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ABSTRACT 
 
 

In many criminal investigations, valuable information regarding the physical 

appearance of suspected perpetrators or the time and order of events that transpired are 

provided by eyewitness accounts. However, the information obtained from eyewitnesses 

is often constrained by human recollection or subjective accounts and provides a biased 

description of the perpetrator’s appearance or an inaccurate time line of events. 

Additionally, in numerous situations eyewitness accounts may not be available. An 

increasing reliance therefore is placed on the biological evidence recovered during 

criminal investigations to act as a silent witness, providing unbiased and scientific 

information that may aid in the resolution of criminal investigations. While the current 

capabilities of operational forensic crime laboratories include analytical methods to allow 

for a determination of the origin of a biological stain and for the recovery of a genetic 

profile of the donor, the sensitivity of such methods is not always sufficient to 

accommodate the limited amounts of biological material often recovered in forensic 

casework, Therefore, it is critical that continual advancements in the analysis of low 

template samples be made. In this report, we have sought to identify novel protein, RNA 

and DNA biomarkers that, in combination with enhanced profiling strategies, would 

allow for a determination of the time since deposition, the body fluid of origin and the 

genetic profile of the donor (“genetic eyewitness”) of forensic low template specimens. 

 First, we have developed a novel strategy for the determination of the time since 

deposition of dried bloodstains using spectrophotometric analysis of hemoglobin. An 

examination of the Soret band (λmax = 414nm) in aged bloodstains has revealed a 
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previously unidentified hypsochromic shift as the age of the stain increases. The extent of 

this shift permits a distinction to be made between stains that differ in age by only 

minutes, hours, days and months thus providing the highest resolution of any previously 

developed method. We also demonstrate that it may be possible to utilize a decline in 

enzyme activity to determine the age of a forensic biological stain. Second, we 

demonstrate that the differential expression of a panel of nine miRNAs allows for the 

identification of the body fluid origin of forensic biological stains using as little as 50pg 

of total RNA. This is the highest reported sensitivity of any RNA-based approach and 

this assay has demonstrated a high degree of specificity for each body fluid tested. The 

final task of this work was to identify novel DNA biomarkers and to develop enhanced 

profiling strategies to allow for greater sensitivity and reliability in the genetic profiling 

of low template samples. We demonstrate that the use of laser capture micro-dissection 

and enhanced amplification strategies resulted in the ability to obtain genetic profiles 

from as few as  2-5 epithelial cells and 5-10 sperm cells with greater reproducibility than 

previously reported studies. The use of a novel whole genome amplification method 

provided the ability to not only increase the quantity of genetic material obtained from 

micro-dissected cells but also the ability to recover additional genetic information from 

individual samples using novel DNA biomarkers.  

 The novel biomarkers and profiling strategies described in this report provide the 

basis for the establishment of a molecular “genetic eyewitness” from low template 

forensic samples and demonstrate the future potential for routine and reliable analysis of 

trace amounts of genetic material recovered from low template biological evidence.  
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CHAPTER ONE: INTRODUCTION 

 
 

In many criminal investigations, valuable information regarding the physical 

appearance of suspected perpetrators or the time and order of events that transpired are 

provided by eyewitness accounts. However, the information obtained from eyewitnesses 

is often constrained by human recollection or subjective accounts and provides a biased 

description of the perpetrator’s appearance or an inaccurate time line of events. 

Additionally, in numerous situations eyewitness accounts may not be available. An 

increasing reliance therefore is placed on the biological evidence recovered during 

criminal investigations to act as a silent witness, providing unbiased and scientific 

information that may aid in the resolution of criminal investigations. While the current 

capabilities of operational forensic crime laboratories include analytical methods to allow 

for a determination of the origin of a biological stain and for the recovery of a genetic 

profile of the donor, the sensitivity of such methods is not always sufficient to 

accommodate the limited amounts of biological material, or low template samples, often 

recovered in forensic casework.  

Low template samples are those containing less than 100pg of template DNA, 

which is equivalent to approximately 15 diploid or 30 haploid cells. Low template sample 

analysis (typically referring only to the recovery of DNA profiles) is often not possible 

due to the sensitivity limits of the analytical techniques currently used by operational 

crime laboratories. The frequency of occurrence of low template samples in forensic 

casework therefore necessitates continual advancements in the strategies used to analyze 
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such samples. However, these advancements should not only be limited to the recovery 

of genetic profiles, but should include improved methodologies to recover other probative 

information from these samples as well. The aim of this work was to identify novel 

macromolecular biomarkers and to develop enhanced profiling strategies to establish a 

molecular “genetic eyewitness” from low template forensic samples. This “genetic 

eyewitness” ideally would be able to provide a determination of the time since deposition 

of biological stains, an identification of the body fluid of origin of biological stains, and 

an identification of the donor’s genetic profile with greater reliability and discrimination.  

The determination of the time since deposition of biological stains remains an 

unsolved problem in forensic casework. Currently, no reliable and accurate methods to 

determine the age of a stain have been developed for standard samples and certainly not 

for low template samples. Early TSD methods for bloodstains focused on the molecular 

changes to hemoglobin that occur over time such as oxidation and degradation of the 

protein chains [1-5]. One example of such a method reported the use of HPLC 

chromatography to measure the of α-chain:heme ratio in ageing stains [2]. With this 

method, a linear decrease in the α-chain area/heme area was observed, on a logarithmic 

scale, as stain age increased. In a subsequent study, a peak designated as “X” was 

detected only in aged stains, and the area of this peak increased as the age of the stain 

increased [3]. Various other studies have utilized HPLC analysis of hemoglobin to 

determine the age of bloodstains [1,5]. While these studies demonstrated a crude linear 

relationship between the age of a stain and the degradation of hemoglobin, the reported 

methods possess limited resolution for TSD estimates. Several previous methods have 
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been proposed that utilize changes in the characteristic α and β bands (~540 and 576nm 

respectively) of the visible spectral profile of hemoglobin or involve an assessment of 

potential mRNA degradation products in aged bloodstains. However, these 

methodologies have failed to gain widespread acceptance due to poor analytical 

sensitivity (large sample consumption) and inadequate resolution between different stain 

ages (often requiring years difference in age). Two recent studies involving attempts to 

determine approximate age of biological stains have examined RNA degradation, using 

both mRNA and rRNA [6,7]. The first utilized semi-quantitative duplex and competitive 

RT-PCR methods to estimate the approximate age of bloodstains based on the 

assumption that degradation to mRNA occurs from the 5’end and that the degradation of 

two housekeeping genes is different over time [7].  However, the authors did not adduce 

any evidence that mRNA in biological stains degrades in this manner and, in any case, 

the resolution afforded by these methods was too low (5 years) to be of forensic use [7].  

The other RNA study examined ratios of β-actin mRNA and 18S rRNA as a function of 

time using real-time PCR and demonstrated a linear relationship over time [6]. However, 

this study produced low-resolution time estimates (approximately 30 days) and did not 

take into account differing environmental conditions [6]. Based on the results of these 

studies, it is evident that novel strategies are needed in order to obtain higher-resolution 

and accurate time-since-deposition determinations. Therefore, the first aim of this work 

was to determine if novel protein biomarkers could be identified to allow for a 

determination of the time since deposition of low template forensic biological evidence.  
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 Another aspect of the analysis of forensic biological evidence that needs 

improvement in order to be able to accommodate low template samples is body fluid 

identification. In the past, standard practice in forensic casework analysis typically 

included a preliminary screening of evidentiary items recovered during the investigation 

of criminal offenses in order to identify the presence, and possible tissue origin, of 

biological material. The presence of biological material such as blood, semen and saliva 

stains can indicate the location of potential sources of DNA that, once recovered, could 

be used to identify the donor of the biological material. Typically, conventional methods 

for body fluid stain analysis are carried out in a serial manner, with a portion of the stain 

being tested for only one body fluid at a time. Frequently multiple tests are required to 

first presumptively identify the presence of biological fluids followed by additional 

testing in order to confirm the presence of the fluid or identify the species of origin. 

Therefore these methods are costly not only in the time and labor required for their 

completion, but also in terms of the amount of sample consumed during the performance 

of each assay. While these conventional methods can confirm the presence of human 

blood and semen, none of the routinely used serological and immunological tests can 

definitely identify the presence of human saliva or vaginal secretions. With the large 

volume of cases that operational crime laboratories are faced with processing every year, 

a significant amount of the total time spent on an individual case can be devoted solely to 

the screening of evidentiary items for the presence of biological materials. The inability 

to positively confirm the presence of certain biological fluids, the consumption of 

valuable samples and the time and labor required has resulted in a trend to bypass 
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conventional body fluid identification methods and proceed straight to the analysis of 

DNA present in forensic samples. After all, it is argued, the recovery of human DNA 

from evidentiary items would directly indicate the presence of human biological material 

and thereby eliminate the need for conventional body fluid testing.  

 There are several disadvantages to bypassing the body fluid identification step 

during bio-molecular forensic analysis. First, the analytical methods used to analyze 

DNA are considerably more expensive that basic serological testing. Therefore the use of 

DNA analysis as a means to identify the presence of human biological material may not 

be justifiable from a budgetary standpoint. Additionally, a smaller number of samplings 

from an individual piece of evidence may be collected in an attempt to reduce the 

associated cost of analysis. Critical evidence may be missed using this type of approach 

that might have been identified using a larger preliminary screen with basic serological 

methods. A second disadvantage of the disuse of body fluid identification methods is that 

often the identification of the biological material present is crucial to the investigation 

and prosecution of the case.  For example, consider a sexual assault of a child with a step 

father suspect where the step-father’s DNA profile was recovered from samples taken 

from the child’s underwear and bedding. The step-father could argue that the source of 

the DNA was from his skin cells deposited from casual and frequent contact with the 

child’s clothing and bedding. However, the finding that his DNA originated from a 

semen stain and not skin cells would be more problematic for him to explain away and 

would more strongly support the allegation of a sexual assault.  Another example of a 

case demonstrating the importance of identifying the body fluid could be that DNA from 
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a sexual assault victim is found in a suspect’s vehicle and the suspect claims it was 

present due to casual contact since the victim had ridden in his car numerous times. 

However, the significance of this evidence would increase if the source of the DNA could 

be shown instead to originate from the victim’s vaginal secretions, a circumstance which 

would be more difficult to attribute to casual contact as opposed to a sexual assault. A 

final example of the importance of determining the body fluid of origin involves the 

presence of blood in a sexual assault case. If blood is present in the vaginal canal, it needs 

to be proven that the blood is venous blood resulting from trauma rather than menstrual 

blood originating from a victim’s regular menstrual cycle. In this instance, it is necessary 

to make a distinction between menstrual blood and venous blood which cannot be 

accomplished using conventional methods.   

   The routine use of body fluid identification methods prior to DNA analysis awaits 

the development of suitable molecular genetics based methods that are fully compatible 

with the current DNA analysis pipeline.  In order for any new body fluid assay to be 

suitable for forensic casework it must demonstrate a high degree of specificity for each 

body fluid, permit parallel analysis of the different biological fluids, be completed in a 

timely and labor efficient manner and must be sufficiently sensitive. Messenger RNA 

(mRNA) profiling of tissue specific gene transcripts with forensic samples for the 

identification of body fluids has recently been reported and appears to satisfy most of 

these criteria [8-10].    

The mRNA in aged and compromised dried appears to be sufficiently stable for 

forensic analysis [11].  However, as with DNA, heat and humidity is detrimental to RNA 



 7

stability and results in a time dependent fragmentation of the polynucleotide chain [11]. 

Typically forensic assays employ some biomarkers whose amplicon sizes are > 250 bases  

which results in amplification failure when highly degraded samples are encountered 

[12]. Thus reduced size amplicons for STR and mitochondrial DNA profiling methods 

are being increasingly used for the analysis of degraded samples [13-22].  Similarly 

smaller amplicons could be designed for use in mRNA based forensic assays although 

they may present additional technical assay design challenges because of the need to 

ensure that contaminating genomic DNA does not confound the analyses.  In theory, 

another way to reduce the amplicon size would be to employ short RNA biomarkers in 

stead of mRNA.  Recently, there has been an explosion on interest in a class of small 

non-coding RNAs, microRNAs, whose regulatory functions in various developmental 

and biological processes have been identified [23-40]. The role of miRNAs in various 

cancers and diseases are also being evaluated [41-52]. Several studies have examined the 

relative abundance of miRNAs in human tissue with numerous miRNAs reported to be 

tissue-specific [53-63]. However, as yet no studies have described miRNA expression in 

forensically-relevant, dried biological fluids (blood, semen, saliva, vaginal secretions and 

menstrual blood). In theory, it should be possible to identify miRNAs that, due to their 

differential tissue expression, could be used to identify the body fluid origin of forensic 

biological stains with a high degree of sensitivity and specificity and thus ideally suited 

for low template samples. Therefore, the second aim was to determine if miRNA 

expression assays could be used to determine the body fluid source of forensic low 

template samples.  
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The determination of the genetic profile of the donor of low template or low copy 

number (LCN) samples is a current challenge facing operational crime laboratories. 

Currently, no methods that allow for sufficient reproducibility and ease of interpretation 

are available for use in forensic casework. Since only a small number of cells are present 

in LCN samples, recovery of genetic profiles is difficult using standard STR methods and 

often results in total failure or recovery of a partial profile.  Hence LCN methods have 

been developed (based upon increasing the PCR cycle number (ICN) to increase allelic 

signal intensity) to permit profile recovery from limited quantity samples.  Interpretation 

of the data obtained from these LCN analyzed samples requires novel considerations [64-

66]. The occurrence of allelic drop-out or drop-in is significantly higher in LCN samples 

due to stochastic effects, and can result in false homozygous classifications and in false 

heterozygous classifications, respectively.  Additionally, LCN samples exhibit significant 

peak height imbalance and are more susceptible to interference from contamination.  The 

frequency of LCN samples in forensic casework warrants development of additional 

methodologies to ICN that allow for more successful recovery of genetic information. 

 While it has been demonstrated that single cells can be isolated from certain tissue 

samples with micro-dissection techniques, the ability to consistently recover a DNA 

profile from single cells has not been demonstrated [67-74]. Most work done with single 

cells has involved the use of tumor cells, and the analysis of these cells is limited has 

normally been limited to one genetic marker. The success of recovery of genetic profiles 

from these single cells is often not consistent. No studies have demonstrated the ability to 
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consistently recover full autosomal STR profiles from single cell samples, which is the 

routine method of DNA analysis in forensic casework [68].  

In an attempt to increase the recovery of DNA profiles from LCN samples, the 

use of increased cycle number has been suggested, with the assumption that sufficient 

amounts of the amplified product would be produced to allow for detection and analysis 

[6]. However, this method may not always be efficient, with additional cycles at high 

temperatures leading to a decrease in inefficiency of Taq DNA polymerase [75]. This 

results in less amplified product being produced, unless the process is halted for fresh 

enzyme to be added before the additional cycles. However, no studies have demonstrated 

successful analysis of single cells using only increased cycle number. Another approach 

to the analysis of LCN samples utilizes whole genome amplification (WGA) strategies, 

including primer extension pre-amplification (PEP), degenerate oligonucleotide-primed 

PCR (DOP) and multiple displacement amplification (MDA) [69,76-88].  These WGA 

methods employ various random-sequence primers with typically low stringency 

annealing conditions to amplify large tracts of the genome in an attempt to increase the 

effective number of starting templates prior to any downstream analysis. By pre-

amplifying the limited amount of genetic material in the sample, sufficient quantities of 

template theoretically can be produced to overcome stochastic effects resulting from low 

copy number templates. However, few studies have demonstrated the suitability of these 

WGA methods for use with forensic casework samples [89-92]. The application of these 

WGA methods to cells isolated using laser capture micro-dissection techniques has also 

not been widely examined [93]. Therefore, it is evident that it may be possible to improve 
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low template sample analysis with additional research efforts. As a result, the final task of 

this work was to identify novel DNA biomarkers and to develop enhanced profiling 

strategies to allow for greater sensitivity and reliability in the genetic profiling of low 

template samples. 

In summary, the overall aim of this work was to identify novel protein, RNA and 

DNA biomarkers that, in combination with enhanced profiling strategies, would allow for 

the development of a “genetic eyewitness” profiling system to provide investigators with 

the who, what and when of forensic low template samples. The “when” or time since 

deposition was accomplished through spectrophotometric analysis of hemoglobin. 

Additionally, we demonstrate that it may be possible to utilize a decline in enzyme 

activity to determine the age of a forensic biological stain. The “what” or identification of 

the body fluid of origin was accomplished by the development of the miRNA profiling 

assays using a panel of nine differentially expressed miRNAs. The “who” or 

determination of the genetic profile of the donor of low template samples was achieved 

using laser capture micro-dissection and enhanced amplification strategies. Collectively, 

our findings constitute the basis for the establishment of a molecular “genetic 

eyewitness” from low template forensic samples. 
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CHAPTER TWO: RESEARCH DESIGN AND METHODOLOGY 

 

Preparation of Body Fluid Stains  

 

General 
 
 
 Body fluids were collected from volunteers using procedures approved by the 

University of Central Florida’s Institutional Review Board.  Informed written consent 

was obtained from each donor. Blood samples were collected by venipuncture into 

additive-free vacutainers and 50 μl aliquots were placed onto cotton cloth and dried at 

room temperature. Blood samples from 12 non-primate animal species (dog, cat, horse, 

crane, cow, sheep, coyote, tortoise, lamb, Patagonian cavy, ferret, deer) and 10 primate 

species (spider monkey, rhesus macaque, pig-tailed macaque, brown lemur, chimpanzee, 

baboon, howler monkey, cynomolgous monkey, African green monkey, and spot-nosed 

guenon) were obtained from various sources: Tuscawilla Oaks Animal Hospital, Oviedo, 

FL (dog, cat); HemoStat Laboratories, Dixen, CA (sheep, cow, horse); Central Florida 

Zoo, Sanford, FL (brown lemur, howler monkey, spot-nosed guenon); Brevard Zoo, 

Melbourne, FL  (crane, coyote, tortoise, lamb, Patagonian cavy, spider monkey, rhesus 

macaque, pig-tailed macaque); donation from laboratory members (coyote, deer); West 

End Animal Hospital, Gainesville, FL (ferret). Liquid blood samples from African green 

monkey, cynomolgus monkey, baboon and chimpanzee were obtained from 
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Bioreclamation, Inc. (Westbury, NY). For all blood samples, fifty microliter aliquots 

were placed on cotton cloth and dried overnight at room temperature.  

 Freshly ejaculated semen was provided in sealed plastic tubes and stored frozen 

until they were dried onto sterile cotton swabs. Saliva samples were provided in sealed 

plastic tubes and stored frozen until they were dried onto sterile cotton swabs. Buccal 

samples were collected from donors using sterile swabs by swabbing the inside of the 

donor’s mouth. Saliva samples from two cats and two dogs were collected by swabbing 

the inside of the animal’s mouth using sterile cotton swabs. A primate saliva sample 

(spot-nosed guenon) was obtained by donation from the Central Florida Zoo (Sanford, 

FL). Semen-free vaginal secretions and menstrual blood were collected using sterile 

cotton swabs. 

 

Preparation of Bloodstains (Time Since Deposition) 
 
 
 Blood samples were collected by venipuncture into additive-free vacutainers and 

50 μl aliquots were placed onto non-sterile cotton cloth The bloodstains were stored at 

various temperatures (22oC, 30oC, 37oC) and humidity levels (50%, 75%, 80%, 85%, 

90%) for varying lengths of time (15 minutes, 30 minutes, 1 hour, 3 hours, 6 hours, 12-18 

hours, 24 hours, 48 hours, 1 week, 1 month, 3 months, 6 months, 1 year, and 2 years). All 

bloodstains were collected at the desired time intervals, placed in a sealed plastic bag and 

stored at -47oC until needed. Experiments were conducted either in the laboratory (22oC, 

50% humidity) protected from light, in incubators (specified temperatures, 50% 
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humidity), or in a MicroClimate® Humidity Chamber MCH-3 (Cincinnati Sub-Zero, 

Cincinnati, OH).  

 

Environmental Samples (Time Since Deposition) 
 
 

50 μl aliquots of human blood were dried onto non-sterile cotton cloth. The 

samples were placed inside a glass tank to protect them from rain with a vented bottom to 

allow for free air-flow into the tank. The samples were placed on a roof top to allow for 

direct exposure to sunlight for various lengths of time including 15 minutes, 30 minutes, 

1 hour, 3 hours, 6 hours, 18 hours, 24 hours, 48 hours, and 1 week. Upon collection, all 

samples were placed into sealed plastic bags and stored at -47oC until needed.  

 

Environmental Samples (miRNA) 
 
 

50 μl aliquots of human blood, semen and saliva were dried onto cotton cloth. 

Vaginal secretion samples were collected using sterile cotton swabs. These samples were 

exposed to different environmental conditions including various temperatures and 

environmental influences including humidity and rain. The environmental conditions 

were as follows: (i) room temperature storage (22oC), (ii) 37oC storage, (iii) outside 

covered (OC) – exposed to heat, light and humidity, and (iv) outside uncovered (OUC) – 

exposed to heat, light, humidity and rain.  Samples from all sets of conditions were 

collected at varying lengths of time and the following samples were used in the present 
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study: room temperature (1 year, 18 months-2 years), 37oC (3 months, 6 months), OC (3 

days, 7 days, 1 month), and OUC (1 day, 3 days, and 7 days). Temperature ranges, 

humidity levels, and amount of rain were recorded for the samples placed in outside 

conditions.   

 

Menstrual Cycle Samples (miRNA) 
 
 

Two female individuals donated vaginal swabs over the course of a 28-day period. 

Females at two different life stages participated in the study, one experiencing 

menstruation at regular intervals and one in perimenopause. Participants were asked to 

collect a single semen-free vaginal swab during each day of the study, with the first day 

of collection starting on the first day of menstruation if applicable.  

 

Multiple Source Samples (miRNA) 
 
 

 Five-donor pooled samples were used for the initial miRNA screening in 

forensically relevant fluids. Total RNA from each individual sample was extracted and 

quantitated as described above. Equal quantities of total RNA from each donor were 

combined in order to produce a 1ng/μl pooled sample for blood, saliva, vaginal secretions 

and menstrual blood, and a 5ng/ μl pooled sample for semen. A 1μl aliquot of each 

pooled sample was used in the reverse transcription assay.  
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 Admixed body fluid samples (blood-semen, blood-saliva, blood-vaginal 

secretions, semen-saliva, semen-vaginal secretions and saliva-vaginal secretions) were 

created by combining two different body fluid stains or swabs (50 μl stain for blood, 

semen and saliva, or a single vaginal secretion swab) in the same tube. Total RNA was 

extracted as described above.  

 

Tissue Samples (miRNA) 
 
 
 Total RNA from 20 human tissues (adipose, bladder, brain, cervix, colon, 

esophagus, heart, kidney, liver, lung, ovary, placenta, prostate, skeletal muscle, small 

intestine, spleen, testes, thymus, thyroid, and trachea) included in the FirstChoice® 

Human Total RNA Survey Panel was obtained from Applied Biosystems/Ambion 

(Austin, TX). All tissues included in the panel were 3-donor pooled samples and were 

certified to contain small RNAs including miRNAs and snRNAs. Total RNA from 

human skin was obtained from Biochain Institute, Inc (Hayward, CA).  

 

Mock Casework Samples (miRNA) 
 
 
 Swabs of a beverage container lid (plastic coffee cup lid, water bottle) using a 

sterile cotton swab were collected after being deposited by volunteers. Saliva from a male 

donor was deposited onto the skin of a female donor. After the saliva was allowed to dry, 

the skin was swabbed using a sterile cotton swab. Portions of the outer wrapping of used 
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cigarette butts (collected from a male and female donor) were removed for extraction. 

Total RNA was extracted as described above.  

 An adhesive bandage that was used to cover a small cut on a donor’s finger was 

obtained. The cotton pad in the center of the bandage had a reddish-brown appearance. 

The entire cotton pad was removed from the bandage for extraction. Total RNA was 

extracted as described above. 

 A post-coital sample was obtained from a female volunteer who recovered the 

sample 18 hours post-coitus. A swabbing of both the vaginal canal and the cervicovaginal 

region was collected. The volunteer was instructed to take the cervicovaginal swab by 

brushing the cervix multiple times for at least thirty seconds. To insure that residual 

semen from prior encounters were not present, a pre-coital cervicovaginal swab was also 

obtained before coitus commenced but after an abstinence period of seven days. 

 

Laser Capture Micro-dissection Slide Preparation  

 
 
 Body fluid swabs were removed from storage at -47oC and allowed to sit at room 

temperature for at least 15 minutes prior to preparation of the cell suspension. A 1.5mL 

microcentrifuge tube was filled with 1X PBS and a Spin-Ease extract basket was added. 

The body fluid swab was placed in the liquid within the basket and agitated in order to 

collect the cells. The tubes were centrifuged for 5 min at 13,000rpm in order to pellet the 

cells. The PBS was then removed using a plastic transfer pipet and approximately 500μl 

of fresh PBS was added. The cell pellet was agitated until the pellet was disrupted until 
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an even cell distribution was achieved. The cell suspension was then heat fixed onto a 

clean glass slide (for use with the Arcturus PixCell II system) or onto a proprietary 

membrane slide (for use with the Leica LMD system). The heat fixation involved 

placement of the slides onto a heat plate (low heat setting) for approximately 3-5 minutes.  

 

Cell staining 

 

Christmas Tree Stain (Nuclear Fast Red/Picroindigocarmine) 
 
 
 The nuclear fast red solution was prepared by dissolving 2.5g of aluminum sulfate 

in 100mL of warm water. Fifty milligrams of nuclear fast red was then added to the 

solution. The solution was filtered into amber bottles. The picroindigocarmine solution 

was prepared by dissolving 1g of indigocarmine in 300mL of picric acid. The solution 

was dispensed into small amber bottles. For slides prepared using the Christmas Tree 

stain, the entire sample area was covered with the nuclear fast red solution for 15 

minutes. Excess stain was removed by gentle flooding with deionized water. The sample 

area was then covered with the picroindigocarmine solution for 10 seconds. Excess stain 

was removed by gentle flooding with room temperature absolute ethanol.  
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Hematoxylin and Eosin (H&E) 
 
 
 The components for the Harris Hematoxylin/Eosin stain were obtained from a 

commercial source (Sigma-Aldrich). For slides prepared using the H&E stain, the entire 

sample area was covered with the Harris hematoxylin solution for 1.5 minutes. Excess 

stain was removed by gentle flooding with deionized water. The sample area was then 

covered with Eosin for 30 sec. Excess stain was removed by gentle flooding with 

deionized water.  

 

Leica LMD Slides 
 
 
 Upon completion of the staining procedures described above, slides prepared for 

use with the Leica LMD system were then dried at room temperature and then placed in 

slide storage boxes for storage at 4oC.  

 

Arcturus PixCell II Slides 
 
 
 The presence of moisture on slides to be used with the Arcturus PixCell II system 

would result in failure of the instrument to remove cells from the glass slide. Therefore 

additional processing of these slides was required during the staining procedures describe 

above in order to remove any moisture. After slide preparation but prior to staining, the 

specimen slide was placed in a glass jar containing approximately 25mL of 75% ethanol 

for 30 seconds. It was then transferred to a glass jar containing 25mL of deionized water 
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for 30 seconds. The procedure for staining with the Christmas Tree stain or the H&E 

stain was then performed as described above. The slide was then transferred to a glass jar 

containing 25mL of deionized water. The slide was then transferred to glass jars 

containing 25mL of ethanol (75%, 95%, and 100%) for 30 seconds each. The slide was 

then transferred to a glass jar containing 25mL of xylene for 5 minutes (performed in a 

fume hood). The slide was allowed to air dry at room temperature and was stored in a 

dessicator at room temperature. Prior to use, if the slide had acquired any moisture the 

dehydration steps were repeated.   

 

Laser Capture Micro-dissection 

 

Leica LMD System 
 
 
 0.2ml flat-capped PCR tubes were inserted into the four tube holder positions. 

Ten microliters of lysis buffer were added to the cap of each tube. The tube holder was 

placed in position underneath the stage. The specimen slide was placed face down in the 

slide holder and placed on the instrument. The specimen was brought into focus and the 

laser power and speed and specimen balance were adjusted. Epithelial cells were 

collected using a 40x objective (400x magnification) using the following laser settings: 

power – 33, speed – 8, specimen balance – 28. Sperm cells were collected using a 63x 

objective (630x magnification) using the following laser settings: power – 30, speed – 8, 

specimen balance – 25.  
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Arcturus PixCell II System 
 
 
 The specimen slide was placed on the microscope stage and help in position by 

the use of the small vacuum on the stage. The area of interest was brought into view 

using a joystick. The laser power and pulse duration were adjusted to ensure optimal laser 

settings. A CapSure® HS LCM cap (Molecular Devices, Sunnyvale, CA) was placed onto 

of the specimen slide. The appropriate number of cells was collected onto the cap. Once 

all cells were collected, the cap was lifted and placed onto a clean slide to ensure that the 

cells had been lifted from the specimen slide. The cap was then inverted and placed into a 

sample tray. An ExtracSureTM device (Molecular Devices) was placed over the cap and 

lysis buffer was added. A 0.5mL thin walled reaction tube was placed over the 

ExtracSureTM device. The entire sample tray was covered with a pre-heated heat block 

and the sample tray then placed in an incubator for lysis.   

 

Extraction  

 

DNA – Organic Extraction 
 
 
 DNA was extracted using a standard phenol: chloroform method [94]. Stains or 

swabs were cut into small pieces and placed into a Spin-Ease tube (Gibco-BRL, Grand 

Island NY).  The tubes were incubated overnight in a 56oC water bath using 400 μl DNA 

Extraction Buffer (100mM NaCl, 10mM Tris-HCl, pH 8.0, 25mM EDTA, 0.5% SDS), 
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0.1mg/mL Proteinase K, and 10% 0.39 M DTT (added to semen containing samples).  

After the overnight incubation, swab or stain fabric was placed into a Spin-Ease basket, 

the basket inserted back into the original tube, and the samples centrifuged at 14,000 rpm 

for 5 minutes to remove the absorbed fluid from the swab material. A volume of 

phenol/chloroform/isoamyl alcohol equal to the volume of the crude extract was added 

and vigorously intermixed by shaking.  The aqueous layer, containing the DNA, was 

removed. Precipitation of the DNA was accomplished by the addition of cold absolute 

ethanol (two and a half times the volume of the aqueous layer extract) and allowed to 

progress overnight at –20oC.  The DNA was pelleted by centrifugation, washed once 

using 70% ethanol and re-solubilized with 100 μl of TE-4 (10 mM Tris-HCl, 0.1 mM 

EDTA, pH 7.5) overnight at 56oC. 

 

DNA - Direct Lysis 
 
 
 Direct lysis of micro-dissected cells was performed using a modified 

commercially available lysis buffer (Quick Extract, Epicenter). The Quick Extract lysis 

solution was prepared by adding 9μl of Quick Extract buffer and 1μl of 0.39M DTT 

(final concentration 0.039M) per sample. The DTT was made fresh daily. 10μl of lysis 

solution per sample was used for both the Leica and Arcturus systems. For Leica 

samples, the 0.2ml PCR tubes were briefly centrifuged and the lysis performed in a 

thermocycler. For Arcturus samples, the lysis was performed in an incubator. The Quick 

Extract lysis protocol is as follows: 65oC for 6 minutes, 98oC for 2 minutes.  
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RNA  
 
 

 Total RNA was extracted from blood, semen, saliva, vaginal secretions and 

menstrual blood with guanidine isothiocyanate-phenol:chloroform and precipitated with 

isopropanol [95]. Briefly, 500 μl of pre-heated (56oC for 10 minutes) denaturing solution 

(4M guanidine isothiocyanate, 0.02M sodium citrate, 0.5% sarkosyl, 0.1M β-

mercaptoethanol) was added to a 1.5mL Safe Lock tube extraction tube (Eppendorf, 

Westbury, NY) containing the stain or swab. The samples were incubated at 56oC for 30 

minutes. The swab or stain pieces were then placed into a DNA IQTM spin basket 

(Promega, Madison, WI), re-inserted back into the original extraction tube, and 

centrifuged at 14,000 rpm (16,000 x g) for 5 minutes. After centrifugation, the basket 

with swab/stain pieces was discarded. To each extract the following was added: 50 μl 2 

M sodium acetate and 600 μl acid phenol:chloroform (5:1), pH 4.5 (Applied 

Biosystems/Ambion). The samples were placed at 4oC for 30 minutes to separate the 

layers and then centrifuged for 20 minutes at 14,000 rpm (16,000 x g). The RNA-

containing top aqueous layer was transferred to a new 1.5ml microcentrifuge tube, to 

which 2 μl of GlycoBlueTM glycogen carrier (Applied Biosystems/Ambion) and 500 μl of 

isopropanol were added. RNA was precipitated for 1 hour at -20oC. The extracts were 

then centrifuged at 14,000 rpm (16,000 x g). The supernatant was removed and the pellet 

was washed with 900 μl of 75% ethanol/25% DEPC-treated water. Following a 

centrifugation for 10 minutes at 14,000 rpm (16,000 x g), the supernatant was removed 

and the pellet dried using vacuum centrifugation (56oC) for 3 minutes. Twenty 
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microliters of pre-heated (60oC for 5 minutes) RNAsecureTM solution (Applied 

Biosystems/Ambion) was added to each sample followed by an incubation at 60oC for 10 

minutes. Samples were used immediately or stored at -20oC until needed.  

 

DNase I digestion 
 
 

 Six units of TURBOTM DNase I (2U/μl) (Applied Biosystems/Ambion, Inc.) and 

2.2 μl of Turbo DNase I Buffer (10X) were added to each RNA extract and incubated at 

37oC for 1 hour. The DNase was inactivated at 75oC for 10 minutes. The samples were 

used immediately or stored at -20oC until needed. Alternatively, DNase digestion was 

performed using the Turbo DNA-freeTM kit (Applied Biosystems/Ambion) according to 

the manufacturer’s protocol.  

 

Protein  
 
 

 Approximately half of a 60 μl bloodstain was placed in a 1.5mL microcentrifuge 

tube with 750 μl of 0.2M Tris-HCl, pH 8.0. The samples were allowed to extract 

overnight at room temperature (protected from light). After the overnight incubation, the 

stain pieces were placed in a spin basket and the samples were centrifuged at 14,000 rpm 

(16,000 x g) for 3 minutes. The stain pieces and basket were then discarded. All extracts 

were stored at -20oC until needed.  
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Quantitation 

 

DNA 
 
 
 DNA extracts and whole genome amplification products were quantitated with the 

Quantifiler® Human or Quantifiler® Y Human Male Real-Time PCR Quantitation Kits 

(Applied Biosystems, Foster City, CA) according to manufacturer’s recommended 

conditions.  

 

RNA  
 
 

 RNA extracts were quantitated with Quant-iTTM RiboGreen® RNA Kit 

(Invitrogen, Carlsbad, CA) as previously described [8]. Fluorescence was determined 

using a SynergyTM 2 Multi-Mode microplate reader (BioTek Instruments, Inc., Winooski, 

VT).  

 

Protein  
 
 

 All bloodstain extracts were quantitated using the Quant-ItTM Protein Assay Kit 

according to manufacturer’s recommended conditions. The quantitation was performed 

using a Synergy 2 Microplate Reader (BioTek, Winooski, VT). All samples were run in 

duplicate and an average of the two measurements obtained.  
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cDNA Synthesis 

 
 

 For the reverse transcriptase (RT) reaction, the miScript Reverse Transcription 

Kit (Qiagen, Valencia, CA) was used according to manufacturer’s protocols. One 

nanogram of total RNA from blood, semen, vaginal secretions and menstrual blood 

extracts and 5 ng of total RNA from semen extracts were used in the RT reactions. A 

reverse transcription negative reaction (containing total RNA and reaction buffer but no 

reverse transcriptase enzyme mix) was performed for each sample.  

 

Polymerase chain reaction 

 

Autosomal STR Amplification 
 
 
 DNA extracts were amplified with commercially available STR amplification kits 

including AmpFlSTR® Profiler Plus®, COFiler®, MinifilerTM and Identifiler® (Applied 

Biosystems). Amplifications were either performed using standard conditions according 

to manufacturer’s instructions (with the exception of Profiler Plus® and COFiler® where a 

decreased reaction volume to 25 μl and 2X Taq Gold polymerase was used) or using 

increased cycle number (from 28 cycles to 32 or 36) and an alternative polymerase 

(Expand High Fidelity Polymerase, Roche Applied Science, Indianapolis, IN).  
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Y Chromosome STR Amplification 
 
 

 DNA Extracts were amplified with a commercially available Y-STR 

amplification kit (Yfiler® PCR Amplification kit, Applied Biosystems) or using multiplex 

systems developed in our laboratory as previously described [96-100]. 

 

Whole Genome Amplification 
 
 
 The modified improved primer extension pre-amplification method was used to 

pre-amplify DNA extracts and cell lysates as previously described [90]. 

 

Post-PCR Purification 
 
 
 Purification using the Qiagen MinElute columns was performed according to 

manufacturer’s instructions. Ten microliters of product was eluted from the columns and 

the entire 10 μl was used for capillary electrophoresis.  

 

Capillary Electrophoresis 

 
 
 PCR products were detected using the ABI Prism 310 capillary electrophoresis 

system.  A 1.75 μl aliquot of each amplified sample was added to 24 μl Hi-DiTM 

formamide (Applied Biosystems) and 1 μl of GeneScanTM 500 ROXTM or 500 

GeneScanTM 500 LIZTM internal lane standard (Applied Biosystems).  Tubes were heated 
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at 95°C for 3 min and snap cooled on ice for 2 min.  Samples were injected through the 

capillary using the module GS STR POP4 (1ml)F (5s injection, 15 kV, 60°C, run time 28 

min, filter set F) or module GS STR POP4 (1ml)G5 (5s injection, 15 kV, 60oC, run time 

28 min, filter set G5).  An allelic ladder for each amplification kit was run with the 

samples to allow for genotyping. Samples were subject to laser induced fluorescence, and 

analyzed with GeneScan 3.1.2 Software. 

 Alternatively, PCR products were detected using the ABI Prism 3130 capillary 

electrophoresis system.  A 0.75 μl aliquot of each amplified sample was added to 9.7 μl 

Hi-DiTM formamide (Applied Biosystems) and 0.3 μl of GeneScanTM 500 ROXTM or 

GeneScanTM 500 LIZTM internal lane standard (Applied Biosystems).  The 96-well plates 

were heated at 95°C for 3 min and snap cooled on ice for 2 min.  Samples were injected 

through the capillary using the FragmentAnalysis36_POP7_1 module (16s injection, 15 

kV, 60°C, run time 20 min, filter set G5 or F).  An allelic ladder for each amplification 

kit was run with the samples to allow for genotyping. Samples were subject to laser 

induced fluorescence, and analyzed with GeneMapper 3.2 Software. 

 

Real-Time (Quantitative) Polymerase Chain Reaction 

 
 

 Real-time PCR was performed using the Relative Quantitation protocol on an 

ABI Prism 7000 Sequence Detection System (Applied Biosystems). One microliter of the 

1 ng RT-reaction (blood, saliva, vaginal secretions, menstrual blood) and two microliters 

of the 5 ng RT-reaction (semen) were amplified using the miScript SYBR® Green PCR 
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kit and a 10x miScript primer assay (Human miScript Primer Assay Set v1.0, Qiagen) 

according to manufacturer’s protocols, with minor modifications. A reduced reaction 

volume of 25 μl was used as well as an increased number of amplification cycles (from 

35-40 to 50 cycles). Additional snRNA (U6b) and snoRNA (U26, U27, U28, U29, U30, 

U31, U38B, U43, U44, U48 and U90) primer assays for normalization studies were 

obtained from Qiagen.  

 

UV-Visible Spectroscopy 

 

Microplate Reader 
 
 

 UV-Visible spectral profiles were obtained using a Synergy 2 Microplate Reader. 

Spectral data was collected from 200-700nm in 1nm increments. Samples were run in a 

clear, flat-bottomed 96-well reaction plate using 7.5 μg of total protein and brought to a 

final reaction volume of 75 μl per well using 0.2M Tris-HCl, pH 8.0. All spectral data 

was blank corrected using 75 μl of 0.2M Tris-HCl. All data was run in triplicate and an 

average of the data was used in subsequent analysis.  

 

Standard Bench-Top Spectrophotometer 
 
 

 UV-Visible spectral profiles were also obtained using a U-0080D Photodiode 

Array Spectrophotometer (Hitachi, Pleasanton, CA). Spectral data was collected from 
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200-700nm in 1 nm increments using a 5 μl cell (7.5 μg total protein used for analysis). 

All spectral data was blank corrected using 5 μl of 0.2M Tris-HCl. All data was run in 

triplicate and an average of the data was used in subsequent analysis.  

 

Portable “Point-of-Use” Spectrophotometer 
 
 

 UV-Visible spectral profiles were also obtained using the portable 

NanoPhotomerTM (Implen, Inc., c/o LABREPCO, Horsman, PA). Spectral data was 

collected from 350-600nm in 1 nm increments. A 1μl aliquot of the bloodstain extracts 

was added directly to the spectrophotometer for analysis. All data was run in triplicate 

and an average of the data was used in subsequent analysis.  

 

Enzyme Activity Assays (MTT-PMS colorimetric assays) 

 
 

 All assays were run on the Synergy 2 Microplate Reader using a kinetic 

absorbance program: 3 minutes hold, absorbance read: 565mm for 30 minutes in 1 

minute intervals. Each reaction was run in duplicate and the average maximum velocity 

of each reaction was obtained. Two negative controls, including a no-substrate control 

and a no-NAD/NADP control, were run with each assay in order to ensure that the 

measured activity was resulting from the enzyme itself and not other non-specific 

interaction between reaction components. All enzyme assays were performed in 200 μl 

reactions using 3 μg of total protein, 7 mM MTT and 26 mM PMS. The reaction mixtures 
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for each enzyme assay were prepared as follows: Lactate dehydrogenase – 16 mM 

calcium lactate, 15 mM NAD in 0.05M Tris-HCl; Malate dehydrogenase – 100 mM L-

malic acid, 15 mM NAD in 0.1M Tris-HCl; Alcohol dehydrogenase – 60% Absolute 

ethanol, 15 mM NAD in 0.05M Tris-HCl; Glycerate dehydrogenase – 160 mM DL-

Glyceric acid hemicalcium salt hydrate, 15 mM NAD in 0.1M Tris-HCl; 3-

hydroxybutyrate dehydrogenase – 150 mM (±) Sodium 3-hydroxybutyrate, 50 mM 

MgCl2, 300 mM NaCl in 0.1M Tris-HCl; Glucose-6-phosphate dehydrogenase – 16 mM 

D-Glucose 6-phosphate disodium salt hydrate , 25 mM MgCl2, 4 mM NADP in 0.2M 

Tris-HCl; Phosphogluconate dehydrogenase – 24 mM 6-Phosphogluconic acid trisodium 

salt, 30 mM MgCl2, 4 mM NADP in 0.5M Tris-HCl; Isocitrate dehydrogenase – 38 mM 

DL-Isocitric acid trisodium salt, 30 mM MgCl2, 4 mM NADP in 0.5M Tris-HCl; 

Phosphoglucomutase – 30 mM glucose-1-phosphate dipotassium salt hydrate, 2U 

glucose-6-phosphate dehydrogenase, 30 mM MgCl2, 4 mM NADP in 0.05M Tris-HCl; 

Gluconate dehydrogenase – 15 mM 6-phosphogluconic acid, 30 mM MgCl2, 4 mM 

NADP in 0.2M Tris-HCl; L-xyulose reductase – 33 mM xylitol, 4 mM NADP in 0.5M 

Tris-HCl. All reagents used in the enzyme assays were obtained from Sigma-Aldrich (St. 

Louis, MO), except for NADP which was obtained from USB Corporation (Cleveland, 

OH).  
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CHAPTER THREE: RESULTS – TIME SINCE DEPOSITION 

 

Spectral Analysis of Hemoglobin 

 
 

 Initial work to determine the time since deposition of forensic biological stains 

involved an examination of dried bloodstains. The ultra-violet-visible (UV-VIS) 

spectrum of hemoglobin was examined for any possible changes that could serve as 

“molecular estimators” of the time since deposition. A characteristic spectral profile for 

hemoglobin can be seen in Figure 1. A strong absorption peak, known as the Soret band, 

can be observed at approximately 414 nm. Additionally, smaller absorption peaks 

occurring at approximately 576 and 541 nm, known as the α and β peaks respectively, 

can also be observed.   It is the presence of these peaks that provide an indication of the 

presence of blood. These peaks, as well as those found in the UV region of the 

hemoglobin spectrum were examined for possible changes as the age of the bloodstain 

increased.  

Initial studies performed to examine changes in the spectral profiles of hemoglobin 

involved a small number of room temperature bloodstains of different ages (15 minutes, 6 

hours, 24 hours, 1 month, 3 months, 6 months and 1 year). These samples were selected 

since there was a significant difference in their age and would hopefully provide an 

indication of whether visible differences between bloodstains could be observed. Spectral 

profiles from 200-450nm and 500-600nm were obtained because they contained the 

characteristic hemoglobin absorption peaks and it was thought these areas might be of 
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interest. An examination of the UV region (200-400 nm) of the hemoglobin spectral 

profile did not result in the identification of any significant peaks of interest (Figure 2A). 

However, several observations were made regarding the Soret band at ~414 nm (Figure 

2A). A decrease in the Soret band absorption maximum was observed as the age of the 

stain increases, as well as a possible shift in the wavelength where this band occurs 

(Figure 2A). An examination of the remaining portion of the visible hemoglobin 

spectrum, from 500-600nm including the characteristic β541nm and α576nm absorption 

peaks, was also observed in these samples (Figure 2B). As can be seen from these 

spectral profiles, deterioration of the α576nm and β541nm peaks can be observed in stains as 

early as 1 month of age, with a progressive decline of these peaks as the age of the stain 

increases. The peaks are completely unidentifiable in stains one year in age (Figure 2B). 

Additionally, it was thought that the rate of decline of the α576nm and β541nm peaks may 

not occur at the same rate. The absorbance values for the α576nm and β541nm peaks appear 

to be similar for the 15 minutes and 6 hour samples. However, a slight difference in the 

absorbance maxima can be seen starting with the 24 hour sample. It was therefore 

thought that a ratio of the α576nm and β541nm peak absorbance values may also demonstrate 

a correlation with the time since deposition.  

As a result of these initial findings, a set of spectral shift parameters were developed 

in order to further examine possible correlations with the time since deposition (Figure 

3). Five spectral parameters were identified and included: 1) change in the maximum 

absorbance of the Soret band (ΔAbsSoret); 2) change in the wavelength of the λmax for the 

Soret band (ΔλSoret); 3) change in the absorbance of the β541nm band relative to the 
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minimum at 560nm (ΔAbsβ(541-560)); 4) change in the absorbance of the α576nm band 

relative to the minimum at 560nm (ΔAbsα(576-560)); 5) the ratio of absorbance change of 

the α576nm and β541nm bands (ΔAbsβ(541-560)/ ΔAbsα(576-560)).  

Initially, an examination of the parameters involving changes in absorbance values 

for the Soret band and the α576nm and β541nm bands was performed. Previous attempts in 

classic literature to determine the time since deposition using spectroscopic methods 

typically involved changes to the α576nm and β542nm bands. However, in our experiments 

parameters 1, 3, 4 and 5 (ΔAbsSoret, ΔAbsβ(541-560), ΔAbsα(576-560), ΔAbsβ(541-560)/ ΔAbsα(576-

560)) did not provide a reliable correlation with the age of the stain. Figure 4 depicts the 

relationship obtained between the age of the stain and the change in absorbance of the 

β(541-560nm) band. As can be seen from this data, month differences in stain age were 

required before a possible correlation could be developed. The resulting r2 values were 

also < 0.78 with a large standard error for several samples. There was also a large 

separation between the two individuals within each storage condition. Similar results 

were also obtained with the α(576-560nm) peak was examined (Figure 5). The r2 values were 

higher (> 0.80) than those obtained for the β(541-560nm) band. However, month differences 

in stain age were still required. This resolution would not be sufficient for use in forensic 

casework.   

Previous studies had demonstrated a difference in the morphology of the α576nm and 

β541nm bands as the age of the stain increased. Therefore, the final parameter utilizing a 

change in absorbance that was examined was an evaluation of the ratio of the ΔAbs of the 

α576nm and β541nm bands (Figure 6). When a ratio of the two ΔAbs values was used, a 
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stronger correlation with the age of the stain was observed (r2 > 0.94, except for one data 

set whose r2 = 0.87). However, month differences in stain age were still required and 

there was still a significant variation between the two sample sets stored at 37oC (Figure 

6).  

As a result of the poor resolution of the spectral parameters involving absorbance 

changes in the three characteristic hemoglobin bands (Soret, α576nm, β541nm), attempts 

were made to further examine the possible λSoret shift that was observed during initial 

testing. This parameter was of particular interest since, to the best of our knowledge, it 

had not been reported in any previously published studies. The λSoret was graphed as a 

function of stain age for bloodstains that had been stored at room temperature (22oC) and 

37oC samples for 15 minutes to 1 year (Figure 7A). From this data, a strong correlation 

between the age of the stain and the ΔλSoret was observed (r2 = 0.96 and 0.84 for the 

22oC and 37oC samples, respectively). A larger and more pronounced decrease in the 

λSoret was observed for the samples stored at 37oC indicating a possible effect of 

temperature on the shift. With the range of samples examined, it was difficult to see the 

relationship in the early time points. In order to further examine the early time points, 

only the 15 minutes to 2 days samples were plotted (Figure 7B). When this smaller set of 

samples was examined, a strong correlation between the wavelength shift and the age of 

the stain was demonstrated (r2 values of 0.95 and 0.98 for 22oC and 37oC samples, 

respectively). As a result of the significant correlation observed in the minutes to year 

and minutes to day intervals, additional time intervals were examined to determine if this 

method could be utilized to distinguish samples minutes, hours, days, weeks and months 
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different in age. The r2 values for each of the time intervals (15 min - 2 days, 15 min - 1 

week, 15 min – 1 month, and 15 min – 1 year) for both bloodstains stored at both 22oC 

and 37oC are provided in Table 1. The r2 value for each time interval for both 

temperatures (except for the 15 min – 1 year interval for the 37oC samples) was > 0.95. 

The slightly lower r2 value for the 15 min – 1 year 37oC sample set could be a result of 

exposure to such a high temperature (~98oF) for a long period of time. It is unlikely, 

except for in extreme cases, that bloodstains would be exposed to this level of constant 

temperature. However, it does indicate that TSD estimates may be more accurate for 

younger stains at extreme temperatures. Overall, this data demonstrated the potential to 

distinguish bloodstains differing in age by minutes, hours, days, weeks and months. 

 

Instrumentation 
 
 

All previous data had been obtained using the BioTek Synergy 2 microplate reader. 

Before any further work was conducted, an evaluation of the same sets of bloodstains 

was performed using the bench-top Hitachi U-0080D Spectrophotometer. This was 

performed in order to ensure that the Soret band shift would still be observed on a 

different instrument and that it was not the result of the microplate reader itself. Table 2 

provides a comparison of the λSoret obtained for bloodstains stored at 22oC for 15 

minutes – 1 year using both the microplate reader and the bench-top spectrophotometer 

(Hitachi U-0080D). As can be seen from this data, the same hypsochromic shift in the 

λSoret was observed using both instruments. There were differences in the obtained 
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wavelength values between the two spectrophotometers, with the values for the bench-top 

spectrophotometer typically 0.7-1.7 nm higher (average = 1.1nm) than what was 

observed for the microplate reader (Table 2). The total wavelength shift between the 15 

minute and 1 year samples was generally the same between the two instruments for both 

data sets (Table 2). The 22oC data set when run on the bench-top spectrophotometer had a 

slightly larger overall shift, 7.7nm, compared to the 5nm overall shift that was observed 

when the same samples were run on the microplate reader (Table 2). However, the 1 year 

data point on the spectrophotometer had a larger standard error and therefore likely 

caused the larger shift that what was observed on the microplate reader.  

When the ΔλSoret was plotted against the age of the stain, the r2 for the 22oC data 

sets (15 minutes to 2 days) on both instruments was greater than 0.91 (Figure 8). The 

same trend was observed in the data from both instruments, with the wavelengths from 

the spectrophotometer slightly higher than the microplate reader which was indicated in 

Table 2. From this data it was evident that the observed shift is a genuine occurrence in 

aged stains and can be observed on different types of spectrophotometers. The data also 

indicated a need to calibrate any spectrophotometer that would be used for TSD 

measurements using this method. A series of standards would need to be run prior to any 

unknown samples. Table 3 provides a summary of the r2 values obtained on both 

instruments for the 22oC and 37oC using both a 15 minute – 2 day and a 15 minute – 1 

year data set. For all data sets, the r2 values from the microplate reader were slightly 

higher than those obtained from the spectrophotometer, although all r2 values were 
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acceptable. As observed with previous data, the r2 value for the extended range (15 

minutes – 1 year) 37oC sample set was < 0.9 using both instruments.  

The results of these experiments demonstrate the reproducibility of the ΔλSoret 

measurements was using different spectrophotometers. The microplate reader does offer 

the advantage of being able to run replicates of the same sample at the same time, as well 

as the ability to run more samples at one time (96-well plate vs. a single cuvette with the 

spectrophotometer). It also allows for the use of a disposable 96-well plate whereas a 

standard bench-top spectrophotometer would require the re-use of a cuvette which would 

need to be cleaned in between samples.  

 

Environmental Influences 

 

Humidity 
 
 

Initial experiments demonstrated that temperature may have an effect on the rate of or 

extent of the Soret band shift. Therefore the affects of temperature and humidity on the 

ΔλSoret were further examined. All sample sets used previously had been stored at room 

temperature (22oC) or in a 37oC incubator. The average humidity and temperature for the 

laboratory (measurements taken in the mornings) were approximately 22oC and 50% 

humidity. However, small changes throughout the day may have occurred. In order to 

more accurately control the temperature and humidity to which the samples were 

exposed, a Cincinnati Sub-Zero MicroClimate® Humidity Chamber MCH-3 was used 
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(Figure 9). This chamber allowed for a range of temperatures from -65oC to 190oC and a 

range of humidity from 10% to 95% to be used. The chamber is digitally controlled and 

monitored. Samples were placed inside the chamber and were thus exposed to constant 

temperatures and humidity levels.  

Prior to performing the experiments, national temperature and humidity level 

averages were examined in order to determine if ranges could be selected that would be 

appropriate for most regions of the country (Figure 10). Most of the country experiences 

humidity levels between 56% and 85% for most of the year with western states 

experiencing lower humidity levels (35-50%) for most of the year (Figure 10A). 

Therefore some states, such as Arizona or New Mexico, humidity levels above 60% 

might not be that relevant. Additionally, humidity levels below 65% might not be that 

relevant for states such as Florida which maintains humidity levels of 65% or higher 

through the year. There appeared to be distinctive regions of average daily temperatures 

throughout the country as well, with large variation within specific months through the 

year (Figure 10B).  This data indicated that different regions of the country will be 

affected by differing humidity and temperatures and might therefore need to conduct 

simple experiments using temperatures and humidity levels relevant to their particular 

region and relevant to different times of the year in order to establish reference data for 

their geographical region. As a result of this data, a range of humidity levels from 50-

90% (50, 75, 80, 85 and 90%) were selected for use with two different temperatures, 

22oC and 30oC.   
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The affects of humidity on the ΔλSoret measurements for bloodstains stored at 22oC 

can be seen in Figure 11A. As the humidity level increases, the hypsochromic shift is 

reduced (lower r2 value) and is essentially not observed with 90% humidity (Figure 11A). 

As a result of the differences observed between different humidity levels, in order to 

determine the age of an unknown stain the storage conditions to which the sample was 

exposed would need to be known (or estimated.) The affects of 50, 75, 80 and 85% 

humidity on samples stored at 30oC can be seen in Figure 11B. Again, as the humidity 

level increases, the hypsochromic shift is reduced (lower r2 value).  

It is evident from the graphs provided in Figure 11 that the affects of humidity are 

different depending on what temperature the sample is exposed to. For example, for 

bloodstains stored at 22oC, there is a progressive reduction in the hypsochromic shift as 

the humidity level increases (Figure 11). It was expected that the same trend would be 

observed for the bloodstains stored at 37oC. However, it can be seen that the extent of the 

hypsochromic shift with 50% and 75% humidity is quite similar (Figure 11). Therefore it 

is possible that at higher temperatures the affect of humidity is lessened and a higher 

humidity level is needed to cause a reduction in the hypsochromic shift.  

 

Temperature 
 
 

The previous experiments had examined the affects of different humidity levels at a 

constant temperature. An indication of the additional affect of temperature was also 

obtained. Therefore to further examine the affects of temperature, samples were placed at 
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a constant humidity (50%) at various temperatures, including -20oC, 4oC, 22oC (one set at 

room temperature lab storage and one set stored in the humidity chamber), 30oC and 

37oC. The λSoret was plotted for each temperature as a function of stain age (Figure 12). 

The hypsochromic shift was more significant and occurred at a faster rate with increased 

temperature (Figure 12). This data again indicated the need to have some knowledge or 

reasonable estimate of the environmental conditions that any unknown bloodstain sample 

was subjected to prior to collection and analysis.  

Of additional interest was the -20oC sample set. As can be seen from Figure 12, 

almost no change in the λSoret was observed. This data suggested that bloodstains 

removed from a crime scene and brought back to the laboratory for future analysis could 

be stored at -20oC without any further change to the λSoret. In order to further 

demonstrate the ability to store bloodstains at -20oC without affecting ΔλSoret 

measurements, three data sets were prepared: 1) samples extracted immediately upon 

collection, 2) samples collected and stored at -20oC for two to three weeks, and 3) 

“original” storage consisting of a mixture of samples stored at -47oC (15 minutes through 

24 hours) prior to analysis and samples tested immediately (2 days, 1 week). The results 

of the various storage conditions can be seen in Figure 13. Similar ΔλSoret plots were 

obtained for bloodstains stored at each of the conditions described above. Therefore, it 

would be possible for bloodstains to be collected at a crime scene and stored frozen (-

20oC) until ready for analysis without any significant alteration of the ΔλSoret values. 

This would be of vital importance to crime laboratories where evidence is often not 

examined immediately upon arrival at the laboratory.  
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Outside Storage 

 
 
 The previous experiments examined the affects of storage at constant 

temperatures and humidity levels. However, many criminal offenses will not occur 

indoors in a controlled environment with relatively stable temperatures and humidity 

levels. Often crime scenes are located outside with samples exposed to fluctuating 

temperatures and humidity levels, sunlight, moisture, bacterial growth, and possible smog 

or other air pollutants. Therefore, it was necessary to examine bloodstains that were 

stored outside. Bloodstains were placed outside and covered (OSC), exposed to direct 

sunlight but protected from rain and collected at various times through a one week period 

(15 minutes, 30 minutes, 1 hour, 3 hours, 6 hours, 18 hours, 24 hours, 48 hours and 1 

week). During this week period the samples were exposed to a reported average 

temperature of 27.1oC (low – 22.7oC, high – 35.7oC) and an average humidity of 81.1% 

(low - 46%, high – 97.9%). Previous experiments had involved samples stored at 22oC, 

30oC and 37oC. It was therefore assumed that the graph of the ΔλSoret for the OSC 

samples would be observed in between the graphs for the 22oC and 37oC samples.  

 The ΔλSoret of the OSC samples was graphed along with the 22oC data sets 

(50%, 75%, 80%, 85%, 90% humidity). As anticipated, the hypsochromic shift for the 

OSC sample set was greater and occurred at a faster rate compared to all of the 22oC data 

sets (Figure 14A). Even though the average temperature that the OSC samples were 

exposed to was 27.1oC, it was thought that the ΔλSoret could still be slightly greater than 

that of the 30oC sample set as a result of the exposure of the OSC samples to an average 
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high of 35.7oC. As can be seen in Figure 14B, the ΔλSoret for the OSC samples was 

greater than the 30oC sample sets (50%, 75%, 80% and 85% humidity). Additionally, the 

ΔλSoret for the OSC samples was also greater than that of the 37oC data set (Figure 15). 

While the average high temperature for the OSC data set was 35.7oC, there were three 

days where the recorded high temperature was greater than 37oC (38.1oC – 39.4oC) which 

could have accelerated the ΔλSoret in the OSC samples. Additionally, since the 

bloodstains were exposed to direct sunlight at various times during the day, it is possible 

that they experienced temperature much higher than the reported temperatures which are 

often recorded in shaded areas. Without a direct and continuous measurement of the 

actual temperature, the reported average temperature and humidity levels can only be 

used as a crude approximation of the actual temperatures. It is also possible that sunlight 

or smog and other air pollutants could also contribute to an increase in the ΔλSoret of 

samples exposed to outside environmental conditions. Additional work will need to be 

conducted to further examine the environmental influences affecting the ΔλSoret for 

samples stored outside as it appears that environmental conditions could significantly 

confound TSD determinations.  

 

Non-Probative Samples – Car Trunk 
 
 
 In an attempt to further examine the affects of heat and humidity using samples 

more akin to casework samples, bloodstains were stored inside the trunk of a car for 

various lengths of time ranging from 25 minutes to 1 week, including 25 minutes, 1 hour, 
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3 hours, 18 hours, 24 hours, 48 hours, 5 days (112 hours), and 1 week (Figure 16A). A 

small digital thermometer with humidity gauge was placed inside the car trunk to allow 

for continuous monitoring of temperature and humidity. During the week period, the 

bloodstains were exposed to an average temperature of 44.2oC (high – 44.6oC, low – 

43.4oC) and an average humidity of 49% (high – 60%, low – 40%).  Due to the extreme 

temperature, a more significant hypsochromic shift compared to previous data sets was 

expected. The ΔλSoret was determined in comparison to the OSC samples and the 37oC 

samples since the highest temperatures were observed with these sample sets (Figure 

16B). As can be seen from Figure 16B, the car trunk data was located in between the 

OSC and 37oC sample exhibiting a greater than 7 nm hypsochromic shift. It is also 

evident from this data that the OSC samples, as previously discussed, likely experienced 

temperatures much higher than the reported daily temperatures. From the data shown in 

Figure 16B, it is predicted that the OSC bloodstains would have experienced 

temperatures greater than 44oC (112oF) as evidenced by the greater hypsochromic shift.  

  

Molecular Basis for the Hypsochromic shift 
 
 
 Before further experiments were conducted, a molecular basis for the 

hypsochromic shift needed to be developed that could explain the observed affects of 

humidity and temperature. The precise mechanism for the observed shift is unknown but 

a possible mechanism can be posited. As the age of the stain increases, protein 

conformational changes (loss of secondary structure, disruption of hydrogen bonding, 
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etc) may occur. The previously protected heme cavity may become more exposed as a 

result of these structural changes. Water, if allowed entry into the cavity, will 

successfully compete with the His residue (from Hb) coordinated to Fe(II) in the 6th hexa-

coordinate position. The presence of the more electronegative oxygen will then cause the 

Fe(II) electrons to change from a low spin (paired) state to a high spin (unpaired) state. 

This causes Fe(II) to be more susceptible to oxidation. Over time, Fe(II) would then be 

oxidized to Fe(III). As a result of this oxidation, the electron configuration for the Fe 

molecule will therefore be altered and can interact with the π bonds of the porphyrin ring 

structure of hemoglobin. This interaction may cause an increase in energy of π to π* 

transitions thereby resulting in absorbance at a shorter wavelength or a hypsochromic 

shift.  

 It is more difficult to explain the effects of temperature and humidity on the extent 

of the hypsochromic shift.  With regard to temperature it’s well characterized effect on 

chemical reaction rates (such as the oxidation of Fe(II)  Fe (III)) may explain a greater 

shift with increasing temperature.  With humidity, one might have expected that the 

higher humidity would result in more retained water and the bigger the hypsochromic 

shift.  However the converse is found in that higher humidity results in less of a 

hypsochromic shift.  Perhaps the more water retained with higher humidity leads to the 

dehydrated protein regaining more of its native structure with a concomitant reduction in 

the hypsochromic shift.    
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Validation 

 

Sensitivity 
 
 

All previous data that had been collected involved the use of 7.5 μg of total protein 

into a 75 μl reaction in an individual well in a 96-well plate. A range of input volumes 

was tested in order to determine if the Soret band shift could still be observed with 

smaller amount of input total protein. Hemoglobin spectral profiles from 1.1 – 8.8 μg of 

total protein are shown in Figure 17. It can be seen from these profiles that 2.2 μg of total 

protein is needed to obtain the characteristic α576nm and β541nm bands needed for the 

identification of the stain as blood. As little as 1.1 μg (0.5 μl) is needed to analyze the 

hypsochromic shift to determine the age of the stain (Figure 18). However, the sensitivity 

of this assay was determined to be 2.2 μg of total protein since that amount was needed 

for a complete hemoglobin spectral profile to be obtained. While this is not an optimal 

input level, it is still sufficient to allow for a determination of the time since deposition.  

The samples used in the previous experiment were simply smaller aliquots of a 

standard bloodstain extract. In order to further test the sensitivity of the developed 

method, bloodstains were prepared using a smaller initial volume of blood. Bloodstains 

ranging in size from 10 μl down to as small as 0.2 μl were prepared (Figure 19). For the 

sensitivity testing, the 0.2 – 1 μl bloodstains were extracted in only 25 μl of 0.2M Tris-

HCl buffer (as compared to the standard 75 μl). Initially a range of input volumes, from 

10 to 120 nanoliters (0.25 – 3 μl of the 25 μl extract), from a 1 μl bloodstain extract were 
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tested. The spectral profiles obtained using these input volumes are shown in Figure 20, 

with the Soret band shown in greater detail in Figure 20B. While the Soret band is visible 

using as little as 20 nanoliters, in order to obtain a spectral profile including the α576nm 

and β541nm bands, 40 nanoliters (1 μl of the 25 μl extract) was required (Figure 20).  

Since as little as 40 nanoliters was required to obtain spectral profiles of sufficient 

quality for analysis, attempts were made to obtain similar spectral profiles using 

bloodstains smaller than 1 μl. It was expected that the smaller bloodstains would result in 

a lower hemoglobin concentration in the resulting extract and therefore increased 

nanoliter volumes were tested. As can be seen from Figure 21, analysis of up to 300 

nanoliters of blood from a 0.5 μl stain did not result in suitable spectral profiles including 

unclear α576nm and β541nm bands (Figure 21A) and a broad Soret band (Figure 21B). 

Similar results were observed with 0.75 μl even with increased nanoliter input (up to 450 

nanoliters) (Figure 21C and 21D). The inaccuracy of the ΔλSoret measurements using the 

0.5 and 0.75 μl bloodstains is demonstrated in Figure 22. The broadness of the Soret band 

resulting from the low hemoglobin concentration of the extracts, the λSoret 

measurements are significantly different from that obtained using the standard stain size 

(~60 μl). Therefore the sensitivity of the ΔλSoret assay was demonstrated, allowing for 

the analysis of bloodstains as small as 1 μl in size using as little as 40 nanoliters of 

extract.  
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Bloodstain Size 
 
 
 While it was necessary to demonstrate the ability to obtain accurate and reliable 

ΔλSoret measurements from small bloodstains needed, it was equally as important to 

demonstrate that ΔλSoret measurements would not be affected by significant larger 

bloodstains. Large bloodstains or pools of blood can frequently be encountered at crime 

scenes. The outer regions of the bloodstain may dry quicker than the center of the 

bloodstain which contains a greater amount of blood. Therefore it is possible that 

different oxidation rates could be occurring within the same larger bloodstain. Therefore, 

the ΔλSoret was determined for the 60 μl bloodstains and compared to that of 600 μl 

bloodstains. As can be seen from Figure 23, the large 600 μl bloodstain had a lighter 

colored outer portion with a denser center portion. Samplings from the outer and central 

portions of the 600 μl bloodstain were collected and the ΔλSoret determined for each. As 

can be seen from Figure 24, the size of the bloodstain or the location of the sampling did 

not affect the ΔλSoret allowing crime scene analysts to collect samplings from various 

regions of suspected bloodstains.   

 

Portable “Point-Of-Use” Spectrophotometer 
 
 

The ability to obtain ΔλSoret measurements and characteristic blood spectral peaks 

from bloodstains as small as 1 μl was previously demonstrated. However, for the ΔλSoret 

assay to be of greater use in forensic casework, the ability to perform such measurements 
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directly at crime scenes could be useful. This would allow investigators to identify if a 

stain was blood and possibly how old the stain was prior to packaging samples to submit 

to the crime laboratory for further analysis. In order to do this, a portable 

spectrophotometer would have to be available at the crime scene. Recently, a portable 

spectrophotometer has become commercially available from Implen called the 

NanoPhotometerTM. The instrument has no moving parts making it more durable during 

transport to a crime scene and weighs less than 10 lbs. Concentration measurements 

(protein, DNA, RNA), full wavelength scans (190-1100nm), standard curves, ratio 

calculations and kinetic measurements can be performed on the instrument with as little 

as 0.7 μl of sample. The cuvette is inserted into the holder and the sample is then placed 

on the top of the cuvette. The mirrored lid is then placed on top of the cuvette and the 

measurement can be taken. Once a measurement is made, the sample can be collected 

from the top of the cuvette and the area cleaned between measurements. The wavelength 

data obtained from the instrument is provided in 1 nm intervals, which is the same 

resolution that is provided by the microplate reader used in all previous studies. When a 

sample measurement is taken, the data can be printed directly from a built in printer or 

can be connected to a computer through a USB or Bluetooth wireless connection. If the 

data is printed from the built-in printer, a small receipt-like print out is obtained. The 

print out contains the date and time the measurement was made, the serial number of the 

instrument is was collected on, and provides a full spectral profile including the 

wavelength and absorbance of recorded peak maxima. If the data is sent to a computer, 

the same data is provided in a report generated in the software that accompanies the 
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instrument. Additionally, the data can be sent directly into an Excel file which creates its 

own graph of the data which can then be modified.  

Initial work was performed with the NanoPhotometerTM to determine if it would be 

possible to obtain reliable ΔλSoret measurements. Bloodstains stored at 22oC and 50% 

humidity from 15 minutes to 1 week were analyzed using the NanoPhotometer and then 

compared to the original data obtained using the microplate reader. The results of this 

comparison can be seen in Figure 25. The r2 value for the data set on both instruments 

was above 0.9, however was slightly lower for the NanoPhotometer (0.9089) compared 

to the microplate reader (0.9861). As was seen with the standard bench-top 

spectrophotometer, the wavelength for the whole data set using the NanoPhotometer was 

slightly higher then what was observed with the microplate reader. Again, this simply 

indicated the need to calibrate any instrument before measurements with unknown 

samples could be made.  

Despite the slight differences observed in the r2 values obtained from data collected 

using the NanoPhotometerTM, the initial data indicated the potential utility of this 

instrument (or one like it) for use at crime scenes. Further validation of this instrument 

may also help improve the results. An optimization of the sample volume and 

concentration would need to be performed in order to determine the proper amount of 

sample to use for analysis.  
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Enzyme Activity Assays 

 
 

As an alternative approach to the determination of the time since deposition of 

dried bloodstains, the stability of enzyme activity in aged bloodstains was examined. It 

was expected that a decline of enzyme activity as the age of a stain increases would be 

observed and could possibly be used to estimate the age of the stain. The microplate 

reader used in the ΔλSoret assay was used to perform enzyme kinetic assays with a 

determination of the maximum velocity of each reaction.   

 Numerous candidate enzymes were selected for initial screening (Table 5). These 

candidates were selected from the classical serological and human biochemical genetics 

literature where they were typically analyzed by gel electrophoresis. There are several 

detection methods available for use with these candidates. Initially, both fluorescence and 

colorimetric detection methods were evaluated. Many of the candidates utilized a NAD 

or NADP fluorescence detection scheme, which could also be coupled to a MTT 

colorimetric detection scheme. Several 4-methlyumbellifry-labeled assays were also 

evaluated which result in the production of a fluorescent product without the use of NAD 

or NADP. Additionally, there were also numerous enzyme candidates that use a direct 

MTT, NBT, or other colorimetric detection scheme.  

To initially evaluate the reaction to determine if the reaction was working, 100μl 

of this extract was tested with the reaction mixture. A ‘no sample’ blank was also run to 

ensure that any reaction obtained was due to the enzyme itself and not enzyme-

independent substrate conversion. If enzyme activity was detected, the sample input was 
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varied from 5-100μl (5, 10, 20, 40, 60, 80, and 100μl). The linearity of sample input 

versus MaxV (as determined by the instrument software) for fluorescence-based assays 

and colorimetric-based assays was evaluated. Adjustments to sample and reagent 

concentrations were made to develop an optimized reaction.  

Numerous candidate enzymes were rejected for a variety of reasons (inefficiency 

of assay to detect enzymes, lack of solubility/compatibility of reagents with 

recommended buffers). It was determined that the colorimetric assays (detection at 

565nm, for MTT-formazan reactions) provided the most reliable results and were 

therefore used to examine potential activity differences between bloodstains of different 

ages. Two sets of room temperature bloodstains, ranging in age from 1 month to 1 year (1 

month, 3 months, 6 months and 1 year) were tested using each assay. For each assay, two 

different samples for every time point were tested, and each sample was run in triplicate. 

The triplicate data for each sample was averaged, and then the average for the two 

samples was averaged as well to given an overall MaxV for each time point. The average 

MaxV was then plotted against the age of the stain in order to determine if any trends 

could be identified (Figure 26). A decrease in enzyme activity as the age of the stain 

increases was observed for size enzymes, including lactate dehydrogenase, malate 

dehydrogenase, phosphogluconate dehydrogenase, isocitrate dehydrogenase, glycerate 

dehydrogenase, and alcohol dehydrogenase (Figure 26). The individual enzymes also 

exhibited varying rates of enzyme activity loss. This initial data indicated that it might be 

possible to use the amount of residual enzyme activity detected in a dried bloodstain in 

order to determine the time of deposition of that stain.  
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The data was also examined in order to determine the amount of time required for 

a complete loss of activity to be observed for each enzyme. If the enzymes lost activity at 

various times, it could be possible to determine an approximate age of an unknown stain 

based on which enzymes were still active and which enzymes were lost assuming that the 

protein input was normalized. The amount of time required for each enzyme to totally 

lose its activity (by direct observation or by extrapolation from the activity-time graph)   

is listed in Table 6. Glycerate dehydrogenase, lactate dehydrogenase, and isocitrate 

dehydrogenase lost activity in slightly less than one year (10.1, 11.4 and 11.8 months 

respectively). Alcohol dehydrogenase, phosphogluconate dehydrogenase, and malate 

dehydrogenase lose activity between one and two years (14.4, 16.0, and 20.7 months 

respectively). L-xyulose reductase and 3-hydroxybutyrate dehydrogenase lose activity 

after two years or more (28.7 and 144.7 months respectively). Interestingly, 

phosphoglucomutase (PGM), glucose-6-phosphate, and gluconate dehydrogenase can be 

considered relatively stable enzymes which may be useful in future experiments for use 

as potential normalizers or positive controls.  

While this initial data requires month differences in age in order for TSD 

estimates to possible be made, it did provide an indication that enzyme activity 

measurements may be useful in estimating the age of the dried bloodstain. Only a small 

number of enzymes were evaluated and therefore additional enzymes may require smaller 

time differences for relationships to be seen and therefore provide better resolution. This 

method could also be applied to other biological fluids in addition to blood whereas the 

previous Soret band hypsochromic shift method is limited to bloodstains.  
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CHAPTER FOUR: RESULTS – miRNA PROFILING FOR BODY FLUID 
IDENTIFICATION 

 

Presence of miRNAs in Forensically Relevant Dried Body Fluid Stains 

 
 
 In order to determine whether miRNAs were present in the total RNA isolated 

from the stains, a reverse transcriptase-polymerase chain reaction (RT-PCR) detection 

strategy was employed. Complementary DNA (cDNA) was synthesized from total RNA 

using the miScript Reverse Transcription kit (Qiagen). The miRNAs were simultaneously 

polyadenylated and reverse transcribed using both random and oligo-dT primers. The 

oligo-dT primers contain a 5’ end universal tag which is utilized as a primer binding site 

for subsequent real time PCR detection. Individual miRNAs were subsequently detected 

using the miScript SYBR® Green PCR kit. Each single-plex reaction utilizes a universal 

primer (complementary to the 5’ universal tag on oligo-dT primer used in the reverse 

transcription reaction) and a miRNA-specific primer (Human miScript Primer Assay Set 

V1.0, Qiagen). Figure 27 depicts the absolute Ct values for twenty-five miRNAs in 

blood, semen, saliva, vaginal secretions and menstrual blood. The detection of numerous 

miRNAs, with expression values well below the recommended 40 cycle limit, indicated 

that miRNAs are present in total RNA extracts from dried biological stains.  
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Identification of Differentially Expressed miRNA in Biological Fluids 

 
 
 Numerous studies have been published describing miRNA expression in both 

normal and cancerous human tissue samples. A small number of miRNAs have been 

identified as “tissue-specific,” demonstrating a high abundance in an individual tissue 

with low or no abundance in others. While a majority of these studies evaluated a wide 

range of human tissues they did not include, with the notable exception of blood, most of 

the physiological fluids of relevance to forensic analysis such as semen, saliva, vaginal 

secretions, and menstrual blood.  Such body fluids typically comprise secretions from 

multiple tissues and hence the resulting miRNAome would be expected to comprise 

miRNAs from the contributing tissues.  Moreover it is possible that a miRNA designated 

as “tissue-specific” in previous studies may be found in high abundance in these 

previously untested forensically relevant fluids. Therefore, we made no prior assumptions 

regarding the tissue specificity of particular miRNAs. In order to identify highly 

abundant or possible fluid-specific miRNAs in forensic biological stains, an extensive 

survey of the expression of 452 miRNAs was conducted.  

For the initial screening experiments, five-donor pooled body fluid samples were 

used in order to take into account any possible inter-individual sample variation. All 

samples were run in duplicate and the average Ct value was used for comparison. 

Negative controls for each of the pooled body fluid samples, to which no reverse 

transcriptase was added (RT-), were also run in duplicate to ensure that the miRNAs were 

the source of amplification products being detected. Initially, only 50 pg of cDNA was 
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used for real-time PCR based detection in order to facilitate the identification of highly 

abundant miRNAs.  

 Graphs of absolute Ct values obtained for each body fluid were created which 

allowed for an evaluation of the relative expression levels for individual miRNAs (Figure 

27). No truly fluid-specific miRNAs, with high to moderate abundance of the miRNA in 

a single body fluid (and no expression in the other body fluids), were identified. 

However, it was evident that a significant number of the 452 miRNAs evaluated were 

differentially expressed in the various body fluids.  Figure 27 depicts the expression of 25 

miRNAs in blood, semen, saliva, vaginal secretions and menstrual blood. Numerous 

miRNAs demonstrated similar expression levels in all of the body fluids (data not 

shown). However, other miRNAs demonstrated a significant difference in expression 

between the body fluids. For example, miR16 (Figure 27), was found in much higher 

abundance in blood and menstrual blood compared to semen, saliva, and vaginal 

secretions (ΔCt ~ 8). Overall, a significant number of miRNAs (~20%) were found in 

higher abundance in blood than any of the other body fluids. Numerous potential 

menstrual blood (n = 38), saliva (n = 32), semen (n = 17) and vaginal secretions (n = 7) 

candidates were also identified (data not shown).  

 During the course of the initial screening, numerous miRNAs were identified that 

were not readily detected in all or most of the body fluids using only 50 pg of input 

cDNA. In order to not overlook potentially useful miRNA candidates present in lower 

abundance, additional screening of previously undetected or poorly detected miRNAs (Ct 

> 38) was conducted using 500 pg (10-fold increase) of cDNA for detection (data not 
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shown). The use of additional cDNA input resulted in the identification of additional 

potential menstrual blood (n = 7), semen (n = 30) and saliva (n = 10) candidates, but 

failed to identify any additional vaginal secretion candidates.  

 Further screening of 179 of the most abundant miRNA candidates was 

accomplished by constructing an expression ‘heat map’ in order facilitate identification 

of those candidates that exhibited significant differential expression between the various 

body fluids (Figure 28). Examples of potential body fluid candidate miRNAs are 

indicated in color (red – blood, yellow – semen, blue – saliva, green – vaginal secretions, 

pink – menstrual blood).  It was expected that a large number of the heat-map selected 

candidate miRNAs would not ultimately be ideal for inclusion in body fluid identification 

assays.  For example, the expression data up to this point had not been subjected to any 

rigorous normalization strategies (apart from input quantity of the total RNA isolate) and 

was obtained from pooled samples rather than separate individuals.  It was thus important 

to evaluate other normalization strategies and the variation of expression levels between 

different individuals instead of from pooled samples. 

 

Normalization 

 
 
 The success and accuracy of any biological assay involving the use of quantitative 

expression analysis depends on proper normalization of data. The purpose of 

normalization is to minimize potential variation that can mask or exaggerate biologically 

meaningful changes. Quantitative assessments of total RNA in a sample can be affected 
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by various factors including extraction efficiencies of RNA from different body fluids 

and substrates upon which they were deposited as well as potential RNA degradation. 

The currently available RNA quantitation methods are not human-specific and therefore 

RNA quantity estimations can also be affected by the presence of contaminating non-

human species.  Potential normalization strategies for use in miRNA expression analysis 

include the use of housekeeping genes (mRNA), small RNAs such as 5S rRNA or U6b (a 

small nucleolar RNA), and universally expressed miRNAs. Ideally a normalizer should 

be present in relatively high and consistent abundance in all tissues or cell types, should 

be of similar size and found in similar cellular environments as the target molecule, and 

be compatible with the analysis methods utilized for the target molecule. Messenger 

RNAs from housekeeping genes may not be the most suitable targets for normalization of 

miRNA expression data due to abundance, degradation rates and amplimer size 

differences. Presumably universally (and approximately) equally expressed 

‘housekeeping’ miRNAs could be used as normalizers but appropriate candidates still 

need to be identified by additional studies.  Accordingly we used a normalization method 

that involved standardization of total RNA input and measurement of the relative 

expression of the miRNA in comparison to the small nuclear RNA, U6b.  Total RNA 

extracts were first quantitated using a RiboGreen fluorescence assay and equal amounts 

of total RNA were used in subsequent reverse transcription assays. However, this 

normalization strategy was not sufficiently precise enough on its own due the potential 

presence of differing levels of non–human sources of RNA in some forensic samples 

(e.g. bacteria in saliva and vaginal secretions).  Therefore, we chose to also employ a 
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delta Ct (ΔCt) metric which measured the relative abundance of a particular miRNA in 

relation to the small nucleolar RNA, U6b. U6b was chosen based on its high abundance 

and apparent stability in different body fluid stains of forensic interest (data not shown). 

For high abundance miRNA candidates whose expression was greater than U6b, the ΔCt 

metric was obtained by subtracting the Ct value of miRNA from the Ct value of the U6b, 

whereas for miRNAs present in lower abundance than U6b, the ΔCt was obtained by 

subtracting the Ct value of U6b from the Ct value of the miRNA.  

 

Candidate Selection 

 
 

 U6b-normalized expression of the miRNA candidates with individual samples 

rather than the previously-used pooled samples resulted in the rejection of several 

candidates due to either too much variation between individuals or insufficient variation 

between different body fluids (data not shown).  This additional screening process 

resulted in the identification of differentially expressed miRNAs that were good 

candidates for blood, semen, saliva, vaginal secretions, and menstrual blood. 

 Strong candidates were those miRNAs found in higher abundance than U6b in an 

individual body fluid but present at lower levels than U6b in other body fluids. Two 

strong candidates for blood, miR451 and miR16, were identified. As can be seen from the 

relative expression plot in Figure 29A, expression of these miRNAs in blood (higher 

abundance than U6b) was significantly higher compared to all other body fluids (lower 

abundance than U6b). While no miRNAs were found in semen in higher abundance than 
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U6b, two good candidates, miR135b and miR10b, were identified that demonstrated a 

higher abundance in semen relative to the other body fluids (Figure 29B). Two strong 

candidates were identified for saliva (miR205 and miR658) (Figure 29C).  Only one 

strong candidate, miR124a, was identified for vaginal secretions (Figure 29D). Two other 

potential vaginal secretion candidates were identified, miR372 and miR195. Expression 

of miR372 was relatively similar in all body fluids, but was found in slightly higher 

abundance in vaginal secretions (Figure 29E). The other potential candidate, miR195, 

was least abundant in vaginal secretions (Figure 29F). Despite its low abundance, it was 

considered as a possible candidate because the near absence of this miRNA in 

combination with the presence of miR124a or miR372 may be indicative of vaginal 

secretions. Potential menstrual blood markers included miR451 (Figure 29G) and 

miR412 (Figure 29H) chosen on the basis of differential expression compared to other 

body fluids rather than being the most abundant miRNA species in menstrual blood.  

 

Development of miRNA Body Fluid Identification Assays (miRNA BodyFluID)  

 
 
 While none of the miRNA candidates were found to be truly body fluid-specific 

in the sense that they were expressed in one tissue and not in any other, it was 

hypothesized that a panel of differentially expressed miRNAs could be used to develop a 

unique expression profile that would be characteristic of an individual body fluid. For 

initial assay development, normalized expression data for each of the previously 

identified miRNA candidates (miR16, miR451-blood; miR135b, miR10b-semen; 
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miR205, miR658-saliva; miR124a, miR372, miR195-vaginal secretions, miR451, 

miR412-menstrual blood) was obtained for blood, semen, saliva and vaginal secretion 

samples from different individuals (n=5). The ΔCt values were used to create two-

dimensional scatter plots in order to determine if differentiation of each body fluid would 

be possible.  Significantly, distinct clustering of each body fluid was observed for each 

miRNA pair, with the body fluid of interest in each assay clearly separated from the other 

body fluid expression data (Figure 30A-F).  It became apparent that such differential 

clustering could form the basis of a body fluid identification assay. Therefore, the nine 

candidates were selected for inclusion in a miRNA panel for body fluid identification 

(Table 7).  

The degree of separation between the body fluid of interest and the other fluids 

differed between miRNA pairs. For example the blood identification assay, using the two 

strong blood miRNA candidates (miR16 and miR451), provided an approximate 7-8 ΔCt 

difference in both dimensions from the next closest body fluid (Figure 30A). However, 

with the vaginal secretion assays using the stronger vaginal secretions candidate, 

miR124a, only a 2-3 ΔCt difference was observed between vaginal secretions and the 

next closest body fluid (Figure 30D and 30E). In an attempt to improve the resolution 

between body fluids for the vaginal secretion assay, a three-dimensional scatter plot was 

created using miR124a, miR372 and miR195 (Figure 31). While distinct body fluid 

clusters were visible using the 3D scatter plot, combination of all three miRNA 

candidates did not significantly improve the distance between the various body fluid 

clusters. As a result, the 2D scatter plot was determined to be sufficient for the vaginal 
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secretion assay. It was decided that the miR124a-miR372 assay would be used for further 

validation due the fact that miR372, while a weak candidate, still provided a positive 

result. MiR195 was least expressed in vaginal secretions and considered a negative result. 

The potential for false positive results can be increased with a “negative” marker if 

degradation is present. For example, miR195 would be detected in a pristine blood 

sample in relatively high abundance and would be clustered away from the vaginal 

secretions data using this assay. However, if a degraded blood sample was analyzed and 

miR195 was not detected, this would produce a “negative” result which could be 

interpreted as a false positive for vaginal secretions. It is not known if the strength of the 

other vaginal secretion candidate, miR124a, would be sufficient to prevent such false 

positive results. Therefore, the inclusion of miR372 in the vaginal secretion assay was 

deemed more appropriate.  

  In order to ensure that the miRNAs were the true source of the obtained 

expression data, reverse transcription negative (RT-) samples, to which no reverse 

transcriptase had been added, were evaluated with the miRNA panel. The average Ct 

value for 10 RT- samples for each body fluid was determined (Table 8).  For several of 

the miRNAs including miR451, miR16, miR135b, miR10b, and miR372, no signal was 

detected in any of the RT- samples. However, for the remaining miRNAs (miR658, 

miR205, miR124a, miR195 and miR412), Ct values were obtained for the RT- samples 

(Table 8). The average Ct value for the RT- samples for miR658, miR205, miR195 and 

miR412 were slightly above 40, which is the manufacturer’s recommended maximum 

number of amplification cycles, and would therefore be undetected if a 40-cycle limit was 
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utilized. However, lower Ct values were observed for miR124a (avg. = 37.3) and U6b 

(avg. = 35.7). While the presence of a signal in the RT- samples could be a concern, none 

of the RT- signals were close to the Ct values obtained for the body fluid samples of 

interest (Table 8). For example, the average Ct for miR124a for the RT+ vaginal 

secretion samples (n=10) was 25.1 whereas the RT- value was 37.1, an approximately 

4096 fold difference in expression. For the assays with no signal detection in the RT-

samples (miR451, miR16, miR135b, miR10b, miR372), a Ct value of <50 was accepted 

as a valid result. However, different detection thresholds needed to be established for the 

assays where a signal was detected in the RT- sample (miR658, miR205, miR124a, 

miR195, miR412 and U6b). For these assays, only Ct values below the RT- average 

could be considered valid. To determine an acceptable value range for these assays, the 

average Ct value minus three standard deviations (rounded to the nearest 0.5 number) 

was calculated and the obtained value was used as the maximum acceptable Ct value 

(Table 8). Any unknown sample whose Ct value for these assays was above the 

determined threshold value was considered invalid and could not be used for further 

analysis.  

 All valid Ct values were used to obtain ΔCt’s for each of the miRNAs included in 

the body fluid identification panel. Previous ΔCt calculations were performed in such a 

manner as to result in the body fluid of interest being plotted in the positive/positive 

quadrant of the two dimensional scatter plot if possible. However, in an attempt to simply 

analysis and to provide a more accurate representation of the expression of each miRNA 

in relation to U6b, all normalization in subsequent studies was performed by subtracting 
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the miRNA Ct value from the U6b Ct value. For strong candidates, whose expression was 

higher than that of U6b, this would result in a positive value. For weaker candidates, 

whose expression was lower than that of U6b, this would result in a negative value. As a 

result, a visual examination of the constructed 2D scatter plots also provides additional 

information regarding the relative abundance of each miRNA in each biological fluid.  

The initial assay design demonstrated that the panel of selected miRNAs (blood – 

miR451, miR16; semen – miR135b, miR10b; saliva – miR205, miR658; vaginal 

secretions – miR124a, miR372; menstrual blood – miR451, miR412) seemed suitable for 

the differentiation of forensically relevant biological fluids (Table 7). The miRNA based 

body fluid identification assays (named ‘miRNA BodyFluID’) were thus subjected to 

more extensive validation studies.  

 

miRNA BodyFluID Specificity 

 

Body Fluid/Tissue Specificity  
 
 
 The initial studies were performed using only five samples per body fluid. In 

order to ensure the specificity of each assay, additional body fluid samples were tested 

(n=10-20 for the body fluid of interest, n=8-10 for the other body fluids not being 

assayed for).  
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Blood 
 
 
 Nineteen human blood samples (including the five previously tested samples) 

were analyzed using the blood miRNA assay (miR16/ΔCt miR451). The blood sample 

donors, both male and female, ranged in age from 15 months to 84 years old.  As before, 

all of the human blood samples were found in a distinct cluster in the upper right 

quadrant separated from all other body fluids (Figure 32A).  All vaginal secretion 

samples were found in the lower left quadrant and there was considerable overlap of the 

semen and saliva samples, which were spread out over the two lower quadrants and the 

upper right quadrant. The buccal samples were located closer to the blood samples than 

any of the other fluids but were still well separated from each other.   

 

Saliva 
 
 
 Eighteen human saliva samples (including the five previously tested samples) 

were tested using the saliva miRNA assay (miR205/miR658). Samples were obtained 

from both male and female donors ranging in age from 26 – 58 years old, and included 

both liquid whole saliva samples (n=9) and buccal swabs (n=9). As can be seen from 

Figure 32B, all of the liquid saliva and buccal scrapings samples were located together in 

a distinct cluster separate from the other body fluids tested. They were clustered in the 

upper right quadrant with the exception of one buccal sample which, although part of the 

cluster, was slightly outside the quadrant.  The vaginal secretions, blood and semen 

samples were mainly located in the lower left quadrant with a few samples just inside the 
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lower right quadrant (Figure 32B). The ability to identify both liquid saliva and buccal 

samples is an important finding since both whole saliva and buccal cells are encountered 

in forensic specimens.  

 

Semen 
 
 
 Eleven human semen samples (five previously tested samples included) were 

tested using the semen miRNA assay (ΔCt miR135b and ΔCt miR10b). Samples were 

obtained from adult males ranging in age from 26 – 52 years old. As can be seen from 

Figure 32C, all of the semen samples are found in a distinct cluster separated from all 

other body fluids. However, the separation between body fluids using this assay is not as 

significant as was observed with the blood assay. As previously discussed, neither of the 

miRNAs used in the semen assay were identified as strong candidates (i.e. found in 

higher abundance than U6b) and all data points are found in the lower left quadrant 

(Figure 32C). Therefore while the semen samples are found in a distinct cluster, the 

identification of stronger semen miRNAs will be necessary in order to improve the 

separation between body fluids.  

 Samples from two vasectomized males were included in the study in order to 

determine if the semen assay was specific to sperm cells. Both of the samples from the 

vasectomized males (orange squares) were detected amongst the semen samples from 

non-vasectomized males, thereby demonstrating the ability of the assay to accommodate 

non-sperm containing semen samples (Figure 32C). The detection of semen from both 
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vasectomized and non-vasectomized males could indicate that the two semen miRNA 

candidates are present in seminal fluid or in epithelial cells from the male reproductive 

tract. Overall, fewer miRNAs were detected in semen compared to the other biological 

fluids and those that were present were often found in much lower abundance. The low 

abundance of these miRNAs may be explained if detection is obtained from the low level 

of non-sperm cells present in semen. The cellular and non-cellular components of semen 

could be separated and examined for the presence of both of the semen miRNA 

candidates to determine if the miRNAs used in the semen assay are cellular based. If the 

miRNAs were present in the cellular component, then sperm cells would need to be 

specifically isolated from other non-sperm cells that may be present which could be 

accomplished using laser capture micro-dissection. Regardless of the origin of the 

miRNAs used in the current semen assay, further work will be needed to identify stronger 

semen candidates and to identify possible sperm-specific miRNAs. 

 

Vaginal Secretions 
 
 
 Eleven vaginal secretion samples (including the five previously analyzed 

samples) were collected from adult females ranging in age from 28 – 65 years old and 

tested using the vaginal secretions miRNA assay (miR124a/ΔCt miR372). As can be seen 

from Figure 32D, all vaginal secretion samples, except for one ‘false negative’, were 

located together in a distinct cluster in the lower right quadrant separate from the other 

body fluids.  Since the whole saliva sample set was the closest to the vaginal cluster, 
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additional saliva samples comprising five buccal epithelial samples were tested using the 

vaginal secretions assay in order to determine whether the vaginal epithelial and oral 

epithelial cells were distinguishable.  While the buccal epithelial cells clustered closer to 

the vaginal secretion data points than the whole saliva samples, there was still a clear 

separation between the two body fluids (Figure 32D). Since only one strong miRNA 

candidate (i.e. more abundant than U6b) was identified for vaginal secretions, it is 

possible that the separation between buccal and vaginal secretion samples could be 

improved if a second strong candidate was subsequently identified.   

 

Other Human Tissues 
 
 
 Despite reports in the current literature of the identification of tissue-specific 

miRNAs, it has been suggested that a majority of miRNAs will be expressed in the 

majority of tissues [101]. While all of the miRNAs included in the body fluid 

identification panel described above were detected in each body fluid, their differential 

expression enabled each of the four body fluids to be distinguished.  A more detailed 

study to evaluate tissue specificity of the miRNA BodyFluID assays was carried out 

using a wide variety of human tissues.  

 Total RNA from twenty-one human tissues including adipose, brain, cervix, heart, 

liver, lung, placenta, prostate, skeletal muscle, testes, thyroid, trachea, bladder, spleen, 

thymus, ovary, kidney, colon, esophagus, small intestine (FirstChoice® Human Total 

RNA Survey Panel, Applied Biosystems/Ambion) and skin (Biochain Institute, Inc.), was 



 68

analyzed using the miRNA panel. Each total RNA sample included in the FirstChoice® 

panel comprised RNA from at least three different donors and was certified to contain 

small RNAs (miRNA, siRNA and snRNA).  As expected, the miRNAs included in the 

panel were detected in each of the tissue samples but again in varying abundance. The 

high degree of specificity of each of the miRNA body fluid identification assays was 

confirmed since all of the tissue samples exhibited expression profiles that differed from 

that of the appropriate body fluid in each of the four assays (Figure 33).  

 For the blood assay, both miR16 and miR451 were detected in all twenty-one 

tissues with the exception of the small intestine where miR451 was not detected (data not 

shown). MiR451 was found in the highest abundance in lung and placenta whereas 

miR16 was found in the highest abundance in lung and prostate. However, despite their 

higher abundance in these tissues compared to the rest of the samples, their abundance 

was still lower than that in human blood samples. When the tissue samples were 

evaluated using blood assay and the data analyzed using the 2D scatter plot, all of the 

tissue samples were present in the lower left quadrant of the scatter plot whereas the 

blood samples were tightly clustered in the upper right quadrant (Figure 33A).  

  One of the saliva miRNA candidates, miR658, was present in low abundance in 

all of the tissue samples (data not shown). MiR205 was present in moderate abundance in 

the cervix, placenta and prostate tissue but in low abundance in all other tissues. The 2D 

plot showed the tissue samples located in the lower left quadrant with a significant 

separation from the saliva samples, which were located in the upper right quadrant 

(Figure 33B). 
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 Both the semen candidates, miR135b and miR10b, were also detected in all of the 

twenty-one tissues with many present in moderate to high abundance. MiR135b was 

detected in highest abundance in testes and thyroid, whereas miR10b was detected in 

high abundance in numerous tissues including testes, adipose, cervix, ovary, kidney and 

colon. As a result of the high abundance of these miRNAs in numerous tissues, the 

separation between the human semen sample cluster and the tissue samples was not as 

great in the 2D scatter plot as that observed for the blood assay (Figure 33A and 33C). As 

can be seen from Figure 33C, the tissues are all present in close proximity to the human 

semen samples although still distinct there from. This data indicates the need to monitor 

the continually-expanding miRNAome for more specific semen candidates. 

 For the vaginal secretions assay all tissue samples were located in the lower left 

quadrant separated from the vaginal secretions samples that were located in the lower 

right quadrant (Figure 33D). Several published studies have identified miR124a as a 

brain-specific miRNA [56,58,59]. While miR124a was found in highest abundance in 

brain compared to the other tissues examined, the expression level observed in brain was 

still lower than that we observed for vaginal secretions. Due to these differences in 

expression, the brain sample was located closer to the vaginal secretions samples on the 

two-dimensional plot but was still present in the lower left quadrant (Figure 33D). The Ct 

values for miR372 ranged from 32 to >40 for all tissue samples, with the lowest Ct value 

obtained from placenta. So despite the presence of only one strong candidate, the 

specificity of this assay for vaginal secretions is supported by the tissue data. 
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Species Specificity 
 
 
 Optimal forensic analysis not only requires an assay to possess tissue specificity 

but it also should exhibit restricted species specificity.  To check this, a number of non-

human blood samples were analyzed including twelve animal species (dog, cat, horse, 

crane, cow, coyote, sheep, tortoise, lamb, Patagonian cavy, ferret, deer) and ten non-

human primate species (spider monkey, rhesus macaque, pig-tailed macaque, brown 

lemur, chimpanzee, baboon, howler monkey, cynomolgus monkey, African green 

monkey, spot-nosed guenon). A smaller number of non-human saliva samples were 

available tested and included cat, dog and one primate (spot-nosed guenon). Semen and 

vaginal secretion samples from non-human species were not available for testing, but 

such body fluids from non-human species are rarely encountered in casework.  

For all of the non-human species blood samples, miR451, miR16, and U6b were 

detected in significant abundance. As can be seen from Figure 34A, all of the non-human 

samples were found in close proximity to the human blood data points. Two animals 

(ferret and coyote) and four primates (chimpanzee, baboon, African green monkey, and 

cynomolgus monkey) were located directly within the human blood cluster (Figure 34A). 

While only a small number of the species tested were clustered within the human blood 

samples, the small distance between the human data points and the remaining animal 

species would make it difficult to differentiate human and non-human blood samples with 

any degree of confidence using this assay.  

 Saliva samples from two dogs and two cats were used to examine the species 

specificity of the saliva miRNA assay. As can be seen from Figure 34B, negative results 
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(i.e. not found in the human saliva data cluster) were obtained for the both of the cat and 

dog samples. While an extensive number of animal saliva samples were not available for 

testing, cat and dog represent animals that could be frequently encountered at crime 

scenes in forensic casework. One primate saliva sample from a spot-nosed guenon was 

also tested using the saliva miRNA assay. However, the U6b value for this sample was 

invalid (Ct > 34.5, Table 8) and therefore could not be used in further analysis. 

 As a result of the poor species specificity of the original blood assay, it was 

evident that modifications would need to be made in order to provide a more forensically 

relevant assay. Attempts were made to identify an alternative small RNA to be used for 

normalization of the miRNA expression data that would also allow for a differentiation of 

human and non-human blood stains. The expression of 11 small nucleolar RNAs 

(snoRNAs), including U26, U27, U28, U29, U30, U31, U38B, U43, U44, U48 and U90, 

was examined in both human and non-human blood samples in order to determine if a 

human specific normalizer could be identified (Table 9). Several of the snoRNAs, 

including U26, U28, U30, U44, and U90, were found in very low abundance or were not 

detected in the non-human samples. However, the abundance of these snoRNAs in the 

some of the human body fluids was also quite low (Table 9). For example, the Ct value 

for U44, U26, U28, and U90 in semen was over 40 whereas the Ct for U30 was 

acceptable for semen but was close to 40 for blood and saliva (Table 9). Therefore, none 

of the snoRNAs tested were determined to be suitable for use a universal normalizer for 

all body fluids.  
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 While an alternative universal normalizer was not identified, several of the 

snoRNAs, including U26, U28 and U44, were present in low abundance in non-human 

blood samples and in higher abundance in human blood samples. Therefore, it was 

possible that one of these snoRNAs could be used to normalize only the blood assay and 

provide the desired species specificity. U44 was selected as the top snoRNA candidate 

due to its high abundance in blood, its low abundance in the animal blood samples, but 

also because of its low abundance or absence in most of the primate samples. When the 

2D scatter plot was constructed using the U44-normalized data, the clustering that was 

achieved with the U6b-normalized assay was not achieved and overlap of the semen, 

saliva and blood data was observed (data not shown). However, it was evident from the 

2D scatter plot that there was a clear separation between the human blood data points and 

the non-human blood samples (Figure 35). As can be seen from the U44-normalized 

scatter plot, only chimpanzee was found clustered with the human blood data points 

(Figure 35). Based on these results, it was determined that the U44-normalized assay 

could be used to identify the presence of human or higher primate blood if a positive 

result for an unknown sample was obtained using the U6b-normalized blood assay.  
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miRNA BodyFluID Stability  

 

Environmentally Compromised Samples 
 
 
 Forensic biological evidence is often exposed to various damaging environmental 

influences including heat, light, humidity and rain. In order for an assay to be useful in 

forensic casework, the ability of the assay to accommodate environmentally impacted 

samples must be demonstrated. Until recently, the analysis of biological samples in 

forensic casework has largely been limited to DNA-based methods. Therefore, numerous 

studies have been published that demonstrate the ability to recover genetic profiles from 

degraded or compromised samples. The use of RNA in forensic assays, however, has 

only recently been proposed and therefore few studies have examined the stability of 

RNA in forensic biological samples. Recently, we have reported the results of an 

extensive evaluation of the persistence and stability of mRNA in forensic samples in 

which it was demonstrated that mRNA profiling can be performed successfully on 

environmentally impacted biological stains [11]. While mRNA stability was 

demonstrated in samples stored at room temperature, heat and humidity appeared to be 

detrimental to RNA stability [11]. However, since mRNAs are significantly larger in size 

compared to miRNAs, it was therefore hypothesized that miRNAs could be less 

susceptible to degradative processes due to their significantly smaller size and thus 

potentially be better suited for the analysis of environmentally impacted forensic samples. 

A recent study has reported more robust isolation and analysis of miRNAs compared to 

mRNAs in FFPE tissue samples [102].  
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 In order to assess the stability of miRNAs and to determine if the miRNA assays 

could accommodate environmentally impacted samples, body fluid stains were exposed 

to varying storage conditions such as storage at room temperature (22oC), storage at 

37oC, exposure to heat, light, humidity, and rain (outside uncovered, OUC), and exposure 

to heat, light and humidity (outside covered, OC). The samples were collected at various 

time intervals and the following samples from each condition were examined in this 

study: room temperature – 1 year, 18 months or 2 years (2 year sample examined for 

blood only); 37oC – 3 months, 6 months; outside uncovered (i.e. directly exposed to any 

precipitation) – 1 day, 3 days, 1 week; outside covered (i.e. protected from direct 

exposure to precipitation) – 3 days, 1 week, 1 month. Table 10 provides a summary of the 

range of temperatures and humidity levels that the samples were exposed to, in addition 

to the amount of precipitation (rainfall) that was observed during collection of the outside 

uncovered samples. The samples placed outside were typically exposed to average high 

temperatures of greater than 90oF and average high humidity levels of greater than 85%. 

All samples placed outside and uncovered were exposed to various amounts of rain. After 

one week of storage the blood, semen and saliva samples had received 2.7 inches of rain 

and vaginal secretions samples had received 7.6 inches of rain. Total RNA was recovered 

from each of the above mentioned samples in sufficient quantity for analysis and the 

miRNA panel was used to determine if the presence of the body fluid of origin could be 

detected. The results of this study are summarized in Table 11 and depicted in Figure 36.  
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Blood 
 
 

A positive result for blood was obtained for samples stored at room temperature 

for 2 years and 37oC for 6 months whereas the outside (both covered and uncovered) 

gave results at 1 week (Table 11, Figure 36A). All samples generating a positive result 

were located in upper right quadrant cluster with the known human blood samples 

(Figure 36A). The sample stored at 37oC for 3 months was also located in the upper right 

quadrant but was significantly separated from the human blood cluster closer to the 

location of the saliva samples (Figure 36A). Again, the appearance of the 37oC 3 month 

sample near the location of the saliva samples does not indicate that this sample would be 

identified as saliva. It simply indicates a negative result for blood for this sample as blood 

is the body fluid being tested using this assay. However, to ensure that the 37oC 3 month 

sample would not be identified as a saliva sample, the location of this sample on the 

saliva two-dimensional scatter plot was determined after testing with the miRNA saliva 

assay. A negative result for saliva was obtained (data not shown). Despite the false 

negative result for blood obtained for the particular 37oC 3 month sample and the OUC 3 

day sample, other samples stored at each condition for a longer period of time (37oC 6 

months, OUC 7 days) provided a positive result (Table 11, Figure 36A). Such sample 

variability could be due to differing microbiota colonization of the stains.  The 

identification of blood in the most exposed sample for each condition (room temperature 

2 years, 37oC 6 months, OC 1 week, OUC 1 week) demonstrates the excellent stability of 

the blood miRNA candidates.  
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Saliva  
 
 

Saliva was detectable up to a year at room temperature (22oC) (Table 11, Figure 

36B). The recovery of miRNAs from the saliva samples stored at the other environmental 

conditions was significantly reduced compared to the other body fluids. The negative 

results in four of the samples (two stored at 37oC and the 3 day and 1 week OC) were due 

to the non-detection of the U6b normalizer and not the absence of detectable miRNA 

species. The failure to detect U6b was somewhat surprising since U6b was detected in the 

other body fluids under the same storage conditions. A reduced expression of miR205 

was observed for all samples stored outside both covered and uncovered (data not 

shown).  

 

Semen  
 
 

A positive result for semen was obtained for samples stored at room temperature 

for 18 months and 37oC for 6 months whereas the outside samples gave results out to 1 

week (covered) and 1 day (uncovered) (Table 11, Figure 36C). All samples for which a 

positive result were obtained were located in the upper portion of the lower left quadrant 

clustered with the known human semen samples (Figure 36C). For the three samples with 

the negative result, U6b and miR10b were detected, however a Ct value of over 40 was 

obtained for miR135b for the OUC 3 day and 7 day samples and was undetected for the 

OC 1 month sample. The OUC 3 day sample, located near the vaginal secretion data, was 
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tested using the vaginal secretions assay to ensure that a false positive result would not be 

obtained. A negative result for vaginal secretions was obtained (data not shown). The 

ability to identify semen in samples stored at 37oC for 3-6 months and stored outside for 

1 week with exposure to almost 3 inches of rain and high temperatures and humidity 

demonstrates a high degree of stability of the miRNA biomarkers used in the semen 

assay. The detection of U6b and miR10b in the samples for which a negative result was 

obtained indicates that the stability of this assay could be even more improved if a better 

candidate were to be identified that could replace miR135b. 

 

Vaginal Secretions 
 
 

A positive result for vaginal secretions was obtained for samples stored at room 

temperature for 18 months and 37oC for 6 months whereas the outside covered samples 

gave results out to 3 days (Table 11, Figure 36D). The failure to detect miRNA in the 

outside uncovered samples could be due to sample wash out by the amount of rain that 

these samples were exposed to (e.g. the 1 week sample received over 7 inches of rain).  

In general, miRNAs appeared to be relatively stable in all body fluid samples 

stored at room temperature and 37oC for extended intervals. While exposure to 

environmental elements such as heat, humidity, light and rain appeared to be detrimental 

for the recovery of miRNAs in saliva and vaginal secretions, blood and semen were not 

as adversely affected.  It is not possible to preclude the possibility that the poor results 

with saliva and vaginal secretions are due to the overrepresentation within these samples 
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of co-extracting commensal or exogenous microbiota-derived RNA, the quantity of 

which is expected to increase with time in environmentally exposed samples.  The results 

of this initial work indicate a high degree of stability for some of the miRNA candidates 

and indicate their potential suitability for their use with forensic casework samples.  

 

Menstrual Cycle 
 
 
 The final study conducted to evaluate the stability of the miRNA BodyFluID 

assays involved an assessment of the identification of vaginal secretions in samples 

collected daily during a full 28-day cycle. Menstrual cycles are controlled by a complex 

interaction of numerous hormones that affect gene expression levels and therefore it is 

possible that the expression of certain miRNAs may also vary.  Additionally the onset of 

menopause in older females results in a significant disruption and eventual complete loss 

of regular hormone levels. In order to ascertain whether changes in female reproductive 

hormone levels would affect the identification of vaginal secretions using the miRNA 

assay, vaginal swabs from a female experiencing regular menstrual cycles and from a 

female in perimenopause were collected daily for a 28-day period. For the menstruating 

female, day 1 was indicated by the start of menstruation.  

 As can be seen from Figure 37, vaginal secretions were identified in all samples 

from both the menstruating female (Figure 37A) and the female in perimenopause 

(Figure 37B). All samples were located in the lower right quadrant clustered with the 

known vaginal secretion samples. The samples with reported menstrual blood also were 
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positive for the presence of vaginal secretions (Figure 37A). However this is expected 

since menstrual blood will contain vaginal cells and secretions. Thus no significant 

changes in the expression of the vaginal secretions miRNA candidates were observed 

during different female reproductive stages and also during regular menstrual cycles.   

 

Simulated Forensic Casework Samples 

 
 
 The initial studies described above demonstrated the sensitivity (50pg of input 

cDNA), specificity (no cross-reactivity with human tissues) and stability (detection in 

environmentally compromised samples) of the developed miRNA assays for body fluid 

identification. However, forensic evidentiary items may contain only trace amounts of 

genetic material and may also include the presence of multiple different biological fluids. 

Thus it is important to test the performance of the miRNA BodyFluID assays with such 

samples and we accomplished this by the preparation and analysis of simulated casework 

samples.  

 

Saliva  
 
 

Genetic profiles can be routinely recovered from trace amounts of salivary fluids 

from items such as used cigarette butts and beverage containers. Therefore if the presence 

of trace amounts of saliva could be detected on these items, it may provide investigators 

with an indication of which evidentiary items may be useful for the subsequent recovery 



 80

of DNA. Furthermore, saliva recovered from the skin of a victim could be useful in the 

investigation of oral assault cases. In order to determine if the saliva miRNA assay could 

detect trace amounts of saliva in such samples, total RNA was recovered from swabs of 

beverage container lids, human skin on which saliva had been deposited, and used 

cigarette butts. All of the simulated casework samples, except for one of the swabs taken 

from a beverage container lid, were located clustered with the known human saliva 

samples in the upper right quadrant (Figure 38A).  

 

Blood 
 
 
 Total RNA was recovered from the cotton pad of an adhesive bandage used to 

cover a small cut on the finger of a female donor. The cotton pad of the bandage 

contained blood in the form of a small reddish-brown stain. When the bandage sample 

was evaluated with the blood assay, the sample data was located in the upper right 

quadrant on the two-dimensional scatter plot clustered with the known blood samples 

(Figure 38B). The same sample was subsequently evaluated with the U44-normalized 

blood miRNA assay in order to determine if the blood present on the bandage was of 

human origin. The location of the sample on the two-dimensional U44-normalized scatter 

plot was upper right quadrant clustered with the known human blood samples confirming 

the presence of human blood present on the bandage (data not shown).  
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Semen and Vaginal Secretions 
 
 

A significant number of samples processed in an operational forensic DNA 

laboratory involve the analysis of evidence recovered from sexual assaults. Often only a 

small amount of semen from the perpetrator will be present amongst a vast excess of a 

female victim’s biological material. For an assay to be useful in forensic casework, it 

must be able to detect the small amount of semen that may be present and not be masked 

by the excess vaginal material present. In order to determine the potential utility of the 

semen miRNA assay for the analysis of sexual assault evidence, a vaginal and 

cervicovaginal swab was collected from a female donor 18 hours post-coitus. The vaginal 

and cervicovaginal swabs were collected in order to determine if semen would be 

detected in different regions of the vaginal canal. To insure that residual semen from 

prior sexual relations were not present, a pre-coital cervicovaginal swab was also 

obtained before coitus commenced but after an abstinence period of seven days. The 

presence of semen was detected on both the vaginal and cervicovaginal swabs taken 18 

hours post-coitus (Figure 38C). The pre-coital swab was negative for the presence of 

semen (Figure 38C). The presence of vaginal secretions was detected in the vaginal swab, 

cervicovaginal swab and the pre-swab using the vaginal secretions assay (data not 

shown).  
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Body Fluid Mixtures 
 
 

Body fluid mixtures other than the common semen-vaginal secretions 

encountered in sexual assault cases may also be present in forensic evidentiary samples. 

Thus additional body fluid mixtures samples, including two blood-semen (Figure 39) and 

one semen-saliva (Figure 40) mixtures were also evaluated. The miRNA expression 

profile for each mixture using all four body fluid assays (blood, semen, saliva, and 

vaginal secretions) was determined. Blood and semen were correctly identified in both of 

the blood-semen mixture samples (Figure 39). On the blood assay, the admixed samples 

were located in the upper right quadrant clustered with the known blood samples (Figure 

39A). On the semen assay, the samples were located in the upper portion of the lower 

right quadrant clustered with the known semen samples (Figure 39C). The absence of 

saliva and vaginal secretions was also demonstrated with the blood-semen mixture 

samples located in the lower left quadrants (Figure 39B and 39D). Semen and saliva were 

also correctly identified in the semen-saliva mixture sample with the sample clustered 

with the known samples on each plot (Figure 40B and 40C). The absence of blood and 

vaginal secretions was also demonstrated (Figured 40A and 40D). 

 

Development of a Menstrual Blood miRNA BodyFluID Assay  

 
 
 The ability to detect the presence of menstrual blood may prove invaluable in 

certain forensic cases, such as in sexual assault investigations, where the facts of the case 
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may be in dispute. For example, the presence of a victim’s blood on the clothing of a 

potential rape suspect may be explained as venous blood originating from a nose bleed 

resulting from a physical, rather than sexual, assault of the victim. However, if the blood 

was determined to be menstrual blood, it would indicate a more intimate contact between 

the victim and a potential suspect.  

 During the female reproductive cycle, if fertilization does not occur hormonal 

changes catalyze the breakdown of the endometrium lining of the uterus. Menstrual 

discharge therefore consists of tissue from the degenerating endomentrium as well as 

blood resulting from associated blood vessel rupture as the endometrium breaks away 

from the uterus. Menstrual blood is thus a complex mixture consisting of endometrium 

derived stromal, epithelial, endothelial, vascular smooth muscle, and bone marrow 

derived cells, as well as capillary blood [103,104]. Menstrual blood will therefore contain 

products that would also be detectable in venous blood or vaginal secretions. Menstrual 

blood samples were examined using the miRNA assays for all body fluids in order to 

determine if the menstrual blood samples would interfere with the identification of the 

body fluid of interest on each assay (Figure 41). The menstrual blood samples were 

separately clustered compared to venous blood using the miRNA blood assay (Figure 

41A). As can be seen from Figures 41B and 41C, the menstrual blood samples on the 

semen and saliva assays also did not overlap with the body fluid of interest. However 

when the menstrual blood samples were evaluated using the vaginal secretions miRNA 

assay, the presence of vaginal secretions was identified in many of the samples (Figure 

41D). While this is not necessarily a false positive result since menstrual blood samples 
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will contain vaginal secretions and cells, it demonstrates the need for a separate assay to 

be developed that would allow for menstrual blood and vaginal secretions samples to be 

distinguished.  

 During the initial screening of the 452 miRNAs several candidates for the 

identification of menstrual blood were identified. MiR451, which is used in the blood 

assay, was also present in high abundance in menstrual blood as well. Most of the 

miRNAs demonstrating a moderate to high abundance in menstrual blood were also 

found in significant amounts in blood or vaginal secretions. Therefore, while two specific 

miRNA candidates for menstrual blood (i.e. higher abundance in menstrual blood than 

U6b) were not identified, an assay was developed using miR451 and miR412 that 

nevertheless permitted a distinct clustering of menstrual blood samples separate from all 

other body fluids (Figure 42A). As can be seen from Figure 42A, both the venous blood 

and menstrual blood samples are located in the lower right quadrant with a majority of 

the other body fluid samples located in other quadrants. Two of the menstrual blood 

samples were not located within the cluster of other known menstrual blood samples 

(Figure 42A). While one of these samples was present in the lower right quadrant, it was 

not located within the cluster of menstrual blood samples (Figure 42A). A false negative 

result was obtained from the other menstrual blood sample that was located in the lower 

left quadrant (Figure 42A).  Despite these two discordant samples, a clear distinction can 

be made between the venous blood and menstrual blood samples. There is no overlap 

between the menstrual blood and vaginal secretions samples with the vaginal samples 

located in the lower left quadrant (Figure 42A).  Importantly, therefore, a menstrual blood 
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sample should provide a positive result for the vaginal secretion and menstrual blood 

assays whereas a vaginal secretions sample should only provide a positive result on the 

vaginal section assay. The specificity of the menstrual blood assay was further 

demonstrated with the location of all twenty-one previously tested tissue samples located 

in the lower left quadrant clearly separated from the known menstrual blood samples 

(Figure 42B).  

 Similar to the vaginal secretions assay, the expression of the menstrual blood 

miRNA candidates during a 28-day period (Day 1 = first day of menstruation) were 

evaluated to ascertain whether significant changes in expression would occur. Menstrual 

blood was reported on days 1 – 4, with a significant reduction in the amount of menstrual 

blood present on day 4. As can be seen from Figure 43, menstrual blood was detected in 

the day 1 – 3 samples but was not detected in the day 4 sample. All other samples 

collected during the 28-day period (days 5 – 28) were also negative for the presence on 

menstrual blood (Figure 43).  

 Venous blood and vaginal secretions were located at opposite ends of the two-

dimensional scatter plot in the lower right and lower left quadrants respectively (Figure 

42-44). Since menstrual blood was located somewhat in between these two body fluid 

clusters, it needed to be demonstrated that a mixture of venous blood and vaginal 

secretions would not be located within the cluster of menstrual blood samples. When two 

different venous blood-vaginal secretion mixtures were evaluated with the menstrual 

blood assay, both were located in the lower right quadrant clustered with the known 
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venous blood samples (Figure 44). This further supported the specificity of the developed 

assay for menstrual blood.  

 

miRNA Profiling Schema for the Analysis of Unknown Biological Samples 

 
 
 A proposed experimental schema for the analysis of biological stains of unknown 

origin using the miRNA body fluid identification assays is provided in Figure 45. First, 

total RNA is isolated from an unknown biological stain. The use of a standard guanidine 

isothiocyanate-phenol:chloroform based extraction method allowed for the recovery of 

miRNAs in total RNA extracts. Numerous non-organic, silica-based extraction kits are 

now commercially available for the recovery of miRNAs and, in contradistinction to the 

phenol-chloroforms methods, are easily transferable to an automated platform. Thus these 

kits may prove more suitable for use in forensic casework although the quantity and 

quality of the recovered miRNAs from forensic stains would have to be evaluated in 

separate studies.  An appropriate amount of total RNA (~1-5ng) would be used for 

reverse transcription (RT) (e.g. the miScript system from Qiagen). Unlike other 

commercially available miRNA systems that employ miRNA-specific reverse 

transcription strategies, the miScript system allows cDNA to be produced from all RNA 

species within the sample, including mRNAs and other small non-coding RNAs. This 

could be advantageous in forensic casework where multiple individual reverse 

transcription reactions required to analyze a sufficient amount of miRNAs may not be 

possible due to a limited amount of genetic material recovered from most evidentiary 
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items. The ability to simultaneously reverse transcribe other RNA species, such as 

mRNAs, may also be useful if parallel assays need to be performed for the detection of 

tissue specific mRNAs or housekeeping genes. An appropriate volume of the RT product 

to obtain 50pg (for the blood, saliva, vaginal secretions and menstrual blood assays) or 

500pg (for the semen assay) cDNA would be used in the miRNA quantitative real time 

PCR (QT-PCR) assay which, in our case, uses the miScript SYBR Green PCR system 

and a miRNA specific primer. The detection of each miRNA must be performed in a 

separate reaction well since all assays utilize SYBR Green for detection and therefore 

cannot be multiplexed. However, the entire miRNA panel (9 miRNAs and 2 normalizers, 

U6b and U44) can be analyzed from a single RT product.  So while the miRNAs cannot 

be analyzed in a multiplex format, numerous RT reactions are not required for the 

examination of multiple miRNAs in the same sample. The Ct values for each miRNA are 

then evaluated to ensure all obtained values are within acceptable ranges (Table 8). Any 

data not within the acceptable range is rejected and would need to be repeated. All 

acceptable expression data would then be normalized using U6b in which the Ct value of 

the miRNA is subtracted from the Ct value of U6b. The ΔCt values for the two miRNAs 

for each body fluid would then be used to position the unknown sample on the two-

dimensional scatter plot for each body fluid. The identification of the presence of the 

body fluid would be confirmed if the unknown sample was found within the cluster of 

known body fluid samples. If a positive result is obtained for blood, ΔCt values using 

U44 for miR451 and miR16 would then be calculated and used to determine the species 
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of origin. The presence of human (or higher primate) blood would be indicated by the 

presence of the unknown sample within the cluster of human blood samples.   
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CHAPTER FIVE: RESULTS –ENHANCED PROFILING STRATEGIES 
FOR LOW TEMPLATE SAMPLE ANALYSIS 

 

Low Template Samples 

 
 
 Short tandem repeats (STRs) are regions of repetitive DNA where the repeat unit 

is 2-6 bases in length. The number of repeat units differs between individuals. For 

autosomal STR loci, one or two alleles can be present at a single locus, providing a 

homozygous or heterozygous genotype respectively. For standard samples (> 500pg of 

input template DNA), profile recovery and analysis is relatively straightforward. 

However, forensic casework evidentiary items often contain less than 100 pg of template 

DNA, which is equivalent to approximately 15 diploid or 30 haploid cells.  The presence 

of such low template samples could be due to several factors including: damaged or 

degraded DNA, oligospermic or aspermic perpetrators or from extended interval post 

coital samples, where sperm have been lost over time due to the effects of drainage or 

host cell metabolism. Other trace biological evidence will also contain small quantities of 

cells, including fingerprints, particulate matter, and aerosols [105-107].  Since only a 

small number of cells are present in LCN (short tandem repeat) methods and often results 

in total failure or recovery of a partial profile.  If partial profiles are recovered, 

interpretation of the data obtained from these LCN analyzed samples requires novel 

considerations [64-66]. The occurrence of allelic drop-out or drop-in is significantly 

higher in LCN samples due to stochastic effects, and can result in false homozygous 

classifications and in false heterozygous classifications, respectively (Figure 46). 
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Additionally, LCN samples exhibit significant peak height imbalance and are more 

susceptible to interference from contamination (Figure 46). The frequency of LCN 

samples in forensic casework warrants development of additional methodologies to ICN 

that allow for more successful recovery of genetic information. 

 

Laser Capture Micro-dissection 

 
 
 Laser capture micro-dissection is a technology that allows for the isolation of 

single cells or groups of cells from various samples. The use of laser capture micro-

dissection was employed in this study in order to accurately control the number of cells 

being analyzed in an individual sample. Several laser capture micro-dissection 

instruments are currently available that utilize either a direct contact or no-contact micro-

dissection approach. Direct contact laser capture micro-dissection instruments involve a 

laser being positioned and fired directly over the cells of interest. This approach may 

cause damage to targeted cells, particularly if only a small number of cells are collected. 

No-contact laser capture micro-dissection instruments use a laser to cut around the cell of 

interest thereby reducing any potential damage that may be caused to the sample by 

exposure to direct laser contact. For the current work, a direct contact (Arcturus PixCell 

II) and a no-contact (Leica LMD) laser capture micro-dissection instrument were 

available for comparison. Each instrument was evaluated for ease of use, time and labor 

intensity, amenability to downstream applications and recovery of genetic profiles from 

micro-dissected cells.  
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Arcturus PixCell II System 
 
 
 The Arcturus PixCell II system utilizes direct-contact laser capture micro-

dissection. A specimen on a standard glass microscope slide is prepared and dehydrated. 

The slide is positioned on the stage of the instrument and held in place by a small 

vacuum. The stage is then manipulated by a joystick attached to the stage. The highest 

provided magnification objective is 40X (400x magnification). Cells of interest are 

brought into focus and the laser power and pulse duration can be adjusted. For sample 

collection, a sample cap is used that is coated with a thermoplastic polymer. The sample 

cap is placed directly onto the specimen slide and the laser is fired over cells of interest 

(Figure 47A). The laser causes the thermoplastic film to “melt” over the cells of interest. 

As the film quickly cools, the cell is attached to the film and can be removed from the 

specimen slide by lifting the cap off the surface (Figure 47B). The cap can be placed onto 

a clean glass slide in order to ensure that the cells have been removed from the specimen 

slide and are present on the cap surface (Figure 47C). A plastic ExtracSureTM device 

containing a hollow center is placed over the cap. Lysis buffer is then added into the 

ExtracSureTM device covering the sample area with the collected cells of interest. A 

0.5mL tube is then placed over the ExtracSureTM device. A pre-heated heat block is then 

placed over the sample tray and placed into an incubator for lysis.  

 The direct contact laser-capture micro-dissection approach of the Arcturus 

PixCell II system provides the ability to isolate cells from standard glass slides. This 

would allow for the collection of cells from archived casework slides. However, several 

challenges with sample collection using the Arcturus PixCell II system were encountered. 
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If any moisture was present in the sample, the thermoplastic film would not adhere to the 

cells. The dehydration steps of the staining procedure had to be repeated in order for the 

cells to be collected. Often times the additional dehydration steps did not result in 

successful removal of cells from the prepared slides. On numerous occasions due to the 

extremely high humidity occurring during Florida afternoons, the slide would acquire 

moisture during sample collection and therefore would need to be re-dehydrated before 

additional cells could be collected. Additionally, the size of the laser pulse could not be 

made small enough to target the size of a sperm cell. Therefore if a sperm cell was 

adhering to an epithelial cell (Figure 48A), the size of the laser pulse caused the 

thermoplastic film to coat the sperm cell and a portion of the epithelial cell (Figure 48B). 

When the cap is lifted, the epithelial cell was collected with the sperm cell (Figure 48B 

and 48C). The lysis protocol for the PixCell II samples had to be amendable to being 

performed in an incubator, with no direct contact between the sample and heat. The 

sample and lysis buffer were enclosed in the plastic ExtracSureTM device. When the lysis 

is completed the entire sample device has to be inverted and centrifuged in order to 

collect the sample into the 0.5mL tube. Using various direct lysis methods, hundreds of 

cells were needed for a partial profile to be recovered using the Arcturus PixCell II 

system (data not shown). 

 It was possible that the small amount of nuclear material obtained from lysis of a 

small number of cells was adhering to the walls of the ExtracSureTM chamber and 

therefore was lost during sample manipulation. Collection into a 0.5mL tube also 

required the cell lysate to be transferred to a 0.2mL PCR tube for amplification increasing 
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the potential for sample loss. Additional collection strategies were attempted in order to 

reduce the amount of sample manipulation and potential sample loss. The collection area 

in the thermoplastic film was cut out from the cap surface and the film with attached cells 

was placed directly into a 0.2mL or 0.5mL tube containing an appropriate amount of lysis 

buffer. The tubes could then be placed in a heat block or thermocycler for direct contact 

with heat during the lysis protocol. Additionally, excess film outside of the collection 

area on the cap surface was removed and the lysis buffer placed directly on the remaining 

film area where cells were attached. A 0.5mL tube was placed over the cap without the 

use of the ExtracSureTM device and the lysis performed in an incubator. These modified 

approaches provided only a slight improvement in profile recovery (data not shown) and 

required a significant amount of sample manipulation and the use of a disposable scalpel. 

These methods would not be amenable to the current requirements and resources of 

operational casework laboratories and therefore no further work was performed using the 

Arcturus PixCell II system.  

 

Leica LMD  
 
 
 The Leica LMD system utilizes no-contact laser micro-dissection. A specimen is 

heated fixed to a slide covered with a proprietary membrane and stained. As a result of 

the need for samples to be placed on the membrane slides, cells could not be easily 

collected from archived casework glass slides. The highest provided objective for the 

Leica LMD system is 63x (630x magnification) allowing for easier viewing of sperm cell 
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samples. The slide is placed sample side down into the slide holder and inserted onto the 

microscope stage. Manipulation of the stage, microscope focus, light intensity and 

magnification power are all controlled by a joystick separate from the microscope itself. 

Underneath the stage are the sample collection tubes. There are four chambers where a 

flat-capped 0.2mL PCR tube is placed. A small volume of lysis buffer is placed in the 

sample cap. The power and speed of the laser, as well as the cap position, are all 

controlled in the software provided with the instrument. Cells of interest are brought into 

focus (Figure 49A) and then outlined using pre-made shapes or drawn by hand (Figure 

49B). The laser then cuts along the specified paths and cuts out the cells of interest from 

the surrounding membrane (Figure 49C). The cells will then fall by gravity into the 

sample collection tube located underneath the stage.  Once samples have been collected, 

the tubes can be closed and briefly centrifuged. The lysis can then be performed in a 

thermocycler and subsequent amplifications can be performed in the same tube.  

 The no-contact laser capture micro-dissection approach of the Leica LMD 

systems eliminates potential damage to cells by direct exposure to the laser. Due to the 

ability of the laser to cut around a small area, an individual sperm cell head can be 

outlined and cut by the laser (Figure 49). This allows sperm cells adhering to epithelial 

cells to be isolated without collecting the nucleus of the epithelial cells as well (Figure 

50). This is a significant advantage over the PixCell II system particularly when dealing 

with sexual assault evidence where sperm may frequently be found adhering to epithelial 

cells. The ability to collect cells into 0.2mL PCR tube allows for the lysis to be performed 
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in thermocycler with more precision temperature control and allows for subsequent 

amplifications to be performed in the same tube.  

 

Direct Lysis Strategies 

 
 
 Experiments were conducted to evaluate various direct lysis buffers in order to 

determine which buffer was the most efficient for epithelial and sperm cell lysis (data not 

shown). Various proteinase K and alkaline lysis buffers were tested, as well as several 

commercially available lysis buffers including the Quick ExtractTM lysis buffer 

(Epicentre), Lyse-N-Go (Pierce), and DNAzol® Direct (Molecular Research Center, Inc). 

In order to evaluate these lysis buffers, cell suspensions were prepared from semen and 

buccal epithelial cell swabs. Cell numbers were determined using by cell counting using a 

hemacytometer. Serial dilutions of each extract were prepared, ranging from 1 to 1000-

1500 cells. The cell suspensions were lysed with the appropriate buffer and reactions 

conditions (obtained from published materials or manufacturer’s protocols). The samples 

were amplified with Profiler Plus® (standard conditions) in order to determine the 

efficiency of lysis using each buffer. Those buffers that allowed for recovery of partial to 

full profiles from smaller numbers of cells were further examined. In order to ensure that 

the lysis buffer was responsible for the lysis of the cells, lysis buffer was added to a small 

aliquot of a cell suspension. This was placed in a hemacytometer and the cell lysis was 

observed under the microscope as it occurred. Two of commercially available lysis 
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buffers, Quick ExtractTM and Lyse-N-Go, resulted in the most efficient cell lysis (data not 

shown).  

 The two commercially available lysis buffers, Quick ExtractTM and Lyse-N-Go 

were then further evaluated in order to determine which buffer would be most suitable for 

use with LCM samples. Both buffers required only a small volume to be used (10-15μl) 

and used a short lysis protocol (8-30 minutes). The use of the Quick ExtractTM lysis 

buffer required the use of an alternative polymerase, the Expand High Fidelity 

polymerase. The High Fidelity polymerase is a mixture of Taq polymerase and Tgo 

polymerase. The Tgo polymerase is a “proofreading” enzyme, possessing a 3’-5’ 

exonuclease activity. It is reported that the use of this mixture of polymerases results in a 

three-fold greater accuracy than Taq alone. The Lyse-N-Go buffer allowed for 

amplification with Taq Gold. Both buffers allowed for recovery of STR profiles from 

LCM samples; however fewer cells were required with the Quick ExtractTM buffer with 

the alternative polymerase (data not shown). Additionally, increased amounts of allele 

drop-in were observed for the Lyse-N-Go buffer (data not shown). Therefore it was 

determined that the Quick ExtractTM lysis buffer would be most suitable for use with 

LCM samples. Optimization of the Quick ExtractTM lysis buffer was performed and 

included an evaluation of the volume of lysis buffer needed, the length and temperatures 

of the incubation steps, and the addition of additional reagents such as DTT (data not 

shown). The most efficient cell lysis (for both sperm and epithelial cells) was obtained 

when the manufacturer’s lysis protocol was utilized except for the addition of 0.39M 

DTT (data not shown).  
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Evaluation of the Developed Direct Lysis Strategy 

 
 
 Once the laser capture micro-dissection conditions and the lysis protocol had been 

optimized, the optimized conditions were evaluated by amplification of a range of sperm 

cells at various amplification cycles (Table 12). One, five, and ten to one hundred sperm 

cells (in ten cell increments) were collected using the Leica LMD system and lysed using 

the optimized Quick ExtractTM lysis method. The 10μl lysates were then amplified using 

the Profiler Plus® amplification kit (25μl reaction, 5U High Fidelity polymerase). Various 

amplification cycle numbers were tested including 28 (standard), 32, 34 and 36. RFU 

thresholds of 50, 100, and 150 were used to provide an indication of the signal intensities 

of the recovered alleles. The number of alleles recovered (out of a possible 20 – 9 STRs 

and AMEL) were recorded (Table 12). Using 28 amplification cycles, 100 or more sperm 

cells were needed before a full STR profile could consistently be obtained. Even with this 

number of cells, the signal intensity of many alleles was quite poor and often below 150 

RFUs (Table 12). The use of four additional cycles (32 cycles) above the standard 28 

cycles resulted in the need for 80-90 sperm cells for consistent profiles to be recovered 

(Table 12). The use of six additional cycles (34 cycles) above the standard 28 cycles 

resulted in the need for only 40-50 sperm cells for consistent profiles (Table 12). When 

eight additional cycles (36 cycles) were used, as few as five to ten sperm cells were 

required for minimal quality profiles (Figure 51A, Table 12). A minimal quality profile 

demonstrates typical low template sample problems including peak imbalance and allele 

drop-out. Ninety sperm cells were needed for a higher quality profile using 36 
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amplification cycles (Figure 51B, Table 12). With this number of cells, peak imbalance 

was improved and fewer allele drop-ins were observed. As can be seen from Table 12 in 

the early stages of the project a significant amount of allele drop-in was observed. As the 

project progressed, the number of allele drop-ins was significant reduced. As a result, the 

use of 5U of High Fidelity polymerase and 36 amplification cycles for use with STR 

amplifications was determined to be optimal.  

 

Analysis of Single Source Low Template Samples 

 
 
 Single source epithelial (buccal and vaginal) and sperm cells were tested to 

further evaluate the optimized method involving the use of the Leica LMD system and 

the Quick ExtractTM lysis method. Various numbers of sperm cells had been examined 

during the test of the optimized conditions and the number of cells needed for minimal 

and optimal quality profiles determined (Table 12). Therefore, single source epithelial 

cell samples were analyzed using the optimized amplification conditions (36 cycles, 5U 

High Fidelity polymerase). One to ten epithelial cells were collected and lysed with the 

Quick ExtractTM lysis solution. Two to five epithelial cells were needed in order to obtain 

minimal quality profiles (data not shown). Full autosomal STR profiles were recovered 

from a single buccal (Figure 52A) and a single vaginal (Figure 52B) epithelial cell. 

However, there was only partial success with profile recovery from single epithelial cells 

(2/5 or 40%).  
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 The previous experiments had involved the collection of full epithelial cells for 

analysis. Since a direct lysis strategy was developed, proteins and other cell debris are 

present in the lysate. Additional purification steps could not be incorporated prior to 

amplification due to the potential to lose the small amount of genetic material that was 

present with sample manipulations and purification steps. An advantage of the Leica 

LMD system was that it provided ability to isolate and collect small regions of interest, 

allowing for portions of epithelial cells to be collected rather than whole cells. For these 

studies, recovery of DNA from the micro-dissected cells was of particular interest and 

therefore only the cell nucleus would be required. It was thought that if only cell nuclei 

were collected, the amount of unwanted protein and cellular debris could be reduced 

allowing for a possible improvement in the efficiency of profile recovery from the micro-

dissected cells. Nucleus-only portions of epithelial cells were collected to determine if 

full autosomal STR profiles would be obtained. Full autosomal profiles could be obtained 

from as few as 10 nuclei (data not shown). However, there was not a significant 

improvement in allelic signal or the number of cells required for a full profile compared 

to whole cell collections (data not shown).  

 

Analysis of Non-distinguishable Cell Type Mixtures 

 
 
 An advantage of using laser capture micro-dissection techniques is the ability to 

isolate individual cells. This could be advantageous if a mixture is present, providing the 

ability to isolate individual contributors. However, in some samples the presence of a 
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mixture may not be visibly apparent due to the presence of non-distinguishable cell types. 

In these instances, cells from multiple donors would be collected. It was therefore 

necessary to ensure that the Leica-Quick ExtractTM method and the optimized 

amplification conditions could accommodate mixture samples and result in the recovery 

of two STR profiles.  

 The first type of non-distinguishable cell type mixture that was examined was 

sperm-sperm cell mixtures. The sperm-sperm mixture was artificially created by 

combining two semen samples in a 1:1 ratio. Various numbers of sperm cells were then 

collected ranging from 5 to 100 cells (Table 13). The samples were amplified with 

Profiler Plus® (5U of High Fidelity polymerase, 36 amplification). As few as thirty cells 

were required in order to obtain two full autosomal STR profiles from both male 

contributors (Table 13). Significant partial profiles were recovered when fewer than thirty 

cells were collected.  

 The next type of mixture that was examined was epithelial cell mixtures. Vaginal 

(female) and buccal (male) epithelial cells were mixed in a 1:1 ratio and various numbers 

of epithelial cells were collected, ranging from five to thirty cells (Table 14). The samples 

were amplified with the COFiler® PCR Amplification kit (5U of High Fidelity 

polymerase, 36 amplification cycles). Partial and full profiles were observed for one 

contributor when five to ten cells were collected (Table 14). Two full autosomal profiles 

were consistently observed when twenty epithelial cells were collected (Table 14).  

 These results indicate that the developed lysis and amplification strategy to would 

be able to provide an indication of the presence of a mixture and to recover a genetic 
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profile from multiple donors. It was interesting to note that an expect number of cells 

were needed to recover full profiles from both donors than would have been expected. 

For example, it was determined that five to ten sperm cells and two to five epithelial cells 

from single source slides were needed to obtain acceptable STR profiles. Therefore, it 

would be expected that full two STR profiles would be recovered from 10-20 sperm cells 

and 4-10 epithelial cells in a two-donor 1:1 mixture. Thirty sperm cells and 20 epithelial 

cells were necessary to consistently obtained full profiles from both donors. It is possible 

however that, even though the mixture was created in a 1:1 ratio, unequal amounts of 

cells were collected from both donors. This is particular evident in the epithelial cell 

mixture results (Table 14). Three 10-cell collections were analyzed and differing number 

of male alleles were recovered. It is therefore possible that fewer and differing numbers 

of male cells were collected in each sample, thus resulting in the failure to recover 

complete profiles. For example, in the second 10-cell collection 8/14 male and 14/14 

female alleles were recovered. It is possible that as few as 2 male cells could have been 

collected in comparison to 8 female cells and this accounting for the difference in the 

number of alleles obtained.  

 

Analysis of Mock Casework Samples 

 
 
 The previous samples examined involved single source samples and artificially 

created mixture samples. Additional studies were conducted that included mock 

casework samples. These samples included vaginal post coital swabs (distinguishable cell 
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type mixtures), a semen stained t-shirt that had been stored at room temperature for 3.5 

years, a semen sample from a vasectomized male, a menstrual blood swab and a used 

beverage container lid. The results of these experiments involving mock casework 

samples demonstrate the potential future application of the optimized Leica-Quick 

ExtractTM method and optimized amplification strategy (36 cycles, 5U High Fidelity 

polymerase) to the tools available to operational forensic crime laboratories.  

 

3.5 Year Old Semen-Stained T-Shirt 
 
 
 A small portion of the semen-stained t-shirt that had been stored at room 

temperature for 3.5 years was collected. When the cell suspension from this sample was 

examined, a large number of cells still adhering to fibers from the t-shirt were observed 

(data not shown). Several sperm cells were located detached from fibers and were 

collected for analysis. A full autosomal STR profile was recovered from 15 sperm cells 

collected from the 3.5 year old semen stained t-shirt with no loss of the larger alleles as is 

expected with degraded DNA (data not shown).  

 

Semen Sample from a Vasectomized Male 
 
 
 While it is expected that no sperm would be present in a semen sample from a 

vasectomized male, it was thought that a small number of epithelial cells from the male 

reproductive tract may be present. A semen sample from a vasectomized male was 
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obtained and examined for the presence of epithelial cells. A small number of epithelial 

cells were observed. A single epithelial cell was collected, lysed using the Quick 

ExtractTM lysis method, and amplified using the COFiler® Amplification kit (5U High 

Fidelity polymerase, 36 amplification cycles). A picture of the actual cell collected for 

analysis is provided in Figure 53 (bottom left). A full autosomal profile was recovered 

from the single epithelial cell (Figure 53). Despite the presence of a full profile, 

significant peak imbalance could be observed particularly at the TH01, CFS1PO and 

amelogenin loci. 

 

Beverage Container Lid 
 
 
 A beverage container lid that had been used by a male participant was swabbed 

and a small number of epithelial cells were recovered, lysed using the Quick ExtractTM 

method and amplified (5U High Fidelity polymerase, 36 amplification cycles). Analysis 

of two (Figure 54A) and three (Figure 54B) epithelial cells from the beverage container 

lid resulted in the recovery of an STR profile with only one allele drop-out and a full STR 

profile, respectively.  

 

Menstrual Blood Swab 
 
 
 Blood samples had previously not been included in any studies conducted as it 

was difficult to recover in tact cells from a blood cell suspension. A menstrual blood 
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swab was examined since it was possible that a larger number of epithelial cells might be 

present. A three cell sample from the menstrual blood swab resulted in almost a complete 

STR profile, with only one allele drop out at the vWA locus (Figure 55A). A five cell 

sample from the same menstrual blood swab resulted in the recovery of a full STR profile 

(Figure 55B). There were several alleles present not originating from the donor in the 

study. While this sample was not examined for the presence of semen, the possibility that 

these alleles originated from possible trace amounts of semen cannot be eliminated.  

  

Cervico-Vaginal Post Coital Swabs 
 
 
 The final mock casework samples that were examined with vaginal post coital 

swabs collected 12 and 36 hours after intercourse. Laser capture micro-dissection has 

been suggested as a differential extraction tool, separating sperm and non-sperm fractions 

prior to analysis. However, as described previously, often sperm cells are found adhering 

to epithelial cells and cannot be separated if they are close or on top of the epithelial cell 

nucleus. Attempts were made to locate and collect sperm cells not fully adhering to 

epithelial cells. However, due to the overwhelming amount of vaginal material present on 

the slide, isolated sperm cells were not frequently observed. A full autosomal STR profile 

was recovered from twenty-five sperm cells collected from the 12 hour sample, with no 

alleles recovered from the female donor in the study (data not shown). Since a larger 

number of sperm cells were present in this sample, sperm cells not adhering to epithelial 

cells were located and collected. However, fewer sperm cells were present in the 36 hour 
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sample. A full male and female donor autosomal STR profile was recovered from the 

analysis of twenty-five sperm cells collected from the 36-hour sample. This data indicates 

the potential advantage of the use of laser capture micro-dissection in the analysis of low 

template samples, but not necessarily as a replacement for a differential extraction as has 

been previously suggested.  

  

Evaluation of Whole Genome Amplification (WGA) Strategies  

 
 
 An evaluation of existing whole genome amplification methods was performed in 

order to determine if their application to low template samples would result in the ability 

to recover full STR profiles from a smaller input DNA amounts. This survey of existing 

whole genome amplification methods resulted in the development of the modified 

improved primer extension pre-amplification (mIPEP) method [90]. A basic diagram of 

the primer extension pre-amplification is provided in Figure 56. Random 15-mer primers 

hybridize through the genome and extension from these primers occurs during a larger 

number of low-stringency (low annealing temperature) amplification cycles. The 

developed mIPEP strategy is a modified version of and improved PEP method (IPEP). It 

differs from the IPEP method in several ways: 1) it utilizes a different mixture of 

polymerases – Taq polymerase (“processive”) and Tgo polymerase (“proofreading”), 

contained in the Expand High Fidelity polymerase (Roche Applied Science); 2) it utilizes 

significantly increased concentrations of the High Fidelity polymerase and primers; 3) 

removes an additional elongation step during the amplification process; 4) eliminates the 
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addition of gelatin to the amplification mix. These modifications resulted in the ability of 

the mIPEP method to successfully recover full STR profiles with as little as 5pg of input 

DNA, recover profiles from environmentally compromised blood samples, and from 

single dermal ridge fingerprints [90]. However all of the samples used in the initial 

development of this method were samples extracted using a standard organic extraction, 

allowing for removal of cell debris and proteins. The mIPEP method needed to be 

evaluated with micro-dissected cells in order to determine if additional modifications to 

the reaction components or amplification conditions would need to be made in order to 

accommodate micro-dissected cell lysates.  

 Initially, ten microliter cell-lysates were used directly in a mIPEP amplification 

using original conditions [90]. In order to evaluate the efficiency of the mIPEP 

amplification method, the mIPEP products were quantitated using the Quantifiler® 

Human Real-time PCR quantitation kit. Quantitation of sperm (Figure 57A) and 

epithelial cells (Figure 57B) indicate that amplification of unstained cells results in the 

highest fold increase after mIPEP amplification. For sperm cells, smaller numbers of 

unstained cells resulted in higher fold increases (Figure 57A). For epithelial cells, larger 

fold increases were observed with larger numbers of cells (Figure 57B). For both 

epithelial and sperm cells, the use of the Christmas tree stain resulted in little to no fold 

increase. As a result of this study, unstained and H&E stained cells were used in 

subsequent testing.  
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Analysis of Micro-dissected Cells with Prior mIPEP Amplification 

 

Single Source Samples 
 
 
 An advantage of the use of prior whole genome amplification is that sufficient 

amounts of sample are produced that may permit the use of standard amplification 

conditions in subsequent STR amplifications. The use of the Quick ExtractTM buffer 

resulted in the inability to use Taq Gold polymerase in STR amplifications. In order to 

determine if standard conditions could be used after prior mIPEP amplification, aliquots 

of the mIPEP products were amplified with STR amplification kits using standard 

amplification cycle numbers and standard amounts of Taq Gold. It was determined that 

for the Profiler Plus® and COFiler® amplification kits, two times the amount of Taq Gold 

could be used in order to obtain greater sensitivity (data not shown).  

 Ten buccal epithelial cells were lysed and amplified with mIPEP. The mIPEP 

products were quantitated and 155pg of the mIPEP product was used for amplification 

with both COFiler® (Figure 58A) and Profiler Plus® (Figure 58B). Full STR profiles were 

recovered using both multiplex systems. There appeared to be an improvement in peak 

height balance at heterozygous loci using prior mIPEP amplification for most loci, with 

the exception of the D16 locus in the COFiler® profile (Figure 58). Additional STR 

multiplex systems, including Identifiler® (15 locus multiplex system), MinifilerTM 

(reduced sized amplicons), and Yfiler® (Y chromosome STR multiplex), were also 

evaluated for use with the mIPEP amplification products. Each of these multiplex 
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systems was previously tested with the non-WGA strategy and each failed to result in the 

recovery of profiles from either sperm or epithelial cells. Since these multiplex systems 

are more frequently being used in forensic casework, they were re-evaluated with the 

mIPEP products in order to determine if profiles could be recovered from micro-dissected 

cells. A partial profile recovered from 5 epithelial cells using the IdentifilerTM 

amplification kit is shown in Figure 59. A genotype was not recovered at two loci (D13 

and FGA) and one allele at the heterozygous D3 locus was also not recovered. However, 

the partial profile that was recovered was a significant improvement compared to the 

complete failure to recovery any genetic information from the non-mIPEP amplified 

micro-dissected cells. With more loci contained in this single multiplex system than 

Profiler Plus® or COFiler®, the partial profile recovered with the IdentifilerTM multiplex 

may still result in a higher discrimination than a complete profile with either of the 

smaller multiplexes. A full profile was also obtained from 10 micro-dissected epithelial 

cells pre-amplified with mIPEP using the MinifilerTM multiplex system (Figure 60). This 

multiplex contains reduced sized amplicons to be more suitable for use with degraded or 

low template samples. However, frequently only limited partial profiles were obtained. 

 In addition to the numerous autosomal STR multiplex systems available, a Y-

chromosome STR multiplex (Yfiler®) that specifically targets male DNA, is also 

available. Figure 61 shows a Y-STR profile recovered from 10 mIPEP-amplified micro-

dissected epithelial cells, with only one locus not recovered (DYS392). This multiplex 

system could be advantageous for use with low template samples since Y-STR loci are 
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hemizygous in nature and would therefore eliminate potential interpretation difficulties 

due to peak imbalances.  

 In additional to epithelial cells, micro-dissected sperm cells were also evaluated 

using mIPEP pre-amplification. Figure 62 shows two autosomal STR profiles recovered 

from 10 mIPEP-amplified micro-dissected cells. Ninety-eight picograms of the mIPEP 

product were used to recover nearly complete COFiler® (Figure 62A) and Profiler Plus® 

(Figure 62B) profiles. Allele drop-out at the D7 locus was observed in the Profiler Plus® 

profile and a complete locus drop-out of the D7 locus in the COFiler® profile was also 

observed (Figure 62). For a majority of the mIPEP pre-amplified samples, allele or locus 

drop-out at the D7 locus was observed. A nearly complete Yfiler® profile, with one locus 

drop-out at DYS392, was obtained from 15 mIPEP-amplified micro-dissected sperm cells 

(Figure 63).  

 The results of the single source samples indicated that the use of prior mIPEP 

amplification would not result in the ability to recover STR profiles from smaller 

numbers of cells. However, it did result in improved sensitivity in that STR profiles could 

be recovered from the same number of cells using standard conditions (28 amplification 

cycles, Taq Gold polymerase) rather than increased cycle number (36 cycles) and an 

alternative polymerase. These are the conditions currently used in operational crime 

laboratories, thus allowing for an easier incorporation of the developed strategies into 

casework without additional validation.  
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Mock Casework Samples 
 
 
 Additional studies were conducted to evaluate the use of prior mIPEP 

amplification of mock casework samples, including a semen stained t-shirt that had been 

stored at room temperature for 40 months, a used beverage container lid, and vaginal post 

coital swabs. Fifteen sperm cells were collected from the 40 month old semen stained t-

shirt and were amplified with mIPEP. One nanogram of the mIPEP product was 

amplified with Profiler Plus® (28 amplification cycles, 5U Taq Gold polymerase) and a 

full STR profile was obtained (Figure 64). Ten epithelial cells were collected from a 

beverage container lid that had been used by a female participant and amplified with 

mIPEP. Four picograms of the mIPEP product was amplified with Profiler Plus® (28 

amplification cycles, 5U Taq Gold polymerase) and a full STR profile was obtained (data 

not shown). Ten and fifteen sperm cells were collected from a 24 hour post coital swab 

and amplified with mIPEP. Aliquots of the mIPEP product (~860pg and ~2.1ng, 

respectively) were amplified with Profiler Plus® (28 amplification cycles, 5U Taq Gold 

polymerase). A partial profile was recovered from the 10 sperm cell sample (data not 

shown) with a failure to recover an allele at the D18 locus and both alleles at the D7 

locus. A nearly full profile was recovered from the 15 sperm cell sample (data not shown) 

with only one allele not recovered at the D7 locus.  
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Reproducibility Studies 

 
 
 Multiple amplifications of the same low template sample can be performed in 

order to determine if an artifact is consistently observed or is due to stochastic effects. 

However, often there is in sufficient quantities of low template samples to permit 

multiple amplifications. When a direct lysis approach is used for a small number of 

micro-dissected cells, the entire lysate is used in a single amplification reaction and 

therefore could not be amplified more than once. A potential advantage of the use of 

whole genome amplification methods for low template samples is that sufficient amounts 

of the sample are produced allowing for multiple amplifications with the same 

amplification kit or with several different amplification kits.  

 In order to evaluate the reproducibility of profiles obtained from mIPEP 

amplification products two sets of experiments were conducted. The first was to collect 

multiple samples containing the same number of cells (10 epithelial and 25 sperm cells) 

from single source samples. These samples were amplified in separate mIPEP 

amplifications and similar quantities of mIPEP product were amplified in subsequent 

STR amplifications to ensure that relatively consistent profiles would be recovered. The 

profiles recovered from these separate mIPEP amplifications were relatively consistent 

(data not shown). However, some differences in peak balance and allele drop-out were 

observed between samples due to the low-template nature of the original sample (data not 

shown).  



 112

 The second type of experiment was to perform multiple amplifications from the 

same mIPEP product to ensure that consistent profiles would be obtained. The multiple 

amplifications included the use of the same multiplex system multiple times or different 

multiplex systems. An example of multiple amplifications from the same mIPEP product 

(two aliquots of the same mIPEP product from 25 sperm cells amplified in separate 

Profiler Plus® reactions) can be seen in Figure 65. As can be seen from these profiles, two 

full profiles were obtained with relatively similar allelic signal intensities and imbalances. 

An example of multiple amplifications from the same mIPEP product using different 

multiplex systems can be seen in Figure 66. The use of these two multiplex systems 

allowed for additional genetic material to be recovered than if a single multiplex system 

was used and also allows for a comparison of the genotypes recovered at two loci, D3 

and D7, since they are contained in both systems. The same allele was not recovered at 

the D7 locus in both systems indicating a possible failure to pre-amplify this allele during 

the mIPEP amplification (Figure 66).  

 

Development of Novel Y-STR Multiplex Systems 

 
 
 While the developed lysis and amplification strategies allowed for a greater 

sensitivity and reproducibility than other low template sample analysis methods, 

difficulties in profile interpretations still arose, including allele drop out and peak 

imbalance. As mentioned previously, Y-chromosome STRs are hemizygous in nature 

with only one allele present at most loci. Therefore, an allele drop out would result in 
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failure to recover a genotype at a particular locus rather than give the appearance of a 

false homozygous genotype as would be the case with autosomal STR loci.  Peak 

imbalances are heterozygous autosomal STR loci can often incorrectly indicate the 

presence of a mixture, with the less intense allele attributed to a minor component. If 

multiple alleles are present at an individual Y-STR locus, this would more clearly 

indicate the number of male donors present in the sample.  

 While there are significant advantages to using Y-STRs for low template sample 

analysis, Y-STRs do not afford the same degree of discrimination as compared to 

autosomal STRs. Most of the Y chromosome is inherited paternally as a block of linked 

haplotype markers from generation to generation. Therefore, Y-STR loci are not inherited 

independently and the individual discriminatory potential of each locus cannot be 

combined using the product rule in order to achieve a high level of discrimination. The 

frequency of a Y-STR profile therefore can only be determined through the use of the 

counting method (i.e. how many times a particular profile is observed in a database). The 

discrimination potential of Y-STRs is therefore limited by the size of the database and the 

number of included loci.  

Initially, a set of nine loci (“minimal haplotype” or MHL) were suggested for use 

in forensic casework [108]. Subsequently, the MHL set was expanded to include three 

additional loci in an attempt to improve discriminatory potential [109]. This set of twelve 

Y-STR loci, known as the SWGDAM “core” loci have been incorporated into 

commercially available Y-STR multiplexes (Promega’s PowerPlex® Y and Applied 

Biosystems’ AmpFlSTR® Yfiler®) and are currently being used in forensic casework. 
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However, coincidental matches between unrelated males still occur using these multiplex 

systems. Therefore, there was still a need to develop new multiplex systems that could 

assist in the resolution of coincidental Y-STR matches between unrelated males.  

While the commercially available Y-STR multiplexes incorporate 12-17 loci, over 

400 loci have been identified on the human Y chromosome with most of these loci not 

well characterized [110,111]. Therefore, it is possible that more highly discriminating 

loci exist than those that are currently being used. In order to begin a more systematic 

analysis of novel Y-STR loci, a comprehensive STR physical map of the human Y 

chromosome was created which sequentially positioned the over 400 loci along the Y 

chromosome (Figure 67) [110]. Through the developed physical map, numerous 

duplicate loci were identified (i.e. sequences that had been deposited into the Human 

Genome Database multiple times with different DYS designations). This information was 

particularly useful when attempting to design novel Y-STR multiplexes to avoid the 

inclusion of duplicated loci.   

An extensive evaluation of approximately 33% of all known Y-STR loci (133 

loci) was performed in order to identify novel highly discriminating loci. Each locus was 

evaluated based on its amplification efficiency, ability to be included into a multiplex 

system, and its discriminatory potential. Numerous loci were rejected due to poor 

amplification efficiencies or due to poor diversity values. The remaining loci were 

incorporated into novel multiplex systems (MPIII – MPIX) in order to evaluate the 

suitability of use of these multiplexes with forensic samples [96-99]. The diversity values 

of each of the incorporated loci was determined and is provided in Figure 68, with the 
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loci ranked from highest to lowest discrimination potential within each multiplex system. 

It was apparent from this data that each multiplex system contained loci with diverse 

ranges of discriminatory potential with several loci in each system with very poor 

discriminatory potential. It is unlikely that operational crime laboratories would utilize all 

eight multiplex systems for the analysis of individual samples due to budgetary 

limitations and due to the limited quantity of genetic material often recovered from 

forensic samples. Therefore attempts were made to incorporate a sub-set of the highly 

discriminating loci into a single multiplex system, an ultra-high discrimination (UHD) 

multiplex. The purpose of this multiplex was not to replace the currently used 

commercially available multiplexes, but to improve the significance of Y-STR data in 

forensic investigations. As a result, any locus selected for inclusion into the UHD 

multiplex needed to be highly discriminating on its own but also demonstrate the ability 

to increase the discriminatory potential of the SWGDAM core loci.  

 In order to determine which of the highly discriminating loci would provide the 

highest support to the SWGDAM core loci, the potential increase in haplotype diversity 

of the SWGDAM loci with the additional of one highly discriminating locus was 

determined [100]. The increase in haplotype diversity for each locus was plotted against 

its individual diversity values (Figure 69). For some loci, only diversity values from a 

limited data set (n=100) were available. Therefore these loci were not immediately 

considered for inclusion into UHD multiplex but were analyzed for future use. For the 

remaining loci, those that were located in the upper right quadrant of the graph (high 

diversity value and larger increase in haplotype diversity for the SWGDAM core loci) 
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were identified as potential candidates for inclusion into the UHD multiplex. The 

resulting UHD multiplex included 14 highly discriminating loci (Figure 70) and had an 

overall discriminatory potential of 99.7% [100]. When the UHD multiplex was used in 

addition to the Applied Biosystems’ AmpFlSTR® Yfiler® kit, 100% discrimination of all 

individuals within the sample set was achieved [100]. This level of discrimination has not 

been achieved with any other Y-STR multiplex system. Through the application of the 

mIPEP strategy to low template samples, sufficient amounts of genetic material could be 

obtained from low template samples to permit the recovery of both autosomal and Y-

chromosome STR data from an individual sample. This combined data could result in an 

improvement in the amount of genetic data obtain (i.e. discriminatory potential) but could 

also result in an improvement in the interpretation of challenging low template samples.    
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CHAPTER SIX: DISCUSSION 
 
 

 In this report we have demonstrated the ability to obtain standard and novel 

genetic information from low template samples, including a determination of the time 

since deposition of dried bloodstains using spectrophotometric analysis of hemoglobin 

and a progressive decline in enzyme activity, an identification of the body fluid of origin 

using miRNA profiling, and a determination of the genetic profile of the donor of a small 

number of micro-dissected cells using standard and novel DNA biomarkers. Collectively 

these findings constitute the basis for the development of a “genetic eyewitness” profiling 

system for low template biological samples.  

 Hemoglobin UV-Visible spectrophotometric profiles were successfully obtained 

from dried bloodstains. Upon examination of the characteristic peaks in the visible 

absorption spectral data from aged bloodstains, a hypsochromic shift (shift to shorter 

wavelength) of the Soret band was observed as the age of the stain increased. A 

significant correlation between the age of the stain and the  ΔλSoret (hypsochromic shift) 

was demonstrated (R2 > 0.9 in most cases). The hypsochromic shift measurements 

resulted in the highest resolution of any previously developed TSD method enabling 

bloodstains differing in age by minutes, days, weeks and months to be distinguished. 

Additionally, it was demonstrated that determined that hypsochromic shift measurements 

could be obtained from sub-microliter quantities of blood from stains as small as 1 μl. To 

our knowledge, this is the first strategy that permits the determination of the time since 

deposition of low template samples with this level of sensitivity. The potential to perform 

this analysis “on-site” at crime scenes was also demonstrated through the use of a 
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portable “point-of-use” spectrophotometer allowing crime scene technicians to identify 

the presence of a bloodstain (through a characteristic UV-VIS spectral profile) and also 

determine the time since deposition of that bloodstain. This information, therefore, could 

immediately provide investigators with a molecular estimation of when a crime occurred 

and could assist in the determination of what evidence to collect for further analysis.  

 While the hypsochromic shift assay permitted a determination of the time since 

deposition of bloodstains, the molecular basis for the shift is theorized to be the result of 

oxidation to the central Fe2+ ion in heme. If this hypothesis is correct, there are numerous 

environmental factors that could influence the rate of oxidation and therefore affect the 

accuracy of the time since deposition measurements. It was determined that the rate and 

extent of the hypsochromic shift was increased at higher temperatures and reduced at 

higher humidity levels. Despite the changes in the rate of the shift, the correlation 

between the hypsochromic shift and the age of the stain was still significant. Therefore 

with prior knowledge of a reasonable estimate of storage conditions, it may be possible to 

still obtain accurate estimations of the time since deposition. For samples exposed to 

relatively constant temperatures and humidity levels that could be more accurately 

measured (i.e. indoor environments), reference curves established from samples stored at 

similar conditions could be used to determine the time since deposition. However, it is 

more difficult to perform such an analysis or obtain reference samples for samples found 

in variable environments (i.e. outdoor environments). In outdoor settings, there are 

fluxuations in temperature, humidity and level of precipitation that may not be easily 

recorded.  During our analysis of bloodstains that had been stored outside, we had to rely 



 119

on reported high and low temperatures and humidity levels since it was not possible to 

continuously monitor environmental changes. Upon comparison of the hypsochromic 

shift to reference samples closest to the approximated temperature, it was determined that 

the samples had been likely exposed to much higher temperatures than previously 

thought. This data, therefore, reflects the danger in relying on reported environmental 

conditions and indicates a necessity for constant monitoring of environmental conditions 

before time since deposition determinations can be made. This would not be feasible or 

practical with the current capabilities of and demands on operational forensic 

laboratories. However, these challenges represent technological obstacles and are not 

indicative of a failure of the developed strategy. If proper methods for the determination 

of the precise environmental conditions to which a sample was exposed can be 

developed, then accurate estimations of the time since deposition could be made. 

 Despite the ability of the hypsochromic shift to provide high resolution 

determinations of the time since deposition, it is limited to the analysis of bloodstains. 

Since other biological fluids are frequently encountered in forensic investigations, 

additional strategies needed to be developed to allow for a determination of the time since 

deposition of other forensically relevant fluids. We hypothesized that it could be possible 

to identify fluid-specific enzyme candidates and that the progressive loss of activity of 

the enzymes could provide an indication of the time since deposition of biological fluids. 

We successfully demonstrated that enzyme activity could be detected in dried 

bloodstains. A linear correlation between the age of the stain and the loss of enzyme 

activity was observed for six enzyme candidates (lactate dehydrogenase, malate 
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dehydrogenase, alcohol dehydrogenase, isocitrate dehydrogenase, phosphogluconate 

dehydrogenase, and glycerate dehydrogenase). While month differences in stain age were 

needed, the resolution of this method could be improved with the identification of 

additional enzyme candidates. While only bloodstains were used in initial testing as a 

proof-of concept, our findings support the potential future use of enzyme activity changes 

for the determination of the time since deposition of other forensically relevant biological 

fluids as well.  

 Currently, the methods routinely used in forensic casework for the identification 

of biological fluids in evidentiary items are costly in terms of time and sample and have 

varying degrees of sensitivity and specificity. Recently the use of molecular based body 

fluid identification methods, such as messenger RNA (mRNA) profiling based on tissue-

specific gene expression, has been proposed to supplant conventional methods for body 

fluid identification [8-10,112-114]. While the advantages of mRNA profiling compared 

to conventional methods include greater specificity, improved timeliness, and the ability 

to perform simultaneous and semi-automatic analyses, the size of the amplification 

products used in these assays (~200-300 nt) and the significant amount of input RNA 

required for analysis (~50 ng) may not make this method well-suited for the analysis of 

low template forensic specimens. Recently, there has been increased scrutiny of a newly 

identified class of small non-coding RNAs, microRNAs (~20-25 nt in length) with 

numerous published studies reporting an identification of potential tissue-specific 

candidates. In this report, we demonstrated that miRNAs are present in total RNA 

isolates from body fluid stains in sufficient quantity for analysis and also provided the 
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first comprehensive evaluation of miRNA expression in forensically relevant biological 

fluids (blood, semen, saliva, vaginal secretions and menstrual blood) in an attempt to 

identify potentially body-fluid specific miRNAs. While no truly fluid-specific candidates 

were identified (in the sense of being present in one body fluid but completely absent in 

the others), we developed a panel of 9 differentially expressed miRNAs for the 

identification of the body fluid origin of biological stains. The normalized expression of 

each of the miRNA pairs exhibited a body fluid-specific expression pattern which 

allowed for an identification of the body fluid of interest.  

 The miRNA body fluid identification assays successfully detected the presence of 

biological material in aged and environmentally compromised samples as well as in 

simulated casework samples that included admixed body fluid samples, post coital 

samples and trace body fluid samples. While the results of this study support the potential 

future use of the miRNA profiling assays to identify the body fluid origin of forensic 

biological samples, it is recognized that additional work is needed prior to the utilization 

of miRNA profiling in forensic casework. Additional miRNA candidates for use in the 

body fluid identification assays need to be identified. From our initial screen of the 452 

miRNAs, only a single strong candidate was identified for vaginal secretions and 

menstrual blood and no strong candidates for semen were identified. While the candidate 

used in the assays for each of these fluids still provide the ability to distinguish the body 

fluid of interest, the inclusion of stronger candidates would only serve to enhance our 

ability to do so. Since the initial evaluation of the 452 miRNAs, an additional ~300 

miRNAs have been added to the miRNA database [115] and it is possible that better 
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candidates for each body fluid may be identified through an evaluation of these new 

miRNAs.  

 Due to the significantly smaller size of miRNAs compared to mRNAs, we 

hypothesized that miRNAs may be less susceptible to degradative processes (i.e. RNase 

digestion) and therefore more stable in aged, degraded or environmentally compromised 

samples. In order to test this hypothesis, total RNA extracts degraded with various RNase 

enzymes would need to be assessed using both miRNA and miRNA profiling assays in 

order to determine if stability differences can be observed. In additional to an evaluation 

of the stability differences between the difference classes of RNAs, a comprehensive 

evaluation of all currently available body fluid identification methods (serological, 

immunological, mRNA profiling, and miRNA profiling) would need to be conducted on 

compromised biological stains in order to fully determine the most suitable approach to 

body fluid identification of forensic specimens.  

 A positive body fluid identification using our current miRNA body fluid 

identification assays is determined by the proximity of the unknown sample to the cluster 

of known human biological samples. Typically an elliptical boundary was defined around 

the known body fluid sample clusters. Using this type of simplified approach, in some 

cases subjective calls for weakly positive samples needed to be made. In order to provide 

a robust objective approach for declaring the presence of a particular body fluid, more 

refined analysis interpretation metrics such as those based upon discriminant function 

analyses [116] will need to be developed. 
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 The development of powerful and robust DNA typing strategies (STR analysis) 

has made it is possible to ascertain with a high degree of certainty whether a biological 

stain found at a crime scene originated from a particular individual. However, the 

standard profiling methods typically will fail to recover suitable genetic profiles from low 

template samples which contain less than 100 pg of template DNA (equivalent to 

approximately 15 diploid or 30 haploid cells). If profiles are recovered from these 

samples, interpretation is often difficult due to the occurrence of allelic drop-out or drop-

in and significant peak height imbalance. The frequency of low template samples and the 

difficulty of interpretation warrant development of additional methodologies to allow for 

more successful recovery of genetic information. We have developed a “smart” low 

template sample analysis approach that utilizes laser capture micro-dissection to recover 

individual and few cells and enhanced amplification strategies to recover full autosomal 

and Y chromosome STR profiles from 2-5 epithelial cells and 5-10 sperm cells from 

single and multiple donor samples.  

 We had anticipated that the use of prior whole genome amplification strategies 

would allow for the recovery of genetic profiles from a smaller number of cells. 

However, surprisingly, an increase in sensitivity was not observed. Despite the inability 

to recover profiles from smaller numbers of cells, several advantages to prior whole 

genome amplification were observed. To obtain the high level of sensitivity without 

WGA methods, modified strategies were employed that are not currently utilized by 

operational crime laboratories. The use of the mIPEP amplification method allowed for 

subsequent use of standard conditions for downstream typing assays eliminating the need 
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for additional extensive validations of new methodologies. Without prior WGA 

amplification, micro-dissected cell lysates could only be used in a single STR 

amplification reaction thereby limiting the amount of genetic information that could be 

obtained. Sufficient quantities of template DNA was produced with prior mIPEP 

amplification to allow for aliquots of the same sample to be analyzed with multiple STR 

systems. This not only allowed for the recovery of an extended DNA profile (autosomal 

STRs, Y chromosome STRs), but also allowed for the reproducibility of the profile to be 

assessed through repeated amplifications. There is an occasional overlap between the loci 

included in the various multiplex systems and the concordance of genotypes recovered at 

these loci could therefore be established. Additionally, significant peak imbalance and 

allele drop in are observed and could incorrectly indicate the presence of a mixture. The 

presence of a random allele drop in from an adventitious allele could be established 

through repeated amplification of the same sample. If an additional allele at a particular 

locus was not observed in each of the multiple amplifications, it would be recognized as 

an artifact (allele drop-in) rather than a possible indicator of the presence of a minor 

contributor. Additionally, possible differences in allelic signal intensity within a 

heterozygous genotype may be observed between multiple amplifications of the same 

sample. If an allele was found in lower intensity in each of the multiple amplifications 

that it could suggest the presence of a minor contributor. However if each of the alleles 

was observed in higher intensity, it could suggest the presence of an imbalanced 

heterozygous type from a single donor. The resolution of these often challenging 

interpretations would not be possible without the use of prior WGA strategies.  
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  Currently, there is much debate over the validity of low template sample analysis, 

with skeptics criticizing the reliability of any results obtained from such samples due to 

the encountered difficulties in profile interpretation [117-120]. However, rather than 

viewing potential weakness in low template sample analysis as reasons for its exclusion 

in forensic casework, we have viewed it as an opportunity for scientific advancement to 

overcome any perceived limitations. In this work, we have demonstrated the ability to 

obtain significant probative information (time since deposition, identification of the body 

fluid of origin, and recovery of genetic profiles) from low template samples. Based on 

our findings, we believe that, with further advancements, routine and reliable analysis of 

low template samples in forensic casework will be possible, perhaps even at a true 

cellular level.  
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CHAPTER SEVEN: CONCLUSION 
 
 

 In this study, we have identified novel DNA, RNA and protein biomarkers that 

allowed for the development of a “genetic eyewitness” to provide investigators with the 

“who”, “what”, and “when” of criminal offenses. We have identified a novel 

hypsochromic shift of the Soret band of hemoglobin spectral profiles that allows for a 

determination of the time since deposition of dried bloodstains. We also demonstrate the 

possibility of using a decline in enzyme activity to determine the age of biological stains. 

We have developed a novel strategy for the identification of the source of biological 

stains utilizing the differential expression of miRNAs. We have developed a “smart” low 

template sample analysis approach that utilizes laser capture micro-dissection to recover 

individual and few cells and enhanced amplification strategies to recover full autosomal 

and Y chromosome STR profiles from 2-5 epithelial cells and 5-10 sperm cells. 

Additionally, the development of a novel whole genome amplification method (‘modified 

improved primer extension pre-amplification’ or mIPEP) to be used prior to the locus 

specific PCR amplifications resulted in the ability to perform multiple amplifications of 

the same micro-dissected cell sample and resulted in a greater recovery of  heterozygous 

genotypes at individual loci. The novel biomarkers and profiling strategies described in 

this report provide the basis for the establishment of a molecular “genetic eyewitness” 

from low template forensic samples. The strategies presented here not only provide more 

sensitive and reliable means by which to analyze low template samples, but also provide 

an indication that with continued progress it may be possible to perform routine forensic 

analyses on single cells.   
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APPENDIX A: FIGURES 
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Figure 1. Characteristic UV-VIS Spectral Profile of Hemoglobin 
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Figure 2. Changes in UV-VIS Spectral Profile of Hemoglobin in Aged Bloodstains 
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Figure 3. Hemoglobin Spectral Shift Parameters 
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Figure 4. ΔAbsβ(541-560) for Bloodstains Stored at 22oC and 37oC 
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Figure 5. ΔAbsα(576-560) for Bloodstains Stored at 22oC and 37oC 
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Figure 6. ΔAbsα(576-560)/ΔAbsβ(541-560) for Bloodstains Stored at 22oC and 37oC 
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Figure 7. ΔλSoret for Bloodstains Stored at 22oC and 37oC 
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Figure 8. Comparison of ΔλSoret Measurements Using Two Different 

Spectrophotometers 
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Figure 9. MicroClimate(R) Humidity Chamber MCH-3 
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Figure 10. National Mean Relative Humidity and Mean Daily Temperature (1961-
1990) 
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Figure 11. Effects of Humidity on ΔλSoret Measurements for Bloodstains Stored at 
22oC and 30oC 
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Figure 12. Effects of Temperature on ΔλSoret Measurements for Bloodstains Stored 
at 50% Humidity 
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Figure 13. Effects on ΔλSoret from Length of Storage Prior to Analysis 
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B 30oC 

Outside sample: Humidity (High-98%, Low-46%)  

 
Figure 14. Effects of Outside Storage on ΔλSoret Measurements Compared to 

Storage at 22oC and 30oC  
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22oC,50%:        
r2 = .9861          
y = -0.7548Ln(x) + 413.05 

22oC,80%:        
r2 = .9351          
y = -0.5826Ln(x) + 413.58 

30oC,85%:        
r2 = .8428          
y = -0.6141Ln(x) + 413.74 

30oC,50%:        
r2 = .9631          
y = -0.8182Ln(x) + 412.34 

OSC:               
r2 = .8968          
y = -1.1379Ln(x) + 411.85 

37oC,50%:        
r2 = .9664          
y = -0.9322Ln(x) + 412.13 

 
Figure 15. Effects of Outside Storage on ΔλSoret Measurements Compared to 

Bloodstains Stored at 22oC, 30oC, and 37oC 
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Car Trunk:     
r2 = .817           
y = -1.0257Ln(x) + 411.82 

OSC:              
r2 = .8968         
y = -1.1379Ln(x) + 411.85 

37oC, 50%:      
r2 = .9654         
y = -0.9286Ln(x) + 412.12 

B 

 
Figure 16. ΔλSoret Measurements from Bloodstains Located in Car Trunk 
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Figure 17. Hb Spectral Profiles Using a Range of Total Protein Input Amounts 
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413nm 

 
Figure 18. Sensitivity of ΔλSoret Measurements - Total Protein Input 
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1 μl 

5 μl 

10 μl 

0.2 μl 

0.25 μl 

0.5 μl 

0.75 μl 

 
Figure 19. Size of Bloodstains Used to Determine the Sensitivity of the ΔλSoret 

Assay 
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Figure 20. UV-VIS Spectral Profiles from 1 μl Bloodstains Using Nanoliter Input 

Volumes 
 
 



A 0.5μl stain  300 nl 0.75μl stain  450 nlC 
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D B 

 
Figure 21. UV-VIS Spectral Profiles from 0.5 and 0.75 μl Bloodstains 

 
 
 
 
 
 
 
 
 
 
 
 
 



 

Full stain:        
r2 = .9656           
y = -0.3709Ln(x) + 411.14 

0.75μl – 450nl:   
r2 = .9782          
y = -0.5313Ln(x) + 409.61 

0.75μl – 300nl:   
r2 = .9877          
y = -0.5149Ln(x) + 409.67 

0.5μl – 200nl:      
r2 = .9782           
y = -0.5313Ln(x) + 409.36 

 0.5μl – 300nl:      
r2 = .967            
y = -0.5476Ln(x) + 409.55 

 
 

Figure 22. Accuracy of ΔλSoret Measurements from 0.5 and 0.75 μl Bloodstains 
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middle 

outer 
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              Large = ~600 μl           Small = ~60 μl 

 
Figure 23. Appearance of Large and Small Bloodstains 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

Original:         
r2 = .9963          
y = -0.8083Ln(x) + 413.33 

Large-middle:    
r2 = .9958           
y = -0.6698Ln(x) + 412.78 

Small:            
r2 = .9889          
y = -0.7006Ln(x) + 412.69 

Large-outer:     
r2 = .9998          
y = -0.7358Ln(x) + 412.82 

 
Figure 24. Effects of Bloodstain Size on ΔλSoret Measurements 
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Microplate:        
r2 = .9861           
y = -0.7548Ln(x) + 413.05 

NanoPhotometer:     
r2 = .9089                 
y = -0.8266Ln(x) + 414.22   

 
Figure 25. Comparison of the Accuracy of ΔλSoret Measurements Using a Bench-

Top and Portable Spectrophotometer 
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Glycerate dehydrogenase 
(r2=0.733) 

Phosphogluconate dehydrogenase (r2=0.921) 
Isocitrate dehydrogenase 
(r2=0.738) 

Malate dehydrogenase 
(r2=0.86) 

Lactate dehydrogenase 
(r2=0.836) 

Alcohol dehydrogenase (r2=0.99) 

 
Figure 26. Decline in Enzyme Activity in Aged Bloodstains 
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Blood candidates 

Semen Candidate (need more input) 

Blood candidate 

 
 

Figure 27.  Determination of the Differential Expression of miRNAs in Forensically 
Relevant Biological Fluids 
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Figure 28. miRNA Expression Heat Map 
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Blood – miR451,miR16 

Semen – miR135b,miR10b 

Saliva – miR658,miR205 

Vaginal – miR124a 

Vaginal – miR195 
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Figure 29. Relative Expression of miRNA Body Fluid Candidates 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



A  

E  

D  

Vaginal Secretions 

Vaginal 
Secretions 

Blood 

E  

B  

Semen 

C  

Saliva 

F  

Menstrual Blood 

 
 
 

Figure 30. 2D miRNA Body Fluid Identification Assays 
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Figure 31. 3D Vaginal Secretion miRNA Assay 
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Figure 32. Evaluation of Additional Samples with the miRNA Body Fluid Assays 
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Figure 33. Tissue Specificity of the miRNA Body Fluid Assays 
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Figure 34. Species Specificity of the Blood and Saliva miRNA Body Assays 
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Human blood 

Chimpanzee 

 
Figure 35. Improved Species Specificity of the U-44 Normalized Blood miRNA 

Assay 
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Figure 36. Stability of miRNA in Aged and Environmentally Compromised Body 

Fluid Samples 
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Figure 37. Stability of Vaginal Secretion miRNAs during the Menstrual Cycle 
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Figure 38. Detection of Body Fluids in Simulated Forensic Casework Samples 
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Figure 39. Detection of Blood and Semen in an Admixed Sample 
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Figure 40. Detection of Semen and Saliva in an Admixed Sample 
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Figure 41. Expression Profile of Menstrual Blood with the miRNA Body Fluid 
Assays 
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Figure 42. Specificity of the Menstrual Blood miRNA Assay 
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Figure 43. Stability of the Menstrual Blood miRNA Assay during the Menstrual 

Cycle 
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Venous Blood – Vag Sec Mix

 
Figure 44. Evaluation of Venous Blood -Vaginal Secretion Mixtures Using the 

Menstrual Blood miRNA Assay 
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miRNA Q T-PCR Assay
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miR205 miR124a miR372
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                                                    Accept Ct values if:
miR451 < 50.0 miR16  < 50.0 miR135b < 50.0 miR10b < 50.0 U6b < 34.5
miR658 < 37.5 miR205 <38.5 miR124a < 36.5 miR372  < 50.0 U44 < 50.0
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Figure 45. Proposed Schema for the Analysis of Biological Evidence of Unknown 
Origin using miRNA Body Fluid Profiling 
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Figure 46. Challenges Associated with Low-Template Sample Analysis 
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Figure 47. Single Sperm Cell Removal Using the Arcturus PixCell II System 
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Figure 48. Removal of Sperm Cells Adhering to Epithelial Cells using the Arcturus 

PixCell System 
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Figure 49. Sperm Cell Removal using the Leica LMD System 
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Figure 50. Removal of Sperm Cells Adhering to Epithelial Cells Using the Leica 
LMD System 
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Figure 51. Autosomal STR Profile Recovery from Micro-dissected Sperm Cells 
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Figure 52. Autosomal STR Profiles Obtained From Single Micro-dissected 
Epithelial Cells 
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Figure 53. Autosomal STR Profile Recovered From a Single Epithelial Cell from a 

Vasectomized-Male Semen Sample 
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Figure 54. Autosomal STR Profiles Recovered from Epithelial Cells from Beverage 

Container Lids 
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Figure 55. Autosomal STR Profiles Recovered from Epithelial Cells from Menstrual 
Blood Samples 

 
 
 182



 
 

 
 
 

Figure 56. Basic Primer Extension Pre-Amplification Strategy 
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Figure 57. Affects of Cell Staining on Amplification Yield Following mIPEP 
Amplification 
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Figure 58. Autosomal STR Profiles Recovered from mIPEP-Amplified Micro-
dissected Epithelial Cells After mIPEP Amplification 
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Figure 59. Mega-plex Autosomal STR Profile Recovered from Micro-dissected 
Epithelial Cells 
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Figure 60. Mini Autosomal STR Profile Recovered from mIPEP-Amplified Micro-

dissected Epithelial Cells 
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Figure 61. Y-Chromosome STR Profile Recovered from mIPEP-Amplified Micro-
dissected Epithelial Cells 
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Figure 62. Autosomal STR Profiles Recovered from mIPEP-Amplified Micro-
dissected Sperm Cells 



 

 
 

 
Figure 63. Y-Chromosome STR Profile Recovered from mIPEP-Amplified Micro-

dissected Sperm Cells 
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Figure 64. Autosomal STR Profile Recovered from mIPEP-Amplified Sperm Cells 
Collected from a 40-Month Old Semen-Stained T-Shirt 
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Figure 65. Reproducibility of Profiles Obtained from Multiple Amplifications of the 

Same mIPEP Product 
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Figure 66. Multiple STR System Profiles Recovered from a Single mIPEP Product 
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Figure 67. STR Physical Map of the Human Y Chromosome 
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Figure 68. Gene Diversity Values of Loci Contained in Novel Y-STR Multiplexes 
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Figure 69. Evaluation of Individual Y-STR Locus Contribution to the Haplotype 
Diversity of Commonly Used Y-STRs 
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Figure 70. Ultra-High Discrimination (UHD) Y-STR Multiplex 
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APPENDIX B: TABLES 
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Table 1. Evaluation of the Correlation Between Age of the Stain and the Soret Band 
Hypsochromic Shift Using Various Age Intervals 
 
 
Sample r2 value 
 15min-2days 15min-1 week 15min-1 month 15 min-1 year 

 “Hours” “Days” “Weeks” “Months” 
22oC 0.9550 0.9481 0.9566 0.9626 
37oC 0.9843 0.9667 0.9556 0.8430 
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Table 2. Comparison of the ΔλSoret For Bloodstains Stored at 22oC Using Two 
Different Spectrophotometers 
 
 

Sample λSoret – 
Microplate Reader 

λSoret – 
UV Spectrophotometer 

Difference 

15 min 412.5 414.0 1.5 
30 min 412.0 414.0 2.0 
1 hour 412.0 413.7 1.7 
3 hours 411.3 413.0 1.7 
6 hours 411.0 411.7 0.7 
18 hours 411.0 412.0 1.0 
24 hours 410.8 411.8 1.0 
48 hours 410.0 411.0 1.0 
1 week 408.7 410.3 1.6 
1 month 408.0 409.2 1.2 
3 months 407.5 408.7 1.2 
6 months 408.0 408.7 0.7 
1 year 407.5 406.3 -1.2 
 Total shift = 5nm Total shift = 7.7nm Average = 1.1nm 
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Table 3. Comparison of Hypsochromic Shift Correlation Values Using Two 
Different Spectrophotometers 
 
 
 22oC 37oC 
 15min-48hrs 15min-1yr 15min-48hrs 15min-1yr 
Microplate 
Reader 

0.9462 0.9592 0.9858 0.8250 

UV- Spec 0.9180 0.9577 0.9534 0.8130 
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Table 4. Comparison of λSoret for Standard (60 μl) and Small Bloodstains (< 1 μl) 
 
 

 Average λSoret 
 15 minutes 48 hour 1 week 
Full stain (60μl) 412.8 410.1 408.9 
0.75 μl stain 412.0 408.0 406.0 
0.5 μl stain 412.0 408.0 406.0 
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Table 5. Enzyme Candidates For Time Since Deposition Assays 
 
 

Enzyme Detection 
Secondary 
Detection 

Lactate dehydrogenase NAD MTT-formazan 
Malate dehydrogenase NAD MTT-formazan 
UDPglucose dehydrogenase NAD MTT-formazan 
Glycerate dehydrogenase NAD MTT-formazan 
Galactose dehydrogenase NAD MTT-formazan 
Octanol dehydrogenase NAD MTT-formazan 
Aldehyde dehydrogenase NAD MTT-formazan 
Fumarate hydratase NAD MTT-formazan 
Dihydrooroate dehydrogenase NAD MTT-formazan 
L-glutamate dehydrogenase NADP MTT-formazan 
Isocitrate dehydrogenase NADP MTT-formazan 
Phosphogluconate dehydrogenase NADP MTT-formazan 
Glucose-6-phosphate 
dehydrogenase NADP MTT-formazan 
Aconitase NADP MTT-formazan 
Phosphoglucomutase NADP MTT-formazan 
L-xyulose reductase NADP MTT-formazan 
Glycerol dehydrogenase NADP MTT-formazan 
Carbonic anhydrase 4-MU   
Glycerol -3-phosphate 
dehydrogenase MTT-formazan   
Alcohol dehydrogenase MTT-formazan   
3-Hydroxybutyrate dehydrogenase MTT-formazan   
Gluconate dehydrogenase MTT-formazan   
Guanine deaminase MTT-formazan   
Succinate dehydrogenase MTT-formazan   
Purine nucleoside phosphorylase MTT-formazan   
Aldehyde oxidase NBT-formazan   
L-amino acid oxidase NBT-formazan   
Sarcosine Oxidase NBT-formazan   
Uricase NBT-formazan   

Cytochrome-C oxidase 
Indophenol blue 

(vis)   
Cholinesterase Fast Red RT   
Acid phosphatase Fast Blue BB   
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Table 6.  Time Required for Complete Loss of Enzyme Activity in Aged Bloodstains 
 
 

Enzyme Months to Reach 0 Activity 
Glycerate dehydrogenase 10.1 
Lactate dehydrogenase 11.4 

Isocitrate dehydrogenase 11.8 
Alcohol dehydrogenase 14.4 

Phosphogluconate dehydrogenase 16.0 
Malate dehydrogenase 20.7 
L-xyulose reductase 28.7 

3-hydroxybutyrate dehydrogenase 144.7 
Phosphoglucomutase Stable 

Glucose-6-phosphate dehydrogenase Stable 
Gluconate dehydrogenase Stable 
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Table 7. Characteristics of miRNA Panel and Normalizers for Body Fluid Identification Assays 
 
 

microRNAs  
Sanger ID Body Fluid 

Assay 
Sequence Entrez 

Gene ID
Mature sequence 

Sanger Accession # 
Literature 

Ref. 
hsa-miR-451 Blood 

Menstrual Blood 
AAACCGUUACCAUUACUGAGUU 574411 MIMAT0001631 [55,59,61,121-

123] 
hsa-miR-16 Blood UAGCAGCACGUAAAUAUUGGCG -- MIMAT0000069 [41,59,124,125

] 
hsa-miR-135b Semen UAUGGCUUUUCAUUCCUAUGUGA  -- MIMAT0000758 [59,126,127] 
hsa-miR-10b Semen UACCCUGUAGAACCGAAUUUGUG 406903 MIMAT0000254 [46,48,50,57,5

9] 
hsa-miR-658 Saliva GGCGGAGGGAAGUAGGUCCGUUGGU  724028 MIMAT0003336 none 
hsa-miR-205 Saliva UCCUUCAUUCCACCGGAGUCUG -- MIMAT0000266 [42-

45,50,52,59,12
8] 

hsa-miR-124a Vaginal Secretions UAAGGCACGCGGUGAAUGCC -- MIMAT0000422 [47,50,53,56,5
9,129] 

hsa-miR-372 Vaginal Secretions AAAGUGCUGCGACAUUUGAGCGU  442917 MIMAT0000724 [50,59,130] 
hsa-miR-412 Menstrual Blood ACUUCACCUGGUCCACUAGCCGU 574433 MIMAT0002170 none 

Small non-coding RNAs (snRNA/snoRNAs) - Normalization 
RNU6b  All CTGCGCAAGGATGACACGCAAATTCGTGAA

GCGTTCCATATTTTT 
26826 Not applicable [131-133] 

SNORD44 Blood - species CCTGGATGATGATAGCAAATGCTGACTGAAC
ATGAAGGTCTTAATTAGCTCTAACTGACT 

26806 Not applicable [131,134] 
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Table 8. Determination of Negative Result Threshold Values Through Assessment of Negative Controls 
 
 
 RT (-) samples 
 miR451 miR16 miR135b miR10b miR658 miR205 miR124a miR195 miR372 miR412 U6b U6b U44 
 50pg 50pg 500pg 500pg 50pg 50pg 50pg 50pg 50pg 50pg 50pg 500pg 50pg 

Blood Undet. Undet. Undet. Undet. 40.0 40.1 37.3 45.6 Undet. 41.1 35.8 35.4 Undet.
Semen Undet. Undet. Undet. Undet. 40.1 39.5 37.3 46.9 Undet. 43.0 35.7 36.0 Undet.
Saliva Undet. Undet. Undet. Undet. 41.1 39.9 37.0 45.1 Undet. 42.6 35.3 35.4 Undet.
Vag.Sec Undet. Undet. Undet. Undet. 40.5 40.6 37.1 46.8 Undet. 40.7 35.6 35.5 Undet.
Mnstrl.Bld Undet. Undet. Undet. Undet. 42.6 40.9 37.6 Undet. Undet. 42.1 36.2 35.4 Undet.
Avg Undet. Undet. Undet. Undet. 40.9 40.2 37.3 46.1 Undet. 41.9 35.7 35.5 Undet.
SD N/A N/A N/A N/A 1.1 0.6 0.2 0.9 N/A 1 0.3 0.3 N/A 
Invalid 
Result  

N/A N/A N/A N/A >37.5 >38.5 >36.5 >43.0 N/A >39.0 >34.5 >34.5 N/A 

              
 RT (+) samples 
 miR451 miR16 miR135b miR10b miR658 miR205 miR124a miR195 miR372 miR412 U6b U6b U44 
 50pg 50pg 500pg 500pg 50pg 50pg 50pg 50pg 50pg 50pg 50pg 500pg 50pg 

Blood 16.3 17.8 37.9 39.4 37.5 36.4 33.1 18.5 37.9 32.5 24.8 22.3 28.0 
Semen 31.6 30.2 33.4 34.7 39.6 34.0 33.8 36.0 38.2 32.4 30.2 29.2 43.2 
Saliva 32.2 29.4 36.5 42.6 27.7 27.1 31.6 29.6 36.9 31.2 31.9 28.5 37.9 
VagSec 34.4 32.4 40.7 39.3 33.6 29.9 25.1 32.9 37.2 31.9 28.3 27.5 33.9 
Mnstrl.Bld 24.4 26.5 37.9 36.9 35.2 28.5 26.0 26.4 36.6 31.7 27.6 25.1 32.4 
Undet. = undetected (Ct > 50); N/A = not applicable; SD = standard deviation 
Threshold = Average – 3 SD (rounded to nearest .5 value) 
RT (-) = negative reverse transcription reaction (no reverse transcriptase enzyme added) 
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Table 9. Sensitivity and Specificity of snRNAs and snoRNAs in Biological Stains 
 
 

 Ct values 
Sample U6b U44 U26 U27 U28 U29 U30 U31 U38B U43 U48 U90 
Blood  24.8 28.3 27.0 27.2 30.5 27.3 39.4 35.6 33.0 30.2 32.0 35.3 
Semen  29.2 43.2 43.2 39.6 42.1 38.0 29.8 26.6 41.4 33.6 40.8 42.3 
Saliva  31.9 37.9 34.5 34.1 40.4 34.8 38.6 33.2 38.3 32.0 38.2 44.1 
Vaginal Secretions  28.3 33.9 30.7 30.5 34.2 33.1 33.4 31.5 36.5 32.9 36.1 37.8 
Menstrual Blood  27.6 32.4 28.4 28.4 30.6 28.9 29.2 27.2 32.5 29.3 30.2 34.4 
Dog 23.7 41.7 44.0 28.1 42.6 40.2 47.1 35.0 38.1 29.3 38.8 40.4 
Cat 24.6 42.3 42.5 36.3 42.8 41.1 42.3 42.3 40.9 31.1 39.4 42.5 
Horse 25.1 48.9 41.5 38.8 40.2 39.3 45.1 28.3 41.4 33.0 39.6 41.5 
Crane 25.9 42.0 48.0 38.6 40.9 48.3 47.1 Undet. 41.6 35.5 42.5 40.0 
Cow 22.4 39.2 39.1 25.5 38.4 32.4 43.1 40.0 39.5 30.1 39.9 44.0 
Sheep 22.9 40.7 38.9 26.3 40.3 34.3 44.1 27.7 41.2 28.6 39.6 39.7 
Coyote 28.5 Undet. 49.2 33.2 43.7 44.2 Undet. 39.6 42.0 29.7 42.8 40.1 
Pat. Cavy 29.7 42.4 Undet. 40.2 42.4 45.3 Undet. 40.8 47.0 28.5 44.0 39.3 
Ferret 24.4 49.2 43.5 29.3 Undet. 36.0 Undet. 35.7 40.5 28.9 41.8 42.2 
Deer 23.8 42.5 44.0 31.1 40.4 37.8 45.4 31.9 42.5 28.6 Undet. 41.4 
Tortoise 29.6 40.2 46.8 40.6 42.6 47.0 41.5 42.3 35.8 32.6 36.6 38.1 
Lamb 21.5 41.5 40.1 26.9 40.6 33.6 39.1 27.1 37.8 29.4 45.9 39.3 
Chimpanzee 24.3 28.7 26.5 25.8 30.1 31.2 29.0 26.2 NT 29.7 NT NT 
Baboon 25.0 39.5 27.1 26.8 31.1 32.3 44.4 26.3 NT 29.7 NT NT 
Brown Lemur 25.2 Undet. 40.2 27.5 30.8 33.4 43.4 27.1 NT 35.7 NT NT 
Howler monkey 24.3 40.3 28.2 28.0 31.0 32.8 43.6 27.3 NT 30.3 NT NT 
Cynomolgus monkey 24.3 Undet. 26.6 26.4 30.0 30.8 44.8 27.1 NT 29.3 NT NT 
African Green monkey 25.1 48.9 26.6 28.4 30.2 31.1 40.7 26.4 NT 31.3 NT NT 
Spider Monkey 27.6 48.1 31.7 31.1 34.6 36.1 43.9 28.9 28.8 29.2 41.0 41.9 
Rhesus macaque 22.8 43.3 27.0 27.9 30.5 32.8 44.6 25.7 29.2 28.4 28.2 39.2 
Pig-tailed macaque 23.8 Undet. 32.5 27.4 30.4 36.9 47.7 26.6 35.7 29.7 29.8 39.1 

Undet = undetected (Ct > 50) ; NT = not tested
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Table 10. Summary of Conditions for Environmentally Compromised Samples 
 
 

Outside, Covered (OC) – Exposed to heat, light and humidity 
Temperature Range Humidity Range Rain  Body Fluid Exposure  

Low (oF) High (oF) Minimum Maximum (inches) 
Blood 3 days 66 90 44 93 NA 
 7 days 66 92 44 90 NA 
 1 month 66 95 43 87 NA 
Semen 3 days 66 92 45 93 NA 
 7 days 66 93 45 91 NA 
 1 month 66 96 44 88 NA 
Saliva 3 days 66 92 45 93 NA 
 7 days 66 93 45 91 NA 
 1 month 66 96 44 88 NA 
Vaginal Secretions 3 days 72 94 38 86 NA 
 7 days 72 96 43 86 NA 
 1 month 71 96 46 88 NA 
       

Outside, Uncovered (OUC) – Exposed to heat, light, humidity and rain 
Temperature Range Humidity Range Rain Body Fluid Exposure  

Low (oF) High (oF) Minimum Maximum (inches) 
Blood 1 day 66 88 38 84 0.63 
 3 days 66 90 44 93 1.59 
 7 days 66 92 44 90 2.70 
Semen 1 day 66 89 42 94 1.59 
 3 days 66 92 45 93 1.59 
 7 days 66 93 45 91 2.70 
Saliva 1 day 66 89 42 94 1.59 
 3 days 66 92 45 93 1.59 
 7 days 66 93 45 91 2.70 
Vaginal Secretions 1 day 72 90 50 84 1.26 
 3 days 72 91 46 85 1.28 
 7 days 72 96 47 88 7.56 

 
 
 
 
 
 
 
 
 
 
 



 Blood 
22oC  22oC  37oC 

 
37oC 

 
OC 

 
OC 

 
OC 

 
OUC 

 
OUC 

 
OUC 

 
 

1 year 18 months  2 
years* 

3 months 6 months 3 days 1 week 1 month 1 day 3 days 1 week 

Blood assay 
(451-16) + + - + - + NA + + + 
 Semen 
Semen assay   
(135b-10b) + + + + + + - + - - 
 Saliva 
Saliva assay  
(658-205) + - U6b- U6b- U6b- U6b- - - - - 
 Vaginal Secretions 
VagSec assay 
(124a-372) + + + + + - U6b- - - - 
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Table 11. miRNA Stability - Body Fluid Identification in Aged and Compromised Biological Fluid Samples 
 
 

*2 year sample tested for blood, 18 month sample for all other body fluids 
OC = outside, covered (heat, light, humidity); OUC = outside, uncovered (heat, light, humidity, rain); NA = not available 
(+) = body fluid correctly identified; (-) body fluid not detected; U6b(-) = U6b value not acceptable, no further analysis performed 
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Table 12. Allele Recovery from Micro-Dissected Sperm Cells Using Various 
Amplification Cycles 
 

36 cycles 32 cycles 28 cycles # of Cells 
50 RFU 100 RFU 150 RFU 50 RFU 100 RFU 150 RFU 50 RFU 100 RFU 150 RFU 

1 11 11 10 2 2 1 1 0 0 
5 19 19 19 16(3) 16(2) 9(1) 3 0 0 
10 20(2) 20(2) 20(2) 17(3) 14(3) 10 0 0 0 
20 20(2) 20(3) 20(3) 20 16 14 6 1 0 
30 20(4) 20(4) 20(3) 2(2) 1(1) 1(1) 12 3 2 
40 20(7) 20(7) 20(7) 16(1) 11(1) 11 18 11 9 
50 19 19 19 20(1) 19(1) 18(1) 10(1) 6 3 
60 20(2) 19(1) 18(1) 20 20 20 10 2 0 
70 20(2) 20(2) 20(2) 18 13 12 20 20 15 
80 20(1) 20(1) 20(1) 20 20 20 18 14 6 
90 20 20 20 20(1) 20(1) 20(1) 15 6 1 
100 19(1) 18(1) 18(1) 20 18 16 20 16 9 
0 3(1) 3(1) 3(1) 1(1) 0 0 0 0 0 

9947a 20 20 20 20 20 20 20 20 20 
Blank 0 0 0 0 0 0 0 0 0 

(#) = allelic drop-in (not originating from the donor in the study) 

 

 

 

 

 

 

 

 

 

 

 



 211

Table 13. Allele Recovery from Sperm Cells Isolated from a Sperm-Sperm (1:1) 
Mixture 
 
 

# Cells # Alleles Recovered 
(out of 14) 

# Alleles Recovered 
(out of 14) 

# Alleles Recovered (out 
of 14) 

 50 RFU 100 RFU 150 RFU 
 Male 1 Male 2 Male 1 Male 2 Male 1 Male 2 
5 16 15 14 15 13 15 
20 8 19 8 17 8 17 
30 20 20 20 19 20 19 
40 20 20 20 20 20 20 
60 19 20 19 20 19 20 
80 20 20 20 20 20 20 
100 20 20 20 20 20 20 
0 2 20 2 0 2 0 

9947a 20 20 20 
Blank 0 0 0 
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Table 14. Allele Recovery from Epithelial Cells Isolated from a 1:1 Buccal-Vaginal 
Epithelial Cell Mixture 
 
 

# Cells # Alleles Recovered 
(out of 14) 

# Alleles Recovered 
(out of 14) 

# Alleles Recovered (out 
of 14) 

 50 RFU 100 RFU 150 RFU 
 Male Female Male Female Male  Female 
5 7 14 6 12 6 12 
10 13 14 13 14 13 14 
10 8 14 8 14 8 14 
10 14 14 14 14 14 14 
20 14 14 14 14 14 14 
30 14 14 14 14 14 14 
0 0 5 0 5 0 5 

9947a 14 14 14 
Blank 0 0 0 
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