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ABSTRACT 
The effects of freestream turbulence intensity and integral length scale as freestream 

turbulent parameters on the drag coefficient of a solid sphere were experimentally 

investigated in a closed-circuit wind tunnel. The Reynolds number, Re = Ud/v, was 

varied from 2.2xl04 to 8xl04 by using spheres of different sizes in addition to altering the 

freestream velocity, U. Two different kinds of spheres, PVC spheres with diameter d of 

20, 51 and 102 mm and wooden spheres with diameter d of 20, 51, 65, 102, 140 and 210 

mm, were used in Experiments I and II, respectively. The freestream turbulence intensity 

Tu and flow integral length scale A were manipulated by using orificed perforated plates. 

The proper combination of orificed perforated plate hole diameter, sphere size, and sphere 

location enabled the independent variations of turbulence intensity and relative integral 

length scale (A/d) from 1.8% to 10.7% and from 0.1 to 2.6, respectively at each studied 

Reynolds number in Experiment I, and in Experiment II, the independent variations of 

turbulence intensity and relative integral length scale (A/d) from 2.5% to 6.3% and from 

0.04 to 3.3, respectively at each studied Reynolds number. To ease the experiment 

process, the sphere was fixed while the location of the orificed perforated plate was 

varied in Experiment II. Our 'smooth flow' (Tu < 0.3%) results agree with the standard 

CD versus Re results in the literature. Over the range of conditions studied, current results 

have confirmed that the drag always decreases with increasing Tu and the critical 

Reynolds number at which the drag coefficient is dramatically reduced is advanced with 

increasing Tu. It is found that the effectiveness of Tu in reducing CD is optimized when A 

is about 0.65d. 
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CHAPTER 1: INTRODUCTION 
Sphere as a three dimensional bluff body in turbulent freestream is a common 

phenomenon in our everyday life. In many engineering problems such as the flight of a 

weather balloon, the dispersion of aerosols sprays, rocket system, and the course of 

pollutants in the air and water, knowledge of parameters such as aerodynamic forces of 

spherical bodies in the presence of turbulent flow is often required. Sphere aerodynamics 

is also very important in sports such as golf, baseball and tennis. 

There have been several studies on the characteristics of flow over a sphere [Fage, 

1937; Achenbach, 1972; Achenbach, 1974a; Taneda, 1978; Kim & Durbin, 1988; 

Sakamoto & Haniu, 1990; Mittal, 1999; Kim & Choi, 2002; Yun et al , 2003]. The main 

characteristic of flow around a sphere is the existence of turbulent wake with recirculation 

[Chomaz et al., 1993; Tyagi et al., 2006], which has a dominant effect on the drag and lift 

of the sphere. The extent of this region depends on the size of the body, the velocity and 

viscosity of the fluid, which are cumulatively expressed as the Reynolds number. 

Moreover, it may be strongly influenced by a wide variety of flow disturbances, which 

may originate from different sources. 

1.1 OBJECTIVES 

Due to its importance, a sphere in a flow has been studied extensively, over the last 

few decades. In spite of the effort, there remains many discrepancies on the effect of 

turbulence on the aerodynamics of a sphere. These may be caused by the multi-aspect of 

turbulence, i.e. the dependency of one turbulent parameter on another. There appears to 

be a lack of systematic studies aiming at uncovering the underlying independent roles of 

these turbulent parameters on the drag Co. 

Therefore, the focus of this thesis is to study the effect of freestream turbulence on 

the drag of a sphere. The objective is to separate the influences of 1) integral length scale 

A and/or relative integral length scale A/d (where d is the sphere diameter); 2) turbulence 

intensity Tu; and 3) freestream Reynolds number Re on the drag coefficient of a solid 

sphere exposed to freestream turbulence. Also, in "smooth flow", the effect of blockage 

ratio on the drag coefficient of a sphere is examined. 

1 



1.2 SCOPE OF STUDY 

In this study, the effects of Tu, A and A/d of freestream turbulent flow generated 

downstream of orificed perforated plates on CD were investigated experimentally at 

different Reynolds number in a closed-loop wind tunnel. This consideration was done in 

two different experimental setups, Experiments I and II with PVC and wooden spheres, 

respectively. In order to measure the turbulence parameters, a single normal hot-wire of 

DISA type 55P11 and X-type hot-wire probe of Dantec type 55P61 were used in 

Experiments I and II, respectively. And, model ELG-V-1N-L03M ENTRAN load cell was 

utilized in the drag force measurements. 

Within the limitations of our experimental facility, the Reynolds number based on 

freestream velocity and sphere diameter was varied from 2.2x104 to 8xl04. The 

freestream turbulent flow generated by the available orificed perforated plates provided a 

range of turbulence intensity from 1.9% to 10% and relative integral length scale A/d 

from 0.04 to 3.25. 
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CHAPTER 2: LITERATURE REVIEW 

2.1 FLOW PAST A SPHERE 

For a single, smooth sphere in steady, isothermal, non-turbulent, incompressible 

flow, the drag coefficient, which has been quantified in many experimental studies, is 

well known. Under the above conditions, drag has been found to be a function of 

Reynolds number alone. The plot of the sphere drag coefficient versus Reynolds number 

variation is called the "standard drag curve" as shown in Figure 1. 

This Section describes the variation of flow characteristics around a sphere with 

increasing Reynolds number, 

(i) Re £24: 

For Re £0.1, the flow near the sphere is essentially symmetrical as shown 

in Figure 2(a) [Lamb, 1945]. For 0.l£Re£24, inertial effects increase in 

importance near the sphere and the streamline pattern is no longer 

symmetrical [Jenson, 1959], as shown in Figure 2(b). It can be seen from 

the standard logarithmic Co-Re curve in Figure 1 [Torobin & Gauvin, 

1959] that in this range of very low Reynolds number, the drag coefficient 

of a sphere is given by Stokes' Law, 

24 
C D = — (1) 

Re 

The curve shows a linear trend and the drag coefficient of a sphere 

decreases logarithmically with increasing Reynolds number. 

(ii) 24£Re£270: 

At Re ~ 24, Taneda [1956] reported the appearance of a small closed 

region of separated flow downstream of the rear stagnation point and Baki 

et al. [2006] mentioned that it results in the generation of axis symmetric 

rings. Differences in freestream turbulence and the method used for flow 

visualization can cause some variation in the Reynolds number where flow 

separation is first observed. As the Reynolds number increases, a vortex 

recirculation grows within the separation bubble and its stability decreases; 

see Figure 2(c). 
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At Re ~ 130, the downstream part of the separated region begins to 

oscillate [Taneda, 1956]. This oscillation becomes stronger as Re increases 

up to about 210, but the laminar wake downstream of the wake stagnation 

point remains stable. For 210^Re^270, an asymmetrical separation bubble 

with a laminar wake has been observed [Magarvey & Maclatchy, 1964]. 

Lemmin et al. [1985] shows that for Res 100, the sphere drag coefficient 

CD varies as a function U" , where U is the mean flow velocity. 

4 
2 

8 
6 
4 

^ 2 
CD i 

8 
6 
4 
2 

lO"1 

8 
6 
4 

10 2 4 6 8 1 2 4 6 8 1 0 2 4 6 8 1 0 2 2 4 6 8103 2 4 6 8 1 0 4 2 4 6 8105 2 4 6 8 1 0 * 2 4 6 8 107 

Re 
Figure 1: Drag coefficient of the sphere as a function of Reynolds number [Torobin & 

Gauvin, 1959] 

(iii) 270 ̂ Re^ 1000 

Discrete vortex loops are shed periodically for 290£Re£700, [Sivier & 

Nicholls, 1969]. Sivier and Nicholls [1969] noted that an increase in the 

level of freestream turbulence can cause the occurrence of vortex shedding 

at Re as low as 150. When the Reynolds number is further increased to 

around 800, the vortex loops diffuse very rapidly, and the wake flow 

becomes turbulent. The resultant shape of the vortex structure in the wake 

of the sphere is shown in Figure 2(d). As may be inferred from the figure, 

horse-shoe shaped vortex loops are formed [Magarvey & Maclatchy, 1964; 

Achenbach, 1974a; Ormieres & Provansal, 1999]. These loops are rapidly 
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detached from the near-wake region and form a series of vortices that are 

shed periodically into the far wake. As shown in Figure 1, the logarithmic 

Co-Re curve is roughly linear in this range, too. But, for Re £700, the 

logarithmic scale trend of Co-Re curve is no longer linear. The relationship 

in this range can be described as [Bakic & Peric, 2005]: 

C - 2 4 

Re 

f _ ->n\2 

l3-
6 

2/3 

V 

(2) 

Lemmin et al. [1985] have shown that the drag coefficient drops from 

about 1 at Re ~ 100 to 0.5 at Re ~ 500, and to 0.44 at Re ~ 1,000. 

(iv) 103 £Re £ 3xl05: 

In this range, the vortex loop shedding becomes nearly a continuous 

process. Fluctuation corresponding to the shedding of vorticity still occurs 

[Lamb, 1945]. Visualization experiments [Bakic & Peric, 2005] have 

shown that the far wake region continues to grow in size and produces a 

wave-like motion. The near wake structure in this flow regime is depicted 

in Figure 2(e). Willmarth and Enlow [1969], Achenbach [1974a], and 

Taneda [1978] have suggested that the circulation is caused by the 

asymmetric shedding of large turbulent eddies into the wake, which 

produces an unsteady bound vorticity vector whose cross-product with the 

mean stream velocity determines the fluctuating force. It is responsible, for 

example, for the erratic path of a rising weather balloon [Scoggins, 1967] 

and for the unpredictable trajectory of a baseball thrown at medium speed 

with very little spin (a "knuckle ball') or of a cricket ball whose seam is at 

zero angle of incidence to its direction of motion [Barton 1982]. But as 

found out by Howe et al. [2001], most effects are on lift force and the 

effects on drag force are negligible. Figure 1 shows that the value of Co 

virtually remains constant in this regime. Lemmin et al. [1985] found that 

when Re£2000, CD reaches a value of 0.39 and for 2,000£Re£ 10,000, the 

drag coefficient varies with U2. 
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(v) Re£3 x 105: 

Around Re ~ 3 x 105, transition to turbulence occurs in the boundary layer, 

leading to increased momentum near the boundary resulting in a delayed 

separation, Figure 2(f), corresponding to a smaller wake and lower drag, 

referred to as drag crisis [Schlichting, 1955]. It has been observed in 

previous studies [Achenbach, 1972, Taneda, 1978] and also can be seen in 

Figure 1 that as the flow undergoes transition from subcritical to 

supercritical flow, the drag coefficient shows a rapid drop. The minimum 

value of drag coefficient is reached at the critical Reynolds number, Recr. 

With further increase of Reynolds number, Co slowly increases again. In 

the supercritical regime, time histories of the forces and frequency spectra 

of the drag show that the supercritical solutions are chaotic and unsteady 

[Constantinescu & Squires, 2004]. 
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(a) (b) 

(c) 

(d) 

(e) (f) 

Figure 2: Schematic of flow past a sphere at (a) Re £0.1 (b) 0.1 £Re £24, (c) 24£Re£270, 

(d) 270£Re£l03, (e) 103£Re£3 x 105 and (f) Re^3 x 105 

2.2 FREESTREAM TURBULENCE AND ITS EFFECT ON DRAG FORCE OF A 

SPHERE 

Since most applications of sphere-fluid interaction occuring in practice involve 

turbulence freestream, in order to advance our understanding of the aerodynamics of a 

sphere, it is imperative to have a proper knowledge of the role of freestream turbulence. A 

priori to understanding the aerodynamics of a sphere in complex turbulent flow 

encountered in engineering practice is a good comprehension of smooth sphere 
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aerodynamics in simple turbulent freestream. The flow downstream of an orificed 

perforated plate provides such a clean, simple, and quasi-isotropic freestream turbulence 

[Liu & Ting, 2007]. 

As mentioned earlier, the Co-Re behavior for the 'smooth flow' situation is well 

known. Freestream turbulence may strongly influence this Co-Re behavior. Many wind 

tunnel studies, [Ahlborn, 1931; Anderson, 1975; Bearman, 1971; Becker & Brown, 1974; 

Brownlee, 1960; Anderson & Uhlherr, 1977] have found that increasing fluid turbulence 

reduces the value of critical Reynolds number Recr for boundary layer flow transition, to 

occur. Below the critical Reynolds number, it has been observed that flow turbulence can 

cause a moderate increase in the drag coefficient as compared to that found in the smooth 

flow [Zarin, 1970]. Near the standard (smooth flow) critical Reynolds number, by 

perturbing the flow, the separation point shifts downstream along the sphere surface 

affecting the vorticity transfer and dissipation in the wake and, hence, the form drag 

[Kendall, 1964; Winny, 1932]. 

In some experimental studies, researchers used the Co-Re curve to indicate when 

flow status changes to turbulent. This method to find the critical Reynolds number, was 

originally proposed by Prandtl [1914]. At low Reynolds numbers, CD is approximately 

constant and equals to about 0.5. At critical Reynolds number which value depends on the 

turbulence of the air stream, Co decreases rapidly to values in the neighborhood of 0.1. 

This drop shows that the flow completely changes to a turbulent one and the different 

values of critical Reynolds number are associated with different turbulence levels. Prandtl 

[1914] suggested that observation of such resistance curves for spheres gave a means of 

comparing the air streams of different systems of laboratories, with respect to their lesser 

or greater turbulence. The decrease of Co occurs at higher Reynolds numbers, around Re 

~ 103 in streams of lower turbulence. Also, Balachandar et al. [2004] explained this 

phenomenon. The mean wake in a turbulent flow shows reduced velocity deficit and a 

flatter profile than wake in laminar flow. However, the mean wake in a turbulent flow 

behaves like a self-preserving laminar wake. At low Reynolds numbers, the wake in a 

turbulent flow oscillates strongly without any vortex shedding, but at higher Reynolds 

numbers, vortex shedding starts. The nature of the vortices is very different from that in a 

uniform flow which causes reduction in Co- Increasing the freestream turbulence intensity 
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suppresses the process of vortex shedding, and only marginally increases the wake 

oscillation. 

By using stationary spheres in a wind tunnel of known turbulence characteristics, 

Dryden et al. [1937] have found that for flow over a sphere, the turbulent parameter that 

affects Recr the most is turbulence intensity. The critical Reynolds number Recr decreases 

monotonically with the increase of turbulence intensity up to 4.5%. Their data correlates 

more closely when Recr is plotted against [(u/U)(d/L) ], where u is the instantaneous 

fluctuating velocity, U is the mean flow speed, d is the sphere diameter, and L is the 

Eulerian scale of turbulence. This parameter is derived by Taylor [1937] who suggested 

that the fluctuating pressure gradients which accompany freestream turbulence were 

responsible for transition to turbulence. 

Torobin and Gauvin [1960 & 1961] and subsequently Clamen and Gauvin [1969] 

used a grid system to generate turbulence in a wind tunnel and injected spherical particles 

of different size into the wind tunnel. The particles were injected upstream at velocities 

close to that of the oncoming air stream. Their results are shown in Figure 3. The drag 

coefficient, after its sharp drop due to transition, rises steeply to a maximum and then 

dropped off again gradually. The Co-Re curves corresponding to different turbulence 

intensity levels have similar shapes but the maximum CD occurs at different Reynolds 

numbers. The maximum Co increases with the increase of turbulence intensity, while the 

Reynolds numbers at which the maximum Co occurs decreases with the increasing 

intensity; see Figure 3. After reaching their maximum, the Co-Re curves corresponding to 

different turbulence levels tend to converge at higher Reynolds number. Clamen and 

Gauvin [1969] suggested that the increase of the maximum values of Co with the 

turbulence intensity observed in the supercritical flow regime might be associated with 

the increased vorticity in the wake due to the presence of freestream turbulence. The 

vorticity reduces the extent of the near wake by hastening the spatial return to freestream 

conditions behind the sphere. With the shortening of the near wake, the main flow is 

required to close more sharply behind the sphere. A greater lateral pressure gradient is 

then needed to produce the increased curvature of the streamlines. Since the ambient free-

stream pressure is fixed, there must be a decrease in the pressure at the rear of the sphere 

(particle) and, hence, an increased drag. Also, the similarity of the Co-Re curves in Figure 
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3 at different turbulence levels indicates the lack of dependence of turbulent skin friction 

on turbulence intensity. They saw a large decrease in Co from 1.5 to 0.5 with the change 

in Reynolds number but very small decrease in the skin friction. It is worth mentioning 

that A/d varied from 2 to 6.25 within the Reynolds number range of 500 to 2100 in 

Torobin and Gauvin's [1961] experiments. However, they did not examine the role of A/d 

closely. In Torobin and Gauvin's [1960] and Clamen and Gauvin's [1969] researches, the 

only turbulent parameter considered was turbulence intensity. There was no mention of 

A/d, even though it was varied presumably over a significant extent. 
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Figure 3: Effect of turbulence on drag of freely moving multiple spheres [Torobin & 

Gauvin, 1960; Clamen & Gauvin, 1969] 

The effect of turbulence on drag below the critical range of Reynolds number was 

investigated by Sivier and Nicholls [1969], Uhlherr and Sinclair [1970] and Anderson and 

Uhlherr [1977] by using freely moving sphere in experiments. For example, Uhlherr and 

Sinclair [1970] and Anderson and Uhlherr [1977] used spheres and spherical particles 

entrained in turbulent liquid system. 

In the subcritical range of Reynolds numbers, Sivier and Nicholls [1969] reported 

that moderate freestream turbulence intensities (Tu < 8%) produce a definite increase in 
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CD for Re > 200. The increase is growing with increasing Re. Compared to the CD'S 

measured at lower turbulence intensities (Tu ~ 1%), at Re < 200, they have observed little 

or no change in Co- Their measurements did not include the scale or spectra of the 

turbulence and turbulence intensity was not varied over a very wide range. 

Uhlherr and Sinclair [1970] found that, at low levels of turbulence, Tu < 0.05, the 

effect of length scale on drag can be correlated with the one-fifth power of scale and at 

high levels of turbulence, a scale effect on drag to be completely absent. Also, they found 

higher turbulence intensity causes higher drag coefficient in Re < 1000; see Figure 4(a) 

and (b). As shown in Figure 5, Uhlherr and Sinclair [1970] showed that the drag 

coefficient for a given Reynolds number and low turbulence intensity first decreases 

below the zero-turbulence drag curve, and then by increasing turbulence intensity, 

increases again. Although there is little duplication between the results of Torobin and 

Gauvin [1960] and those reported here, the two sets of data are contiguous in significant 

effects of Tu on CD. 

101—. L_ 1 1 0 I , , , , , I 
10' 102 i o J 10* • " T O / 4 0 M 

Re Tu% 

(a) (b) 

Figure 4: Effect of relative turbulence intensity on the drag coefficient of freely moving 

multiple spheres [Uhlherr & Sinclair, 1970] 
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Figure 5: Correlations for the effect of turbulence on drag of freely moving multiple 
spheres [Clift & Gauvin, 1971] 

In low Reynolds number (Re < 100) and Reynolds number less than the critical one, 

for particles convected upward in a pipe with turbulent flow, Anderson and Uhlherr 

[1977] showed that the effects of turbulence were not as large as those which were found 

previously. 

Also, the effect of turbulence on drag below the critical range of Reynolds number 

has been considered by Zarin [1970] and Zarin and Nicholls [1971]. They used the 

experimental setup with fixed sphere. For example, Zarin [1970] used metal spheres held 

in a turbulent gas stream by a magnetic suspension system. Generally, their results 

concurred with previous ones using either fixed or freely moving spheres which shows 

increasing turbulence intensity decreases the critical Reynolds number, such as Dryden et 

al. [1937] and Torobin and Gauvin [I960]. It looks like the results of moving spheres 

show more significant effect of Tu on the critical Reynolds number. 

For low Reynolds number, 200 < Re < 800, Zarin and Nicholls [1971] and Zarin 

[1970] showed that turbulence levels of 0.4% to 3.3% produced significant drag 

increases. The scale of the turbulence which is obtained by this method is of the order of, 

or greater than the diameter of the spheres tested. The percentage of drag rise due to 

turbulence decreases with decreasing Re. The increase of Co approaches zero for Re < 

100 and Tu < 3%. One reason for the decreasing influence of turbulence with decreasing 
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Re is the smaller and more stable separated region on which the turbulence can act. They 

also reported that CD increased monotonically with inverse sphere diameter in 600 < Re < 

5000. In this series of experiments the integral scale was generally less than the sphere 

diameter (0.16 < A/D < 1). 

At 5xl03 < Re < 105 and Tu < 25%, Neve [1986] and Neve and Shansonga [1989] 

discovered the effects of turbulence on the drag of solid spheres. A complex effect of 

turbulence intensity and spatial integral scale on drag coefficient of a sphere is reported 

[Neve & Shansonga, 1989]. Their experiment was done in an open wind tunnel (0.405 m 

x 0.240 m) with a fixed 37.7 mm sphere. They didn't get the same conclusion from their 

results for different Reynolds number. But, in particular, for special values of turbulence 

intensity and spatial integral scale, the drag coefficient of solid spheres is reduced to its 

value in Recr. 

Petrak [1976], Lee [1987] and Warnica et al. [1995] reported that drag coefficients 

of particles in a turbulent field were much less than those in a quiescent field although the 

intensities of turbulence were quite low. 

Clift and Gauvin [1970], like Dryden et al. [1937] and Torobin and Gauvin [1961], 

found that flow with higher turbulence intensity had smaller critical Reynolds number by 

numerical simulation of moving particle. They defined an equation to predict the value of 

critical Reynolds number in flow with different turbulence intensities from their result 

shown in Figure 6. 

so 
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Figure 6: Critical Reynolds number of spheres as a function of the relative intensity of 

turbulence [Clift & Gauvin, 1970] 
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The measurements by Sankagiri and Ruff [1997] covered the sub-critical, critical, 

and super-critical Reynolds number region. In the sub-critical range, the drag with 

enhanced Tu is greater than the standard drag, and decreases gradually into the critical 

range. The behavior at the critical and super-critical Reynolds numbers agrees fairly well 

with previous data obtained by Clift and Gauvin [1971]. 

More recently, Bagchi and Balachandar [2003] and Birouk and Abou Al-Sood 

[2007] conducted a direct numerical simulation to determine the effect of turbulence on 

the drag of a particle for 10 < Re < 250 and 0% < Tu% < 60%. Their results confirmed 

Warnica et al.'s [1995] suggestion. They believed the freestream turbulence intensity 

does not affect significantly the drag coefficient of a particle or sphere in this flow 

condition. 

The drag of non-evaporating, spherical, deformable liquid droplets was measured in 

turbulent flow fields characterized by the droplet Reynolds number, and the intensity and 

spatial scales of turbulence by Warnica et al. [1995]. The range of Reynolds numbers 

investigated was 10-100, and that of the relative intensities of turbulence was 20-65 

percent, in terms of the mean relative speed. The ratio between the spatial integral scale 

and the droplet diameter was in the range of 11-38. Experimental data showed that the 

drag in turbulent fields under these conditions was not significantly different from that of 

solid spheres in a quiescent field at the same Reynolds number and it was higher than the 

values for standard situation. In general, these relationships indicated that the drag 

coefficient increased with increasing relative intensity. The numerical study by Yusof 

[1996] also illustrated a drag increase of nearly 40% in a freestream turbulence intensity 

of 20% in Reynolds number less than 1000. 

Brucato et al., [1998] did the experiment with novel technique. The technique is 

suitable for obtaining data with particles smaller than those needed by most of the other 

techniques such as direct numerical simulation, etc. This system with glass and silica 

particles in water, shows that particle drag in the Re < 100 and Tu = 5% is either 

unaffected or increased by freestream turbulence, depending on particle size and 

turbulence intensity. For the largest particle an increase of more than forty folds was 

observed. Lee [2000] yielded the similar conclusion from his results in Tu = 20% and Re 

<100. 
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2.3 EFFECT OF BLOCKAGE ON DRAG FORCE OF A SPHERE 

In wind tunnel tests, blockage ratio is defined as the ratio between the cross-

sectional area of a sphere and that of the test section. It can have some effects on drag 

coefficient of a sphere in turbulent and smooth flow. 

Zarin and Nicholls [1971] considered the blockage ratio effect on Co in 600 < Re < 

5000 on a fixed sphere in wind tunnel with 2 in diameter. They found that Co increases 

monotonically with inverse sphere diameter as shown in Figure 7. But, by using the 

numerical methods, Blackburn [2002] found that higher blockages contribute to the 

slightly higher values of CD-
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Figure 7: Effect of sphere diameter on drag coefficient [Zarin & Nicholls, 1971] 
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Sample data points from Phoreman et al. [2007] are given in Figure 8. Three 

spheres of diameters 87.5, 137.5 and 225 mm were tested at the UC Davis Aeronautical 

wind tunnel where the turbulence intensity is less than 0.1%. The test section was 840 

mm high and 1200 mm wide. It was found that once the blockage ratio was beyond 0.02, 

for Reynolds number less than the critical value (Re < Recr ~ 3xl05), the drag coefficient 

of the sphere was increased, and for Re £ Recr, the drag coefficient of the sphere was 

decreased; see Figure 8. 
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Figure 8: Blockage effect on the drag coefficient of a sphere in Phoreman et al.'s results 

[2007] 

2.4 EFFECT OF SURFACE ROUGHNESS ON DRAG FORCE OF A SPHERE 

Perturbing the boundary layer via surface roughness is one method to make 

turbulent flow. This technique is used for body shapes such as sphere and for applications 

wider than just in aeronautics. 

White [1966] found that roughening the sphere surface shifted the wake separation 

point downstream, reducing drag. Also, wind tunnel measurements for spheres 

[Achenbach, 19746; Lyotard et al., 2007] indicated that the drag crisis was shifted to 

lower Re when the surface is roughened. Golf balls are made with surface dimples in 

order to reduce drag by a very similar mechanism [Choi et al., 2006]. Dimples cause local 

flow separation and trigger the shear layer instability along the separating shear layer, 

resulting in the generation of large turbulence intensity. With this increased turbulence, 
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the flow reattaches to the sphere surface with a high momentum near the wall and 

overcomes a strong adverse pressure gradient formed in the rear sphere surface. As a 

result, dimples delay the main separation and reduce drag significantly. 

Figure 9 shows the results by different researchers regarding the effect of surface 

roughness on CD-Re relation of a sphere which are fixed or moving in experimental wind 

tunnel. It can be clearly seen that drag coefficient was decreased and critical Reynolds 

number was increased by decreasing surface roughness. Also, at Re > Recr, the drag 

coefficient increases more drastically at larger roughness and approaches 0.4. 
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Figure 9: Variation of the drag coefficient owing to active and passive controls as of the 

Reynolds number: • Jeon et al. [2004]; -dimples (golf ball) by Bearman and 

Harvey [1976]; —, roughness (k/d) by Achenbach [19746]; — , Choi et al. 

[2006] 
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CHAPTER 3: EXPERIMENTAL DETAILS 

3.1 WIND TUNNEL SETUP 

The experiments were conducted in a closed-loop wind tunnel with a 4 m long test 

section. The test section is 0.75 m (width) x 0.75 m (height) at the inlet. To accommodate 

for boundary layer built up, it expands to 0.765 m x 0.765 m at the end. Figure 10 shows 

the overall view of the wind tunnel. The maximum attainable freestream velocity is 

around 20m/s and the background turbulence level is less than 0.3%. 

Figure 10: Closed-loop wind tunnel used for the experiment 

The turbulence was generated by placing one of the three orificed perforated plates 

in the wind tunnel. These are 6 mm thick aluminum plates with hole diameter D of 25, 

37.5, and 50 mm, respectively, as shown in Figure 11. The solidity ratio of the plate was 

fixed at 43%. To minimize the influence of the plate thickness on the turbulent flow field 

generated, each hole was machined into an orifice with a 41° angle as illustrated in Figure 

12. Study by Liu and Ting [2007] showed that an orificed perforated plate of 6 mm 

thickness, 41° orifice angle, and 43% solidity ratio was appropriate for generating quasi-

isotropic turbulence. 
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(a) D = 25 mm (b) D = 37.5 mm (c) D = 50 mm 

Figure 11: Schematic of the orificed perforated plates (a) Plate D-25, (b) Plate D-37.5, and 

(c) Plate D-50. 

(a) Looking upstream to the plate (b) Cross section of the plate 

Figure 12: The orificed perforated plate 

The proper combination of orificed perforated plate hole diameter, sphere size, and 

sphere location enabled the independent alterations of turbulence intensity and relative 

integral length scale (A/d) from 1.9% to 10% and from 0.04 to 3.25, respectively at each 

studied Reynolds number from 2.2xl04 to 8xl04. 

3.2 CHARACTERISTICS OF THE TURBULENT FLOW MEASUREMENT IN 

WIND TUNNEL 
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To quantify the flow velocities and the associated turbulence parameters, a hot-wire 

system composed of a hot-wire probe, a temperature probe, a Dantec Streamline hot-wire 

anemometer (CTA) modules, an A/D converter, a light-duty 2-D traversing system, and a 

computer were utilized as shown in Figure 13. In Experiment I with PVC spheres, a 

single normal wire of DISA type 55P11 with Dantec Streamline 55C90 hot-wire 

anemometer (CTA) module were used. In Experiment II with wooden spheres, hot-wire 

measurement system included an X-type hot-wire probe of Dantec type 55P61 with two 

Dantec Streamline 55C90 hot-wire anemometer (CTA) modules. 

Traversing system 

Figure 13: Hot-wire system 

3.2.1 MEASUREMENT VELOCITY 

In Experiment I, velocity measurement was conducted by using a single normal hot­

wire of DISA type 55P11 at the desired location downstream of the orificed perforated 

plate. The hot-wire anemometer used in this experiment was a Dantec Streamline 55C90 

CTA module installed within a Dantec 90N10 frame. In Experiment II, velocity 

measurement was conducted by using an X- probe of Dantec type 55P61. In this case, 
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two anemometer modules in the 90N10 frame were used. The 90N10 frame consisted of 

three major parts: a power supply, a controller and a temperature transducer. The power 

supply provided all the power needed for the operation of the StreamLine® system. The 

controller acted as a gateway between the computer and the StreamLine® system. 

The traverse system was mounted at the desired location downstream of the orificed 

perforated plate for supporting the hot-wire probe and the temperature probe. Liu and 

Ting [2007] have shown that the turbulence generated by the orificed perforated plate 

remains non-isotropic until a distance of 10D downstream of the plate. Thus, all hot-wire 

data in the current study were collected within a range of 10D to 50D distance 

downstream of the orificed perforated plate. The instantaneous flow velocity in the 

streamwise direction was measured using either a single normal wire or a X-probe. A 

sampling frequency of 80 kHz was used over a sampling time of 125 s, resulting in 

10,000,000 samples at each measurement location. The collected data were low-pass 

filtered at 30 kHz before further analysis. The process of selecting the sampling frequency 

and sampling number is explained in Appendix A. A Pitot-static tube was employed when 

adjusting the power supply to provide the desirable wind speed. It was removed during 

hot-wire and drag measurement. 

3.2.2 CALIBRATION OF HOT-WIRE PROBES 

The hot-wire probe was calibrated before each test to establish the relationship 

between the voltage output from the hot-wire anemometer and the flow velocity. The 

calibration system consists of a calibration module to be placed in the frame and a 

separate flow unit connected to the calibration module via cable. The system operates 

from a pressurized air supply and creates a free jet, where the probes are placed during 

calibration. There are two calibration systems. 

The old calibration system used in Experiment I, as shown in Figure 14, includes a 

filter to take particles and oil, a nozzle of low turbulence level [Liu et al., 2004], of which 

the velocity of air flow can be varied from 0 to 30 m/s, a Pitot-static tube and a Dwyer® 

475 Mark III digital-manometer with the resolution of ±0.1 Pa for velocity measurement 

reference. There is a temperature probe placed beside the hot-wire probe at the exit of the 

nozzle to obtain the value of air temperature in order to make temperature compensation 
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to the hot-wire output. To ensure the flow velocity to be close to the required value, a 

Pitot-static tube was used to adjust the reference velocity. From this, the flow velocity at 

the core of the jet was deduced. 

The Dantec model Streamline 90H02 calibration system used in Experiment II, as 

shown in Figure 15, includes a filter to take particles and oil, four different nozzles of low 

turbulence level, of which the velocity of air flow can be varied from 0.02 m/s to 343 m/s 

(Mach 1), an elliptical contour to keep the boundary layer development small and ensure 

a flat jet profile. 

The calibration process consists of two steps: i) A velocity calibration to establish 

the relationship between the hot-wire voltage output and the given flow velocity; and ii) 

A yaw angle calibration to identify the dependence of the hot-wire voltage output on the 

relative position of the hot-wire sensor to the instantaneous flow vector. Because a ID 

probe was utilized, no yaw angle calibration was needed in Experiment I. However, it is 

required in Experiment II where the X-probe is used. The details are given in Appendix 

B. 

Figure 14: Old hot-wire calibration system 
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Figure 15: Dantec Model streamline 90H02 hot-wire calibration system 

3.2.3 HOT-WIRE DATA ANALYSIS 

In Section 3.2.1, it was explained that at each sampling location, lxlO7 samples 

were taken at a sampling frequency of fs = 80 kHz, and low-pass filtered at 30 kHz. The 

minimum sampling number, N, associated with fs was determined by sensitivity analysis 

of time-averaged velocity (U), instantaneous fluctuating velocity (u) and integral length 

scale (A) as a function of sampling number. Details are given in Appendix A, which 

concludes that sampling number greater than 7xl06 and 6 xlO6 will provide satisfactory 

accuracy for U, u and A for ID probe and X-probe hot-wire measurement, respectively. 

Flow velocities were found from the data collected by the hot-wire anemometer in 

terms of voltage values and the calibration data. The procedure was done via a MATLAB 

program as detailed in Appendix C. The program can convert each of the input voltage 

value to the instantaneous velocity as output. 
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a) ID-probe hot-wire data analysis 

The time averaged velocity (U) of the flow was simply the average of all the 

samples acquired at any specific measurement location. 

U 

N 

i=l 
N 

where 

U j = CQ + CjEc + C2EC + C3EC + C4EC 

(3) 

(4) 

where Ec is the voltage data given by the hot-wire system and Co, Ci, C2, C3, and C4 are 

the coefficients achieved from calibration. 

By taking the difference between the time averaged velocity and the instantaneous 

velocity (Ui), the instantaneous fluctuating velocity (u) was obtained. The root mean 

square velocity is deduced from: 

u rms 
N ( U i - U ) 2 

(5) 
fi=l N - l 

where N is the sampling number (N =10 ). The turbulence intensity (Tu) was simply 

obtained from: 

u, 
Tu = 1 0 0 x ^ -

U 
(6) 

The integral length scale (A) 

was deduced via 

*A = kCOdT 
0 

(7) 

^A = 
ftf-l 

ZtfiAt) 
U=l 

At (8) 

where the autocorrelation factor (<;) for discrete samples was calculated from 

1 N-m 
S(UiU i+m) 

q(mAt) = 
N - m i=1 

1 N 2 — Zuf 
Nf l 

(9) 

where m was varied from 0 to N-l. 
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Invoking the Taylor's frozen hypothesis [Taylor, 1938], the integral length scale is 

then multiplied by the time averaged velocity at each location to obtain the corresponding 

integral length scale: 

A = U - t A (10) 

Validity of this hypothesis holds for maximum turbulence intensity less than 15% 

[Batchelor, 1967]. The maximum turbulence intensity in this study was 10%, hence the 

Taylor's frozen hypothesis is expected to be valid. 

b) X-probe hot-wire data analysis 

The time averaged velocities (U) and (V), as in Figure 16, of the flow were simply 

the average of all the samples acquired by considering the yaw angle at any specific 

measurement location. 

y ** 

If 

Figure 16: Schematic of flow velocity and hot-wire 

Ueff - C0i + C n E l c + C2 iE l c + C31E l c + C 4 1 E k 

Veff = C 0 2 + C 1 2 E 2 c + C 2 2 E 2 c + C 3 2 E 2 c + C 4 2 E 2 c 

(11) 

(12) 
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where Eic and E2C are the voltages data given by the X-probe hot-wire and Coi, Cn, C21, 

C31, C41, C02, C12, C22, C32, C42 are the coefficients achieved from calibration. 

Then, 

tan(P) = (Ueff - Veff )/[Ueff x tan(a2) + Veff x tan(a i)] (13) 

where ai and a2 are the yaw angles of two wires in the X-probe. The MATLAB program 

in Appendix C explains more details about this calculation. 

Finally, the time averaged velocities were found by, 

N 

U = ̂ — (3) 
N 

N 

i=l (14) 
N 

where 

Ui = (U e f f -V e f f ) / [ 2 + tan(p)x(tan(a1)-tan(a2))] (15) 

Vi=UiXtan(p) (16) 

It is clear that V « 0 in this experiment. By taking the difference between the time 

averaged velocities and the instantaneous velocities Ui and Vi, the instantaneous 

fluctuating velocities u and v were obtained. The root mean square velocities were 

deduced from: 

(5) 

I " XT 1 ( 1 ? ) 

fi=l N - l 

where N is the sampling number (N = 107). The turbulence intensity (Tu) and the integral 

length scale (A) in the flow direction were simply obtained from Equations (6) and (10). 

It is clear that the difference between X-probe data analysis and ID-probe data analysis is 

the effects of yaw angle in X-probe data analysis. 

urms — -

vrms = -

|N(Ui-U)2 

Viti N - l 

|N(Vi-V)2 
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3.3 SPHERE SETUP 

3.3.1 PVC SPHERES 

Three different sizes of spheres (d = 20, 51, 102 mm) were used in Experiment I to 

cover a Reynolds number range of 2.2x10 to 8x10 , and to enable independent control of 

A/d from 0.1 to 2.6. All spheres were made of PVC and polished by light grade Scotch® 

hand-pad. The mean surface roughness was 0.9677 urn. The maximum relative roughness 

(mean surface roughness / sphere diameter) was less than 0.4839x10"4. Thus, the spheres 

can be considered to be mechanically smooth and hydraulically nearly smooth 

[Westerman & Sharcos, 1966; Hunt & Vaughan, 1996]; see Appendix E. 

High strength polymer strings of 0.5 mm diameter (SF24G-150 model of the 

FUSION® brand) with maximum tensile load capacity of 10.9 kg were used to support the 

sphere. Each sphere was drilled with two threaded holes, both 9 mm in diameter and 20 

mm in depth, instead of the hole of the smallest sphere, d = 20mm which had two hole of 

5 mm in diameter and 9 mm in depth, for fastening the strings to the sphere via two 

screws, as shown in Figure 17. 

Figure 17: Schematic of threaded hole in the 65 mm sphere 

After the screws were tightly secured to the sphere, the holes were filled with 

LEPAGE (5 MINUTE EPOXY). A total of eight strings were used, four of which were 

fastened to the top hole and another four to the bottom one, as shown in Figure 18. The 

other end of the top strings were fastened firmly and laid symmetrically to the two side 

walls of the wind tunnel, with each making an angle of a ± 0.3° (= 40.4° ± 0.3°) with 

respect to the test section wall and p ± 0.3° (= 63.5° ± 0.3°) to the streamwise direction of 
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the wind tunnel. In the case of the bottom strings, the other ends were secured firmly to 

the floor of the wind tunnel making an angle of a' ± 0.3° (= 44.8° ± 0.3°) with respect to 

the test section wall and P' ± 0.3° (= 59.7° ± 0.3°) to the streamwise direction of the wind 

tunnel. 

Load cell \ 
Orificed perforated Plate 

Sphere 
-•Load cell ft* 

Pitot-static tube 

Q5 cm. 

Figurel8: Schematic of experiment layout 

3.3.2 WOODEN SPHERES 

Six different sizes of spheres (d = 20, 51, 65, 102, 140, 210 mm) were used in 

Experiment II to cover a Reynolds number range of 2.2xl04 to 8xl04, and to enable 

independent control of A/d from 0.04 to 3.25. All spheres were made of wood and 

polished and waxed. The mean surface roughness was 16.99 urn. The maximum relative 

roughness (mean surface roughness / sphere diameter) was less than 8.495xlO"4. Thus, the 

spheres can be considered to be mechanically and hydraulically close to smooth 

[Westerman & Sharcos, 1966, Hunt & Vaughan, 1996]; see Appendix E. 

The polymer strings via two screws were used to support the sphere from top and 

bottom. Two holes of 5 mm in diameter and 20 mm in depth were threaded into each 

sphere, to allow the fastening of the supporting strings via two screws. An exception to 

this is that the smallest sphere which had two holes of 5 mm in diameter and 9 mm in 

depth. The setup is similar to setup of PVC spheres in Experiment I, as shown in Figure 

18, except that in Experiment II the values of a , a', P and P' are not fixed. The calculation 

of these angles is explained in Appendix D. 
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3.4 DRAG MEASURMENT 

3.4.1 LOAD CELL SPECIFICATIONS 

To measure the drag force of the sphere, a model ELG-V-1N-L03M ENTRAN load 

cell as shown in Figure 19 was utilized to quantify the tensile force in the strings. It has a 

full scale reading of 1 N, and an over-range limit of 10 N. It was connected to a model 

MROJHHSG Electro-Numerics Amplifier which provides a 10 V excitation to the load 

cell. 

Figure 19: Load cell 

3.4.2 LOAD CELL SETUP 

For a supporting mechanism as portrayed in Figure 20, when the sphere is subjected 

to the wind, only the four upstream strings, two at the top and two at the bottom, would 

resist the drag force on the sphere. In a typical testing case with specified wind velocity 

and turbulence level, the load cell was attached to one of the top upstream strings and one 

of the bottom upstream strings to quantify the net load within these two strings. Due to 

the symmetric layout of the strings, the drag of the sphere was therefore determined by 

the summation of the horizontal streamwise components of the net loads in these two 

strings multiplied by two. The following equations were used to calculate the drag force 

from the collected load cell data; see Figure 21: 

Streamwise net component in one top string: 

FD _ Top = s i n ( a ) c o s (P ) x FtoP (18) 

Streamwise net component in one bottom string: 

FD Bottom = sin(a') cos(p') x Fb o t t o m (19) 

29 



Total drag force on the sphere: 

FD = 2FD_Top + 2 F D B o t t o m (20 

Orificed perforated plate 

Load cell 

Wind 

Load cell' 

15 cm 

Pitot-static tube 

Figure 20: Schematic of the load cell setup with the sphere supported by strings 

^ » x 

R 

/ \ P 

Dtop 

(a) Top strings 

*—>x 

D bottom 

bottom 

bottom 

(b) Bottom strings 

Figure 21: Geometric condition strings 
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3.4.3 LOAD CELL ADJUSTMENT 

The upper and lower limits of the load cell were adjusted every time before 

measurement to maximize the sensitivity. To adjust the load cell, the sphere was installed 

with the load cell connected to it. As illustrated in Figure 22, a sample pulley system was 

designed. A string went over the pulley, with one end attached to the sphere, and the other 

attached to a weight. The main procedures are: 

Load cell 

Wind 
< Weight ^ ^ 

^ Pulley /i 

i / 
i / 

Sphere 

\ 

/ Pitot- stati 
Load cell 

Figure 22: Load cell adjustment setup 

1) Setup "LOW IN" menu in amplifier by adjusting 0 (N) for the lowest force in sphere 

setup; 

2) Setup "HIGH IN" menu in amplifier by adjusting around 1 (N) for the highest range of 

the force in sphere setup 

In all calculations the original equation was used. But the following steps were done to 

merely check that the equation, F (N) = 0.615 Fioad ceil (mV) [StrainSense Ltd., 2007], is 

still valid. 

3) Connect different weights to system and register the values in millivoltage (at least for 

2 weights) (to check the calibration equation) 

4) Compare the calibration equation of the load cell with the found data curve which 

showed the relation between the net force in the string and the load cell data which was 

delivered in mili-voltage from the amplifier. 
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CHAPTER 4: RESULTS AND DISCUSSION 
Within the limit posted by the three available orificed perforated plates, the range of 

freestream velocity the wind tunnel can provide, and the length of the test section (over 

which the turbulence is nearly isotropic), attempt was made to pinpoint conditions (plate, 

wind speed, downstream location of the plate) which would provide at least three data 

points on the independent effect of Tu, Re, A and/or A/d. To compare with 'no 

turbulence' freestream flow scenario, measurements were also taken in the absence of the 

orificed perforated plate. It was found that in the smooth flow case, the freestream 

turbulence intensity was less than 0.3 %. 

The main source of uncertainty in the ID hot-wire measurement came from its 

calibration, which included three parts, i.e. the velocity measurement, the curve fitting 

and the digitized hot-wire anemometer output. The relative velocity uncertainty due 

primarily to Pitot-static tube in the calibration was 2.1%. The relative curve fitting 

uncertainty was 0.5%. The uncertainty in the digitized hot-wire anemometer output for 

the 12 bits A/D with an input range set as 0 to 10V was (0.5 x 10)/212 = 0.0012V [Dantec 

dynamics, 2000]. Thus, the average uncertainties in U and UrmS were estimated to be 

2.2% and 3%, respectively. For turbulence intensity, the average uncertainty was 3.7%, 

while that for integral length scale measurement was 6.5%. Details are explained in 

Appendix E. 

In the X-Probe hot-wire measurement, the calibration was done automatically. Thus, 

the errors were reduced; see Appendix E. Therefore, in the X-Probe measurement, the 

average uncertainties in U and Urms were estimated to be 1.1% and 1.7%, respectively. 

For turbulence intensity, the average uncertainty was 2%, while that for integral length 

scale measurement was 3.6%. 

In the second part of the experiments, drag force measurement was performed using 

a load cell to achieve drag coefficient on the three spheres. The uncertainty in the drag 

measurement came from four different sources, i.e. the sphere diameter measurement, the 

velocity measurement, the air density calculation, and the load cell measurement. The 

diameter of the sphere was measured with a dial-caliper. The caliper has a resolution of 

0.0254 mm and an accuracy of ±0.0127 mm. On the other hand, repeated measurements 
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showed a repeatability uncertainty of ±0.8 mm. Thus, the total uncertainty of sphere 

diameter was 1.8%. The uncertainty in the mean velocity measurement was 2.2% and 

1.1% in Experiment I and Experiment II, respectively. The uncertainty in the calculation 

of the air density was negligible in comparison with others. Finally, since the drag 

coefficient Co was calculated as C Q = F D / 0.5pU \7td / 4 j , the maximum and nominal 

uncertainties of drag coefficient were almost 10.5% and 7.8% in this study. 

4.1 CHARACTERISTICS OF FLOW DOWNSTREAM OF THE ORIFICED 

PERFORATED PLATES 

Flow velocity was measured by ID and 2D hot-wires from 10D to 50D downstream 

of the orificed perforated plates and from 0.25 m to 2.5 m downstream the inlet of the 

wind tunnel for the 'smooth flow' case in Experiments I and II. Root mean square 

velocity, relative turbulence intensity, integral length scale and/or relative integral length 

scale were deduced from hot-wire data via the equations given in Section 3 with the help 

of the appropriate MATLAB programs (Appendix C). 

4.1.1 ROOT MEAN SQUARE VELOCITY AND RELATIVE TURBULENCE 

INTENSITY 

Figure 23 shows the variation of the rms velocity along wind tunnel at different 

mean velocities in a center point of the test section at different distance of inlet of the 

wind tunnel. It is clear that the rms velocity decreases with the increase of downstream 

distance from the orificed perforated plate due to the decay in flow turbulence. In ID hot­

wire experiment with manual calibration system, the maximum and average uncertainties 

in Urms are 3.7% and 3%, respectively. As shown in Appendix F, the results of X-probe 

confirm the same variation of the rms velocity along wind tunnel. In 2D hot-wire 

experiment with automatic Dantec Model streamline 90H02 hot-wire calibration system, 

the maximum and average uncertainties in ums are 2% and 1.7%, respectively; see 

Appendix E. Higher uncertainty is for smaller distance from the hotwire in all Reynolds 

numbers which are about maximum uncertainty shown in one point as an example. 

Figure 24 shows the turbulence intensity along wind tunnel at different mean 

velocities in a center point of the test section at different distance of inlet of the wind 
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tunnel. By comparing the plots in Figure 24, the effect of downstream location on flow 

turbulence intensity can be observed to be similar to rms velocity changes. In ID hot-wire 

experiment with manual calibration system, the maximum and average uncertainties in Tu 

are 4.3% and 3.7%, respectively. Also, the results of X-probe shown in Appendix F give 

the same conclusion about the changes of turbulence intensity along wind tunnel at 

different mean velocities. In 2D hot-wire experiment with automatic calibration system, 

the maximum and average uncertainties in Tu are 2.4% and 2%, respectively; see 

Appendix E. 

Another observation is that the difference in the magnitude of rms velocity (and 

also turbulence intensity) between the 10D and 20D downstream locations is much larger 

as compared to these between the 30D and 50D. This can likely be explained by the 

effects of the exponential decay law, according to which the turbulence dies down 

exponentially with the distance traveled. 

As shown in Figure 23, at higher mean velocity, the effective rms velocity is higher. 

This is because that the energy dissipation rate is much higher when closer to plates as 

compared to those farther downstream, which agrees with the exponential decay law. 

Figure 24 shows nearly fixed values for the relative turbulence intensity except for Figure 

24(a) data. In Figure 24(a), the relative turbulence intensity has decreased slightly by 

increasing the mean velocity. This may be due to increase of average and root mean 

square velocity which increase the decay rate of u , ^ / U. The X-probe results concur 

with all the above explanation, too (Appendix F). 
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4.1.2 INTEGRAL LENGTH SCALE 

Integral length scale represents the scale of the energy containing eddies. The 

magnitude of integral length scale is largely dependent on the dimensions of the size of 

the holes and the spacing between them. In this study, the three orificed perforated plates 

described in Section 3.1 have the same solidity ratio by choosing suitable number of holes 

in each plate and the spacing between them have been carefully chosen to ensure that 

quasi-isotropic turbulence is generated [Liu et al., 2007]. The integral length scales 

corresponding to turbulent flow generated by different plates at different mean velocities 

are shown in Figure 25. Figure 25 shows that integral length scale is higher for larger 

mean velocity. Also, A is increased with increasing x/D as expected. In ID hot-wire 

experiment with manual calibration system, the maximum and average uncertainties of 

the integral length scale are estimated to be approximately 7.8% and 6.5%. The results of 

X-probe measurement in Appendix F show the similar results, too. And, in 2D hot-wire 

experiment with automatic calibration system, the maximum and average uncertainties in 

A are 4.2% and 3.6%, respectively; see Appendix E. 

37 



180 

160 

140 

120 

100 

80 

60 

40 H 

20 

0 
0 10 20 30 

x/D 
(a) Plate D = 25 mm 

40 50 

Us3.3m/S 

Us 5.6 m/s 

U~8.1m/5 

*— Us 10.4 m/s 

* -U~12.2m/s 

60 

H- w-

10 

10 

20 30 40 
x/D 

(b) Plate D = 37.5 m m 

20 3D 40 
x/D 

(c) Plate D = 50 m m 

50 

50 

U*3.3m/S 

• U * 5.5 m/s 

U~ 7.9 m/s 

Us 10.2 m/s 

U~ 12.0 m/s 

60 

-«-U«3.3m/s 

- a - U s 5.5 m/S 
- . i - U s 7.9 m/s 

- * - U s i o . i m/s 
— U »11.9 m/s 

Figure 25: Variation of integral length scale with respect to (x/D) in ID hot-wire 

measurement: (a) with perforated plate D-25 (b) with perforated plate D-

37.5 and (c) with perforated plate D-50 

38 



4.2 DRAG RESULTS 

To find out whether the effect of blockage is negligible or not, in the following 

sections, blockage effect on the drag coefficient of the sphere in "smooth flow" is studied. 

Then, the effects of integral length scale, relative integral length scale, turbulence 

intensity and Reynolds number on the drag coefficient of a sphere are investigated. 

4.2.1 BLOCKAGE EFFECT ON DRAG COEFFICIENT 

In wind tunnel tests, blockage ratio is defined as the ratio between the cross-

sectional area of a sphere and that of the test section. To ensure that blockage ratio is not 

an issue in Experiment I, Co of PVC spheres is plotted versus blockage ratio in Figure 26. 

Also, to make the blockage effect clear in Experiment II, CD of wooden spheres is plotted 

versus blockage ratio in Figure 27. The sample data points from Phoreman et al. [2007] 

were given in Figure 8. Phoreman et al. [2007] found that once the blockage ratio was 

beyond 0.02, for Reynolds number less than the critical value (Re < Rec r~ 3xl05), the 

drag coefficient of the sphere was increased, and for Re£Recr, the drag coefficient of the 

sphere was decreased; see Figure 8. As shown in Figure 26, the maximum blockage ratio 

of 0.015 encountered in Experiment I has a negligible influence on the CD value. But, as 

shown in Figure 27, in Experiment II, the blockage ratio is changed from 0.0005 to 

0.0615. In "smooth flow" situation, similar to Phoreman et al. [2007] results, for 

Re < Re c r , the drag coefficient of the sphere was increased once the blockage ratio was 

beyond 0.02. The effect of blockage, nevertheless, is small even at a blockage ratio of 

0.027. This is especially true at higher Reynolds numbers. The increase of CD in lower 

Reynolds number is clear for blockage ratio of 0.0615. In this study, the couple of data 

points with a blockage ratio of 0.0615 are only for in Re = 8x10 in which the blockage 

ratio of 0.0615 has a relatively small effect. 
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Figure 27: Blockage effect on the drag coefficient of wooden spheres in "smooth flow" 

4.2.2 DRAG OF SPHERE UNDER "SMOOTH FLOW" CONDITION (Tu < 0.3%) 

In the absence of the orificed perforated plate, the turbulence intensity Tu in the 

wind tunnel was measured to be less than 0.3%. Thus, the measured drag is expected to 

be close to the standard data in Figure 1. Figures 26 and 27 portray a comparison between 

the Co-Re relation achieved in this study and the standard curves. The values of drag 
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coefficients obtained in this study are within the estimated nominal 7.8%~7.6% 

uncertainty ranges in Experiments I and II. 
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Figure 28: Drag coefficient versus Reynolds number in the absence of orificed perforated 

plate in comparison with other standard curves, (Curve (1): Schlichting [1979] and Lee 

[1987], Curve (2): Lapple and Shepherd, [1940] and Clift and Gauvin [1970 & 1971], 

Curve (3): Achenbach [1972]) 
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4.2.3 EFFECT OF TURBULENCE INTENSITY 

When the boundary layer is changed from laminar to turbulent in the critical 

Reynolds number, the wake size becomes narrower. Previous results [Tyagi et al., 2006] 

show that at higher turbulence level, the size of the sphere wake becomes smaller at Re < 

3.5xl05; recall that Recr - 3.5xl05 for smooth flow across a sphere [Torobin & Gauvin, 

1959]. This appears to indicate that the critical Reynolds number is decreased for flow 

with higher turbulence intensity as discussed in previous subsection. In other words, 

higher turbulence intensity would decrease the critical Reynolds number and as a result, a 

significant drop in the drag coefficient of the sphere occurs at lower Reynolds number 

[Dryden et al., 1937; Bacon & Reid, 1924]. 

Figures 28 and 29 show the impact of turbulence intensity on the sphere drag while 

holding the relative integral length scale A/d fixed. The small extent on the y axis 

corresponds to the 'no turbulence' scenario obtained in the absence of an orificed 

perforated plate. 

As shown in Figure 30, at Re ~ 2.2x104, increasing the turbulence intensity only 

leads to marginal decrease in the drag coefficient. A typical case with (A/d) ~ 0.6-0.9 is 

shown in Figure 30; at a higher Reynolds number of 6.8xl04, the turbulence intensity has 

a dramatically larger effect on the drag coefficient. In Re = 8xl04 and A/d ~ 1, ; the 

turbulence intensity effective on the drag coefficient decreases. This phenomenon will be 

further considered in Section 4.2.4. Larger still is the effect of Tu in decreasing CD at Re 

~ 8xl04 as portrayed in Figure 30. As shown in Figure 30, the drag coefficient drops 

below 0.1 when the turbulence intensity is 10%, for the relative integral length scale 

around 0.9. 
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Figure 30: Impact of turbulence intensity on PVC sphere drag 

As shown in Figure 31(a), at Re ~ 3.7x104, increasing the turbulence intensity only 

leads to marginal decrease in the drag coefficient. At higher Reynolds numbers, Figures 

29(b), (c), and (d), the turbulence intensity has a dramatically larger effect on the drag 

coefficient, especially for (A/d) « 0.65. This phenomenon will be discussed in Section 

4.2.4. Increasing the relative integral length scale above 0.65 can decrease the turbulence 

intensity effect on the drag coefficient; see Figure 31 for (A/d) ~ 1.2. Larger still is the 

effect of Tu in decreasing CD at Re ~ 8xl04 as portrayed in Figure 31. As shown in Figure 

31(d), the drag coefficient drops below 0.1 when the turbulence intensity is around 6.3%, 

for the relative integral length scale 0.65. It is worth stressing that variation of the relative 

integral length scale, (A/d), to less and more than 0.65 achievable from the range of A/d 

in this study, appears to have a relatively more and lesser influence on lessening the 

reduction of the drag coefficient, CD, by the turbulence intensity, Tu. 
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4.2.4 EFFECT OF RELATIVE INTEGRAL LENGTH SCALE 

In Experiment I with PVC spheres, Figure 32 shows the impact of relative integral 

length scale A/d on the sphere drag while holding the turbulence intensity approximately 

fixed. In general, for all the relative integral length scale and the three turbulence intensity 

cases studied, the drag coefficient is observed to decrease with the increase of Reynolds 

number, which is in contrary to the 'no turbulence' case in Figure 28 (a). In each plot in 

Figure 32, between any two respective Reynolds numbers, in any specific relative integral 

length scale, there is higher drag coefficient for the lower Reynolds number. Also, it can 

be observed that particularly for Re > 5.3 xlO4, by increasing the relative integral length 

scale to range of 0.8-1.5, the drag coefficient of the sphere generally decreases and 

beyond that the drag coefficient of the sphere generally increases. 

The increase of Co with increasing A/d to more than 1-1.3, becomes significantly 

more obvious at higher turbulence intensity and Reynolds numbers. For example, at Re = 

6.8xl04 and Tu = 6.3%, the drag coefficient increases more than 100%, from 0.13 to 0.28 

when the relative integral length scale is increased from 0.7 to 1.7; see Figure 32(c). But, 

as shown in Figures 30(a), (b) and (c), the decrease of CD with decreasing A/d up to 

around 0.8-1.5, is increased at lower turbulence intensity and Reynolds number. 

As Figure 32(a) shows, for A/d up to 0.8-1.5 in different Reynolds number, the 

decrease of drag coefficient is significant. For example, as can be seen, at Tu = 2.5% and 

Re - 5.3xl04, drag coefficient decreases from 0.46 to 0.35 with increasing A/d from 0.55 

to 0.75. But, by increasing Tu to 4% in Figure 32(b), the decrease of Co by increasing A/d 

to 0.75-1.3 is lessened and as shown in Figure 32(c), for Tu = 6.3%, it is completely 

marginal. 

If critical Reynolds number is defined as the Reynolds number at which the drag 

coefficient drops to around 0.1 [Torobin & Gauvin, 1959], then, we see, for example, this 

occurs in Figure 32(c) for Re = 8xl04 and (A/d) - 1. Thus, under this set of physical 

combination, Recr is reduced from Recr = 3.5x10 in standard situation to approximately 

8xl04. The details about the size of the sphere used in results shown in Figure 32 are 

explained in Appendix G. 
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In Experiment II with wooden spheres, Figure 33 show the impact of relative 

integral length scale A/d on the sphere drag while holding the turbulence intensity fixed. 

In general, similar to Figure 32, for all the relative integral length scale and the three 

turbulence intensity cases studied, the drag coefficient is observed to decrease with the 

increase of Reynolds number. In each plot in Figure 33, in any specific relative integral 

length scale, there is higher drag coefficient for the lower turbulence intensity. Also, it 

can be observed that by increasing the relative integral length scale to around A/d ~ 0.65, 

the drag coefficient of the sphere generally decreases but for beyond that the drag 

coefficient of the sphere increases, for any Reynolds number particularly Re > 5.3x104. 

In each plot of Figure 33, the magnitude of drag coefficient with changes of the 

integral length is not the same for different Reynolds numbers. For Re < 5.3xlO4, this 

change rate is marginal. At higher Reynolds numbers, the decrease and subsequent 

increase of Co with increasing A/d becomes more obvious. At Re = 8xl04, for Tu ~ 6.3%, 

Figure 33 (e), for example, the drag coefficient decreases from 0.3 to 0.1 when the 

relative integral length scale is increased from 0.04 to 0.62. Also, as shown in Figure 33 

(e), the drag coefficient increases more than 70%, from 0.1 to 0.17 when the relative 

integral length scale is increased from 0.62 to 1.22. 

As shown in Figure 33(e) for Tu = 6.3% and A/d ~ 0.62, the drag coefficient 

reduces to less than 0.1 at Re = 8xl04. Thus, as defined by Torobin and Gauvin [1959], if 

critical Reynolds number is the Reynolds number at which the drag coefficient drops to 

around 0.1, in this experiment, Recr reduced from Recr = 3.5x104 in standard situation to 

Recr~ 8x10 . The details about which sphere size used in results shown in Figure 33 are 

explained in Appendix G. 

48 



0.6 

0 .5 -

0.4 -

C D 0.3 

0.2 

0.1 

-Tu=6.3% 

-Tu=4% 

-Tu=2.5% 

0.5 1.5 2 

A/d 
2.5 

(a) Re = 2.2x104 

0.6 

0.5 

0.4 

C D 0.3 

0.2 

0.1 

0.6 

0,5 

0.4 

^»-Tu= 
- B - T U = 

-e-Tu= 

=6.3% 
=4% 
=2.5% 

0.2 0.4 O.B 0.8 

A/d 
(b)Re = 3.7xl04 

0.3 

0.2 

0.1 

0 

-Tu=6.3% 

-Tu=4% 

-Tu=2.5% 

0.2 0.4 0.6 y y j O.B 

(c)Re = 5.3xl04 

CD 

0.5 
0.45 
0.4 

0.35 
0.3 -

0.25 
0.2 -

0.15-
0.1 

0.05 -
0 

0.2 0.4 0.6 0.8 

A/d 
(d) Re = 6.8x104 

0.5 
0.45 
0.4 -

0.35 
0.3 

0.25 
0.2 

0.15 
0.1 -I 

0.05 
0 

0 0.2 0.4 0.6 0.8 

A/d 
(e)Re = 8xl04 

3.5 

1.2 1.4 

1.2 1.4 

1.2 

1.4 

Figure 33: Impact of relative integral length scale on wooden sphere drag when (a) Tu 

2.5% (b) Tu = 4% (c) Tu = 6.3% 

49 



4.2.5 EFFECT OF INTEGRAL LENGTH SCALE 

In considering A/d effects on Co, the effect of sphere size is eliminated. And, there 

should be no difference between the variation of Co of the PVC sphere in different A/d 

and A. To confirm that the differences in the boundary layer thickness and wake size due 

to different sphere size do not affect Co of the PVC spheres, all measurements were done 

for CD-A in fixed turbulence intensities for different Reynolds numbers; see Figure 34. 

Figure 34 shows the impact of integral length scale on the drag of PVC spheres 

while holding the turbulence intensity fixed. As can be observed from the figure, the 

effect of integral length scale on drag coefficient is similar to that of the relative integral 

length scale. 

Increasing the integral length scale up to around 65 mm (A/d^l) decreases the drag 

coefficient of the sphere and for A £ 65 mm (A/d £1) increases Co- For example, in 

Figure 34(c), a turbulence intensity of 6.3% is able to advance Recr from 3.5xl05 in 

"smooth flow" case to 8xl04, provided A ~ 65 mm. The details about which sphere size 

used to get data of Figure 34 are given in Appendix G. 
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4.2.6 EFFECT OF REYNOLDS NUMBER 

As illustrated in Figure 28, the variation of drag coefficient of a sphere versus 

Reynolds number in the standard curve over the range lxlO4 < Re < 3.5xlO5 is nearly 

constant. At the critical Reynolds number, Recr = 3.5x105, CD drops suddenly as a laminar 

boundary layer changes to a turbulent one, in the "smooth flow" case. Previous studies 

[Ahlborn, 1931; Brownlee, 1960; Torobin & Gauvin, 1960; Clamen & Gauvin, 1969; 

Bearman, 1971; Becker & Brown, 1974; Anderson, 1975; Anderson & Uhlherr, 1977] 

have shown that the value of the critical Reynolds number can be reduced with increasing 

freestream turbulence. It is known that higher turbulent level always leads to a lower 

critical Reynolds number [Dryden et al., 1937; Torobin & Gauvin, 1960; Clamen & 

Gauvin, 1969; Uhlherr & Sinclair, 1970]. 

Figure 35 portrays the Co-Re relationships with fixed (A/d) and Tu for Experiment I 

(PVC spheres). The data correspond to a relative integral length scale of 0.7 (roughly 

medium value over the 0.1 £(A/d) ̂ 2.6 range considered in this study) clearly depicts that 

the decrease in the drag coefficient, with increasing Reynolds number, becomes 

progressively more significant as the turbulence intensity is augmented. Figure 36 shows 

the Co-Re relationships with fixed (A/d) and Tu for Experiment II (wooden spheres). The 

data correspond to different relative integral length scales, 0.21-1.35. Similar to Figure 

35, Figure 36 shows the decrease in the drag coefficient, with increasing Reynolds 

number. This decrease becomes progressively more significant at (A/d) ~ 0.65 and higher 

turbulence intensity. 
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Figure 35: Impact of Reynolds number on PVC sphere drag 
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CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS 

The effects of turbulence intensity and integral length scale on the drag coefficient 

of a sphere were experimentally investigated in a closed circuit wind tunnel. The 

Reynolds number, Re = Ud/v, was varied from 2.2xl04to 8 x l 0 4 . The proper 

combination of orifice perforated plate hole diameter, sphere size, and sphere location 

enabled the independent alterations of turbulence intensity and relative integral length 

scale (A/d) for Experiment I, from 1.9% to 10% and from 0.1 to 2.6, respectively, and for 

Experiment II, from 2.5% to 6.3% and from 0.04 to 3.25, respectively at each studied 

Reynolds number. 

5.1 CONCLUSIONS 

In both experiments, current results have confirmed that the drag coefficient is 

decreased with increasing turbulence intensity, and the value of Recr at which Co drops 

below 0.1 can be advanced when the freestream turbulence is intense. More interestingly, 

the unique role of the relative integral length scale is revealed. As showed in Experiment 

I, the drag can be reduced significantly by decreasing the integral length to around unity. 

This is particularly true when the level of turbulence is high. Also, as conclusion of the 

results of Experiment II, the drag coefficient of a sphere lessened by reducing the relative 

integral length scale until around 0.65 and then, increased by increasing the relative 

integral length scale above 0.65. In other words, increasing A/d up to 0.65 increases the 

effect of Tu on CD and for A/d above 0.65, decreases this effect. 

5.2 RECOMMENDATIONS FOR FUTURE WORKS 

The sphere wake measurements by X-Probe, statistical analysis (like ANOVA) on 

various parameters on CD and using more than one sphere and repeating the same 

experiments can be appropriate projects in future. 
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APPENDIX A: SELECTING SAMPLING FREQUENCY AND 

NUMBER 

The minimum required sampling number N associated with sampling frequency fs is 

determined by examining the convergence of the flow parameters, i.e. the time-averaged 

velocity (U), the turbulence fluctuation velocities (u) and the integral length scale (A), as 

a function of sampling number. Using three different perforated plates generates three 

turbulent flow conditions in the experiment. The minimum downstream distance from the 

plates is 10D within which range the flow is much more turbulent [Liu et al., 2007]. Thus, 

the time-averaged velocity (U), the turbulence fluctuation velocity (u) and the integral 

length scale (A) are found for different sampling numbers covering the range of 900-107, 

with fs = 80 kHz at 10D downstream of the orificed perforated plate. MATLAB Programs 

are developed for this purpose, with code presented in Appendix C. 

Figures A.l, A.2 and A.3 show the variations of the time-average flow velocity, 

turbulent velocity and integral length scale versus sampling number for ID hot-wire 

measurement. Results show that once the sampling number is larger than 7xl06, sufficient 

accuracy can be achieved. A sampling number of 107 was used for the current set of hot­

wire measurements. 

Figures A.4, A.5 and A.6 show the variations of the time-average flow velocity, 

turbulent velocity and integral length scale versus sampling number for X-probe hot-wire 

measurement. 

64 



12.4 

12.3 -

12.2 -

^ 12.1 -

£ 12 

*11.9 

11.8 

11.7 

0 

12 -i 
11.95 -
11.9 -
11.85-

~ 11-8 -
-11.75-
& 11.7 -
£> 11.65 -

11.6 -
11.55 -
11.5 -
11.45-

0 

!!=> 

12 

11.98 -\ 

11.96 

11.94 H 

11.92 

11.9-1 

11.88 

11.86 

11.84 

0 

104 5xl04 6xl05 106 1.8xl06 3xl06 5xl06 7xl06 9xl06 1.2xlQ7 

Sampling Number 

(a) Plate A (D = 25 mm) 

X * * * X X 

-i r-

104 5xl04 6xl05 106 1.8xl06 3xl06 5xl06 7xl06 9xl06 1.2xl07 

Sampling Number 

(b) Plate B (D = 37.5 mm) 

- x — « — x — x x — x — * — * • — - x 

- l r -1 1 1 r-

104 5xl04 6xl05 10s 1.8x10s 3x10s 5xl06 7xl06 9xl06 1.2xl07 

Sampling Number 

(c) Plate C (D = 50 mm) 

Figure A.l: Minimum required sampling number for U at U ~ 12 m/s, fs = 80 kHz (ID-

Probe). 

65 



2 
1.8 
1.6 
1.4 

a 1 

Y0.8 
0.6 
0.4 
0.2 

1.6 
1.4 
1.2 

£ 1 
I 0.8 
3 0.6 

0.4-
0.2-

0 

1 
0.9 
0.8 

^ 0 . 7 
^ 0 . 6 
£o.5-
3 0.4 -

0.3 -
0.2-
0.1 -

0 

-X X X X X X X X K 

104 5x l0 4 6x l0 5 106 1.8xl06 3xl0 6 5x l0 6 7 x l 0 6 9x l0 6 1.2xl07 

Sampling Number 

(a) Plate A (D = 25 mm) 

- * x M * * * X K X X 

104 5xl04 6xl05 10s 1.8xl06 3xl06 5xl06 7xl0 6 9xl06 1.2xl07 

Sampling Number 

(b) Plate B (D = 37.5 mm) 

- - X M « -* x •—* * * K * M X X « K X 

0 104 5x l0 4 6x l0 5 106 l.SxlO6 3xl06 5x l0 6 7x10 s 9x l0 6 1.2xl07 

Sampling Number 

(c) Plate C (D = 50 mm) 

Figure A.2: Minimum required sampling number for u at U ~ 12 m/s, fs = 80 kHz (ID-

Probe). 

66 



70 

60 

?40 
s 

30 

20 

10 

0 

< 

120 

100 

?« 
£60 
< 40 -

20 -

160 
140 
120 

?100 
£ 80 
< 60 

40 
20 

X-—K—X-—X 

104 5xl04 6xl05 106 l.SxlO6 3xl065xl06 7xl06 9xl06 1.2xl07 

Sampling Number 

(a) Plate A (D = 25 mm) 

x-—x—x—x—x—x 

0 104 5x10 l.SxlO6 3xl065xl06 6xlOJ 10° 
Sampling Number 

(b) Plate B (D = 37.5 mm) 

7x10° 9xl06 1.2xl07 

*—*—x—x—x-—x-—x—x—x—x 

1 1 1 1 1 1 1 1 1 1 

0 104 5xl04 6xl05 106 1.8x10° 3x10° 5x10° 7xl06 9xl06 1.2xl07 

Sampling Number 

(c) Plate C (D = 50 mm) 

Figure A.3: Minimum required sampling number for A at U ~ 12 m/s, fs = 80 kHz (ID-

Probe). 

67 



12.5 
12.4 
12.3 
12.2 

^12.1 

'a 12 

^ 11.8 
11.7 
11.6 
11.5 
11.4 

12.3-1 

12.2-
12.1 

^ 12 

a 1 1 - 9 

^11.8 
11.7 
11.6 
11.5 
11.4 

\0 

12.4 
12.3 
12.2 
12.1 

* 12 -I 
11.9 
11.8 
11.7 
11.6 
11.5 
11.4 

0 10' 

- X — X — X — X 

5xlOq 1.8xl06 3xl06 5x10 0xlOJ 10° 
Sampling Number 

(a)PlateA(D = 25mm) 

6 7xl06 9xl06 1.2xl07 

- X — X — X — X — X — X 

104 5xl04 6xl05 106 l.SxlO6 3xl065xl06 7xl06 9xl06 1.2xl07 

Sampling Number 

(b)Plate B (D = 37.5 mm) 

-X—X X — X — X — X — X 

0 104 5xl04 6xl05 106 l.SxlO6 3xl065xl06 7xl06 PxlO6 1.2xl07 

Sampling Number 

(c) Plate C (D = 50 mm) 

Figure A.4: Minimum required sampling number for U at U ~ 12.1 m/s, fs = 80 kHz (X-

Probe). 

68 



1.6 i 

1.4 

1.2 

£ 0 . 8 
3O.6 

0.4 

0.2 
0 

1.6 
1.4 
1.2 

£ 1 " 
3,0.8 -
3 0.6 -

0.4 -
0.2 -

1.6 

1.4 
1.2 

3 1 -
Jo.8-
3 0.6 -

0.4 -

0.2 

-X-—K—X—X—^—X—*—X 

0 104 5x10* l.SxlO6 3xlOfS5xl06 5xlOJ 10u 

Sampling Number 

(a) Plate A (D = 25 mm) 

7xl06 9xl06 1.2xl07 

**—*—*—*—*—x—*—x—x 

0 104 5xl04 6xl05 106 1.8xl06 3xl065xl06 7*106 9x\Q6 1.2xl07 

Sampling Number 

(b) Plate B (D = 37.5 mm) 

-K K X K X X K X X 

0 104 5xl04 6xl05 106 l.SxlO6 3xl065xl06 7xl06 PxlO6 1.2xl07 

Sampling Number 

(c) Plate C (D = 50 mm) 

Figure A.5: Minimum required sampling number for u at U ~ 12.1 m/s, fs = 80 kHz (X-

Probe). 

69 



< 

60 n 

50 

40 

30 

20 

10 

0 

* — X — x — x — X 

_, j j ! j p. 

104 5xl04 6xl05 106 l.SxlO6 3xl065xl06 7xl06 9xl06 12xl07 

Sampling Number 

(a) Plate A (D = 25 mm) 

100 -i 
90 -
80 -

S 6 0 -
£ 5 0 
^ 4 0 -I 
^ 3 0 

20 
10 

-X X X X X 

104 5xl04 6xl05 106 1.8xl06 3xl065xl06 7xl06 9X106 1.2xl07 

Sampling Number 

(b) Plate B (D = 37.5 mm) 

160-j 
140-
120-

^100 
£ 8 0 
< 60 

40 
20-I 

* -—x—x—x—x—x—x 

-i r ~i r 

,5 i n 6 
~i 1 1 1 1 

0 104 5xl04 fixlO5 106 l.gxlO6 3xl065xl06 7xl06 9xl06 1.2xl07 

Sampling Number 

(c) Plate C (D = 50 mm) 

Figure A.6: Minimum required sampling number for A at U ~ 12.1 m/s, fs = 80 kHz (X-

Probe). 

70 



REFERENCES 

Liu, R., Ting, D. S-K., Checkel, M. D., 2007, "Constant Reynolds number turbulence 

downstream of an orificed perforated plate," Experimental Thermal and Fluid Science, v 

31, pp. 897-908. 

71 



APPENDIX B: ANALYSIS OF HOT-WIRE DATA 

B.1 GENERAL EQUATIONS AND EXPLANATIONS FOR THE ANALYSIS OF 

HOT-WIRE DATA: 

A hot-wire system is used for measuring flow velocity. The mean and turbulent 

velocities can be found from achieved voltage data by a MATLAB program as presented 

in Appendix C. Then, all other turbulence parameters, such as turbulence intensity and 

integral length scale, can be calculated based on them. The calculated data depends on 

two main parameters, the flow velocity V and flow direction represented by the yaw angle 

a. The yaw angle is an angle between the flow direction and the perpendicular direction 

of the wire. 

To explain how the mean and turbulent flow velocities are determined from the hot­

wire data (voltage), the geometrical relation between the direction of the wire and flow 

velocity are shown in Figure B.l. Denote the flow velocity as V, the velocity 

components in the directions along and perpendicular to the hot-wire as UT and UN, 

respectively; see Figure B.l (a). Also, the flow can be mentioned and considered by its 

components in the x, y directions as U and V, which are the most familiar directions; see 

Figure B.l(b). As shown in the Figure B.l(b), the angle between V and x direction is 

defined as 9. 
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It is clear from the above explanation, the voltage data achieved by hot-wire is a 

function of the flow velocity and flow direction when the density of flow, p, is a constant. 

E = f(V,a) (B.l) 

To make considering the voltage data easier, it will be considered as a function of 

effective velocity Ve where the effective velocity, Ve, is defined by 

Ve=f(V,cc) (B.2) 

The power law defines the relation between the voltage data and the effective velocity as 

follows: 

E 2 = A + BVe
n (B.3) 

where A, B and n will be determined from the calibration data. 

The effective velocity can be defined based on the normal and tangential 

components of the flow velocity by 

V e
2 = U ^ + k 2 U ^ (B.4) 

Where U N is the normal component of V, UT is the tangential component of V, k is a 

coefficient which is a function of yaw angle a. 

Bradshaw [1971] and Bruun [1972] did several experiments to find the relation 

between k and a. They defined 

k = f (a) (B.5) 

where f(a) = cosa e , a e is the effective yaw angle. In fact, each wire in a hot-wire has a 

particular yaw angle a . All of their effects can be considered as the effect of one 

'effective yaw angle', a e . In the case of ID hot-wire used in Experiment I, there is only 

one wire. Thus, a e equals to a . But, for the 2D hot-wire used in Experiment II, there are 

two wires and thus a specific relation between a e and a . 

On the other hand, Bradshaw [1971] defined the following equation to find the 

effective angle, 

cos 0 - EQ = tan a e (sin 9) (B.6) 

There is only one problem in the above process. In the static calibration, k will be 

found which can give a positive or negative k, but to recognize when k is the negative, a 
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dynamic calibration is done which gives the ratio of voltage to velocity (— or —) and it 

gives k. 

B.2 CALIBRATION OF HOT-WIRE 

B.2.1 ID-PROBE: 

1- To calibrate the ID hot-wire probe, the probe is installed near the exit of a jet. The 

hot-wire system gives the voltage data at 15 different velocities. These data will 

be converted to original values of voltages by considering the input gain and 

offset values on them. Then, a curve relates the original voltage value and the 

corresponding velocity can be plotted. An equation is achieved from the data 

which all velocities give the voltages equal to original one by an error less than 

1%. Also, the system gives 5 coefficients, Co, Ci, C2, C3, and Q to find the correct 

voltage values, 

E = C 0 + C 1 E 1 + C 2 E 2 + C 3 E 3 + C 4 E 4 (B.7) 

2- For ID-Probe, no calibration for yaw angle is required. It is always constant and 

equal to 0°. Equation B.6 shows the maximum value for k (= cosa e = cos a ) is 

one. Thus, a should be zero. 

B.2.2 X-PROBE 

1- Calibrating the 2D hot-wire probe was with automatic system. The probe is 

installed near the exit of a jet. For each wire, the hot-wire system gives the voltage 

data at 15 different velocities adjusted automatically by the calibrator. The 

temperature effect and gain and offset values are adjusted automatically, too. 

Then, a curve relates the original voltage value and the corresponding velocity can 

be plotted. An equation is achieved which all velocities give the voltages equal to 

original one by an error less than 1%. In Experiment II, this error was less than 

0.4%. The system gives 5 coefficients to find the correct voltage values for each 

wire, C01, Cn, C21, C31, and C41 for the first wire and C02, C12, C22, C32, and C42 

for the second one. 
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El =C0 1 +C n Ej +C21Ej +C31Ej +C4JEJ (B.8) 

E2 =C 0 2+C 1 2 E 2 +C 2 2 E 2 +C32E2 +C4 2E2 (B.9) 

2- For yaw angle calibration, the process for wire 1 and wire 2 are the same. For a 

particular velocity which was selected as 8 m/s in the current calibration, the 

voltage data will be given by hot-wire system in 11 different angles from -20° to 

+20°. The effects of temperature and the gain and offset values are automatically 

considered by the automatic system. Correction coefficients found in the 

calibration with the original values of voltage give the correct values of voltages 

in each angle, 

E\ = C01 + CnE'i + C21E'i2 + C31E'i3 + C4lE'i4 (B.10) 

E'2 = C02 + C12E'2 + C2 2E'2
2 + C32E'23 + C4 2E'2

4 (B.l 1) 

Then, the relative values of E i/U and E 2/U are calculated. 

Finally, the slope of the plots of [cos(0) - (E i/U)] and [cos(9) - (E 2/U)] versus sin(9) 

gives the effective yaw angle of the two wires. 

B.3 ANALYSIS OF HOT-WIRE: 

B.3.1 ID-PROBE DATA: 

To find the time averaged velocity, root mean square velocity and other turbulence 

parameters such as turbulence intensity, integral length scale, etc, a MATLAB program is 

developed to process the collected data as presented in Appendix C. 

a) Temperature of hot-wire: 

During the calibration, the ambient temperature of the lab, Ta, will be registered. 

The experiment should be done right after calibration at the same temperature. The 

uncertainties included the error of the temperature variation during the experiment. 

The ambient temperature of the lab has important effect on the temperature of the 

hot-wire, which would affect the current and resistant of the wire. The following equation 

is proposed by Laufer [1954] to find the hot-wire temperature: 

xw =x0[ l + a 0 ( T w - T 0 ) + p 0 (T w -T 0 ) 2 ] (B.12) 
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where Tw is the temperature of the wire, To is the temperature of the wire when the 

ambient temperature is 0°C (To = Ta = 0°C), xw and x0are the resistant of wire per unit 

length and per unit cross-sectional area of the wire at temperature Tw and To, respectively, 

and a 0 and P0 are temperature coefficients at 0°C. 

The hot-wire anemometry book [Bruun, 1996] suggests to use the following 

equation to find x: 

R = — (B.13) 
Aw 

where R is the total resistant, 1 is the length of the wire, Aw is the cross-sectional area of 

the wire and x is the resistant of wire per unit length and per unit cross-sectional area of 

the wire. 

Also, Equation (B.12) can be simplified as follows without sacrificing too much 

accuracy: 

x w = x 0 [ l + a 0 (T w -T 0 ) ] (B.14) 

On the other hand, 

1/2 x 
R w = J -5Ldl (B.15) 

- 1 / 2 A
W 

where Rw is the total resistant at the wire temperature, Tw. 

By substituting Equation B.13 and B.14 into B.15, 

R w = R 0 [ l + a 0 ( T w - T 0 ) ] (B.16) 

where Rw and R0 are the total resistant Tw and To, respectively. 

But, in the manuals B.l [Bradshaw, 1971], these data are all corresponding to the 

temperature of 20°C. Thus, 

R w = R 2 0 [ l + a 2 0 (T w -T 2 0 ) ] (B.17) 

where 

a 2 o = ^ - a 0 (B.18) 
K 2 0 

In general situation, the temperature coefficient at the reference temperature, ccref, can be 

defined from Equation B.18 when the ambient temperature is Ta during the calibration: 
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R 20 

•-a 

By substituting Equations B.17 and B.18 into Equation B.19, the following relation for 

ocref can be found: 

" ^ = [l + a 2 0 ( T w - T 2 0 ) ] R a
a 2 0 ( B ' 2 0 ) 

On the other hand, the voltage achieved during the data acquisition should be 

corrected due temperature variations during the experiment. If the temperature is Ti at the 

beginning of the data acquisition and Tactuai when the data is registered, then, the corrected 

voltage can found by: 

volt_corrected = volt_actual*( (Tw - Tj) /(Tw - Tactual)).
A(0.5*( 1 +m)) B.21) 

[m = - 0.2 for Tactual > Tj and m = 0.2 for Tactual < Tj ] 

Tactual is achieved from the data and temperature probe setup. 

b ) Umean, Unns a n d T u 

Each instantaneous flow velocity U; is determined based on the corrected voltage 

Ec, and the coefficient Co, Ci, C2, C3 and C4 obtained from calibration: 

Ui = C0 + C!EC + C2E? + C3E^ + C4E 4
C (B.22) 

Then, the time averaged velocity U can be found from all the instantaneous velocity 

values. It gives the U m e a n , too. 

!i=l N - l \ ( i = i N - l 

The turbulence intensity is defined by 

Tu= U r m s x l00% (B.24) 
^mean 

c) Integral length scale: 

The instantaneous fluctuation velocity U; is defined by 

U i = ( U i - U ) (B.25) 
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where i is the numbering of sample, i = 1,2 N. 

Then, A is defined as 

A = 2>? (B-26) 
i 

And, B which shows the difference between two values of Uj for all (N-m) samples is 

defined by 

N-m 
B = 2 > i x u i + m ) (B.27) 

i=l 

From above equations, an autocorrelation is defined as, 

B 

<;. = >Lzin (B.28) 

N 

It is a coefficient to correct the period of time. If the autocorrelation is close to one, it 

shows more accurate measurement. 

The correct time in which sample ( i ) is gotten is (9 Atj). 

Thus; 

i=l 

where xA is the integral time scale, the period of time that all data is achieved. 

In the experiment, At j is a constant for i = 1 to N and it is equal to At. Thus, 

T A = ( £ ? i ) A t (B.30) 
i=l 

Integral length scale is the length that flow with velocity of U passing during the integral 

time scale x^, i.e. 

A = U-xA (B.31) 
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B.3.2 X-PROBE DATA: 

a) Temperature of hot-wire: 

To calibrate the X-probe, automatic calibrator was used and the change of 

temperature was considered automatically. All other explanations are similar as these for 

ID-probe but, for 2 wires. 

b)U 
meanj urms ^ d T u 

Instantaneous velocities, Uj and Vj, are found using the voltcorrectedl and 

volt_corrected2 data and the coefficients achieved from calibration, Coi, Cn, C21, C31 and 

C41 and C02, C12, C22, C32 and C42 and yaw angles a t and a 2 : 

Ueff = C0i + C u E l c + C21Elc + C31Elc + C41Elc (B.32) 

Veff = C 0 2 + C 1 2 E 2 c + C 2 2 E 2 c + C 3 2 E 2 c + C 4 2 E 2 c ( B . 3 3 ) 

tan(P) = (Ueff - Veff )/[Ueff x tan(a2) + Veff x t a n ^ ) ] (B.34) 

Ui = (Ueff - Veff)/[2 + tan(P)x(tan(a1)-tan(a2))] (B.35) 

Vi=UiXtan(p) (B.36) 

All the instantaneous velocity values can be found and the time averaged velocity, U and 

V of them can be calculated, too. 

For each value, the difference between U; and U is: 

D = V(Ui -U) 2 (B.37) 

The difference between V;and V is: 

D ' ^ C V j - V ) 2 (B.38) 

The average of all data for D and D' for all samples gives the Urms and Vrms. 

Previous data with following equation gives the turbulence intensity: 

Tu = U r m s x 100% (B.24) 
U 
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Turbulence intensity can be found for each sample and the average of them yields the 

final result. 

c) Integral length scale: 

Integral length scale is the length that flow with velocity of U passing during the 

integral time scale. The process of calculation of A for X-Probe is the same as ID- Probe. 

Only, the velocity is used in equations are achieved by Equation B.35. 
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APPENDIX C: M A T L A B PROGRAM 

C.l ID-PROBE 

% MATLAB file for processing the measurement data obtained from Hot-wire 

Anemometer. 

m=0.2; %Coefficient for air 

T0=23; %Ambient Temperature during calibration. (ENTER VALUE 

HERE) 

alfa20=0.36/100; %Coefficient of heat transfer from the probe 

alfaref=alfa20/( l+alfa20*(T0-23)); 

Tw=(0.8/alfaref)+T0; %Hot wire temperature 

kinvis = 0.000015; %Kinematic Viscosity of air 

co= 
Cl= 

C2= 

C3= 

C4= 

-116.3966; 

226.0252; 

-152.2691; 

35.4997; 

0.00000; 

; %Factor obtained during calibration 

%Factor obtained during calibration 

; %Factor obtained during calibration 

%Factor obtained during calibration 

%Factor obtained during calibratio 

(ENTER VALUE HERE) 

(ENTER VALUE HERE) 

(ENTER VALUE HERE) 

(ENTER VALUE HERE) 

(ENTER VALUE HERE) 

sample =10000000; %Number of samples collected in each file (ENTER VALUE HERE) 

cutoff =0.00003; %Cutoff point for calc of Integral Length (ENTER VALUE HERE) 

sampling_frequency=80000; %Sampling Frequency (ENTER VALUE HERE) 

Imax=l; %Number of points in each quadrant (ENTER VALUE HERE) 

Jmax=l; %Number of points in each quadrant (ENTER VALUE HERE) 

for loop=l:l; 

fori=l:Imax, 

forj=l:Jmax, 
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section=:num2str(loop); 

stri=num2str(i); 

strj=num2str(j); 

zero=num2str(0); 

if (i<l & j<l) 

filename=['v500A100',section,stri,strj,'.txt']; 

elseif (i>l) 

filename=['v500A100',section,zero,stri,strj,'.txt']; 

elseif 0>1) 

filename=['v500A100',section,stri,zero,strj,'.txt']; 

else 

filename=['v500A100',section,zero,stri,zero,strj,,.txt']; 

end 

filepath=fullfile('C: ','Documents and Settings','NiloofarVDesktopVjune-hotwirwVPlate 

A',filename); % (ENTER VALUE HERE) 

data=load(filepath ,filename); 

% Processing the raw signal to actaul voltage 

volt_measured=data( 1: sample, 1); 

volt_actual=(((volt_measured/4096)* 10)/8)+l .5; 

% Converting raw signal to temperature value 

T_actual=((data(sample-1 ,l))/4096)* 10*30; 

Temp(i,j ,loop)=T_actual; 

if(T_actual>T0) 

m = -0.2; 

else 

m = 0.2; 

end 
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volt_corrected=volt_actual*( (Tw-TO)/(Tw-T_actual) ).A(0.5*(1)); 

% Converting Voltage to velocity 

UU=C0 + Cl*volt_corrected + C2*volt_corrected.A2 + C3*volt_corrected.A3 + 

C4*volt_corrected.A4; 

U=UU(1:sample); % Deselecting the last value (because it is for temperature) 

Um=mean(U); 

% Calculating the required parameters 

Umean(i j ,loop)=Um; 

A=(U-Um).A2; 

B=A.A0.5; 

Urms(i,j,loop)= mean(B); 

Intensity(i j ,loop)=( 100*Urms(i j ,loop)/Umean(i j ,loop)); 

% Calculating the Intergal Length Scale 

smallsample = sample; % Initialising 

length_n=l; flag=0; % Initialising 

rowl=0; row2=0; % Initialising 

U_inst_small_sample = U(l:small_sample); 

U_mean_small_sample = mean(U_inst_small_sample); 

u ins t = Uinstsmallsample - U_mean_small_sample; 

u_rms_small_sample = (mean( u_inst.A2 ))A0.5; 

for n=0:small_sample-1, 

% break; % Can be switched ON when Integral length isn't needed 

% calculation is NOT required. 

flag=0; 

for k=l :small_sample-n, 

flag = flag + (u_inst(k)*u_inst(k+n)); 

end 
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row2(n+l) = (flag/(small_sample-n))/(u_rms_small_sampleA2); 

%if (row2(n+l) < cutoff) 

if(row2(n+l)> cutoff) 

lengthn = n; 

break; 

end 

end 

tau=sum(row2)/sampling_frequency; 

intergral_length(i,j,loop)=tau*U_mean_small_sample; 

filename 

end 

end 

end 

x=linspace(0,lmax-1 ,lmax); 

y=linspace(0, Jmax-1, Jmax); 

C.2 X-PROBE 

gain=l; 

offset=0; 

C01= -7.557750; 

Cl l= 45.601498; 

C21= -51.246670; 

C31= 16.401369; 

C41= 0.000004; 

C02= -17.131353; 

C12= 62.126469; 

C22= -61.205242; 

C32= 18.528982; 

C42= 0.000004; 

%Factor obtained during calibration 

%Factor obtained during calibration 

%Factor obtained during calibration 

%Factor obtained during calibration 

%Factor obtained during calibration 

%Factor obtained during calibration 

%Factor obtained during calibration 

%Factor obtained during calibration 

%Factor obtained during calibration 

%Factor obtained during calibration 

(ENTER VALUE HERE) 

(ENTER VALUE HERE) 

(ENTER VALUE HERE) 

(ENTER VALUE HERE) 

(ENTER VALUE HERE) 

(ENTER VALUE HERE) 

(ENTER VALUE HERE) 

(ENTER VALUE HERE) 

(ENTER VALUE HERE) 

(ENTER VALUE HERE) 
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thetal = 41.7872000*pi/l 80; %Factor obtained during calibration 

(ENTER VALUE HERE) 

theta2= 41.5955000*pi/l 80; %Factor obtained during calibration 

(ENTER VALUE HERE) 

T0=20.3; %Ambient Temperature during calibration. (ENTER VALUE HERE) 

alfa20=0.36/l 00; %Coefficient of heat transfer from the probe 

alfaref=alfa20/( l+alfa20*(T0-20)); 

Tw=(0.8/alfaref)+T0; %Hot wire temperature 

kinvis = 0.000015 %Kinematics Viscosity of air 

sample= 10000000; %Number of samples collected in each file (ENTER VALUE HERE) 

cutoff=0.0001; %Cutoff point for calc of Integral Length (ENTER VALUE HERE) 

sampling_frequency=80000; %Sampling Frequency (ENTER VALUE HERE) 

Imax=l; %Number of points in each quadrant (ENTER VALUE HERE) 

Jmax=l; %Number of points in each quadrant (ENTER VALUE HERE) 

%Initialization 

quadrants=l; temp_x=0; temp_y=0; 

Umean_xyplot(l :Imax*Jmax*quadrants,l :1)=0; 

Urms_xyplot(l :Imax*Jmax*quadrants,l: 1)=0; 

Uintensity_xyplot(l :Imax*Jmax* quadrants, 1:1)=0; 

Uskewness_xyplot(l:Imax*Jmax*quadrants,l:l)=0; 

Uflatness_xyplot(l :Imax* Jmax* quadrants, 1:1)=0; 

Ueps_xyplot(l:Imax*Jmax*quadrants,l:l)=0; 

Ukol_xyplot(l :Imax* Jmax* quadrants, 1:1)=0; 

Uintegral_length_xyplot(l :Imax*Jmax*quadrants,l :1)=0; 

UV_xyplot(l :Imax*Jmax*quadrants,l :1)=0; 

Vmean_xyplot(l :Imax*Jmax*quadrants,l: 1)=0; 
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Vrms_xyplot(l :Imax*Jmax*quadrants,l: 1)=0; 

Vintensity_xyplot(l :Imax*Jmax*quadrants,l: 1)=0; 

Vskewness_xyplot(l :Imax* Jmax*quadrants,l: 1)=0; 

Vflatness_xyplot(l :Imax* Jmax*quadrants, 1:1 )=0; 

Veps_xyplot(l :Imax*Jmax*quadrants,l: 1)=0; 

Vkol_xyplot(l :Imax*Jmax*quadrants,l :1)=0; 

Vintegral_length_xyplot( 1 :Imax* Jmax*quadrants, 1:1 )=0; 

for loop=l:l; 

fori=l:Imax, 

forj=l:Jmax, 

section=num2str(loop); 

stri=num2str(i); 

strj=num2str(j); 

zero=num2str(0); 

if (i<l & j<l) 

filename=['v500A100',section,stri,strj,,.txt']; 

elseif(i>l) 

filename=['v500A100',section,zero,stri,strj,'.txt']; 

elseif (j>l) 

filename=[V500A100',section,stri,zero,strj,'.txt']; 

else 

filename=[,v500A100',section,zero,stri,zero,strj,'.txt']; 

end 

filepath=fullfile('c:VDocuments and Settings','NiloofarVDesktopVjune-hotwirwVPlate 

A',filename); % (ENTER VALUE HERE) 

data=load(filepath,filename); 
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% Separating the velocity data (U &V) 

El=data(l :sample,l); 

E2=data(l :sample,2); 

% Processing the raw signal to actaul voltage 

voltcorrected 1 =volt_actual 1 =volt_measured 1 =(E 1 /4096)* 10/gain+offset; 

volt_corrected2=volt_actual2=volt_measured2=(E2/4096)*10/gain+offset; 

% Converting Voltage to velocity 

Ueffl=C01 + Cll*volt_correctedl + C21*volt_correctedl.A2 + 

C31*volt_correctedl.A3 + C41*volt_correctedl.A4; 

Ueff2=C02 + C12*volt_corrected2 + C22*volt_corrected2.A2 + 

C32*volt_corrected2.A3 + C42*volt_corrected2.A4; 

tan_Beta=(Ueffl -Ueff2)./(Ueffl *tan(theta2)+Uefi2*tan(thetal)); 

cos_Beta=cos(atan(tan_Beta)); 

U=(Ueffl+Ueff2)./(2+tan_Beta*(tan(thetal)-tan(theta2))); 

V=U.*tan_Beta; 

Um=mean(U); 

Vm=mean(V); 

% Calculating the required parameters (U) 

Umean(i j ,loop)=Um; 

Urms(i,j,loop)=( mean( (U-Um) A2 ) )A0.5; 

Uintensity(i j ,loop)=( 100*Urms(i j ,loop)/Umean(i,j ,loop)); 

UV(i,j,loop)= mean( (U-Um).*(V-Vm) ); 

% Calculating the required parameters (V) 

Vmean(i j ,loop)=Vm; 

Vrms(ij,loop)=( mean( (V-Vm).A2 ) )A0.5; 
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% Calculating the Intergal Length Scale (U) 

smallsample = sample/2; % Initialising 

lengthn = 1; flag=0; % Initialising 

rowl=0; row2=0; % Initialising 

U_inst_small_sample = U(l :small_sample); 

Umeansmallsample = mean(U_inst_small_sample); 

u ins t = Uinstsmallsample - U_mean_small_sample; 

u_rms_small_sample = (mean( u_inst.A2 ))A0.5; 

for n=0:small_sample-l, 

% break; % Can be switched ON when Integral length (ENTER VALUE HERE) 

% calculation is NOT required. 

flag=0; 

for k=l :small_sample-n, 

flag = flag + (u_inst(k)*u_inst(k+n)); 

end 

row2(n+l) = (flag/(small_sample-n))/(u_rms_small_sampleA2); 

if (row2(n+l) < cutoff) 

lengthn = n; 

break; 

end 

end 

tau=sum(row2)/sampling_frequency; 

Uintegral_length(ij,loop) = tau*U_mean_small_sample*1000; % Converted to 

millimeters (mm) 
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% Calculating the Intergal Length Scale (V) 

Vintegral_length(ij,loop) = 0*1000; % Converted to millimeters 

(mm) 

% Writing the data into xy_plots 

serial=l; 

Umean_xyplot(serial, 1 )=temp_x; 

Urms_xyplot(serial, 1 )=temp_x; 

Uintensity_xyplot(serial, 1 )=temp_x; 

Uintegral_length_xyplot(serial, 1 )=temp_x; 

UV_xyplot(serial, 1 )=temp_x; 

Vmean_xyplot(serial, 1 )=temp_x; 

Vrms_xyplot(serial, 1 )=temp_x; 

Vintegral_length_xyplot(serial, 1 )=temp_x; 
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APPENDIX D: SPHERE SETUP 
As mentioned in Section 3.3, to minimize the influence of sphere support on the 

results, high strength polymer strings were used to position the sphere. Two threaded 

holes of 9 mm in diameter and 20 mm in depth are in each sphere, to allow the fastening 

of the supporting strings via two screws. After the screws were tightly secured to the 

sphere, the holes were filled with Epoxy. A total of eight strings were utilized, four of 

which were fastened to the top hole and another four to the bottom one. The other ends of 

the top strings were fastened firmly and laid symmetrically to the two side walls of the 

wind tunnel, with each making an angle of a ± 0.3° with respect to the test section wall 

and P ± 0.3° to the streamwise direction of the wind tunnel; see Figure 21. In the case of 

the bottom strings, the other ends were secured firmly to the floor of the wind tunnel 

making an angle of a' ± 0.3° with respect to the test section floor and P' ± 0.3° to the 

streamwise direction of the wind tunnel; see Figure 21. 

In installation of PVC spheres, the mounting point on the side wall and tunnel floor 

varied for different spheres. Therefore, there were fixed values for a, p, a', and P' angles; 

see Table D.l. However, in the case of wood spheres, the mounting points were the same 

for all six spheres. Thus, the P and P' angles were fixed, 37.2° and 40.97°, respectively. 

But a and a' were varied in each setup; see Table D.2. 

Table D.l: Springs angle in PVC sphere setup 

Sphere diameter size 

All three spheres 

(20 mm, 51 mm, 102 mm) 

a 

40.4° 

P 

63.5° 

a' 

44.8° 

P* 

59.7° 

Table D.2: String angle in wooden sphere setup 

Sphere diameter size 

20 mm 

51mm 

65 mm 

102 mm 

140 mm 

210mm 

a 

53.6° 

54.9° 

55.4° 

57.0° 

58.7° 

62.0° 

a' 

49.8° 

51.2° 

51.8° 

53.4° 

55.2° 

58.7° 
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APPENDIX E: UNCERTAINTY ANALYSIS 

The main source of uncertainty in the hot-wire measurement came from its 

calibration, which included three parts, i.e. the velocity measurement, the curve fitting 

and the digitized hot-wire anemometer output. In the second part of the experiment, drag 

force measurement was performed using a load cell to achieve drag coefficient on the 

three spheres. The uncertainty in the drag measurement came from four different sources, 

i.e. the sphere diameter measurement, the velocity measurement, the air density 

calculation, and the load cell measurement. 

E.l UNCERTAINTIES IN HOT-WIRE DATA 

The uncertainty of hot-wire results came from the process of calibrating the hot­

wire probe and the process of acquiring the instantaneous velocity data. In this appendix, 

the uncertainty in the time averaged flow velocity U, the turbulence rms velocity, the 

turbulence intensity and the turbulence length scale, A will be specified. 

The uncertainties in the above parameters were estimated on the basis of the 

uncertainty in the instantaneous velocity U, In other words, the first step in this 

uncertainty analysis was to estimate the uncertainty in Uj. In fact, the instantaneous 

velocity Uj forms the starting point of all the subsequent data analysis. 

E.1.1 CALIBRATION UNCERTAINTY 

The calibration uncertainty was induced by three sources, i.e. the uncertainty in the 

velocity, Uerror, used as the calibration standard; the uncertainty in voltage reading, Eenor, 

corresponding to the Uett0I; and the uncertainty from the curve-fitting pairs of velocity and 

voltage values which give the coefficient used for calibration equation Ueff = Co + CiEc + 

C2EC
2 + C3EC

3 + C4EC
4. The uncertainty in the measured voltage reading, Eenot, was 

negligible in compare with others. The relative velocity uncertainty, AUe_m, due to the 

curve fitting error is around 0.5%. When the relative velocity uncertainty AUe vei 

measured by Pitot-static tube, manual calibration system, was 2% at most. When the 
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relative velocity uncertainty AUe_vei measured by auto calibrator was 1% at most. Thus, 

the total relative velocity uncertainties because of the calibrations are: 

Manual calibration: 

AUe_Cal =A/(AUe_vel)
2 + ( A U e f l t )

2 - 2 . 1 % (E.l) 

Automatic calibration: 

A U e c a l = A V e c a l = A/(AUe_ve l)
2+(AUe_ f i t)

2 s 1.12% (E.2) 

E.l.2 DATA ACQUISITION UNCERTAINTY 

The data acquisition uncertainty resulted from two sources, i.e. the digitization 

uncertainty from digitizing, the analog signal from the hot-wire anemometer and the 

uncertainty from the probe positioning. 

The uncertainty in the digitized hot-wire anemometer output voltage is +0.5 of the 

least significant bit, which, for the 12 bits A/D with an input range set as 0 to 10V, 

[Dantec dynamics Manual, 2000]: 

A E = 0.5 x 10/ = 0.0012V (E.3) 

The relative digitization uncertainty, AUe dig in the effective velocity is: 

A U _ AE d U e f f = AE d ( c 0 + C 1 E c + C 2 E g + C 3 E g + C 4 E ; ) 
e - d l g Ueff dE Uef f dE 

In this study, for the range of velocity between 3 m/s to 12 m/s, the relative digitization 

uncertainty was less than 1% in Experiment I in which manual calibrator is used, and less 

than 0.4% in Experiment II in which Auto calibrator is used. 

Aligning the hot-wire probe with the mean flow direction makes the probe 

positioning uncertainty, AUe_p0s-

AUe p o s =-y=(l-coscc) [Jorgensen, 1997] (E.5) 
V3 
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where a is the yaw angle. However, an error of ± 1 ° when aligning it is possible. Thus, 

this uncertainty is 8.8x10"5. It is too small and thus negligible. 

The total relative uncertainty due to data acquisition can be estimated as: 

A U e_daq = v ( A U e _ d i g f + ( A U e_pos ) 2 = | A U e_dig (E.6) 

Thus, the total relative velocity uncertainty in the effective velocity due to calibration and 

data acquisition is: 

A(U e ff ) = ^ U e c a l f + [ A U e _ d a q P = 

Kcalf+i^Cl 
1 ~ lUeff 

+ C2EC
 +C3EC +C4EC 

(E.7) 

All above calculations are for experiment with ID hot-wire probe. In Experiment II, 

the X-probe, 2D hot-wire probe is used. In that situation, all the calculations are the same, 

except that there are two effective velocities, Ueff and Veff. In AUeff calculation, the Eic 

voltage and Coi, Cn, C21, C31 and C41 coefficients are used. And, in AVeff calculation, the 

E2C voltage and C02, Cn, C22, C32 and C42 coefficients are used. 

E.1.3 UNCERTAINTY OF INSTANTANEOUS FLOW VELOSITY 

For the ID probe measurement, the absolute uncertainty in the effective velocity is: 

W(U e f f )=W(U i ) = A(Ueff)Ueff l = 

~ (E.8) 
U e f f l 0.0004 + — (Cn +C12E lc +C13E lc +C14E lcJ 

ueffl 

For the 2D probe measurement, the absolute uncertainty in the effective velocity is: 

W(Ui) = V(A(Ueff )Ueff 1 f + (A(Veff )Veffl f + e 

( ( 
U 

eff 
0.0001 + 

+ 

V 

w2 

AE 

U 

eflf 

V 

0.0001 + 

v 

effl 
VC11 + C 1 2 E l c + C 1 3 E l c + C 1 4 E i c j 

2\\ 

J) 
(E.9) 

V, effl 
+ C 22 E 2c + C 2 3 E 2 c + C 2 4 E 2 c 

2\\ 

+ e 

where e is the uncertainty because of yaw angle which is negligible. 
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Thus, 

W(Vi)«W(Ui) (E.10) 

E.1.4 UNCERTAINTIES IN TURBULENCE PARAMETERS 

1) The time-averaged flow velocities U and V is calculated as: 

N 1 iN 

Nf 

and 

V 

i=l 

N 

i=l 

N 

of which the uncertainties are estimated by: 

N 
MuhJg^wfUi)] ^ J lMu^ 

IN 

and 

N ^im^ BY ] ^ l ^ 
2) The variance of turbulence fluctuation velocities are calculated as: 

— 1 N 7^2 "2=^E(us-uJ 

and 

i=l 

1 N, 

Ni=i 

of which the uncertainties are estimated by: 

W u z = 
chS w(u) N 

+ I 
i=l 

?) 
au; 

W(Ui) 

N i i (Ui-u^w^uKw2^)] 

(EM) 

(E.12) 

(E.13) 

(E.14) 

(E.15) 

(E.16) 

(E.17) 
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and 

w M •w(v) 
N 

+ 1 

d v' 

avi 
•W(Vi ) 

(E.18) 

_2_ 
N ' 

N 

therefore, 

(vi - vf [w2(v)+ w2(Uj) 

W(u)^W^)=i-W^) (E.19) 

and 

W(v) = i w = i-w[v2 

2v 
(E.20) 

In Experiment I in which ID hot-wire system used to measure the velocity, the 

maximum uncertainties inUand um s are estimated to be 2.3% and 3.7%, respectively, 

while their average uncertainties are estimated to be 2.15% and 3%, respectively. 

In Experiment II in which 2D hot-wire system used to measure the velocity, the 

maximum uncertainties inU and UrmS are estimated to be 1.2% and 2%, respectively, while 

their average uncertainties are estimated to be 1.1% and 1.7%, respectively. 

3) The turbulence intensity, Tu is calculated as: 

u„ Tu% = ^ ^ x l 0 0 
U 

(E.21) 

Thus, its uncertainty is estimated by: 

WT u . 
Tu 

u 
U 

fw„ \ 2 

V Urms J 
(E.22) 

In Experiments I and II, the maximum uncertainties of turbulence intensity are 4.3% 

and 2.4%. And, the average ones are 3.7% and 2%, respectively. 

4) The integral length scale A is calculated as explained in Sections 3.2.3, and its 

uncertainty is estimated as: 
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w. ' w ^ 2 

+ 
2W„ 

u 
(E.23) 

and 

WT W, ?(iAt) 
\ 2 

q(iAt) 
(E.24) 

and 

A 
u 

V U 7 

rw. ^ 
+ 

v TA y 
(E.25) 

In Experiments I and II, the maximum uncertainties of integral length scale are 7.8% and 

4.2%. And, the average ones are 6.5% and 3.6%, respectively. 

E.2 UNCERTAINTIES IN DRAG MESURMENT 

E.2.1 UNCERTAINTY IN SPHERE DIAMETER (d) MEASURMENT 

The diameter of the sphere is measured with a dial-caliper. The caliper has a 

resolution of 0.0254 mm and an accuracy of ±0.0127 mm. On the other hand, the 

measurement showed that the spheres are not completely perfect. Their maximum 

inaccuracy is ± 0.8 mm. Thus, the maximum and average uncertainties of sphere diameter 

measurement are 4% and 1.8%, respectively. 

E.2.2 UNCERTAINTY IN REYNOLDS NUMBER 

To find the Reynolds number, the atmospheric temperature and pressure of the lab 

are measured with a mercury thermometer and barometer with resolution of 1°C and 

O.lmmHg, respectively, giving an accuracy of ±0.5°C and ±0.05 mmHg. The maximum 

variation in the room temperature is about ±1°C and the maximum variation in the room 

pressure is ±5 mmHg. The zero order precision error is considered to be based on 

unsteadiness in temperature and the readability of the instrument. Thus, the maximum 

relative uncertainty in the measurement of temperature and pressure are about 5.6% and 
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0.7%, respectively. And, the averaged relative uncertainty in the measurement of 

temperature and pressure are about 3% and 0.4%, respectively. 

To adjust the wind tunnel power, the mean flow velocity in the wind tunnel is 

measured by Pitot-static tube and the digital manometer, too. Also, the data can be used to 

compare with hot-wire data. The resolution of the digital manometer is 0.1 Pa. Thus, its 

accuracy is ±0.05 Pa. The variation of measurement in each time is about ±1 Pa. The 

mean flow velocity is calculated by: 

AP = | P a i r U 2 (E.26) 

where the air density is pre-determined from the measured values of the lab temperature 

and pressure, and by applying the ideal gas law. Equation E.26 is changed to the 

following form by substituting for pair: 

U = 
(2AP)RTa (E.27) 

Finally, the uncertainty of the mean flow velocity is obtained by: 

U 

1 W AP 

2 AP + 
' i w T ^ 

2 T + 
J 2 P 

(E.28) 

Thus, the maximum and averaged uncertainties of velocity by Pitot-Static tube 

measurement are 3.3% and 3.12%. 

Now, to calculate the uncertainty of Reynolds number, Equation E.30 is used, 

Ud 

v 
Re (E.29) 

W, Re 

Re U 

2 / 

+ 
V 

Wd^ 
+ 

w„ 
v 

(E.30) 

The maximum and average relative uncertainties of Reynolds numbers based on 

Pitot-static tube and the digital monometer measurement are 5.18% and 3.6%. Using the 

result of the hot-wire measurement uncertainty with manual calibration, the maximum 

and average relative uncertainties of Reynolds numbers are 4.61% and 2.17%. Using the 

result of the hot-wire measurement uncertainty with automatic calibration, the maximum 

and average relative uncertainties of Reynolds numbers are 4.17% and 2.11%. 
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E.2.3 UNCERTAINTY IN DRAG FORCE AND DRAG COEFFICIENT 

The load cell gives the data in mili-voltage with a resolution of 0.0001 (mV) and 

accuracy of achieved data as ±0.00005 (mV). By calibrating the load cell, the amplifier 

data are converted to force with an accuracy of ±0.00005 (N) because of the linear 

relation between them. It causes the maximum uncertainty of 9.5% and the averaged one 

of 7.4%. 

Finally, since the drag coefficient CD is calculated by: 

FD C D =-

2 4 

(E.23) 

The overall uncertainty of the drag coefficient is estimated as: 

Wr 

'D 

wF 

V FD J 
+ 2 d + 2 U + 

fwp^ 
(E.24) 

Also, in the installation of sphere, a force in drag force direction is in the 

downstream wires. It is equal to the difference of force because of the angle of the 

installation. It can cause less than 1% more uncertainty in drag coefficient. 

In this study, the maximum and average uncertainties of drag coefficient are around 

10.5% and 7.8%. 

E.2.4 UNCERTAINTY IN ROUGHNESS 

Westerman and Sharcos [1966] showed that mechanically the smooth model should 

have roughness less than lum. As shown in Figures E.l and E.2 the PVC and wooden 

spheres have roughness of 0.97 um and 16.99 um, respectively. Thus, the PVC spheres 

are mechanically smooth but wooden spheres are not completely smooth. Also, Hunt and 

Vaughan [1996] showed that related to Moody diagram the smooth model has relative 

roughness less than 0.000001. But, maximum relative roughness of PVC and wooden 

spheres are 0.00005 and 0.0008, respectively. These values make 2.5% and 15.5% 

different with smooth models. But on the other hand, the minimum relative roughness for 

sphere to have some visible effect of CD is around 0.0015 which is bigger than these 

models. Thus, the roughness has negligible effect. 
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APPENDIX F: X-PROBE RESULTS 
The X-Probe hot-wire measurement gives the results of the velocity, the root square 

velocity, turbulence intensity and integral length scale measured by X-Probe. The 

velocity in y components V is close to zero. In fact, V is changed from 0.018 (m/s) to 

0.081 (m/s) which is close to 0. The following figures present the root square velocity, 

turbulence intensity and integral length scale. Figure F. 1 shows the variation of the rms 

velocity versus (x/D) in different mean velocities, where x is the distance between the 

hot-wire and the orificed perforated plate with hole diameter D. Figure F.2 shows the 

turbulence intensity versus (x/D) in different mean velocities. And, the integral length 

scales corresponding to turbulent flow at different mean velocities are shown in Figure 

F.3. 
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Figure F.l: Variation of rms velocity (m/s) in x direction with respect to (x/D) in 2D hot­

wire measurement: (a) with perforated plate D-25 (b) with perforated plate 

D-37.5 and (c) with perforated plate D-50 

103 



12 

10 

8 

3 6 
H 

4 -

2 -

0 

0 

12 

10 

8 H 

^ 6 

2 

0 

12 

10 

8 -

3 b 
H 

4 

2H 

0 

10 
— I — 

20 
—i 

30 
x/D 

— i — 

40 

(a) Plate D = 25 mm 

10 20 30 
x/D 

40 

(b) Plate D = 37.5 mm 

10 20 30 
x/D 

40 

50 

50 

• * - U ~ 3 . 4 m / s 

-a—Us; 5.6 m/s 

-*-CT«B.1 m/s 

- * -U^10.3rn /s 

-5K—U « 12.1 m/s 

60 

- * - U = 3.4m/s 

-s -U~5.6m/s 

- a - u ~ 8 . 1 m/s 

- x - U i s 10.3 m/s 

-*-CT*12.1 m/s 

60 

- ^ U - 3 . 4 m/s 

- B - 0 ^ 5 . 6 m/s 

- * ^ J * 8 . 1 m/s 

- x - U » 10.3 m/s 

- * - U a 1 2 . 1 m/s 

50 60 

(c) Plate D = 50 mm 
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104 



100 
90 
80 

^ 7 0 -

|6 0 "I 
^-50 
< 4 0 

30 
20 ^ 
10 
0 

0 

S 

< 

120 -I 

100 -

80 

60 

40 

20 

0 

180 
160 
140 

? 1 2 0 H 
£100 
< 80 

60 

40 
20 
0 

0 

10 20 30 40 
x/D 

(a) Plate D = 25 mm 

10 20 30 40 
x/D 

(b) Plate D = 37.5 mm 

-O- B -

10 20 40 30 
x/D 

(c) Plate D = 50 mm 

50 

50 

50 

• * - U s 3 . 4 m / s 

- s - U * 5 . 6 m / s 

•*-CT*8.1 m/s 

- ^ - U s 10.3 m/s 

-*— U s 12.1 m/s 

60 

- * - U * 3.4 m/s 

- B - U s 5.6 m/s 

-*-CT*8.1 m/s 

- * - U ~ 10.3 m/s 

- * - U * 1 2 . 1 m/s 

60 

^ - U s 3.4 m/s 

-= -U~5 .6m/s 

-A-U^8.1m/s 

- * - U « 10.3 m/s 

•*-U*12.1 m/s 

60 

Figure F.3: Variation of integral length scale with respect to (x/D) in 2D hot-wire 

measurement: (a) with perforated plate D-25 (b) with perforated plate D-

37.5 and (c) with perforated plate D-50 

105 



0.8 i 

0.7-

0.6-

fo.5 
~0.4 
clo.3 H 

0.2 
0.1 

0 
0 

0.8 

0.7 -+ 

^ 0 6 

3,0.5 
i °-4

 H 
* 0.3 

0.2 -
0.1 -

0 
0 

0.8 -| 

0.7 -• 

0.6 -
/ " • \ 

^ 0 . 5 
^ 0 . 4 -
> 0.3 -

0.2 
0.1 

0 
0 

10 
— i — 

20 30 
x/D 

40 

(a) Plate D = 25 mm 

10 20 30 
x/D 

40 

(b) Plat D = 37.5 mm 

10 20 30 
x/D 

40 

-*—V« 0.019 m/s 

- B - V H 0.031 m/s 

• * - V « 0.051 m/s 

- * - V B 0.061 m/s 

- * - V « 0.079 m/s 

50 60 

-e-Vfa 0.019 m/s 

- S - V M 0.031 m/s 

^ - V H 0.051 m/s 

-K-Vftf 0.061 m/s 

^ V a 0.079 m/s 

50 60 

-e—Vs 0.019 m/s 

-a—V« 0.031 m/s 

- * - V * 0.051 m/s 

-x—V K 0.061 m/s 

-«r-V« 0.079 m/s 

50 60 

(c) Plate D = 50 mm 

Figure F.4: Variation of rms velocity (m/s) in y direction with respect to (x/D) in 2D hot­

wire measurement: (a) with perforated plate D-25 (b) with perforated plate 

D-37.5 and (c) with perforated plate D-50 

106 



APPENDIX G: DETAILS OF SPHERE SIZE IN RESULTS 

G.l THE RESULTS OF PVC SPHERES 

G.l.l EFFECT OF INTEGRAL LENGTH SCALE AND RELATIVE INTEGRAL 

LENGTH SCALE 
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Figure G.2: Impact of relative integral length scale on PVC sphere drag when (a) Tu : 

2.5% (b) Tu - 4% (c) Tu = 6.3% 

108 



G.1.2 EFFECT OF TURBULENCE INTENSITY 
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Figure G.3: Impact of turbulence intensity on PVC sphere drag 

G.1.3 EFFECT OF REYNOLDS NUMBER 
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G.2 THE RESULTS OF WOODEN SPHERES 

G.2.1 EFFECT OF RELATIVE INTEGRAL LENGTH SCALE 
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G.2.2 EFFECT OF TURBULENCE INTENSITY 
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G.2.3 EFFECT OF REYNOLDS NUMBER 
0.6 

C D 

0.5 

0.4 

0.3 

0.2 

0.1 

0 

X 
o 
D 
+ 

- Tu=6.3% 
-Tu=4% 
-Tu=2.5% 

51 mm 
65 mm 
102 mm 
140 mm 

cD 

0.6 -I 

0.5-

0.4 

0.3 

0.2 j 

0.1 

0 

CD 

0 

0.6 -I 

0.5 -

0.4 -

0.3 -

0.2 -

0.1 -

0 -

CD 

0.6 

0.5 

0.4 

0.3 H 

0.2 

0.1 A 

0 

— i 

4 
RexlO4 

6 8 

(a) A/d-0.22 (A/d = 0.21 0.26) 

X 
0 
D 

- Tu=6.3% 
Tu=4% 

-Tu=2.5% 
51 mm 
65 mm 
102 mm 

2 

(b) A/d•• 
RexlO4 

• 0.33 TA/d = 0.3 

5 

0.35) 

X 

o 
D 

• Tu=6.3% 
-Tu=4% 
-Tu=2.5% 

51 mm 
65 mm 
102 mm 

2 3 4 5 6 
RexlO4 

(c) A/d « 0.65 (A/d - 0.6 ~ 0.7) 

X 

o 

Tu=6.3% 
-Tu=4% 
-Tu=2.5% 
51 mm 
65 mm 

RexlO4 

(d) A/d ~ 1.2 (A/d = 1.12 ~ 1.35) 

Figure G.7: Impact of Reynolds number on wooden sphere drag 

112 



APPENDIX H: FREE B O D Y DIAGRAM OF THE SPHERE 

As mentioned in Section 3.3, the sphere was supported by 8 strings. There were 4 

symmetrical strings on the top, each making an angle of a ± 0.3° with respect to the test 

section wall and p ± 0.3° to the streamwise direction of the wind tunnel. And, there were 

4 symmetrical strings at the bottom, each making an angle of a' ± 0.3° with respect to the 

test section floor and p' ± 0.3° to the streamwise direction of the wind tunnel. Each string 

resists a force; see Figures H. 1. 

Figure H.l: Schematic of net forces of the strings in the sphere and load cell setup 

H.1 'NO FLOW CONDITION 

Due to symmetry, force because of the weight of the sphere in each of the top 

strings equals to each other, and same applies to those in the bottom strings i.e. 

FTi = FT2 = FT3 = FT 4 (H.l) 

FB1 = FB2 = FB3 = FB4 (H-2) 

In this situation, the load cell in one of the top or bottom strings was set to zero. Every 

time when the loadcell is connected to the top or bottom string as shown in figure H.l, the 

output was set to zero before the wind tunnel is turned on. In fact, it is adjusted to assume 

all the net forces before turning the wind tunnel on is zero. 

FTi = FT 2 = FT3 = FT 4 = FB1 = FB2 = FB3 = FB4 = 0 (H.3) 
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H.2 IN THE PRESENCE OF FLOW 

Base on the definition of the coordinate system as portrayed in Figure H.2, the flow 

pushes the sphere in the negative x direction. Thus, the upstream strings resist the force 

and the downstream strings become loose. Due to the symmetrical setup the force is 

resisted by upstream top strings, FTI and FT2 equals to each other. Then, because of same 

reason we have Fj3 = Fj4, FBI = FB2 and FB3 = FB4. Figure H.2 shows the component of 

flow force in x direction for top strings 1 and 3. The calculation of the drag force in top 

strings 2 and 4 are similar to the top strings 1 and 3. 

^ » * 

LT1 
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J 
R 

/ 

'D Tl 

x * * 

(a) 

r R 

D T3 

(b) 

Figure H.2: Decomposition of forces in the top strings 

The downstream strings have negative forces because of getting loose in wind. 

These negative values affect the positive forces of upstream strings. Thus, in reality the 

force measured in upstream strings includes the force in downstream strings, too. 

Therefore, in the experiments, to measure the drag force, only the forces in upstream 

strings were measured. And, due to the geometrical symmetric setup, one time load cell 
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was connected to one of the top upstream strings and one time to one of the bottom 

upstream strings. 
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