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Abstract 

In this study the effects of angular momentum (tumble and swirl) on flammable 

mixture formation between chamber air and transient gaseous jets of hydrogen and 

methane have been numerically investigated in fixed volume cubic and cylindrical 

chambers, and in a variable volume cylindrical chamber with moving piston. The 

magnitude of the angular momentum, injection duration, and injection velocity are 

the main parameters whose effects have been studied on flammable mixture formation 

and mixing rate. The numerical simulations were carried out with the use of KIVA3V. 

the code is modified for gaseous injection with standard k — e model for turbulence. 

It was found that hydrogen and air mixing, under application of angular momentum, 

leads to faster formation of flammable mixture, with mixing rates several times larger 

than those of methane. Also dynamics of the hydrogen mixing is markedly different 

from that for methane with the same magnitude of angular momentum. Dissipation 

of bulk vortex, and angular momentum decay during compression were also studied. 

The results for the cylinder with moving piston show the disappearance of tumbling 

motion at the end of compression while the swirling motion is preserved until the 

expansion stroke. 
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Chapter 1 

Introduction 

Different types of engine are shown in Figure 1.1. In compression ignition engines, 

air is provided during the intake stroke and it undergoes compression. During com­

pression the temperature and pressure of air increase. Near top dead center the fuel 

is sprayed into the chamber and combustion occurs between injected fuel and com­

pressed air. The fuel and air are separated by flame front and combustion products. 

In spark ignition engine, fuel and air was mixed before the intake stroke. The mixture 

is ignited by the use of spark plug slightly before top dead center. Auto ignition of 

the mixture limits the compression ratio in spark ignition engines. The third type of 

engines, which is believed to be used in the next generation of internal combustion en­

gines are homogenous charge compression ignition engines (HCCI). In HCCI engines 

mixture of fuel and air is provided into the cylinder and combustion occurs without 

the need of spark plug. The combustion phenomena almost happen everywhere in the 

cylinder at the same time. Thus, the heat transfer process is faster and approaches 

constant volume. This will increase the efficiency and improve the fuel economy. 

Simultaneous combustion of air and fuel in HCCI engines and mechanical and thermal 

properties of materials restrict the equivalence ratio of the charge. On the other 

hand, in HCCI engines very lean mixture should be brought into the cylinder. Lean 

mixtures are hard to ignite. There are several approaches increasing the ignition 
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possibilities of lean mixtures. Increasing their temperature or pressure before intake 

stroke or during compression stroke is one approach which is limited by thermal and 

mechanical stresses. Enhancing turbulent intensity in side the cylinder is another way 

recently found its way in internal combustion engine researcher studies. High level of 

turbulence inside the cylinder produce more effective flame front speed and permits 

ignition of lean mixture, more exhaust gas recirculation (EGR). 

Providing bulk motion of air inside the cylinder by different means are employed by 

car manufactures to increase turbulent characteristics inside the cylinder. The bulk 

motion of air can be generated during intake stroke by shaping intake manifold to 

create desire motion or using different type of shrouded valve or changing the design 

of piston crown so that during compression it creates bulk motion of air. 

The lack of 

ViMM •mmmm 8KJH6MS 

Fig. 1.1: Diesel, spark ignition, and HCCI engines (ww.me.berkeley.edu) 

1.1 Transient Jets 

As the injector is actuated, a gaseous jet is injected though the nozzles and propagates 

across the combustion chamber. Photographic evidence of impulsively started jets 
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shows that a vortex head is formed and propagates away from the nozzle [3, 4], 

as depicted schematically in Figure 1.2. In a so-called puff jet, the vortex head 

contains all of the injected fluid. In a transient jet, a quasi-steady jet is formed 

behind the vortex head. Flow visualization of the transient jet indicates that, for 

engine application, the jets are of the latter type [5]. 

Fig. 1.2: Turbulent transient jet structure and model [1]. 

When the maximum Mach number in the jet is below approximately 0.3, compress­

ibility effects are negligible. Incompressible steady-state jets have been widely studied 

[2, 6, 7]. Behind the vortex head, the jet is considered steady. The steady part of 

the jet feeds mass and momentum to the vortex head, causing its mass, momentum 

and size to increase. The vortex head travels according to its own momentum, being 

slowed down by frictional forces and by the need to accelerate the surrounding fluid. 

As one fluid is injected at a certain velocity into another fluid whose pressure field 

is uniform, a mixing layer develops between the injected fluid and surrounding gas. 

Mass from the surrounding gas is entrained in the injected fluid. For incompressible 

air jets issuing from round nozzles into stagnant air, the rate of entrainment is found 
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to be proportional to the distance from the nozzle and to the mass injection rate. 

The mass flow rate m at a cross-section of the jet is given by, 

^ = 0.32-f (1.1) 

where mn is the mass flow rate at the nozzle, z is the distance from the nozzle and 

dn is the nozzle diameter. This relationship was verified experimentally by direct 

measurement of the mass entrainment rate, from which the constant of 0.32 was 

obtained. The mass entrainment rate was found to be independent of the nozzle 

Reynolds number if Re isgreater than 2 x 104 [1]. 

The turbulent steady-state jet can be divided into three regions: a central core, a 

transition region, and a fully developed region. In the central core, there is a region 

where the velocity is uniform because the mixing has not taken place yet. In the 

fully developed region, the velocity profile is said to be self-similar. Similarity is a 

well-observed feature of turbulent jets, and indicates that non-dimensional velocity 

profiles are independent of the distance from the nozzle, 

where U(r, z) is the velocity at a distance z from the nozzle and at a normal distance 

r from the jet axis, Uci is the center line velocity at z, and R is the radial extent of 

the jet at z. The jet front is defined where the mass fraction is about 5%. Typically 

the fully developed region starts at a distance of 10 to 20 diameters from the nozzle. 
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1.2 Objectives 

Since the direct injection gas technology is new, minimal understanding of the direct 

injection gas mixing process is currently exists. Such understanding need is needed 

to help guide the continued development required to reduce emissions to meet future 

emissions standards, and improve combustion stability. Such understanding should 

also lead to development of analytical models that would be used to facilitate technol­

ogy transfer to other engines and applications. Therefore, some key questions remain 

regarding the fuel/air mixing processes in the cylinder. These include the following: 

How does combustion chamber design affect mixing? What are the gaseous fuel and 

air mixing rates, and how can it be optimized? What is the fuel/air ratio distribution 

in the chamber and how it can be improved? How will mixing characteristics varies 

for hydrogen and natural gas? What would be the effect of bringing bulk motion of 

air in the chamber on mixing process? How will the bulk motion of air decay with 

the movement of piston? 

1.3 Methodology 

Standard tool for performing 3D CFD computations (KIVA3V) is used to model 

transient gaseous fuel jet into fixed and variable volumes. Cubic and cylindrical 

geometries because of having simple geometry and their application as combustion 

chamber in gas turbines and internal combustion engines were chosen as the fixed 

volumes. Gaseous fuel were injected only in cylindrical chamber with moving piston 

as the variable volume chamber. Before the injection, velocity profile of air inside 

the chambers was set using Bessel function. This bulk motion of air can have axis of 

rotation parallel or normal to the axis of piston. For each case different and for six 

different angular momentum, hydrogen and methane were injected and the mixture 
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formation and mixing rate over the time were studied. The behavior of bulk vortex 

with the movement of piston were also considered. 
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Chapter 2 

Literature Review 

There has been much work done on direct injection of transient gaseous jets [6, 8-11]. 

The penetration depth and the entrainment rate of these types of jets are documented 

in several references [2, 12]. However, there are only a few studies on the mixture 

preparation of transient gaseous fuel jet in bulk motion of air [13, 14]. 

Gaseous fuel jet can be injected directly into the combustion chamber with high 

pressure or into the intake port before intake stoke. In the first case the flow is 

supersonic and the Mach number at the nozzle exit is unity, in the later case the flow 

is considered incompressible and mass flow rate depends on the injection pressure. 

Hill and Ouellette [12] studied the effects of parameters such as injection pressure, 

number of nozzles, and temperature and pressure of the air inside the chamber on mix­

ture formation. Their work was mainly focused on high pressure injection of natural 

gas. Natural gas, because of its low flame temperature, offers a potential for reduced 

NOx (nitrogen oxide). Also owing to the simpler chemical structure of methane, 

which constitutes 90 to 98 % of natural gas, the potential to form particulate mat­

ter and unburned hydrocarbons during combustion is reduced. In Hill and Ouellette 

[12]'s work, injection pressure is higher than the critical pressure (1.83 for methane, 

assuming ideal gas behavior), the pressure at the exit nozzle plane is greater than 

chamber pressure, and under-expansion occurs outside the nozzle. Under-expansion 
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is a complex adjustment process involving expansion waves and compression waves 

which form a barrel shaped shock pattern. Figure 2.1 shows the process of the expan­

sion outside the nozzle. Comparison of mixing rates using different number of nozzles 

with equal momentum injection rate and equal mass injection rate are shown in Fig­

ure 2.2. The results confirm that using more nozzles of smaller diameter increases 

the mixing between the fuel and the chamber air [12]. The results can also be under­

stood by considering that the total volume of rich cores is smaller for smaller nozzles 

than for larger ones. The formation rate of flammable fuel fraction is very similar 

for both cases. In this study, the flammable mixture volume over time is modeled, 

so the number of nozzles was not taken into account. However, our results for two 

nozzles with the same total nozzle exit area confirm Ouellette [l]'s conclusions that 

the volume of the combustible region remains the same during injection time. 

Flow Boundary 
Expansion 
Waves 

M<1 
Reflected 
Shock 

Barrel Shock 

Fig. 2.1: Schematic of under-expansion process. 

Xia [2] measured penetration depth of different gaseous fuel jets being injected into 

the semi-homogenous turbulent field created in a cubic chamber. A pair of perforated 

plates were employed to generate a homogenous turbulent field in the middle part of 

the cube where the measurements were made. Hole diameters, oscillating frequency, 

and stroke are the parameters by which the desired turbulent kinetic energy and tur­

bulent length scale were adjusted. Figure 2.3 shows the flammable mass fraction of 

methane. The cases with '20 Hz, stopped while injecting produces a little faster in­

crease of mass fraction of mixed methane than the jet injected into quiescent chamber 



Tirae{i) •flawftO 7ln»(s) 

Fig. 2.2: Mixing rate for cases with equal momentum injection rate and equal mass 
injection rate [1]. 

air. 

Measured data of penetration depth of methane are shown in Figure 2.4. Linear 

dependency between penetration depth and square root of time are clearly depicted. 

Tsujimura et al. [15] studied development and combustion characteristics of hydrogen 

jets in a constant volume vessel. The effects of injection duration, pressure and orifice 

diameter on the discharge coefficient and mass flow rate were examined, and the 

following observation can be made: 

• When the injection pressure is about twice of the ambient gas pressure, the discharge 

coefficient is approximately constant and the mass flow rate increases in proportion 

to the injection pressure. 

• The orifice diameter has no effect on the discharge coefficient, and the mass flow 

rate depends linearly on the cross section area of the orifice. 

• The injection pressure has a weak effect on the jet penetration, dispersion angle, 

and average equivalence ratio under the experimental conditions. 
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Fig. 2.3: Changes of percentage of flammable methane with penetration depth. [2]. 
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Fig. 2.4: Penetration depth vs. square root of time [2]. 

• Under relatively higher ambient gas density conditions, the hydrogen jet is incapable 

of developing in the axial direction. But the jet can entrain a great amount of the 

ambient gas, causing the significant decrease in the average equivalence ratio of the 
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jet. 

• As the hydrogen jet is injected through a smaller orifice, the average equivalence 

ratio in the jet significantly decreases. 

Tomita et al. [7] used a CCD camera to measure spatial and temporal changes of air 

entrainment into the hydrogen jet. Hydrogen was injected through an electromagnet-

ically controlled injector, which is widely used for the injection of gasoline into the 

intake port in spark-ignition engines. The results show that total air mass entrained 

into the flame jet is nearly equal to that into the cold jet. The rate of entrainment 

per unit area of the flame is smaller than that in the cold jet. When a transient jet is 

separated into side and front parts, the rate of air mass entrained from the front part 

of the jet decreases with time while the rate into the side of the jet per unit area is 

almost the same. 

Schlieren method and Rayleigh scattering were used by Koyanagi et al. [16] to visualize 

mixture formation of hydrogen and measure local concentration of hydrogen. The 

mixture formation was also studied by Kaiser and White [17] using acetone Planar 

Laser-Induced Fluorescence (PLIF) and Particle Image Velocimetry (PIV) in a single-

cylinder engine fueled with hydrogen. 

Studies on the effect of bulk motion of air on mixture formation are limited to in­

ternal combustion engines with liquid fuel spray. Stansfield et al. [18] investigated 

the in-cylinder flow structure DI gasoline engine over realistic engine speeds using 

PIV analysis. Tumbling and Swirling motion created in a four-valve SI engine using 

different shapes of the intake valves were studied by Baumgarten et al. [9] and Li 

et al. [14]. Hong and Trang [19] and Shuliang et al. [13] employed Laser Doppler 

Velocimetry (LDV) to determine tumble flow field in SI engine. 
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Chapter 3 

Simulation in KIVA 

In order to analyze the effects of bulk motion of air, injection velocity, injection time, 

and chamber geometry, two simulation matrices were set up as listed in Table 3.1 

and Table 3.2 for methane and hydrogen, respectively. The variable parameters are: 

a) the chamber geometry, fixed volume chambers (cubic or cylindrical) or variable 

volume chamber (cylindrical chamber with moving piston), b) the magnitude and 

direction of the bulk motion of air, (swirl with axis of rotation parallel to axis of 

piston, and tumble with axis of rotation normal to the axis of piston). Five levels 

of tumbling and swirling motion were imposed during the simulations. The ratio of 

angular velocity of the bulk motion of air to that of the engine is called swirl ratio 

(SR), or tumble ratio (TR) depending on their axis of rotation. In the case of fixed 

volume, an arbitrary swirl ratio (ASR) and an arbitrary tumble ratio (ATR) were 

defined in which the angular velocity corresponds to an engine with rpm of 2400. 

Other parameters are c) injection velocity, uinj and, d) injection time, tinj. These 

two quantities are related to each other, their values are selected based on intake port 

injection and the assumption that if the mixture is perfectly mixed the equivalence 

ratio lies between (j> »s 0.8 — 0.9. The final parameter is e) start of injection tsinj, which 

sets the beginning of gaseous injection in the code and is used only for the variable 

volume chamber with moving piston. Two sets of data are obtained for the cylindrical 

chamber with moving piston. In the first case, injection starts from £siflJ- = 0.0 and 
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in the second case injection starts when the piston goes half way up to the top dead 

center (TDC), tSinj — 6.25 (ms). Methane and hydrogen we selected as the gaseous 

fuel jet because of their simple chemical structure and their low flame temperature 

the y have potential to reduce emissions. The values of injection time and injection 

velocity were selected based on intake port injection. 

Overall 88 cases (44 hydrogen injection, 44 methane injection) were simulated in this 

study. 
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Table 3.1: Simulation matrix - CH4 

Case 
CHA-\ 
CH4-2 
CH4-3 
CHA-A 
CHA-h 
CHA-6 
CH4-7 
CH4-8 
CHA-9 
CHA - 10 
CH4 - 11 
CHA - 12 
CHA - 13 
CH4 - 14 
CHA - 15 
CHA - 16 
CHA - 17 
CH4 - 18 
CH4 - 19 
CH4 - 20 
CHA - 21 
CH4 - 22 
CHA - 23 
C # 4 - 24 
C F 4 - 25 
C # 4 - 26 
C # 4 - 27 
CH4 - 28 
C # 4 - 29 
C # 4 - 30 
Cfl4 - 31 
CH4 - 32 
CH4 - 33 

Chamber 
Cubic 
Cubic 
Cubic 
Cubic 
Cubic 
Cubic 
Cubic 
Cubic 
Cubic 
Cubic 
Cubic 

Cylindr 
Cylindr 
Cylindr 
Cylindr 
Cylindr 
Cylindr 
Cylindr 
Cylindr 
Cylindr 
Cylindr 
Cylindr 

cal 
Leal 
cal 
cal 
cal 
cal 
ical 
cal 
ical 
cal 
ical 

Cylindrical - moving 
Cylindrical - moving 
Cylindrical - moving 
Cylindrical - moving 
Cylindrical - moving 
Cylindrical - moving 
Cylindrical - moving 
Cylindrical - moving 
Cylindrical - moving 
Cylindrical - moving 
Cylindrical - moving 

SR 
0.0 
0.5 
1.0 
1.5 
2.0 
2.5 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.5 
1.0 
1.5 
2.0 
2.5 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.5 
1.0 
1.5 
2.0 
2.5 
0.0 
0.0 
0.0 
0.0 
0.0 

TR 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.5 
1.0 
1.5 
2.0 
2.5 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.5 
1.0 
1.5 
2.0 
2.5 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.5 
1.0 
1.5 
2.0 
2.5 

uinj(m/s) 
150 
150 
150 
150 
150 
150 
150 
150 
150 
150 
150 
150 
150 
150 
150 
150 
150 
150 
150 
150 
150 
150 
150 
150 
150 
150 
150 
150 
150 
150 
150 
150 
150 

t sin j (JUS) 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

tinj(ms) 
10.0 
10.0 
10.0 
10.0 
10.0 
10.0 
10.0 
10.0 
10.0 
10.0 
10.0 
10.0 
10.0 
10.0 
10.0 
10.0 
10.0 
10.0 
10.0 
10.0 
10.0 
10.0 
10.0 
10.0 
10.0 
10.0 
10.0 
10.0 
10.0 
10.0 
10.0 
10.0 
10.0 
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Table 3.1 Simulation matrix - CH4 cont. 

Case 
CH4 - 34 
CH4 - 35 
CH4 - 36 
CH4 - 37 
CH4 - 38 
CH4 - 39 
CH4 - 40 
CH4 - 41 
C # 4 - 42 
CH4 - 43 
C # 4 - 44 

Chamber 
Cylindrical - moving 
Cylindrical - moving 
Cylindrical - moving 
Cylindrical - moving 
Cylindrical - moving 
Cylindrical - moving 
Cylindrical - moving 
Cylindrical - moving 
Cylindrical - moving 
Cylindrical - moving 
Cylindrical - moving 

SR 
0.0 
0.5 
1.0 
1.5 
2.0 
2.5 
0.0 
0.0 
0.0 
0.0 
0.0 

TR 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.5 
1.0 
1.5 
2.0 
2.5 

uinj(m/s) 
300 
300 
300 
300 
300 
300 
300 
300 
300 
300 
300 

T'sinjyW'S) 

6.25 
6.25 
6.25 
6.25 
6.25 
6.25 
6.25 
6.25 
6.25 
6.25 
6.25 

tinj(ms) 
5.0 
5.0 
5.0 
5.0 
5.0 
5.0 
5.0 
5.0 
5.0 
5.0 
5.0 

Table 3.2: Simulation matrix - # 2 

Case 
# 2 - l 
# 2 - 2 
# 2 - 3 
# 2 - 4 
# 2 - 5 
# 2 - 6 
# 2 - 7 
# 2 - 8 
# 2 - 9 
# 2 - 1 0 

# 2 - 1 1 

# 2 - 1 2 
# 2 - 1 3 
# 2 - 1 4 

# 2 - 1 5 
# 2 - 1 6 
# 2 - 1 7 
# 2 - 1 8 
# 2 - 1 9 
# 2 - 2 0 
# 2 - 2 1 
# 2 - 2 2 

Chamber 
Cubic 
Cubic 
Cubic 
Cubic 
Cubic 
Cubic 
Cubic 
Cubic 
Cubic 
Cubic 
Cubic 

Cylindr 
Cylindr 
Cylindr 
Cylindr 
Cylindr 
Cylindr 
Cylindr 
Cylindr 
Cylindr 
Cylindr 

ical 

ical 

ical 

ical 

ical 

ical 

ical 

Leal 

ical 

ical 

Cylindrical 

SR 
0.0 
0.5 
1.0 
1.5 
2.0 
2.5 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.5 
1.0 
1.5 
2.0 
2.5 
0.0 
0.0 
0.0 
0.0 
0.0 

TR 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.5 
1.0 
1.5 
2.0 
2.5 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.5 
1.0 
1.5 
2.0 
2.5 

uinj(m/s) 
150 
150 
150 
150 
150 
150 
150 
150 
150 
150 
150 
150 
150 
150 
150 
150 
150 
150 
150 
150 
150 
150 

tsinjvH'S) 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

tinj(ms) 
20.0 
20.0 
20.0 
20.0 
20.0 
20.0 
20.0 
20.0 
20.0 
20.0 
20.0 
20.0 
20.0 
20.0 
20.0 
20.0 
20.0 
20.0 
20.0 
20.0 
20.0 
20.0 



Table 3.2 Simulation matrix - # 2 cont. 

Case Chamber SR TR u. inj (m/s) Tginj{TnSj 

Ha-23 Cylindrical - moving 0.0 0.0 300 0.0 
# 2 - 2 4 Cylindrical - moving 0.5 0.0 300 0.0 
Ho - 2 5 Cylindrical - moving 1.0 0.0 300 0.0 
# 2 - 2 6 Cylindrical - moving 1.5 0.0 300 0.0 
Ho-27 Cylindrical - moving 2.0 0.0 300 0.0 
Ho-28 Cylindrical - moving 2.5 0.0 300 0.0 
F 2 - 2 9 Cylindrical - moving 0.0 0.5 300 0.0 
# 2 - 3 0 Cylindrical - moving 0.0 1.0 300 0.0 
# 2 - 3 1 Cylindrical - moving 0.0 1.5 300 0.0 
# 2 - 3 2 Cylindrical - moving 0.0 2.0 300 0.0 
# 2 - 3 3 Cylindrical - moving 0.0 2.5 300 0.0 
# o - 3 4 Cylindrical - moving 0.0 0.0 450 6.25 
# 2 - 3 5 Cylindrical - moving 0.5 0.0 450 6.25 
# 2 - 3 6 Cylindrical - moving 1.0 0.0 450 6.25 

# o - 3 7 Cylindrical - moving 1.5 0.0 450 6.25 
# o - 3 8 Cylindrical - moving 2.0 0.0 450 6.25 
# 2 - 3 9 Cylindrical - moving 2.5 0.0 450 6.25 

# o - 4 0 Cylindrical - moving 0.0 0.5 450 6.25 
# o - 4 1 Cylindrical - moving 0.0 1.0 450 6.25 
# 2 - 4 2 Cylindrical - moving 0.0 1.5 450 6.25 
# 2 - 4 3 Cylindrical - moving 0.0 2.0 450 6.25 
# 2 - 4 4 Cylindrical - moving 0.0 2.5 450 6.25 
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3.1 KIVA 

The numerical simulations were carried out using the commercial code, KIVA3V [20]. 

KIVA3V, written in F77, a general-purpose, procedural, imperative programming lan­

guage that is especially suited to numeric computation and scientific computing, has 

the ability to calculate the transient three-dimensional dynamics of evaporating fuel 

sprays interacting with flowing multi-component gases undergoing mixing, ignition, 

chemical reactions, and heat transfer. 

Since KIVA was developed with application to internal combustion engines in mind, 

it contains several features designed to facilitate such applications. However, the ba­

sic code structure is modular and quite general, and most major options (chemical 

reactions, sprays, etc.) can be individually activated or deactivated by setting ap­

propriate values for the associated input switches. The code is therefore applicable 

to a wide variety of multi-dimensional problems in fluid dynamics, with or without 

chemical reactions or sprays. 

KIVA solves the unsteady equations of motion of a turbulent, chemically reactive 

mixture of ideal gases, coupled to the equations for a single -component vaporizing 

fuel spray. The gas phase solution procedure is based on a finite volume method called 

the ALE (arbitrary Lagrangian Eulerian) method. Spatial differences are formed on 

a finite-difference mesh that subdivides the computational region into a number of 

small cells that are hexahedrons. The corners of the cells are called vertices, and the 

position of the vertices may be arbitrary specified functions of time, thereby, allowing 

a Lagrangian, Euierian, or mixed description. The arbitrary mesh can conform to 

curved boundaries and can move to follow changes in combustion chamber geometry. 

A strength of the method is that the mesh need not to be orthogonal. The spatial 

differencing is made conservative wherever possible. The procedure used is to differ­

ence the basic equations in integral form, with the volume of a typical cell used as 
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the control volume, and with divergence terms transformed to surface integrals using 

the divergence theorem. The Cartesian components of the velocity vector are stored 

at cell vertices, and the momentum equations are differenced in a strictly consecra-

tive fashion. In contrast to the original ALE method, however, cell faced velocities 

are used during a portion of the computational cycle. Their use greatly reduces the 

tendency of the ALE method to parasitic velocity modes, thereby largely eliminating 

the need for node coupler. 

The transient solution is marched out in a sequence of finite time increments called 

cycle or time steps. On each cycle the value of the dependent variables are calculate 

from those of previous cycle. As in the original ALE method, each cycle is divided 

into two phases, a Lagrangian phase and a rezone phase. In the Lagrangian phase the 

vertices move with the fluid velocity, and there is no convection across cell bound­

aries. In the rezone phase, the flow field is frozen, the vertices are moved to new 

user-specified positions, and the flow field is remapped or rezoned onto the new com­

putational mesh. This remapping is accomplished by convecting material across the 

boundaries of the computational cells, which are regarded as moving relative to the 

flow field [20]. 

The temporal difference scheme in KIVA3V is implicit. Thus, the time steps are 

calculated based on accuracy, not stability criteria. In the Lagrangian phase, implicit 

differencing is used for all the diffusion terms and the terms associated with pressure 

wave propagation. The coupled implicit equations are solved by a method similar 

to the SIMPLE algorithm, with individual equations being solved by the conjugate 

residual method. 

Explicit methods are used to calculate convection in the rezone phase, but the convec­

tion calculation can be sub-cycled an arbitrary number of times, and thus the main 

computational time-step is not restricted by the Courant stability condition of ex­

plicit methods. The convection time step is a sub-multiple of the main computational 
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time step and does satisfy the Courant condition. Partial donor cell differencing and 

quasi-second-order upwind (QSOU) can be used for convection. QSOU is monotone 

and approaches second-order accuracy when convecting smooth profiles. While more 

accurate than partial donor cell differencing, QSOU it is more time-consuming. In 

this work, partial donor cell differencing is used for convection terms. 

Two models are available to represent the effects of turbulence in KIVA3V. The 

standard k — e turbulence model is used in this study. The standard k — e turbulence 

model was modified to include volumetric expansion effects and spray/turbulence 

interactions. The second turbulence model in KIVA3V is a modified version of the 

subgrid scale (SGS) model. The SGS model reduces to the k — e model near the walls 

where all turbulence length scales are too small to be resolved by the computational 

mesh. Boundary layer drag and wall heat transfer are calculated by matching to a 

modified turbulent law of the wall [20, 21]. 

Hill and Ouellette [12], among others, have reported that the k — e turbulence model 

leads to an over-estimation of the spreading rate (jet half width / distance from the 

nozzle) of steady-state turbulent jets. For round free jets of air into air, the turbulence 

model is reported to predict a spreading rate of 0.11, while the accepted experimental 

value is 0.085 — 0.09. The reason for the inaccuracy is related to the assumption of 

isotropy in modeling the turbulence. The assumption apparently does not hold for 

jets, in which normal strain differ from aligned strain. Although algebraic corrections 

have been proposed for steady-state turbulent jet modeling, they require knowledge of 

the jet centerline location and conditions. This may be difficult to obtain in complex, 

varying geometries such as engine combustion chambers. The equations of motion of 

the fluid phase and boundary conditions employed in KIVA3V are given in Appendix 

A. 

The error in the calculation for all the variables is 10~3 except pressure 10~4. These 

are the values recommended by KIVA. If tighter convergence is needed less values are 
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advised. The time step in each cycle is set to be 10 
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3.2 Computational Geometries 

Two fixed volume chambers and one variable volume chamber with moving piston 

are the geometries used to study mixture formation in a transient gaseous fuel jet 

injection, as shown in Figure 3.1. Cubic and cylindrical chambers are considered 

as the constant volume chambers. Their dimensions were chosen so that the total 

volume to be the same. The cube has the dimensions of 10 cm x 10 cm x 10 cm, 

the diameter of the cylinder is 10 cm with the height of 12.73 cm, making the total 

volume of each chamber, 1 L. The variable volume chamber has the same dimension 

as the fixed cylindrical chamber when the piston is at bottom dead center (BDC). 

The stroke is 11.457 cm and the clearance height is 1.273 cm, giving the compression 

ratio of 10 (rv = 10). The crankshaft rotates with an rpm of 2400. 

Fig. 3.1: Fixed and variable volume chambers 

The injector is located on the top wall of the chambers with a radius of 4 mm. In the 

fixed chamber a group of 6 x 6 cells are used to mesh the injector, while for variable 

volume chamber 8 cells were used across the injector. 

In mesh sensitivity analysis section the effect of number of nodes along each side of 

the cubic and cylindrical chamber on volume of flammable mixture is examined. 
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3.3 Boundaries and Initial Conditions 

The initial and boundary conditions employed in the numerical simulation are listed 

in Table 3.3 for the air inside the chamber, and Table 3.4 for the transient gaseous 

fuel jet. Before injection occurs, a bulk motion of air was provided using a Bessel 

function to represent velocity profile. The reference engine rpm used in this study is 

2400. Therefore, the angular momentum provided by the bulk motion of air is defined 

relative to angular momentum of air in an engine runs on rpm of 2400. 

Table 3.3: Boundary conditions for chamber walls and air inside the chamber 

Chamber walls temperature 
Air temperature 
Air pressure 
Air composition (mass fraction) 

o2 
N2 

co2 
H20 

Turbulent kinetic energy 
Turbulent length scale 

293.15 K 
293.15 if 

1.0 x 105 Pa 

0.22 
0.76 
0.13 
0.09 

0.1 cm? / s2 

0.1cm 

Table 3.4: Boundary and initial conditions for the gaseous fuel jet 

Injection velocity 150 m/s — 450 m/s 
Temperature 293.15 K 
Pressure 1.0 x 105 Pa 
Turbulent length scale 0.1cm 

Bessel-function bulk motion of air velocity profile 

Internal combustion engines are designed to create a significant amount of swirl/tumble 

in the incoming air, to aid in turbulent mixing and enhance combustion efficiency. 

The simplest model assumes that the swirl/tumble velocity has a wheel-flow profile, 
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but this is not usually a realistic assumption, as the turbulent wall boundary layer 

forces the swirl/tumble velocity to decrease in the wall region. From experimental 

observation, modelers have determined that a Bessel function profile more accurately 

represents the flow. Figure 3.2 illustrates the Bessel function velocity profile provided 

in KIVA and compares it with wheel flow for the same swirl number. The quan­

tity a is a dimensionless constant that defines the initial azimuthal velocity profile 

and lies between 0.0 (the wheel flow limit) and 3.83 (zero velocity at the wall). A 

value suggested by Wahiduzzaman and Ferguson [22] for typical engine applications 

is about 3.11. The Bessel function profile is defined so that it gives the same angular 

momentum as wheel flow with the same swirl number. Thus, the initial slope of the 

a = 3.11 curve is necessarily higher than the corresponding slope for wheel flow. 

A second input quantity, SWIRL, is the initial swirl ratio of air rpm to crankshaft 

rpm. On the other hand, it indicates how much faster the bulk motion of air is 

rotating compare to engine rpm. 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
r/R 

Fig. 3.2: Bessel function swirl velocity profile provided in KIVA setup. 
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In Figure 3.3 the streamlines of bulk motion of air are shown at the initial time. 

Considering the fact that tumble and swirl ratios are defined based on engine rpm, 

an arbitrary tumble and swirl ratio were defined for the fixed cubic volume cases. 

Thus, in fixed cubic and cylindrical chambers, the angular momentum of air inside 

the chamber corresponds to an engine working with the rpm of 2400 as a reference 

engine speed. 

The general formula for the Bessel function appearing in angular momentum is given 

by, 
2 

a — —Ji(a) — Jo(a) (3.1) 
a 

where Jx and J0 are the Bessel functions of order one and zero respectively. The value 

of 3.11 is used for a in the calculations. 

The zero and first order Bessel functions are approximated as follows [21], 

(ri+x2(r2+x2(r3+x2(r4,+x2(r5+rex2))))) 
(S1+X2(S2+X2(S3+X2(S4+X2(S5+S6X

2))))) \x\ < 8.0 

Jn(x) = < (3.2) 

y/0.636619772/aa;(cos(xxn) (pi + y(p2 + y{p3 + y(P4+P5y)))) 

-zsin(a;xn)(gi + y(q2 + y(q3 + y(qi + yqs))))) M > 8.0 

where 

ax 

z 

y 

XXQ 

\x\ 

8.0/|a;| 

2 

(3.3) 

= z 

= \x\ - 0.7854 
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Fig. 3.3: Streamlines and velocity profile of bulk motion of air at the initial time. 
(a),(b) swirl profile in cylindrical chamber, (c),(d) tumble profile in cylindrical cham­
ber, (e),(f) tumble/swirl profile in cubic chamber. 
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xxx = \x\ - 2.3562 

The constants Pi, %, r,, Si are listed in Table 3.5. 

Table 3.5: Constants used in Bessel functions approximations 

Jo 
Jl 

Jo 
Jl 

Jo 
Jl 

Jo 
Jl 

Pi 
1.0 
1.0 

9i 
-1.5624e-02 
4.6874e-02 

n 
5.7568e+10 
7.2362e+10 

«1 

5.7568e+10 
1.4475e+ll 

P2 
-1.0986e-03 
1.8310e-03 

92 
1.4304e-04 
-2.0026e-04 

T2 

-1.3362e+10 
-7.8950e+09 

S2 

1.0295e+09 
2.3005e+09 

P3 
2.7345e-05 
-3.5163e-05 

93 
-6.9111e-06 
8.4491e-06 

r3 

6.5161e+08 
2.4239e+08 

S3 

9.4946e+06 
1.8583e+07 

PA 
-2.0733e-06 
2.4575e-06 

94 
7.6210e-07 
-8.8228e-07 

r4 

-1.1214e+07 
-2.9726e+06 

s4 

5.9272e+04 
9.9447e+04 

P5 
2.0938e-07 
-2.4033e-07 

95 
-9.3494e-08 
1.0578e-07 

r5 

7.7393e+04 
1.5704e+04 

S5 

2.6785e+02 
3.7699e+02 

r% 
-1.8490e+02 
-3.0160e+01 

s& 
1.0 
1.0 

Gaseous injection model 

The original KIVA3V code is only able to model liquid fuel sprays and does not sup­

port gaseous fuel injection. Thus, for this study, the original code has been modified 

and several subroutines have been added to the original code to make gaseous fuel 

injection possible. 

A group of 6 x 6 cells for fixed volume and 8 x 8 for variable volume chamber located 

on the top wall of the chambers, are selected to represent the circular cross section of 

the injector nozzle exit. These cells will be referred to as 'injector cells'. The radius of 

the nozzle exit is 4mm. Gas injection occurs through a const ant-velocity boundary. 

This is done by specifying the faces of the injector cells as inflow boundary supplying 

normal velocity of Uinj (injection velocity). 

Additional properties are also required for gaseous injection such as specific turbulent 

28 



kinetic energy fco, length scale le0, and reference species mass density pmQ. The refer­

ence density of different species is at reference pressure Po and the density imposed 

at the inflow boundary for species m is obtained from [20], 

Pm,in = Pmo{p/Po)lhamb ( 3 - 4 ) 

where p is the calculated pressure in the injection cells and iamb 1S the ratio of specific 

heats of the inflow gas. Therefore, the species mass fraction and the entropy of the 

incoming fluid at the inflow boundary are imposed with the densities obtained by 

extrapolation from isentropic gas relation. The gas pressure is calculated by 

p = R0TY,(Pm/Wm). (3.5) 
m 

The inflow internal energies are obtained from pressure p and densities pm,in using 

the state equation, 

I(T) = R0T^2(pJp).Im(T) (3.6) 
m 

For computational time lies between tsinj (start of injection) and tSinj + Unj, injection 

parameters are introduced as source terms into boundary cells of the computational 

domain, the injector cells. Injection mass within the interval of [tSinj, tsinj + Unj] is 

updated using the following equations, 

Pic,n+1 = Pic,n H j (."*•') 

, Vflin.OX , . 
Pm,ic,n+1 — Pm,ic,n i ', V"*"/ 

vOvir^n, 
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T^in — Pin-™-Uinj (3.9) 

V0lic^n (3.H) 

where 'ic' denotes "injector cells". The velocity has only normal component to the 

injector cells, 

uic,n+l = U-ic,n == Uinj-® (3.12] 

where b is the normal vector to the injector cells. 
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3.4 Mesh Sensitivity 

It is generally agreed that adequate resolution is required to reproduce the structure 

of gas jets in numerical computations. Abraham [23] concluded that the resolution 

appears to be adequate for gaseous jets when the grid size is at least the size of orifice 

radius. This suggests that at least two cells across the nozzle exit are required. Hill 

and Ouellette [12] conducted numerical experiments regarding the grid size effect and 

concluded that changing number of cells within the nozzle from two to four caused 

only 1 % reduction in the normalized penetration rate. 

The effect of grid size on flammable mixture volume was studied by generating two 

adjustable cubic and cylindrical chambers, as shown in Figure 3.4. The two chambers 

were generated for the purpose of mesh sensitivity analysis in K3PREP, the mesh 

generation package available in KIVA3V. The cubic chamber consisted of 27 blocks 

patched together. Distribution of the nodes is uniform. The cylindrical chamber had 

3 blocks in 3 rows. The radius and height are the parameters that can be specified. 

The results of mesh sensitivity analysis are shown in Table 3.6 and Table 3.7 for cubic 

and cylindrical chambers, respectively. The length of each segment and the number 

of nodes used to nodes along them are shown for each case are listed. In the first two 

cases, the mesh is finer near the injector but in the third case the grid is uniform. The 

results show that the volume of flammable mixture changes slightly when the finer 

mesh is used. Number of cells across the nozzle as mentioned before is good enough 

to model the mixing process. 
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(a) (b) 

Fig. 3.4: Two geometries used to study mesh sensitivity 

Table 3.6: Result of mesh sensitivity analysis for cubic mesh 

Axi = Ay2 

Ax2 = Ay1 

h 
h2 

h3 

TV • 
1 ymj 

'flammable 

casei 
40 mm/32 
20 mm/18 
10 mm/9 

40 mm/33 
50 mm/38 

8 

87.5% 

case ii 
40 mm /26 
20 mm/16 
20 mm/17 
40 mm/30 
40 mm/28 

6 
87.9% 

case Hi 
40 mm/40 
20 mm/20 
30 mm/30 
30 mm/30 
30 mm/30 

8 

88.1% 

Table 3.7: Result of mesh sensitivity analysis for cylindrical mesh 

An 
Ar2 

Ar3 

hi 
h2 

h 
TV- • 
1 smj 

* flammable 

casei 
10 mm/9 

40 mm/34 
50 mm/38 
10 mm/9 

40 mm/33 
50 mm/38 

8 
96.2% 

case ii 
20 mm 17 

40 mm/30 
40 mm/28 
20 mm/17 
40 mm/30 
40 mm/28 

6 
95.1% 

case Hi 
10 mm/10 
40 mm, 40 
50 mm/50 
30 mm/30 
30 mm/30 
30 mm/30 

8 
97.1% 



Chapter 4 

Results 

4.1 Volume of flammable mixture for fixed volume chambers 

Volume of flammable mixture is plotted versus time in Figures 4.1 to 4.8 for the 

fixed volume chambers at six different levels of angular momentum. The injection 

duration for methane and hydrogen is 10 ms and 20 ms respectively. The start of 

injection is from time 0. After the end of injection, the mixture formation between 

air inside the chamber and injected methane continues for another 30 ms, and for 

50 ms for hydrogen jet. Thus, the total simulation time is 40 ms and 70 ms. The 

results show that the process of mixing can be divided into two stages. The first 

stage happens during injection of fuel. In this stage, most of the mixing has taken 

place. In the second stage which mixture formation is slower than the first stage, the 

mixing process is more dependent on the momentum of the bulk motion. It should 

be noted that, because of the very short time of injection, diffusion process does not 

have a significant effect in the mixing process. 

Mixing of hydrogen and air in all the cases is faster and more dependent on ASR 

or ATR. It is worthwhile to mention that the flammable limit of hydrogen covers a 

wider range of equivalence ratios (0.1 — 7.1) than does methane (0.5 — 2). That is the 

main reason that makes the creation of flammable mixture faster for hydrogen tahn 
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with methane. 

The effect of geometry on mixture preparation is studied using two different geome­

tries, cubic and cylindrical. The total volume of each chamber is 1 L. The results 

for injection of hydrogen and methane in the cubic and cylindrical chamber show 

that mixture formation in the cylindrical chamber is much faster than in the cubic 

chamber and also mixing is greatly affected by the molecular weight of gaseous fuel. 

In Figures 4.10 and 4.11, the contour of mass fraction and streamlines are shown. It 

is clear that the bulk motion of air pushes methane to the wall and makes a very rich 

region near the wall while it traps hydrogen in a cylindrical shape region filled with 

fuel. Another drawback of the cubic chamber that should be mentioned are the four 

sharp corners of the cube. At some ASR or ATR, the fuel is trapped in the small 

vortices in the corners and does not take part in mixture formation. 

Figures 4.12 to 4.15 compare volume of flammable mixture at two minimum and 

maximum tumble and swirl ratios for hydrogen and methane. In the cubic chamber 

the mixing formation of methane at minimum and maximum ASR and ART is similar 

to that of hydrogen where there is no bulk motion. As mentioned earlier, molecular 

weight of the injected fuel plays the important role during mixture formation in the 

cubic chamber. 

Figure 4.12 and Figure 4.14 show flammable mixture volume has slightly changes 

for different level of tumble or swirl ratio . From an engine point of view, although 

methane does not create a flammable mixture in the cubic chamber as in the cylin­

drical chamber, the distribution of fuel and creation of a rich region near the wall, 

makes the cubic chamber a good choice for applications where stratified charge is 

needed near the spark plug. The purpose behind stratified charge engines is to have 

a readily ignitable mixture in the vicinity of the spark plug, and a weaker (possibly 

non-ignitable) mixture in the reminder of the combustion chamber. 
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Fig. 4.1: Volume of flammable mixture vs. time at different swirl ratios in constant 
cubic volume chamber; Uinj = 150 m/s, tinj = 10 ms, tsinj = 0. 
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(c) t = 20ms 

(d) t = 40 ms 

Fig. 4.9: Mass fraction contours of CH4 in a plane cut through the injector at different 
times; ASR — 3, Uinj = 150 m/s, tinj = 10 ms, tsinj — 0. 
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(c) t = 20 ms 

(d) t = 40ms 

Fig. 4.10: Mass fraction contours of CH4 in a plane cut through the injector at 
different times; ATR = 3, Uinj = 150 m/s, tinj = 10 ms, t3inj = 0. 
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(e) t = 70ms 

Fig. 4.11: Mass fraction contours of H2 in a plane cut through the injector at different 
times. ATR = 3, Uinj = 150 ra/s, tinj = 20 ms, tsinj- = 0. 
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4.2 Volume of flammable mixture for variable volume cham­

ber 

The impact of a moving piston on mixture formation is simulated only in the cylin­

drical chamber. The crankshaft rotates with rpm of 2400. There are two sets of 

results. In the first set, the start of injection is at the start of simulation (tSinj — 0), 

whith the piston is located at BDC. In the second case, the injection starts when the 

piston has moved half way up, (tsinj = 6.25 ms). The results presented here are at 6 

tumble/swirl ratios for the both sets. 

Figures 4.16 to 4.19 show the volume of flammable mixture vs. time for methane 

and hydrogen at different swirl ratios. For both gases, increasing the level of swirl 

does not lead to better distribution of fuel. The reason is that while the piston moves 

up because angular momentum should be conserved, it makes the bulk.motion of air 

rotate faster. The fuel is trapped inside the bulk motion and there is less chance to 

mix with surrounding air. On the other hand, having a greater level of tumble helps 

the mixing process, as shown in Figure 4.17 and Figure 4.19. 

The effects of start of injection , tsinj, is presented in Figures 4.20 to 4.23. The results 

show the same behavior of flammable mixture formation as when the injection begins 

at tSinj = 0 and swirl motion is present in the chamber. But there are no changes 

in volume of flammable mixture when different levels of tumble are imposed inside 

the chamber. The main reason for this is the disappearance of tumbling motion in 

the compression stroke. This will be discussed when the results showing the decay of 

angular momentum are presented. 

The volume of flammable mixture at maximum and minimum swirl and tumble ratio 

are shown in Figures 4.24 to 4.27 for two different injection time. Mixing of hydrogen 

and air in all cases are faster than methane and air. It is also clear mixture formation 

during late injection is faster when the fuel was injected at t = 0. 
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4.3 Mixing Rate vs. time 

Mixing rate at lowest and highest level of angular momentum for injection of methane 

and hydrogen are shown in Figures 4.28 to 4.31 in fixed volumes , cubic and cylindrical 

chambers. The mixture rate is higher where the air inside the chamber has a tumbling 

motion. It is also clear form the figures that the mixing rate has its high value during 

the injection period. The mixing rates for hydrogen are more sensible to the injection 

and and duration while mixing rate curves for methane slightly go up and then keep 

almost constant during mixing. 

Mixing rates vs. time in cylinder with moving piston for maximum and minimum 

level of magnitude of bulk motion of air are shown in Figures 4.32 and 4.33 when the 

gaseous jet was injected at t = 0, and Figures 4.34 and 4.35 when injection time was 

set at t = 6.25 ms. The rate of mixing is much closer compared to the fixed chambers 

considering hydrogen and methane as the injected fuel jet. Higher mixing rates are 

achieved when injection begins after half of the compression. 
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4.4 Angular Momentum Behavior 

The behavior of angular momentum is shown in Figures 4.36 and 4.37. The calcula­

tion were done on a plane. Calculation of tumble were done on a plane cut through 

the injector and for swirl in a moving plane located in the center between cylinder 

head and piston. The results represent the angular momentum change at different 

swirl and tumble ratios in the cylindrical chamber with moving piston. It is clear that 

tumbling motion of air decays faster than swirling motion. While tumbling motion 

almost disappears during the expansion stroke, swirling motion shows an increase 

during compression and then it decreases when the piston goes from TDC to BDC. 

It should be noted that the flammable charge of air and fuel in most of the engine ap­

plications is provided during the compression stroke, and ignited slightly after TDC. 

Ignition after TDC prevents negative work created by combustion pressure. There­

fore, car manufacturing companies and researchers are becoming more interested in 

providing tumbling motion in the cylinder, because of its better effect in mixture 

formation. 

Injection of gaseous fuel adds angular momentum to the bulk motion of air having 

tumbling rotation. The jet travels through the bulk motion and divides it into two 

vortices rotating on each side of the jet. Movement of the piston toward TDC makes 

them disappear. There is no bulk motion of air in the expansion stroke. 

When swirling motion is available in the cylinder, injection of gaseous fuel does not 

have as much effect as the movement of the piston. Conservation of angular momen­

tum makes it rotates faster but, since its axis is the same as the injector nozzle, it 

can not enhance mixing as expected. 

The angular momentum integrated in total volume are shown in Figures 4.40 to 4.43. 

The effect of injection on the swirling and tumbling motion are also shown in Fig­

ure 4.44 and Figure 4.45. The results show the huge influence of bulk motion by 
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the injection process. The injection becomes more important when it comes to the 

tumbling motion. 
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chamber with moving piston. Uinj = 300m/s, tinj = 5ms, tSinj = 6.25ms, calculated 
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Chapter 5 

Conclusions and Recommendations 

5.1 Conclusions 

In this study the effects of angular momentum (tumble and swirl) on flammable 

mixture formation between chamber air and transient gaseous jets of hydrogen and 

methane were numerically investigated in fixed volumes, cubic and cylindrical cham­

bers, and in a variable volume cylindrical chamber with moving piston. The mag­

nitude of the angular momentum, injection duration, and injection velocity are the 

main parameters whose effects were studied on flammable mixture formation and 

mixing rate. The numerical simulations were carried out with the use of KIVA3V. 

The code is modified for gaseous injection with standard k — e model for turbulence. 

The geometries employed in this work were created with K3PREP, the mesh gener­

ation package available in KIVA3V. The fixed volume chambers are selected so that 

they have the same total volume. The variable volume chamber is identical to the 

fixed cylindrical chamber when the piston is located at BDC. The crankshaft rotates 

with rpm of 2400 and the compression ratio is 10. Mesh sensitivity analysis has also 

been carried out. 

• The results show that employing a finer mesh not significantly change the vol­

ume of flammable mixture. 
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• Increasing tumble or swirl ratio leads to better mixture formation in fixed vol­

umes, while in the cylindrical chamber with moving piston there is an optimum 

value for the ratio of angular momentum of air to that of engine rpm. Further­

more, it was found that tumbling motion of air serves better than swirl motion 

in mixture preparation in all the cases under study. 

• The impact of type of the geometry was studied by injecting gaseous fuel into 

two fixed volume, cubic and cylindrical chambers. Better mixing is obtained in 

the cylindrical chamber. 

• The evolution of angular momentum of swirling and tumbling motion in the 

cylindrical chamber with moving piston, was numerically modeled. The results 

show the following: 

1) An increase of angular momentum for both swirling and tumbling motion is 

due to fuel injection. 

2) The angular momentum decays when piston moving up for tumbling motion, 

and it amplified for swirling motion when piston moving up. 

5.2 Recommendations 

Based on the current work, the following recommendations are suggested; 

1. Relocating center of tumble and swirl. Having center of tumbling or swirling 

motion of air at some point other than center of the cube or cylinder can change the 

symmetry and perhaps have different effects on mixing formation. 

2. Using combination of swirl and tumble. This can model the impact of valve shapes 

and piston head geometry in real engines. 

3. Changing turbulent kinetic energy and length scale. High level of turbulent kinetic 

energy inside the chamber can increase the entrainment rate and subsequently affect 
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the volume of flammable mixture. 

4. Angled injection. Injection with the same direction of tumbling motion or against 

it would change the angular momentum and mixing process. With swirling motion, 

the jet can be injected off the center of the swirling motion and lead to a different 

trend in mixing. 

5. Vary mass of injection to create different overall equivalence ratio. Start of in­

jection, injection duration and injection velocity are the parameters controlling total 

equivalence ration in the cylinder. Different values can be used for different applica­

tions. 

6. Employing different turbulence sub-models.As k—e model cannot model anisotropy 

in the Reynolds stress tensor, using a different turbulence model may result in better 

prediction of mixture formation inside the chambers. 

7. Comparing with experiment. For this work, no experimental results were found to 

compare with the results of simulation. Designing some experiment in future would 

help to verify the results. 
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Appendix A 

Governing Equations 

The equations of motion of fluid phase and boundary conditions employed in KIVA3 V 

are given in this appendix. For compactness, these are written in vector notation with 

bold symbols representing vector and tensor quantities. The unit vectors in x, y, and 

z directions are denoted by i, j , k respectively. The position vector x is defined by 

x = xi + yj + zk (A.l) 

the vector operator V is given by 

ox ay oz 

and the fluid velocity vector u is given by, 

u = u(x, y, z, t)i + v(x, y, z, t)j + w(x, y, z, t)k (A.3) 

where t is time. 

KIVA3V equations can be used to solve for both laminar and turbulent flows. The 

mass, momentum, and energy equations for the two cases differ primarily in the 

form and magnitude of the transport coefficients (i.e., viscosity, thermal conductivity, 
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and species diffusivity), which are much larger in the turbulence case because of 

the additional transport caused by turbulent fluctuations. In the turbulent case the 

transport coefficients are derived from a turbulent diffusivity that depends on the 

turbulent kinetic energy and its dissipation rate. 

The continuity equation for species m is 

^ + V . ( P r a u ) = V > D V ( ^ ) ] (A.4) 
at p 

where pm is the mass density of species m, p is the total mass density, and u is 

the fluid velocity. Fick's law is assumed with the single coefficient D. By summing 

Eq. (A.4) over all species, the total fluid density equation is obtained, 

ft + V • Gau) = 0. (A.5) 

The momentum equation for the fluid mixture is 

d(pu) 

dt 
+ V • (puu) = - V p - A0V(2/3pk) + V • a + pg (A.6) 

where p is the fluid pressure, k is the turbulent kinetic energy, and g is the gravity 

vector. The quantity A0 is set to zero in laminar flow calculation and to unity when 

a turbulence model is used. The viscous tensor is Newtonian in form: 

a = /4Vu + (VuT)] + AV • ul (A.7) 

where /i and A are coefficients of viscosity. The superscript T denotes the transpose 

and I is the unit dyadic. 

The internal energy equation is 
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^ ^ + V • (pal) = - p V • u + (1 - A0)a : Vu - V • J + A0pe (A.8) 

where / is the specific internal energy. The heat flux vector J is the sum of contribu­

tions due to heat conduction and enthalpy diffusion, 

J = -KVT -PDJ2 hnNiPm/p) (A.9) 
m 

where T is the fluid temperature and hm is the specific enthalpy of species m. 

Transport equations for turbulent kinetic energy k and dissipation rate e are, 

^ - + V • (puk) = -\pkV • u + a : Vu + V • [(^-)Vfc] - pe (A.10) 

and 

^ + V-(pue) = - ( ^ c e i - c e 3 ) p e V - u + V-[(-^ r)Ve] + ^[c e i a :Vu- C e 2 pe] (A.ll) 

The source term (|c£l — c£3)V • u in Eq. (A.ll) accounts for length scale changes when 

there is velocity dilatation. The quantities c£l, c£2, e£3, Pr^, and Pre are constants 

whose values are determined from experiments and some theoretical considerations. 

Standard values of these constants used in this study are: 

cei = 1.44, c£2 = 1.92, c£3 = -1.0, Prk = 1.0, and Prt = 1.3. 

The state relations are assumed to be those of an ideal gas mixture. Therefore, 

p = R0Tj2(pm/Wm) (A.12) 

71 



I(T) = Y/Jhnl p)Im{T) (A.13) 
m 

cp(T) = Y,(Pm/p)c
Pm(T) (A.14) 

m 

and 

hm(T) = Im(T) + R0T/Wm (A.15) 

where i?o is the universal gas constant, Wm is the molecular weight of species m, and 

Im(T) is the specific internal energy of species m. 
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