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Abstract: 

In this study, a one-dimensional spherical, adiabatic, laminar, premixed flame is 

considered. Reactant conditions include methane-air mixture having fuel/air equivalence 

ratios of 0.6 to 1.4, pressures of 1 to 3 atm and temperatures of 300 to 500 K. The 

underlying unstretched laminar flame characteristics including the unstretched laminar 

flame speed, adiabatic flame temperature and gas density ratio are calculated using 

CHEMKIN 4.1 with GRI mechanism 3.0, dealing with 325 reactions and 53 species. 

Stretched flame speeds are then deduced by invoking Markstein theory. These results are 

extended to investigate the effect of confinement on flame propagation inside a closed 

chamber. For the methane-air mixture conditions considered, Stretch always decreases 

the flame speed, and the largest reduction occurs when the flame is the smallest. 

Increasing initial unburned gas temperature lessens the flame speed reduction due to 

stretch, while moderate changes in pressure do not influence the flame speed-flame 

stretch relationship in any significant manner. 
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CHAPTER 1 

INTRODUCTION 

The subject of this thesis is the modeling of spherical premixed methane-air flame 

propagating freely and in a confined chamber. The focus is on investigating the effect of 

initial conditions on flame characteristics, especially its response under varying amount 

of stretch. The following sections provide motivation, objectives and scope of this study. 

1.1. Motivation 

The spark ignition engine is a prime example of the use of premixed combustion. In a 

spark ignition engine, power is obtained from the chemical energy of the fuel via 

combustion. During the energy conversion process, the spark kernel propagates through 

the turbulent mixture in a complicated manner. The propagation process influences the 

efficiency of energy conversion, engine performance and pollutant formation. Accurate 

predictions of transient flame development and propagation are useful for relating 

alterations in SI engine design and operating variables to changes in engine performance 

[Heywood, 1988]. There have been many attempts to accurately „:3del and/or predict this 

turbulent flame propagation, which detects the performance Of the engine like burning 

rate and cycle to cycle variations to a large extent. 

By and large, the premixed turbulent flame growth is in the 'laminar flamelet' regime 

in which the turbulent flame can be perceived as a sum of laminar flame elements of 

different sizes undergoing varying degrees of corrugation. As such, it is possible to model 

turbulent flame growth in terms of elements of laminar flamelets. It appears that a simple 

and fundamentally viable approach would be via the stretched flame modeling, which 

aims at accurately accounting for the stretching effect on the local laminar flame speed. 
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1.2. Objectives 

The objective of this research is to model flame growth in a confinement and study the 

effect of stretch on flame propagation. Investigating the effects of initial mixture 

conditions on flame speed and other dependent parameters is a secondary objective. 

1.3. Scope of Study 

To accomplish our objectives, a premixed methane-air flame growth model is 

proposed. Fuel-air equivalence ratio is varied from 0.6 to 1.4 (with increment of 0.2) 

taking care not to exceed the lower and upper flammability limits of methane in standard 

air, which are 0.53 and 1.58, respectively [Borman and Ragland, 1998], while initial 

temperature and pressure are altered from 300 to 500 K and 1 to 3 atm, respectively. 

First, a freely expanding laminar flame growth is modeled. To accomplish this, a 

numerical simulation is performed to obtain the underlying unstretched flame 

characteristics such as unstretchcu' flame speed, flame thickness, Markstein length, 

Markstein number and gas density ratio via some chemical kinetics and thermo chemical 

relations. The software package used is CHEMKIN 4.1 [Kee et al., 2006] with GRI 3.0 

kinetic mechanisms [Smith et al., 2004]. Based on CHEMKIN output data, the stretched 

flame speed is calculated via analytical expressions with the MATLAB programming 

language. The freely propagating flame is further extended to flame propagation model 

inside a confinement and the effect of different parameters are discussed systematically. 

1.4. Contribution 

Emami et al. [2005] and De et al. [2006] are two preliminary attempts in modeling 

laminar freely propagating flame. To the best of the author's knowledge, the method used 

for confined flame modeling based on analytical thermodynamic relations has not been 

attempted. It is a straightforward method and the results are found to be in agreement 

with the literature. The respective roles played by pressure and temperature are unveiled. 

The flame stretch is emphasized and the effect of stretch rate on different flame 

characteristics is studied in detail. 
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CHAPTER 2 

BACKGROUND 

This chapter provides basic background and definitions of premixed laminar flame. A 

premixed flame can be defined knowing the inner flame structure, the kinematics of the 

flame and flow, the stretching of the flame and the flame thickness. Here, the inner 

structure of a premixed flame is explained followed by the flame stretch concept and 

definitions of planar and spherical flame speed and propagation rates. 

2.1. Premixed Laminar Flame Structure 

The structure of the flame has been studied in great detail by some researchers such as 

Fristrom and Westerberg [1965] who suggested the flame to be consisted of four distinct 

regions. 1) Unburned; 2) Preheat; 3) Reaction; 4) Burned gas. These zones are shown in 

Figure 2.1. As the mixture approaches the flame front, it is heated by conduction and 

radiation from the flame zone upstream. Chemical reaction and heat release are negligible 

at this stage. The preheat zone can be considered to be chemically inert. Once 

temperatures are hot enough to sustain combustion, chemical reaction takes place in the 

reaction zone. 

The reaction layer can be divide J- into the inner and oxidation layer. For hydrocarbon 

fuels, fuel is converted into hydrogen and carbon monoxide in the inner layer. The 

oxidation layer is located downstream of the reaction layer. In this part the oxidation of 

hydrogen and carbon monoxide to water and carbon dioxide takes place. 

The gases emerging from the reaction zone enter the burned gas zone where their 

concentrations and temperatures approach the equilibrium values asymptotically. The 

flame propagation process influences the efficiency of energy conversion and pollutant 

formation. The nature and/or the rate of propagation depend on many factors including 

mixture composition, mixture state (pressure and temperature), fluid motion in the 

combustion chamber and combustion chamber shape [Gatowski et al., 1984]. 

3 
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Figure 2.1: Schematic diagram of the temperature variation across a typical 

laminar flame 

An important length scale in flame structure is the flame thickness. Different 

approaches exist in the literature to deduce this flame thickness. One approach relies on 

using the steepest tangent to the flame profile to find the interval distance of the 

intersection of that line with the horizontal axis between unburned and burned 

temperatures. Another approach is based on the definition of the preheat zone thickness 

in estimating the flame thickness [Gottgens et al., 1992]. 

In the former method, deriving temperature profile from CHEMKIN, the flame 

thickness is defined as the interval distance of the tangent passing through the inflection 

point which spans the temperature profile between Tu and Ta. This geometrical definition, 

according to Gottgens et al.'s report [1992], may lack a physical meaning. The second 

approach is based on the Gottgens et al.'s asymptotic structure of premixed flame which 

has been related to the geometrical definition described below. 

With the assumption of an infinitely thin inner layer, two layers of finite thickness 

exist, the preheat zone and the oxidation layer. The temperature increases exponentially 

in- the preheat zone up to the Tt (temperature at the inflection point) and then relaxes 

towards Ta (the adiabatic temperature of the burned gases) in the oxidation layer. The 

curvature of the temperature profile changes as we move from the preheat zone to the 

oxidation layer. The location of Tt would be the location of the steepest tangent, that is, 

the inflection point of the temperature profile [Gottgens et al., 1992]. The segmented 
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distance of the tangent line through the inflection point from T, to Tu, is Ax, as is shown in 

Figure 2.2. 

Figure 2.2: Schematic of flame thickness 

If the preheat zone is considered to be chemically inert, Ax, would be equal to the 

Ax 
preheat zone thickness (IF). Gottgens et al. [1992] found the mean values of —- to be 

lF 

approximately 0.994 for methane, with a standard deviation of 0.118. In this thesis IF is 

taken to be equal to Axj. The entire flame thickness S, can be computed from lF using the 

following relation [Gottgens et al., 1992]: 
T -T 

(2.1) 
T,~TU 

Another definition for S, which has been used in this investigation, considers the flame 

thickness to be a diffusive length scale: 

A 

(2.2) 3 = 2 
a pCP 

}Lx 

where a is thermal diffusivity and SLx is the unstretched flame speed. According to 

Turns [1996], an appropriate mean icinperature to define a is the average over the entire 

flame thickness, since conduction occurs over this interval. 
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2.2. Flame Stretch 

In practical combustion systems, when a combustible gas mixture is ignited, the flame 

front always undergoes some amount of stretch. Stretch can result from strain and/or 

change of flame curvature and it can significantly affect the behavior of the premixed 

flame. Even in an idealized laminar flame, the flame is under the influence of some 

amount of stretch. Stretch rate K , for a point on the flame surface, is defined as the time 

rate of the logarithmic area of an infinitesimal element, dA, surrounding that point, [Law, 

1989]: 

K = -(hiA) = -— (2.3) 

dt A dt 

Figure 2.3 depicts a premixed flame that is only subject to strain imposed stretch. Fuel 

and oxidizer mixture react ahead of the wall. Although the radius of curvature in this case 

is infinity, the imposed strain introduces stretch on the flame surface. 

v/////////////y/////////////////jy///y/^^^ 

Figure 2.3: Flame under strain-imposed stretch 

Figure 2.4 illustrates a flame which is propagating through a converging channel. 

States of one particular element on the flame front at two instants are shown as the initial 

and final positions. Although the elemental area remains approximately fixed, there is 

however appreciable changes in the flame curvature which imposes stretch on the flame 

surface. 
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Figure 2.4: Flame under curvature imposed stretch 

There is a third kind of stretch which is associated with dilation of the fluid. In this 

case, the flame is stretched by the ^fbct of volume expansion of the fluid. This dilation 

imposed stretch is not considered in this study. 

In practical systems such as spark ignition engines, the flame is always under some 

amount of stretch. This stretch effect can alter flame speed significantly and too much 

stretch may lead to flame extinction. 

2.3. Planar Premixed Laminar Flame 

A flame can be viewed as a combustion wave which propagates into a flammable 

mixture. Behind the flame are the hot products of combustion (burned gases). In general, 

there are two types of flames; premixed and nonpremixed (or diffusion). In a premixed 

flame, reactants are mixed at the molecular level before any chemical reaction takes 

place. The spark ignition engine is an example of this kind of flame. On the contrary, in a 

diffusion flame, the reactants are initially separated and diffuse into each other during the 

chemical reaction. An example of cuch a flame is a candle. Furthermore, flames could be 

identified as laminar and turbulent. The simplest flame is the laminar flame in which the 

fuel and oxidizer are premixed. 

2.3.1. Flame Propagation Rate 

Figure 2.5 shows a tube (one end closed and the other end open) with the premixed 

combustible gas mixture ignited at the closed end. A combustion wave spreads through 

the gas towards the open end. In the idealized situation, the combustion wave propagates 

as' a one dimensional, planar wave at a constant speed relative to the tube. As is shown in 
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the figure, at time t, the location of the combustion wave or the flame front is the line 

before the crossed region. If the flame front propagates a horizontal distance of dx within 

time dt, the flame growth rate, Sf, is the rate of flame front propagation with respect to 

the tube: 

dx 

dt 

t+dt 

(2.4) 

Figure 2.5: One-dimensional planar premixed laminar flame propagation 

2.3.2. Unstretchcd Laminar Flame Speed 

Laminar flame speed is the velocity of the combustion wave relative to the unburned 

gas ahead of the wave in the direction normal to the wave surface. In other words, it is the 

rate of unburned mixture thickness consumed by the flame. This laminar flame speed is 

also called laminar burning velocity, normal combustion velocity or flame velocity [Kuo, 

2005]. For the idealized planar flame as portrayed in Figure 2.5, the laminar unstretched 

flame speed is: 

dx,. 
* J r „ — " Loo dt 

(2.5) 

where dxu is the amount of unburned gas consumed over time dt and the flame moves to 

t+dt position due to thermal expansion. 
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2.4. Spherical Premixed Laminar Flame in Open Atmosphere 

For a spark-ignited, radially expanding spherical flame in an open atmosphere, the 

flame growth rate and laminar flame speed are similar to those of the planar case. These 

definitions are explained subsequently. 

2.4.1. Flame Growth Rate 

As shown in Figure 2.6, for a radially expanding spherical flame, the element of 

unburned mixture is consumed as it burns and consequently, due to thermal expansion of 

this element, the flame front moves from r (t) to r (t + dt) over time dt. The flame growth 

rate is the rate of increase in flame radius with respect to the ignition point: 

dr 
f dt 

Unburned 
Mixture 

r (t+dt) 

Final 
Flame Front Unburned 

Element 

(2.6) 

Figure 2.6: One-dimensional, spherical laminar flame growth in open atmosphere 

2.4.2. Stretched Laminar Flame Speed 

For the open atmospheric case shown in Figure 2.6, the laminar flame speed 

corresponds to the rate at which the thickness of the unburned mixture is consumed: 

dr.. 
SL = 

dt (2.7) 

According to Strehlow and Savage'[1978], the stretched laminar flame speed for this 

freely expanding case can be deduced from the flame growth rate as: 
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Pt^dr 
SL =(**•) 

Pu dt 
(2.8) 

2.5. Spherical Premixed Laminar Flame in Confinement 

In a closed chamber, the confinement limits the free movement of the unburned 

mixture ahead of the flame. Under this condition the expanding spherical flame causes 

the combustion chamber pressure to rise. The laminar flame speed may be considered as 

the concentric shell thickness of the unburned mixture divided by the time taken to 

consume it. For modeling purpose the concentric shell thickness of the unburned mixture 

etui be deduced as the volume of the unburned mixture divided by the mean flame surface 

area. The mean flame surface area is the surface area of the sphere of the geometric mean 

flame radius. The geometric mean flame radius is the root-mean-square of the 

'compressed initial flame radius' and the final flame front radius r (t+dt), as illustrated in 

Figure 2.7. 

Figure 2.7: One-dimensional spherical laminar flame growth in a confined 
chamber 
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CHAPTER 3 

Literature Review 

This chapter goes through the literature of premixed laminar flame. The focus is 

mainly on the researches which have been carried out on flame stretch, flame speed and 

the related underlying parameters. 

3.1. Fundamental Deductions on Flame Stretch 

The concept of flame stretch was first introduced by Karlovitz et al. [1953]. 

Theoretical investigation of flame curvature aspect of stretch was established by 

Markstein [1964]. He postulated a linear relationship between flame speed and curvature-

imposed flame stretch. Markstein -theory has been found useful by experimentalists 

whose raw data from flame speed measurements correlate well as per the linear 

dependence of flame speed and flame stretch. 

Since the late 1970s, significant progress has been made on the stretched flame 

modeling and quantifying its contribution to flame motion. Among others, Tseng et al. 

[1993], Bradley et al. [1996], Gu et al. [2000] and Davis et al. [2002] have measured the 

Markstein length to quantify the flame stretch considering the effects of strain and flame 

curvature, and/or attempt to incorporate these effects in numerical simulations of 

turbulent premixed flames. Numerous studies have been conducted to investigate stretch 

effects on flame behavior experimentally [Searby and Quinard, 1990; Deshaies and 

Cambray, 1990; Dowdy et al., 1991; Kwon et al., 1992] and numerically [Bradley et al., 

1996; Lipatnikov, 1996; Muller et al., 1997; Sun et al., 1999]. 

Searby and Quinard [1990] reported experimental measurements of Markstein number 

(sensitivity to strain and curvature/ of premixed diluted flames of hydrogen, methane, 

ethylene, and propane. Measurements were made on weakly stretched freely propagating 

quasi-planar flames. Three different methods of deducing the Markstein number were 

presented and compared—a direct method in which the stretch and the change in flame 

speed were measured locally, a global method based on the amplitude of the response of 
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the flame to a periodic shear flow, and a third method that related Markstein number to 

the flame speed at which an unperturbed flame spontaneously developed cellular 

structures. The direct method was found to give the least precise results. 

Tseng et al. [1993] studied the effects of positive stretch on the laminar flame speeds 

of hydrocarbon-air mixtures experimentally using outwardly propagating spherical 

flames. The test conditions included propane, methane, ethane and ethylene- air flames at 

various fuel-air equivalence ratios at standard temperature and pressure. The experiments 

were carried out in a quasi-spherical test chamber. Direct observation of flame radius as a 

function of time and laminar flame speed as a function of flame radius was done. Their 

results showed that Markstein numbers varied linearly with fuel-air equivalence ratios 

over the range of measurements 

Davis et al. [2002] proposed a method for measuring Markstein number, relative to 

both unburned and burned gases in flames with chemical zone of finite width. To 

accomplish this, numerical simulations of the counterflow flame were conducted. They 

used numerical simulations to compute Markstein numbers as a function of position 

through the flame zone. This procedure allowed the accurate estimation of the position of 

the flame surface. They showed that Markstein number calculated relative to the burned 

gases was almost identical to Markstein number based on the local mass flux which was 

measured in the expanding spherical flame. Furthermore, the difference between 

Markstein numbers measured relative to the burned and unburned gases was identified 

and quantified through numerical and theoretical comparisons. Temperatures, species 

mass fractions and density were functions of the axial direction. All calculations were 

carried out at one atmosphere and 300 K. The measurement was done for flame speed 

and stretch relative to the unburned and burned gases. They used the Sandia CHEMKIN-

II and PREMIX code for the laminar flame simulation. 

Frankel et al. [2007] studied the stretch-temperature dependency for flame-flow 

interaction numerically. This work is an extension of the , higher-order models to 

incorporate effects due to the background flow-field based on a coupled system of second 

order dynamic equations. In their model, the problem of negative Markstein length 

instabilities was resolved using a geometrically-invariant extrapolation from the linear 
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analysis data which incorporated higher order effects. It is a mathematical model 

considering conventional reaction-diffusion-advection relations. 

3.2. Stretched Flame Speed Modeling 

Some basic theoretical studies showed that the local flame speed was proportional to 

the flame stretch rate which was expressed by Markstein number [Clavin and Williams, 

1982; Matalon and Matkowsky, 1982; Frankel and Sivashinsky, 1983; Clavin, 1985]. For 

this reason, finding the value of Markstein number and the relation between flame speed 

and flame stretch became the objective of numerous experimental investigations 

[Deshaies and Cambray, 1990; Searby and Quinard, 1990; Dowdy et al , 1991; Kwon et 

al , 1992; Bechtold and Matalon, 2001]. 

Bechtold and Matalon [2001] predicted the linear relationship between flame speed 

and stretch, with both theory and experiment. They also determined the dependence of 

Markstein number on mixture strength for hydrogen-air, hydrocarbon-air, and alcohol-air 

mixtures over a range of equivalence ratio. 

Dowdy et al. [1991] presented a new approach for expanding flames to determine 

flame speed and stretch effects in laminar flames. The stretch effect was quantified by 

deducing the Markstein length. In this analysis, the time variation of the radius of a one-

dimensional spherical flame was derived considering the effect of stretch. Three types of 

flames were modeled: (a) one- dimensional planar; (b) stationary spherical; (c) expanding 

spherical. 

Gottgens et al. [1992] provided accurate analytical expressions for the flame speed and 

flame thickness of lean hydrogen, methane, ethylene, ethane, acetylene and propane 

flames. Numerical computations were performed for pressures between 1 and 40 bar, 

unburned temperatures between 298 K and 800 K (500 K for H2, C2H2 and C2H4), and 

fuel-air equivalence ratios between the lean flammability limit and stoichiometric 

mixture. A fitting function for the flame speed was derived that contains six parameters. 

This function predicts the flame speed for each fuel with a standard deviation of less than 

7.6% for the entire data set. A definition for the flame thickness was derived for methane, 

propane, ethylene, and acetylene flames. This definition could readily be linked to the 

classical definition of the flame thickness that uses the x-interval spanned by the steepest 
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t?.r_gent to the temperature profile between the unburned and adiabatic temperature as the 

flame thickness. 

Bradley et al. [1996] did the computation of spherical laminar flame propagation for a 

range of equivalence ratios at a pressure of 1 atm and an ambient temperature of 300 K, 

with flame propagation at constant pressure. Computations were done at three modes of 

flame propagation: outward propagation, inward propagation and stationary flame. 

Computed values of flame speeds were compared to Taylor's experimental results. For 

lean mixtures, the computed values were higher than those measured, while for rich 

mixtures the computed values were lower than those measureu. biretched values of flame 

speed were expressed as a function of flame radius and stretch rate. Two flame speeds 

were computed, one based on the rate of disappearance of unburned gas, the other on the 

rate of appearance of burned gas. Both cases resulted to the same laminar flame speed 

when extrapolated to zero stretch rate. The rate of burning was expressed as the rate of 

consumption of reactants at an initial unburned gas density and radius. They also 

suggested experimental procedures for the measurement of the stretch-free laminar flame 

speed and Markstein length. 

Muller et al. [1997] numerically calculated flame speeds of n-heptane, iso-octane, 

methane, ethylene, ethane, acetylene and propane mixtures over a wide range of initial 

pressure and temperature. Makstein ".umbers were predicted for all these mixtures. 

Gu et al. [2000] employed spherically expanding flames propagating at constant 

pressure to determine the unstretched laminar flame speed and the effect of flame stretch 

as quantified by the associated Markstein lengths. Methane-air mixtures at initial 

temperatures between 300 and 400 K, and pressures between 0.1 and 1.0 MPa were 

studied at equivalence ratios of 0.8, 1.0, and 1.2 by photographic observation of flames in 

a spherical vessel. They explored two definitions of stretched flame speed, one based on 

the disappearance of the unburned mixture, and another based on the appearance of the 

burned products. Two computer models were utilized to compute the laminar flame 

speed, one was of a one-dimensional flame using fully detailed kinetics and the other one 

was of a spherically expanding stretched flame with reduced scheme. The first model 

computed unstretched laminar flame speed of a freely propagating, one-dimensional, 

adiabatic premixed flame with Sandia PREMIX code. The CHEMKIN code evaluated the 
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thermodynamic properties of the reacting mixture and processed the chemical reaction 

mechanism. The chemical reaction mechanism of GRI-Mech 1.2 with 177 elementary 

reactions of 32 species was used. The second model was for a spherical flame subjected 

to changing flame stretch. They measured two different flame speeds, one based on the 

disappearance of the unburned mixture, and another based on the appearance of the 

burned products. These flame speeds had different values for ° y^^n stretch and different 

sensitivity to stretch. For both cases the associated Markstein numbers were measured. 

They also quantified flame stretch effects on the stretched flame speed. Markstein 

numbers were found to increase with equivalence ratio. They decrease with initial 

pressure, but only up to 0.5 MPa. 

In a recent work by Shoshin and Jarosinski [2007] stretch rates and local flame speeds 

of lean methane-air flame propagating upward have been measured along the flame front 

in a standard flammability tube. The experiment was done in a transparent plastic tube of 

1.8m length and 50mm inner diameter which was filled with mixture from its top. 

Velocity distributions were measured in the central plane located in the middle of the 

tube by PIV method. The measured local flame speed had a local minimum at the flame 

top where stretch rate was maximum. The extinction of flame was observed at methane 

concentrations ranging from 5.12% to 5.15%. It was observed to start from the flame tip. 

They proposed two hypothetical mechanisms for the !:::".'!:ng methane-air flame 

extinction behavior: first due to the radiation loss from combustion products and second 

due to depletion of oxygen near the reaction zone. Both mechanisms, individually or 

cumulatively, could reduce flame speed and lead to extinction at the flame tip. Normal to 

the flame front, component of the velocity of combustion products decreased faster in 

regions with higher stretch rate. 

A number of studies focused on atmospheric pressures and temperatures for spherical 

flame with uniform flame stretch [Dowdy et al., 1991; Taylor, 1991; Bradley and Harper, 

1994; Aung et al. 1995]. There are, however, much fewer studies considering higher 

pressures and temperatures which relate to internal combustion engine conditions. 

Rozenchan et al. [2002] determined stretch-free laminar flame speeds for methane-air 

flames up to 20 atm and methane-oxygen-helium flames up to 60 atm. Computational 
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simulation carried out using GRI-MECH 3.0 showed satisfactory agreement with the 

experimental data up to 20 atm, and moderate deviation for pressure above 40 atm. 

3.3. The State of Existing Stretched Flame Research 

It is clear from the literature review that rather intensive effort has been invested both 

in deducing the fundamental effect of stretch on flame speed and in modeling stretched 

flame growth. The various approaches utilized by different researchers, however, do not 

lead to agreeable results. In other words, there remains much discrepancy from one study 

to' another. This is even true when it comes to relatively simple, experimental and 

analytical stretch effect deductions; the results of which are typically expressed in 

Markstein length or number. 

A plausible route to resolving the outstanding issue is to systematically evaluate the 

underlying parameters which detect the value of Markstein length or number. To do so a 

simple, one-dimensional, spherically expanding, premixed methane-air flame appears to 

be an ideal candidate. The chemical kinetics of methane-air flame is among the most 

studied and verified. Laminar methane-air flame growth is also well documented. 

Apparently, stretched flame modeling has not been verified for the constrained flame 

growth in a constant volume combustion chamber, presumably the most commonly 

employed premixed laminar flame research methodology. 
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CHAPTER 4 

MODELING DETAILS 

This chapter describes the analytical and numerical modeling of flame growth. First, 

the planar unstretched laminar flame model is described. The unstretched laminar 

premixed flame is modeled using CHEMKIN software package. The results are used to 

model the stretched, freely propagating, spherical flame growth. This model is further 

extended to the model of a flame in a confined chamber. 

4.1. Planar Unstretched Laminar Flame Speed Calculation 

Numerical simulation of planar laminar premixed flame is carried out to predict 

unstretched flame speed, unburned to burned gas density ratio and adiabatic flame 

temperature. Corresponding calculations are performed with the one-dimensional laminar 

premixed flame computer code, CHEMKIN 4.1. Thermo chemical, gas-phase kinetics 

and transport properties in the default library are replaced with the GRI files [Smith et al., 

2004]. GRI mechanism version 3.0, which deals with 325 reactions and 53 species, is a 

well-accepted comprehensive mechanism for methane-air combustion. 

The premixed flame model solves a set of governing differential equations that 

describe the flame dynamics using implicit finite difference methods, as well as, a 

combination of time dependent and steady state methods. In this case, there are no heat 

losses, so the temperatures are computed from the energy equation. Flame speed depends, 

in part, on the transport of heat and predicts the temperature distribution as an integral 

part of the flame speed calculation. 

To use the CHEMKIN package, three more components are needed: (1) A model input 

file to describe the system parameters and the combustible mixture properties; (2) A 

thermo-chemistry input file including thermodynamic properties of each component; (3) 

A transport properties input file. In Figure 4.1, a block diagram of the structure of 

CHEMKIN package is shown. 
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The problem environment is defined by setting initial and boundary conditions. As an 

initial guess, the mass flow rate of the mixture is set to be 40 mg/cm -s. Initial 

temperature and pressure for the first simulation are set to be 300 K and 1 atm and are 

used as an estimation for the higher initial pressures and temperatures. Temperature 

profile is assumed based on the zone of 1 cm thick and in the subsequent iteration it is 

modified using the output obtained from the last iteration. Mass flow rate is determined 

as a part of the solution. Therefore, an additional constraint L i-^ired, or alternatively, 

one degree of freedom must be removed from the problem. This is done by fixing the 

temperature at one point. This selection must be done in such a way to ensure that the 

temperature and species gradients nearly vanish at the cold boundary [CHEMKIN 

collection III, 1998]. 

.CHEMKIN package is capable of a wide range of thermodynamic properties. These 

properties are expressed in terms of either polynomial fits or integrals of the specific 

heats at constant pressure [Kuo, 2005] 
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Application 

Output 

Figure 4.1: Flow chart showing the structure of the CHEMKIN package 

4.2. Stretched Freely Propagating Spherical Laminar Flame Growth 

The results of the previous section such as unstretched flame speed, adiabatic flame 

temperature and unburned-burned gas density ratio are implemented in this section to 

find the stretched flame speed. The influence of flame stretch on the laminar flame speed 

also depends on the amount of stretch. Sensitivity of flame speed changes to the flame 

stretch rate is expressed by Markstein length, L. It is usually determined as the slope of 

the linear relationship between the stretched laminar flame speed, SL and stretch rate K , 

by applying Equation (4.1) to the measured SL and K during the explosion. 

SL=SL„-LK (4.1) 
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where S^is the unstretched flame speed which is determined from gas- phase 

kinetics. For the case of outwardly propagating spherical flame, flame stretch can be 

defined as: 

2 dr , „ „x 

K = -— (4.2) 
r at 

Substituting Equation (2.7) into (4.2) yields: 

K = ^-SL=-aSL (4.3) 
pbr r 

where a - — is the thermal expansion coefficient or unburned-burnt gas density ratio. 
Pb 

Substituting K from Equation (4.3) into Equation (4.1) gives: 

SL= ^ (4.4) 
\ + (2oL/r) 

The next step of getting the stretched flame speed is to find the Markstein length using 

the Bechtold and Matalon's [2001] analytical expression as illustrated below: 

L = S[al-(a-l)yl/a] (4.5) 

where constants a, yx and y2 are respectively: 

«i = Y\ + - PiLeeff ~ !)r2 (4.6) 

•A(JC) 
Y\~ 

rc — i 

- ^ - \m±dx (4.7) 

Yi = \-^-L M -)dx (4.8) 
cr - l j J x x-l 

The Zeldovich number J3 is defincdcs: 

0 = E(Ta-Tu)/RoTa
2 (4.9) 

where Ro is the gas constant and £=47.435 Kcal/mol is the overall activation energy for 

methane-air combustion. According to Bechtold and Matalon [2001], E is assumed to be 

unchanged for all the cases. The effective Lewis number, Leeff, is the weighted average of 

the Lewis numbers of the reactants: 
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Le,,=l+
(Le*-l) + (Le°-1)A (4.10) 

\ + A 

where 

•A = l +0(0-1) (4.11) 
Leg and LeD are Lewis numbers of excess and deficient reactants, respectively, which are 

the ratio of thermal diffusivity to mass diffusivity. The diffusivity coefficients are taken 

to be functions of temperature only. 

Equivalence ratio is defined by: 

0 = YF/vFWF 

Y0lv0W0 

Based on the above formula, Matalon and Matkowski [1982] took the ratio of mass of 

excess to deficient reactants, ^ to avoid the need of discussing lean and reach mixtures 

separately, i.e.: 

Y Iv W 
^_rE/yEyyE ( 4 1 3 ) YDivDwD 

where Y is the mass fraction, v is the corresponding stoichiometric coefficient and W is 

the molecular weight. Note that </> is always larger than one. It is equal to (p for fuel- rich 

mixtures and — for fuel lean mixtures. The corresponding diffusivity coefficients can be 

found in Table 4.1 [Mills, 1995]. 
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• Table 4.1: Thermal diffusivities and effective Lewis numbers of fuel and oxidizer 

at different unburned gas temperatures and pressures [Mills, 1995] 

T0 

K 

300 

400 

500 

300 

400 

500 

300 

400 

500 

P 

atm 

1 

1 

1 

2 

2 

2 

3 

3 

3 

Dth 

cm2/s 

0.225 

0.371 

0.542 

0.116 

0.185 

0.271 

0.077 

0.124 

0.18 

D02 

cm2/s 

0.188 

0.225 

0.477 

0.097 

0.162 

0.239 

0.064 

0.109 

0.159 

"cm 

cm2/s 

0.219 

0.375 

0.562 

0.113 

0.187 

0.277 

0.075 

0.125 

0.184 

Ie 

Dth/DcH4 

1.027 

0.989 

0.964 

1.027 

6.989 

0.978 

1.027 

0.992 

0.978 

Ie 
eff,oxidizer 

D,h/D02 

1.197 

1.142 

1.136 

1.196 

1.142 

1.134 

1.203 

1.138 

1.132 

Bechtold and Matalon [2001] evaluated three most common assumptions, X = 1, 

vl = r1 / 2 and A = T to evaluate the integrals in Equations (4.7) and (4.8) and found 

A-T1'2 to agree best with the experimental data. Hence, final expression for yx and y2 

are: 

2a 
Y\ = 

CT+l 

^=~r{^_ 1" l n i (^+ 1 )} 

(4.14) 

(4.15) 

Kwon et al. [1992] postulated that Markstein length is proportional to the local 

characteristic flame thickness, 8 as both are representative of the scale of distances over 

which the diffusion of mass and heat occur in the flame. This assumption leads to the 

dimensionless Markstein number, Ma, defined as: 

Ma = — 
8 

(4.16) 

The corresponding parameter defined as a nondimensional stretch factor is the 

Karlovitz number, Ka, which is the ratio of the residence time for crossing an unstretched 
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flame ( ) over the characteristic time for flame stretching (K l). So it can be defined 

as: 

Ka = — K (4.17) 

Substituting Equations (4.16) and (4.17) into (4.1) results in th:- following dimensionless 

relationship between the flame speed and the flame stretch: 

SLx=SL(\ + Ma-Kd) (4.18) 

As the flame grows, the flame speed is influenced by the varying stretch rate. So it 

should be adjusted according to the underlying stretch at each radius. Figure 4.2 shows 

the structure of the program which is implemented to find the corresponding flame speed 

at each flame size. Inputting the initial pressure and temperature, the flame speed is found 

at each flame size. The MATLAB code is given in Appendix A. 
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Define P0,T0^,ri,rf,dr 

Call Ta,S,a,Slxfrom CHEMKIN 

Call LeD,LeE,E 

Y\ 
2CT 

VCT+I 

r2=^-{V^-i-ini(V^+i)} 
( T - l 2 

j3 = E(Ta-T0)/R°T2
a 

(p>\\<j>-(p 

<p<\-.0= y If 

p 
^ = 1 + ^ - 1 ) 

« = ri+ 2 ^ ( ^ - 1 ) ^ 2 

Ma = ~ 
8 

• J 

Leeff=l + 
(LeE~l) + (LeD-l)A 

\ + A 

For r = ri to rf 

Set r,t 
2 dr 

r at 

Figure 4.2: The structure of the stretched freely propagating flame code 

4.3. Stretched Premixed Flame Model in a Confined Chamber 

Closed vessel combustion causes the chamber pressure to r^ r A.s a result, the burned 

and unburned mixtures are compressed and this restrains the flame growth. The indirect 
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effect of this pressure rise is to raise the unburned mixture temperature which tends to 

increase the flame speed. 

The effect of pressure and temperature changes on the laminar flame speed can be 

expressed by the power law relation [Metghalchi and Keck, 1982]: 

P p T T (4.19) 

where SL0 is the reference laminar flame speed at the reference pressure, P0, of 1 atm and 

the reference temperature, T0, of 300 K, Pexp and Texp are the pressure and temperature 

exponents respectively. Liao et al. [2004] proposed functions to determine pressure and 

temperature exponents that are: 

P= 5 . 7 5 / -12 .15^ + 7.98 
• e x p 

(4.20) 

rex = - 0 . 9 2 5 ^ + 2 ^ - 1 . 4 7 3 (4.21) 

Following the above functions, the corresponding values of Pexpand 7^,, for different 

equivalence ratios are calculated and tabulated in Table 4.2. 

Table 4.2- Pressure and temperature exponents for different fuel air mixtures 

(p 

0.6 

0.8 

1 

1.2 

1.4 

T 
exp 

2.76 

1.94 

1.58 

1.68 

2.24 

P 
exp 

0.606 

0.465 

0.398 

0.405 

0.486 
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Figure 4.3 schematically shows the procedure to model the flame propagation inside a 

chamber. This simulation is based on using thermodynamic equilibrium for the flame 

growth model assuming adiabatic thin flame front propagation. The program is written in 

MATLAB (see Appendix B) and simulates flame growth starting from a specified kernel 

size. The kernel burns at the laminar flame speed with the pressure and temperature 

effects accounted for. Here, the reference unstretched laminar flame speed of CHEMKIN 

is used for the predetermined mixture. The whole program simulates a pressure trace of a 

laminar flame speed based on the mixture stoichiometry; spark kernel size, pressure and 

temperature effects in terms of pressure and temperature exponents and initial pressure 

and temperature. 

The combustion chamber considered, is a spherical chamber of 0.001882 m3 volume. 

Time step, spark kernel radius, pressure and temperature exponents are inputs. Thermal 

expansion coefficients are considered to be only temperature dependent. Initial flame 

speed is obtained from CHEMKIN based on the equivalence ratio, initial pressure and 

temperature of the mixture. However, the effects of pressure and temperature changes on 

flame speed are accounted via Equation (4.19). Having the time increment, the 

corresponding burning volume is calculated. It is worth mentioning that at each time step 

an element of dm mass is considered to burn completely. Sv,,Va mass is added to the 

burned side which leads to a new equilibrium condition with new equilibrium pressure 

and temperature. Also, the adiabatic flame temperature for the burning element is taken 

from CHEMKIN based on the fuel-air equivalence ratio. As, the burning process of each 

element is considered to be adiabatic, there is no heat transfer between the burned and 
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unbumed side. The algorithm is based on guessing the new equilibrium pressure after 

each element burns. 

The criterion for the accuracy of this guess is based on the equality of the total volume 

of the chamber with the sum of the burned and unburned volumes. The volume of the 

remaining unburned before and after combustion of the burning element is calculated. 

Based on these volumes and the guessed pressure, the volume nf the burned side before 

and after combustion of the burning element is calculated, the volume of this element 

when is burned to temperature Tb and pressure PE is compared to the left over volume of 

all the previously burned elements and volume left over from unburned gas will give the 

error which arises from the equilibrium pressure estimation. Positive error means that the 

pressure has been extrapolated. So the new guess will be: 

PE=Pi+\.2(PE-P,) (4.22) 

and for the negative error: 

PE=PI+(PE-Pl)/1.2 (4-23) 

The calculation is repeated until this error is less than the desired accuracy. 
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f'Start) 

Set: Vtot, Tr -To, P—Po, Texp, Pexp, Tb, Rspark~Rbnaw, dt, Mb-0, dMb-0 

• ^ Mb = dMb +Mb 

Pi=P. ~-TE 

sL„ = s„<£•)'•' (hT", sL = sLx / ( i + ^ ) 
^o X R, bnow 

dVbs=SL.dt-47tRbJ 

, Guess PE 
Calculate Tr, Gamma, Vub, Vua, Vbb, Vba, Rbn 

I 

VE = dVbg-(
P/)-(T^)-(m< 

/ E / r 

SumV = Vba + Vua 

moL 

VE=(Vtot-SumV)7 

X 
vYes / No 

T 
M b = dM b + M b 

Mh=Mass7 

<L No / Yes 
Stop 

Figure 4.3 Confined stretched flame calculation flow chart 
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CHAPTER 5 

RESULTS AND DISCUSSION 

The numerical simulations are performed in order to predict values of adiabatic flame 

temperature, unburned/burned gas density ratio, stretched flame speed, Zeldovich, Lewis 

and Markstein numbers of a premixed, laminar, freely propagating, one- dimensional 

spherical flame. A parametric study is accomplished to see the effect of changing input 

pTSSure and temperature on flame characteristics for different methane-air mixtures. 

Subsequently, these results are used to predict flame growth inside a confinement and the 

effect of initial mixture condition on flame speed and flame stretch is investigated. 

5.1. Unstretched Planar Adiabatic Premixed Methane-Air Flame 

The underlying planar flame calculation is done with CHEMKIN 4.1 and the results 

are verified with the literature. Values of adiabatic flame temperature, unbumed-burned 

gas density ratio, fuel and oxidizer Lewis numbers and thermal coefficients are used to 

compute the flame thickness, Markstein length, Markstein number and consequently the 

stretched flame speed. 

5.1.1. Flame Temperature Profile 

Flame temperature profiles of different methane-air mixtures at initial pressure and 

temperature of 1 atm and 300 K, respectively, are plotted in Figure 5.1. Temperature 

increases rapidly within the flame as we move from the unburned to the burned side. In 

fact most of the temperature changes occur within the preheat zone. It is worth 

mentioning that the flame speed is very sensitive to temperature and hence a correct 

estimation of temperature profile is vital [van Maaren et al., 1994]. The steepest 

temperature profile is for the stoichiometric mixture (<p «1.1 in reality) and decreases as 

we move away toward the lean or rich mixtures. The temperature at the end of the 

computational domain is considered as the adiabatic flame temperature. Figure 5.1 shows 

that the highest adiabatic flame temperature is somewhere around the stoichiometric 
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mixture (^>«1.1 to be accurate). Temperature profile of the stoichiometric mixture is 

also compared to the experimental results of van Maaren et al. [1994]. A good agreement 

is seen between the simulation results and the experimental measurements from the 

burner stabilized flame. The effect of the initial mixture temperature and pressure on the 

adiabatic flame temperature is shown in the following section. 
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Figure 5.1: Temperature profiles of unstretched laminar planar flames. 

Error bars: van Maaren et al [1994] 

5.1.2. Effect of Pressure and Temperature on the Adiabatic Flame Temperature 

The effect of unburned gas temperature on adiabatic flame temperature at 1 atm is 

plotted in Figures 5.2. The maximum adiabatic flame temperature is observed for the near 

stoichiometric mixture (<p&lA in reality). By increasing the equivalence ratio the 

adiabatic flame temperature is increased up to the stoichiometric mixture and then 

decreases moving toward the rich side. This effect is because of the fuel richness of the 

mixture that prevents the temperature to go far away. Also, increasing the initial mixture 

temperature from 300 K to 500 K results an up to 10% increase in adiabatic flame 

temperature. 
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Figure 5.2: Effect of unburned gas temperature on adiabatic flame temperature 

at P=l atm 

The Effect of unburned mixture pressure on the adiabatic flame temperature is shown 

in Figure 5.3. These results show that moderate changes in pressure lead to negligible 

changes in adiabatic flame temperature. 
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Figure 5.3: Effect of pressure on adiabatic flame temperature at Tu=300 K 
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Accurate calculation of the adiabatic flame temperature is very important as the other 

parameters like flame speed significantly changes with the adiabatic flame temperature. 

The comparison of the simulation results with the experimental results of van Maaren et 

al. [1994] and analytic approximations of Gottgens et al. [1992] is shown in Figure 5.4. 

These results are for the adiabatic flame temperature of stoichiometric mixture of 300 K 

unburned temperature and 1 atm pressure. 
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Figure 5.4: Comparison of the simulated adiabatic flame temperatures of 

different methane-air mixtures at Tu=300 K, P=l atm with literature 

5.1.3. Unstretched Flame Speed 

Accurate measurement of unstretched flame speed has always been the key objective 

in combustion research. Figure 5.5 illustrates unstretched laminar flame speed as a 

function of methane-air equivalence ratio for different unburned mixture temperatures. 

Increasing the unburned mixture temperature results in faster flame propagation and 

higher burning rates. Increasing the unburned mixture temperature from 300 K to 500 K 

leads to almost 3 times faster flame speed for cp =1.2. 
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Figure 5.5: Effect of unburned mixture temperature on unstretched flame speed 

for different methane-air mixtures at P=l atm 

In Figures 5.6, the effect of pressure on the unstretched laminar flame speed is shown. 

Increasing the pressure reduces the flame speed. This effect is more pronounced when the 

pressure is changed from 2 to 3 atm rather than 1 to 2 atm. Quick comparisons between 

Figures 5.5 and 5.6 show that the effect of changing unburned mixture temperature on the 

unstretched flame speed is much more than the pressure. 
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Figure 5.6: Effect of pressure on unstretched flame speed for different methane-

air mixtures at T„=300 K 

The maximum unstretched laminar flame speed occurs near stoichiometric 

composition (p «1.1). In Figure 5.7 simulation results are compared to the literature. The 

scatter in the data is due to the fact that no experiment can generate the one-dimensional, 

planar, adiabatic, steady, unstrained, laminar flame. All the data are for Tu=300 K and 

P=l atm. The simulation results are in good agreement with Gu et al. [2000] on the lean 

side but about 15% higher on the rich side. The rich side results are in good agreement 

with van Maaren et al. [1994]. The underlying reason is the stretch level of different 

flame speeds and the strong relation between them. In Gu et al.'s combustion vessel, the 

stretch level is finite and positive. Therefore, for the fuel-rich mixtures (which has larger 

Markstein numbers and hence larger stretch level) the stretched methane-air flames 

combust slower than the unstretched counterparts [De et al., 2006]. They assumed the 

unstretched flame speed to be the fiaiiie speed measured for the largest flame ball in their 

limited size vessel, where the flame curvature and stretch rate are not negligible. Also, in 

the 380 mm diameter vessel, the chamber pressure and temperature will change from the 

initial condition during combustion, which causes additional variation in the 

measurements [Emami et al., 2005]. The results of van Maaren et al. [1994] were 

obtained using an adiabatic flat flame burner. The higher flame speed of the lean side was 

attributed to be as a result of the higher amount of uncertainty in the experiment for those 

mixtures. 
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Figure 5.7: Comparison of the unstretched flame speed results with literature 

The unstretched flame speed of stoichiometric mixture is plotted against unburned gas 

temperature for different pressures in Figure 5.8. The empirical equation, (3.19) 

expresses the effects of pressure and unburned gas temperature on the unstretched flame 

speed. The temperature and pressure exponents of this equation are taken from the 

functions introduced by Liao et al. [2004] in Equations (3.20) and (3.21), which are 

represented in Table 4.1. These values are also optimized by Gu et al. [2000] for the 

range of 300 K to 400 K and 0.1 MPa to 1 MPa, and at tp= 0.8, 1, 1.2 which are also 

tabulated in Table 5.1. 
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for stoichiometric methane-air mixture 

Table 5.1: Pressure and temperature exponents for different methane-air 

mixtures 

<P 

0.6 

0.8 

1 

1.2 

1.4 

Liao et al. [2004] 

T 
exp 

2.76 

1.94 

1.58 

1.68 

2.24 

P 
exp 

-0.606 

-0.465 

-0.398 

-0.405 

-0.486 

Gu et al. [2000] 

T 
exp 

-

2.105 

1.612 

2 

-

P 
exp 

-

-0.504 

-0.374 

-0.438 

-

5.1.4. Unburned/ Burned Gas Density Ratio 

Another important parameter in laminar flame speed calculations is unburned/burned 

g*v= density ratio. It is a key parameter in stretched flame modeling. The variation of this 

parameter with respect to the equivalence ratio is shown in Figures 5.9 and 5.10 for 

36 



different initial mixture conditions. The trend is similar to the unstretched flame speed, 

vvlich implies the direct dependency of flame speed on unburned/bumed gas density 

ratio. As is shown in Figure 5.9, the computational results are in good agreement with the 

experimental values obtained by Gu et al. [2000]. Unburned /burned gas density ratio has 

strong dependency on mixture temperature and decreases significantly with increasing 

temperature but it is hardly affected by pressure changes between 1 atm to 3 atm. 
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Figure 5.10: Variation of unburned/ burned gas density ratio with pressure 

at Tu=300 K 

5.1.5. Zeldovich Number 

Zeldovich number represents the sensitivity of chemical reactions to the variation of 

the adiabatic flame temperature. In other words it is the non-dimensional activation 

energy of the fuel mixture defined as the ratio of the diffusion temperature scale Ta - Tu 

RT2 

to the reaction temperature scale——. The minimum Zeldovich number is for near 

stoichiometric composition {q> «1.1) as is shown in Figure 5.11. Increased temperature 

reduces the flame sensitivity to stretch and this is in consistent with the reduced 

Zeldovich number. 
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Figure 5.11: Effect of temperature on Zeldovich number for different 

equivalence ratios at P=l atm 

The effect of pressure on Zeldovich number is shown in Figure 5.12. It can be 

understood that moderate pressure changes do not have significant effect on Zeldovich 

number. It is reasonable as Zeldovich number is a function of unburned and adiabatic 

flame temperatures which do not vary considerably with pressure. 
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Figure 5.12: Effect of temperature on Zeldovich number for different 

equivalence ratios at T„=300 K 
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5.1.6. Effective Lewis Number 

Lewis number indicates the rate of energy transport with respect to the rate of mass 

transport. From Figure 5.13, it can be concluded that the effect of temperature changes 

from 300 K to 400 K has more prominent effect on Lewis number than from 400K to 500 

K. This can be interpreted from the effect of temperature changes on the diffusion 

coefficients (Table 3.1), which indicates the same trend. Also, for each unburned mixture 

tefnperature, the effective Lewis number increases with increasing equivalence ratio 

which clearly shows that the unity Lewis number is not a good assumption in flame speed 

calculations. 
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Figure 5.13: Effect of temperature on Lewis number for different equivalence 

ratios at P=l atm 

Figure 5.14 shows the effect of initial mixture pressure on the Lewis number. Pressure 

changes do not have significant effect on Lewis number as each reactant's Lewis number 

does not change with pressure significantly. 
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5.1.7. Markstein Length 

In Figure 5.15 Markstein lengths of different unburned gas temperatures at P=l atm 

are compared. Since Markstein length characterizes the flame response to stretch, Figure 

5.15 confirms stretch reduction at higher temperatures. With increasing temperature, 

Markstein length is decreased which implies stretch sensitivity reduction at higher 

temperatures. A quick comparison between Markstein lengths of the plotted range shows 

that the lowest Markstein length corresponds to approximately stoichiometric 

composition and the value increases as we move away from the stoichiometric mixture. 

The values of Markstein length indicate that the stretch influence is at its minimum 

around equivalence ratio of unity which means that the stoichiometric mixture has the 

least sensitivity to stretch. 
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Figure 5.15: Effect of unburned gas temperature on Markstein lengths of 

different methane-air mixtures at P=l atm 

Table 5.2 compares the result of current research with experimentally and numerically 

determined Markstein lengths at unburned gas temperature of 300 K and pressure of 1 

atm. It can be understood that the measured values in the literature differ considerably 

among themselves. Rozenchan et al. [2002] compared their experimental result of 

Markstein length for methane-air at 300 K and 1 atm with Gu et al. [2000] and found a 

good agreement. They examined flame growth in a spherical combustion chamber at 

constant pressure. Our results are in good agreement with Gu et al. [2000] in the lean 

side. The reason of such difference in the rich side was the same as explained for the 

unstretched flame speed. Because of the finite stretch level in their 380 mm spherical 

chamber the derived Markstein length are large especially in the rich side where the 

Markstein length has larger absolute value. 
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Table 5.2: Comparison of Markstein lengths at P=l atm, T„=300 K 

with the literature 

<p 

0.8 

1 

1.2 

1.4 

Gu et al. 

[2000] 

0.78 

1 

2.56 

-

Roz'enchan et 

al. 

[2002] 

0.91 

1.29 

2.63 

-

Bradley 

etal. 

[1996] 

0.65 

0.85 

1.08 

2.24 

Present 

Simulation 

1.18 

1.04 

1.34 

2.94 

5.1.8. Markstein Number 

Markstein number is the nondimentional form of the Markstein length which shows 

the sensitivity of the flame to stretch. As Figure 5.16 shows, all calculated Markstein 

numbers are positive indicating the stability of the flame, i.e., stretch tends to reduce the 

flame speed and hence stabilizes the propagating flame. Markstein numbers increase with 

increasing initial mixture temperature. As Figure 5.17 shows, no significant changes are 

observed when pressure is altered from 1 to 3 atm. Zero Markstein length signifies stretch 

insensitive flame, the corresponding stretch-insensitive Markstein number for stretch 

insensitive flame should be zero in theory. However, comparing Figures 5.15 and 5.16 

suggests that the least stretch sensitive flame (the one with the least Markstein length) 

does not correspond to the mixture with the least Markstein number. This is mainly 

because of the flame thickness changes for different mixture stoichiometrics. 
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Figure 5.17: Effect of pressure on Markstein numbers of different methane-air 
mixtures at Tu=300 K 

5.1.9. Stretched Flame Speed 

In Figure 5.18 the variation of flame speed of different methane-air mixtures is plotted 

as the flame grows. The general trend for all the curves is that the stretched flame speed 

approaches the unstretched value asymptotically which shows decreasing effect of 

stretch. For all the cases the largest changes occur right after ignition. The absolute 

reduction from the stretched case is largest for the fastest burning mixture, q>« 1. Also 
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note that for <p =0.6 the flame seems to reach its asymptotic unstretched flame speed 

sooner than cp =1.4 mixture. 
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Figure 5.18: Stretched flame speed for different methane-air mixtures 

at Tu=300 K and P=l atm 

It is clear from the previous figure that flame speed is very low near the leanest and 

richest side and any reduction in flame speed may lead to serious cycle to cycle variations 

and combustion instabilities. To better illustrate the relative changes in flame speed as the 

flame grows, the stretched flame speed is normalized by the corresponding unstretched 

value and plotted as a function of flame radius in Figure 5.19. It is interesting to note that 

for (p-1.4, it takes the longest time to approach its asymptotic -^lue. For example when 

the flame radius is 0.1 m the stretched flame speed is still at 70% of the unstretched speed 

while for the other mixtures this ratio is more than 85%. 

For a typical spark kernel size of 5mm radius, a near stoichiometric methane-air flame 

speed is reduced by no more than 50% from its unstretched value, while <p=0.6 value is 
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about 33% and for ^=1.4 is even less (about 20%). This is due to the effect of increasing 

stretch sensitivity away from stoichiometric mixture which is an important issue 

especially in lean burn engines. 

0.04 0.06 0.08 
Flame Radius (m) 

0.12 

Figure 5.19: Stretched/Unstretched flame speed as a function of flame radius for 

different methane-air mixtures at Tu=300 K and P=l atm 

The stretched flame speed as a function of stretch rate is shown in Figure 5.20. It 

confirms the linear relationship between stretched flame speed and stretch rate. The rate 

of decrease in flame speed is largest for the richest and leanest mixtures ((3=1.4 and 

^>=0.6). As these mixtures have the steepest profile, they are most sensitive to stretch. 

Stretched methane-air flame speed always decreases when the flame stretch is increased 

due to the fact that Markstein lengths are always positive. 
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Figure 5.20: Stretched flame speed as a function of stretch rate for 

different methane-air mixtures at Tu=300 K and P=l atm 

The stretch rates of different methane-air mixtures are compared in Figure 5.21. As it 

is shown the highest stretch levels is for the stoichiometric mixture and reduces notably 

for the lean and rich mixtures. This is due to the fact that near stoichiometric mixture 

burns the fastest. The largest flame speeds imply largest curvature and straining changes 

per unit time. 
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Figure 5.21: Stretch rate as a function of radius for different methane-air 

mixtures at Tu=300 K and P=l atm 

The corresponding dimensionless parameter describing flame stretch is Karlovitz 

number. The mathematical relation between Karlovitz number and flame speed is 

expressed by Equation (4.18). So, the slope of the plot of stretched/unstretched flame 

speed versus Karlovitz number is Markstein number. As Figure 5.22 shows, the slope of 

these plots is constant over the range of Karlovitz number, portraying the independency 

of Markstein number on Karlovitz number over the illustrated range, as assumed in the 

model. The largest slope is for <p=\A which shows the largest Markstein number. 
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Figure 5.22: Normalized flame speed versus Karlovitz -"jsmber for different 
mixture compositions at Tu=300 K and P=l atm 

Effects of unburned mixture pressure and temperature on the stretched flame speed for 

the stoichiometric mixture are shown in Figures 5.23 and 5.24 respectively. It can be 

understood that the flame burns slower as the pressure is increased at constant 

temperature. However, by increasing temperature at a constant pressure the flame 

propagates faster. This is primarily due to the fact that the underlying unstertched flame 

speed increases with increasing unburned mixture temperature and decreases with 

increasing pressure. 
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Figure 5.23: Normalized flame speed versus flame radius at different pressures 

for stoichiometric methane-air mixture at Tu=300 K 
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Figure 5.24: Normalized flame speed versus flame radius at different 

temperatures for stoichiometric methane-air mixture at P=l atm 

5.2. Confined Flame Results 

5.2.1. Effect of Initial Mixture Temperature on Flame Propagation Inside the 
Chamber 

In Figure 5.25, the effect of initial mixture temperature on flame speed of the 

stoichiometric mixtures is shown. Increasing the initial mixture temperature leads to 

faster burning. The absolute increase in stretched flame speed from 400 K to 500 K is 

larger than that from 300 K to 400 K. Note that as the stretched flame speed is increasing 

the stretch rate also increases, nevertheless, at higher temperatures the stretched flame 

speed even for the stretched small flame kernel (relative radius<0.2) is larger than that of 

the less stretched flame at the same size at lower temperatures. In other words, in a 

warmer environment such as that in a spark ignition engine cylinder, the overall effect of 

stretch on the corresponding flame speed is less than that at room temperature flame. 
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Figure 5.25: Effect of initial mixture temperature on laminar stretched flame 
speed of the stoichiometric mixture in a confined chamber at PQ=1 atm 

A key underlying parameter which detects the flame speed is the flame stretch rate. 

The effect of initial mixture temperature on the flame stretch rate of the stoichiometric 

mixture is shown in Figure 5.26. The figure shows that the flame stretch rate is increased 

as the initial mixture temperature increases. The rate of increase is larger at the initial 

stages of flame growth when the stretch rate is the largest and has the most significant 

influence on flame propagation. However, at larger radii the difference between the 

stretch rates of different methane-air mixtures is not appreciable. 
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Figure 5.26: Effect of initial mixture temperature on flame stretch of the 

stoichiometric mixture in a confined chamber at Po=l atm 

As it is explained before, unburned gas temperature is subject to change as the flame 

grows inside the chamber. This effect is accounted for via the temperature exponent in 

Equation (3.19). Setting the temperature exponent to zero nullifies the augmentation of 

flame speed with increasing chamber temperature. Figure 5.27 shows the effect of this 

factor on flame speed inside the chamber. As it can be seen, at moderately small radii up 

to approximately half of the chamber radius, whether to consider the effect of 

temperature changes or not, the stretched flame speed does not vary significantly from 

one another. However, this effect becomes important at larger flame sizes. This is due to 

the fact that when the flame is relatively small the stretch is substantial while the chamber 

pressure rise and hence the increase in unburned gas temperature, which enhances the 

flame speed is small. On the other hand at larger radii the effect of stretch becomes 

weaker and the increased pressure inside the chamber lessens the flame speed. 
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Figure 5.27: Effect of temperature exponent on flame speed in a confined 
chamber 

Figure 5.28 shows how unburned gas temperature is changing as the flame is growing 

for three methane-air mixtures. As we have discussed regarding to the results in the 

previous figure (Figure 5.27), Figure 5.28(a) depicts that at small to moderate radii 

temperature changes are small and most of the changes occur at larger radii. Also, among 

the three equivalence ratios plotted, the highest temperature is for the stoichiometric 

mixture. This largest increase in unburned gas temperature, caused by the largest pressure 

rise shown in Figure 5.28(b), results in the substantial difference in the stretched flame 

speed of the stoichiometric mixture with Texp=0 versus Texp * 0. 
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Figure 5.28(a): Equilibrium temperature of the stoichiometric mixture inside the 
chamber at To=300 K, Po=l atm 
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Figure 5.28(b): Equilibrium pressure of the stoichiometric mixture inside the 
chamber at T0=300 K, P0=l atm 
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5.2.2. Effect of Chamber Pressure on Flame Propagation inside the Chamber 

In Figure 5.29 the effect of chamber mixture pressure on the stretched flame speed is 

shown. It can be seen that decreasing the initial pressure enhances the flame speed. 

However this effect is not as much as the temperature effect. Increasing the initial 

mixture pressure from 2 atm to 3 atm has larger influence on the flame speed than that 

from 1 atm to 2 atm. 
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Figure 5.29: Effect of chamber pressure on laminar stretched flame speed of the 
stoichiometric mixture at T0=300 K 

The effect of chamber pressure on the stretch rate of the stoichiometric mixture is 

shown in Figure 5.30. As the initial chamber pressure is increased, the flame speed is 

reduced (negative pressure exponents as is introduced in Table 5.1). Consequently, the 

flame grows slower and thus, the rate of flame stretching decreases accordingly. 
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Figure 5.30: Effect of chamber pressure on flame stretch of the stoichiometric 
mixture at To=300 K 

5.2.3. Flame Speed for Different Mixture Conditions 

A quick comparison between Figures 5.25 and 5.29 shows that as the flame grows 

inside the chamber, the effect of pressure increase tends to lessen the laminar flame speed 

while the increase in mixture temperature due to compression has a positive effect. The 

overall pressure and temperature effects tend to increase the laminar flame speed 

moderately as the flame grows. It means that the temperature effect is more dominant 

than that of pressure. 

Another comparison is done to highlight the effect of stretch on flame propagation. 

Three cases are shown in Figure 5,.31; the speed of confined flame with and without 

stretch and the speed of freely propagating flame with stretch. For the unstretched 
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confined case, the small changes of flame speed at each flame size are simply due to the 

temperature and pressure changes. Because of the great effect of stretch at small radii, the 

stretched flame speed is lessened at the beginning compared to the unstretched confined 

case. However, there is not a significant difference between the confined and unconfined 

case when the stretch is imposed. The reason is that in the confined scenario there is a 

combined effect of stretch, chamber pressure and unburned gas temperature changes; but 

for the freely propagating case, there is only stretch which diminishes asymptotically as 

the flame grows (that is, the unburned gas temperature and pressure remains unchanged). 

The confined stretched flame speed is slightly less than that of the unconfined stretched 

flame for flames less than approximately 0.05 m which is attributed to restriction to 

freely propagation in the chamber. The overtaking for larger flame sizes is caused by the 

progressive augmentation caused by the appreciable rise in unburned gas temperature. 
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Figure 5.31: Flame speed results with and without stretch for the stoichiometric 
mixture at T0=300 K, Po=l atm 
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In Figure 5.32 normalized flame speed of different methane-air mixtures are compared. 

It is evident that this ratio is highest for the stoichiometric mixture for any flame size and 

has the lowest value for the richest mixture considered. For leaner or richer flames, the 

flame growth rate becomes smaller compared to the stoichiometric condition and it takes 

longer time to burn. In addition, stretch sensitivity is least around the stoichiometric 

composition and thus stoichiometric flame reaches the corresponding asymptotic 

(unstretched) flame speed faster. 

The underlying stretch rate which causes these differences is portrayed in Figure 5.33. 

The stretch level is the highest value for the stoichiometric mixture and reduces as we 

move toward the lean or rich side. Even though the fastest near stoichiometric flame is 

undergoing the lightest level of stretch, it is nontheless, least stretch sensitive (smallest 

Markstein length as is portrayed in Figure 5.15). The combined effect as shown in Figure 

5.32 is that stoichiometric flame is still favored for fastest burning. 
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Figure 5.32: Normalized flame speed versus flame radius for different methane-

air mixtures at To=300 K, P<pl atm 
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0.08 

In Figure 5.34 the effects of stretch on flame speed is shown for the lean, 

stoichiometric and rich mixtures. As the stretch is predominant at the initial flame growth 

stage, there is a significant difference between the stretched and unstretched speed. 

However, the stretched and unstretched curves of each mixture merge asymptotically 

indicating progressively reduced stretch effect as the flame grows. 
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Figure 5.34: Effect of stretch on flame speed for different mixture stoichiometries 

at T0=300 K, P0=l atm 

To better illustrate the influence of stretch on flame speed, the plot of normalized 

flame speed versus stretch rate is shown in Figure 5.35. Flame sensitivity to stretch is 

increased as we move from the stoichiometric mixture toward the lean or rich side. It is 

an important issue especially in practical cases. Similar to the freely propagating case, 

though stretch rate lowers as the flame grows, however, the slope of the plots of the 

confined cases are not fixed due to temperature and pressure changes during the flame 

propagation. 
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Figure 5.35: Stretched/Unstretched flame speed versus stretch rate for different 

mixture stoichiometries at T0=300 K, PQ=1 atm 

Flame propagation inside the chamber is plotted in Figure 5.36 for different methane-

air mixtures. As expected, the fastest propagation rate is for the stoichiometric mixture 

where the flame radius increases rapidly after ignition. The slope decreases moving away 

toward the lean or rich mixtures, lowest being for the leanest mixture (<p =0.6). 
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Figure 5.36: Flame radius versus time for different mixture stoichiometrics 

at T0=300 K, P0=l atm 

It is worth mentioning that the input time step is an important parameter in our 

calculations. The domain should be divided into enough number of elements to be able to 

predict the flame behavior accurately. For all the results presented in this thesis, a time 

step of 0.005 second is chosen. It is found that a time step of 0.005 is adequate for all the 

cases considered in this thesis. The sensitivity of the model to the time step is shown in 

Figure 5.37 by investigating the effect of time step changes on flame radius for the 

stoichiometric mixture. Reducing the time step from 0.005 second to 0.0005 second does 

not affect the calculated flame grevth. On the other hand, decreasing the time step to 

0.05 second leads to incorrect results as the required accuracy is not met. 
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Figure 5.37: Effect of time step changes on the simulation results of flame 
propagation inside the chamber at To=300 K, P0=l atm 

5.3. Comparison of the Simulation Results with the Experiment 

In this section some of the simulation results are compared with the experiment. The 

experiment was performed by Ting at the University of Alberta [1995]. The combustion 

chamber used was a 125mm cubical chamber with an equivalent cell radius of 76.6 mm. 

The spark gap was 5mm located at the centre of the chamber. Simulations are conducted 

to provide, among other parameters, unburned gas temperature and chamber pressure as 

functions of relative flame radius. These results are comparable with the semi-empirical 

unburned gas temperature and measured chamber pressure obtained by Ting [1995] as 

shown in Figures 5.38 and 5.39. 
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Figure 5.38: Comparison of temperature profile inside the chamber with 

experiment for the stoichiometric mixture 
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Figure 5.39: Comparison of the pressure profile inside the chamber with 
experiment for the stoichiometric mixture 
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Figure 5.40 shows the comparison of the experimental and numerical results of the 

stretched flame speed. There are some sources of uncertainty in the experimental results 

such as heat losses especially when some part of the flame touches the walls, the 

uncertainty in the equipments and the measurements and genuine fluctuations of pressure 

and temperature inside the chamber. Due to relatively large noise to signal ratio in the 

early pressure trace (when the pressure rise is very small), the laminar flame speed results 

fluctuate significantly. As the flame grows, this ratio becomes progressively smaller 

[Ting, 1995]. 

Note that the experimental spark kernel was about 5 mm (gap of spark electrode) in 

radius and the time step between two consequent schlieren images was 0.0005 second. 

No experimental flame speed could be deduced below a relative flame radius of 
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approximately 0.2. In other words, engine spark plugs produce a spark kernel which is 

typically larger than relative flame radius of 0.05 according to Figure 5.40. Therefore, the 

very slow combustion which takes place as portrayed by the simulated stretched flame 

speed for relative flame radius of less than 0.05 does not exist in practice. The results 

further suggest the advantage of using a more powerful spark plug for generating a larger 

spark kernel, enhancing burning and reducing cycle to cycle vitiation in spark ignition 

engine. 
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Figure 5.40: Comparison of stretched flame speed inside the chamber with 

experiment for the stoichiometric mixture 
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CHAPTER 6 

CONCLUSIONS AND RECOMMENDATIONS 

This chapter draws all major conclusions on stretched, premixed, adiabatic, laminar, 

spherical methane-air flame propagating either freely or confined in a chamber. In 

addition some recommendations are suggested for possible future work. 

6.1. Conclusions 

It has been shown in this study that r-*reely expanding flame ball may be modeled via 

the stretched flame approach. It is found that stretch always decreases the flame speed of 

a methane-air flame from its unstretched value. In other words, the Markstein length 

and/or number are always positive over the range of conditions considered. The reduction 

in flame speed is largest when the flame is small, that is, right after ignition. Increase in 

temperature tends to diminish the stretch effect. Changes in pressure from 1 to 3 atm did 

not result in noticeable alteration in stretch sensitivity, though the underlying unstretched 

laminar flame speed is slightly reduced. The stoichiometric mixture is least sensitive to 

sticw-i and the stretch effect is enhanced moving away toward the lean or rich 

flammability limit. This is very important in engine performance because stretch sensitive 

mixture can lead to increased cycle to cycle variations and misfire. 

It is also noted that the effective Lewis number is rather sensitive to temperature 

change and hence, unity Lewis number assumption is not viable for accurate stretched 

flame modeling. Lewis number whLl. is a key parameter in calculating Markstein 

number is taken as the weighted average of excess and deficient reactants. 

In the confined case, the highest equilibrium temperature and pressure at each flame 

size corresponds to near stoichiometric mixture and decreases as we move away from the 

stoichiometric condition. Initial mixture temperature has more influence on the flame 

speed than the pressure. Increasing initial unburned mixture temperature from 300 K to 

500 K results in a flame speed of three times faster while decreasing the pressure from 3 

atm to 1 atm leads to a maximum of 1.8 times increase in flame speed. The effect of 
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stretch on flame propagation is very important at initial flame growth stage and is 

lessened as the flame grows large. For the same mixture stoichiometry, increasing the 

initial temperature leads to stretch rate increment up to two times. This effect shows the 

signnicant effect of temperature changes on flame growth. 

Another interesting result is that there is not a significant difference in the laminar 

flame speed of freely propagating and stretched confined flames. Maybe one reason is 

due to the effect of confinement in increasing the temperature inside the chamber which 

enhances the flame speed. However, there is much difference between the stretched and 

unstretched flame speed in the conmied chamber especially at the initial flame 

propagation stage. For a specific initial condition the stoichiometric mixture has the 

largest flame speed among all mixture compositions studied under the same initial 

condition. 

6.2. Recommendations 

This study has been carried out for limited ranges of pressure and temperature. The 

simulation can be extended to elevated pressures to better represent the engine 

environment. A detailed sensitivity analysis can be performed to evaluate the effect of 

changes in key parameters on flame propagation; recall that there are still significant 

discrepancies in the open literature concerning unstretched flame speed, flame thickness, 

Markstein length and Markstein number. Considering heat losses during the flame growth 

can lead to more accurate results. This iaminar flame model can be further extended to a 

turbulent flame model using the laminar flamelet concept. In this turbulent case, the 

flame front is considered as composed of elements of laminar stretched flamelets, each of 

which is similar to a segment of the laminar flame modeled in this thesis. 
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Appendix A: Stretched Freely Propagating Flame Calculations 

This appendix details the stretched freely propagating flame calculations. The 

program is in MATLAB format. The whole program calculates the stretched flame speed, 

stretch rate and flame growth of a laivinar premixed methane-air flame based on user 

specified mixture stoichiometry, spark kernel size and initial pressure and temperature. 

Flame starts to burn from the specified spark kernel and the stretched flame speed and the 

corresponding stretch rate is calculated. 
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% This program is used to find the stretched flame speed of the freely 
% propagating flame 
% mixture stoichiometry, initial presure, initial temperature, pressure 
% exponent, temperature exponent, t im^tep and spark kernel size. 

T=input(T=');P=input(,P=,);fi=input('i=');Rspark=input(,Rspark=') 
%;Vtot=input('Vtot=') %; 

%Required information for each mixture condition are imported from excel 
%files. 

%Data for fi=0.6, T=300-500 K, P=l-3 atm 
Load(Ti6T300P17SUnf,Tb7sigmaVLeDVLeE7alpha'); 
Load(Ti6T300P27SUnf,Tb7sigma7LeD7LeE7alpha'); 
Load(Ti6T300P37SMnf,Tb7sigma7LeD7LeE7alpha'); 

Load('fi6T400Pr,'Sl_inf,'Tb','sigma',,LeD,,,LeE,,,alpha'); 
Load('fi6T400P2,,'Sl_inf,'Tb,,'sigma','LeD',,LeE,,,alpha'); 
Load('fi6T400P3',,Sl_inf,'Tb,,,sigma',,LeD,,'LeE,,,alpha'); 

Load(Ti6T500P17SUnf/Tb7sigma7LeD7LeE7alpha'); 
Load('fl6T500P2,,'Sl_inf,•Tb,,'sigma',,LeD,,'LeE,,,alpha,); 
Load(Ti6T500P37SWnf,Tb7sigma7LeD7LeE7alpha'); 

%Data for fi=0.8, T=300-500 K, P=l-3 atm 
Load(Ti8T300P17SUnf,Tb7sigma7LeD7LeE7alpha'); 
Load(,fi8T300P2,,,Sl_inf,,Tb,,'sigma','LeD','LeE','alpha'); 
Load(Ti8T300P37SWnf,Tb7sigma7LeD7LeE7alpha'); 

Load('fi8T400P 1 ','Sl_inf ,'Tb','sigma','LeD','LeEValpha'); 
Load(Ti8T400P27SUnf,Tb7sigma7LeD7LeE7alpha'); 
Load(,fl8T400P3','Sl_inf,'Tb,,,sigma,,'LeD,,'LeE,,,alpha,); 

LoadCTi8T500P17SMnf,Tb7sigma7LeD7LeE7alpha'); 
Load(,fi8T500P2','Sl_inf,'Tb','sigma','LeD','LeE',,alpha'); 
Load(Ti8T500P37SHnf,Tb7sigma7LeD7LeE7alpha'); 

%Data for fi=l, T=300-500 K, P=l-3 atm 
Load(TilT300P17SUnf,Tb7sigma7LeD7LeE7alpha'); 
Load(,filT300P2,,,Sl_inf,Tb,,,sigma,,'LeD',,LeE,,'alpha'); 
Load(TilT300P37SUnf,Tb7sigma7LeD7LeE7alpha'); 

Load('fi 1T400P1 7Sl_inf ,Tb7sigma7LeD7LeE7alpha'); 
Load('filT400P2','Sl_inf,,Tb',,sigma,,,LeD,,'LeE,,,alpha'); 
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Load(,fllT400P3,,,Sl_inf,,Tb,,,sigma',,LeDVLeE,,,alpha,); 

Load(TilT500Piysnnf/Tb7sigma7LeDyLeEVaipha'); 
Load(TilT500P2ySMnf/TbysigmayLeD7LeEyalpha*); 
Load(TilT500P3ySUnf;Tbysigma7LeDVLeE7alpha'); 

%Data for fi=1.2, T=300-500 K, P=l-3 atm 
Load(Ti 12T300P1 ',*Sl_inf /TbysigmaVLeDVLeEy alpha'); 
Load(,fil2T300P2',,Sl_inf,Tb,,'sigma',,LeD,,,LeE,,,alpha'); 
Load(Til2T300P3ysnnf/TbysigmaVLeDyLeEValpha'); 

Load('fil2T400Pl,,,Sl_inf,,Tb,,,sigma,,,LeD,,,LeE,,,alpha'); 
Load(,fil2T400P2',,Sl_inf,Tb,,,sigma,,,LeD,,'LeE,,,alpha'); 
LoadCfil2T400P3,,'Sl_inf,'Tb,,'sigma,,'LeD',,LeE,,'alpha'); 

Load(,fil2T500Pr,,Sl_inf,Tb,,,sigma,,,LeD,,,LeE,,,alphal); 
Load(,fil2T500P2,,,Sl_inf;Tb,,,sigma',,LeD,,,LeE,,,alpha'); 
Load(Til2T500P3ysynf/TbysigmayLeDyLeEyalpha*); 

%Data for fi=1.4, T=300-500 K, P=l-3 atm 
Load(Til4T300PiySUnf/TbysigmayLeDyLeE7alpha*); 
Load(Til4T300P2ySUnf/TbysigmayLeD7LeEyalpha'); 
Load(Til4T300P3ySWnf/TbysigmayLeDyLeEyalpha'); 

Load(,fil4T400Pl,,'Sl_inf;Tb,,'sigma,,,LeD,,,LeE,,,alpha'); 
Load(*fi 14T400P2ySHnf/TbysigmaVLeDVLeEy alpha'); 
LoadCfil4T400P3,,,Sl_inf,'Tb','sigma,,,LeD','LeE,,,alpha'); 

Load('m4T500PiySUnf/TbVsigma7LeD7LeEValpha'); 
Load(*fil4T500P2ysnnf/TbysigmayLeDyLeEValpha'); 
Load('fil4T500P3ySMnf/TbVsigmaVLeDyLeEyalpha'); 

beta=198468*(Tb-300)/(8.314*(TbA2)) %Zeldovich number 
gamal=2*sigma/(sqrt(sigma)+l) % A Costant 
gama2=(4/(sigma-1)) * (sqrt(sigma)-1 -log(0.5 * (sqrt(sigma)+1))) % A Constant 
C=l+beta*(ffi-l) %A Constant 
Le_eff=l+(((LeE-l)+(LeD-l)*C)/(l+C)) %Effective Lewis number 
alfap=gamal+0.5*beta*(Le_eff-l)*gama2; %A Constant 
delta=alfa/Sl_inf; % Flame thickness 
L=delta*(alfap-(sigma-l)*(gamal/sigma)) % Markstein length 
Ma=L/delta % Markstein number 
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%h 

mm 

gamal =2 * sigma/(sqrt(sigma)+1) 
gama2=(4/(sigma-1)) * (sqrt(sigma)-1 -log(0.5 * (sqrt(sigma)+1))) 
beta=198468*(Tb-300)/(8.314*(TbA2)) %Zeldovich number 
C=l+beta*(ffi-l) 
Le_eff=l+(((LeE-l)+(LeD-l)*C)/(l+C)) 
alfa=gama 1 +0.5 * beta* (Le_eff-1) * gama2; 
delta=alfap/S18; 
L=delta*(alfa-(sigma-l)*(gamal/sigma)) % Ma length 
Ma=L/delta 

mm 
r(l)=Rspark; 
dr=0.0001; 
t(l)=0; 
a=2*L*sigma; 

for i=l: 1000 

r(i+l)=r(i)+dr; %New Radius 

Sl_s(i)=Sl_inf./(l+a./r(ii)); %Stretched flame speed 

t(i+l)=(l/sigma)*(r(i+l)-r(i))*(l/Slun(i))+t(i);%CorrespondingTime 

k(i)=(2/r(i))*(dr/(t(i+l)-t(i))); %Stratch rate 

end 
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Appendix B: Thermodynamic Equilibrium Flame Growth Model in Confinement 

This appendix details the thermodynamic equilibrium flame growth model. The 

program is in MATLAB format. The whole program simulates a pressure trace of a 

laminar methane-air flame based on user specified mixture stoichiometry, spark kernel 

size, initial pressure and temperature, pressure and temperature effects in terms of 

pressure and temperature exponents. 

Flame starts to burn from the specified spark kernel accounting effects of 

pressure and temperature changes during the flame growth. Unstretched flame data are 

gotten from CHEMKN. 

81 



% This program simulates a pressure trace of a laminar premixed flame 
% propagation in confinement from known 
% mixture stoichiometry, initial pressure, initial temperature, 
% pressure exponent, temperature exponent, time step and spark-kernel %size. 

T=input('T=');P-input('P=,);fi=input('i=');dt=input(,dt=');Rspark=input('Rspark=') 

% Required information for each mixture condition are imported from %excel files. 

% Data for fi=0.6, T=300-500 K, P=l-3 atm 
Load(Ti6T300P 1 VSWnf ,Tb7sigmaVLeD7LeE7alpha'); 
L6ad(,fi6T300P2',,Sl_inf,'Tb,,,sigma,,'LeD,,'LeE','alpha'); 
Load(Ti6T300P37Synf,Tb7sigma7LeD7LeE','arpha'); 

Load(Ti6T400P17Synf,Tb7sigma7LeD7LeE7alpha*); 
Load('fi6T400P2,,,Sl_inf,'Tb',,sigmaVLeDVLeE,,,alpha*); 
Load('fl6T400P3,,,Sl_inf,'Tb,,,sigma,,'LeD',,LeE,,,alpha,); 

Load(Ti6T500P17SUnf,Tb7sigma7LeD7LeE7alpha'); 
Load(Tl6T500P2,,,Sl_inf,Tb',,sigma','LeD,,,LeE,,,alpha,); 
LoadCfidTSOOPS'/SMnf/Tb'/sigma'/LeD'/LeE'/alpha'); 

% Data for fi=0.8, T=300-500 K, P=l-3 atm 
Load(Ti8T300P17SUnf,Tb7sigma7LeD7LeE7alpha'); 
Load(,fi8T300P2,,'Sl_inf,Tb',,sigma,,'LeD,,,LeE,,'alpha'); 
Load(Ti8T300P37SMnf,Tb7sigma7LeD7LeE7alpha'); 

Load('fi8T400P 1 ','Sl_inf ^b'/sigma'/LeD'/LeE'/alpha'); 
Load(,fi8T400P2,,,Sl_inf,Tb*,,sigma,,,LeD','LeE','alpha'); 
Load(Ti8T400P37SUnf,Tb7sigma7LeD7LeE7alpha'); 

Load(Ti8T500P17SUnf,Tb7sigma7LeD7LeE7alpha'); 
Load('fi8T500P2',,Sl_inf,'Tb','sigma','LeD,,'LeE,,'alpha'); 
Load(Ti8T500P37SWnf,Tb7sigma7LeD7LeE7alpha'); 

% Data for fi=l, T=300-500 K, P=l-3 atm 
Load(TilT300P17SUnf,Tb7sigma7LeD7LeE7alpha'); 
Load(,filT300P2,,,Sl_inf,,Tb,,'sigma,,,LeD,,'LeE,,,alpha'); 
Load(TilT300P37Synf,Tb7sigma7LeD7LeE7alpha'); 

Load('fi 1T400P1 ','Sl_inf ,'Tb VsigmaVLeDVLeEValpha'); 
Load('fllT400P2,,,Sl_inf,'Tb,,'sigma,,,LeD',,LeE,,,alpha,); 
Load(,filT400P3,,'Sl_inf,'Tb',,sigma,,'LeD,,,LeE,,'alpha'); 
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Load(TilT500P17SUnf;Tb7sigma7LeD7LeE7arpha'); 
Load('filT500P2,;Sl_inf,,Tb',,sigma',,LeD',,LeE,,,alpha'); 
Load(TilT500P37SUnf/Tb7sigma7LeD7LeE7alpha'); 

% Data for fi=1.2, T-300-500 K, P=l-3 atm 
Load('fi 12T3 OOP 1 ','Sl_inf/Tb'/sigma'/LeD'/LeE'/alpha'); 
L6ad(,fil2T300P2,,,Sl_inf,,Tb,,,sigma,,'LeD';LeE';alpha'); 
Load(Til2T300P37SUnf/Tb7sigma7LeD7LeE7alpha'); 

Load('fil2T400Pl,,'Sl_inf,,Tb,,'sigma',,LeD,,,LeEValpha'); 
Load(,fil2T400P2,,,Sl_inf,TbVsigma',,LeD',*LeE',,alpha'); 
Load(,fil2T400P3,,,Sl_inf,'Tb,,,sigma,,,LeD',,LeE,;alpha'); 

Load(Til2T500P17SUnf/Tb7signV/LeD7LeE7alpha'); 
Load(Til2T500P27Synf/Tb7sigma7LeD7LeE7alpha*); 
Load(Til2T500P37SUnf/Tb7sigrna7LeD7LeE7alpha'); 

% Data for fi=1.4, T=300-500 K, P=l-3 atm 
Load(Til4T300P17Snnf/Tb7sigma7LeD7LeE7alpha'); 
Load(,fil4T300P2,,,Sl_inf,'Tb,,,sigma*,'LeD',*LeE',,alpha'); 
Load(Til4T300P37Sl_inf,Tb7sigma7LeD7LeE7alpha'); 

Load('fi 14T400P1 7Sl_inf ,Tb7sigma7LeD7LeE7alpha*); 
Load(,fil4T400P2','Sl_inf,,Tb*,,sigma,,'LeD','LeE','alpha'); 
L6ad(,fil4T400P3','Sl_inf,'Tb';sigma,,,LeD,,,LeE,,,alpha'); 

Load(Til4T500P17Synf/Tb7sigma7LeD7LeE7alpha'); 
Load(,fil4T500P2,,,Sl_inf,'Tb,,'sigma,,'LeD','LeE','alpha'); 
Load(Til4T500P37SUnf/Tb7sigma7LeD7LeE7alpha*); 

beta=198468*(Tb-300)/(8.314*(TbA2)) %Zeldovich number 
gamal=2*sigma/(sqrt(sigma)+l) % A Costant 
gama2=(4/(sigma-1)) * (sqrt(sigma)-1 -log(0.5 * (sqrt(sigma)+1))) % A Constant 
C=l+beta*(ffi-l) %A Constant 
Le_eff=l+(((LeE-l)+(LeD-l)*C)/(l+C)) %Effective Lewis number 
alfap=gamal+0.5*beta*(Le_eff-l)*gama2; %A Constant 
delta=alfa/Sl_inf; % Flame thickness 
L=delta*(alfap-(sigma-l)*(gamal/sigma)) % Markstein length 
Ma=L/delta % Markstein number 

%**********************************JNIXIAL VALUES 
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%Initial values are set here: 
Rmol= 83143; %Gas universal constant [j/kmol.K] 
Vtot=0.001882; %Total volume of the chamber %m3 
P0=101325; %Reference Pressure [Pa] 
T0=300.15; %Reference Temperature [K] 

Texp=5.75*fiA2-12.15*fi+7.98; % Temperature Exponent 
Pexp=-0.925*fiA2+2*fi-1.473; % Pressure Exponent 
Tinit= 300.15; % Initial Temperature 
Pinit= 101325; % Initial Pressure 

PE=Pinit; %Initial Set ' 
Tr=Tinit; %Initial Set 
Rbomb=(0.75* Vtot/ 3.141592654)^(1/3) % Chamber Radius 
Vspark=(4/3)*3.141592654*((Rspark)A3); %Spark Volume 

MWR=(l/(l+4.76*(2/fi)))*(16.043+(2/fi)*32+(2/fi)*3.76*28);%Reactant Molecular 
Weight 
Mass=(MWR*Pinit*Vtot)/(Rmol*Tinit); %Total mass which remains constant 
Rbnow=Rspark; %Initial Set 
Mb=0; %Burned Mass 

t=0; 
mm=Rspark; 

%After burning the an specified element the new pressure is guessed and 
%corrected based on the equality of the volumes. 

while (abs(Mb-Mass)>le-4) %Procedure is continued until the whole mass burns. 

Pi=PE; 

%Cp Of each reactant 
CP_CH4=(4.184/8.314)*(-0.29149+26.327*(Tr/1000)-
10.61*(Tr/1000)A2+1.5656*(Tr/1000)A3+0.16573*(Tr/1000)A(2)); 

CP_O2=0.03212936e2+0.1127486e-2*Tr+0.057561e-5*TrA2+0.1313877e-8*TrA3-
0.0876855e-ll*TrA4; 

CP_N2=0.03298677e2+0.14082404e-2*Tr-0.0396322e-4*TrA2+0.056415e-7*TrA3-
0.0244485e-10*TrA4; 

CF_H2=0.032981e2+0.0824294e-2*Tr-0.08143e-5*TrA2-0.094754e-
9*TrA3+0.0413487e-l l*TrA4; 
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CP_H2O=0.0338684e2+0.0347498e-l*Tr-0.0635469e-4*TrA2+0.0696858e-7*TrA3-
0.02506588e-10*TrA4; 

CP_CO2=0.022757e2+0.099221e-l*Tr-0.10409e-4*TrA2+0.0686668e-7*TrA3-
0.0211728e-10*TrA4; 

%Cp of reactants mixture 
CP_R=(l/(l+4.76*(2/fi)))*(CP_CH4+(2/fi)*CP_02+(2/fi)*3.76*CP_N2); 

% Heat specific ratio (Gamma) for the reactants 
GMR=CP_R/(CP_R-1); 

% It is assumed that each element goes through an isontropic process. %Here the 
corresponding temperature is calculated. Pi is the pressure %before the element burn, 
mass changes is not considered here. 
% Estimate PE, the end pressure after this element burns (it is just a guess) 

Tr= Tinit*(Pi/Pinit)A((GMR-1 )/GMR); 

% Unstretched flame speed according to the new pressure and temperature 
S12=S18*((Pi/P0)APexp)*((Tr/T0)ATexp); 

% New flame thickness 
delta=alfap/S12; 
L=delta* (alfa-(sigma-1 )* (gamal /sigma)); 
a=2*L*sigma; 
Sl=S12/(l+(a/Rbnow)); 

ifMb==0 
dVbg=Vspark; 

else 
dVbg= Sl*dt*4*3.141593*RbnowA2; % Voulme burnt in the next time step 

end 

dMbg= dVbg*MWR*Pi/(Rmol*Tr); %Burning mass 
molR=dMbg/MWR; %Mole number of the reactants [kmol] 

"iffi<l 
MWP=(l/(l+9.52/fi))*(l*44.01+2*18+(2/fi)*3.76*28+(2/fi-2)*32); 
CP_P=(l/(l+4.76*(2/fi)))*(CP_C02+(2/fi-

2)*CP_02+(2/fi)*3.76*CP_N2+2*CP_H20);%Cpofreactant 
GMP=CP_P/(CP_P-1); %Heat specific ratio of the products 

else 
MWP=(l/(3+7.52/fi))*(l *44.01+(4/fi-2)* 18+(2/fi)*3.76*28+(4-4/fi)*2); 
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CP_P=(l/(l+4.76*(2/fi)))*(CP_C02+(2/fi)*3.76*CP_N2+(4/fi-2)*CP_H20+(4-
4/fi)*CP_H2);%Cp of reactant 

GMP=CP_P/(CP_P-1); 
end 

molP=dMbg/MWP; %Mole number of the reactants [kmol] 

Mb=Mb+dMbg; % new value for the burned mass. Burning mass ia added to the burned 
mass 

PE=Pi+fi*(dMbg/Mass)*Pinit; % New guess for the equilibrium pressure 

%###########################UnburntSide 

%VUB: Volume of the unburned side before the mass element burns 
%VUA: Volume of the unburned side after the mass element burns 
%VBB: Volume of the burned side before the mass element burns 
%VBA: Volume of the burned side after the mass element burns 

if dVbg==Vspark 
VUB=((Mass-Mb)/Mass)*Vtot*(Pinit/Pi)A(l/GMR); 
VBB=Vtot-VUB; 
VBA=VBB*(Pi/PE)A(l/GMP); 

else 
VUB=((Mass-Mb-dMbg)/Mass)*Vtot*(Pinit/Pi)A(l/GMR); 
end 

VUA=VUB*((Pi/PE)A(l/GMR)); %mass changes is not considcied 

%###########################BurnedSide 
VBB=Vtot-VUB; 
VBA=VBB*(Pi/PE)A(l/GMP); 
SumV=VBA+VUA; %the volume of all the burned and unburned elements together 
Rfenow=((3*VBA)/(4*3.141592654))A(l/3); %New radius based on the new volume 

VE=dVbg*(Pi/PE)*(Tb/Tr)*(molP/molR); % Equilibrium volume for the burning 
elemnt 
Rratio=Rbnow/Rbomb; %Relative radius 
ERV=VE-(Vtot-SumV); %Error which is related to the guessed pressure 

%If the error is greater than 0.01%, then make a new estimate of pressure 
%and go back and recalculate the volume with this new pressure 

while (ERV> 0.0001) 
VUB=((Mass-Mb-dMbg)/Mass)*Vtot*(Pinit/Pi)A(l/GMK); 
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VUA=VUB*((Pi/PE)A(l/GMR)); %mass changes is not cosidered 
VBB=Vtot-VUB; 
VBA=VBB*(Pi/PE)A(l/GMP); 

SumV=VBA+VUA; 
Rbnow=((3*VBA)/(4*3.141592654))A(l/3); 
VE=dVbg*(Pi/PE)*(Tb/Tr)*(molP/molR); 

ERV=VE-(Vtot-SumV); %Error in the volume 

% New pressure is guessed based on the overestimation or underestimation %of the 
previous guess 

if(ERV)>0 
PE=Pi+1.2*(PE-Pi) 

else 

PE=PE+(PE-Pi)/1.2; 

end 

end 

% Stretch calculation based on the new radius 
k=(2/Rbnow)*((Rbnow-mm)/dt); %Stretch rate 
mm=Rbnow; 
t=t+dt; 

end 

Gamma= specific heat ratio, molP= moles of products/ mole of fuel, molR= moles of 

reactants/ mole of fuel, MWR= molar mass of the reactants, P= pressure, PE= pressure at 

thermodynamic equilibrium, Pexp= pressure exponenet, Texp= temperature exponent, 

Pi= pressure before the element burns, Tr= corresponding temperature to Pi, Tb= 

temperature corresponding to PE, Po= initial pressure before ignition, To= initial 

temperature before ignition, Rspark= spark radius, Rbnow= radius of the burning element, 

SI 00= SI at 300 K and 1 arm, Slo= unstretcehd laminar burning velocity Sl= stretched 

laminar burning velocity, dVu=element volume before it burns, SumV= total volume of 

87 



all other elements, VE= volume element at equilibrium, Vtot= total cell volume, Vua= 

volume of the unbumed side after the element burns, Vub= volume of the unburned side 

before the element burns, Vba= volume of the burned side after the element burns, Vbb= 

volume of the burned side before the element burns, dVbg= volume of the burning 

element, dMbg= mass of the burning element, Mb= Burned mass, Mass= total mass, 

dt=time step, R= ideal gas constant, 7i= 3.1416 
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