figure 4-71 (a)) and NH-DLC 

(Figure 4-71 (b)). However, after the lubricated sliding period, the carbon transfer on the 

balls was washed off those that slid against both H-DLC (Figure 4-72 (a)) and NH-DLC 

(Figure 4-72 (b)). 

120 



0.30 

0.25 

c 
o 

" l • 

o ' l _ 

u_ 
o 
"•"* 
c CD 
O 

jf
fi 

0.20 

0.15 

0.10 

0.05 

0.00 

H-DLC 

NH-DLC 

Lubricated Sliding 

^'~~~»~~~**+***in,tlimm0mtinii 

4000 6000 8000 10000 

Number of Sliding Cycles 

Figure 4-70: Ball-on-disc wear test with initial dry-sliding of steel ball sliding 
against H-DLC and NH-DLC followed by lubricated-sliding at 100 mm/s, 5N load 
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4.7 Discussion 

The generated Stribeck curves displayed in Figure 4-64, illustrate that beyond X = 

0.3, the NH-DLC COF starts to drop, while H-DLC and steel maintain their steadily 

decreasing slope. This indicates that NH-DLC induced an early transition from BL and 

ML at X = 0.3, but this transition was not suppose to occur until X = 1 suggesting that the 

NH-DLC coating must have altered the contact conditions. NH-DLC also displayed a 

significantly worn ball tip compared to the balls that ran against H-DLC and steel (Figure 

4-66). The worn ball implys that the NH-DLC coating reduced the contact pressure by 

increasing the contact area and transforming the point type contact to line type contact. 

This would explain the early transition from BL to ML and the relatively low COF 

(0.063) compared that (0.073) produced by H-DLC and uncoated steel at X > 0.3. 

The type of run-in behaviour observed for NH-DLC in the first 1000 cycles 

(Figure 4-68), confirms changes in the contact conditions, which is described by Blau 

[55] as factional break-in. This type of run-in behaviour is attributed to a reduction in the 

contact pressure and smoothing of the mating surface, as illustrated by Xu et al. [56] in 

lubricated sliding. These authors tested SiN against itself in water and they observed that 

during the run-in period, mechanical wear dominated where contact pressure reduction 

and surface smoothing occurred. After the running-in period, the wear mechanism 

changed from mechanical to tribochemical dominated wear, reaching a steady-state COF. 

This type of behaviour was also observed in the current study (Figure 4-68), indicating 

that the NH-DLC coating lowered the COF under BL by reducing the contact pressure. 

This was confirmed, when the steel balls were examined after the experiment, it 

was observed that the ball sliding against NH-DLC had a wear scar diameter was twice 
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that of wear scar produced by the H-DLC (Figure 4-69), plausibly because NH-DLC is 3 

GPa harder than H-DLC. Consequently, the contact pressure decreased by half for 52100 

steel against H-DLC and by one order of magnitude for 52100 steel against NH-DLC 

Table 4-2. This confirmed the earlier statement that in BL, NH-DLC lowers the contact 

pressure by wearing the mating surface and changing the lubrication regime. 

Consequently, the H-DLC coating produced a COF of 0.11, which was higher than the 

NH-DLC coating with a COF of 0.07. 

Experiments with an initial dry run-in followed by lubricated sliding (Figure 4-70), 

show that oil does not lubricate the low shear carbon transfer formed during the initial 

dry-sliding. When the Dexron III was introduced after the initial dry-sliding period, with 

carbon transfer layers on the pin, both H-DLC and NH-DLC coatings produced a COF of 

0.1, which is a typical value for uncoated 52100 steel [57]. However, in this study (Figure 

4-70) it was observed that in air H-DLC is capable of producing very low COF of 0.05, 

which is lower than lubricated sliding with COF of 0.1, suggesting that there is potential 

for H-DLC to replace oils and eliminate BL. 
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CHAPTER 5 

Conclusions 

The purpose of this study was to identify the friction mechanisms of DLC 

coatings in dry sliding and lubricated sliding, specifically in the boundary lubrication 

regime. The mechanism of dry-sliding was explored by testing 319 Al pins against both 

NH-DLC and H-DLC coatings under various environments, including vacuum (0.4 Pa), 

ambient air (40% RH) and humid air (22%, 40% and 77% RH). In addition, the influence 

of an initial running-in gas on the friction in vacuum (such as dry air, dry nitrogen and 

dry oxygen atmospheres) was investigated. For lubricated sliding, the boundary 

lubrication (BL) portion of the Stribeck curve was generated for uncoated 52100 steel, H-

DLC and NH-DLC coatings. Then a two phase experiment was conducted, initially in dry 

running-in followed by, lubricated sliding. 

5.1 Tribological Behaviour of DLC in Dry Sliding 

5.1.1 Friction in Ambient Air and in Vacuum 

1) The friction of the NH-DLC coating (COF = 0.13 ± 0.015) was lower than that of 

the H-DLC coating (COF = 0.21 ± 0.018) in ambient air at 40% RH, due to the 

formation of carbon transfer layers on the aluminum counterface. The difference 

in the COF is attributed to the amount of carbon transfer layers formed on the 

aluminum pin. 

2) The COF of 319 Al sliding against NH-DLC decreased from 0.19 ± 0.05 to 0.12 ± 

0.02 and 0.09 ± 0.01 as the humidity increased from 22% to 40% and to 77% RH. 
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The reduction in the COF observed between 319 Al and NH-DLC as humidity 

increased was attributed to water dissociation, the formation of -H and -OH 

molecules, which terminate the free carbon a bonds on the surface. The formation 

of lubricious graphite lead to COF reduction. FTIR analyses of the transfer layers 

confirmed the presence of -H and -OH, confirming water dissociation in the initial 

sliding in ambient air. 

3) 319 Al sliding against H-DLC in vacuum resulted in a very low COF of 0.02 ± 

0.0102, while 319 Al sliding against NH-DLC in vacuum lead to a high COF of 

0.9 ± 0.2. A possible explanation was that H-DLC is capable of forming carbon 

transfer on the aluminum counterface, which prevented surface interactions. The 

lack of carbon transfer on the aluminum pin for NH-DLC, combined with a high 

surface energy of, induced high surface interactions with the aluminum 

counterface, that produced a high COF. 

5.1.2 Effect of Initial Running-in on Reduction of COF in Vacuum 

1) The initial dry-sliding in ambient air lead to a reduction in the COF between 319 

Al and NH-DLC sliding surfaces when the chamber pressure was reduced to 

reach vacuum (0.04 Pa). This behaviour is due to the presence of moisture in the 

air, which caused lubricious graphite to form on the tip of the aluminum pin. 

When the chamber was evacuated, these layers were sheared, which lowered the 

COF from 0.1 in ambient air to 0.02 ± O.Olin vacuum. Once the layers were 

consumed, the contact changed back to Al/DLC and thus the COF increased to 

0.7. 
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2) Lubricious carbon transfer layers also formed in the presence of dry air. FTIR 

analyses of the transfer layers that formed in dry air confirmed the presence of H 

and OH, indicating water dissociation. The COF of 0.5 in dry air was thereby 

reduced again to a very low value of 0.03. 

3) No evidence of carbon transfer layers was found to form in the presence of dry 

oxygen or dry nitrogen atmospheres, so the aluminum to NH-DLC contact was 

maintained. Consequently, friction did not decrease when the chamber was 

evacuated. 

Tribological Behaviour of Lubricated Sliding 

1) The NH-DLC coating produced a lower COF of 0.06 compared to H-DLC and 

uncoated 52100 steel (0.83), promoting an early regime transition, from boundary 

to mixed lubrication regime at X = 0.3. 

2) The early regime transition produced by NH-DLC is due to the mechanical 

wearing of the counterface (52100 steel ball), which lead to an increase in the 

contact area. This, reduction of the contact pressure and consequently, changing 

the lubrication regime, leading to a lower COF. 

3) It was also observed that dry sliding of H-DLC out perform lubricated sliding by 

producing a COF of 0.05 in dry and 0.1 in BL condition. Therefore, possible 

changes could be made for H-DLC to replace ATF and running transmission dry 

to eliminate BL. 
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Suggestions for Future Work 

A. Investigate the friction and wear behaviour of DLC coatings while sliding in 

humid oxygen and humid nitrogen atmospheres. The purpose of these 

investigations is to identify if either oxygen or nitrogen promote better 

dissociation of water. 

B. Explore the effect of metallic dopants (i.e. Ti, W and WC) and non-metallic 

dopants (i.e. P, S, N and F) on the tribological behaviour of DLC coatings, to 

identify which dopant is ideal for dry machining of Al. 

C. Examine the behaviour of DLC coatings under lubricated conditions with 

different oil viscosities and compositions (75W90, 5W30, 10W30) to compare 

with base stock oil (PAO). These tests will help to clarify whether viscosity affect 

the friction mechanism under BL. 

D. Examine the effects of dopants on the BL regime and identify which dopants 

work more effectively under BL conditions. 
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APPENDICES 

A. Lubrication Regimes 

Lubricants are added to minimize wear by separating the sliding surfaces. The 

separation depends on the fluid properties (i.e. viscosity) and conditions such as load, 

speed, roughness and temperature. Lubricants have three regimes: hydrodynamic (HL), 

elasto-hydrodynamic (EHL) and boundary lubrication (BL). The boundaries between 

regimes are governed by the X (Equation A.l), the ratio between film thickness, 

calculated according to Hamrock and Dowson for elliptical contact [58] (Equation A.2) 

and the root mean square of the two surface roughnesses (Equation A.3). In the film 

thickness equation the terms Rx, U, G, W and k represent the radius of curvature of the 

bearing in the x-direction, dimensionless speed parameter (Equation A.4), dimensionless 

materials parameters (Equation A.5), dimensionless load parameter (Equation A.6) and 

the ellipticity parameter (Equation A.7) respectively. The effective elastic modulus is 

represented by E' (Equation A.8). 

^ = hmiJ(7* A-l 

h^ = 3 . 6 3 / ^ a 6 8 G a 4 V ^ 0 7 3 ( l - ^ 6 8 t ) A-2 

*2=R2
ql+R2

g2 A-3 

U=^_ A-4 

ERX 

G = E'a, A-5 

F 

W=^-T A-6 
ERl 
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A; =1.03 

/ N0.64 

KR>; 

1-Vj + 1 - V 2 

A-7 

A-8 

bx b2 

Where rj is the oil viscosity, V is the speed, Rx is the radius of curvature of the 

bearing in the x-direction, E is the composite elastic modulus, a is the pressure 

viscosity coefficient, F is the load applied and v is the poisons ratio. 

The different regimes can be presented graphically by the Stribeck curve (Figure 

A-l). Hydrodynamic lubrication is observed when X > 3 at low loads, high speeds or in 

very viscous fluid. Under these conditions, the lubricant is relatively thick and the 

viscous forces support the normal load. Elasto-hydrodynamic (EHL) or mixed is 

observed at 1 < X < 3 due to high-localized pressures leading to a formation of a thin 

lubricant film, which result in asperity contact. However, asperity contact only leads to 

elastic deformation because the lubricant carries most of the load. 

As for boundary lubrication (BL), usually occurs at high loads and low speeds are 

applied, leading to very thin next to no lubricant present between the sliding surfaces and 

direct contact of asperities occur and therefore X < 1. This is commonly observed in 

bearings, piston rings, pumps and transmission [59]. The lubricant in this regime 

functions in a different way, where oil molecules are adsorbed on the surface to form a 

hard load-supporting phase and a soft easily sheared phase to reduce friction [60]. 
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Figure A-l: Stribeck curve [59] 
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B. Friction Modifiers 

Friction modifiers (FM) are additives added to the base oil to eliminate the BL 

regime, and they are commonly used in automatic transmission fluid (ATF) to insure a 

smooth shifting between gears. FM are long chains carbon chains (10 or more carbon 

atoms) with either carboxylic acids, phosphoric acids or amines, amides and imides polar 

heads at the end [61]. These polar heads adsorb to the metallic surface and provide a 

buffer zone layer, which prevents metal/metal contact (Figure B-l). 

Normal 

Sliding l o a d 

direction 

Figure B-l: Adsorbed oil mono-layer on the sliding surfaces [61] 

The effective in formation of these protective layers depends on the chemistry of 

the additives. For example, polar groups with strong polarity have greater tendency to 

adsorb to the metallic surface and forming stronger and thicker protective layers 

compared to weaker polarity groups as shown in 

In addition, smaller polar head groups promote stronger and more stable films 

with closely-packed molecules. The polar chains adsorb on the surface, aligning 

themselves perpendicular to the surface so that the adsorption force was estimated to be 

around 13 Kcal/mol [61]. Consequently, hydrogen bonding along the sides of the chains 
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induced cohesive forces between the hydrocarbon tails, promoting the parallel orientation 

of the adsorbed chains. Adsorptions of polar groups are also greatly influenced by the 

operating temperature. Higher temperatures lead to de-sorption of the polar head 

molecules, which weakens the adsorbed protective layer. According to Persson [62] 

adsorption of the polar group on the surface is affected by the surrounding atmosphere. 

For example, in humid atmospheres water molecules adsorb on the surface, which 

hinders polar group adsorption to the surface. 

Adsorbed chain length also contributes to film stability and formation. Papay [61] 

compared different acids with different chain lengths, showing longer chains were 

observed to form thicker adsorbed layers on the metallic surface (Table B-l). 

Table B-l: Adsorption film thickness of acid solutions (0.025% in benzene) [61]. 

ACID 

Phenylstearic 
Stearic 
Oleic 
Heptanoic 
Benzoic 

Sebacic 

CHAIN 
LENGTH (in 
Carbon Atoms) 
-22 
18 
18 
7 
~5 

~5 

FORMULA 

C6H5(CH2)17COOH 
CH3(CH2)16COOH 
C8H 17CH=CH(CH2)7COOH 
CH3(CH2)5COOH 
C6H5COOH 

CH2CH2CH2CH2COOH 
1 
CH2CH2CH2CH2COOH 

MW 

360 
284 
282 
150 
122 

202 

FILM THICKNESS, 
o 

A 
at 28 psi 
1300 
800 
700 
600 
400 

300 

at 2.8 psi 
1500 
1100 
1000 
800 
700 

500 
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C. Surface Hardness and Elastic Modulus Calculation 

Surface hardness and the Elastic modulus can be calculated according to Oliver 

and Pharr's method [39] from the load vs displacement data obtained by Nano-

indentation as shown in Figure C-l. 

UNLOADING D 

DISPLACEMENT, h 

Figure C-l: Schematic presentation of load vs displacement [39] 

The stiffness (S) is calculated as the slope of a linear fitting for the upper 1/3 of 

the unloading region from load vs displacement results. Therefore, the reduced Elastic 

modulus (Er) can be computed from the stiffness (Equation C.l), with (P) as the load, (h) 

as the displacement and (A) as the projected area of the elastic contact. 

dh *in 
C-l 

Knowing the Poison's ratio for the specimen v, the Elastic modulus and the 

Poison's ratio for the indenter, E{ and Vi respectively, Elastic modulus of the specimen 

can be calculated accordingly from Equation C.2. 
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1 _(l-v2) | (1-vf) 
C-2 

Specimen's surface hardness (H) is computed as the ratio between the maximum 

load (Pmax) and (A) the projected area of indent (Equation C.3). 

P 
IT _ J max 

A 
C-3 

The projected area can be determined from the geometry of the indent. For 

example, the Berkovich indenter is a three-sided pyramid and therefore, the area is 24.5 

hc
2 from Figure C-2 

^c fynax ^s C-4 

P 
h = £^™L C-5 

Where e is a geometrical constant (i.e. for conical indenter s = 0.72, E = 1 for flat 

punch and e = 0.75 for a Berkovich indenter ) 

mmmmmmmM mm 

Jf h 8 | 

Figure C-2: Schematic drawing of the indent [39] 
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D. CONTACT PRESSURE 

The contact pressure is calculated according to the Hertzian analysis, where two 

spheres with radii Rj and R2 are in contact with applied force F as shown in Figure D-l. 
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Figure D-l: Schematics of two frictionless spherical solids in contact [63] 

The circular contact area between the two spheres has a radius "a" and the 

contact pressure p(r) is elliptical at radius "r". 

P(r) = P^-(r/a)2f2 D-l 

The pressure is obtained from the force "F", pressure relationship 

f 2 
F= )p(r).2m-dr = -pn 

,m D-2 

Therefore, the maximum hertzian pressure is defined as 
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3F 
A™*=:—r D " 3 

Where a can be derived form the elastic deformation, where the displacement is defined 

as shown in figure 

r2 

uzl+uz2=S-zl-z2=S-— D-4 

The displacement of each sphere can be described by 

M „ = — . ^ - . ( 2 a 2 - r 2 ) D-5 
E 4a 

Therefore substituting equation D. 5 into D. 4 and solving for the contact radius "a" 

a D-6 
IE 

Where R and E is the effective curvature and effective modulus respectively 

± = -U-L D-7 
R 7?j R2 

i _ H \ 1-̂ 2 
2 1-v2 

+ -!—2- D-8 Ex t2 
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