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ABSTRACT 

Cholera toxin (CT) is a bacterial protein toxin responsible for the gastrointestinal disease 

known as cholera. CT stimulates its own entry into intestinal cells after binding to cell surface 

receptors. Once internalized, CT is delivered via vesicle-mediated transport to the endoplasmic 

reticulum (ER), where the CTA1 subunit dissociates from the rest of the toxin and is exported (or 

translocated) into the cytosol. CTA1 translocates from the ER lumen into the host cytosol by 

exploiting a host quality control mechanism called ER-associated degradation (ERAD) that 

facilitates the translocation of misfolded proteins into the cytosol for degradation. Cytosolic 

CTA1, however, escapes this fate and is then free to activate its target, heterotrimeric G-protein 

subunit alpha (Gsα), leading to adenlyate cyclase (AC) hyperactivation and increased cAMP 

concentrations. This causes the secretion of chloride ions and water into the intestinal lumen. The 

result is severe diarrhea and dehydration which are the major symptoms of cholera. 

CTA1’s ability to exploit vesicle-mediated transport and ERAD for cytosolic entry 

demonstrates a potential link between cholera intoxication and a separate quality control 

mechanism called the unfolded protein response (UPR), which up-regulates vesicle-mediated 

transport and ERAD during ER stress. Other toxins in the same family such as ricin and Shiga 

toxin were shown to regulate the UPR, resulting in enhanced intoxication. 

Here, we show UPR activation by CT, which coincides with a marked increase in 

cytosolic CTA1 after 4 hours of toxin exposure. Drug induced-UPR activation also increases 

CTA1 delivery to the cytosol and increases cAMP concentrations during intoxication. We 

investigated whether CT stimulated UPR activation through Gsα or AC. Chemical activation of 

Gsα induced the UPR and increased CTA1 delivery to the cytosol. However, AC activation did 
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not increase cytosolic CTA1 nor did it activate the UPR. These data provide further insight into 

the molecular mechanisms that cause cholera intoxication and suggest a novel role for Gsα 

during intoxication, which is UPR activation via an AC-independent mechanism. 

 



v 

 

I dedicate this work to my family which I am so lucky to have in my life. Dad, Dave, Albert, and 

Sabia, thank you for your continued support. Mom and Cinthya, thank you for the reassurance 

and for believing in me. To the love of my life, Chris, thank you for listening to the words 

“cholera toxin” a million times, for being the magnanimous character that you are, and for 

sharing this journey called life with me. Words really cannot express what you all mean to me 

and how much your never-ending love has shaped the person that I am today. 

 



vi 

 

ACKNOWLEDGMENTS 

I would like to thank Drs. William Self, Scott Mills, Ron Prywes, and Mike Jobling for 

providing sodium selenite, CHO-β2AR cells, luciferase reporter constructs, and mutant toxins 

respectively. My committee deserves thanks for their helpful input during discussions. Dr. Kim 

Schneider, thank you for your support. Thanks should also go to my lab mates: I would never 

have found anything in the lab without you. Thanks to Dr. Tuhina Banerjee for assisting with 

protocols. Dr. Mike Taylor, thank you for your continued patience while teaching me how to 

analyze SPR data. Dr. Ken Teter, I am grateful that you are my mentor, and a super awesome 

one at that. Thank you for your guidance, encouragement, and for inspiring the next generation 

of scientists.  

  



vii 

 

TABLE OF CONTENTS 

LIST OF FIGURES ....................................................................................................................... ix 

LIST OF ACRONYMS/ABBREVIATIONS ................................................................................. x 

CHAPTER ONE: INTRODUCTION ............................................................................................. 1 

Overview ..................................................................................................................................... 1 

Translocation of CT and other AB toxins into the host cytosol ................................................. 4 

ERAD, ER stress, and the unfolded protein response ................................................................ 4 

The ability of AB toxins to regulate the UPR and enhance intoxication .................................... 5 

CHAPTER TWO: MATERIALS AND METHODS ..................................................................... 8 

Cell Culture ................................................................................................................................. 8 

Mutant and wild-type toxins ....................................................................................................... 9 

Dual Luciferase Reporter Assay ............................................................................................... 10 

cAMP Competition Immunoassay ............................................................................................ 13 

Translocation and Digitonin Permeabilization Assay ............................................................... 14 

Immunoblot of Pellet and Supernatant Fractions...................................................................... 15 

SPR Slide Preparation and Sample Analysis ............................................................................ 16 

CHAPTER THREE: RESULTS ................................................................................................... 19 

UPR induction by CT correlates with enhanced intoxication ................................................... 19 

Chemical UPR activation enhances intoxication ...................................................................... 23 



viii 

 

CT-induced UPR activation occurs independently of AC ........................................................ 27 

CHAPTER FOUR: DISCUSSION ............................................................................................... 32 

The activity of AB toxins is linked to UPR induction .............................................................. 32 

UPR induction results in enhanced intoxication ....................................................................... 33 

CHAPTER FIVE: CONCLUSION............................................................................................... 35 

LIST OF REFERENCES .............................................................................................................. 36 

  



ix 

 

LIST OF FIGURES 

Figure 1: Mechanism of cholera intoxication ................................................................................. 3 

Figure 2: Potential effects of an UPR on cholera intoxication ....................................................... 7 

Figure 3: Determining UPR activity by the luciferase reporter assay .......................................... 12 

Figure 4: SPR as a detection method to analyze presence of CTA1 in cytosol ............................ 18 

Figure 5: Organelle and cytosol fractions are tested for the presence of protein markers ............ 21 

Figure 6: SPR sensorgram of HeLa cells after wild-type or mutant toxin exposure .................... 22 

Figure 7: The effect of chemical UPR induction on the levels of cytosolic CTA1 ...................... 25 

Figure 8: cAMP concentrations after two hours of intoxication in UPR activated cells .............. 26 

Figure 9: cAMP assay to verify cAMP production in CHO-β2AR cells ...................................... 29 

Figure 10: The ability of AC and Gsα to induce an UPR ............................................................. 30 

Figure 11: The effect of Gsα and AC activation on cytosolic CTA1 delivery to the cytosol ....... 31 

 

  



x 

 

LIST OF ACRONYMS/ABBREVIATIONS 

AC 

ARF6 

ATF6 

β2AR 

BfA 

cAMP 

CT 

DMEM 

EDC 

ER 

ERAD 

FBS 

For 

GM1 

Gsα 

Hsp90 

Iso 

IRE1 

ka  

mt 

adenylate cyclase 

ADP-ribosylating factor 6 

activating transcription factor 6 

beta-2 adrenergic receptor 

brefeldin A 

cyclic adenosine monophosphate 

cholera toxin 

Dulbecco's modified Eagle's medium 

1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide 

endoplasmic reticulum 

endoplasmic reticulum-associated degradation 

fetal bovine serum 

forskolin 

monosialotetrahexosylganglioside 

heterotrimeric G protein subunit alpha 

heat shock protein 90 

isoproterenol 

inositol-requiring enzyme 1 

association rate constant 

mutant 



xi 

 

NHS 

PBS 

PBST 

PERK 

PDI 

SDS-PAGE 

TBST 

Tm 

Tg 

UPR 

UPRE 

wt 

XBP1 

N-hydroxysuccinimide 

phosphate buffered saline 

phosphate buffered saline with Tween 20 

protein kinase RNA-like endoplasmic reticulum kinase 

protein disulfide isomerase 

sodium dodecyl sulfate polyacrylamide gel electrophoresis 

tris-buffered saline with Tween 20  

tunicamycin 

thapsigargin 

unfolded protein response 

unfolded protein response element 

wild-type 

x-box binding protein 1 

 

 



1 

 

CHAPTER ONE: INTRODUCTION 

Overview 

Cholera is an intestinal infection that is endemic in many countries worldwide and affects 

millions of people each year (1, 2). Cholera is caused by the ingestion of the bacterium Vibrio 

cholerae in contaminated food or water. Once inside the host intestine, V. cholerae secretes a 

major virulence factor known as cholera toxin (CT), leading to symptoms including massive 

diarrhea and dehydration which can lead to death if left untreated (3, 4).  

CT is classified as a binary AB toxin because it is composed of two major subunits: an 

enzymatic A subunit (CTA1) and a B subunit (CTB) responsible for cell binding (5, 6). CTB can 

bind to the GM1 host cell receptor on intestinal cells, stimulating toxin entry into cells by 

internalization into endosomes (7, 8). CT is then delivered by vesicle-mediated transport from 

the endosome to the endoplasmic reticulum (ER), where the CTA1 subunit can dissociate from 

the rest of the toxin (9, 10). Dissociated CTA1 in the ER lumen is in an unfolded state which 

leads to its exportation (i.e. translocation) from the ER lumen into the cytosol through a protein 

channel in the ER membrane (11).  

Cytosolic CTA1 regains its conformation, associates with ADP-ribosylating factor 6 

(ARF6), and is then free to carry out its enzymatic function (12-14) which is to modify Gsα (the 

stimulatory subunit of heterotrimeric G protein) by ADP-ribosylation (15, 16). This modification 

locks Gsα in an on state, leading to adenlyate cyclase (AC) hyperactivation, increased cAMP 

concentrations, and ultimately the secretion of chloride ions into the lumen of the intestines. This 

osmotic imbalance in turn causes the secretion of water into the intestinal lumen which results in 

the severe diarrhea and dehydration associated with the symptoms of cholera (1, 3, 17). Cholera 
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intoxication is a general term used to describe the overall mechanism of CT entry and activity 

within cells (Figure 1). Intoxication of tissue culture cells can be assessed by the levels of CTA1 

within the cytosol as well as cellular cAMP concentrations. 
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Figure 1: Mechanism of cholera intoxication 

After binding to GM1, CT enters the cell and is delivered via vesicle-mediated transport to the 

ER, where the CTA1 subunit dissociates and is translocated into the cytosol. Cytosolic CTA1 

then activates Gsα, leading to AC hyperactivation and increased cAMP concentrations. This 

causes the secretion of chloride ions and water into the intestinal lumen. The result is severe 

diarrhea and dehydration which are the major symptoms of cholera.  
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Translocation of CT and other AB toxins into the host cytosol 

Since Gsα is located at the cytosolic face of the plasma membrane, CTA1 has to cross the 

ER membrane barrier in order to enter the cytosol and cause intoxication (18). CTA1 

translocation occurs due to a series of events including internalization, vesicle-mediated transport 

through various cellular compartments, and the ability of CTA1 to exploit an ER homeostasis 

mechanism called the ER-associated degradation (ERAD) pathway (19-21). ERAD normally 

facilitates the translocation of misfolded proteins of host origin from the ER into the cytosol for 

degradation by the proteasome (9). As dissociated CTA1 within the ER is in an unfolded state, 

CTA1 can exploit ERAD for entry into the cytosol; however, it escapes the degradative fate of 

ERAD by assuming a stable conformation in the cytosol and is then able to modify Gsα (19, 21). 

Other AB toxins utilize a similar route for cytosolic entry. Ricin and Shiga toxin are thought to 

use ERAD to translocate from the ER into the cytosol, where the toxins modify 28S rRNA to 

inhibit protein synthesis and cause cell death (9, 19, 22, 23). Other AB toxins do not utilize 

ERAD because they cross the membrane barrier directly through the endosome (24). After toxin 

internalization into the endosome, the B subunit of these toxins form a pore in the endosome 

membrane, facilitating translocation of the enzymatic A subunit into the cytosol.  

ERAD, ER stress, and the unfolded protein response 

When ERAD is not able to deal with the amount of misfolded proteins within the ER, a 

condition known as ER stress occurs. A separate host stress response system called the unfolded 

protein response (UPR) is then induced. The UPR functions to reduce ER stress and does so 

through a variety of mechanisms (25). The PERK pathway of the UPR downregulates overall 
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protein synthesis in order to reduce the accumulation of proteins within the ER. Although overall 

protein synthesis is decreased, a select subset of proteins is upregulated through the ATF6 and 

IRE1 pathways to help reduce ER stress. Such proteins include chaperones to help misfolded 

proteins achieve a stable conformation as well as proteins involved in the ERAD pathway and 

vesicle-mediated transport (26, 27) to help clear the ER of proteins. The upregulation of ERAD 

and vesicle trafficking proteins during the UPR and the ability of CTA1 to exploit these same 

host processes for translocation demonstrates a potential link between cholera intoxication and 

the UPR. 

The ability of AB toxins to regulate the UPR and enhance intoxication 

Other AB toxins, such as ricin and Shiga toxin, have been shown to regulate the UPR 

resulting in enhanced intoxication (28-31). Ricin is able to inhibit the IRE1 and PERK pathways 

of the UPR in yeast (29) and mammalian cells (31) which enhances cytotoxicity (29). However,  

a conflicting study found that ricin induces the PERK and ATF6 pathways of the UPR in 

mammalian cells (30). Shiga toxin has been shown to induce all three pathways of the UPR to 

enhance cell death during intoxication (28).  

Although the UPR is regulated by Shiga toxin and ricin, the same has not been 

established for CT. However, there is evidence to suggest that UPR activation may enhance 

intoxication as it does for ricin and Shiga toxin. A study published in 1996 showed that treatment 

with thapsigargin, a chemical now known to induce the UPR, increased CT transport and cAMP 

concentrations during intoxication (32). Thapsigargin depletes the ER calcium stores, inhibiting 

the function of calcium-dependent chaperones within the ER which causes an increase in 
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misfolded proteins and activation of the UPR (33). The study focused on the effect of calcium 

concentrations on intoxication rather than the effect of the UPR on intoxication as the UPR was 

not well understood at the time.  

We predict that CT may promote delivery of CTA1 molecules to the cytosol by inducing 

the UPR, exploiting the effects of the UPR such as increased activity in ERAD or vesicle-

mediated transport. This activation could lead to enhanced intoxication measured by increased 

levels of cytosolic CTA1 and increased concentrations of cAMP (Figure 2).  

This work elucidates whether CT is able to exploit another host process, the unfolded 

protein response, in order to cause enhance intoxication. If the UPR is induced by CT, as it is for 

the aforementioned AB toxins, then the project will also establish novel roles for CT and/or for 

host factors that act downstream of CT during toxin-induced UPR activation. 
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Figure 2: Potential effects of an UPR on cholera intoxication 

CT may promote the cytosolic delivery of CTA1 by inducing the UPR, exploiting UPR effects 

(such as increased ERAD activity or increased transport), leading to enhanced intoxication 

measured by increased levels of cytosolic CTA1 and increased concentrations of cAMP.  
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CHAPTER TWO: MATERIALS AND METHODS  

Cell Culture 

To passage cells, they were seeded into 10 cm dishes and allowed to grow for 3-4 days at 

37°C until 80% confluency was reached. Cells were washed once in 1X PBS and 2 ml of trypsin-

EDTA was added to incubate for 5 minutes at 37°C. Then 8 ml of the appropriate media 

containing 10% fetal bovine serum (FBS) (Invitrogen Carisbad, CA) and 1% antibiotic-antimycotic 

(Invitrogen) was added to the dish to resuspend cells by tituration. HeLa cells require using 

Dulbecco’s Modified Eagle Medium (DMEM) (Invitrogen). CHO cells use Ham’s F12 media 

(Invitrogen). CHO- beta-2 adrenergic receptor (β2AR) cells were passaged in media containing a 

1:1 ratio of DMEM and F12 as well as 1 mM of sodium selenite. 9 ml of the appropriate media 

was added to an empty 10 cm dish. 1 ml of the cell resuspension was added to this plate and 

gently rocked to create an even distribution and bring the final volume to 10 ml.  

Cells were seeded onto a 6 well tissue culture plate in a dilution of 4 ml of cell 

resuspension to 1 ml of media. Cells seeded onto a 24 well tissue culture plate had a dilution of 1 

ml of cell resuspension to 5 ml of media. For experiments using 6 well plates, 1 ml of the cell 

resuspension was added to each well; experiments using 24 well plates had 0.5 ml of the cell 

resuspension added to each well. 

HeLa cells undergoing intoxication required the addition of the GM1 host cell receptor as 

they lack GM1 surface expression. Cells were washed in serum-free media and incubated with 

100 ng/ml GM1 (Sigma-Aldrich St. Lous, MO) in serum-free media for 1 hour at 37°C in order 

to incorporate the receptor into the membrane. Cells were then washed with serum-free media 
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and then incubated with the wild-type or mutant toxin in serum-free media for the specified time 

point. 

For experiments requiring activation of Gsα independently of toxin, CHO-β2AR cells 

were used. Gsα was activated independently of toxin by stimulating β2AR expressed on CHO-

β2AR cells. β2AR was stimulated by chemical treatment with isoproterenol (Sigma-Alderich) at 1 

µM in serum-free media for the specified time point. AC was activated independently of toxin by 

adding forskolin (Sigma-Alderich) at a concentration of 100 µM in serum-free media. 

Mutant and wild-type toxins 

In order to investigate potential links between UPR activation and the function of CT, we 

used various CT inactive mutants that are still intact. CTY149S has a single residue mutation, 

leading to toxin inactivity in mammalian cells (K. Teter, unpublished observations). CTY149S 

loses the ability to interact with ARF6. To confirm results from experiments using CTY149S 

were not due to the loss of interaction with ARF6, E110D/E112D mutants were also used. 

E110D/E112D can still interact with ARF6 but is inactive due to the two active site substitutions 

(34-36). Results from experiments using mutants were compared to cells treated with wild-type 

toxin (Sigma-Alderich). Cells exposed to toxin for dual luciferase reporter assay experiments and 

cAMP assay experiments were treated with CT at 100 ng/ml. Cells exposed to toxin for 

translocation experiments were treated with CT at 1 μg/ml to account for the low amount of 

toxin that reaches the ER (37) and to saturate surface binding sites. 



10 

 

Dual Luciferase Reporter Assay 

CHO or CHO-β2AR cells were seeded in 6 well plates in triplicate and incubated 

overnight at 37°C to 80% confluency. Cells were then washed with serum-free media and 

transfected with p5xUPRE-GL3 (luciferase reporter construct encoding firefly luciferase 

controlled by the ATF6/XBP1 binding motif called the unfolded protein response element or 

UPRE) and pRLSV40P (a constitutive construct encoding Renilla luciferase to serve as an 

internal control for transfection efficiency). An overview of the reporter assay is provided in 

Figure 3. The transfection solutions were prepared by adding 0.5 µg ATF6 reporter construct and 

0.1 µg Renilla constitutive construct per 100 µl serum-free media to solution A and 5 µl 

lipofectamine (Invitrogen Carlsbad, CA) per 100 µl serum-free media to solution B. Solutions A 

and B were incubated separately for 5 minutes and were then co-incubated at room temperature 

for 30 minutes. Cells were washed with serum-free media and 200 µl of the transfection mixture 

was added to each well containing 1 ml fresh serum-free media. After 3 hours of incubation at 

37°C, the transfection mixture was removed and cells were incubated overnight at 37°C in 

antibiotic-free media containing 10% serum. Cells were washed and subjected to the specified 

experimental conditions in serum-free media.  

At the end of the experiment, cells were washed with 1X PBS (phosphate buffered saline) 

and then luminescence was determined using the Dual-Luciferase Reporter kit (Promega 

Madison, WI). Cells were incubated with 1X Passive Lysis Buffer (Promega) for 15 minutes 

with rocking at room temperature to lyse cells. Lysates were transferred to a clear-bottom 96 

well black-walled plate (Fisher Scientific Ocala, FL). Luciferase Assay Reagent II (Promega) 

was added to each well and the firefly luciferase luminescence signal was measured for each 
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sample using the BioTek Synergy 2 plate reader (Winooski, VT) indicating UPRE induction. 

The detection setting and emission was set at luminescence and hole, respectively. Stop & Glo 

(Promega) was then added to each well, which stops the firefly luciferase reaction and 

simultaneously begins the Renilla luciferase reaction to give a signal that was then measured. 

The Renilla construct gives a constitutively active luminescence signal and works as an internal 

control to account for transfection efficiencies and overall protein translation. The ratio of each 

sample’s Renilla luminescence signal to that of the uninduced control was used to normalize the 

UPRE construct luminescence signal.  
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Figure 3: Determining UPR activity by the luciferase reporter assay  

Cells are transfected with a construct encoding firefly luciferase and a UPR transcription factor 

(TF) binding site known as UPRE. Cells are placed under conditions of ER stress, which 

promotes the activation of UPR TFs. This results in TF binding to the UPRE and the translation 

of luciferase, which facilitates a measurable luminescent reaction. 
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cAMP Competition Immunoassay 

To measure the effect of intoxication, cellular cAMP was measured by using competition 

immunoassays. Experimental samples were introduced to a defined amount of anti-cAMP 

antibodies followed by labeled cAMP. If cellular cAMP concentrations are low, the antibodies 

bind the more abundant labeled cAMP. Either a radioisotope or a peroxidase is used to label 

cAMP, depending on the particular kit used. This produces a radioactive or colorimetric signal. 

When cellular cAMP concentrations increase, it competes with labeled cAMP for binding to the 

antibodies, which leads to a decrease in labeled cAMP binding and a decrease in the signal 

observed.  

HeLa or CHO-β2AR cells were seeded in 24 well plates in triplicate and incubated 

overnight at 37°C to 80% confluency. Cells were washed and subjected to specified experimental 

conditions in serum-free media at 37°C. Wells were washed with 1X PBS and treated with 250 

µl of ice cold HCl:EtOH (1:100) for 10 minutes at 4°C. The samples were transferred to a new 

24 well plate and allowed to air dry overnight. Determination of cellular cAMP concentrations 

was performed with the either the (Perkin Elmer Waltham, MA) cAMP [125I] 

radioimmunoassay kit or the (GE Healthcare Piscataway, NJ) cAMP Biotrak 

Enzymeimmunoassay (EIA) kit according to the manufacturer’s instructions. The signal obtained 

from unintoxicated cells was subtracted from the signal of all other conditions. The cAMP signal 

obtained from unintoxicated cells treated with tunicamycin was also subtracted from the signal 

obtained from tunicamycin treated intoxicated cells. 
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Translocation and Digitonin Permeabilization Assay 

A digitonin permeabilization assay was performed in order to separate cytosolic fractions 

(containing cytosolic CTA1) and organelle fractions (containing holotoxin or CTA1 within the 

ER and other endomembrane compartments) (38). HeLa, CHO, or CHO-β2AR cells were seeded 

in 6 well plates in triplicate and incubated overnight at 37°C to 80% confluency. Cells were 

washed and then underwent a pulse chase experiment in which cells incubated with the wild-type 

or mutant toxin in serum-free media for 30 min at 4°C. At this temperature intracellular transport 

is halted, which enables toxin to pulse-label the cells (i.e., binding to the surface of cells without 

being internalized). Cells were washed with serum-free media to remove unbound toxin and 

incubated at 37°C to synchronize toxin internalization. Cells were chased in serum-free medium 

containing no additional treatments or brefeldin A (BfA) at 5 μg/ml for the specified time points. 

BfA is used as a negative control because it blocks CT delivery to the ER (37). Cells were then 

washed with 1X PBS and lifted off the plate with 0.5 mM EDTA in 1X PBS (400 µl per well). 

Three wells used for the same condition were consolidated into one microcentrifuge tube. 

Samples were centrifuged at 5000 x g for 5 min, and the supernatant was discarded. The pelleted 

cells were resuspended and treated with 100 µl of chilled 0.04% digitonin (Sigma-Aldrich) in 

HCN buffer (50 mM Hepes pH 7.5, 150 mM NaCl, 2 mM CaCl2, and 10 mM N-ethylmaleimide) 

to selectively permeabilize the plasma membrane. Samples were incubated on ice for 10 minutes 

and then centrifuged at 16,000 x g for 10 minutes in order to separate cytosolic (supernatant) 

fractions from organelle (pellet) fractions. The supernatant fraction was collected into new 

microcentrifuge tubes.  
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For samples undergoing Western blot analysis, 120 µl of 1X Sample Buffer was added to 

the pellet fraction and 20 µl of 4X Sample Buffer was added to the supernatant fraction. For 

samples undergoing surface plasmon resonance (SPR) analysis, 900 µl of PBS-T (140 mM NaCl, 

2.7 mM KCl, 0.05% Tween 20, 10 mM PO4
3-

, Medicago Uppsala Sweden) was added to the 

supernatant fractions to bring the final volume to 1 ml. 

Immunoblot of Pellet and Supernatant Fractions 

In order to verify that proteins within the pellet (i.e., organelle) fractions obtained from 

the translocation assay did not contaminate the supernatant fractions, a Western blot was 

performed against protein markers that reside in either the cytosol or ER. Experimental samples 

(20 µl) were loaded onto a 15% SDS-PAGE gel. Gels were run at 200 volts for 60 minutes with 

the (Bio-Rad Hercules, CA) HC power supply. Gels were then incubated in 1X transfer buffer at 

room temperature for 5 minutes. A PVDF membrane was activated in methanol for 2 minutes, 

then rinsed in water and incubated in transfer buffer for 10 minutes. One piece of filter paper 

(pre-soaked in 1X transfer buffer) was placed on the platinum-coated anode of the transfer 

apparatus (Bio-Rad) followed by the PVDF membrane, the SDS-PAGE gel, and another piece of 

pre-soaked filter paper to complete the transfer sandwich. The sandwich was rolled over to 

eliminate air bubbles. The cathode of the transfer apparatus was secured, and the transfer was 

allowed to proceed at 10 volts for 20 minutes followed by 15 volts for 40 minutes using the HC 

power supply (Bio-Rad).  

Membranes were blocked for 20 minutes in 5% milk in 1X TBST (15 mM Tris pH 7.5, 

150 mM NaCl, 0.1% Tween 20, H2O) at room temperature. Membranes were then rinsed with 



16 

 

1% milk in 1X TBST and incubated with primary antibody (rabbit anti-PDI 1:5,000; rabbit anti-

HSP90 1:10,000; Stressgen Farmingdale, NY) in 1% milk in 1X TBST overnight on a rocker at 

4°C. Membranes were washed three times in 1% milk in 1X TBST for 10 minutes each time on a 

rocker at room temperature. Membranes were then incubated with secondary antibody (goat anti-

rabbit horseradish peroxidase-conjugated 1:10,000; Jackson Immuno West Grove, PA) for 1 

hour on a rocker at room temperature. The membrane was washed three times in 1% milk in 1X 

TBST for 10 minutes on a rocker at room temperature. ECL Plus Western Blotting Detection 

Reagents (GE Healthcare) was used to detect the presence of proteins according to the 

manufacturer’s instructions. 

SPR Slide Preparation and Sample Analysis 

Cytosolic samples obtained from translocation assays were analyzed by SPR, which 

allows for the detection of cytosolic CTA1. Antibodies against CTA1 are immobilized on a 

sensor slide. When CTA1 in the sample binds to the antibody, there is a change in the reflection 

of light. This change can be measured and converted into a trace on a sensorgram, plotting time 

as a function of refractive index unit (RIU). An increase in RIU represents an interaction 

between CTA1 and anti-CTA1 antibody and thus indicates the presence of CTA1 within a given 

sample. An overview of the SPR detection system is provided in Figure 4. 

To prepare the sensor slide, a gold-plated glass slide (Reichert Depew, NJ) was mounted 

onto the prism surface of the SR7000 SPR Refractometer (Reichert). The slide was activated 

with an EDC-NHS (Thermo Scientific Waltham, MA) solution by injecting the solution into the 

inject port and allowing the solution to perfuse over the slide through the flow channel for 5 
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minutes. The slide was subsequently washed by perfusing PBS-T for 5 minutes. Monoclonal 

anti-CTA1 antibody 35C2 (39) at a ratio of 1:20,000 in 20 nM sodium acetate (pH 5.5) was then 

perfused over the slide for 5 minutes. The slide was washed with PBS-T for 5 minutes to remove 

unbound antibodies. To block unbound reactive tethers on the slide, 1 M ethanolamine (pH 8.5) 

was perfused for 2 minutes. The slide was washed in PBST for 5 minutes to establish a baseline 

RIU signal.  

Experimental samples were perfused over the slide for 5 minutes and then washed for 5 

minutes in PBST to remove the analyte. Perfusions had a flow rate of 41 µl/min and injections 

were 1 ml each. The sensorgram of all samples were generated using LabVIEW (Reichert), 

Scrubber 2 (BioLogic Campbell, Australia), and Igor (WaveMetrics, Lake Oswego, Oregon) 

software. 
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Figure 4: SPR as a detection method to analyze presence of CTA1 in cytosol 

Cytosolic samples are obtained and injected into the flow channel. When CTA1 interacts with 

fixed anti-CTA1 antibody, the incident angle of light changes and can be measured. This change 

in reflected light is converted into a trace onto a sensorgram which plots the RIU over time. An 

increase in RIU indicates interaction between the antibody and the CTA1 analyte. 
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CHAPTER THREE: RESULTS 

UPR induction by CT correlates with enhanced intoxication 

The activation of the UPR by Shiga toxin and ricin appears to be dependent on toxin 

function. Ricin inhibited UPR activation which led to enhanced cytotoxicity, however inactive 

mutants of ricin were not able to inhibit UPR activation (29). Shiga toxin stimulates an UPR, but 

this regulation also enhances intoxication. Again, an active Shiga toxin was necessary to induce 

the UPR (28). Preliminary data of luciferase reporter assays has shown that wild-type CT was 

able to induce an UPR after 4 hr of intoxication (A. Grabon and K. Teter, unpublished 

manuscript). However CTY149S, the inactive mutant toxin in mammalian cells, was not able to 

induce the UPR. In this section we tested the hypothesis that UPR activation by an active CT 

enhances intoxication. 

We measured the level of intoxication by monitoring the amount of cytosolic CTA1 

present in HeLa cells. This was determined by a process involving digitonin permeabilization 

coupled with SPR analysis as described in the Methods section. Using digitonin allows for the 

selective permeabilization of the plasma membrane while leaving the membranes of organelles 

intact. The fidelity of our samples needed to be verified in order to ensure the specific collection 

of cytosolic CTA1 in the supernatant fraction (and not CTA1 within membrane bound 

compartments). We performed a digitonin permeabilization assay to separate organelle (pellet, P) 

and cytosol (supernatant, S) fractions which were then tested for the presence of protein markers 

that are known to reside in organelles or in the cytosol. Protein disulfide isomerase (PDI), a 

soluble ER resident protein, remained in the pellet and heat shock protein 90 (Hsp90), a cytosolic 

protein, was maintained in supernatant (Figure 5). A small pool of Hsp90 was associated with 
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the membrane pellet which accounts for the faint band in the P fraction. This minor pool of 

membrane-associated Hsp90 was also observed by others (38). Thus, the Western blot confirmed 

sample fidelity by revealing that the membrane bound organelles remain intact, which allows for 

subsequent sample analysis through SPR.  

Cytosolic fractions were analyzed for the presence of CTA1 in HeLa cells exposed to 

wild-type CT and one of two inactive CT mutants: CT Y149S (Figure 6A) or CT E110D/E112D 

(Figure 6B). The SPR sensorgrams reveal that cytosolic CTA1 levels for cells intoxicated with 

mutant CT are similar to that of cells intoxicated with wild-type CT at 1 and 4 hr of chase 

(Figures 6A-B). However, the marked increase in cytosolic CTA1 observed for wild-type CT at 

5 hr of chase was not seen for either mutant toxin. No signal was observed for unintoxicated or 

BfA-treated cells, two negative controls. Unintoxicated cells serve as a reference because since 

no toxin was added to the cells, there is no CTA1 within the cytosolic sample that reacts with the 

anti-CTA1 antibody fixed onto the SPR sensor slide. BfA-treated cells are intoxicated with CT, 

but BfA treatment blocks entry of CT to the ER and thus should produce minimal to no signal as 

CT would not enter the cytosol. The significant increase in cytosolic CTA1 after 4 hr of exposure 

to wild-type CT coincides with UPR activation with wild-type CT after 4 hr of intoxication with 

wild-type CT but not with CT149S (A. Grabon and K. Teter, unpublished observations). This 

data suggests that wild-type CT activates the UPR to enhance cytosolic delivery of toxin and 

therefore enhance toxicity. 
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Figure 5: Organelle and cytosol fractions are tested for the presence of protein markers 

HeLa cells were grown to 80% confluence in 6 well plates and then gently lifted from the plates 

using 5 mM EDTA in 1X PBS. Collected cells were centrifuged at 5000 x g for 5 min and then 

selectively permeabilized with 0.04% digitonin in HCN buffer. Another centrifugation at   

16,000 x g for 10 min was used to separate pellet (P, organelle) and supernatant (S, cytosol) 

fractions. Pellet and supernatant fractions underwent Western blot analysis to determine the 

distribution of PDI and Hsp90 in each fraction. Anti-PDI antibody, 1:5000. Anti-Hsp90 

antibody, 1:10,000. 
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A  B  

Figure 6: SPR sensorgram of HeLa cells after wild-type or mutant toxin exposure 

After 4 hr of intoxication, there is a marked increase in cytosolic CTA1 for cells intoxicated with 

wild-type. HeLa cells were pulse-labeled with wild-type (A-B), mutant CTY149S (A), or mutant 

E110D/E112D (B) at 4°C for 30 min at 1 μg/ml. After unbound toxin was removed, cytosolic 

fractions were chased after 1, 4, and 5 hr. The BfA treated sample was chased after 1 hr. The 

sensorgram shown in A is a representative figure from two independent experiments. The data 

depicted in B is representative from three independent experiments. BfA treated cells are used as 

a control as BfA blocks CT delivery to the ER. Unintoxicated cells, -CT. Wild-type, wt. Mutant, 

mt.  
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Chemical UPR activation enhances intoxication 

If CT activation of the UPR leads to increased toxin in the cytosol, then chemical 

activation of the UPR should yield similar results. To determine if CT-induced UPR activity has 

the same effect on cytosolic CTA1 as does chemically induced UPR activity, HeLa cells 

underwent UPR pre-activation with tunicamycin and then cytosolic CTA1 was examined. 

Tunicamycin is another chemical used to activate the UPR by inhibiting N-glycosylation, thus 

leading to the accumulation of misfolded proteins and ER stress. In non-UPR-activated cells (i.e. 

without tunicamycin treatment), CTA1 was detected in the cytosolic fraction at 30 min but not at 

15 min (Figure 7A). There is a gradual increase in cytosolic CTA1 at each subsequent time point. 

UPR-activated (i.e. tunicamycin treated) cells exported CTA1 into the cytosol sooner and at 

higher amounts compared to that of non-treated cells (Figure 7B). In UPR-activated cells, CTA1 

is even detected after only 15 min, with an increase in cytosolic CTA1 at each subsequent time 

point as observed for non-UPR activated cells. Unintoxicated cells or cells treated with BfA 

show no signal.  

In order to quantify cytosolic CTA1 in SPR sensorgrams, we used Scrubber 2 software to 

extrapolate association rate constants (ka) from SPR data of samples and standards of known 

CTA concentration. A standard curve was generated, plotting ka as a function of protein 

concentration. The slope of the curve was then used to determine CTA1 concentration for 

experimental samples (Figure 7C). The resulting qualitative data confirmed that greater levels of 

CTA1 arrive in the cytosol sooner in tunicamycin treated cells than in untreated cells. Thus, 

these data suggest that UPR activation induced by chemical and by toxin enhances toxicity 

within cells.  
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Since UPR induction enhanced cytosolic CTA1 levels, we tested the hypothesis that 

tunicamycin would also increase the levels of cAMP during intoxication. HeLa cells were pre-

treated with tunicamycin for 90 min and then exposed to CT continuously for 2 hr (Figure 8). 

Tunicamycin pre-treatment increased cAMP concentrations during intoxication by 2.4 fold when 

compared to intoxicated HeLa cells that were not pre-treated with tunicamycin. Thus, UPR 

activation sensitizes HeLa cells to intoxication by increasing cytosolic CTA1 and, in turn, 

increasing cAMP concentrations. 
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A B C.  

Figure 7: The effect of chemical UPR induction on the levels of cytosolic CTA1  

Cytosolic CTA1 in tunicamycin absent (non-UPR activated, A) or tunicamycin treated (UPR activated, B) cells. HeLa cells 

were treated in the absence or presence of 10 µg/ml tunicamycin for 90 min at 37°C. Cells were pulse-labeled with 1 µg/ml 

wild-type CT at4°C for 30 min. Cytosolic CTA1 was then chased at 37°C after the specified time point and analyzed by SPR. 

CTA traces in black indicate 1 and 0.1 ng CTA1 standards. The SPR sensorgrams are representative of two independent 

experiments. (C) Quantification of cytosolic CTA1 from cells treated with or without tunicamycin using Scrubber 2 software.  
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Figure 8: cAMP concentrations after two hours of intoxication in UPR activated cells 

HeLa cells were treated with or without 10 µg/ml tunicamycin for 90 min at 37°C and 

subsequently incubated with or without CT (100 ng/ml) continuously for 2 hours at 37°C. 

Cellular cAMP concentrations were then determined. The experiment was performed once with 

triplicate samples.  
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CT-induced UPR activation occurs independently of AC 

CT is able to induce an UPR, and this induction is dependent on CT activity (A. Grabon 

and K. Teter, unpublished observations). Active CT locks Gsα in an active state, which 

consequently leads to continual stimulation of AC and the production of high levels of cAMP. 

We investigated whether UPR activation during intoxication is dependent on cAMP or on Gsα. 

To determine the role of AC or Gsα on UPR activity, UPR activity was measured after AC and 

Gsα were stimulated by chemical treatment. To stimulate AC and Gsα independently of CT, we 

utilized CHO-β2AR cells and treated them with forskolin to activate AC and isoproterenol to 

activate Gsα. Isoproterenol is a chemical that activates the G-coupled protein receptor, β2AR, 

which is stably expressed on CHO-β2AR cells.  

Control experiments verified that cAMP pathways were active in CHO-β2AR cells 

(Figure 9). Treatment with thapsigargin alone for either 90 min or 4 hr had minimal effect on 

cAMP levels. In contrast, CHO-β2AR cells challenged with CT, forskolin, or isoproterenol 

exhibited considerably increased cAMP concentrations (Figure 9). This indicated that the CT, 

AC, and Gsα pathways were functional in CHO-β2AR cells. While CHO-β2AR cells produced 

increased cAMP concentrations in response to isoproterenol, CHO cells without expressed β2AR 

did not have a cAMP increase in response to isoproterenol (data not shown).  

CHO-β2AR cells were analyzed for UPR activity by a luciferase assay after challenging 

cells with forskolin, isoproterenol, thapsigargin, and wild-type CT (Figure 10). The reporter 

assay demonstrated that 4 hr of wild-type CT exposure induces UPR activity, as did the positive 

control thapsigargin. Forskolin treatment did not result in UPR activation, whereas isoproterenol 

treatment induced UPR activity. In other words, Gsα activation induced an UPR while AC 
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activation did not. Since both forskolin and isoproterenol generated elevated cAMP levels but 

only isoproterenol activated the UPR, elevated cAMP is not responsible for UPR activation. 

Since UPR induction enhances the cytosolic delivery of CTA1, we tested the hypothesis 

that Gsα activation also stimulates the delivery of CTA1 to the host cytosol. A control 

experiment was performed in CHO-β2AR cells in order to determine at what point cytosolic 

CTA1 is detected in the cytosol of intoxicated cells (Figure 11A). Cytosolic CTA1 was not 

observed at 30 min of chase, but was observed at 45 min of chase. We predicted that UPR 

activation would enhance toxin delivery in CHO-β2AR cells and allow detection of CTA1 after 

only 30 min of chase. CHO-β2AR cells were pre-activated with thapsigargin, forskolin, or 

isoproterenol for 90 min or 4 hr. After pulse-labeling with wild-type CT, cytosolic fractions were 

collected from untreated and drug-treated cells after 30 min of toxin exposure. Samples were 

analyzed by SPR to determine if pre-activation of the UPR produced a cytosolic pool of CTA1 

after just 30 min of chase. Cytosolic CTA1 was detected after only 30 min of chase for cells 

treated with isoproterenol and thapsigargin, but not for forskolin-treated cells or untreated cells 

(Figure 11B-C). CHO cells not expressing β2AR did not have an increase in cytosolic CTA1 

after isoproterenol treatment (data not shown). These data suggest that Gsα-induced UPR 

activation enhances the levels of cytosolic CTA1 in a process that is independent of the cAMP 

signaling pathway. 
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Figure 9: cAMP assay to verify cAMP production in CHO-β2AR cells 

CHO-β2AR cells were treated with 200 nM thapsigargin (Tg), 100 µM forskolin (For), 1 µM 

isoproterenol (Iso), or 100 ng/ml wild-type CT for 4 hr. Cellular cAMP levels were then 

determined. The data represents the average of two independent experiments. 
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Figure 10: The ability of AC and Gsα to induce an UPR  

CHO-β2AR cells were transfected with the p5xUPRE-GL3 luciferase reporter construct and then 

challenged for 4 hr with 100 ng/ml wild-type CT, 200 nM thapsigargin, 100 µM forskolin, or 1 

µM isoproterenol. Luciferase reaction luminescence was then measured. The data represents the 

average of four independent experiments. 
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A  

B        C  

Figure 11: The effect of Gsα and AC activation on cytosolic CTA1 delivery to the cytosol 

(A) CHO-β2AR cells were pulse-labeled with 1 μg/ml of wild-type CT at 4°C for 30 min. Cytosolic fractions were then 

collected after the specified time point at 37°C and analyzed by SPR. (B-C) CHO-β2AR cells pre-treated with 200 nM 

thapsigargin, 100 µM forskolin, or 1 µM isoproterenol for 90 min (B) or 4 hr (C) before pulse-labeling with wild-type CT. 

Cytosolic fractions were collected after 30 min at 37°C and analyzed by SPR. The sensorgrams from B and C are 

representative figures from two independent experiments.  
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CHAPTER FOUR: DISCUSSION 

The activity of AB toxins is linked to UPR induction 

The UPR has a role in the pathogenesis caused by several toxins, but its involvement has 

not been extensively studied for CT. In the present study, CT-induced UPR activation occurred 

within CHO-β2AR cells (Figure 10). UPR activation in turn enhanced intoxication by increasing 

cytosolic CTA1 (Figure 7) and cellular cAMP concentrations (Figure 8). Preliminary data found 

in CHO cells (A. Grabon and K. Teter, unpublished observations) also show UPR induction by 

wild-type CT and demonstrate the inability of the inactive mutant to induce an UPR, which 

suggests CTA1 activity leads to an UPR.  

CTA1 traffics to the ER where it is recognized as a misfolded protein for translocation 

into the cytosol. The UPR is induced due to the presence of misfolded proteins within the ER. 

Consequently, it is tempting to draw a link between the presence of CTA1 within the ER and 

UPR, but this is unlikely because of the small pool of internalized CT that actually makes it to 

the ER (37). UPR induction likely depends on toxin function. To support this, the mutant toxins 

that were unable to induce an UPR were detected in the cytosol (Figure 6), so the mere presence 

of toxin within the ER is not sufficient to induce an UPR.  

Active Shiga toxin and ricin also modulate the UPR, and this regulation was linked to 

toxin activity (28, 29). Shiga toxin may induce the UPR through inactivation of ribosomes by its 

enzymatic A1 subunit (STxA1). The resulting protein synthesis inhibition possibly contributes to 

a deficit of chaperones within the ER, contributing to ER stress. The mode of action for CT does 

not involve ribosome inactivation, but rather the modification of Gsα, leading to AC 

hyperactivation and increased cAMP concentrations. 
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We investigated the link between CT activity and UPR induction, specifically examining 

the role of the cAMP pathway. CT induced an UPR, but treatment with the AC agonist forskolin 

did not activate the UPR (Figure 10). Additionally, forskolin treatment did not increase the pool 

of cytosolic CTA1. In contrast, treatment with the global UPR inducers tunicamycin (Figure 7) 

and thapsigargin (Figure 11) enhanced the rate of CTA1 delivery to the cytosol. Thus, UPR 

induction in response to CT and the resulting sensitization of cells to toxin likely occurs via an 

AC-independent mechanism. Other studies have also shown cAMP-independent signaling events 

driven by CT (40, 41), but these events were not directly related to the CT intoxication process. 

To investigate if UPR induction was occurring upstream of AC, Gsα activation by 

isoproterenol was used. In contrast to AC activation, Gsα activation induced UPR activity 

(Figure 10) as well as increased cytosolic CTA1 (Figure 11). UPR activity through Gsα would 

represent an unexpected mechanism for CT-induced UPR activity instead of the typical ER stress 

pathway. UPR activation by pore forming toxins was also found to occur independently of ER 

stress through the p38 mitogen-activated protein kinase (MAPK) signaling pathway (42). G-

protein signaling can activate p38 MAPK (43), so we investigated if p38 had a role in CT-

induced UPR activity; however we found that a p38 inhibitor, SB203580, did not block cAMP 

production after 5 hr of toxin exposure (data not shown).  

UPR induction results in enhanced intoxication 

Toxin induced-UPR by Shiga toxin and ricin sensitizes mammalian and yeast cells to 

cytotoxicity (28, 29). We similarly found that UPR induction enhances intoxication. UPR 

induction by global UPR inducers enhances delivery of CTA1 to cytosol (Figures 7, 11). 
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Chemically induced UPR also increased cAMP concentrations during intoxication in HeLa cells 

(Figure 8) and CHO cells (A. Grabon and K. Teter, unpublished observations). Other 

investigators have also demonstrated enhanced cholera intoxication in response to thapsigargin 

(32) and tunicamycin (44). Thus, the UPR sensitizes cells to the effects of intoxication. 

Analysis of cytosolic CTA1 by SPR has consistently shown a marked increase in CTA1 

after 4 hr of chase (18). UPR activation by wild-type and not mutant CT also occurs at 4 hr of 

toxin exposure (A. Grabon and K. Teter, unpublished observations). We tested whether 

intoxication by the mutant CT, which could not induce the UPR, would also result in marked 

levels of cytosolic CTA1 after 4 hr. While CTA1 from mutant CT was detected in the cytosol at 

similar levels as wild-type toxin at 1 and 4 hr, the marked increase observed for wild-type CTA1 

at 5 hr was not observed for mutant. Thus, the marked increase typical for cells intoxicated with 

wild-type CT at 5 hr may be due to the time it takes for the UPR to be induced.  

The ERAD pathway and the UPR are linked, so it is possible that enhanced intoxication 

occurs during an UPR due to increased ERAD activity. This seems unlikely due to our SPR data 

demonstrating the time in which we begin to see CTA1 in the cytosol (Figure 7). No CTA1 was 

detected after 15 min of chase in non-UPR activated cells. After 15 min of chase, the 

concentration of cytosolic CTA1 in UPR-activated cells is approximately equal to that observed 

for the 30 min chase of non-UPR activated cells; the concentration after 30 min of chase is 

similar to that of the 45 min, etc. If the UPR was affecting ERAD during intoxication, the lag 

time for toxin to reach the cytosol would not be affected. Instead, UPR induction may enhance 

trafficking, which is supported by another study showing increased transport to the ER after 

thapsigargin treatment (32).   
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CHAPTER FIVE: CONCLUSION 

After 4 hr of cholera intoxication, the UPR is activated which is thought to cause the 

jump in cytosolic CTA1 levels after 4 hr. To support this, UPR pre-activation by chemical means 

results in enhanced intoxication. UPR activation by CT is AC-independent, but may be 

dependent on Gsα as Gsα activation induced an UPR independently of toxin.  

These data suggest a novel role for the UPR, which is enhanced cholera intoxication via 

an AC-independent mechanism and further demonstrates how pathogens exploit multiple host 

processes in order to cause disease. Future studies will investigate the involvement of the three 

UPR pathways during intoxication as well the involvement of Gsα during toxin-induced UPR.  
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