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ABSTRACT 

 Cerium oxide nanoparticles (CeO2 NPs)(nanoceria) have been shown to possess a 

substantial oxygen storage capacity via the interchangeable surface reduction and oxidation of 

cerium atoms, cycling between the Ce4+ and Ce3+ redox states. Reduction of Ce4+ to Ce3+ causes 

oxygen vacancies or defects on the surface of the crystalline lattice structure of the particles, 

generating a cage for redox reactions to occur. The study of the chemical and biological 

properties of CeO2 NPs has expanded recently, and the methods used to synthesize these 

materials are also quite diverse. This has led to a plethora of studies describing various 

preparations of CeO2 NPs for potential use in both industry and for biomedical research. Our 

own work has centered on studies that measure the ability of water-based CeO2 NPs materials 

to reduce reactive oxygen and nitrogen species in biological systems, and correlating changes in 

surface chemistry and charge to the catalytic nature of the particles. The application in 

experimental and biomedical research of CeO2 NPs began with the discovery that water-based 

cerium oxide nanoparticles could act as superoxide dismutase mimetics followed by their ability 

to reduce hydrogen dioxide similar to catalase. While their ROS scavenging ability was well 

established, their ability to interact with specific RNS species, specifically nitric oxide (·NO) or 

peroxynitrite (ONOO-) was not known. The studies described in this dissertation focus on the 

study of RNS and cerium oxide nanoparticles. 

Our in vitro work revealed that CeO2 NPs that have higher levels of reduced cerium sites 

(3+) at the surface (which are effective SOD mimetics) are also capable of accelerating the 
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decay of peroxynitrite in vitro.  In contrast, CeO2 NPs that have fewer reduced cerium sites at 

the particle surface (which also exhibit better catalase mimetic activity) have ·NO scavenging 

capabilities as well as some reactivity with peroxynitrite. Our studies and many others have 

shown cerium oxide nanoparticles can reduce ROS and RNS in cell culture or animal models. 

The accumulation of ROS and RNS is a common feature of many diseases including Alzheimer’s 

disease (AD). Testing our CeO2 NPS in cortical neurons, we used addition of Aβ peptide as an AD 

model system. CeO2 NPs delayed Aβ-induced mitochondrial fragmentation and neuronal cell 

death. When mitochondrial ROS levels are increased, mitochondrial fission is activated by DRP1 

S616 phosphorylation. Specifically, our studies showed the reduction of phosphorylated DRP1 

S616 in the presence of CeO2 NPs. Results from our studies have begun to unravel the molecule 

mechanism behind the catalytic nature of how CeO2 NPs reduce ROS/RNS in biological systems 

and represents an important step forward to test the potential neuroprotective effects of CeO2 

NPs in model systems of AD. 

A plethora of studies describing various preparations of CeO2 NPs for potential use in 

both industry and for biomedical research have been described in the past five years. It has 

become apparent that the outcomes of CeO2 NPs exposure can vary as much as the synthesis 

methods and cell types tested. In an effort to understand the disparity in reports describing the 

toxicity or protective effects of exposure to CeO2 NPs, we compared CeO2 NPs synthesized by 

three different methods; H2O2 (CNP1), NH4OH (CNP2) or hexamethylenetetramine (HMT-CNP1). 

Exposure to HMT-CNP1 led to reduced metabolic activity (MTT) at a 10-fold lower 

concentration than CNP1 or CNP2 and surprisingly, exposure to HMT-CNP1 led to substantial 



v 
 

decreases in the ATP levels. Mechanistic studies revealed that HMT-CNP1 and CNP2 exhibited 

robust ATPase (phosphatase) activity, whereas CNP1 lacked ATPase activity. HMT-CNP1 were 

taken up into HUVECs far more efficiently than the other preparations of CeO2 NPs. Taken 

together, these results suggest the combination of increased uptake and ATPase activity of 

HMT-CNP1 may underlie the mechanism of the toxicity of this preparation of CeO2 NPs, and 

may suggest ATPase activity should be considered when synthesizing CeO2 NPs for use in 

biomedical applications.  

Overall the studies have uncovered two new catalytic activities for water-based CeO2 

NPs (·NO scavenging and accelerated decay of peroxynitrite), demonstrated their ability to 

reduce RNS in an AD cell culture model as well as identifying a catalytic activity (phosphatase) 

that may underlie the observed toxicity of CeO2 NPs reported in other studies.  
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CHAPTER 1: INTRODUCTION 

Aging 

Progressive accumulation of damaged molecules or tissues are associated with aging 

and are believed to be responsible for the ever-increasing susceptibility to disease and death 

(1). In 1956, Harman proposed the ‘free radical theory of aging’ (2) which implicated increasing 

levels of oxidatively damaged biomolecules is due to the formation of reactive oxygen species. 

These reactive species including free radicals (i.e. superoxide, hydroxyl, carbonate) lead to 

deleterious side effects on most cell constituents (2). Reactive oxygen species (ROS) and 

reactive nitrogen species (RNS) are reactive molecules that can damage all types of 

biomolecules, including DNA, proteins, and lipids with the formation of toxic and mutagenic 

products. ROS/RNS can originate from exogenous sources such as ultraviolet light (UV), ionizing 

radiation, and other environmental stress or they can be generated intracellularly as a 

consequence of normal metabolism (3). Aerobic organisms possess antioxidant enzymes (i.e. 

superoxide dismutase, catalase, peroxiredoxins), antioxidants (i.e. glutathione, uric acid) and 

mis-folded protein degradation defense systems that deal with ROS produced as a consequence 

of aerobic respiration and oxidation of biomolecules (4). Macrophages of the immune system 

can create ROS by deliberately producing superoxide to rid itself of foreign material such as 

bacteria and viruses (5). Mammalian cells and tissues can tolerate certain levels of these 

species, but excessive levels of ROS leads to damage to cells and tissues (6). Life expectancy has 

also been shown to decline with an increase in the generation of ROS in many species (7). In 

addition to the normal levels of oxidative stress formed during regular metabolism, 
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neurodegenerative disease models have suggested that cells may also be subjected to damage 

by RNS resulting from elevated levels of nitric oxide (·NO) and its reactive intermediate 

compounds, including peroxynitrite (ONOO-) (8). The pathogenesis of diseases including many 

degenerative diseases involve the generation of ROS and RNS associated with mitochondrial 

dysfunction (9). Exposure to pesticides, toxins and other exogenous factors as well as 

endogenous factors may trigger the over-production of ROS and RNS (10). For organisms to 

withstand this imbalance and prevent or diminish ROS and RNS induced damage, it is important 

to evaluate new modes of therapy and treatment.  

Antioxidants 

Decreasing the levels of ROS and RNS is the role many antioxidant molecules play. 

Cellular protective effects of antioxidants have been extensively studied and have 

demonstrated their ability to directly scavenge ROS/RNS or their precursor molecules by 

attenuating the catalysis of ROS/RNS generation in most instances using metal dependent 

coenzymes (11). Effectively managing diseases is the foremost goal in medical research today 

and many studies have used therapeutic antioxidants in their research which did not have 

satisfactory pharmacological outcomes. In recent human studies, several antioxidants including 

β-carotene, vitamins C and E, NAC (12), coenzyme Q10  (13) and tetra-hydrocurcumin have been 

shown to provide protective effects in cellular and animal models of AD (14). However, their 

efficacy in human trials provided at best only modest changes in disease progression (12, 15, 

16). Among the problems are their poor stability and repetitive dosing, underscoring the need 

for alternative strategies.  
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Treatment efficacy of diseases that respond to antioxidants should be improved by 

using catalytic antioxidants, which would then decrease the need for repetitive dosing. This 

would allow the breakdown of toxic molecules without the catalytic antioxidants themselves 

becoming inactivated (11). It has become apparent that identifying compounds for treating the 

excessive formation of ROS and RNS in diseases without interfering with normal metabolism or 

resulting in additional adverse effects is an important standard (17).  

Nitric Oxide 

The role of ROS and its effect on aging has received considerable attention since Dr. 

Harman first proposed the ‘free radical theory of aging.’ More recently, the role of RNS have 

been shown to have a direct role in cell signaling, vasodilatation and the immune response (18). 

Nitrosative stress, defined by the excessive production of reactive nitrogen species, causes 

damage to macromolecules and can lead to degenerative diseases, contribute to metabolic 

diseases and if in great excess can lead to cell death through a variety of molecular 

mechanisms. The role that RNS play in many age related diseases is now just being appreciated. 

Nitric oxide has many physiological functions (neurotransmitter, blood vessel dilation) 

but also ·NO can convert into a highly reactive and toxic molecule, peroxynitrite, that readily 

reacts with proteins, DNA, and lipids to alter their function (19). Nitric oxide reacts with various 

molecules in vitro and in vivo and the products of these reactions can damage the cell through a 

variety of mechanisms. One mechanism, S-nitrosylation is a post-translational, redox-related 

modification of cysteine thiols by nitric oxide (20). Additionally, tyrosine residues can be 

modified to generate 3-nitrotyrosine, and subsequently this modified amino acid is used as a 
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biomarker of nitric oxide -related oxidants (21). Accumulating evidence suggests that the 

specific proteins are regulated through S-nitrosylation and tyrosine nitration, and these sites 

play key roles in human health and disease. S-nitrosylation is a reversible reaction, often tied to 

regulation of enzyme activity (22-24) whereas and 3-nitro tyrosine is a stable covalent adduct 

(25). Nitric oxide, if present in excess of antioxidant defense systems, can trigger nitrosative 

damage to macromolecules through its reactive intermediates, which in turn may contribute to 

degenerative diseases due to various reasons including the structural alteration of proteins, 

inhibition of enzymatic activity, and interferences of the regulatory function (18).  

Peroxynitrite 

A primary reaction in the production of RNS is the diffusion limited reaction of ·NO and 

superoxide radical (O2
-·) to form ONOO- (26). ONOO- is a powerful oxidant and has been shown 

to react with all classes of biomolecules including thiols (27), lipids (28), carbohydrates (29) and 

DNA (30). The oxidative chemistry of peroxynitrite in biological systems depends upon the 

availability of targets (31), but the primary deleterious effect of ONOO- is the inactivation of 

enzymes (32). Modification of amino acid residues on the active site of key proteins may result 

in detrimental change in function of the proteins. Tyrosine nitration of proteins has become an 

important marker for inflammation and for nitrosative stress and has been detected in a 

number of diseases and pathological conditions (33). Likewise, disproportionate amounts of 

nitric oxide can compete with oxygen causing the interruption of electrons from the respiratory 

chain which results in increased formation of O2
•-  (33) and thus increased peroxynitrite leading 

to the post-translational modification of proteins. Tyrosine nitration occurs with the 
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incorporation of a nitro group (-NO2) at position 3 of the aromatic ring of tyrosine and  the 

majority of nitration  is due to the simultaneous availability of a tyrosyl radical (Tyr·) and 

nitrogen dioxide  radical (·NO2) (34). Addition of a -NO2 group to tyrosine can alter protein 

function by various modes including lowering the pKa of its phenolic –OH.  This bulky 

substituent which if placed on a relevant tyrosine, can alter protein function and conformation, 

impose steric restrictions, and also inhibit tyrosine phosphorylation. (35). 

 Several specific proteins and systems have been shown to be modified by ONOO- . 

Peroxynitrite has been shown to cause tyrosine nitration of complex I of the respiratory chain 

thus effecting mitochondrial injury (36). Increased levels of nitrated proteins have been 

reported in AD brains as well as cerebrospinal fluid in patients with AD (37). Several proteins 

present in AD have been shown to be nitrated by peroxynitrite (33). Peroxisome proliferator-

activated receptor gamma (PPARγ) expression protects neurons from Aβ- mediated toxicity (38) 

however its nitration prevents its translocation to the nucleus, thereby preventing 

mitochondrial biogenesis (39). Protection against peroxynitrite damage in vivo is provided by 

several antioxidants (40) as well as eliminated by many of the anti-oxidant enzymes, 

peroxiredoxins (41).  The rate of reduction of peroxynitrite by ascorbate (42), glutathione (43) , 

and uric acid (44) is too slow during the course of disease or increased nitrative stress to 

prevent damage (45).  Effective antioxidants that can selectively quench ROS/RNS species such 

as peroxynitrite or superoxide and provide lasting effects are needed. Finding a specific ONOO- 

scavenger is of considerable importance.  



6 
 

Manganese (Mn) Porphryins 

Aerobic organisms evolved antioxidant defense systems that deal with ROS produced as 

a consequence of aerobic respiration (4). Superoxide dismutase (SOD) developed as a defense 

mechanism against oxidative stress to more rapidly convert O2
·- to H2O2 (46), even though the 

spontaneous reaction with protons is nearly as effective as the enzyme catalyzed reaction.  H2O2 

is then acted upon by catalase, glutathione peroxidase and/or peroxiredoxins to maintain a 

healthy level of peroxide in cells and tissues. These endogenous enzymes work in concert to 

limit ROS, and their synthesis and expression is generally tissue and cell type specific. SOD 

belongs to a diverse group of enzymes that have metal ions which are usually coordinated by 

nitrogen, oxygen or sulfur centers, to assist in the process of electron transfers (47)  called 

metalloenzymes. Since its discovery many chemists and biochemists have developed 

synthetically produced metal based small molecule catalysts to try and mimic the active site of 

SOD. These so called SOD mimics have been shown to increase the lifespan of nematodes (48) 

and  a number of studies have shown their ability to scavenge O2
·- and/or H2O2 utilizing various 

metalloprophyrin motifs (49-51). 

Cerium Oxide Nanoparticles 

The use of CeO2 nanoparticles (NP) for potential therapy in cancer, age-related and 

neurodegenerative diseases represents a novel strategy for a unique technology. Cerium is a 

rare-earth element belonging to the lanthanide series. In bulk, CeO2 is in the 4+ oxidation state. 

Cerium is distinctive in that in its oxide nanoparticle form, the cerium atom can exist in either 

http://en.wikipedia.org/wiki/Nitrogen
http://en.wikipedia.org/wiki/Oxygen
http://en.wikipedia.org/wiki/Sulfur
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3+ (fully reduced) or 4+ (fully oxidized) and may interchange between the two states (52).  Babu 

et al (53) have synthesized CeO2 NPs that vary in the amount of 3+ and 4+. The oxidation state 

can be represented by CeO2-x. Cerium oxide also contains oxygen vacancies or “defects” in the 

lattice structure caused by loss of oxygen and/or its electrons (54).  CeO2 NPs have similar 

chemical and physical properties to bulk cerium but due to the increased surface area to 

volume ratio, along with oxygen vacancies, CeO2 NPs have the potential as a unique catalyst 

(55) and can act as a free radical scavenger or antioxidant. The valence and defect structure of 

cerium oxide is therefore dynamic and may change spontaneously or in response to physical or 

biological parameters (56). Preliminary biocompatibility testing has shown no toxicity or other 

adverse reactions to CeO2 NPs in the eyes of rats (57). Further work from this group 

demonstrated CeO2 NPs additionally extend photoreceptor cell lifespan in tubby mice by 

modulation of apoptosis/survival signaling pathways by slowing the progression of retinal 

degeneration.  The protective effect by CeO2 NPs was demonstrated by decreasing ROS, down-

regulating apoptosis signaling pathways and upregulating the expression of neuroprotection-

associated genes resulting in slowing of photoreceptor degeneration (58). Treatment with CeO2 

NPs reduced total nitrated proteins in transgenic MCP-1 mice using CeO2 NPs in the Ce4+ state 

(59). Continuing work from this lab indicate that CeO2 NPs can inhibit the ROS induced by 

cigarette smoke extract in cardiomyocytes (60). Interestingly, the CeO2 NPs used in this second 

study contained an increased concentration of Ce3+ on their surface. Elevated ROS from chronic 

cigarette exposure can result in cardiomyopathy and may also activate nuclear factor-kB (NF-

kB), a redox-sensitive transcription factor. CeO2 NPs were able to inhibit this activation. The 

reactivity of the cerium atoms at the surface of CeO2 NPs is critical to their catalytic properties 
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and reactivity is reflected in their Ce3+/Ce4+ ratio. These studies approach the on-going issue of 

what happens to the oxidation state of the CeO2 NPs once they are inside cells or animals and 

suggests that CeO2 NPs may indeed act as regenerating catalytic antioxidants. Exploring the 

surface properties and catalytic abilities of CeO2 NPs to scavenge free radicals in vitro and in 

vivo will aid in the search for future effective therapies for management of diseases where 

radicals have been proposed to play a role. 

Numerous synthetic catalytic scavengers of ROS and RNS have been made and tested in 

various model systems. Copious metalloporphyrins have been synthesized to have high 

reactivity with O2
·-, H2O2, ·NO and ONOO- (8, 50, 61, 62). Most studies affirm metalloprophyrins 

are useful tools for researching and understanding the roles that ROS and RNS may play in 

diseases, however, their potential toxicity due to metals has often come into question for their 

use humans. The health effects of CeO2 NPs are not as yet well understood and there are 

reports which claim that CeO2 NPs are both protective and toxic (63-66). In considering CeO2 

NPs as potential therapeutic agents it is important to pay attention to their synthesis method, 

concentration, and surface chemistry. The preparation/synthesis methods of CeO2 NPs result in 

particles with a wide variety of surface functionalities and modifications, and these properties 

will dictate whether a nanoparticle will be protective or deleterious. There are well established 

synthesis methods in which CeO2 NPs are consistently shown to exhibit SOD mimetic activity 

(55, 56) , catalase mimetic activity (67) or NO scavenging abilities (68) whereas other synthesis 

methods result in CeO2 NPs without comparable antioxidant properties (66). Thus these factors 

as well as concentrations used and cell type studied might account for the seemingly conflicting 

reports.  
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Alzheimer's Disease 

Alzheimer’s Disease (AD) is among the most common neurodegenerative disorders. AD 

is a progressive and irreversible disorder of the central nervous system that confers an 

enormous economic as well as emotional burden on patients, caregivers and society (69). 

Reactive oxygen species (ROS) and RNS are formed during normal metabolism but an imbalance 

may result from the increase production of free radicals or from the failure of antioxidants and 

antioxidant enzymes to adequately scavenge the damaging molecules. This imbalance has been 

documented to be involved in AD (70).  

The mechanism of how ONOO- promotes neurotoxic effects is still being elucidated but 

mitochondrial injury seems to be a primary cause (71, 72) due to ONOO- ability to oxidize or 

nitrate all biomolecules. Strong evidence suggests that mitochondrial dysfunction is an early 

event in AD (73). Among the reported changes are altered morphology and ultrastructure of 

mitochondria, inhibition of respiration and ATP production, and increased ROS production (74). 

However, what causes the failure in mitochondrial function is unclear.  

Widespread ONOO- mediated damage is seen in brain tissue from AD in the form of 

increase protein nitration in neurons (75). This increase in nitration, the result of increased 

nitrosative stress, has been attributed to the aggregation of the Aβ peptide into amyloid 

plaques, one of the defining morphological features of AD (76). The molecular basis of this 

increase of Aβ-induced RNS has been shown to be an impaired synaptic transmission, 

specifically the modulating of NMDA-type glutamate receptors (77). In addition, AD pathology is 
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also characterized by self-assembly of the tau protein into neurofibrillary tangle (NFT). Tyrosine 

nitration of the tau proteins has been demonstrated in many studies (78, 79) further implicating 

ONOO- in AD.  
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CHAPTER 2: CERIUM OXIDE NANOPARTICLES Ce3+ RATIO DETERMINES 
REACTIVITY TOWARDS NITRIC OXIDE RADICAL (·NO) AND PEROXYNITRITE 

(ONOO-) 

Introduction 

The study of the chemical and biological properties of CeO2 NPs has expanded recently. 

However, most of the focus has been on the ability of these materials to reduce reactive oxygen 

(ROS). CeO2 NPs have been shown to protect several cell types and animal models against ROS 

mediated diseases (80) with little study of their effect on specific reactive nitrogen species 

(RNS). In these studies, we have obtained evidence that cerium oxide nanoparticles (CeO2 NPs) 

are able to interact with two very important nitrogen species, nitric oxide radical (·NO) and 

peroxynitrite (ONOO-). For the scavenging of ·NO, this activity is present in CeO2 NPs with a 

lower level of cerium in the 3+ state (CeO2 NPs with low 3+/4+ ratio (CNP2) and therefore a 

reduced number of oxygen vacancies), in contrast to the superoxide scavenging properties 

which are correlated with an increased level of cerium in the 3+ state (CeO2 NPs with high 

3+/4+ ratio (CNP1) and therefore an increased number of oxygen vacancies). In the case of 

peroxynitrite, CNP1 and CNP2 share the catalytic ability of reducing the effect of peroxynitrite, 

though to different degrees.   
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Materials and Methods 

Nanoparticle Synthesis and Characterization  

The cerium oxide nanoparticles were synthesized by wet chemical process as previously 

described (81). Chemicals for CeO2 nanoparticle synthesis, Ce (NO3)3, H2O2, were obtained from 

Sigma-Aldrich (St. Louis, MO). In brief, to prepare CNP1 with a high ratio of Ce3+/ Ce4+, Ce 

(NO3)3 ∙ 6H2O (5 mM) was dissolved in dH2O and the nitrate precursor was stirred for 15 min 

then H2O2 (2% v/v) was rapidly added while stirring at 300 rpm. The solution was continuously 

stirred for 1 h to obtain a stable dispersion of cerium oxide nanoparticles.  Samples were stored 

at room temperature. All preparations were sonicated to ensure single nanoparticles (Branson, 

Danbury, CT) for 45-60 min prior use. CNP2 was synthesized using ammonium hydroxide 

NH4OH precipitation method. Briefly, cerium nitrate hexahydrate was dissolved in deionized 

sterile water and stoichiometric amount of NH4OHwas added and stirred for 4 h at room 

temperature. Cerium oxide nanoparticles were separated by centrifugation at 8000 g for 10 

min. SiO2 nanoparticles were purchased from Corpuscular Inc. (Cold Spring, NY). The surface 

chemistry of the cerium oxide nanoparticles was studied using a Physical Electronics (5400 PHI 

ESCA) spectrometer with a monochromatic Al Kα X-ray source operated at 300 W and base 

pressure of 1 ×10-9 Torr. The binding energy of the Au (4f7/2) at 84.0±0.1 eV was used to 

calibrate the binding energy scale of the spectrometer. 
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Assay for Nitric Oxide 

A ferrous hemoglobin assay was adapted from Murphy & Noack (82) in which ferrous 

hemoglobin (Hb) (Sigma-Aldrich) and ·NO react to form oxidized ferric hemoglobin. S-nitroso-N-

acetylpenicillamine (SNAP) (Molecular Probes), was used to generate ∙NO. Briefly, 200 μM of 

SNAP was added to 25 mg/mL ferrous Hb in the presence or absence of nanoparticles or the 

spin-trap DEPMPO (Enzo Life Sciences) in 100 mM phosphate buffer (pH 7.0). The oxidation of 

Hb was monitored using a Hewlett-Packard 8453 diode array spectrophotometer. We followed 

changes to spectra at wavelengths of 411 nm (isosbestic point) and 421 nm. The change in 

absorbance per unit time was measured for 10 min at 30 s intervals. The concentration of ·NO 

reacting with Hb was obtained by the difference in absorbance between 401-421 nm using an 

extinction coefficient of 77 mM-1cm-1  (82).  

Surface Chemistry Alteration by Phosphate Ions 

Phosphate buffer was prepared by dissolving monosodium phosphate (13.8 g/L) and its 

conjugate base, disodium phosphate (14.1 g/L), in 1 L of water to give a 0.1 M solution, and the 

pH was adjusted by titration with 1 M HCl to reach a pH value of 7.4. Water dispersed CeO2 NPs 

with higher levels of oxygen vacancies at their surface (200 μM) were suspended in equimolar 

phosphate buffer (pH 7.4) for 24 h at room temperature. The UV-visible spectra were recorded 

to determine surface chemistry of cerium using a UV-viable Hewlett-Packard 8453 diode array 

spectrophotometer in a 1.0 cm path length quartz cuvette.  
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·NO Detection Using Copper-fluorescein Method 

To measure ·NO by an alternate method we followed ·NO levels using a copper-

fluorescein (Cu-FL) probe as previously described (83). In these experiments, 100 μM of the ·NO 

generator, diethylamine NONOate diethylammonium salt (DEA/NO) (Sigma) was added to CuFL 

probe (1 μM) (Strum Chemicals, Newburyport, MA). Fluorescence was followed at an emission 

wavelength of 530 nm using an excitation wavelength of 503 nm in 50 mM sodium phosphate 

buffer, pH 7.0, containing 20 μM DPTA using a Varian Cary Eclipse fluorescence 

spectrophotometer (Palo Alto, CA) for 20 min at room temperature. Assays were carried out in 

the presence or absence of CeO2 NP, SiO2 NPs or glutathione (Fisher Scientific, Pittsburg, PA).  

Zeta Potential (ZP) and Particle Size Measurement 

Water dispersed CeO2 NPs with different 3+/4+ ratios were suspended in buffers 

according to the various conditions used in these studies and ZP and particle size measured. For 

surface chemistry alteration experiments, NPs were incubated for 24 h followed by ZP and 

particle size measurements using Zeta sizer (Nano-ZS) from Malvern Instruments. 

Peroxynitrite Decay Using Spectroscopy  

Peroxynitrite (20 μM) was added under stirring into a 1 ml quartz cuvette with a 1 cm 

path length. Each sample was analyzed for a total of 600 seconds with a cycle time of 0.5 

seconds at a wavelength of 302 nm in 100 mM sodium or potassium phosphate buffers, pH 8.0, 

and 100 μM diethylenetriaminepentaacetic acid (DPTA) to minimize any potential interference 

by adventitious metal ions using a Hewlett-Packard diode array UV-visible 8453 
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spectrophotometer. Absorbance was normalized by subtracting the final absorbance from 

initial absorbance and dividing by the amplitude. 

Peroxynitrite Decay Using APF in vitro 

To measure the effects of nanoceria (100 μM), Glutathione (0.5 mM) or uric acid (1 mM) 

on the decay of peroxynitrite (20 μM), APF (10 μM) fluorescence was measured at 

excitation/emission wavelengths of 490 nm/515 nm in 0.1 mM sodium phosphate buffer, pH 

7.4, containing 100 μM DPTA using a Varian Cary Eclipse fluorescence spectrophotometer (Palo 

Alto, CA). We followed fluorescence for 1 min at room temperature using a quartz fluorometer 

cell (Starna Cells, Inc. Atascadero, CA). Peroxynitrite was added last due to the short-half of 

peroxynitrite at pH 7.4. End-point assays fluorescence was read after 10 min incubation using 

same buffer conditions as kinetic studies. As stock solutions of ONOO- contain 0.3 M NaOH, 

control incubations were performed with equivalent amounts of NaOH.   

Dot Blot Assay 

500 ng BSA treated with 10 μM peroxynitrite (ONOO-)(Cayman Chemicals)   in the 

absence and presence of 500 nM  NPs, 100 μM NPs or 1 mM GSH @ RT for 20 min .  

Nitrocellulose (Hybond ECL, GE Healthcare) was equilibrated using  1X TBS and placed in Hydri-

Dot manifold (BRL). Reactions were pipetted in to the membrane and allowed to incubate for 

20 min. After 3 washes, membrane was blocked in 5% milk, 1X TBS+0.1% Tween. Blot was 

probed with antibody specific for 3-nitro-tyrosine modification (Sigma #N0409) followed by 
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HRP-conjugated secondary (ECL). For detection, West Dura substrate (Thermo Scientific) was 

used as per protocol.  

Results  

Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are normal 

byproducts of oxidative metabolism in mammals. If unchecked, they can cause damage to 

proteins, DNA, and lipids contributing to diseases ranging from atherosclerosis and aging to 

neurodegenerative disorders such as Parkinson’s and Alzheimer’s disease. Nitric oxide radical 

(·NO) is a gaseous free radical which exhibits multifaceted biological effects, both beneficial and 

damaging. Nitric oxide functions as an important messenger molecule, as an essential 

neurotransmitter, (84) and regulator of cardiovascular physiology (85). ·NO is not particularly 

toxic in vivo, however, recent evidence indicates the cytotoxicity attributed to ·NO is due to 

formation of the potent oxidant peroxynitrite (ONOO-), formed by the diffusion limited 

interaction of superoxide (O2·-) with ·NO (86). While neither ·NO nor O2·- are strong oxidants, 

ONOO- is highly reactive and can oxidize DNA, proteins and lipids(34).  

Cerium oxide (CeO2) is a rare earth metal oxide catalyst known for its ability to remove 

carbon monoxide (CO), hydrocarbons and nitric oxide species (NOx) from exhaust gas (87) and is 

widely used as a catalyst in industrial applications because of its potent redox-active 

properties(88). The adsorption and reaction of ·NO on CeO2 has been shown to be influenced 

by the valence state of the surface cerium (89). and bulk CeO2 has been shown to adsorb ·NO 

only on reduced or partially reduced sites (90). Weakly absorbed ·NO on pure CeO2 at room 

temperature has been reported (91) as well as evidence for the transfer of the unpaired 
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electron from ·NO to Ce in the 4+ state (92). These catalytic studies have been performed in the 

absence of water and under non-biological conditions. Whether CeO2 NPs react with ·NO under 

physiologically relevant conditions has yet to be determined. Other redox active catalysts, 

especially manganese porphyrins, have been shown to interact with ·NO (8). In this first study 

we determined the reactivity of CeO2 NPs with ·NO under biologically relevant conditions. 

To study CeO2 NPs ability to react with ·NO, water-based CeO2 NPs with different 3+/4+ ratios 

were synthesized and characterized. High resolution transmission electron microscopy (HR-

TEM) as well UV-visible spectroscopy confirmed that the CNP1 and CNP2 used in ·NO studies 

were indicative of HR-TEM images and absorbance’s of CeO2 NPs as previously reported (68). 

The ratios of Ce3+/Ce4+ were determined by XPS and sizes ranged 3-8 nm (determined by TEM) 

for CNP1 and CNP2 (68).  

CNP2 Scavenge ·NO 

The reaction between ·NO and the oxygenated, ferrous form of Hb can be used as a 

sensitive means to measure dissolved ·NO. We used S-nitroso-N-acetylpenicillamine (SNAP) to 

generate ·NO and we followed the conversion of the ferrous form of Hb to the ferric form of Hb 

by ·NO (82). Addition of CNP1 with high 3+/4+ ratio (75% 3+) had no effect on ∙NO’s ability to 

oxidize Hb suggesting no interaction with these NPs (Figure 1A). However, the addition of CNP2 

with low 3+/4+ ratio (20% 3+) inhibited the ability of ·NO to oxidize Hb in a dose dependent 

manner (Figure 1B). This pattern was similar to that observed with the known ·NO scavenger 

DEPMPO (Figure 1C). This result suggests that CNP2 prevent ·NO from oxidizing Hb. 
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To elucidate the scavenging efficiency of CeO2 NPs, we additionally determined the amount of 

dissolved ·NO in the presence and absence of CeO2 NPs or DEPMPO translating the data 

obtained from Hb assay experiments. The concentration of ·NO was obtained by difference in 

absorbance 401-421 nm using an extinction coefficient of 77 mM-1cm-1 (82)(Figure 2A-C). We 

observed concentration-dependent decreases in ·NO in the presence of varying levels of 

Ce3+/Ce4+ ratio and were able to calculate the rates of radical formation in the presence or 

absence of the catalyst (Table 1). 

Scavenging of ·NO by CNP2 Confirmed Using Alternate Detection Method 

In order to corroborate the data obtained from the Hb assay, we used an alternate 

detection method to determine CeO2 NPs ability to react with ·NO. A derivatized copper-

fluorescein conjugate (Cu-FL) has been shown to be a specific detector of ·NO production (93) 

though not as sensitive as Hb assay. We followed fluorescence emission at 530 nm upon 

addition of 100 μM of the NONOate DEA/NO, another ∙NO donor, in the presence and absence 

of CeO2 NPs. The addition of CNP1 had no effect on the ability of dissolved ·NO to oxidize the 

Cu-FL probe (Figure 3A). When CNP2 were included, we observed that the NPs prevented the 

oxidation of the Cu-FL probe and the fluorescent signal was decreased in a dose dependent 

manner (Figure 3B). This reduction in fluorescent signal by CNP2 is similar in efficacy as 

glutathione, a known ·NO scavenger (Figure 3C). By contrast, silicon oxide (SiO2) control NPs of 

similar size, were unable to prevent the ·NO-mediated Cu-FL oxidation (Figure 3D) suggesting 

that the changes in dissolved ·NO are specific to CNP2. Collectively, these data elucidate a 

previously unidentified catalytic property for CeO2. 
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CNP1 Can Convert to ·NO Scavenging Catalyst Upon Incubation with Phosphate. 

Recently, we have shown that incubation of CeO2 NPs with phosphate ions can 

interconvert these particles between the two catalyst (SOD or catalase mimetic) states (94).  To 

determine whether this property also applies to ·NO scavenging, we incubated CNP1 with 

phosphate and followed the presence of cerium atoms in the 3+ state (Figure 4). The 

absorbance peak between 230-260 nm (consistent with CeO2 NPs with higher levels of oxygen 

vacancies) disappears after addition of phosphate (Figure 4A) as previously described (94). After 

this conversion, CeO2 NPs are now able to effectively scavenge ·NO (Figures 4B & C) indicating 

this surface chemistry ‘switch’ also correlates with ∙NO scavenging. 

Discussion 

In summary, this study establishes the ·NO scavenging capability of CNP2 - CeO2 NPs 

with low 3+/4+ ratio. ·NO can be both electrophilic or nucleophilic in nature (95). The nature of 

this heterogeneous catalysis is not yet fully understood. Yet one could envision a mechanism by 

which CeO2 NPs scavenge ·NO through formation of an electropositive nitrosyl ligand due to 

internal electron transfer from ·NO to a Ce4+ site: 

                                     ( 1 ) 

This mechanism has been found in various synthetic ferric porphyrin species (96) and 

manganese complexes (97). In vivo ·NO reacts with O2
·- to form ONOO-, a potent oxidant that 

can lead to 3-nitrotyrosine (3-NT) modification of tyrosine residues in proteins(34). 3-NT is 

frequently used as a biomarker for nitrosative stress. Recently, a reduction in 3-nitrotyrosine 
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levels in a neural brain slice model was observed after treatment with CeO2 NPs(98) and in a 

cardiovascular disease model(99). It is likely that the observed scavenging of ·NO in this study 

contributed to the protective effects seen in these studies. CeO2 NPs surface chemistry is just 

now starting to be described and understood in respect to their ability to ameliorate cellular 

damage caused by both oxidative (superoxide, hydrogen peroxide) and nitrosative (·NO and 

thus ONOO-) stress.  For CeO2 NPs to become a viable therapeutic, their material properties 

must be optimized and thoroughly understood. 

 Cerium Oxide Nanoparticles and Their Reactivity with ONOO- 

Peroxynitrite is formed from the reaction of nitric oxide radical (·NO) with superoxide 

(O2
•-). The biochemistry of ONOO- is vastly complicated due to the multiple reactions possible in 

the presence and absence of CO2, H+ and metals during its decomposition (34, 100). 

Determining CeO2 NP ability to scavenge ONOO- in vitro is imperative to begin to understanding 

it’s biological capabilities. We have begun to discern the reactivity of CNP1 and CNP2 with 

peroxynitrite using three different assays.  

Dependent on their 3+ or 4+ oxidation states, nanoceria exhibit either SOD or catalase 

activity (55, 56, 67). Recent reports suggested that nanoceria are able to reduce nitrosative 

stress in various cell types (98, 99, 101). However, the underlying mechanism of their 

nitrosative stress reducing activity remains unknown. Given their redox cycling properties, it is 

conceivable that nanoceria might scavenge peroxynitrite. To test this idea we employed a cell-

free system in vitro. Physical and chemical analysis of the nanoceria preparations used were 
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confirmed and the CNP1 3+ oxidation state, CNP2 4+ oxidation state as well as fluorite structure 

and cerium spectrum  were previously reported (CD&D under review,(67)).  

CNP1 Accelerates Decay of Peroxynitrite in a Cell-free System in vitro  

Peroxynitrite exhibits a strong absorbance at 302 nm, hence its rapid decay can be 

measured within seconds using spectroscopy (102) Exploiting these properties, we observed 

that nanoceria dramatically accelerated the normal decay rate of peroxynitrite and with similar 

efficacy as uric acid or glutathione, two well established  peroxynitrite scavengers (Figure 5A) 

(103). By contrast, silicon oxide (SiO2) nanoparticles of similar size had no effect on the half-life 

of peroxynitrite.. A second addition of  peroxynitrite after complete decay resulted in renewed 

nanoceria-mediated peroxynitrite decomposition (data not shown), indicating that nanoceria is 

acting as a catalyst in the reaction with peroxynitrite.   

Accelerated Decay of ONOO- by CNP1 Confirmed Using APF Dye 

To confirm the novel peroxynitrite-lowering properties of CNP1, we followed the 

oxidation of 3'-(p-aminophenyl) fluorescein (APF) by fluorescence spectrometry in vitro (Figure 

5B). APF has no fluorescence at baseline, but when oxidized by peroxynitrite it exhibits 

fluorescence (104). Using this probe, we observed that CNP1 prevented the oxidation of APF in 

vitro, similar to glutathione and uric acid (Figure 1B) (105). Again, silicon oxide nanoparticles 

were unable to prevent the peroxynitrite-mediated APF oxidation.  Collectively, these data 

illustrate a previously unknown catalytic property of CeO2 NPs, namely their ability to reduce 

peroxynitrite in vitro. 
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3-Nitrotyrosine Protein Modification Diminished in the Presence of CNP1 or CNP2 

3-Nitrotyrosine (3-NT), a specific marker of protein nitration by ONOO-, is an established 

marker for RNS damage  (106). CeO2 NPs can be synthesized with high or low ratios of 

Ce3+/Ce4+. Reduction of Ce4+ to Ce3+ causes oxygen vacancies or defects on the surface of the 

lattice structure, hence provides a platform for redox cycles to occur. Though the nanoparticles 

have measurable starting ratios, it is conceivable that due to redox interactions, the ratios 

would change in vivo. To compare how CNP1 and CNP2 may act in the presence of cellular 

components, we tested whether CNP1 and CNP2 would be able to reduce peroxynitrite-

induced protein tyrosine nitration using bovine serum albumin (BSA) as an in vitro model. When 

BSA was pre-incubated with CNP1 or CNP2 alongside peroxynitrite, they prevented the 3-NT 

modification by peroxynitrite in a dose dependent manner (Figures 6A and B).  These findings 

suggest that CNP1 and CNP2 are accelerating the decay of peroxynitrite in a manner that can 

prevent the modification of tyrosine residues.  

Discussion – Accelerated Decay of Peroxynitrite  

Using cell-free assays we provide evidence for the ability of CeO2 NPs to accelerate the 

decay of peroxynitrite. The changes observed in the presence of cerium oxide nanoparticles 

represents compelling yet preliminary evidence that these nanomaterials readily react with 

peroxynitrite, or one or more of its breakdown products.  The mechanism by which these 

materials can alter the catalytic decomposition of peroxynitrite has yet to be elucidated. Others 

have shown that thiols, metals and carbon dioxide are the most likely targets of peroxynitrite in 
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vivo (34). Assuming cerium oxide reacts directly with peroxynitrite (and not decay products 

such as carbonate radical), a putative scheme of one electron oxidation and reduction reactions 

is shown that could explain the acceleration of peroxynitrite decay (Equation 2).   

O2·- + ·NO   ONOO- + H+   [·OH + ·NO2] (34)   ( 2 ) 

Ce3+ + ·NO2   Ce4+ + NO2
-  ( 3 ) 

Ce3+ + ·OH   Ce4+ + OH-   ( 4 ) 

Ce3+ + O2·-    Ce4+ + O2
2-  ( 5 ) 

2Ce4+ + O2
2-   O2 + 2Ce3+  ( 6 ) 

The proton-dependent decay of peroxynitrite results in production of nitrogen dioxide 

(Equation 3) radical and hydroxyl radical (Equation 4). Each of these potent radicals, which are 

one-electron oxidants, could react with cerium oxide nanoparticles at the particle surface (in an 

oxygen vacancy) to oxidize Ce3+ to Ce4+ (Equations 5 and 6) with the concomitant release of 

hydroxyl ion or nitrite. In our UV-visible measurements an absorption peak near that of nitrite 

(229 nm) was observed that paralleled the decrease in peroxynitrite levels (data not shown). 

Superoxide, derived from the back reaction of peroxynitrite to nitric oxide and superoxide could 

also serve as an oxidant with the products reducing cerium in the oxygen vacancy both in vitro 

and in vivo, especially given the location of the particles in the vicinity of the mitochondria. 

Although quite speculative, this putative pathway is a starting point for studies to determine 

the intermediates and rate constants for the reaction of cerium oxide nanoparticles with 

peroxynitrite and/or its decay products.  
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Figures and Tables 

 

Figure 1: CNP2 - CeO2 NPs with low 3+/4+ ratio scavenge ·NO. 

Represented in all graphs: closed circles = 25 mg/mL Hb alone; open circles = 25 mg/mL Hb + 
200 μM SNAP. A) CNP1- CeO2 NPs with high 3+/4+ ratio. B) CNP2- CeO2 NPs with low 3+/4+ 
ratio. C) DEPMPO addition. CeO2 NPs or DEPMPO were added at the concentrations indicated. 
Graph is representative of 3 or more experiments. 
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Figure 2: Effective scavenging of ·NO by CeO2 NPs lacking surface oxygen vacancies. 

The concentration of ·NO in the presence or absence of CeO2 NPs was quantified using the 
extinction coefficient for reaction with ferrous Hb (82). Data are derived from experimental 
data shown in Figure1. Represented in all graphs: closed circles = 25 mg/mL Hb alone; open 
circles = 25 mg/mL Hb + 200 μM SNAP. A) CNP1- CeO2 NPs with higher levels of oxygen 
vacancies at their surface. B) CNP2- CeO2 NPs with reduced levels of oxygen vacancies. C) 
DEPMPO addition. CeO2 NPs or DEPMPO were added at the concentrations indicated. Graph is 
representative of 3 or more experiments. 
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Table 1: Changes in ·NO levels in the presence of CeO2 nanoparticles 

Reaction conditions NP conc. 
(µM) 

NO production ratea 
(pmol min-1 +/- SD 

SNAP (200 µM) control 0 51.6 ± 4.4 

SNAP + CNP2    50 42.1 ± 5.7 

100 25.8 ± 2.9 

250 14.3 ± 3.3 

SNAP +  CNP1 250 52.5 ± 2.9 

SNAP + CNP1 + PO4 200 39.7 ± 5.9 
aRates are pmol min-1 and were calculated by determining the rate of change in absorbance per 
unit time, based on the molar extinction coefficient of conversion of HbO2 to metHb in the 
presence of ·NO (401 nm-421 nm) (Δε = 77 mM -1cm-1). SD = standard deviation 
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Figure 3: Scavenging of ·NO by CeO2 NPs confirmed using alternate detection method. 

Fluorescence emission was monitored at 530 nm upon excitation at 503 nm. Represented in all 
graphs; closed circles = 100 μM DEA/NO. A) CNP1 - CeO2 NPs with high 3+/4+ ratio. B) CNP2 - 
CeO2 NPs with low 3+/4+ ratio. C) GSH addition. D) SiO2 NPs addition. CeO2 NPs, GSH or SiO2 
NPs were added at concentrations indicated. Graph is representative of 3 or more experiments. 
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Figure 4: CNP1 - CeO2 NPs with high level of surface oxygen vacancies can convert to ·NO 
scavenging catalyst upon incubation with phosphate. 

A) CNP1 were incubated in 200 μM sodium phosphate buffer at RT for 24h. Solid line represents 
CNP1 - CeO2 NPs with higher levels of oxygen vacancies at their surface and dotted line 
represents sample incubated in phosphate. B) ·NO scavenging by CeO2 NPs after incubation in 
phosphate. C) Effective scavenging of ·NO by CNP1 after incubation in phosphate. Closed circles 
= 25 mg/mL Hb alone; open circles = 25 mg/mL Hb + 200 μM SNAP; closed triangles = 25 mg/mL 
Hb + 200 μM SNAP + 200 μM CNP1 - CeO2 high Ce3+/PO4. Graph is representative of 3 or more 
experiments. 
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Figure 5: CNP1 scavenge peroxynitrite in vitro. 

(A) Relative absorbance of peroxynitrite (25 μM) at 320 nm over time (seconds) either in the 
absence or presence of CeO2 nanoparticles (100 μM), SiO2 nanoparticles (100 μM), uric acid 
(UA) (1mM), or glutathione (GSH) (0.5 mM) using spectrometry. (B) Relative APF (10 μM) 
fluorescence at 490 nm excitation and 515 nm emission wavelength of either peroxynitrite (20 
µm) alone, or in combination with CeO2 nanoparticles (100 μM), SiO2 nanoparticles (100 μM), 
uric acid (1mM), or glutathione (0.5 mM) measured over a time period of 14 seconds.  Data are 
representative of three or more experiments. 
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Figure 6: 3-nitrotyrosine protein modification diminished by CeO2 NPs. 

A) Graphical representation of BSA western blots protected from nitration with dose dependent 
addition of CeO2 NPs. B) Representative blots.  All lanes contain 500 ng BSA treated with 10 μM 
peroxynitrite (ONOO-) in the absence and presence of 500 nM NPs, 100 μM NPs or 1 mM GSH.  
Blots were probed with anti-3-nitrotyrosine antibody. Individual experiments were normalized 
to their individual BSA/ONOO- treated lane. Data are representative of three or more 
independent experiments. p ≤ 0.001. Statistics: Student’s t test. 
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CHAPTER 3: CERIUM OXIDE NANOPARTICLES DELAY Aβ-INDUCED 
MITOCHONDRIAL FRAGMENTATION AND NEURONAL CELL DEATH  

Introduction 

Nitric oxide (·NO) is an important neurotransmitter and neuromodulator normally 

required for learning and memory (84, 107). ·NO is generated by nitric oxide synthases (NOSs), 

a group of enzymes that produce ·NO from L-arginine in mammals. In addition to its role in 

normal physiology, ·NO is implicated in pathophysiology. When overproduced, ·NO combines 

with superoxide anions (O2
·-), byproducts of oxidative phosphorylation in mitochondria, to form 

peroxynitrite anions (ONOO-) which are highly reactive as well as neurotoxic and can oxidize 

DNA, proteins, lipids. The accumulation of  reactive oxygen species (ROS) and nitrogen species 

(RNS), also known as oxidative or nitrosative stress respectively, is a common feature of many 

diseases  including Alzheimer’s disease (AD) (84, 107). Excessive nitrosative stress in the 

nervous system can originate from glial cell activation and release of inflammatory cytokines. 

Alternatively, nitrosative stress can be caused by excessive accumulation of excitatory amino 

acids such as glutamate and N-methyl-D-aspartate (NMDA), which results in overstimulation of 

synaptic NMDA-type glutamate receptors, increased cytoplasmic Ca2+, neuronal NOS activation, 

and subsequent overproduction of ·NO/ONOO-.  

Excessive nitrosative stress causes neuronal damage and cell death by impinging on 

several cellular pathways. RNS can react with the cysteine or tyrosine residues of protein 

targets, altering their structure and/or function (84, 107). These protein modifications of S-

nitrosylation or nitration play a role in protein aggregation, a central hallmark of 
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neurodegenerative disorders. In AD nitrosative stress contributes to insoluble protein deposits 

of A and phosphorylated tau protein (84). Furthermore, nitrosative stress can activate 

signaling pathways and kinases, including Jun amino terminal kinase (JNK) and p38 mitogen-

activated protein kinase (MAPK) (108-110). Moreover, nitrosative stress can induce 

mitochondrial fragmentation, resulting in mitochondrial dysfunction (111). 

Mitochondria are a source of free radicals. Disrupted energy metabolism from A 

resulting in inhibition of mitochondrial oxidative phosphorylation and respiration is implicated 

in AD. Normally an accumulation of ROS such as superoxide and H2O2 are neutralized by the 

enzymes superoxide dismutase 1 and 2 (SOD1, SOD2) and catalase. Peroxynitrite can inhibit 

complex I and IV of the mitochondrial respiratory chain, culminating in bioenergetic failure and 

a vicious cycle of ROS production (112, 113). When ROS detoxifying mechanisms fail or become 

overwhelmed, the event causes irreversible damage to biomolecules and can result in 

functional decline, characteristic of aging and age-related disorders (114).  

Neurons depend on mitochondrial energy production to fuel processes including 

synaptic transmission, ion pump and channel activity, and axonal and dendritic transport (111). 

Strong evidence suggests that mitochondrial dysfunction is an early event in AD (73). Among 

the reported changes are altered morphology and ultrastructure of mitochondria, inhibition of 

respiration and ATP production, and increased ROS production (74). However, what causes the 

failure in mitochondrial function is unclear. We recently postulated that the defects in 

mitochondrial function are caused by an imbalance in mitochondrial fission and fusion (71, 84, 

107, 111). Notably, peroxynitrite, generated by exogenous ·NO donors or neurotoxic insults like 
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NMDA or Ainduces mitochondrial fragmentation caused by activation of fission and/or 

inhibition of counterbalancing fusion (71, 75).  

To maintain their energy producing function, mitochondria must frequently divide and 

fuse. Evidence suggests that an imbalance in mitochondrial division and fusion plays a causal 

role in AD (115). Mitochondrial division and fusion is regulated by large GTPases of the dynamin 

family. Dynamin-related protein 1 (DRP1) is required for mitochondrial division. Inhibition of 

mitochondrial division by expression of the GTPase defective DRP1K38A mutant provides 

protection against excessive ·NO, NMDA, or A (71). The exact mechanism that accounts for the 

·NO-induced mitochondrial fragmentation remains unclear. A recent report suggested that S-

nitrosylation of DRP1 at cysteine 644 increases DRP1 activity and is the cause for the 

peroxynitrite-induced mitochondrial fragmentation in AD (107, 116). However, the work 

remains controversial, suggesting alternative pathways might be implicated (107, 117). 

Nitrosative stress causes rapid DRP1 Serine 616 (S616) phosphorylation, which promotes its 

translocation to mitochondria and organelle division (117, 118). In mitotic cells DRP1 S616 

phosphorylation is mediated by Cdk1/cyclinB1 and synchronizes mitochondrial division with cell 

division (119, 120). Interestingly, p-DRP1 S616 levels are markedly increased in brains of 

individuals with AD, suggesting that this event might contribute to the change in mitochondrial 

morphology and energy metabolism in AD (117, 119). The kinase responsible for DRP1 S616 

hyperphosphorylation in AD is unknown, but Cdk5/p25 is a potential candidate kinase 

mediating this process (75, 121). Notably, aberrant Cdk5/p25 signaling causes tau 

hyperphosphorylation in postmitotic neurons and is implicated in A-mediated 

neurodegeneration (119, 122-124).  
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While it is clear that nitrosative stress is at the heart of AD and other common age-

related disorders, effective antioxidants that can selectively quench ROS/RNS species such as 

superoxide, H2O2, ·NO and/or peroxynitrite and provide lasting effects are missing. Cerium (Ce) 

is a rare earth element and its oxide nanoparticle form uniquely exists in both 3+ and 4+ 

oxidation states.  Reduction of Ce4+ to Ce3+ causes oxygen vacancies or defects on the surface of 

the crystalline lattice structure of the particles, generating a cage for redox reactions to occur 

(125). Accordingly, nanoceria mimic the catalytic activities of the antioxidant enzymes SOD (55, 

126) and catalase (67) as well as scavenge dissolved ·NO (127). The specificity of the catalytic 

activities depends upon the ratio of Ce3+/Ce4+ (94, 127). Given these unique antioxidant 

properties, we hypothesized that nanoceria, specifically CNP1 with increased ratio of 

Ce3+/Ce4+, detoxify ROS/RNS and protect against A-induced DRP1 S616 

hyperphosphorylation, mitochondrial fragmentation and neuronal cell death. 

Materials and Methods 

Reagents 

EBSS (Earle’s Balanced Salt Solution), Hanks buffer, Glutamax, B-27® supplement, 

LipoFectamine2000®, and penicillin-streptomycin were purchased from Invitrogen (Carlsbad, 

CA). Neurobasal medium and Dulbecco’s Modified Eagle’s Medium (DMEM) were purchased 

from Hyclone (Logan, UT). Poly-L-lysine, Hepes, glutamine, formaldehyde, N-acetyl-L-cysteine 

(NAC), anti-3-nitrotyrosine, N-methyl-D-aspartate (NMDA), Ponceau S reagent, Durcupan ACM, 

3-nitropropionic acid (3-NP), Aβ peptides and chemicals for cerium oxide nanoparticle synthesis 
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were obtained from Sigma-Aldrich (St. Louis, MO). Hoechst 33342, pluronic acid, 3'-(p-

aminophenyl) fluorescein (APF) (for cell culture) were purchased from Molecular Probes 

(Eugene, OR). PVDF membrane was purchased from Bio-Rad Laboratories (Hercules, CA). The 

DsRed2-Mito vector was obtained from Clontech (Mountain View, CA). Vector Shield was 

purchased from Vector Laboratories, Inc., (Burlingame, CA). T-Per protein extraction reagent 

was purchased from Pierce Biotechnology, Inc., (Rockford, IL). Peroxynitrite and 2-[6-(4-

aminophenoxy)-3-oxo-3H-xanthen-9-yl]-benzoic acid (APF) (for in vitro experiments) were 

purchased from Cayman Chemicals (Ann Arbor, MI). All reagents for transmission electron 

microscopy (TEM) were purchased from Ted Pella (Redding, CA). SiO2 nanoparticles were 

purchased from Corpuscular Inc. (Cold Spring, NY). In addition the following antibodies were 

used: monoclonal mouse-anti-DRP1 antibodies (clone 8/DLP1, BD Bioscience), rabbit polyclonal 

anti-p-DRP1 S616 antibodies (Cell Signaling), rabbit polyclonal 3-nitrotyrosine (Sigma), rabbit β-

actin antibody (Cell Signaling); sheep-anti-mouse IgG-HRP (GE Healthcare), donkey-anti-rabbit 

IgG-HRP (GE Healthcare), goat-anti-mouse AlexaFlour488 (Invitrogen),  goat-anti-rabbit 

AlexaFluor594 (Invitrogen). 

Primary Cortical Neurons  

Pure cortical neurons were isolated from Sprague-Dawley rat embryos (E18) as 

previously described (71, 128).  
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Mitochondrial Fragmentation and Neuronal Cell Death 

Neurons were grown on poly-Lysine coated glass cover slips as described before and 

transfected with DsRed2-Mito after 5 days in vitro (DIV) using Lipofectamine2000®. 3-NP was 

prepared as previously described (128). The Aβ peptides were preaggregated as described 

before (71). Cell death was induced with 3-NP (10 mM, 8 h), glutamate (150 μM, 6 h), NMDA 

(150 μM, 12 h) Aβ (10 μM, 6 h) at 11–14 DIV or with SNOC (100 μM, 3 h) at 8 DIV. After various 

time periods neurons were fixed using 3.7% formaldehyde and 5% sucrose in PBS for 20 min at 

37º C. Nuclei were labeled with Hoechst 33342 (1 μg/ml). Quantification of mitochondrial 

fragmentation and neuronal cell death was performed as described (129). Fluorescence 

microscopy and image acquisition of mitochondrial morphology was performed as previously 

described (130). 

Western Blotting  

To detect protein nitration, neurons were lysed using T-Per extraction reagent (Pierce) 

supplemented with Complete Protease Inhibitor Cocktail (Roche Applied Science, US). Protein 

concentrations were determined using the Bradford assay (Pierce Biotechnology, Inc., Rockford, 

IL). Proteins were separated by 4-20% SDS-PAGE gradient gels (Invitrogen) and transferred to 

PVDF membranes (0.2 µm, Bio-Rad).  Nonspecific protein binding was blocked by incubating the 

membranes with TBS (50 mM Tris-Cl, pH 8.0, 150 mM NaCl), 0.02% Tween20, and 5% nonfat 

milk for 3 hours at room temperature. The membranes were then probed with primary rabbit 

polyclonal antibodies for 3-nitrotyrosine (Sigma) (1:500) overnight at 4°C. After four washes (5 

min) of TBS (0.02% Tween20), membranes were incubated for two hours at room temperature 
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with anti-rabbit horseradish peroxidase-conjugated secondary antibodies (GE Healthcare) (1: 

15,000) in blocking solution. After four washes (5 min) of TBS (0.02% Tween20), 

immunocomplexes were detected using the Super-Signal West-Dura chemiluminescence 

substrates (Pierce, Thermo Scientific, Rockford, IL). Restore Western Blot Stripping Buffer 

(Thermo-Scientific) was used to strip blots. Membranes were successively probed with anti-β-

actin antibody (Cell Signaling, 1:1000).  To measure the levels of p-DRP1 S616, neurons were 

lysed in buffer containing 50 mM Tris-Cl, pH 7.0, 150 mM NaCl, 1 mM MgCl2, 1 mM NaF, 1 mM 

NaVO4, 1 % NP40, 10 % glycerol and complete Protease Inhibitor Cocktail Tablets (Roche 

Applied Science, US). Membranes were blocked with 5 % nonfat milk in TBS (pH 8.0) with 0.05% 

Tween20 for 3 h at room temperature (RT) and were incubated with primary rabbit polyclonal 

antibodies for p-DRP1 S616 (Cell Signaling) (1:1000) overnight at 4°C. The membranes were 

then washed four times (5 min) with TBS (0.05% Tween) and incubated for 2h at room 

temperature with anti-rabbit horseradish peroxidase-conjugated secondary antibodies (GE 

Healthcare)(1:15,000) in blocking solution. After 4 washes (5 min) of TBS (0.05% Tween), 

immunocomplexes were then detected using the Super-Signal West-Dura or Femto 

chemiluminescent substrates (Pierce, Thermoscientific, Rockfod, IL). For reprobing the 

membranes were stripped with Restore Western Blot Stripping Buffer (Thermo-Scientific) 

according to the manufacturer and incubated with mouse monoclonal antibodies for DRP1 (BD 

Biosciences, clone 8/DLP1) (1:1000) antibody or with polyclonal rabbit antibodies for β-actin 

(Cell Signaling) (1:1000). 



38 
 

Immunocytochemistry for 3-nitrotyrosine 

For immunocytochemistry, neurons were grown on poly-Lysine coated glass coverslips 

as previously described (71) and fixed with 4% formaldehyde (Ted Pella, Inc.) in PBS for 10 

minutes at room temperature. Fixed neurons were then permeabilized with 0.1 % Triton X-100 

in PBS for 5 minutes. Unspecific binding was blocked with 3% BSA, 3% FBS in PBS for one hour 

at room temperature. Fixed neurons were then probed with antibodies for 3-NT (1:500, Sigma) 

and an antibody specific for MAP 2 protein (1:200, Invitrogen) (RT, 2h), a neuronal marker 

followed by conjugated fluorescent secondary antibodies AlexaFluor594 or AlexaFluor488 

(respectively) at dilutions of 1:500 (RT, 2h). Chromatin was stained by incubating fixed samples 

with Hoechst 33342 (1 μg/ml) in PBS at RT for 5 min. To visualize 3-NT using AlexaFluor594, the 

excitation filter was S555/28× (Chroma) and the emission filter was S617/73m (Chroma), to 

visualize neurons using AlexaFluor488, the excitation filter was S490/20× and the emission filter 

was S528/38m (Chroma) and to visualize Hoechst 33342 the excitation filter was S403/12× and 

emission filter S475/50m. Immuno-staining conditions for 3-NT were first optimized along with 

a blocking control, using 10 mM nitro-tyrosine, to confirm specificity of 3-NT signal. 

Fluorescence microscopy was performed as previously described (112). Quantification of 

fluorescence from 3-NT was as follows. Exposure time, brightness and contrast of randomly 

selected cortical neurons were held constant for all images within same experiment. Using 

MetaMorph 7.5, a region of interest was selected around each neuron using the MAP 2 label as 

a guide. This region was transferred to the 3-NT image channel. The fluorescence intensity for 

each neuron was measured using Show Region Statistics function. Area and 

intensity/fluorescence data was logged for each neuron. Twenty five to fifty neurons from each 
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treatment were evaluated for a total of over 100 neurons per experiment. Three areas were 

selected randomly within each image and the average of their fluorescence intensity was 

considered as background. The background was subtracted within each image. 3-nitrotyrosine 

immuno-fluorescence quantification is expressed as fluorescence per µm2.  

APF Live Cell Imaging 

Neurons were cultured on poly-Lysine coated MatTek dishes. To visualize peroxynitrite 

in neurons, cell permeable APF (2.4 µM) (Molecular Probe) was loaded in Neurobasal medium 

(phenol red free) containing 0.2 % pluronic acid, 1.8 mM CaCl2, 0.8 mM MgCl2, Hoechst 33342 

(1 μg/ml) for 30 minutes at 37C in a humidified 5% CO2. Dye was then removed and replaced 

with conditioned phenol red-free Neurobasal medium. The APF fluorescent signals were 

measured in response to SNOC (100 µM) at two hours. Z-stacks were acquired keeping the 

exposure time, brightness and contrast constant using excitation S490/20× and emission 

S528/38m filters (Chroma). Using MetaMorph 7.5 software (Molecular Devices), equal 

backgrounds were subtracted from each z-stack image (as determined from each experiments 

control images) then z-stack series were summed. Cell soma and processes were selected, as 

previously described, using region of interest drawn around cell. This region was transferred to 

the APF image channel. The fluorescence intensity for each neuron was measured using Show 

Region Statistics function. Intensity/fluorescence data was logged for each neuron and data 

exported to Excel for further analysis.  
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Nanoceria Preparation  

Nanoceria were synthesized by a wet chemical process as previously described (81). In 

brief, to prepare nanoceria with a high ratio of Ce3+/ Ce4+, Ce (NO3)3 ∙ 6H2O (5 mM) was 

dissolved in dH2O and the nitrate precursor was stirred for 15 min then H2O2 (2% v/v) was 

rapidly added while stirring at 300 rpm. The solution was continuously stirred for 1 h to obtain a 

stable dispersion of cerium oxide nanoparticles.  Samples were stored at room temperature. All 

preparations were sonicated to ensure single nanoparticles (Branson, Danbury, CT) for 45-60 

min prior use. For cell experiments, nanoceria were diluted in sterile water. 

Transmission Electron Microscopy (TEM) 

Neurons were cultured on poly-Lysine coated 35 mm MatTek glass bottom dishes and 

fixed with 2 % paraformaldehyde, 0.15 M sodium cacodylate, pH 7.4,  2.5 % glutaraldehyde for 

five minutes at room temperature and followed by an additional 30 minutes on ice. The fixed 

cells were then washed three times with ice-cold 0.15 M sodium cacodylate and 3 μM calcium 

chloride for three minutes on ice and followed by postfixation in 1 % osmium tetroxide, 0.8 % 

potassium ferrocyanide, 3 μM calcium chloride in 0.15 M sodium cacodylate for 60 minutes on 

ice. After washing cells three times with ice-cold ddH2O for three minutes each, the cultures 

were stained in 2 % uranyl acetate for 30 minutes on ice. Samples were dehydrated with ice-

cold 20, 50, 70, 90 % ethanol and then with 100 % ethanol at room temperature. The samples 

were first infiltrated in 50 % ethanol/50 % Durcupan ACM (Fluka/Sigma) for 1 hour at room 

temperature and under agitation, followed by three changes of 100 % Durcupan for three 

hours. The resin was polymerized at 80 ⁰C for three to four days under vacuum. Sectioning was 
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performed using AO/Reichert Ultramicrotome. Ultrathin (80 nm) sections were post-stained 

with uranyl acetate (five minutes) and lead salts (two minutes) prior to imaging using a JEOL 

1200FX transmission EM operated at 80 kV. A subset of sections was imaged without poststain. 

Negatives were shot at a magnification of 20,000. The negatives were digitized at 1800 dpi 

using a Nikon CoolScan system, giving an image size of 4033 × 6010 pixels and a pixel resolution 

of 0.71 nm. 

The nanoparticle morphology was characterized using high-resolution transmission 

electron microscopy (HRTEM). The nanoceria preparation was deposited on the carbon-coated 

copper grid (SPI supplies) for HRTEM analysis. The TEM grid was dipped into the nanoceria 

preparation by the dip coating technique.  HRTEM micrographs were obtained using FEI Tecnai 

F30 operated at 300 keV.  

Statistics 

Results were collected from at least three or more independent experiments and are 

expressed as mean ± standard deviation (s.d.). Statistical analysis of two populations was 

compared using two-tailed non-paired Student’s t test. 

Results  

Nanoceria Accumulate at Mitochondria in Neurons 

First, we determined the properties of our CNP1 preparation to confirm their Ce3+ 

oxidation state, fluorite structure and cerium spectrum (CD&D under review). To assure sterile 
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conditions during growth of cortical neuronal cultures, CNP1 were filtered prior to use. To 

assure that CNP1 would not be prevented from going through 2 µm filter, possibly due to 

electrostatic attractions, the UV-visible spectrum before and after filtering were analyzed 

(Figure 7) and were determined to be identical.  Previous reports suggest that CNP1 are readily 

internalized by cells, owing to their small size of ~ 5 nm (98, 131). We first checked for CNP1 

(100 nM) uptake in our cultured cortical neurons using inductively coupled plasma mass 

spectroscopy (ICP-MS) over a time-course of twenty four hours (Figure 8). Cerium was easily 

detected in neurons after 1 h and reached steady state concentrations after 2 h. 

CNP1 are internalized by cells owing to their small size (98, 131). However, their 

subcellular localization in neurons remains unclear. Therefore, we tracked the presence of 

CNP1 in primary rat cortical neurons using transmission electron microscopy (TEM). While 

untreated neurons exhibited no detectable signal (Figure 9A), we obtained clear evidence of 

electron dense particles in neurons cultured with CNP1 for three, twelve or twenty four hours. 

Specifically, CNP1 were present at two primary locations: the mitochondrial outer membrane 

and inner leaflet of the plasma membrane (Figure 9B,C). To verify that the electron dense 

granules indeed reflected CNP1, we repeated the EM preparation using samples void of post-

staining. Using this modification we still detected electron dense particles, suggesting that they 

are not an artifact and indeed represent the nanoparticles (Figure 9D). The size of our CNP1 

particles were ~ 3 to 8 nm (Figure 9E), in agreement with previous reports (101). However, the 

electron dense particles within neurons were larger, measuring 20.6 nm (± 2.9 nm s.d.). This 

increased size is expected since oxide nanoparticles rapidly agglomerate in cells, owing to their 

surface interactions with biological material. Further quantification of the association of CNP1 
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particles with mitochondria (Figure 9F) or the plasma membrane (Figure 9G) confirmed that 

their location aligns with sites of increased ROS/RNS production in neurons. Analyses of the 

nuclei from non-post-stained images revealed very few CNP1 (data not shown). In summary, 

the data suggests that CNP1 become internalized by neurons and accumulate at the 

mitochondrial outer membrane and inner leaflet of the plasma membrane.  

CNP1 Protect Against Nitrosative Stress 

Next, we tested whether CNP1 would lower nitrosative stress in neurons exposed to the 

·NO donor S-nitrosocysteine (SNOC). The levels of nitrosative stress were measured by live cell 

labeling with the RNS/ROS-sensitive fluorescent probe 3'-(p-aminophenyl) fluorescein (APF). 

Fluorescence microscopy indicated that neurons exposed to either aged SNOC, - which released 

all ·NO owing to its poor stability-, or CNP1 alone displayed low baseline APF fluorescence 

(Figure 10A(a) and 10A(b)). By contrast, neurons exposed to fresh SNOC showed a clear 

increase in fluorescence, reflecting APF oxidation (Figure 10A(c)). Importantly, neurons 

pretreatment with CNP1 for 3 hours abolished the SNOC-induced increase in APF fluorescence, 

suggesting that CNP1 were able to neutralize ROS/RNS in neurons (Figure 10A(c) and 10A(d)). 

Notably, the APF fluorescent signal in SNOC-exposed neurons revealed a mottled cytoplasmic 

pattern (Figure 10A(c)). It is possible the APF marks mitochondria, exhibiting increased 

RNS/ROS levels. Further quantitative analyses confirmed a significant decrease of APF oxidation 

in SNOC plus CNP1 treated neurons compared to SNOC alone treated neurons (Figure 10B).  

Finally, CNP1 significantly protected neurons from SNOC-induced cell death (Figure 10C).  
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CNP1 Reduce Peroxynitrite-induced Protein Tyrosine Nitration 

The modification of tyrosine residues can elicit changes in protein structure and 

function. Protein tyrosine nitration is a frequently used diagnostic marker for nitrosative stress 

and neurodegeneration (132). We tested whether CNP1 would reduce the burden of SNOC-

induced protein tyrosine nitration using immunocytochemistry of fixed neuronal cultures and 

pan antibodies for 3-nitrotyrosine. Using fluorescence microscopy we observed that control 

neurons, - treated with either aged SNOC or CNP1 alone-, exhibited low background 3-

nitrotyrosine immunofluorescence (Figure 11A(a) and 11A(b)). By contrast, SNOC-exposed 

neurons showed a robust increase in fluorescence, reflecting increased protein tyrosine 

nitration (Figure 11A(c)). Remarkably, CNP1 prevented SNOC-induced tyrosine nitration, 

evidenced by the reduced fluorescent intensity (Figure 11A(d)).  Quantitative analyses 

confirmed a significant reduction in the relative 3-nitrotyrosine signal in neurons that were 

pretreated with CNP1 (Figure 11B). Finally, we analyzed the relative 3-nitrotyrosine 

immunoreactivity of neuronal cell lysates with western blotting. Again, CNP1 reduced the 

SNOC-induced total protein tyrosine nitration, confirming our in situ data using intact neurons 

(Figure 11C). These findings suggest that CNP1 might be a useful tool to attenuate the harmful 

effects of protein nitration.  

CNP1 Protect Against Aϐ induced Mitochondrial Fragmentation 

Nitrosative stress plays an important role in A-mediated neurotoxicity (74, 84). A  or 

nitrosative stress evoke persistent mitochondrial fragmentation, an event that causes 

bioenergetic failure, impaired Ca2+  homeostasis, synaptic injury, axonal transport defects, and 
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neuronal cell death (71, 133).  To test whether CNP1 would prevent the A-induced 

mitochondrial fragmentation, we visualized the mitochondrial morphology by fluorescence 

microscopy in neurons expressing DsRed2-Mito, a red fluorescent protein targeted to the 

mitochondrial matrix. Control neurons, - either left untreated or treated with CNP1 alone (3 h 

pretreatment)-, demonstrated an elongated mitochondrial morphology, typical of healthy 

neurons (Figure 12A(a) and 12A(b)). By contrast, oligomeric A 25-35 peptide, but not the 

reverse A 35-25 control peptide (Figure 12A(g)), induced dramatic mitochondrial 

fragmentation evidenced by the appearance of mitochondria with mostly round morphology 

(Figure 12A(c)). Remarkably, CNP1 prevented the A25-35-induced mitochondrial 

fragmentation, similar to N-acetyl-L-cysteine (NAC), a known ·NO/ONOO- neutralizing 

antioxidant supplement (Figure 12A(d) and 12A(f)). Further quantitative analysis demonstrated 

that CNP1 significantly reduced the A-induced mitochondrial fragmentation in neurons (Figure 

12B). These results suggest that CNP1 not only accumulate at mitochondria, but can also 

preserve their morphology and function in response to neurotoxic insults such as A 

CNP1 Reduce DRP1 Phosphorylation at S616 

There is increasing evidence that mitochondrial fragmentation, owing to excessive 

DRP1-dependent  mitochondrial fission, plays a central role in many neurodegenerative 

disorders including AD (73, 111, 118, 134). Cdk1/cyclinB1-mediated phosphorylation of DRP1 at 

S616 causes its recruitment from the cytoplasm to mitochondria to initiate organelle division in 

mitotic cells (119). However, all Cdk’s are inactivated in postmitotic neurons with the exception 

of Cdk5. Over-activation of NMDA receptors by A  triggers excessive nitrosative stress and 
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cytoplasmic Ca2+  levels. (121) possibly leading to increased ·NO production. SNOC triggers DRP1 

S616 phosphorylation and mitochondrial fragmentation (71, 117). Notably, p-DRP1 S616 is 

increased in AD patient brains (117, 121, 135). Because CNP1 prevented A-induced 

mitochondrial fragmentation (Figure 12), we questioned whether they might inhibit DRP1 S616 

phosphorylation, providing an explanation for the preservation of mitochondrial morphology by 

CNP1. Neurons treated with either aged SNOC or CNP1 alone exhibited only low baseline DRP1 

S616 phosphorylation (Figure 13A). By contrast, neurons treated with fresh SNOC exhibited 

high p-DRP1 S616 levels (Figure 13A). Remarkably, CNP1 significantly reduced the SNOC-

induced increase in DRP1 S616 phosphorylation (Figure 13A). Similarly, CNP1 or NAC abolished 

the Aβ 25-35-induced DRP1 S616 phosphorylation (Figure 13B). These results suggest that CNP1 

reduce nitrosative stress or A-induced mitochondrial fragmentation perhaps by preventing 

DRP1 S616 hyperphosphorylation.  

CNP1 Protect Against Aϐ -induced Neuronal Cell Death 

Cell death by A or NMDA occurs, at least in part, through endogenous RNS/ROS (71).  

Neuronal death by the complex II inhibitor 3-nitropropionic acid (3-NP) triggers secondary 

excitotoxicity and RNS/ROS (128). A 25-35, but not the reverse peptide, elicited neuronal cell 

death, which was reduced in the presence of either CNP1 or NAC (Figure 14A). Similarly, 

neuronal cell death by excess NMDA or glutamate was reduced by CNP1 (Figure 14B and 14C). 

Finally, similar neuroprotective effects were observed against respiratory complex II inhibition 

by 3-NP (Figure 14D). Thus, CNP1 provide neuroprotection against a variety of insults that 

generate endogenous ROS/RNS.  
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Discussion 

Nitrosative stress and mitochondrial dysfunction are early features of AD, therefore 

targeting these events might offer therapeutic benefits. Several antioxidants including β-

carotene, vitamins C and E, NAC (12), coenzyme Q10  (13) and tetra-hydrocurcumin provided 

protective effects in cellular and animal models of AD (14). However, their efficacy in human 

trials provided at best only modest effects (12, 15, 16). Among the problems are their poor 

stability and repetitive dosing, underscoring the need for alternative strategies.  

To overcome this problem we integrated nanotechnology with neuroscience. Here, we 

tested the effects of CNP1, which are inorganic auto-catalysts with antioxidant properties. Thus, 

a single dose might suffice, unlike conventional antioxidants. Mitochondrial dynamics are 

sensitive to many stimuli including ROS/RNS (111). Mitochondrial fission is activated by DRP1 

when mitochondrial ROS levels are increased (136).  We provide evidence that CNP1 are able to 

reduce ROS/RNS, which in turn lowers DRP1 S616 hyperphosphorylation, mitochondrial 

fragmentation and neuronal cell death by A, NMDA receptor overactivation, and 

mitochondrial respiratory chain inhibitors. 

There are reports which claim that  CNP1 are toxic (66). In considering CNP1 as potential 

therapeutic agents it is important to pay attention to their synthesis method, concentration, 

and surface chemistry. The preparation of water-based CNP1 in our study has been shown to 

exhibit SOD mimetic activity (55, 126) whereas other synthesis methods result in CNP1 without 

comparable antioxidant properties (66). Thus these factors might account for the seemingly 

conflicting reports. Mild nitrosative/oxidative stress provides cell protective effects and plays an 

important physiological role. A concern would be that antioxidants might eradicate the 
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cytoprotective effects of mild stress.  Our data shows that CNP1 are not toxic to neurons, 

suggesting that they do not lower physiological levels of nitrosative/oxidative stress.  

We reduced in situ ROS/RNS as visualized by decreasing APF oxidation (Figure 10) as 

well as 3-nitrotyrosine nitration in SNOC stressed neurons (Figure 11A,C) and protection from 

cell death by Aβ 25-35 exposure (Figure 13A) using CNP1. Increased levels of nitrated proteins 

have been reported in AD brains as well as cerebrospinal fluid in patients with AD (37). 

Numerous proteins in AD have been shown nitrated by peroxynitrite (33). Peroxisome 

proliferator-activated receptor gamma (PPARγ) expression protects neurons from Aβ- mediated 

toxicity (38) however its nitration prevents its translocation to the nucleus, thereby preventing 

mitochondrial biogenesis (39). A disrupted energy metabolism and ROS/RNS redox balance can 

activate redox-sensitive transcription factors including activator protein-1 (AP-1). Increased 

iNOS expression by AP-1 is implicated in AD (137).  

Nitrosative stress can activate kinases (109, 110). Specifically peroxynitrite can activate 

p38 MAP kinase and Cdk5 (108). Neurotoxic signals including Aβ and excess glutamate or 

NMDA causes an impaired Ca2+ homeostasis, which can activate downstream mediators 

including NOS and calpain (128). ROS/RNS can directly activate Cdk5. Aberrant Cdk5 activation 

in neurodegeneration can occur by two mechanisms. First, nitrosative stress can directly 

activate Cdk5 by increasing its phosphorylation. Second, Ca2+-dependent calpain cleavage of the 

Cdk5 activator p35 to p25 increases its stability. Consequently, Cdk5/p25 is constitutively 

activated. (111, 115, 123, 138). The blockage of mitochondrial fragmentation by CNP1 in 

response to Aβ was associated with a reduction in DRP1 S616 hyperphosphorylation (Figure 

13B).  Although it is unlikely that nitrosative stress mediates mitochondrial fragmentation and 
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neuronal cell death only by phosphorylating a single protein target, such as DRP1, our data 

describes one possible mode of action how CNP1 may specifically attenuate the downstream 

effects of RNS/ROS.  

Most therapeutic treatments of AD have targeted reducing or clearance of Aβ with 

disappointing results however, therapeutic strategies aimed at reducing mitochondrial damage, 

especially through mitochondrial antioxidants (13) show promise. Considering CNP1’s proximity 

to mitochondria (Figure 1F) they may be uniquely situated to protect neurons in AD from 

nitrosative stress and mitochondrial dysfunction by lowering DRP1 S616 phosphorylation and 

thereby maintaining bioenergetic function and neuronal viability.  

CeO2 NPs have been shown to decrease RNS/ROS-induced damage by many stress 

stimuli and in several cellular and animal models (101).  No toxicity or adverse effects to CeO2 

NPs in the eyes of rats was found, where it prevents vision loss  due to increased ROS from 

excess light exposure (139). CeO2 NPs also mitigate ischemic brain injury where CeO2 NPs 

markedly decreased the levels of 3-nitrotyrosine (3-NT) (98)  In addition, CeO2 NPs accumulated 

on mitochondria, consistent with our results (Figure 9F). The small size of CNP1 allowed 

passage into our neurons (Figure 9B), but delivery routes into all cell types and tissues must still 

be tested. These are not trivial issues, yet considering our results that CNP1 protected cortical 

neurons from multiple nitrosative-associated stressors, they represent a potential exciting 

alternative strategy compared to traditional antioxidants.  Our study represents an important 

step forward to test the potential neuroprotective effects of CeO2 NPs in in vivo animal models 

of AD. 
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Figures 

 

Figure 7: UV-visible spectroscopy analysis of sterile filtered CNP1 used in tissue culture 
experiments confirming 3+ oxidation state of CNP1 

Absorbance between 230-260 nm is indicative of Ce 3
+
 oxidation state. 

 

Figure 8: Time-course uptake of CNP1 measured by ICP-MS. 

Cortical neurons were incubated with 100 nM CNP1 for times indicated and the concentration 
of cerium inside neurons were measured by ICP-MS. 
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Figure 9: CNP1 accumulate at the mitochondrial outer mitochondria and the inner leaflet of 
the plasma membrane in cultured cortical neurons. 
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(A) Electron microscopy of an untreated control neuron. Scale bar, 1μm.  (B) Electron 
microscopy of a neuron treated with CeO2 nanoparticles (100 nM) for 3 hours. Round electron 
dense particles, indicative of CNP1 particles, concentrate around mitochondria (*) and the 
plasma membrane (black arrowhead), but not along the nucleus (N). (C) Electron microscopy of 
a neuron treated with CeO2 nanoparticles (100 nM) for 12 hours. Mitochondrion (*) showing 
clusters of CNP1 particles accumulating at the mitochondrial outer membrane. (D) Electron 
microscopy of a neuron treated with CeO2 nanoparticles (100 nM) for 3 hours for which the 
poststaining step was omitted. The mitochondrion is depicted by the (*) symbol. (E) High 
resolution transmission electron microscopy of a CNP1 particle. Parallel lines indicate the inter-
planar spacing of the atomic arrangement “d” showing the ceria lattice distance of 0.312 nm (as 
measured by the diffraction pattern, (Supplemental Figure 1C) and a Miller index of (111). Scale 
bar, 5 nm. (F) Bar graph of number of CNP1 particles in proximity to the mitochondrial outer 
membrane (G) or the inner leaflet of the plasma membrane. The closest distance between a 
CNP1 particle and a mitochondrion or the plasma membrane was measured with ImageJ and 
then binned in 100 nm increments.  
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Figure 10: CNP1 scavenge reactive nitrogen species and rescue cortical neurons from SNOC-
induced cell death. 

(A) Fluorescence images of APF (green) and Hoechst 33342 (blue) double staining of neurons 
treated with (a) aged SNOC (100 μM), (b) CNP1 (100 nM), (c) fresh SNOC (100 μM), or both (d) 
CNP1 (100 nM) and SNOC (100 μM) for two hours. Scale bar, 10 μm. (B) APF fluorescence of 
neurons treated with aged SNOC, CNP1, fresh SNOC, or CNP1 and SNOC at two hours. (C) Cell 
death of neurons at three hours treated with aged SNOC, CNP1, or fresh SNOC alone or in 
combination of CNP1 plus fresh SNOC. Data represent means ± standard deviation (s.d.). 
Results are representative of three or more independent experiments. Statistics: Student’s t 
test. 
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Figure 11: CNP1 reduce protein tyrosine nitration in SNOC exposed cortical neurons. 

(A) Fluorescence micrographs of 3-nitrotyrosine (red) immunostaining and Hoechst 33342 
(blue) staining of neurons treated with (a) aged SNOC (100 μM), (b) CNP1 (100 nM) (3 h 
pretreatment), (c) fresh SNOC (100 μM) alone, or (d) in combination with CNP1 and SNOC for 
three hours. Scale bar, 10 μm. (B) 3-Nitrotyrosine fluorescence of neurons treated with aged 
SNOC, CNP1, fresh SNOC, or CNP1 and SNOC for three hours. Data are means ± s.d. (C) Western 
blot of 3-nitrotyrosine protein modification in neurons treated with aged SNOC, CNP1, fresh 
SNOC, or CNP1 and SNOC for three hours. Fold densitometries represent the relative ratios of 
3-nitrotyrosine in whole neuronal lysates normalized to control lysates. Data are representative 
of three or more independent experiments. Statistics: Student’s t test. 
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Figure 12:   P1 pr v nt Aβ-induced mitochondrial fragmentation. 

(A) Fluorescence micrographs (scale bar, 50 μm) and 3 x zoom of boxed regions of 
mitochondrial morphology in neurons expressing DsRed2-Mito and (a) left untreated or treated 
with (b) CNP1 (100 nM) (3 h pretreatment), (c) or Aβ 25-35 (10 μM), (d) CNP1 and Aβ 25-35, (e) 
NAC (50 μM) (3 h pretreatment), (f) NAC and Aβ 25-35, (g) or the reverse Aβ 35-25 (10 μM) 
peptide for six hours. (B) Mitochondrial fragmentation in neurons expressing DsRed2-Mito and 
after treatment for six hours with CNP1, NAC, or Aβ 25-35 alone or in combination with either 
CNP1 and Aβ 25-35 or NAC and Aβ 25-35. Data are representative of three or more 
independent experiments. Results are means ± s.d. Statistics: Student’s t test. 

 

Figure 13: CNP1 abolish DRP1 phosphorylation at S616 in response to RNS. 

(A) Western blots of p-DRP1 S616, total DRP1, and actin protein levels from neurons exposed 
for three hours to aged SNOC (100 μM), CNP1 (100 nM) (3 h pretreatment), or fresh SNOC (100 
μM) alone or in combination. The bar graph represents the relative ratios of p-Drp1 S616 to 
total DRP1 protein and normalized to actin. (B) Western blots of p-DRP1 S616, total DRP1, and 
actin protein levels from neurons exposed to CNP1 (100 nM), preaggregated 10 μM Aβ 25-35 
for 6 h, or in combination as well as NAC (50 μM) (3 h pretreatment) with Aβ 25-35. The bar 
graph illustrates the relative ratios of p-DRP1 S616 to total DRP1 protein, normalized to actin. 
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Figure 14:   P1 d lay n uronal c ll d ath induc d by Aβ,  MDA, glutamat , or  -NP. 

(A) Cell death of neurons treated with either CNP1 (100 nM) (3 h pretreatment), NAC (50 μM) 
(3 h pretreatment), or Aβ 25-35 (10 μM) alone, or both CNP1 and Aβ 25-35, or NAC and Aβ 25-
35 at six hours. Untreated cells or reverse Aβ 35-25 (10 μM) peptide treatment served as 
negative controls. (B) Excitotoxic cell death of neurons exposed to either NMDA (150 μM), or 
CNP1 (100 nM) (3 h pretreatment), or in combination of both for 12 hours. (C) Excitotoxic cell 
death of neurons exposed to either glutamate (150 μM), or CNP1 (100 nM) (3 h pretreatment), 
or in combination of both for six hours. (D) Cell death of neurons exposed to mitochondrial 
respiratory complex II inhibitor 3-NP (10 mM), or CNP1 (100 nM) (3 h pretreatment), or in 
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combination of both for eight hours. Results are representative of three or more independent 
experiments. Data are means ± s.d. Statistics: Student’s t test. 
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CHAPTER 4: ATPASE/PHOSPHATASE ACTIVITY UNDERLIES THE TOXICITY OF 
HEXAMETHYLENETETRAMINE-BASED CERIUM OXIDE NANOPARTICLES 

Introduction 

Cerium is a rare earth metal that belongs to the Lanthanides series of the periodic table. 

It has the unique property in that oxygen vacancies are created in their metal oxide 

nanoparticle form (140). Cerium oxide NPs retain their fluorite lattice structure even with the 

loss of oxygen, yielding CeO2-x, and vacancies are the likely sites for potent reduction-oxidation 

(redox) reactions (88). It is this property that first made it useful for industrial applications 

including the removal of carbon monoxide (CO), hydrocarbons and nitric oxide species (NOx) 

from exhaust gas (87). In addition, the ability to shift between Ce3+ and Ce4+ states plays an 

important role in CeO2 NPs  capacity to interact with a variety of  reactive oxygen species (ROS) 

and reactive nitrogen species (RNS) species (55, 67, 68, 126). It is this ability to scavenge 

ROS/RNS species that has led to CeO2 NPs testing in biological systems to reduce potentially 

harmful ROS/RNS in disease and aging as use as potential therapeutics.  

Nanoparticles in general exhibit novel surface properties that can affect their chemistry 

and their interaction with biological systems. For CeO2 NPs to be a realistic therapeutic, they 

must be understood completely before human testing can be started and carefully 

characterized in order to insure safety. Part of that understanding must include the synthesis 

process in which the CeO2 NPs have been created. The processing and material preparation of 

CeO2 NPs are wide and varied, this includes creating NPs with the core CeO2 material as well as 

surface functionalization and/or modifications (66). Even when synthesizing ‘bare’ CeO2 NPs, 
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there are numerous synthesis methods that have been employed (141-143). Over the past 

decades, better synthesis methods for CeO2 NPs use have been extensively tested for industrial 

(144) and biological uses. For use in biological studies, three major synthesis themes have been 

described, direct high-temperature exposure processes, heated in solvent synthesis and room 

temperature synthesis (66) resulting in various biological responses.  The aim of these new 

synthesis methods was to create NPs with high oxygen storage capacity, uniform size, specific 

size, and catalytic activity. The use of heated hexamethylenetetramine (HMT) as a solvent 

results in finer CeO2 NPs (145) and is routinely employed in the synthesis of CeO2 NPs (65, 146, 

147). The catalytic properties of these HMT-based CeO2 NPs have not yet been determined in 

biological systems. There are many studies using room temperature/water-based synthesis of 

CeO2 NPs in which various catalytic activities have been described (55, 67, 68, 126). The 

rationale for this synthesis method is that they seem to be less toxic (60, 148, 149) and the 

ability to control the Ce3+/Ce4+ ratio (81). Indeed, for CeO2 NPs to be a potential therapy for the 

reduction ROS/RNS in disease, the mechanism of action for CeO2 NPs, respective of synthesis 

procedure, must be well defined.  

The study of the chemical and biological properties of CeO2 NPs has expanded recently. 

There are numerous studies that point to CeO2 NPs as a potential new treatment for a wide 

variety diseases (58, 98, 99, 150). Although most of the focus has been on the ability of these 

materials to reduce reactive oxygen and nitrogen species in biological systems, there are 

reports that claim that CeO2 NPs are toxic. Unfortunately, the material synthesis of these 

studies varies significantly. Thus it must first be determined whether CeO2 NPs made by 

different methods are similar or different in their chemical properties. Then the next step is to 
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determine the pathways that CeO2 NPs might interfere or augment. Mechanisms for anti-

oxidant or pro-oxidant for CeO2 NPs are now just starting to be compared. However, the 

outcomes of CeO2 NPs exposure can vary as much as the synthesis methods and cell types 

tested (151-153). This underscores the need to fully understand the nanoparticles synthesis 

method, resulting catalytic behavior(s) and their influence(s) in biological settings. 

Phosphorylation and dephosphorylation play a significant role in a wide range of 

important regulatory mechanisms in mammals. Control of the addition or removal of 

phosphate (PO4
3-) groups is especially important energy maintenance, specifically adenosine 

triphosphate (ATP) which is a critical energy storage molecule. The hydrolysis of ATP to 

adenosine diphosphate (ADP) releases energy (H+) and inorganic phosphate which is then 

utilized in a wide range of cellular applications such as the movement of organelles 

(endosomes, lysosomes, mitochondria) along microtubules as well as muscle contractions, 

small molecule transport, or biosynthetic reactions driving anabolism. Unregulated hydrolysis 

of ATP to ADP will strain energy metabolism and have a negative impact on a cell’s ability to 

function normally. In this study we compared CeO2 NPs synthesized by two different methods 

(water-based and HMT-based) to begin to understand the enigma of how CeO2 NPs can be 

reported to be both toxic and non-toxic when exposed to a variety of organisms and cells in 

culture at similar concentrations. Based on our results, we hypothesize that the toxicity 

reported by many investigators may be due to phosphatase activity of CeO2 NPS that proceeds 

through a poorly understood catalytic mechanism at the surface of the nanoparticle.  
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Materials and Methods 

Preparation of Different Cerium Oxide Nanoparticles 

In this study several cerium oxide nanoparticles were prepared with varying surface 

oxidation state, surface modification, and morphology. Cerium nitrate hexahydrate (99.999% 

pure from Sigma Aldrich, St. Louis, MO) were used as a precursor for all of the preparations. 

Cerium oxide nanoparticles with a higher Ce3+/Ce4+ ratio (CNP1) or  with lower Ce3+/Ce4+ ratio 

(CNP 2) were prepared using wet chemical method as described previously (154). Surface 

modified cerium oxide nanoparticles were prepared using hexamethylenetetramine (HMT) 

(155). Briefly, equal volume of 37.5 mM of cerium nitrate solution and 0.5 M HMT were mixed 

together and stirred for 24 h at room temperature. Cerium oxide nanoparticles prepared using 

HMT were washed with either ethanol and acetone or dH2O for three times and finally 

resuspended in dH2O. It is important to mention that after washing with ethanol and acetone, 

CNP-HMT-1 were washed with dH2O (three times) to remove any trace amount of solvent 

(ethanol or acetone) before resuspending in dH2O.  Cerium oxide nanoparticles washed with 

ethanol and acetone to remove the maximum amount HMT were designated as CNP-HMT1. 

CNPs washed with only dH2O were designated as HMT-CNP2. Different morphology of CNP-

HMT3 were prepared by preheating the both the solutions (37.5 mM cerium nitrate precursor 

and 0.5 M HMT) at 60° C and then equal volume of the solutions were mixed and stirred for 4 h. 

CNP formed were then washed with ethanol and acetone for three times and finally with dH2O 

to remove the solvent before resuspending in dH2O.  
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Physico-Chemical Properties of Cerium Oxide Nanoparticles (CeO
2
) 

High resolution transmission electron microscopy (HRTEM) was used to analyzed size 

and morphology of the nanoparticles. Hydrodynamic radius and surface charge of the 

nanoparticles were estimated using Zetasizer (Nano-ZS from Malvern Instruments, Houston, 

TX). X-Ray photoelectron spectroscopy (5400 PHI ESCA) used to determine the surface 

oxidation state of the nanoparticles. Mg-Ka X-radiation (1253.6 eV) and 350 W power was used 

during the data collection as previously described (154). Fourier transform infrared (FTIR) 

spectra were collected to confirm the presence of HMT molecule on the nanoparticle surface 

using PerkinElmer Spectrum IR Spectrophotometer (Waltham, MA). The amount of HMT that 

remains on the surface of the nanoparticles was determined with differential scanning 

calorimetry and thermogravimetric analysis (DSC-TGA) using a TA Instruments SDT-Q600 (New 

Castle, DE), with open alumina pans under 100 mL/min air flow. Particle size analysis was also 

carried out by measuring the specific surface area (m2/g) using the Brunauer, Emmett, and 

Teller (BET) method with a Quantachrome Nova 4200e surface area analyzer (Boynton Beach, 

FL). 

Drosophila melanogaster Exposure to Water-based or HMT-based Cerium Oxide Nanoparticles. 

Male and female wild-type D. melanogaster (Oregon R) were maintained under optimal 

conditions in a standard corn meal medium at a temperature of 25°C. Larval exposure to 

nanoparticles began at the larvae stage and continued through eclosion. Parental crosses were 

set up in cages with 150 females and 30-40 males on grape plates seeded with live yeast. After 

21 hours, each grape plate was changed and hatched larvae removed. Groups of 50 larvae from 
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grape plates were isolated using a mounting needle under a dissecting microscope and placed 

in vials containing 6 ml Jazzmix (Fisher Scientific, Pittsburg, PA) food medium containing 86 

μg/mL of nanoparticles, CNP1 or HMT-CNP1. Control larvae were cultured in parallel in food 

vials containing only H2O or 500 μM HMT. All vials were kept at 25°C and checked daily for 

pupariation and eclosion.  

Cultivation of HUVECs 

Human Umbilical Vein Endothelial Cells (HUVECs) (Lonza Walkerville, Inc., Walkersville, MD) 

were maintained at 37oC in a humidified atmosphere containing 5% CO2 in endothelial basal 

medium (EBM) (Lonza Walkerville, Inc., Walkersville, MD) supplemented with 2 % fetal bovine 

serum (FBS). Only cells from passages 3-6 were utilized in all experiments. 

Cell Viability MTT Assay 

HUVECs were cultured in 96-well plates and exposed to CeO2 NPs for 48 h. Thiazoyl blue 

tetrazolium bromide (MTT) (Amresco, Solon, OH) (1.2 mM) was added and cells were 

subsequently incubated for 4 h at 37 °C in 5% CO2 atmosphere. To solubilize the dye, 100 μL of 

cell lysis solution (10% SDS, 5 mM HCl) was added to each well and the plate was incubated for 

an additional 4 h at 37 °C. Absorbance of the soluble dye was recorded at 570 nm using a 

Spectra Max 190 spectrophotometer (Molecular Devices, Sunnyvale, CA). Cell viability was 

determined by dividing the absorbance of treated samples to untreated controls and reported 

as a percentage of control cells. Results were collected from at least three independent 
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experiments and are expressed as mean ± standard deviation (s.d.). Statistical analysis of two 

populations was compared using two-tailed non-paired Student’s t test. 

Analysis of Intracellular ATP Levels 

HUVECs were cultured in opaque-walled 96-well plates and treated with CeO2 NPs for 

48 h. Plates were equilibrated to room temperature and cells were lysed according 

manufacturer instructions. CellTiter-Glo® Reagent was added, plates were incubated for 10 min 

to stabilize the luminescent signal.  Luminescence was then recorded with a Varian Cary Eclipse 

fluorescence spectrophotometer (Palo Alto, CA) using 1 second integration time per well. 

Results were collected from at least three or more independent experiments and are expressed 

as mean ± standard deviation (s.d.). Statistical analysis of two populations was compared using 

two-tailed non-paired Student’s t test. 

ICP-MS Uptake of CeO2 NPs Studies 

HUVECs culture monolayers were incubated for 24 h with nanoparticles. Cells were 

washed two-times to remove extracellular nanoparticles and then collected by typsination and 

washed with PBS again to remove excess media and particles that could be adsorbed on the 

surface of the cells. Cells exposed to CNPs were analyzed for their cerium content using a 

Thermo Electron X-Series inductively coupled plasma mass spectrometer (ICP-MS, Thermo 

Scientific, Pittsburgh, PA) following APHA method 3125B to determine the amount of CNPs 

taken up by the cells. 
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Live Cell Imaging of HUVECs Exposed to CeO2 NPs 

HUVECs were cultured on Lab-Tek®II chambered coverglass (NUNC, Rochester, NY) slides 

in phenol red-free EBM (Lonza, Walkersville, MD) supplemented with  2 % FBS. Cells were 

exposed to various preparations of CeO2 NPs for 36 h. To visualize nuclei, Hoechst 33342 dye 

(Molecular Probes, Invitrogen, Eugene, OR) (1μg/mL) was added in medium for 10 min at 37°C 

in a humidified 5% CO2 incubator. Dye was removed and replaced with pre-warmed medium. 

Chamber slides with cultured HUVECs was placed under phase-contrast 40x air objective on a 

Nikon fluorescence microscope and images acquired at 37°C in a humidified 5% CO2 

atmosphere.   

Confocal Microscopy 

HUVECs were exposed to nanoparticles for 24 h and subsequently washed, trypsinized 

and seeded onto glass coverslips for 4 h (to allow for cell attachment). Cell were then fixed in 4 

% formaldehyde for 20 min at RT. Cells were washed two times in PBS and then labeled with 

wheat germ agglutinin (WGA), Alexa Fluor® 488 (Molecular Probes, Invitrogen, Eugene, OR) (5 

μg/mL) for identification of plasma membranes (green channel, excitation 405nm/emission 

498) and Hoechst 33342 for identification of nuclei (blue channel, excitation 405/emission 428). 

Cells were washed and mounted in anti-fade mounting media (Calbiochem, St. Louis, MO) and 

slides cured 24h at RT. Slides were stored at 4 °C until simultaneous confocal and bright field 

imaging by Leica TCS SP5 laser scanning confocal microscope with 40×/1.25 oil objective lens.  
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Phosphatase Mimetic Assay 

To measure the phosphatase activity of various CeO2 NPs, 1.2 mM of p-nitrophenyl 

phosphate (pNPP) (New England BioLabs Inc., Ipswich, MA) was incubated in a 96-well plate in 

the presence of various concentrations of CeO2 NPs (4.3, 8.6, 17, 34 μg/mL) in a total volume of 

200 μL H2O. The ability of CeO2 NPs to catalyze the hydrolysis of pNPP to p-nitrophenyl was 

measured by following the increasing absorbance (405 nm) every minute for 20 min using a 

Spectramax 190 UV-visible spectrophotometer (Molecular Devices, Sunnyvale, CA). 

ATPase Activity Assays 

The concentration of inorganic phosphate liberated by various preparations of CeO2 NPs 

was determined using a malachite green assay (R&D Systems, Minneapolis, MN). Nanoparticles 

(34 μg/mL) were added to ATP or GTP (Sigma Aldrich St. Louis, MO) (34 µg/mL) at various time 

points (0, 30 sec, 1 min, 2 min, 4 min, 6 min, 8 min ,10 min) at RT in 50 mM Tris buffer at pH 8.0. 

A phosphate standard curve was generated to enable quantitative determination of phosphate. 

The Malachite Green solutions were added to each well and the absorbance (620 nm) was 

determined using a Spectramax 190 UV-visible spectrophotometer (Molecular Devices, 

Sunnyvale, CA) after a 20 min incubation to stabilize the dye/PO4 complex.  

The concentration of inorganic phosphate liberated by various preparations of CeO2 NPs 

was also determined using EnzCheck Phosphate Assay (Invitrogen). The EnzCheck phosphate 

reaction is a fast, quantitative enzymatically linked assay in which in the presence of Pi, the 

substrate 2-amino-6-mercapto-7-methylpurine riboside (MESG) is converted enzymatically by 

purine nucleoside phosphorylase (PNP) to ribose 1-phosphate and 2-amino-6-mercapto-7-
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methyl purine. The conversion of MESG can be followed by the increase in absorbance at 360 

nm. Nanoparticles (34 μg/mL) were added to varying concentrations of ATP (Sigma Aldrich St. 

Louis, MO) and phosphate release followed every 30 sec for 30 min at 360 nm using a 

Spectramax 190 UV-visible spectrophotometer (Molecular Devices, Sunnyvale, CA) after an 

initial10 min incubation. A phosphate standard curve was generated to enable quantitative 

determination of phosphate in solution. Baseline changes due to hydrolysis of phosphate from 

ATP only controls was subtracted from each concentration to determine free phosphate 

liberated only by addition of CeO2 NPs. The kinetic parameters, Vmax  and Km were calculated by 

using SigmaPlot® 10 software (Systat Software, Inc., Point Richmond, CA). 

Analysis of DNA Stability in the Presence of Cerium Oxide Nanoparticles 

Preparations of nanoparticles were heated at 65o C for 15 minutes to denature possible 

endogenous (contaminating) DNase activity. The treated solutions were allowed to cool to 

room temperature. 1 µL (500 ng) of DNA ladder (Lambda HindIII digestion) was added 

nanoparticles in water and EDTA at a final concentration of 5 mM. Cerium oxide nanoparticle 

levels were varied in the presence of the same concentration of DNA. One set of incubations 

was placed at room temperature, and another was carried out at 37º C. DNA was analyzed by 

agarose gel electrophoresis using a 1% agarose gel in Tris-Acetate EDTA (TAE) buffer as 

previously described (156). DNA was analyzed by staining with ethidium bromide and viewed 

under trans illumination with UV light.  
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Results  

Cerium Oxide Nanoparticles (CeO2 NPs) Vary in Size, Shape, and Charge Depending Upon 
Synthesis Method 

Careful characterization of nanoparticle preparations used in a study is critical when 

addressing biological relevance. It is rare that the actual synthesis procedure is used as a 

variable. In this study we chose two types of synthesis procedures for making cerium oxide 

nanoparticles. These two methods have been frequently used in the literature since it has been 

established that biological properties vary depending upon the synthesis method (66). TEM 

images of CeO
2
 NPs prepared using water-based or hexamethylenetetramine (HMT) (synthesis 

methods are shown in Supplementary Figure 1. In general, the water-based NPs are smaller and 

rounder than the HMT-based NPs which display a sharp, angular shape. This figure 

demonstrates that depending upon synthesis method and the various conditions during 

synthesis (see Materials and Methods) nanoparticles of the same core cerium oxide 

composition (CeO2) can be very different morphologically yet the biological relevance of these 

differences is poorly understood. 

Physico-Chemical Properties of Cerium Oxide Nanoparticles (CeO
2
) 

Nanoparticles in general exhibit novel surface properties that can affect their chemistry 

and their interaction with biological systems. Supplementary Figure 2 contains a chart outlining 

the physico-chemical characteristics of all CeO2 NPs used throughout this study. Distribution of 

the hydrodynamic radius of individual particles is shown in Supplementary Figure S1A-E. 

Surface charge differences of water-based CNPs (CNP1 and CNP2) were estimated in dH2O 
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suspension. The surface oxidation state (Ce3+/Ce4+ ratio) of the CeO2 NPs preparations were 

calculated from x-ray photoelectron spectroscopy (XPS) data as described previously (157). The 

intensity of peaks at 880.8, 885.8, 899.3 and  903.5 eV corresponding to the cerium (III) 

oxidation state and intensity of peaks at 881.9, 888.4, 897.9, 901.2, 906.8 and 916.3 eV 

corresponding to the cerium (IV) were determined and ratios calculated. Deconvoluted XPS 

spectra for all nanoparticles used in this study are shown in Figure S2A-E. Fourier transform 

infrared spectroscopy (FTIR) spectrum of hexamethyltetramine (HMT) and HMT-CNP1 revealed 

residual HMT on the surface of the HMT-CNP1 as compared with water-based CNP1 (Figure S3). 

The level of the organic was determined to contain HMT and was estimated by calculating 

differential scanning calorimetry - thermogravimetric analysis (DSC-TGA) by the percentage of 

weight loss (158). TGA-plot of thermal decomposition of HMT present on the surface of the 

HMT-based HMT-CNPs is shown in Figure S4A-C.  

  Water-based CeO2 NPs (CNP1 and CNP2) were comprised of a crystalline lattice and due 

to their nanometer length scale, and based on previous reports, oxygen defects at the surface 

are present that yield reactive sites (140). Within these sites, water-based CeO2 NPs have the 

ability to interchange between the 3+ and 4+ oxidation state (55). Two water-based CeO2 NPs 

exhibiting mixed Ce3+/Ce4+valence states were synthesized (81). CeO2 NPs with a  higher 3+/4+ 

ratio of approximately 1.28 (CNP1) exhibit efficient superoxide dismutase (SOD) activity (55, 

126) when compared to CeO2 NPs with lower 3+/4+ ratio of approximately 0.37 (CNP2). It should 

be noted that CeO2 NPs with lower 3+/4+ ratio (CNP2) exhibit increased catalase mimetic 

activity (67) as well as the ability to effectively scavenge soluble nitric oxide (·NO) (68).  HMT-

based CeO2 NPs (HMT-CNP1, HMT-CNP2 or HMT-CNP3) contained lower 3+/4+ ratios measuring 
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0.37, 0.36, 0.32 respectively, very similar to CNP2, however their catalytic natures towards 

superoxide, hydrogen peroxide or ·NO has not yet been reported. HMT-CNP1 and HMT-CNP3 as 

synthesized contained very similar concentrations of HMT, 1.68 % and 1.78 % HMT respectively 

however, they differ in their shape with HMT-CNP1 morphology as polygonal and HMT-CNP3 

morphology as round (Supplementary Figure 1). HMT-CNP1 differed from HMT-CNP2 in the 

amount of HMT present on the surface of the nanoparticles. In addition, the mean 

hydrodynamic ratios of all three HMT-CNP’s were increased when compared to the two water-

based CNP’s. This becomes important when attempting to understand the biochemical 

properties of NPs in presence of biological molecules such as proteins. The type of biomolecule 

and type of interaction that nanoparticles can participate in can be preferentially affected by 

both size and surface properties of the nanoparticles (159).  

 Nanoparticles have high surface area to volume ratios and the physical properties of a 

nanoparticle can be dominated by the nature of the nanoparticle surface (160). The surface 

areas, as determined by BET, closely ranged between 71 and 118 m2/g and it appears that the 

presence of HMT had no dramatic influence on surface area. Particle size and surface area are 

important features when considering in vivo nano-bio reactivity (161). High surface areas can 

also increase surface reactivity leading to catalytic activities that can be both beneficial and 

detrimental to cells (66). Though consisting of identical core materials, CeO2, the 

physicochemical properties CeO2 nanoparticles produced by different methods can differ 

extensively and have implications that must be thoughtfully considered when adapting them 

for use in biological systems. These material properties can affect how cells respond to 

nanoparticles including whether or not they exhibit toxicity. 
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HMT-based Nanoparticles are More Toxic Than Water-based Cerium Oxide Nanoparticles 

The rapid development of cerium oxide nanoparticles for various applications in many 

years has led to numerous studies evaluating CeO2 NPs toxicity or biocompatibility. We 

employed the primary cell type Human Umbilical Vein Endothelial Cells (HUVECs) as a biological 

model to test toxicity in the context of human tissue. To investigate whether different particles 

made using different synthesis methods can effect overt toxicity, HUVEC cells were exposed to 

increasing CeO2 NPs concentrations (0, 0.02, 0.08, 0.86, 8.6, 17 μg/mL) for 48 h (Figure 15). It 

should be noted that the HMT-CNP NPs were extensively washed during synthesis to avoid 

adsorption of background molecules of HMT onto the NPs so to prevent the residual HMT from 

affecting the NPS surface chemistry or be present in the aqueous portion of the samples (See 

Materials & Methods). We observed a reduced toxicity for CNP1, as previously reported (162) 

(Figure 15A) with similar observations for CNP2 (Figure 15B). Even at the highest concentrations 

(17 μg/mL), CNP1 and CNP2 only had modest effects on cell viability (80 %) whereas HMT-CNP1 

showed a greater reduction in cell viability (70 %). However, at a ten-fold lower concentration 

(0.86 μg/mL) the HMT-CNP1 begin to exhibit a derogatory effect whereas the water-based, 

CNP1 and CNP2 did not (Figure 15C). To address whether the HMT concentration was 

responsible for the deceased cell viability, HMT-CNP2s which contain 8.16 % HMT (Figure 15D) 

were also tested and MTT results are similar to HMT-CNP1 (Figure 15C). Finally, to address if 

shape of the nanoparticle was a factor in toxicity, HMT-CNP3 containing similar concentration 

of HMT as HMT-CNP1 however having a rounder appearance, similar to CNP1 and CNP2 

(Supplementary Figure 1), were tested. MTT results for HMT-CNP3 (Figure 15E) were again 

similar to HMT-CNP1 strongly suggesting that increasing HMT concentration or shape did not 
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play a role in the decreased HUVEC viability of HMT-CNP1 when compared to water-based 

CNP1 and CNP2. Additionally, all three HMT-CNPs started to show decreased cell viability at 

0.86 μg/mL concentration whereas the both CNPs do not exhibit any toxicity at the 0.86 μg/mL 

concentration. To rule out the decreased cell viability was due solely to the presences of the 

HMT solvent, we test the higher concentrations of HMT solvent only and found no toxicity to be 

attributed to the presence of the solvent alone (Figure 15F). The MTT assay relies upon 

metabolically active cells to reduce the MTT dye. Mitochondria are the cell’s source of energy 

by producing adenosine-5'-triphosphate (ATP) through oxidative phosphorylation. This led us to 

determine if intracellular ATP levels of HUVECs exposed to various preparations of CeO2 NPs 

would be affected. 

Exposure to HMT-CNP Leads to Decreases in Intracellular ATP Levels  

To analyze if there was a link between exposure to HMT-CNPs and reduced HUVEC 

viability, we treated HUVECs with increasing CeO2 NPs concentrations (0, 0.02, 0.08, 0.86, 8.6, 

17 μg/mL) and measured ATP levels in cell lysates at 48 h as an alternative to MTT reduction. At 

the higher two exposure concentrations, both CNP1 (Figure 16A) and CNP2 (Figure 16B) had 

diminished ATP levels (85-68%, respectively) as compared to controls. However, HMT-CNP1 

treated cells showed dramatically reduced ATP levels at a ten-fold lower exposure of 0.86 

µg/mL (42 %) Figure 16C). We found similar decreases at the 0.86 μg/mL concentrations using 

HMT-CNP2 (Figure 15D) and HMT-CNP3 (Figure 16E). Similar to our MTT results, HMT solvent 

alone had no effect on ATP concentration. Thus exposure to HMT-CNPs at lower doses resulted 

in a significant reduction in ATP levels than CNP1 or CNP2 exposure.  



74 
 

HMT-CNP1 aggregate in exposed HUVEC cells.  Cerium oxide nanoparticles are readily 

internalized by cells due to their small size however to visualize nanoparticles, high resolution 

transmission electron microscopy or a fluorescent tag is normally utilized (46, 98). Since the 

HMT-CNPs all had similar toxicities (Figures 15 & 16) we chose to use HMT-CNP1 for additional 

in depth comparisons with CNP1 and CNP2. Untreated HUVECs as well as CNP1 and CNP2 (8.6 

µg/mL) treated HUVECs exhibited no visible changes (Figure 17A - C). Strikingly, HUVECs treated 

with HMT-CNP1 at the same concentration exhibited visible changes in morphology with bright 

field microscopy (Figure 17D). The addition of a nuclear stain helped us to localize their 

subcellular location and highlight the presumed HMT-CNP1’s aggregation in HUVECs. The ability 

to see nanoparticles using unaided microscopy techniques is uncommon. In the study by Yokel, 

et. al., similar CeO2 NPs agglomerations were seen in light microscope images of spleen of rats 

treated with 250 mg/kg CeO2 NPs after only 1 h (163). These intracellular accumulations do not 

appear to have a specific sub-cellular localization and led us to probe the biological interaction 

of our CeO2 NPs with HUVECs. 

Confocal Laser Scanning Microscopy (CLSM) Images Reveal Perinuclear Aggregation of HMT-
CNP in HUVECs 

It has been reported that CeO2 NPs dispersed directly into cultures media may form 

aggregates on cells (164). To confirm whether the dense granules visualized by bright field 

microscopy were actually HMT-CNP1 aggregates within the cell and not simply associated 

outside the cells, HUVECs were treated for 24 h with nanoparticles, washed repeatedly, 

trypsinized and seeded onto glass coverslips for 4 h (to allow for cell attachment) before 
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fixation. Using immunocytochemistry we labeled the plasma membranes of HUVECs with wheat 

germ agglutinin (WGA) with fluorescein conjugate and took simultaneous fluorescent and 

bright field imaging using confocal microscopy. Untreated, CNP1 and CNP2 (8.6 µg/mL) treated 

HUVECs under bright field and merged channels show no evidence of nanoparticle aggregation 

(Figure 18A & B). By contrast, HUVECs treated with HMT-CNP1 (8.6 µg/mL) showed a robust 

increase in agglomerated, granular material in both the bright field and merged channels 

(Figure 18D). This aggregation becomes even more evident in HUVECs treated with a higher 

concentration of HMT-CNP1 (86 µg/mL) (Figure 19). Notably, CLSM highly suggested that the 

apparent dense granules were in fact intracellular HMT-CNP1s and their subcellular location 

was peri-nuclear. The subcellular localization is in agreement with previous studies testing CeO2 

NPs using in vitro cell culture models (165). 

HMT-CNP1 are Transported into HUVECs More Efficiently Than Water-based Cerium Oxide 
Nanoparticles 

Uptake of nanomaterial varies vastly between materials tested and cell types (166, 167).  

Based upon the morphological changes in HUVECs treated with HMT-CNP1 easily seen by light 

microscopy, we incubated HUVECs with increasing concentrations (0, 1.7, 8.6, 17, 86 µg/mL) of 

CNP1, CNP2 and HMT-CNP1 and harvested cells after 24 h. We used inductively coupled plasma 

mass spectrometry (ICP-MS) to determine the concentration of cerium inside the cells. 

Interestingly, CNP2 uptake was more efficient than CNP1 uptake and cellular uptake of HMT-

CNP1 was greatly increased in HUVECs at every concentration tested (Figure 20). Taken 

together, this clearly shows that HMT-CNP1s are readily internalized by HUVEC cells and this 



76 
 

could be a contributing factor as to the toxicity previously observed in a Caenorhabditis elegans 

model (65). We tested CNP1 and HMT-CNP1 in a comparable model system, Drosophila 

melanogaster and found that CNP1 were not toxic and HMT-CNP1 NPs were only marginally 

toxic at a concentration of 860 µg/mL (Figure 21). Thus, uptake must be taken under 

consideration when determining toxicity. Our data shows that the CNP2 are also readily taken 

up and yet they have not shown toxicity at the same level as HMT-CNP1 in HUVECs. It should be 

noted that CNP2 exhibit catalase mimetic activity and scavenge ·NO (67, 68) and therefore 

these catalytic activities could be at the basis for their lack of toxicity (98). 

CeO
2
 NPs with Increased Surface 4+ Character Exhibit Phosphatase and ATPase Activity  

Phosphorylation and dephosphorylation play significant roles signaling, energy transfer 

and utilization within cells. Phosphate ester hydrolysis of biological molecules by CeO2NPs 

would have important implications in their potential toxicity. In order to test any potential 

phosphatase activity of CNPs and HMT-CNPs, we first used p-nitrophenyl phosphate (pNPP) as a 

screening substrate (168).  This assay uses an artificial chromogenic substrate that is readily 

hydrolysed by phosphatases and allowed us to detect any potential phosphatase mimetic 

activity.  We found that CNP2 as well as HMT-CNP1 were able to de-phosphorylate pNPP 

whereas CNP1 did not (Figure 22A). These results agreed with previous observations for water-

based ceria (168). Our initial results strongly suggested that cerium oxide nanoparticles with 

increased 4+ shared a similar catalytic activity. In order to corroborate the phosphatase 

mimetic activity and possibly explain the mechanism of cell death, we used ATP as the substrate 

and looked at free phosphate production using two different assays. Our results show again 
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that CNP1 did not act as a phosphatase using ATP for the substrate (Figures 22A and 23E). SiO2 

NPs, a metal oxide NP of similar size was used as a negative control and also did not cause the 

release of phosphate (Figure 22A and B). However, CNP2 and HMT-CNP1 did release phosphate 

from ATP with CNP2 showing a robust activity (Figure 22B). To obtain quantitative information 

on the effect of CNP2 and HMT-CNP1, we determined the apparent Km. Experimentally, we 

followed the kinetics of Pi released in a continuous reaction and determined the initial rates of 

free phosphate release from 34 µg/mL NPs in the presence of increasing concentrations of ATP 

(Figure 23A-D). The apparent Km for HMT-CNP1 was 39.9 ± 8.2 µM. CNP2 were efficient 

phosphatases at lower substrate concentrations however when approaching physiological 

concentrations of ATP, CNP2s reached saturation and rates declined however CNP2 apparent 

Km was determined to be 48.4 ± 10.6 µM. We compared the kinetic behavior of CeO2 NPs with 

an established, physiologically relevant ATPase, dynein ATPase which has reported Km of 20 μM 

(169). We chose to compare to a motor protein since they have multiple active sites (170), 

which is similar to nanoparticles having numerous engineered vacancies for  reactions to occur. 

In addition, dynein ATPase is located in the cytoplasm, along the same location as we saw the 

aggregation of HMT-CNP1 NPs (Figures 17 and 18). However, CeO2 NPs differ from dynein 

ATPase in terms of turnover rate. Dynein APTase Vmax is 0.22 μM/s (169) however the Vmax 

values for CNP2 and HMT-CNP1 were 0.017 nmol/ min and 0.024 nmol/min (respectively). 

Collectively, these results suggest that CeO2 NPs with increased level of 4+, regardless of their 

synthesis method, are competent phosphatases. They were able to hydrolyze various 

substrates including pNPP (Figure 22A), ATP (Figure 22B and Figure 23A-D) and GTP (data not 

shown). However, HMT-CNP1 is more readily taken up by cells so the concentration of the 
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catalyst is higher in cells than those exposed to CNP2. The combination of uptake and catalytic 

activity must be considered when determining toxicity. 

Synthesis Method Determines Surface Catalytic Character of CeO
2
 NPs  

Having identified ATPase as a critical catalytic character for HMT-CNPs in terms of 

toxicity, we tested these preparations of CeO2 NPs to assess the effect of synthesis on their 

catalytic activity at a broader level. To evaluate the potential catalytic activities we tested HMT-

CNP1s for their ability to scavenge ·NO or to act as SOD or catalase mimetics. Unlike CNP1 or 

CNP2, HMT-CNP1s did not show any reactivity ·NO (Figure 24A), superoxide (Figure 24C), and 

hydrogen peroxide (Figure 24D).  

Reduction of Ce4+ to Ce3+ causes oxygen vacancies or defects on the surface of the 

crystalline lattice structure of the particles, generating a cage for redox reactions to occur (125). 

It has been established that the specificity of some of the catalytic activities depend upon the 

ratio of Ce3+/Ce4+ (68, 94). Table 2 chart highlights water-based synthesis method of CeO2 NPs 

leads to unique physical and catalytic characteristics that are not found in CeO2 NPs synthesized 

by HMT-based method. In addition, these catalytic activities seem to correlate with the 3+/4+ 

ratio, specifically NPs with more Ce4+ displaying phosphatase activity. This reiterates the need 

for the careful characterization of nanoparticle preparations and a thorough understanding of 

their catalytic activities.  
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Discussion 

The toxicology and surface reactivity of CeO2 nanoparticles synthesized by two different 

methods were compared in this work in order to elucidate the mechanisms behind the varied 

observations with biological models in the current literature. Due to the small size of NPs, TEM 

is an appropriate technique to use for visualizing NPs inside cells, since light microscopy fails to 

resolve NPs at a single particle level (171). However, HMT-CNP1 are readily taken up by HUVECs 

and their aggregation was visible using conventional light microscopy techniques (Figures 5 and 

6). An increase in the uptake of HMT-CNP1 certainly could have a negative effect on a HUVEC 

cell’s metabolism. The increased uptake may be due to electrostatic interactions, given the fact 

that the zeta potential of HMT1 and CNP2 are more positive than CNP1 (Figure 2.) A positively 

charged particles would more readily be taken up by a negatively charged cell. We also 

observed significant aggregation of HMT-CNP1 in intracellular vesicles in HUVEC cells (Figures 

5& 6). It has been reported that, under hydrothermal conditions, HMT can promote the 

formation of well-aligned and highly crystallized ZnO nanorods and nanowires when a ZnO seed 

layer was adopted (172). So, it is certainly possible that similar nucleation events may exist in 

our current HMT-CNP system as well. However, the CNP2 are also readily taken up but do not 

aggregate (Figures 5 & 6) and yet they do not show the level of toxicity that the HMT-CNP1 

demonstrated. CNP2, though also taken up by HUVECS (Figure 7), also are catalase mimetics 

(67) and scavenge soluble ·NO (68). Therefore CNP2s may reduce the level of H2O2 as well 

reduce the downstream damage caused by excessive ·NO.  Peroxynitrite (ONOO-), formed by 

the diffusion limited inter-action of superoxide (O2
·-) with ·NO, is a potent oxidant that can lead 

to the detrimental, 3-nitrotyrosine, post-translational modification of tyrosine residues in 
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proteins (34) as well oxidize lipids and DNA. There are efficient cellular means reduce both O2
·- 

and ·NO during normal cellular metabolism however in a diseased state, an imbalance can 

occur due leading to the cells inability to remove excess O2
·- and ·NO. Therefore, decreasing the 

precursors of the strong oxidizer ONOO- would reduce tissue damage in all the major 

biomolecules. It should be noted that when cells are cultured in 21 % O2, cells in culture are 

generally seen as being under constant oxidative stress (173).  

The intercellular location of the HMT-CNP1 may also play a role in their toxic nature. We 

found the HMT-CNP1 aggregated in a peri-nuclear location (Figure 5) aligning with the 

endoplasmic reticulum (ER) as visualized by wheat germ agglutinin (WGA) antibody (Figure 6). 

Since this antibody labels glycoproteins, we see an increase of signal from the ER and Golgi, the 

location in the cells where sugars are incorporated into proteins in cells, in all cell images. 

Disrupted energy metabolism leads to increased ROS and therefore increased free radicals and 

the resulting downstream damage of protein modification, lipid peroxidation and DNA damage  

(174). The peri-nuclear location of the HMT-CNP1s may interfere with normal cellular 

processes, such as protein post-translational modifications (i.e. phosphate) or energy 

metabolism, leading to adverse cellular responses. In addition to the location of HMT-CNP1 

affecting the cell, their catalytic ATPase ability would have a further negative affect on cell 

survival due to decreased ATP levels. This two-fold hit on cells by HMT-CNP1 might explain the 

drastic difference in toxicity as compared to CNP1 or CNP2. 

Nanoparticles in general exhibit novel surface properties that can affect their chemistry 

and their interaction with biological systems. In addition, we have demonstrated that synthesis 

methods of CeO2 NPs can further affect surface properties. For non-redox active 
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nanoparticles, varying the synthesis procedure may not have a substantial effect but our data 

demonstrates that it is not the case when dealing with redox active nanomaterials. A slight 

change in physico-chemical properties (Figure 2) can give you a vast difference in the redox 

properties of the nanomaterials (Figure 9). During the synthesis of water-based CeO2 NPs, 

oxygen vacancies are created at the surface yielding reactive sites. Within these sites, CeO2 NPs 

have the ability to interchange between the 3+ and 4+ oxidation state (55). The cerium atoms 

on the surface of these vacancies are in the 3+ state (125). Kuchma et. al. report that the 

phosphatase activity appears to be dependent upon the Cerium(III) sites (168). It is possible 

that the ATPase activity seen in the CNP2 and HMT-CNP1 may be due to a nucleophile 

attraction of the Ce3+ and the terminal phosphate on an ATP molecule. Paradoxically, CNP1, 

which have more vacancies on the surface are not phosphatases. Additionally, there are 

phosphate esters on the backbone of nucleic acids. It is known that lanthanide ions effectively 

hydrolyze DNA and RNA (175) with CeIV ions being the most active for DNA (176).  We tested if 

CeO2 NPs with varying ratios of Ce3+/Ce4+ would be able to hydrolyze other types of phosphate 

bonds. We exposed DNA to increasing concentrations of CNP1, CNP2 and HMT-CNP1 ranging 

from 0, 86, 172, 430 μg/mL at both room temperature and 37° C. There was no apparent 

change in the sizes of the DNA (Supplementary Figure 3).  Although CNP2 and HMT-CNP1s act 

as phosphatase mimetics, the phosphate diester groups on DNA remains intact in the presence 

of these NPs and therefore CeO2 NPs are not nuclease mimetics. CeO2 NPs exhibit specificity 

towards phosphate ester linkages and the mechanism of hydrolysis will need to be 

experimentally determined to understand this apparent specificity. 
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The study of the chemical and biological properties of CeO2 NPs has expanded recently. 

Although most of the focus has been on the ability of these materials to reduce reactive oxygen 

and nitrogen species in biological systems (46), there are reports that claim that nanoceria are 

toxic. Unfortunately, the material synthesis methods used are not always significantly reported 

and it is likely that these observed toxicities are the result in the variations of synthesis 

methods. The CeO2 NPs synthesized in HMT resulted in different surface chemistry which 

resulted in different catalytic activities than the water-based NPs. The increased uptake and 

phosphatase/ATPase activity of HMT-CNP1 may underlie their toxicity. With the recent 

burgeoning growth of the use of CeO2 NPs as potential therapeutics, synthesis method and 

surface chemistries must be emphasized. 
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Figures and Tables 

 

Figure 15: Cell viability of HUVECs exposed to various preparations of CeO2 NPs. 

HUVEC cells were exposed to increasing CeO2 NPs concentrations (0, 0.02, 0.08, 0.86, 8.6, 17 
μg/mL). A) CNP1. B) CNP2. C) HMT-CNP1. D) HMT-CNP2. E) HMT-CNP3. Cell viability was 
determined by dividing the absorbance of treated samples to untreated controls and reported 
as a percentage of control cells. The mean of at least 4 independent cultures is plotted with 
standard deviation as error.  
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Figure 16: Intercellular ATP levels of HUVECs exposed to various preparations of CeO2 NPs. 

HUVEC cells were exposed to increasing CeO2 NPs concentrations (0.02, 0.08, 0.86, 8.6 17 
μg/mL). A) CNP1. B) CNP2. C) HMT-CNP1. D) HMT-CNP2. E) HMT-CNP3. ATP level was 
determined by dividing the luminescence of treated samples to untreated controls and 
reported as a percentage of control cells. The mean of at least 4 independent cultures is plotted 
with standard deviation as error. *, p ≤ 0.05, #, p ≤ 0.001. 
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Figure 17: Live cell examination of HUVEC cells exposed to HMT-CNP1. 

HUVEC cells were exposed to 8.6 μg/mL CeO2 NPs for 20 h. A) Control cells. B) CNP1. C) CNP2. 
D) HMT-CNP1. Hoescht dye was added just before imaging to show location of nuclei. 
Representative images feature 4x zoom of region of interest. Scale bar = 50 μm. 
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Figure 18: Intracellular aggregation of HMT-CNP1 as viewed by confocal laser scanning 
microscopy (CLSM). 

Cells were exposed to nanoparticles for 24 h, washed, trypsinized and seeded onto glass 
coverslips for 4 h (to allow for attachment), fixed and labeled with antibody for identification of 
plasma membranes (green channel) and Hoechst 33342 (blue channel) for identification of 
nuclei. A) Control/no treatment B) 86 μg/mL CNP1 C) 86 μg/mL CNP2 D) 86 μg/mL HMT-CNP1. 
Scale bar = 50 μM. Asterisk follows representative region of HMT-CNP1 aggregation. 
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Figure 19: CLSM images of HUVECs showing intracellular aggregation after exposure to 86 
μg/mL HMT-CNP1. 

Cells were treated for 24 h with nanoparticles, washed, trypsinized and seeded onto glass 
coverslips for 4 h (to allow for attachment), fixed and then labeled with WGA for identification 
of plasma membranes (green channel) and Hoechst 33342 (blue channel) for identification of 
nuclei. A) 86 μg/mL HMT-CNP1. B) Control/no treatment. Scale bar = 50 μM.  
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Figure 20: Increased uptake of HMT-CNP1 as measured by ICP-MS. 

HUVEC cells were incubated with various CeO2 NPs for 24 h, washed two-times to remove 
extracellular nanoparticles, collected by typsination and washed with PBS again to remove 
excess media and particles which may be adsorbed on the surface of the cells. The 
concentration of cerium inside cells was measured by ICP-MS as described in methods.  
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Figure 21: Exposure of Drosophila melanogaster to CeO2 NPs does not significantly alter 
development. 

Oregon-R (OR) wild-type larvae were fed JazzMix® supplemented with 86 μg/mL of CeO2 NPs or 
appropriate solvent control. Wild-type larvae survival to reach pupariation was tabulated. 
Minimum 50 larvae per condition per experiment. p=0.069 by One way ANOVA followed by 
Tukey Post Hoc Tests. 
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Figure 22: p-nitrophenyl phosphate (pNPP) and ATP hydrolysis by various preparations of 
CeO2 NPs. 

(A) 34.4 μg/mL CeO2 NPs were incubated with pNPP and conversion to p-nitrophenyl was 
measured by following its absorbance at 405 nm. (B) Free phosphate released by NPs was 
quantified by malachite green assay using 200 μM ATP as substrate comparing 34.4 μg/mL of  
indicated nanoparticles in 50 mM Tris buffer at pH 8.0. Traces were recorded using Spectra Max 
190 spectrophotometer. Graphs are representative of 3 or experiments.  
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Figure 23: CNP2 and HMT-CNP1s exhibit significant ATPase activity at physiological relevant 
concentrations of ATP. 

ATPase activity of CeO2 NPs was quantified by measuring phosphate released with EnzCheck® 
phosphate assay using varying concentrations of ATP with 34 μg/mL NPs. (A) CNP2 (B) HMT-
CNP1 (E) CNP1. Line plot is representative of 3 or more experiments. Double reciprocal plots of 
ATPase activity of (C) CNP2 and (D) HMT-CNP1, with ATP as substrate while keeping constant 
the concentration of NPs (34 μg/mL).  
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Figure 24: CNP-HMT1 do not exhibit the ·NO scavenging, SOD mimetic or catalase mimetic of 
CNP1 and CNP2. 

A&B) Fluorescence emission was monitored at 530 nm upon excitation at 503 nm in the 
presence of the ∙NO generator, 100 μM DEA/NO (Dowding et.al., ChemComm2012). A) 
Scavenging of ·NO in presence of HMT-CNP1 at concentrations indicated. B) Scavenging of ·NO 
in the presence of 100 μM Glutathione (GSH). C) Ferricytochrome C reduction was followed 
spectroscopically by measuring increase in absorbance at 550 nm (Korvics et. al., ChemComm 
2007). SOD = superoxide dismutase. D&E) Hydrogen peroxide concentration was followed by 
changes in absorbance of the reaction monitoring absorbance at 240 nm (Pirmohamed et. al., 
ChemComm 2010). D) Reduction of H2O2 concentration in the presence of HMT-CNP1.  E) 
Reduction of H2O2 concentration in the presence of CNP2. Graphs are representative of 3 or 
more experiments.  
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Table 2: Synthesis method determines surface character and catalytic activities of CeO2 NPs. 

Catalytic 
activity 

Assay CNP1 CNP2 HMT-
CNP1 

SiO
2
 

Phosphatase pNPP no yes yes no 
ATPase 
  

Malachite Green no yes yes no  
ENZCheck no yes yes n/d  

·NO 
Scavenger 

CuFl assay no  (68) yes (68) no no (68) 

Catalase 
Mimetic 

UV-visible no (177) yes (177) no no 

SOD Mimetic Cytochrome C yes (56) no (56) no no 
Various properties of CeO2 NPs have been tested for their ability to exhibit SOD mimetic, 
catalase mimetic, ·NO scavenging, phosphatase or ATPase activities.  
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Supplementary Figure 1: Size, shape, and morphology variation of Cerium Oxide 
Nanoparticles (CeO2) NPs synthesized by two different synthesis methods. 

TEM images of CeO2 NPs prepared using water-based (A & B) or solvent HMT (C – E) synthesis 
methods.  A) CNP1. B) CNP2. C) HMT-CNP1. D) HMT-CNP2. E) HMT-CNP3.  
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Supplementary Figure 2: Physico-chemical properties of cerium oxide nanoparticles (CeO2) 
prepared by water-based or HMT-based method. 

 

 

Particle

Characteristics CNP1 CNP2 HMT-CNP1 HMT-CNP2 HMT-CNP3

Morphology round round polygonal polygonal round

Crystalline property crystalline 

fluorite 

structure

crystalline 

fluorite 

structure

crystalline 

fluorite 

structure

crystalline 

fluorite 

structure

crystalline 

fluorite 

structure

Size (TEM)

(nm)

3-5 5-8 10-15 10-15 8-10

Hydrodynamic radii 

(nm)

30.84 ±2.8 69.26 ±4.5 147.70  ±6.4 83.56 ±3.2 129.20 ±4.1

Zeta potential 

(mV)

18.6 ±0.6 30.2 ±1.5 34.6 ±1.7 38.6 ±2.3 36.7 ±2.1

Hexamethyltetramine

(% wt)

- - 1.68 ±0.2 8.16 ±0.7 1.78 0.3

Surface Ce3+/Ce4+

ratio

1.28 0.37 0.37 0.36 0.32

BET 

(m2/g)

92 102 86 71 118
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