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ABSTRACT 

Parkinson’s disease (PD) is a debilitating neurodegenerative disorder affecting 

one million Americans. Despite its social and economic impact, the pathological 

cascades that lead to neuron dysfunction and degeneration in PD are poorly 

understood. Endoplasmic reticulum (ER) stress has been implicated as an initiator or 

contributing factor in neurodegenerative diseases including PD. The ER is an organelle 

central to protein folding and intracellular Ca2+ homeostasis. Perturbations of these 

functions result in ER stress and upregulation of ER stress proteins, of which some 

have been implicated in counteracting ER stress-induced cell death. The mechanisms 

that lead to ER stress and how ER stress proteins contribute to the degenerative 

cascades remain unclear but their understanding is critical to devising effective 

therapies for PD. Both the accumulation of mutant -synuclein (Syn), which causes an 

inherited form of PD, and the inhibition of mitochondrial complex I function by PD-

inducing neurotoxin lead to ER stress. The critical involvement of ER stress in 

experimental models of PD supports its potential relevance to PD pathogenesis and led 

us to test the hypothesis whether the homocysteine-inducible ER protein (Herp), an 

ubiquitin-like domain (UBD) containing ER-resident protein, can counteract mutant 

Syn- and neurotoxin- induced pathological cascades.  

In the first part of my study I showed that knockdown of Herp aggravates ER 

stress-mediated cell death induced by PD-linked mutant Syn. Functionally, Herp plays 
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a role in maintaining ER homeostasis by facilitating proteasome-mediated degradation 

of ER-resident Ca2+ release channels in a neuronal-like cell line expressing the mutant 

A53T-Syn. Deletion of UBD or pharmacological inhibition of the proteasomes 

abolishes the Herp-mediated stabilization of ER Ca2+ homeostasis. Furthermore, 

knockdown or pharmacological inhibition of ER Ca2+ release channels ameliorates ER 

stress suggesting that impaired homeostatic regulation of Ca2+ channels promotes a 

protracted ER stress with the consequent activation of ER stress-associated cell death 

pathways. Interestingly, sustained upregulation of ER stress markers and aberrant 

accumulation of ER Ca2+ release channels were detected in transgenic mutant A53T-

Syn mice. These data establish a causative link between impaired ER Ca2+ 

homeostasis and chronic ER stress in the degenerative cascades induced by mutant 

A53T-Syn and suggest that Herp is essential for the resolution of ER stress through 

maintenance of ER Ca2+ homeostasis.  

Because oxidants and mitochondria-derived free radicals can target ER-based 

Ca2+ regulatory proteins and cause uncontrolled Ca2+ release that may contribute to 

protracted ER stress resulting in cell death, I next determined the impact of the PD 

causing neurotoxin, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), the precursor 

of 1-methyl-4-phenylpyridinium (MPP+) on ER functions. I demonstrated that knockdown 

of Herp renders dopaminergic cells vulnerable to MPP+-induced toxicity by a 

mechanism involving upregulation of CCAAT/enhancer binding protein homologous 

protein (CHOP) and depletion of the ER Ca2+ store. Conversely, ectopic expression of 

Herp confers protection by blocking MPP+ -induced CHOP upregulation, ER Ca2+ store 

depletion and mitochondrial Ca2+ accumulation in a manner dependent on a functional 
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ubiquitin-proteasomal protein degradation pathway. Deletion of the UBD or treatment 

with a proteasomal inhibitor abolished the central function of Herp in ER Ca2+ 

homeostasis. Collectively, our findings suggest that approaches that aim to increase 

Herp levels or its ER Ca2+-stabilizing action may prevent or ameliorate neuronal loss in 

PD. 

Though abnormal protein aggregates are characteristic features of the slowly 

progressive neurodegenerative disorders, they are also found in acute pathological 

states such as cerebral ischemia. The role of protein aggregation in neuronal pathology 

after brain ischemia is not clear. In the last part of my work, I show that transient focal 

ischemia induces the continuous accumulation of insoluble Syn and DJ-1, two proteins 

linked to early-onset PD, in vulnerable neurons from the onset of reperfusion until delayed 

neuronal death. Double immunocytochemical analysis reveals that Syn and DJ-1 are 

co-localized in inclusion-like structures in the vulnerable neurons of the lesioned 

cortices suggesting that DJ-1 is recruited into the Syn-containing inclusions and 

thereby precludes this neuroprotective protein from exercising its anti-oxidant and 

chaperone-like activities. Supporting this notion, knockdown of DJ-1 promotes Syn 

insolubility and renders neurons vulnerable to an ischemic insult whereas ectopic 

expression of DJ-1 ameliorates Syn -induced degenerative cascades and reverses 

ischemic neuronal injury. Furthermore, mice deficient in Syn exhibit significantly 

smaller infarcts and improved behavioral recovery after ischemia compared to non-

transgenic mice. Ablation of Syn ameliorates the accumulation of insoluble DJ-1 and 

the ensuing oxidative damage following an ischemic insult. Taken together, our data 

show that aberrant accumulation of Syn plays a precipitating role in ischemic neuronal 
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injury and suggest that PD-causing mutations in Syn and DJ-1 can worsen ischemic 

brain damage.  

In conclusion, these studies provide insights into the molecular cascade of Syn-

induced degeneration and may uncover novel therapeutic strategies for PD and stroke. 
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CHAPTER ONE: GENERAL INTRODUCTION 

Part I 

Being one of the most common debilitating neurodegenerative disorders, 

Parkinson’s disease (PD) presents an enormous medical, social, financial and scientific 

problem. PD is a progressive movement disorder that stems predominantly from the 

degeneration of dopaminergic neurons (DA) in the substantia nigra pars compacta 

(SNpc) (1). It is second only to Alzheimer’s disease as the most common age-

associated neurodegenerative disorder with an estimated incidence of 20/100,000 and 

a prevalence of 150/100,000 (2). One main neuropathological hallmark of PD is the 

presence of lewy bodies (LB) and lewy neurites in DA neurons (Figure 1). These are 

intracellular aggregates of αSyn that were initially characterized by eosin staining (2, 3).   

 

Figure 1-1. A mature lewy body in neuron of the substantia nigra pars compacta 
(3) 

Though PD has been known since ancient times, it was first described by James 

Parkinson in 1817 in his detailed medical essay entitled, ‘An Essay of the Shaking 

Palsy’. Clinical manifestations of PD include motor impairments such as resting tremor, 
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rigidity, bradykinesia, gait disturbances and postural instability. These result from the 

inhibition of the nigrostriatal motor pathway due to loss of 70-80% of striatal dopamine 

(4). While the motor symptoms of PD prevail the clinical picture and even define the 

parkinsonism syndrome, many PD patients also experience non-motoric symptoms like 

autonomic, cognitive and psychiatric problems (Table 1). To date, there is no known 

prevention or cure for PD. Although the motor symptoms are treatable, the benefit of the 

drugs frequently diminishes or become less consistent over time. A major hurdle in the 

development of effective neuroprotective agents is the limited understanding of the 

disease process leading to death of DA neurons. 
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Table 1-1. Clinical Features of PD 

 

The specific etiology of PD is incompletely understood, but it is believed that a 

combination of genetic susceptibilities (Table 2) and environmental factors, herbicides 

and pesticides, seem to play a critical role (6). While the majority of cases are sporadic, 

epidemiological studies unveil that < 10% of PD has a strict familial etiology. The 

discovery of at least 10 distinct genetic loci accountable for rare Mendelian forms of PD 

(Table 2) have established the role of heredity in the development of PD and granted 

imperative cues to understanding the molecular pathogenesis of the more common 

sporadic forms of this disease (4). Studies on the genetics, epidemiology, and 
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neuropathology of PD, in addition to the development of new experimental models 

revealed new concepts on disease mechanisms that are guiding researchers to develop 

treatments to prevent neurodegeneration and halt the progressive course of PD. 

 

Table 1-2. Several gene loci identified for PD 

 

 

 Animal and cell culture models are essential tools to identify disease 

mechanisms, novel therapeutic targets, and assess potential therapies. Two 

experimental models of PD include the engineered genetic model (Chapter 2) and the 

neurotoxin model (Chapter 3). 

1) The Neurotoxin Model.  Among the neurotoxins, (1-methyl-4-phenyl-1,2,3,6-

tetrahydropyridine), MPTP,  is the best studied and widely used to model 

environmental cause of PD in non-human primates and rodents. MPTP is 

lipid-soluble and readily penetrates the blood-brain barrier, BBB and brain 

cells. MPTP is converted by monoamine oxidase B in astrocytes to the toxic 

MPP+ which then enters the DA neurons via the dopamine transporter (DAT)  
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and inhibits mitochondrial complex I resulting in ATP depletion, oxidative 

injury and death of DA neurons (5, 6) (Figure 2). 

2) Engineered models. Pathological αSyn is linked mechanistically to both 

familial and sporadic PD. Therefore, to elucidate the pathophysiology of PD 

various transgenic mice overexpressing the PD-linked mutant αSyn were 

developed. As transgenic mice expressing mutant A53T αSyn exhibit more 

severe effects than the other αSyn mutations, we employed the A53T αSyn 

mice under the regulatory control of the prion promoter (7).These mice 

develop severe movement disorder, paralysis and synucleinopathy and show 

an extensive loss and degeneration in brainstem neurons and spinal cord 

motor neurons. However, they do not completely recapitulate the disease 

process as there was no evidence of DA degeneration in the substantia nigra 

(8-12). However, Dr. Masliah’s Lab has developed a transgenic model that 

exhibits DA neuronal loss. This was achieved by overexpressing αSyn under 

the control of the platelet-derived growth factor–β (PDGF-β) promoter (12). In 

addition, overexpression and knockout experiments of the other familial PD 

genes in mice have also been created. These experimental animal models 

have improved our understanding of disease development of the more 

common sporadic form of PD. 
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Figure 1-2. Schematic illustration of the mechanisms involved in toxicity of MPTP 

The mechanisms responsible for the preferential degeneration of DA neurons in 

PD have been debated for decades. The principal molecular pathways that commonly 

underlie the pathogenesis of both sporadic and familial forms of PD are depicted in 

(Figure 4). These include the production of free radicals and oxidative stress, 

mitochondrial damage, dysfunction of the ubiquitin-proteasome system (UPS), aberrant 

protein degradation and aggregation. 
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Recent studies have demonstrated hallmarks of endoplasmic reticulum (ER) 

stress in experimental models of PD (13-16).The ER is an essential intracellular 

organelle implicated in the regulation of intracellular Ca2+ homeostasis and in the folding 

and processing of proteins. Conditions that compromise ER functions induce ER stress 

(17, 18) (Figure 3). ER stress triggers the unfolded protein response (UPR) that 

consists of a series of interconnected control mechanisms that diminish cell damage 

caused from protein buildup in the ER (19-21). These include the attenuation of general 

protein synthesis, the transcriptional activation of the genes encoding ER-resident 

chaperones to relieve disturbances of the ER, and molecules involved in ER-associated 

degradation (ERAD). ERAD functions in cellular ‘quality control’ and regulation of ER-

resident proteins, and is crucial for the disposal of accumulated unfolded proteins (22, 

23). Severe and prolonged ER stress inevitably leads to cell death (17).  
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Figure 1-3. ER stress elicits UPR, ERAD and Ca2+ signaling (24) 

Though ER stress is closely associated with PD, it is yet not clear whether and 

how ER stress contributes to the degenerative cascades in PD.  Characteristic of UPR 

have been demonstrated in several experimental models of PD (13-15). Particularly, 

induction of mutant A53TαSyn in PC12 cells causes ER stress (15). Parkin, a protein 

ubiquitin E3 ligase that is involved in the degradation of unfolded proteins is the most 

commonly mutated gene known to result in familial PD (25, 26). Loss of function 

mutations in parkin are implicated in abnormal protein degradation by the UPS thus 

inducing ER stress (26, 27). Formation of LB together with the accumulation of 

oxidatively damaged and aggregated proteins in the SNpc of sporadic PD patients are 

indicative of aberrant proteolytic degradation (28). UPR is also upregulated in the 
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neurotoxin-induced cell death model of PD (13, 14, 29) suggesting that ER stress may 

symbolize a common molecular pathway contributing to the neuronal degeneration in 

familial and sporadic PD.  

Cell fate after ER stress is believed to be regulated by the balance between pro-

apoptotic and survival signals (30) (Figure 3). Important mediators of ER stress- 

associated cell death include activation of procaspase 12 (in mouse) or procaspase 4 

(in human) and increased expression of the pro-apoptotic transcription factor 

CCAAT/enhancer-binding protein homologous protein (CHOP) (31, 32). For instance, 

the expression of mutant A53T PD-linked αSyn results in reduction of proteasomal 

activity, elevation of CHOP and Grp78/Bip expression, induction of caspase-12 

activation and ultimately in ER-mediated cell death (15). CHOP has been identified as a 

critical mediator of apoptotic death in the SNpc dopamine neurons in an in vivo 

neurotoxin model of PD (33) and in ischemic stroke (34). Its critical role in ER-stress-

induced cell death has been demonstrated using CHOP knockout mice (34, 35). 

Moreover, upregulation of ER stress proteins during the ER stress response is 

important to restore ER homeostasis and enhance cell survival (Figure 3). Specifically, 

Grp78/Bip a fundamental regulator of ER homeostasis owing to its copious functions in 

protein folding, ER calcium binding, and controlling of the activation of the 

transmembrane ER stress sensor; its induction during ER stress represents a 

prosurvival arm of the UPR (36-38). Another positive regulator of ER stress is the 

homocysteine-inducible ER stress protein (Herp), an ER membrane-bound, ubiquitin-

like protein with both its N- and C- termini facing the cytoplasm (39, 40). Its N-terminal 

contains a proteasome-interacting motif (PIM) (40, 41) and interacts with Hrd1, a 
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membrane anchored E3 ligase (42). These findings have led to the supposition that 

Herp may interact with the proteasome during UPR to facilitate ERAD and thus alleviate 

ER stress. Studies have demonstrated that Herp expression is rapidly upregulated in 

cultured primary neurons and astrocytes exposed to proteasomal inhibitors or 

pharmacological agents that selectively induce ER dysfunction (43, 44). Increased Herp 

transcripts were also observed in the peri-ischemic regions in rat brains after ischemic 

stroke (44). Significantly, studies using Herp null cells revealed enhanced vulnerability 

to ER stress-mediated cell death (44). Reduction of Herp expression by RNA 

interference (RNAi) enhances susceptibility to ER stress-induced cell death whereas its 

overexpression promotes neuronal survival (43). Herp has also been shown to preserve 

ER Ca2+ homeostasis and mitochondrial function, and inhibits caspase-12 activation in 

neuronal cells subjected to ER stress (43). Therefore, the ability of Herp to alleviate ER 

stress and cellular death is suggested to be coupled with its capacity to stabilize cellular 

Ca2+ homeostasis.  

 Several reports implicate deregulated ER Ca2+ release in the pathophysiology of 

numerous neurodegenerative diseases including, Alzheimer’s, Huntington, and prion 

disease as well as acute disorders such as stroke (16, 45-47). Yet, very little is known 

about the ER Ca2+ homeostatic response during ER stress and whether its 

dysregulation leads to sustained ER stress and activation of ER stress-mediated cell 

death pathways. As the major intracellular Ca2+ store, the ER controls several vital 

neuronal activities such as transmitter release, gene transcription and synaptic plasticity 

(46, 48, 49). It contains two main types of Ca2+ release channels, the inositol 1,4,5-

triphosphate receptors (IP3R) and the ryanodine receptors (RyR). RyRs are stimulated 
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to release further Ca2+ by Ca2+ itself, a process termed Ca2+-induced Ca2+ release 

(CICR) (46, 50, 51). The IP3R’s on the other hand are activated by the second 

messenger IP3. Large increases in the expression of IP3R are reported to accompany 

apoptosis in several cell types (50, 51). Several lines of evidence suggest that the 

increased level of RyR is associated with enhanced Ca2+ response to the RyR agonist 

caffeine (52-54) and increased neuronal vulnerability to excitotoxic and oxidative insults 

(52, 53, 55). Both prion (PrP106-126) and Aβ peptides enhance oxidative stress, 

caspase 12 activation, and apoptotic cells death by a mechanism that involves the 

exaggerated ER Ca2+ release through IP3R and RYR (45, 52, 56, 57). Ca2+ release 

from the ER also appears instrumental in ischemic cell injury and trauma (47). Thus, the 

importance of ER Ca2+ release and its central involvement in ER stress-associated cell 

death is demonstrated in studies showing that blockers of IP3Rs and RyR can protect 

neurons against cell death induced by glutamate excitotoxicity, Aβ and prion peptides 

(52, 56, 58). Uncontrolled Ca2+ release from the ER via RyR and IP3R may also be 

involved in the pathogenesis of PD, but a detailed mechanism of their contribution is yet 

to be determined (Chapter 2). 

ER stress increases ER Ca2+ fluxes that can activate apoptosis via mitochondrial 

dependent and/or independent mechanisms (32, 59). Ca2+ released from the ER could 

activate caspase 12 but may also function as a positive amplifying loop for the 

mitochodrial-dependent apoptotic pathway (60, 61). A plethora of studies have 

established that loss of ER Ca2+ and concomitant Ca2+ uptake by mitochodria can lead 

to the collapse of mitochondria membrane potential, opening of mitochodrial transition 

pore and release of proapoptotic factors (62-64). Ca2+ uptake by mitochondira leads to 
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increased reactive oxygen species (ROS) production which instigate a vicious postivie 

feed back cycle involving ROS-induced deregulated Ca2+ release from ER stores, 

destabilization of mitochodrial Ca2+ handling and more ROS generation (62). ROS has 

been shown to directly modulate the gating or RyR (65) and IP3R (66) suggesting that 

oxidative stress can facilitate RyR and IP3R-induced apoptosis (66) in which 

deregulated Ca2+ release leads to increased mitochondrial Ca2+ loading. Hence, 

disruption of ER Ca2+ homeostasis is a common denominator of pathological processes 

resulting in neuronal injury in various neurodegenerative diseases. 

To date, dopamine replacment therapy using (L-DOPA) is the most prowerful 

treatment for PD, however, it is not a cure nor it can halt the progerssion of this 

disorder. Additional efforts are still required in order to further characterize the common 

mechanisms involved in the demise of dopaminergic neurons both in the sporadic and 

the genetic forms of PD. This will ultimatly provide vital advances in our understanding 

of the disease and will broaden our horizon in better designing targeted and more 

specific therapies.  
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Figure 1-4. Schematic representation of the mechanisms involved in 
neurodegeneration in PD 
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Part II 

Ischemic stroke is the commonest acute neurodegenerative disease; it 

represents 87% of all strokes (67) (Figure 5). It is considered to be the third leading 

cause of death in the US after diseases of the heart and cancers in addition to being the 

second worldwide (68-70). To convey the gravity and the burden that this disease 

imposes on society, the AHA estimated that 6 400 000 Americans over the age of 20 

years have already experienced a stroke, and that approximately 795 000 people each 

year have a stroke (69, 70). Stroke causes substantial morbidity and mortality, the AHA 

group states that on average someone dies of a stroke every 4 minutes and that 

someone in the US has a stroke every 40 seconds (AHA computation based on latest 

available data). The total costs of stroke are colossal and it was estimated that 73.7 

billions of dollars were spent in 2010 (69, 70), unfortunately, we still have limitations in 

stroke therapy. 

 

 
Figure 1-5. Causes of Stroke: > 80% are ischemic and ~20% are hemorrhagic 

As in PD, the incidence of stroke also increases with aging. The prevalence of 

stroke is higher in women as it represents an important health concern especially for 

postmenopausal women; however, its incidence seems to be the reverse, whereby 

Ischemic Stroke

Hemorrhagic Stroke
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younger men are at higher risks than younger females (68-70). Situations like, 

hypertension, high cholesterol, diabetes, obesity and cigarette smoke as well as 

decreased physical activity predominantly play a causative role and increases the risks 

for stroke episode (68, 70). It has been known for decades that genetics is a 

contributing element and thus play a role as a risk factor for stroke. To this end, an 

elegant genome wide association studies published in the New England journal of 

medicine identified two genes, namely WNK1 and NINJ2 that may be strongly 

implicated in ischemic stroke (71). Wnk1 is a large cytoplasmic serine-threonine kinase, 

expressed in the developing nervous system, kidneys and heart (72, 73). Being an ion 

homeostasis regulator (74), mutations in Wnk1 have been associated with familial 

hyperkalemic hypertension (75) and the severity in hypertension (73, 76, 77) further 

suggesting its implication in ischemic stroke. Ninj 2 is a homophilic cell adhesion 

molecule (78), also known as “nerve-injury-induced protein” as its name clearly states it; 

Ninj2 plays a role in nerve regeneration and neurite outgrowth (78). A recent study 

further shows the link between polymorphism in Ninj2 and its association with ischemia 

in a Chinese Han population (79, 80) this further supports the notion and confirms that 

genetic variations influence the risks of stroke. 

Ischemic stroke occurs when a blood vessel supplying blood to the brain is 

obstructed as shown in (Figure 6). 
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Illustration copyright 2000 by Nucleus Communications, Inc. All rights reserved. www.nucleusinc.com 

Figure 1-6. Types of stroke 

 

Immediately following ischemia synaptic transmission is disrupted, glutamate 

accumulates at synapses, resulting in overactivation and desensitization of its receptors 

that can eventually be neurotoxic (81, 82). Glutamate is the major excitatory 

neurotransmitter in the mammalian central nervous system (CNS) (83). This amino acid 

is implicated in several neuronal processes such as neural development, excitatory 

synaptic transmission and plasticity (83-85). Glutamate activates three classes of 

ionophore-linked postsynaptic receptors, namely, N-methyl-D-aspartate (NMDA), α-

amino-3-hydroxy-5methyl-4-isoxazole propionic acid (AMPA) and Kainate receptors 

(83). NMDA receptor-mediated toxicity is dependent on Ca2+ entry directly through this 

receptor-gated ion channel (81, 86). As most AMPA receptor channels have poor Ca2+ 

permeability neuronal injury may result primarily from indirect Ca2+ entry through voltage 

–gated Ca2+ channels (87), or Ca2+ permeable acid sensing ion channels (88). The 

combination of ischemia reperfusion I/R and Ca2+ overload trigger several downstream 
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lethal reactions including nitrosative and oxidative stress and mitochondrial dysfunction 

(81, 89), as summarized in (Figure 7). Furthermore, a plethora of transcription factors 

(TFs) are activated immediately after an ischemic insult. These TFs have been shown 

to contribute in the post-ischemic inflammation and ischemic neuronal death (90, 91), 

specifically, the transcription factor p53 (92). Though, p53 is best known for its tumor 

suppression functions (93), it also plays a key role in I/R induced cell death (92, 94).  

Consistent with this notion, pharmacological inhibition of p53 improved neuronal survival 

after ischemic injury (95). As noted, the overstimulation of glutamate receptors trigger 

intracellular event that induces neuronal death after ischemic stroke. Thus, synaptic 

glutamate receptor channels have been considered as a promising target for stroke 

therapy (96). Alas, all clinical stroke trials targeting glutamate receptors (AMPA or 

NMDA) have failed, conceivably because these receptor antagonists interfere with the 

physiological functions of glutamate as well (97, 98). 
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Figure 1-7. Schematic diagram summarizing glutamate excitotoxicity in ischemic 
neuronal degeneration 

Stroke has been classified as an epidemiologic risk factor for Alzheimer’s 

disease and may play a pivotal role in the initiation or acceleration process of 

neurodegenerative events (99). Yet, whether ischemia is implicated in increasing the 

risk of developing PD is still questionable. Like in PD, protein aggregation is also a 

feature of acute neurodegenerative disease. Abnormal buildup of protein aggregates 



19 
 

also develops post ischemic stroke and has been detected in vulnerable neurons from 

the onset of I/R until delayed neuronal death (100, 101). Both the nature and the role of 

the protein aggregates found in ischemic brains have not been established yet.  Several 

studies support the critical role of oxidative and nitrative stress in neuronal demise after 

I/R and demonstrate that oxidation modified proteins accumulate and participate in the 

generation of protein aggregates (102, 103).  

αSyn accumulates in neurons with age (104); moreover, its toxicity is generally 

considered a consequence of its aggregation (25). αSyn is the first gene discovered 

whose mutations cause autosomal dominant forms of familial PD (105) (Table 2). It is a 

small 140 amino acid abundant synaptic protein whose physiological functions are still 

being deciphered. αSyn is a natively unfolded protein that becomes structured upon 

binding to lipid membranes (106, 107). It is thought to play a role in regulating synaptic 

plasticity, vesicle release and trafficking (108, 109). Cell culture studies have shown that 

overexpression, impaired turnover and mutations lead to αSyn aggregation, block the 

activity of the ubiquitin-proteasomal system (UPS) and ultimately to neuronal cell death 

(110, 111) (Figure 4). Biochemical studies have shown that αSyn forms amyloid fibrils 

and that all three missense mutations in αSyn accelerate the aggregation of the protein 

(112, 113). Furthermore, exposure to oxidizing conditions, specifically nitration of αSyn 

has been shown to increase its propensity to aggregate (11). Of much greater 

significance is the finding that overexpression of wild-type αSyn also causes autosomal-

dominant PD demonstrating that abnormal accumulation of the normal αSyn protein is 

sufficient to cause disease (114). At higher doses, αSyn is deleterious to neurons and 

this has further been confirmed in a study showing that MPTP treatment increases αSyn 
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expression and hastens dopaminergic neuronal death (115). Conversely, αSyn -/- mice 

are resistant to MPTP-induced toxicity (116). Furthermore, the endangering 

consequences of αSyn following traumatic brain injury were also prevented in αSyn -/- 

mice (117).  Hence, αSyn accumulation and aggregation has proven to be associated in 

the pathological cascades leading to neuronal loss in both acute and chronic 

neurodegenerative disorders. 

DJ-1 is another PD gene linked to early onset disease with autosomal recessive 

inheritance (118) (Table 2). DJ-1 is a small 189 amino acid protein (119) that is 

profusely found in most mammalian tissues, including the brain, where it is localized to 

both neurons and glia (120). The physiological function of DJ-1 remains mostly 

unknown although many lines of evidence suggest that DJ-1 may function as an anti-

oxidant protein or as a sensor of oxidative stress (121). DJ-1 oxidizes itself to remove 

hydrogen peroxide in vitro, suggesting that it may function in part as a direct scavenger 

of ROS (121, 122). Other proposed functions include transcriptional co-activator and 

chaperone activity (123, 124). Its noticeable antioxidant activity emerges from the ability 

of DJ-1 to stabilize Nrf2 (nuclear factor erythroid 2-related factor), a key transcriptional 

regulator of the oxidant response (123). DJ-1 also functions as a redox-regulated 

chaperone to inhibit aggregation and toxicity of αSyn during oxidative stress (124). 

Moreover, eleven different mutations have been found in the DJ-1 gene (118, 125), of 

which the L166P and C106A missense mutations (126) shown to cause loss of function 

and exacerbate neuronal death under stress conditions (118, 127). Consistent with this 

notion, DJ-1 knockdown cells and DJ-1 -/- mice or flies are exceedingly susceptible to 

PD-inducing neurotoxins such as, MPTP, paraquat, rotenone, and 6-hydroxydopamine 
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(128-130). DJ-1 -/- mice also display larger infarcts post I/R as compared to their wild-

type counterparts (131); however, its overexpression in vivo confers neuroprotection 

against I/R induced injury (132) (Figure 8).  

Several studies point to the interaction between DJ-1 and αSyn and its 

pathological accumulation in brain tissues from PD patients (133), in in vitro settings 

(134) as well as other related disorders such as Alzheimer’s disease, Pick’s Disease 

and corticobasal degeneration (135). Reduced DJ-1 solubility has been verified in PD 

brain tissues and thereby hinders it from performing its cellular anti-oxidant responses 

(133). Supporting this notion, DJ-1 has been shown to translocate to mitochondria 

where it plays a role in maintaining mitochondrial integrity (128, 136). Loss of DJ-1 

function renders mitochondria more sensitive to oxidative stress and aggravates ROS 

production (129). This in part, results in the activation of redox-regulated TFs, p53 

(137). Under normal conditions, p53 exists in the cells at very low levels, but its 

expression rapidly increases in response to diverse insults including oxidative stress 

and DNA damage (138). The Jun N-terminal kinase 1/2 (JNK1/2) is known to be 

activated by oxidative stress and increases p53 stability by phosphorylation (139). P53 

propagates death responses to oxidative stress and has been shown play a pivotal role 

in I/R induced cell death (92, 94, 95, 138). Its importance has been shown in both PD 

and ischemic models whereby DJ-1 deficiency leads to the activation of the p53 

pathway (95, 137). P53-/- mice or treatments with pifithrin-α, a p53 inhibitor renders 

neurons more resistant to MPTP toxicity (140, 141). Furthermore, chemical inhibition of 

p53 has been shown rescue vulnerable neurons from ischemic insults both in vivo and 

in vitro (95, 138). Parkin, another PD-associated gene (Table 2) has also been shown 
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to play a role in neuronal degeneration post ischemic injury (142). I/R contribute to the 

reduction of parkin protein which results in the accumulation and aggregation of 

ubiquitylated proteins and thus enhancing vulnerability to ER-stress induced cell death. 

Recently, it has been shown that parkin alleviates αSyn-induced neuronal cell death in 

animal and cell culture models (143). These findings suggest a functional relationship 

between these PD-associated proteins. 

 

Figure 1-8. DJ-1 reduces infarct size after Ischemia-reperfusion 

(A) Intrastriatally injected rats with Glutathione S-transferase tagged DJ-1, GST-DJ-1 

(132). (B) DJ-1 wild-type (WT), HET (heterozygous), KO (knockout) mice (131). 

In conclusion, the development of effective neuroprotective therapies is of 

paramount importance. Over the years, a great number of animal and cellular models 

have been developed to mimic human stroke. These models have helped scientists 

understand the complexity of the pathological mechanisms involved in ischemic injury. 

Despite all these efforts, we still do not have a preventative remedy for stroke. It is 



23 
 

noteworthy to point that the mechanisms involved in neuronal death in stroke and 

chronic neurodegenerative diseases are usually investigated independently. 

Consequently, it is of imperative endeavor to thoroughly decipher the overlapping 

interrelated pathophysiological processes associated with chronic and acute 

neurodegenerative disease to help develop powerful and successful therapies. 
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CHAPTER TWO: THE HOMOCYSTEINE-INDUCIBLE ENDOPLASMIC RETICULUM 
(ER) STRESS PROTEIN HERP COUNTERACTS MUTANT Α-SYNUCLEIN-INDUCED 

ER STRESS VIA HOMEOSTATIC REGULATION OF ER-RESIDENT CALCIUM 
RELREASE CHANNEL PROTEINS 

Human Molecular Genetics (IN PRESS), published by Oxford University Press 

Introduction 

Parkinson’s disease (PD) is a progressive neurodegenerative movement disorder 

that results from the degeneration of dopaminergic (DA) neurons in the substantia nigra 

(1). A common pathological feature of PD is the aggregation of -synuclein (Syn) into 

cytoplasmic inclusions called Lewy bodies in the degenerating dopaminergic neurons 

(1). Cell culture studies have shown that overexpression, impaired turnover, and 

mutations lead to Syn aggregation (2). Two missense mutations (Ala53Thr and 

Ala30Pro) in Syn that cause early-onset, autosomal dominant forms of PD enhance 

the aggregation and toxicity of the protein (2). Duplication or triplication of the Syn 

gene was also found to cause early onset PD suggesting that elevated levels of wild-

type Syn can also lead to neurotoxicity (3). It is not yet clear how Syn aggregation 

induces the degenerative cascades leading to PD.   

Recent studies have demonstrated that mutant Syn may exert its pathological 

effects in parts by inactivating the Grp78/Bip chaperone function (4) or impeding 

endoplasmic reticulum (ER) to Golgi vesicular transport (5) leading to abnormal 

accumulation of proteins within the ER and induction of ER stress. Cells respond to ER 
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stress by activating the unfolded protein response (UPR) aimed at inducing translational 

repression and expression of ER-resident chaperones to enhance protein folding, 

processing and degradation of misfolded proteins, thus relieving cells from ER stress 

(6).  Prolonged or unmitigated ER stress associated with insufficient degradation of 

misfolded proteins or deranged Ca2+ homeostasis would subsequently activate ER 

stress-associated apoptotic pathways (7).  

Hallmarks of ER stress are detected in several experimental models of PD (8, 9) 

and in nigral dopaminergic neurons of PD subjects (10). Expression of PD-linked mutant 

Syn elevates CCAAT/enhancer binding protein (C/EBP) homologous protein (CHOP) 

(11), an ER stress-induced apoptotic mediator (12). CHOP is also elevated in 

neurotoxin models of PD (8, 9) and is a critical mediator of apoptotic death in substantia 

nigra dopamine neurons (13).  Salubrinal, a neuroprotective agent that acts to inhibit ER 

stress protects cells from death induced by overexpression of mutant Syn (11). 

Furthermore, ER stress is closely associated with the aggregation of Syn in 

dopaminergic neurons (10). Though these studies suggest that ER stress is of 

pathophysiological relevance in PD, the underlying mechanisms of ER stress-mediated 

degenerative cascades and the specific roles of the various UPR proteins in PD 

pathogenesis remain unknown. 

Herp (Homocysteine-inducible ER stress protein) is an ER integral membrane 

protein with the N-terminal ubiquitin-like domain projecting into the cytosol (14). 

Upregulation of Herp is essential for neuronal survival as Herp knockdown enhances 

vulnerability to ER stress-induced apoptosis (15, 16). How Herp contributes to the 

restoration of ER homeostasis remains unclear. Herp appears to stabilize ER Ca2+ 
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homeostasis and mitochondrial function in neural cells subjected to ER stress (16). 

Herp may also play an essential role in ER-associated protein degradation (ERAD), the 

primary mechanism of misfolded protein degradation, as its knockdown results in the 

selective accumulation of ERAD substrates (17). Recent studies demonstrated that 

Herp is induced in PD substantia nigra and is present in the core of Lewy bodies (18). 

The roles of Herp in PD remain unknown. Because Herp was shown to be critical for 

survival adaptation in the neurotoxin models of PD (19), we investigated whether Herp 

may counteract the neurodegenerative cascades caused by induced expression of 

mutant Syn. We found that Herp plays an essential role in suppressing mutant Syn-

induced activation of ER stress-associated apoptosis signaling by inhibiting the 

deregulated ER Ca2+ release associated with the aberrant accumulation of ER resident 

Ca2+ release channels. 

Materials and Methods 

Cells, Plasmid and Reagents 

Pheochromocytoma 12 (PC12) and human embryonic kidney 293 (HEK293) cells 

were purchased from ATTC. PC12 cells were selected because they are dopaminergic 

and have been extensively studied as models of neuronal degeneration. The pcDNA3.1 

plasmids containing the c-myc-tagged full-length or loss-of-function deletion of human 

Herp cDNA have been described previously (16, 19). Xestospongin C (Tocris),  

dantrolene (Sigma), bradykinin (Sigma) were prepared as concentrated 1000x stocks in 

dimethylsulfoxide (DMSO; Sigma) or Lock’s solution (mM): NaCl, 154; KCl, 5.6; CaCl2, 

2.3; MgCl2, 1.0; NaHCO3, 3.6; glucose, 10; Hepes buffer, 5 (pH 7.2). Salubrinal was 
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purchased from Santa Cruz. The dose of each drug was selected based on previously 

published studies (11, 20). Caffeine (Sigma) was freshly prepared in water. Additional 

reagents included: Lipofectamine 2000, TRIzol, Opti-MEM, priopidium iodide, and 

protein A beads (Invitrogen), MG-132 (BioMol), Trypan blue solution (0.4%; VWR), and 

tunicamycin (Sigma). 

Cell Culture, Transduction, and Electroporations 

PC12 and HEK293 cells were maintained in a humidified 5% CO2 and 95% air 

atmosphere at 37 °C in Dulbecco's Modified Eagle Medium (DMEM) high glucose 

medium supplemented with 10% heat-inactivated horse serum, 5% heat-inactivated 

fetal bovine serum, 50 units/ml penicillin, and 0.05 mg/ml streptomycin  (16, 20). PC12 

cell lines expressing the human wild-type and mutant Syn were generated using a 

tetracycline (Tet)-on system. For the induction of Syn expression, culture medium was 

replaced every other day with DMEM containing 1% horse and 0.5% fetal bovine sera 

(InVitrogen), 100 ng/ml nerve growth factor (Upstate) and Tet (2 µM; Sigma). In some 

studies, non-induced clones were transduced with recombinant adeno-associated viral 

(rAAV) particles prior to induction with Tet. Transient transfection was carried out using 

the Neon transfection system according to the manufacture’s instructions (Invitrogen). 

PC12 cells (1-2 x 107/ ml) were transfected by electroporation with 4-8 µg of empty 

vector, wild-type Syn, or mutant Syn (gift from Dr. R.G. Perez, Department of 

Neurology, University of Pittsburgh) using the following optimized conditions: 1400 V, 20 

ms and 1 pulse. The transfection efficiency following electroporation with wild-type 

Syn-GFP was ~70%. 
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Ectopic Expression of Herp 

The Herp and UBL-Herp constructs have been inserted into a rAAV expression 

construct (GenDetect). The resulting cDNAs were cloned into the HindIII/BamHI site of 

the pAd-YC2 shuttle vector. For homologous recombination, the shuttle vector (5 µg) 

and rescue vector pJM17 (5 µg) were co-transfected into HEK293 cells. To amplify the 

recombinants, cell culture supernantant was serially diluted into serum-free media and 

incubated with HEK293 cells. The recombinants were purified from supernatants by 

ultracentrifugation. The band containing mature viral particles were collected and 

desalted against phosphate-buffered saline (PBS) in a Vivaspin column (Vivascience 

AG), and titers were determined by counting the number of plaques. Cells were infected 

with the virus at a MOI of 500 in medium containing 2% FBS for 4 h, after which DMEM 

containing 10% FBS was added. Analysis of rAAV-GFP expression indicated an 

infection rate of ~85-90%. 

Experimental Treatments 

To induce ER stress, cultures of PC12 cells were treated with 20 g/ml Tuni. In 

some studies, the proteasomal inhibitor MG-132 (0.1-10 M) or salubrinal (75 μM) were 

added prior to Tuni.  These drugs were prepared in DMSO immediately before applying 

them to the cultures. When DMSO was used as the solvent, their final concentration did 

not exceed 0.1%. At the end of each treatment, the cultures were processed for 

immunoblotting and evaluating cell viability.  
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RNA interference (RNAi) 

Cells were transfected with Mission predesigned siRNA duplexes (Sigma) 

targeting Herp, IP3R1, RYR1, and RYR3, or a control siRNA (siRNA-Con; Ambion) 

using Lipofectamine 2000 (Invitrogen) in Opti-MEM according to manufacturer's 

protocol. The target sequences of each siRNA are listed in Supplemental Tables 1S. 

Results of quantitative RT-PCR analysis of total RNA from PC12 cells and tissue 

samples revealed expression of IP3R2, IP3R3 and RYR2 below the limit of detection of 

the qRT-PCR assay method (Ct values >35). The optimized siRNA concentrations are 

100 nM of siRNA-Herp, 250 nM of siRNA- IP3R1, and 100 nM of each siRNA-RYR1 

and siRNA-RYR3 added in combination. After 4 h of transfection, the medium was 

replaced, and 24-48 h later, the indicated experiments were conducted. To monitor 

knockdown, cells were harvested and processed for qRT-PCR and Western blot 

analyses. The transfection efficiency of siRNA-Con-FITC (Santa Cruz) in PC12 cells 

was greater than 95% (data not shown). 

Assessment of Cell Death 

Cell death was assessed by either trypan blue exclusion or propidium iodide 

staining as described previously (16, 20). Trypan blue and propidium iodide (50 μg/ml) 

stain only the cells with disrupted plasma membrane integrity so these cells were 

considered dead. The PI was excited with the 568-nm yellow line of a confocal 

microscope (Leica), and the acquisition of PI labeling images was performed at the 

wavelength higher than 600 nm via a photomultiplier through a band-pass filter centered 

at 605 nm. Dead cells were counted in four microscopic fields per dish, with a minimum 

of 100 cells per field and results were expressed as a percentage of the total number of 
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cells. All of the experiments were repeated at least three times without knowledge of 

treatment history.  

Immunoprecipitation 

Cells and tissues were solubilized in binding buffer containing 50 mM Tris–HCl 

(pH 7.4), 150 mM NaCl, 1 mM EDTA, 1 mM DTT, 0.2 mM phenylmethanesulfonyl 

fluoride, and 1.0% NP-40 as described previously (21). The homogenate was 

centrifuged at 20,000 × g for 10 min. Solubilized proteins were adjusted to 0.1% NP-40 

and incubated for 12 h at 4 °C with a polyclonal antibody to anti-Herp (BioMol), IP3R1 

(Millipore) or pan-RyR (Santa Cruz). After an additional incubation with protein A 

conjugated beads, the immune complexes were then recovered by low speed 

centrifugation and washed extensively with the binding buffer containing 0.1% NP-40. 

Immunoprecipitated proteins were eluted by boiling in SDS-PAGE sampling buffer and 

analyzed by immunoblotting. 

Immunoblotting  

Protein lysates were centrifuged at 20,000 g and equal amounts of the proteins 

were loaded into each well of a SDS-PAGE. After electrophoretic separation and 

transfer to nitrocellulose membranes (Bio-rad), blots were incubated in blocking solution 

(5% milk in TBS-T) for 1 h at RT, followed by an overnight incubation with primary the 

following antibodies diluted in blocking buffer: -Syn [human specific antibody (Abcam) 

or cross-reactive with human, rat, and mouse (Santa Cruz)], KDEL (Santa Cruz), actin 

(Sigma), ERK1 (Cell Signaling), caspase-12 (Abcam), Herp [polyclonal antibody 

(Biomol) and monoconal antibody (Santa Cruz)], CHOP (Abcam), IP3R1 (Millipore), 
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pan-RyR (Santa Cruz), S5a (Cell Signaling) and presenilin 1 (Abcam). Membranes were 

then incubated for 1 h in secondary antibody conjugated to horseradish peroxidase 

(HRP), and bands were visualized by enhanced chemiluminescence (ECL, Thermo-

Scientific). Membranes were stripped and re-probed with either the actin or ERK1 

antibody to normalize protein loading. The intensity of the signals obtained was 

quantified by densitometric scanning using Scion (NIH Image).  

Immunostaining 

Spinal cords were removed after perfusion with heparinized saline (0.9% NaCl) 

transcardially followed by 4% buffered paraformaldehyde (PFA) and post-fixed 

overnight in PFA. Serial sections of the lumbar region were sectioned at 30 µm with a 

freezing microtome (Microm HM 505 N) and collected on slides. Cultured cells plated on 

coverslips were fixed for 20 min with 4% paraformaldehyde in PBS following 

experimental treatments. Cells were then incubated for 5 min in a solution of 0.2% 

Triton X-100 in PBS and for 1 h in blocking solution (0.02% Triton X-100, 5% normal 

horse or goat serum in PBS). Tissue sections and coverslips were processed for 

immunofluorescence staining as described (16, 21) with the following primary 

antibodies: Syn (Abcam), nitro-Syn (Abcam), Herp (Santa Cruz); CHOP (Cell 

Signaling); KDEL (Santa Cruz); pan-RyR (Santa Cruz), IP3R1 (Millipore), and NeuN 

(Millipore). All antibodies were diluted in blocking solution and used within the 

concentration ranges recommended by the manufacturer. To test for nonspecific 

staining by the secondary antibodies, additional sections or coverslips were processed 

in a similar fashion without the primary antibodies or with adsorbed antibodies. After 

three washes, sections or coverslips were incubated with fluorescein isothiocyanate 



44 
 

(FITC)-conjugated anti-rabbit and Cy3-conjugated anti-mouse secondary antibodies and 

then mounted. To stain the nuclei, sections or coverslips were further incubated with the 

nucleic acid stain 4',6-diamidino-2-phenylindole (DAPI) in PBS containing 1% RNase 

and 0.2% Triton X-100 for 10 min, and then mounted in FluorSave aqueous mounting 

medium (Calbiochem). Immunofluorescence staining was examined by using a NIKON 

80i fluorescent microscope equipped with a x60 oil immersion objective lens. For 

quantification, digitized images of immunostained sections were obtained with Qimaging 

Retiga 2000 SVGA FAST 1394 cooled digital camera system mounted on the 

microscope and then analyzed with IP lab software (BD Biosciences- Bio-imaging).  

Total area of pixel intensity was measured with the automated measurement tools in IP 

lab software.   The total density was averaged and expressed as normalized, corrected 

values. 

Measurement of [Ca2+]i 

PC12 cells were plated at a density of 1x106 cells / 35mm glass bottom MatTek 

dish (Ashland) the day before the experiment. Cells were loaded with 2 μM Fura-2 

acetoxymethyl ester in Krebs–Ringer-Hepes (KRH) buffer [129mM NaCl, 5mM 

NaHCO3, 4.8mM KCl, 1.2mM KH2PO4, 1mM CaCl2, 1.2mM MgCl2, 10 mM glucose and 

10mM Hepes (pH7.4)], for 20 minutes and then washed twice with KRH and incubated 

for additional 30 minutes at 37°C. Dishes were placed into a heated chamber mounted 

on the stage of an inverted fluorescence microscope (Nikon Eclipse TiE with perfect 

focus and DG-5 Xenon excitation) and perfused with Ca2+-deficient KRH at a rate of 1.5 

ml/ minute. Baseline was established for 6 minutes before stimulation. Measurements 

were continued for 4-5 min after Ca2+ peak was recorded. Fura-2 dual excitation images 
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were captured through a Nikon S Fluor 20X objective (NA 0.75) with a Photometrics 

QuantEM 16bit EMCCD camera using 340 nm and 380 nm excitation filters and a 470-

550nm emission filter. Data were acquired and analyzed using Nikon Elements 

software. Background fluorescence signals were collected at the same rate for the 

same wavelengths and were subtracted from the corresponding fluorescence images. 

The fluorescence intensities of 10-20 cells / dish were expressed as ratio of excitation 

340/380 nm and area under the curve (AUC).  

RT-PCR and Quantitative Real Time-PCR (qRT-PCR)  

Total RNA was isolated with TRIzol (Invitrogen). To prevent genomic DNA 

contamination, the isolated total RNA samples were treated with DNAse. 2 μg of total 

RNA was reverse transcribed with Superscript II reverse transcriptase and an oligo(dT) 

primer (Invitrogen). RT-PCR products were resolved on agorose gels stained with 

ethidium bromide. Relative quantification of gene expression was performed by 

normalizing the fluorescence intensities of each band to those of actin. qRT-PCR was 

performed as previously described (22). The integrity of the RT-PCR products was 

confirmed by melting curve analysis. Melting curves for all reaction showed one specific 

peak. We used 18 S rRNA as an endogenous control to normalize variations in RNA 

extraction and variability in RT efficiency. mRNA levels were quantified with the 

comparative Ct method (22). The pairs of primers used for RT-PCR and qRT-PCR are 

listed in Supplemental Tables 2 and 3, respectively. 
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Animals  

Mice transgenic for human A53T-Syn (THY1-SNCA-A53T; Jackson) have been 

characterized in a previous study (30). All animal experimental procedures were 

performed in accordance with the guidelines of the NIH and approved by the 

Institutional Animal Care and Use Committee at University of Central Florida. 

Statistical analysis  

Comparison between two groups was performed using Student's t test, whereas 

multiple comparisons between more than two groups was analyzed by one-way ANOVA 

and post hoc tests by least significant difference. Data evaluated for the effects of two 

variables was analyzed using two-way ANOVA (Prism 4 version 4.03; GraphPad 

Software, Inc.). Results are presented as means ± SEM.  For all analyses, statistical 

significance is defined as a p value of ≤ 0.05. 

Supplementary Methods 

Calcium imaging  

PC12 cells were plated on 35-mm glass bottom dishes (Matek) and loaded with 4 

µM Fluo-4 acetoxymethyl ester (Invitrogen) in Lock’s buffer at 37 C for 30 min. The 

cells were then washed twice with and incubated in Lock’s buffer for an additional 30 

min, and then mounted on the stage of an inverted confocal microscope (Carl Zeiss) 

equipped with a 40× objective. To trigger ER Ca2+ release, 10 µM bradykinin was added 

directly to the cell solution.  Cells were excited using the 488-nm laser line, and images 

were acquired at 5-s intervals under time-lapse mode. 
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Immunoprecipitation  

Cell lysates and tissue homogenates were incubated with an antibody to Herp 

(BioMol), c-myc (Sigma), S5a (Cell Signaling), IP3R1 (Millipore), pan-RyR (Santa Cruz) 

or  Syn (Abcam and Santa Cruz) antibody in binding buffer containing 50 mM Tris–HCl 

(pH 7.4), 150 mM NaCl, 1 mM EDTA, 1 mM DTT, 0.2 mM phenylmethanesulfonyl 

fluoride, and 1.0% NP-40. Antigen-antibody complexes were precipitated with 

immobilized protein A, washed three times in immunoprecipitation buffer, and 

solubilized by heating in Laemmli buffer containing 2-mercaptoethanol at 100 °C for 4 

min. The solubilized proteins were separated by electrophoresis and analyzed by 

immunoblotting. 

Results 

Expression of Mutant Syn Evokes a Sustained ER Stress Response 

Previous studies provide evidence that mutant Syn triggers a cell death 

program that involves activation of the ER stress response (11). It is yet not clear which 

and how ER stress proteins contribute to mutant Syn-induced cell death. To 

investigate the role of Herp in the mutant Syn-induced degenerative process, we 

generated Tet-inducible PC12 cells. Time course analysis indicated that Syn protein 

level reaches a plateau 48 h after induction (Fig. 1A).  Concurrently, mRNA and protein 

levels of the ER stress markers Grp78 and Herp were markedly elevated in the PC12 

cells expressing mutant Syn, especially those expressing A53TSyn (PC12-

A53TSyn), when compared to PC12 cells expressing wild-type Syn (PC12-WTSyn) 

(Fig. 1B). Levels of CHOP were also markedly higher in PC12-A53TSyn (Fig. 1B) 
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suggesting, that at this expression level, there was a selective deleterious effect of 

A53TSyn but not WTSyn. Similar results were obtained in PC12 cells transiently 

expressing A53TSyn and WTSyn (Fig. 1C). 

Herp Protects Against Mutant Syn-Induced Cell Death 

Compared to PC12 cells stably expressing the empty vector (PC12-VT), PC12-

WTSyn and PC12-A30PSyn, PC12-A53TSyn exhibits significantly higher baseline 

cell death (Fig. 2A) which correlated with increased CHOP protein level and caspase-

12 activation (Fig. 2B). Because A53TSyn enhances activation of ER stress-related 

apoptosis signaling, we utilized PC12-A53TSyn in subsequent knockdown studies. 

PC12-A53TSyn treated with a small interference RNA (siRNA) targeting Herp (siRNA-

Herp) but not a non-silencing control siRNA (siRNA-Con) exhibited higher basal rate of 

cell death (Fig. 2C). In contrast, ectopic expression of Herp, but not the dominant-

negative mutant UBL-Herp that lacks the UBL domain (Fig 2D), significantly improved 

the viability of PC12-A53TSyn (Fig. 2E). Notably, UBL-Herp appeared to potentiate 

A53TSyn-induced cell death consistent with a dominant-negative action of UBL-Herp 

as reported previously (19). 

Mutant Syn Perturbs ER Ca2+ Homeostasis During ER Stress 

Given that Herp protects from A53TSyn-induced death (Figs 2C, E) and that 

Herp plays a crucial role in stabilizing ER Ca2+ homeostasis in ER-stressed PC12 cells 

(16), we next determined whether A53T-Syn may perturb ER Ca2+ regulation by 

altering the activity of the two main classes of ER-resident Ca2+ release channels, IP3R 
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(inositol triphosphate receptor) and RYR (ryanodine receptor) which can be activated by 

their respective agonists, bradykinin and caffeine (20-22). The average peak amplitude 

of bradykinin-evoked Ca2+ release in the absence of extracellular Ca2+ was significantly 

larger in PC12-A53TSyn when compared to PC12-WTSyn and PC12-VT (Fig 3A) 

indicating that A53TSyn enhances ER Ca2+ release. No significant difference was 

observed in thapsigargin-induced depletion of ER Ca2+ store (Supplementary Fig 1A) 

suggesting that the ER stress–induced perturbation of intracellular Ca2+ level ([Ca2+]i) in 

PC12-A53TSyn cannot be explained by higher ER lumenal Ca2+ but rather is caused 

by a higher fraction of ER Ca2+  being released via IP3R.  

Tunicamycin (Tuni) is a classical ER stressor that induces a sustained increase 

of ER stress proteins (Supplementary Fig 1B, C). The magnitude of the bradykinin-

evoked Ca2+ release was also higher in PC12 cells treated with Tuni (PC12-Tuni) when 

compared to control cells that were left untreated or treated with vehicle (data not 

shown; 16,19). Consequently, treatment with BAPTA-AM, a cell permeable Ca2+ 

chelator, markedly improves the viability of both PC12-A53TSyn and PC12-Tuni (Fig 

3B) suggesting that Tuni and A53TSyn increase susceptibility to ER stress-induced 

death by enhancing ER Ca2+ release. 

Mutant Syn-Induced ER Stress Perturbs Homeostatic Regulation of ER-Resident 
Ca2+ Release Channels 

Next, we determined whether the heightened cytosolic Ca2+ level in PC12-Tuni 

and PC12-A53TSyn results from altered homeostatic regulation of ER-resident Ca2+ 

release channels. Three distinct types of  IP3Rs (types 1–3) have been cloned in 

mammals and each type shows distinct properties in terms of their IP3 sensitivity, 
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modulation by cytoplasmic Ca2+ concentration, and unique tissue distribution (23,24). 

Among them, the type 1 IP3R (IP3R1) is highly expressed in the central nervous system 

(24). qRT-PCR analysis showed that IP3R1 is the major IP3R isoform expressed in 

PC12 cells (unpublished data). PC12 cells also express RYR1 and RYR3 (pan-RyR) 

(20, 21). Levels of IP3R2, IP3R3, and RYR2 mRNAs were not assessed due to their low 

abundance in PC12 cells. PC12-Tuni exhibit marked accumulation of IP3R1 and pan-

RyR protein (Fig 3D; Suppl Fig 1C) consistent with the notion that Tuni-induced ER 

stress leads to disruption of ER Ca2+ homeostasis (16). Expression of A53TSyn also 

induces a marked increase in the protein levels of IP3R1 (Fig 3E) and pan-RyR (Fig 3F) 

suggesting that the aberrant accumulation of ER Ca2+  release channels was likely 

mediated through a common ER stress-related mechanism. Consistent with the 

elevated pan-RYR protein levels, PC12-Tuni and PC12-A53TSyn were more 

vulnerable to cell death in the presence of caffeine when compared to their respective 

controls (Supplementary Fig 1D). By contrast, level of presenilin1 (PS1) which 

functions as a passive ER Ca2+ leak channel (25), was not markedly altered by ER 

stress (Fig 3D, E). It is worth noting that unlike the increase of ER stress proteins which 

is mediated by a transcriptional mechanism (6, 7), the ER stress-associated 

accumulation of IP3R1 and pan-RYR was independent of transcription (Supplementary 

Fig 1E,F).  

Inhibition of Deregulated ER Ca2+ Release Ameliorates ER Stress-Mediated Cell 

Death and Syn Aggregation 

Because ER-released cytosolic Ca2+ plays a critical role in the activation of 

several death effector pathways (16), we next determined whether blockade of ER Ca2+ 
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release may ameliorate ER stress-induced cell death. Xestospongin C (a blocker of 

IP3R) and dantrolene (a RyR blocker) at doses that did not cause robust death within 24 

h substantially improved the viability of PC12-Tuni (Fig 4A) and PC12-A53TSyn (Fig 

4B). Neither IP3R nor RyR inhibition altered the expression of Syn (data not shown), 

thereby confirming that inhibition of ER Ca2+ release rather than reduced expression of 

A53T-Syn contributes to cell protection.  

To further determine whether these ER-resident Ca2+ release channels are 

responsible for the heightened sensitivity of PC12-A53TSyn to ER stress-mediated cell 

death, we knocked down each channel protein at a time by using either siRNA-IP3R1 or 

siRNA-RYR1 and siRNA-RYR3 in combination (Fig 4C). The non-silencing control 

siRNA (siRNA-Con) alone did not alter IP3R1 nor RYR1/RYR3 expression (not shown). 

A close correlation between protein levels of these ER Ca2+ release channels and the 

ER stress-induced apoptotic mediator CHOP (Supplementary Fig 2) was observed in 

PC12-Tuni (Fig. 4D) and PC12-A53TSyn (Fig 4E). CHOP which is known to be 

upregulated following a severe or prolonged ER stress, was markedly suppressed along 

with Herp and Grp94/78 in PC12-Tuni transfected with the silencing siRNAs 

(Supplementary Fig 2). These data suggest that impaired homeostatic regulation of 

ER-resident Ca2+ release channels might underlie chronic activation of ER stress and 

associated apoptosis signaling. 

Because ER-released cytosolic Ca2+ plays a role in promoting Syn aggregation 

(26), we next examined Syn inclusion formation in PC12 cells transiently transfected 

with either WTSyn or A53TSyn tagged to green fluorescent protein (GFP) by 

fluorescence microscopy.  Xestospongin C substantially reduces not only the fraction of 
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cells bearing cytoplasmic Syn inclusions but also the size of the inclusions 

(Supplementary Fig 3). These fluorescent aggregates were not detected in PC12 cells 

transfected with GFP alone (data not shown). 

Salubrinal Inhibits ER Stress-mediated Cell Death by Preventing the Aberrant 
Accumulation of ER-Resident Ca2+ Release Channels 

Next, we asked the question whether salubrinal, a compound that has been 

shown to ameliorate A53TSyn-induced cell death (11), may counteract prolonged ER 

stress through the homeostatic regulation of ER-resident Ca2+ release channels. 

Salubrinal at a dose that inhibits the cellular phosphatase complexes that 

dephosphorylate eiF2 (Supplementary Fig 4) not only blocks the ER stress-

associated increase of IP3R and pan-RYR but also dramatically reduces protein levels 

of Herp, Grp94/78 and CHOP in both PC12-Tuni (Fig 5A) and PC12- A53TSyn (Fig 

5B) suggesting that this compound likely ameliorates ER stress by improving the 

homeostatic regulation of ER Ca2+ release channels through a mechanism that is 

independent of transcription (Fig 5C). By contrast, salubrinal did not alter PS1 protein 

level in PC12-Tuni (Fig 5A) and PC12-A53TSyn (Fig 5B). The salubrinal-mediated 

decrease of ER Ca2+ release channels was accompanied by a substantial reduction in 

the bradykinin-evoked Ca2+ transients in both PC12-Tuni (Supplementary Fig 5A) and 

PC12-A53TSyn (Supplementary Fig 5B). Consequently, salubrinal also significantly 

ameliorates the Ca2+ dependent aggregation of A53TSyn-GFP in the cytosol 

(Supplementary Fig 3). 
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Herp Counteracts ER Stress Through the Homeostatic Regulation of ER-Resident 
Ca2+ Release Channels   

Because Herp counteracts Tuni-induced cell death through the stabilization of 

ER Ca2+ homeostasis (16), we next determined whether Herp protects PC12-A53TSyn 

(Fig 2C, D) by a similar mechanism. Knockdown of Herp substantially increases the 

amplitude of the bradykinin (BK)- induced Ca2+ transients (Fig 6A) that result from the 

marked accumulation of IP3R1 (Fig 6B; Supplementary Fig 6A). Levels of pan-RYR 

but not PS1 proteins were also affected by Herp knockdown (Fig 6B; Supplementary 

Fig 6A). Consequently, the deficits in Herp-dependent homeostatic regulation of ER 

Ca2+ release channels is also accompanied by increased levels of the ER stress 

markers Grp94/78 and CHOP (Fig 6B; Supplementary Fig 6A) and enhanced 

vulnerability to Syn-induced death (Fig 6C). Conversely, ectopic expression of Herp 

suppresses the aberrant accumulation of IP3R1 and pan-RYR but not PS1 proteins (Fig 

6D; Supplementary Fig 6B). Neither knockdown nor ectopic expression of Herp alters 

mRNA levels of IP3R1 and pan-RYR (Supplementary Fig 6C, D) suggesting that, 

analogously to salubrinal, Herp promotes the homeostatic regulation of these ER-

resident Ca2+ release channels through a mechanism that is independent of 

transcription. 

 Knockdown of Herp also increases basal (Fig 6E, F) and stress-induced 

accumulation (Fig 6E, G) of both IP3R1 and pan-RYR proteins independently of 

transcription (Fig 6H) in PC12-Tuni.  Consistent with the notion that Herp counteracts 

Tuni-induced death (19), knockdown of Herp results in a significant increase of CHOP 

protein by transcriptional regulation (Fig 6 E, H).  
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Herp Promotes Degradation of ER-Resident Ca2+ Release Channels Through 
ERAD 

Because Herp has been shown to bind to and target protein substrates for ERAD 

(17), we next tested whether Herp modulates the levels of IP3R1 and/or pan-RYR 

proteins by a similar mechanism. Immunoprecipitation with an anti-Herp antibody 

followed by immunoblotting with antibodies to each ER Ca2+ release channel 

demonstrated that a greater fraction of Herp forms a complex with IP3R1 and pan-RYR 

in PC12-Tuni when compared to vehicle-treated control cells (Fig 7A). The specificity of 

the interaction was confirmed by immunoblotting the Herp-containing protein complex 

with an antibody to Grp78 (Supplementary Fig 7A) and by performing the co-

immunoprecipitation assay using lysates from HEK293 expressing c-myc-tagged Herp 

(Supplementary Fig 7B). Neither the pre-immune normal IgG nor Grp78 antibody 

forms a protein complex with Herp. Double immunofluorescence labeling confirmed 

Herp colocalization with each ER Ca2+ release channel protein in PC12-Tuni 

(Supplementary Fig 7C). Herp also interacts with A53TSyn (Supplementary Fig 7D, 

E) suggesting that this interaction could possibly interfere with the protective role of 

Herp (see discussion). 

To determine whether binding of Herp to IP3R1 and pan-RYR results in 

proteasome-mediated protein degradation of these Ca2+ release channel proteins, 

PC12 cells were treated with the proteasome inhibitor MG-132. Consistent with the 

notion that the degradation of IP3R1 and pan-RYR proteins is mediated by the 

proteasomes (27, 28), MG-132 markedly increases steady-state protein levels of these 

ER-resident Ca2+ release channels (Fig 7B; Supplementary Fig 8A). Ectopic 

expression of Herp results in a significant reduction of IP3R1 and pan-RYR protein 
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levels (Fig 7C) that can be reversed upon inhibition of proteasome activity (Fig 7D, 

Supplementary Fig 8B). Note that MG-132 also increases Herp protein levels (Fig 7B, 

D) suggesting that Herp itself is a proteasome substrate (29). In support for this notion, 

Herp interacts and co-localizes with the ubiquitin-interacting S5a subunit of the 

proteasome in PC12-Tuni (Supplementary Fig 9A, B). Increased co-localization of S5a 

with the Grp78-labeled ER was also detected in PC12 cells transfected with Herp 

(Suppl Fig 9B). Though S5a protein level was not markedly altered in PC12-Tuni 

(Supplementary Fig 9C), knockdown of Herp substantially reduces S5a co-localization 

with the ER in PC12-Tuni suggesting that ER stress-induced upregulation of Herp but 

not S5a is sufficient for the recruitment of proteasomes to the ER (Supplementary Fig 

9D). Collectively, our data indicate that aberrant accumulation of IP3R and pan-RYR 

perturbs ER Ca2+ homeostasis in ER stressed cells and that Herp prevents aberrant ER 

Ca2+ release by targeting these ER-resident Ca2+ release channels for ERAD. 

Accumulation of ER Stress Markers and ER-Resident Ca2+ Channels in A53TSyn 
Transgenic Mice 

Next, we explored whether A53TSyn-induced ER stress markers and ER Ca2+ 

channels were detected in vivo. Transgenic mice overexpressing A53TSyn (A53T 

mice) develop motor abnormalities associated with the accumulation of Syn inclusions 

in spinal cord motor neurons (30). Immunoblotting reveals marked upregulation of Herp 

and Grp78/Bip proteins in spinal cords of 8 months old A53T mice  (symptomatic) 

when compared to 2 months old A53T mice (pre-symptomatic) and non-transgenic 

(Non-Tg) mice (Fig 8A, B). CHOP protein was low in Non-Tg mice but was readily 

detected in A53T mice (Fig 8A, B).  Immunohistochemistry indicates  a marked 
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increase of nitrated Syn in NeuN-labeled spinal cord neurons and further confirms the 

increase of ER stress markers and ER-resident Ca2+ release channels in 13-15 months 

old (symptomatic) when compared to 5 months old (pre-symptomatic) A53T mice 

(Supplementary Fig 10 A). By contrast to the ER stress markers, the upregulation of 

ER-resident Ca2+ release channels was not attributed to increased expression 

(Supplementary Fig 10 B).  The amounts of IP3R1 and pan-RYR in the spinal cord 

homogenates that form a protein complex with Herp were also markedly higher in A53T 

compared to Non-Tg mice (Fig 8C) consistent with the notion that ERAD may contribute 

to the homeostatic regulation of ER Ca2+ release channel proteins in spinal cord motor 

neurons. The interaction between Herp and A53TSyn was also confirmed in spinal 

cords of symptomatic transgenic mice (Supplementary Fig 10 C) suggesting that this 

interaction may impair the ability of Herp to prevent the aberrant accumulation of ER-

resident Ca2+ release channels and, hence,  its ER Ca2+ -stabilizing action in ER 

stressed motor neurons. These findings link aberrant ER Ca2+ regulation and chronic 

ER stress to motor neuron dysfunction and death in the pathophysiology of 

synucleinopathies. 

Discussion 

Neuronal loss in both familial and sporadic forms of neurodegenerative disorders 

is accompanied by formation of protein inclusions or fibrillar aggregates composed of 

misfolded proteins that can induce ER stress. The accumulation of evidence that ER 

stress is critically involved in the pathogenesis of neurodegenerative disorders suggests 

that approaches that aim to halt ER stress may prevent the pathological cascades 

induced by protein inclusions. There is growing evidence that the ER can play pivotal 
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roles in regulating cell survival and apoptosis in a variety of cell types including neurons 

(30, 31), but the mechanisms linking ER stress to apoptosis are incompletely 

understood. The identification of conditions that slow ER stress may reveal novel 

strategies for counteracting ER stress-mediated cell death.  

The ER is the major intracellular store of Ca2+ and aberrant regulation of luminal 

ER Ca2+ is thought to play critical roles in many apoptotic cascades (31). Deregulated 

ER Ca2+ homeostasis has also been implicated in the pathophysiology of chronic 

neurodegenerative diseases such as prion disorders, Huntington’s and Alzheimer’s (32-

34).  Here we showed that A53TSyn evokes ER stress and that the attendant 

disturbances in ER Ca2+ homeostasis contributes to a higher sensitivity to ER stress-

induced cell death. We demonstrate that Herp counteracts A53TSyn-induced cell 

death by stabilizing ER Ca2+ homeostasis.  Ectopic expression of Herp markedly 

reduced A53TSyn-induced toxicity whereas knockdown of Herp exacerbates or 

prolongs ER stress leading to a significant augmentation of toxicity.  Hence, a better 

understanding of the function of Herp is therefore of high significance to elucidate the 

functional link between the ER stress and ER Ca2+ homeostasis and to develop 

mechanism-based neuroprotective strategies for PD and related neurodegenerative 

diseases.  

The underlying molecular mechanism(s) whereby Herp modulates ER Ca2+ 

homeostasis remains poorly understood. Knockdown of Herp leads to the accumulation 

of IP3R1 and pan-RyR proteins in PC12 cells and, consequently, promotes aberrant ER 

Ca2+ release that in turn may decrease the threshold for the activation of ER stress-

related cell death pathways. Consistent with this notion, gene knockdown and 
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pharmacological inhibition of ER Ca2+ release channels ameliorates ER stress and 

protects PC12- A53TSyn and PC12-Tuni against ER stress-induced cell death (Fig 4). 

Conversely, overexpression of Herp stabilizes ER Ca2+ homeostasis and inhibits ER 

stress-induced cell death by preventing the accumulation of ER Ca2+ release channel 

proteins in PC12-A53TSyn. It is noteworthy that the accumulation of IP3R1 and pan-

RyR proteins was partially suppressed in spite of the elevated level of endogenous Herp 

in PC12-A53TSyn suggesting that binding of Herp to A53TSyn (Supplementary Fig 

7D) and its accumulation in the core of Lewy bodies (18) may interfere with its 

protective function and that ectopically expressed Herp can overcome this A53TSyn-

mediated inhibition.  

Mechanistically, Herp interacts with and facilitates the degradation of ER Ca2+ 

release channel proteins by ERAD. Several recent studies support a role for Herp in 

ERAD (17) based on the notion that Herp is rapidly degraded in a proteasome-

dependent fashion (29) and that knockdown of Herp leads to the accumulation of 

several established ERAD substrates (17). Herp has been shown to interact with Hrd1p, 

a membrane-anchored E3 ligase that is required for ERAD (17), and with ubiquilin, a 

shuttle protein that delivers ubiquitinated substrates to the proteasome for degradation 

(35). We found that Herp knockdown in ER stressed cells leads to the accumulation of 

both IP3R1 and pan-RYR. Conversely, ectopic expression of Herp prevents the 

accumulation of these ER Ca2+ release channels. Treatment with MG-132 not only 

elevates the basal level of IP3R1 and pan-RYR proteins but also prevents the ability of 

Herp to inhibit their accumulation in ER stressed cells (Fig 7D) suggesting the critical 

involvement of ERAD in the homeostatic regulation of these ER Ca2+ release channels. 
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Deletion and function analyses further support the involvement of ERAD in Herp-

mediated cell protection via the stabilization of ER Ca2+ homeostasis. Ectopic 

expression of Herp lacking the UBL-domain which functions as a proteasome-

interacting domain (17, 43) fails not only to stabilize ER Ca2+ homeostasis but also to 

protect PC12-Tuni (16) and PC12-A53TSyn from ER stress-induced death (Fig 2E). 

Notably, salubrinal appears to modulate the vulnerability of PC12 cells to ER stress-

induced cell death by preventing the accumulation of ER Ca2+ channels (Fig 6). How 

this eIF2α dephosphorylation inhibitor impacts the homeostatic regulation of ER Ca2+ 

channels remains to be investigated. 

Our data provide the first evidence that ER stress is regulated by the activity of 

ER-resident Ca2+ release channels. We found that pharmacological inhibition or 

knockdown of ER Ca2+ release proteins ameliorates ER stress-induced cell death 

suggesting that aberrant ER Ca2+ release is associated with higher susceptibility to 

chronic enhancement of ER stress. Though the detailed mechanisms underlying Ca2+-

dependent cell death in PC12-A53TSyn was not investigated in the present study, it is 

likely that accumulation of ER Ca2+ release channels leads to enhanced ER to 

mitochondria Ca2+ flow that triggers the loss of mitochondrial membrane potential and 

increased generation of reactive oxygen species (ROS) (16). Previous studies 

demonstrate that ROS-induced damage to the ER may amplify Ca2+ release via a 

mechanism involving oxidation-induced activation of RYR and IP3R (36). Ectopic 

expression of Herp has been shown to counteract this deleterious positive feedback 

loop by inhibiting the proapoptotic Ca2+ flow from the ER to mitochondria in PC12 cells 

exposed to the PD-inducing toxin 1-methyl-4-phenylpyridinium (MPP+) (19). The 
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increase of CHOP detected in PC12-Tuni, PC12-A53TSyn and siRNA-Herp treated 

PC12 cells likely results from the depletion of ER Ca2+ store associated with the 

aberrant accumulation of IP3R1 and pan-RYR as ectopic expression of Herp 

counteracts CHOP upregulation by promoting the homeostatic regulation of these ER 

Ca2+ channel proteins. 

It is noteworthy that chronic enhancement of ER stress resulting from the 

disruption of ER Ca2+ homeostasis could trigger Syn protein aggregation in the cytosol 

and that blockade of ER Ca2+ release channels (Supplementary Fig 2) ameliorates 

Syn inclusion formation suggesting a causative link between chronic ER stress and 

Syn oligomer formation. Consistent with this notion, sustained ER Ca2+ release 

triggered by thapsigargin accelerates the formation of potentially cytotoxic oligomers in 

Syn-GFP transfected cells (26). Tuni at doses that induce chronic stress associated 

with sustained ER Ca2+ release (16, 37) has also been shown to promote the 

accumulation of Syn oligomers (38). Because Sal ameliorates ER stress and protects 

PC12- Tuni and PC12-A53TSyn, it is conceivable that its neuroprotective action may 

be due to improved regulation of ER Ca2+ homeostasis. In support of this notion, Sal 

inhibits the aberrant accumulation of ER-resident Ca2+ release channels (Fig 6) and 

prevents Syn aggregation (Supplementary Fig 5). 

Consistent with the findings in PC12-A53T cells, we detected higher levels of 

several ER stress markers including the ER stress-induced apoptotic mediator CHOP, 

and ER-resident Ca2+ release channels in the spinal cords of symptomatic A53T mice 

when compared to Non-Tg and pre-symptomatic A53T mice suggesting that 

accumulation of A53TSyn promotes motor neuron degeneration in part by a 
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mechanism involving chronic ER stress associated with the deregulation of ER Ca2+ 

homeostasis. In addition to the elevation of Herp protein, we detected increased 

interaction of Herp with A53TSyn in spinal cord homogenates of symptomatic A53T 

mice which further supports the notion that Herp-dependent ERAD of ER-resident Ca2+ 

release channels may be impaired in vulnerable motor neurons. 

Dopaminergic neurons appear to be relatively resistant to degeneration in A53T 

mice (30, 39) and express relatively high levels of the Ca2+-binding protein calbindin 

(39). By contrast, spinal cord motor neurons are characterized by low cytosolic Ca2+ 

buffering capacities (40) and, hence, may be more susceptible to chronic ER stress 

induced by A53TSyn and associated degenerative processes triggered by the aberrant 

ER Ca2+ release. Future studies will determine whether direct modulation of Herp 

expression in vivo may impact the levels of ER-resident Ca2+ release channel proteins, 

Syn inclusion formation, disease manifestations and progression. Because ER stress 

elicited by the aggregation of amyotrophic lateral sclerosis-linked mutant superoxide 

dismutase 1 (SOD1) has been implicated in motor neuron death (41) and because 

salubrinal delays the disease process and extends the lifespan of mutant G93A-SOD1 

mice (42), elucidation of the cellular and molecular mechanisms that promote or prevent 

disturbances in ER Ca2+ homeostasis may lead to novel approaches for therapeutic 

intervention for synucleinopathies and motor neuron diseases. 
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Figures 

 

Figure 2-1. Expression of mutant Syn induces a heightened ER stress response 

(A) A representative immunoblot showing the time course of wild-type (WT) human 

Syn protein level after the addition of Tet. The antibody used was specific for human 

Syn. (B) Representative gel images (top) and immunoblots (bottom) of WT and mutant 

(A30P and A53T) Syn, Herp, Grp94/78, and CHOP mRNA and protein levels, 

respectively, in PC12 cells 72 h after the addition of Tet (induced) or vehicle (non-
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induced). PCR products amplified were separated on ethidium bromide stained agarose 

gels. Blots were reprobed with ERK1 to confirm equality of total protein loading. (C) 

Representative immunoblots (top) and results of densitometric analysis (bottom) of  

Herp, Grp94/78, and CHOP protein levels in PC12 cells at the indicated time points 

following transient transfection with either WT or mutant (A53T) Syn. Control cells 

were transfected with the empty vector (VT). The antibody used was specific for human 

Syn. Values are the mean ± SEM of three independent experiments. #p<0.05; *p<0.01, 

compared to PC12-VT and PC12-WT-Syn and between the indicated groups. 

 

 

 

 

Figure 2-2. Herp protects from mutant Syn-induced cell death 
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(A) Trypan blue exclusion was used to determine the viability of the indicated PC12 

clones at 96 h under induced or non-induced conditions. Data represent the mean ± 

SEM of three separate experiments. #p<0.05,*p<0.01, compared to PC12-WTSyn and 

PC12-VT under non-induced and induced conditions; *p<0.01, between the indicated 

clones expressing mutant Syn. (B) Representative immunoblots of protein levels of 

Syn and CHOP and caspase-12 (Casp12) processing in the indicated PC12 cells 72 h 

after the addition of Tet (induced) or vehicle (non-induced). Appearance of the active 

proteolytic fragment of Casp12 is indicated by an asterisk. ERK is used as an internal 

control of protein loading. Histogram shows densitometric analysis of CHOP protein. 

#P<0.05, versus the PC12-WTSyn and PC12-VT under non-induced and induced 

conditions; (C) Histograms show the viability of the PC12-A53T after transfection with 

siRNA-Con and siRNA-Herp (100 nM). One day after transfection, Tet was added to the 

cultures and cell viability was determined 48 h after by trypan blue exclusion. Values 

represent the mean ± SEM of three separate experiments. #p<0.05, *p<0.01 compared 

to respective non-induced and between the indicated induced PC12 cells. (D) 

Representative immunoblots of Syn, Herp and UBL-Herp protein levels in the 

indicated PC12 cells under non-induced (-) or induced (+) conditions for 48 h. PC12 

cells were transduced with viral particles expressing empty vector or vector containing 

Herp or UBL-Herp construct 48 h prior to induction. ERK is used as an internal control 

of protein loading. (E)  Histograms show the viability of the indicated PC12 cells after 

ectopic expression of Herp and UBL-Herp. Trypan blue exclusion was used to 

determine cell viability 48 and 96 h after induction. Values represent the mean ± SEM of 
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three separate experiments. #p<0.05, *p<0.01, compared to groups transduced with the 

empty vector or Herp and between the indicated transduced groups. 
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Figure 2-3. ER stress-induced by tunicamycin and mutant -Syn perturbs ER Ca2+ 
homeostasis through the aberrant accumulation of ER-resident Ca2+ release 
channels 
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 (A) Representative recordings of the bradykinin (BK; 10 μM)-induced elevation of 

intracellular Ca2+ ([Ca2+]i) in PC12 cells 48 h after expression of wild-type (WT) and 

mutant (A53T) Syn. PC12 cells transfected with empty vector (VT) were included as 

controls. Cells were loaded with fura-2 and [Ca2+]i was recorded in Ca2+ free medium  

as described under “Materials and Methods”. Arrow indicates time of BK addition. 

Histograms show Ca2+ peak values (change from baseline) and AUC (area under the 

curve). Values are the mean ± SEM of determinations made in 4 to 6 separate cultures 

(15-20 cells assessed/culture). #p<0.05, compared to VT. (B) Histograms show the 

percent of viable cells after treatment of PC12-Tuni (top) and PC12-A53TSyn (bottom) 

with the indicated doses of BAPTA-AM. PC12 cells were pretreated with BAPTA-AM 2 h 

prior to either exposure to Tuni (20 μg/mL) or expression of VT, WT and A53T. Cell 

viability was determined 24 h after by Trypan blue exclusion. Values represent the 

mean ± SEM of three separate experiments. *p<0.01, #p<0.05, compared to vehicle  or 

VT at each time point and between the indicated groups. (C) Representative 

immunoblots (left) and results of densitometric analyses (right) of IP3R1, pan-RYR and 

PS1 protein levels in PC12-Tuni at the indicated time points. Values represent the mean 

± SEM of three independent experiments. *p<0.01, #p<0.05 compared to the untreated 

group. (D) Representative immunoblots (left) and results of densitometric analyses 

(right) of -Syn, IP3R1 and PS1 protein levels in PC12 cells at the indicated time points 

after expression of  VT, WT or A53T.  Values represent the mean ± SEM of three 

separate experiments. #p<0.05, *p< 0.01, compared to VT and WTSyn. (E) A 

representative immunoblot (top) and  results of densitometric analysis (bottom) of pan-

RYR protein in PC12 cells at the indicated time points after expression of  VT, WT or 
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A53T.  The Tuni-treated samples were included as positive controls for ER stress-

induced increase of pan-RyR protein level. *p<0.01, compared to VT and WT. Equal 

protein loading in the immunoblots shown in C-E was confirmed after reprobing the 

membranes for actin. 

 

 

Figure 2-4. Pharmacological inhibition or gene knockdown of ER-resident Ca2+ 
release channels ameliorates ER stress-induced cell death 

(A) Histograms show the percent of viable PC12 cells after treatment with tunicamycin 

(Tuni; 20 g/ml) (+) or vehicle (-) for 24 h in the absence or presence of the indicated 

doses of xestospongin C (an IP3R blocker) or dantrolene (a RyR blocker). Both drugs 

were added 2 h prior to Tuni. Values are the mean ± SEM of three independent 

experiments. #p<0.05; *p< 0.01, compared to vehicle control and between the indicated 
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groups. (B) Histograms show the percent of viable PC12 cells expressing empty vector 

(VT), wild-type (WT) and mutant (A53T) -Syn. Xestospongin C (5 µM) or dantrolene 

(50 µM) were added 24 h after induction. Values are the mean ± SEM of three 

independent experiments. #p<0.05; *p< 0.01, compared to VT and WT-Syn and 

between the indicated groups. (C) Histograms show the fold change of the indicated ER 

Ca2+ release channel, IP3R1 (top) or RYR1/RYR3 (bottom), in PC12 cells 24 h after 

transfection with the respective siRNAs (left panels) and the percent of viable 

transfected PC12 cells at the indicated time points after exposure to Tuni or vehicle 

(Con) (right panels). The siRNAs were added either 8 or 24 h (denoted by asterisk) prior 

to Tuni exposure. Values represent the mean ± SEM of three independent experiments. 

#p<0.05;*p< 0.01, compared to Con and between the indicated groups. (D) Histograms 

show the viability of the indicated PC12 cells in the presence of siRNA-IP3R1 (top) or 

siRNA-RYR1 and siRNA-RYR3 combined (bottom). Values represent the mean ± SEM 

of three independent experiments. #p<0.05; *p<0.01, compared to siRNA-Con. 
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Figure 2-5. Salubrinal ameloriates the induction of ER stress markers and levels 
of ER-resident Ca2+ release channels 

 (A) Representative immunoblots (top) and results of densitometric analysis (bottom) of 

the indicated protein levels in PC12 cells that were treated with Salubrinal (Sal; 75 M) 

for 2 h prior to exposure to tunicamycin (Tuni; 20 g/ml). Cells were collected at the 

indicated time points for immunoblotting. Values represent the mean ± SEM of three 

independent experiments. *p<0.01, compared between the indicated groups. (B) 

Representative immunoblots (top) and results of densitometric analysis (bottom) of the 

indicated protein levels in PC12 cells expressing empty vector (VT), wild-type (WT) or 

mutant (A53T) Syn after treatment with Sal (+) or vehicle alone (-). Cells were 
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collected 24 h after Sal treatment. Values represent the mean ± SEM of three 

independent experiments. *p<0.01, compared between the indicated groups. (C) qRT-

PCR analysis of the relative expression of the indicated ER Ca2+ release channels in 

PC12 cells that were treated with Sal for 2 h prior to exposure to Tuni for the indicated 

time points.  
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Figure 2-6. Herp stabilizes Ca2+ homeostasis by preventing ER stress-induced 
accumulation of ER-resident Ca2+ release channels 
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 (A) Representative recordings of the bradykinin (BK)-evoked increase of intracellular 

Ca2+ ([Ca2+]i) in PC12 cells expressing mutant (A53T) Syn 24 h after transfection 

with siRNA-Con or siRNA-Herp (100 nM). Arrow indicates the time of BK addition.  Cells 

were loaded with fura-2 and [Ca2+]i was recorded in Ca2+ free medium  as described 

under “Materials and Methods”.  Histograms show Ca2+ peak values (change from 

baseline) and AUC (area under the curve). Values are the mean ± SEM of 

determinations made in 4 to 6 separate cultures (15-20 cells assessed/culture). 

^p<0.001, compared to siRNA-Con.  (B) Representative immunoblots of ER stress 

proteins and Ca2+ release channels in PC12 cells expressing VT, WT or A53T 24 h 

after transfection with siRNA-Con and siRNA-Herp (100 nM). Asterisk indicates the 

protein band corresponding to pan-RYR. The level of actin is not affected by siRNA 

treatment. (C) Histograms showing the viability of PC12 cells expressing VT, WT or 

A53T 24 h after transfection with siRNA-Con or siRNA-Herp (100 nM). Values represent 

the mean ± SEM of three independent experiments. #p<0.05; *p<0.01, compared to the 

siRNA-Con treated groups. (D) Representative immunoblots of levels of ER stress 

proteins and Ca2+ release channels in PC12 cells expressing VT, WT or A53T after 

transfection with empty vector (-) or vector expressing Herp (+) for 48 h. Asterisk 

indicates the protein band corresponding to pan-RYR. (E-G) Representative 

immunoblots and results of densitometric analysis of the indicated protein levels in 

PC12 cells that were either transfected with the indicated siRNAs and collected 24 h 

after (Basal condition; left panels)  or transfected with the siRNAs 8 h prior to incubation 

with tunicamycin (Tuni; 20 g/ml)) for 24 h (ER stress condition; right panels). *p<0.01, 

compared to the siRNA-Con treated groups. (H) qRT-PCR analysis of the relative 
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expression of the indicated proteins in PC12 cells that were treated with vehicle control 

(Con), Tuni (20 g/ml)  or siRNA-Herp (100 nM) for 24 h. Values represent the mean ± 

SEM of three independent experiments. The mRNA level in Con was set at 1. *p<0.01, 

compared to Con. 

 

Figure 2-7. Herp interacts with and facilitates proteasomal-mediated degradation 
of ER-resident Ca2+ release channels 

(A) Representative immunoblots of the indicated ER Ca2+ release channels 

immunoprecipitated (IP) by anti-Herp antibody from lysates of PC12 that were treated 

with either  tunicamycin  (Tuni; 20 g/ml) or vehicle for  16 h. The pre-immune normal 

IgG used as the negative control failed to yield an immunopositive band for IP3R or 

RYR.   Input verifies the presence of these ER Ca2+ release channel protein in cell 

lysates. (B) Representative immunoblots of Herp, IP3R1 and pan-RYR protein levels in 
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PC12 cells that were treated with the indicated doses of the proteasomal inhibitor MG-

132 for 3, 6, 12, and 24 h. (C) Representative immunoblots of Herp and IP3R1 protein 

levels in HEK293 cells that were transiently transfected with the indicated 

concentrations of an empty plasmid (Vector) or a plasmid expressing Herp for 24 and 

48 h. pan-RYR was undetectable in HEK293 cells. (D) Representative immunoblots of  

Herp, IP3R, and pan-RYR protein levels in PC12 cells that were transfected with either 

an empty plasmid (Vector)  or a plasmid expressing Herp 24 h prior to the addition of 1 

M MG-132. Cells were collected at the indicated time points after MG-132 addition. 

 

Figure 2-8. Elevation of ER stress markers and ER-resident Ca2+ release channels 

in A53T Syn mice 

(A, B) Representative immunoblots (A) and results of densitometric analysis (B) of the 

indicated ER stress proteins in lumbar spinal cords from age-matched non-transgenic 

(Non-Tg) and mutant Syn (A53T) mice. A representative immunoblot confirming the 
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expression of human Syn in spinal cords of A53T is shown (upper panel). All 

immunoblots were reprobed for actin to control for equal protein loading (bottom 

panels). Values represent the mean ± SEM of four mice per group. #p<0.05; *p<0.01, 

compared to Non-Tg mice. (C) Immunoprecipitation to quantify protein levels of IP3R1 

(top) and pan-RYR (bottom) in lumbar spinal cords of 8 months-old Non-Tg and A53T 

mice. Each ER Ca2+ release channel protein was immunoprecipitated (IP) and 

immunoblotted (IB) with the respective antibodies. Pre-immune normal IgG was used as 

a negative control for IP. Histograms show the densitometric analysis of the band 

corresponding to each ER Ca2+ release channel protein. Values represent the mean ± 

SEM of four mice per group.*p< 0.01 compared to Non-Tg mice. (D) Representative 

immunoblots of IP3R1 (left) and pan-RYR (right) in protein complexes IP with anti-Herp 

antibody from lumbar spinal cord homogenates of 8 months-old Non-Tg and A53T mice. 

Pre-immune normal IgG was used as a negative control for IP. Asterisk denotes the 

specific band. 
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Supplementary Figure 2-1. Effects of tunicamycin and mutant αSyn on ER luminal 
Ca2+ levels, ER stress protein expression and cell survival 
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(A) Representative recordings of the thapsigargin (Thap; 1 μM)-induced elevation of 

intracellular Ca2+ ([Ca2+]i) in PC12 cells expressing wild-type (WT) or mutant (A53T) -

Syn. PC12 cells transfected with empty vector (VT) were included as controls. Arrow 

indicates time of Thap addition. Cells were loaded with fura-2 and [Ca2+]i was recorded 

in Ca2+ free medium  as described under “Materials and Methods”. Histograms show 

Ca2+ peak values (change from baseline) and AUC (area under the curve). Values are 

the mean ± SEM of determinations made in 4 to 6 separate cultures (15-20 cells 

assessed/culture).  (B) Representative immunoblots (top) and results of densitometric 

analysis (bottom) showing time course of Herp, Grp94, Grp78 and CHOP protein levels 

in PC12 cells treated with either tunicamycin (Tuni; 20 g/ml) (+)  or vehicle alone (-). 

Values represent the mean ± SEM of three independent experiments. #p<0.05; *p< 

0.01, compared to vehicle. (C) Representative immunoblots (top) and results of 

densitometric analysis (bottom) of IP3R1, pan-RYR, and PS1 protein levels in PC12 

cells at the indicated time points after the addition of Tuni (+) or vehicle alone (-).  

Values represent the mean ± SEM of three independent experiments. #p<0.05; *p< 

0.01, compared to vehicle. (D) Histograms show the percent of viable cells after 

treatment of PC12-Tuni (top) and PC12-A53TSyn (bottom) with the indicated doses of 

caffeine. PC12 cells were treated with caffeine either in vehicle for 2 or 24 h or in 

combination with Tuni for 26 h. In PC12 cells expressing VT, WT and A53T, caffeine 

was added 24 h after induction and then left incubated for another 24 h.  Cell viability 

was determined by trypan blue exclusion. Values represent the mean ± SEM of three 

separate experiments. *p<0.01, #p<0.05, compared to vehicle control or VT at each time 

point and between the indicated groups.  (E) qRT-PCR analysis of the relative 
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expression of ER-stress proteins and Ca2+ release channels in PC12 cells treated with 

Tuni (+) for the indicated time points. Values represent the mean ± SEM of nine 

separate experiments. #p<0.05; *p< 0.01, compared to vehicle. (F) qRT-PCR analysis of 

the relative expression of IP3R1 and RYR1 in the indicated PC12 cells ectopically 

expressing empty vector (VT), wild-type (WT) or mutant (A53T) Syn. Cells were 

harvested 48 h after expression. Values represent the mean ± SEM of three separate 

experiments. #p<0.05; *p< 0.01, compared to VT. 

 

Supplementary Figure 2-2. Knockdown of ER Ca2+ release channel expression 
ameliorates ER stress 

(A, B) Representative immunoblots (top) and results of densitometric analysis (bottom) 

of Herp, Grp94/78, CHOP, and PS1 protein levels in PC12 cells that were transfected 
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with siRNA-IP3R1 (250 nM) (A) or a combination of siRNA-RYR1 and siRNA-RYR3 

(100 nM each) (B) for either 8 and 24 h prior to the addition of tunicamycin (Tuni; 20 

g/ml) or vehicle alone (Con).  Values represent the mean ± SEM of three independent 

experiments. *p< 0.01, compared to Con and between the indicated groups. 

 

Supplementary Figure 2-3. Inhibition of ER Ca2+ release reduces Syn inclusions 
formation 

 (A) Representative images of Syn inclusions (indicated by arrowhead) in PC12 cells 

transfected with either the GFP-tagged WTSyn or GFP-tagged mutant (A53T) Syn 

construct. Twenty four hours after transfection, PC12 cells were treated with 

Xestospongin (5 µM), Salubrinal (Sal; 75 µM) or the respective vehicles for another 24 

h, fixed, and counterstained with the nuclear dye 4',6-diamidino-2-phenylindole (DAPI; 

blue). (B) Histograms show the percentage of the indicated transfected PC12 cells with 
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cytoplasmic Syn protein inclusions. Values represent the mean ± SEM of three 

cultures in triplicate.  #p< 0.05; *p< 0.01, compared to vehicle controls. 

 

 

Supplementary Figure 2-4. Levels of phospho-eIF2 and total eIF2 following 
tunicamycin and/or salubrinal treatments 

A representative blot of phospho-eIF2 and total eIF2 in PC12 cells that were treated 

with either salubrinal (Sal; 75 µM) or tunicamycin (Tuni; 20 g/ml) alone, or in 

combination. Cells were harvested 12 h after treatments. 
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Supplementary Figure 2-5. Salubrinal reduces bradykinin-evoked Ca2+  transients 
in PC12-Tuni and PC12-α A53TSyn cells 

 (A) Representative images of the bradykinin-induced changes in the fluo-4 

fluorescence intensity in PC12 cells that were treated with tunicamycin (Tuni; 20 g/ml) 

for 18 h in the presence of salubrinal (Sal; 75 µM) or vehicle control (Con).  (B) 

Representative recordings of the bradykinin (BK; 10 μM)-induced elevation of 

intracellular Ca2+ ([Ca2+]i) in PC12 cells after expression of mutant (A53T) -Syn in the 

presence of Sal or Con. PC12 cells transfected with the empty vector (VT) were 
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included as controls. Cells were loaded with fura-2 and [Ca2+]i was recorded in Ca2+ free 

medium  as described under “Materials and Methods”. Arrow indicates time of BK 

addition. Histograms show Ca2+ peak values (change from baseline) and AUC (area 

under the curve). Values are the mean ± SEM of determinations made in 4 to 6 

separate cultures (15-20 cells assessed/culture). #p<0.05,*p<0.01, ^p<0.001, compared 

to VT.  

 

 

Supplementary Figure 2-6. Densitometric and qRT-PCR analyses of ER stress 
proteins and ER-resident Ca2+ release channel levels 

 (A, B) Results of densitometric analysis of ER stress proteins and ER Ca2+ release 

channels in the indicated PC12 cells 24 h after transfection with siRNA-Con or siRNA-
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Herp (100 nM). Values represent the mean ± SEM of three independent experiments. 

#p< 0.05; *p< 0.01, compared between the indicated groups. (B) Results of 

densitometric analysis of ER stress proteins and ER Ca2+ release channels in the 

indicated PC12 cells 48 h after ectopic expression of Herp. Values represent the mean 

± SEM of three independent experiments. #p< 0.05; *p< 0.01, compared between the 

indicated groups. (C, D) qRT-PCR analysis of the relative expression of ER-resident 

Ca2+ release channels in the indicated PC12 cells 24 h after addition of siRNAs or 

ectopic expression of Herp. Values are the mean ± SEM of three independent 

experiments. #p< 0.05; *p< 0.01, compared between the indicated groups.  

 
 

Supplementary Figure 2-7. Herp interacts with ER-resident Ca2+ release channels 
and A53TαSyn 

 (A) A representative immunoblot shows absence of Grp78 in the protein complex 

immunoprecipitated (IP) by anti-Herp antibody from total lysates of PC12 cells treated 
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with tunicamycin (Tuni; 20 g/ml) or vehicle for 16 h. Input shows Grp78 in total lysates. 

The pre-immune normal IgG used as control for IP. (B) A representative immunoblot 

shows the presence of IP3R (top) and pan-RYR (bottom) in protein complexes IP by 

anti-c-Myc antibody from total lysates of HEK293 cells that were transiently transfected 

with the c-myc-tagged Herp for 24 h. The pre-immune normal IgG was used as the 

negative control for IP. Note that IP3R1 but not pan-RYR was readily detected in the 

inputs. (C) Representative immunofluorescence micrographs show co-localization of 

Herp (green) with IP3R (red) and pan-RYR (red) in PC12 cells that were treated with 

either vehicle (top) or Tuni (bottom) for 24 h. (D) Representative immunoblots show the 

presence of Herp or Syn in protein complexes IP by anti- Syn or anti-c-myc antibody, 

respectively, from total lysates of PC12 cells that were transiently transfected with both 

A53TSyn and c-myc-tagged Herp for 24 h.  The pre-immune normal IgG was used as 

the negative control for IP. Inputs verify the presence of c-myc-tagged Herp or Syn in 

lysates. (E) Representative immunoblots show the presence of Herp or Syn in protein 

complexes IP by anti- Syn (top) or anti-Herp (bottom) antibody, respectively, from total 

lysates of PC12 cells that were transiently transfected with either Herp (top) or 

A53TSyn (bottom) for 24 h.  The pre-immune normal IgG was used as the negative 

control for IP. Inputs verify the presence of c-myc-tagged Herp or Syn in lysates. 
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Supplementary Figure 2-8. Blockade of proteasome inhibits Herp- induced 
degradation of ER-resident Ca2+ release channels 

(A) Results of densitometric analysis of Herp, IP3R1 and pan-RYR protein levels in 

PC12 cells that were treated with the indicated doses of the proteasomal inhibitor MG-

132 or vehicle as control (Con) for 3, 6, 12, and 24 h. Values are the mean ± SEM of 

three independent experiments. #p<0.05; *p<0.01, compared to Con. (B) Results of 

densitometric analysis of Herp, IP3R1, and pan-RYR protein levels in PC12 cells 

transfected with either a plasmid expressing Herp or an empty plasmid (Vector) 24 h 

prior to the addition of 1 M MG-132. Cells were collected at the indicated time points 

after MG-132 addition. Values are the mean ± SEM of three independent experiments. 

#p<0.05; *p<0.01, compared between the indicated groups. 
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Supplementary Figure 2-9. Herp interacts and co-localizes with the ubiquitin-
interacting S5a subunit of the proteasome 

(A) A representative immunoblot of Herp immunoprecipitated (IP) by anti-S5a antibody 

from total lyates of PC12 cells that were treated with Tuni (20 g/ml) for 16 h. Pre-

immune normal IgG was used as a negative control for IP. Inputs verify the amounts of 

Herp in lysates.  Light chain indicates equal amounts of normal IgG and anti-S5a IgG in 

the protein complexes. (B) Representative immunofluorescence micrographs showing 

the co-localization of S5a (red) with either Herp or Grp78 (green) in PC12 cells exposed 

to Tuni or vehicle for 12 h. (C) A representative immunoblot of S5a protein in PC12 cells 

exposed to Tuni or vehicle for 16 h. (D) Representative immunofluorescence 

micrographs showing the co-localization of S5a (red) with Herp (green) in PC12 cells 
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transfected with siRNA-Con or siRNA-Herp 24 h prior to exposure to Tuni for another 14 

h.  

 

Supplementary Figure 2-10. Accumulation of ER stress markers and of ER-
resident Ca2+ channels in A53TαSyn transgenic mice 

 (A) Representative immunofluorescence micrographs showing the immunoreactivities 

of antibodies directed to the indicated proteins in the lumbar spinal cords from pre-

symptomatic (5 months) and symptomatic (13-15 months) A53T mice. (B) mRNA levels 

of the indicated proteins in the lumbar spinal cords from 13-15 months old non-

transgenic (Non-Tg) and mutant Syn (A53T) mice. Values are the mean ± SEM of four 

mice per group. *p<0.01, compared to Non-Tg. (C) A representative immunoblot of 

Syn in protein complexes immunoprecipitated (IP) with anti-Herp antibody from lumbar 

spinal cord homogenates of 13-15 months old Non-Tg and A53T mice. Pre-immune 
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normal IgG was used as a negative control for IP. Inputs verify the amounts of Syn in 

spinal cord extract as determined by immunoblotting using an antibody to mouse and 

human Syn. 

 

Summary Diagram 2-1. Schematic representation summarizing the mechanisms 

involved in Syn-induced activation of ER stress-associated apoptosis 
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Tables 

Table 2-1. Target sequences of siRNA duplexes 

 

 

Table 2-2. Primer sets used for the detection of transcripts by semi-quantitative 
PCR 
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Table 2-3. Primer sets used for the detection of transcripts by quantitative real-
time PCR (qRT-PCR). 
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CHAPTER THREE: THE HOMOCYSTEINE-INDUCIBLE ENDOPLASMIC 
RETICULUM STRESS PROTEIN COUNTERACTS CALCIUM STORE DEPLETION 
AND INDUCTION OF CCAAT ENHANCER-BINDING PROTEIN HOMOLOGOUS 

PROTEIN IN A NEUROTOXIN MODEL OF PARKINSON DISEASE 

This research was originally published in Journal of Biological Chemistry. Srinivasulu 
Chigurupati, Zelan Wei, Cherine Belal, Myriam Vandermey, George A Kyriazis, Thiruma 
V Arumugam, and Sic L Chan. The homocysteine-inducible endoplasmic reticulum 
stress protein counteracts calcium store depletion and induction of CCAAT enhancer-
binding protein homologous protein in a neurotoxin model of Parkinson Disease. 
Journal of Biological Chemistry. 2009; 284(27):18323–18333. © the American Society 
for Biochemistry and Molecular Biology. 

Introduction 

 Parkinson disease (PD) is the second most common age-related 

neurodegenerative disorder that results in the selective degeneration of 

dopaminergic neurons of the substantia nigra pars compacta (1, 2). The proximate 

cause of selective degeneration of  dopaminergic neurons in PD has not been 

clearly elucidated. Several mechanisms are inferred to play a role in the 

pathogenesis of PD based on studies from animals or in vitro studies using 

dopaminergic neurotoxins. These include mitochondrial dysfunction, oxidative 

stress, and impairment of the ubiquitin-proteasomal pathway (UPP) (1–3). It has 

been shown that several genes that are mutated in familial PD encode for proteins 

that have functions linked to UPP and mitochondria (1–3). The UPP plays a critical 

role in ER-associated protein degradation (ERAD), a protein quality control system 

of the ER that eliminates misfolded proteins in  the ER lumen (4). UPP dysfunction 
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results in the accumulation of misfolded or unfolded proteins within the ER, which 

induces ER stress (5). 

Important roles for ER stress and ER stress-induced cell death have been 

reported in a broad spectrum of pathological conditions (6). To alleviate ER stress 

and enhances cell survival, cells launch the unfolded protein response (UPR), an 

adaptive response to minimize accumulation of misfolded proteins that would 

otherwise be toxic to the cell (7). The biological objectives of the UPR are to reduce 

the overall protein translation, increase the production of ER localized chaperones, 

and increase the clearance of unfolded proteins by UPP (7). Although short time UPR 

activation serves to reduce the unfolded protein load, a protracted activation of UPR, 

as the result of either severe or prolonged ER dysfunction, activates the cell death 

program (7). Important mediators of ER stress-associated death include the 

activation of the ER-associated procaspase-12 (in mouse) or procaspase-4 (in 

human) and increased expression of the pro-apoptotic transcription factor CCAAT 

enhancer-binding protein homologous protein (CHOP, also termed as growth 

arrest-DNA damage response protein or Gadd153) (8). 

Recent studies have demonstrated hallmarks of ER stress in several 

experimental models of PD (9 –12) and in dopaminergic neurons in the substantia 

nigra of PD subjects (13). Although these studies indicate that ER stress is closely 

associated with PD, it is yet not clear whether and how ER stress contributes to the 

degenerative cascades in PD. Cells that fail to respond to ER stress are more 

sensitive to neurotoxin-induced death (9), suggesting that up-regulation of ER stress 

proteins, at least during the early phase of the ER stress response, is important to 
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restore ER homeostasis and to prevent activation of the ER stress-induced 

apoptotic program. Consistent with this notion, preconditioning with a sublethal 

level of ER stress has been shown to protect cells, in part through up-regulation 

of ER stress proteins. Hence, understanding the molecular mechanisms by which 

ER stress proteins overcome ER stress may help to uncover novel approaches to 

block the ER stress-associated pathological processes in cell culture and animal 

models of PD (9–12). 

Herp (homocysteine-inducible ER stress protein) is a membrane-bound, 

ubiquitin-like protein that is located in the ER (14). Herp expression is strongly up-

regulated in cultured primary neurons exposed to proteasomal inhibitors or 

pharmacological agents that selectively induce ER dysfunction (14–16). We 

previously reported that overexpression of Herp promotes neuronal survival, 

whereas knockdown of Herp protein by small interference RNA enhances vulnerability 

to ER stress- and amyloid β-peptide-induced apoptosis (16). The ability of Herp to 

prevent ER stress-induced death was correlated with its ability to stabilize cellular 

Ca2+ homeostasis (16, 17). Here, we investigated the role of Herp in the cellular 

response to 1-methyl-4-phenylpyridinium (MPP+), a neurotoxicant commonly used 

to elicit experimental models of PD (18). Because disturbances in intracellular Ca2+ 

homeostasis have been implicated in oxidative cell injury (19), we test the 

hypothesis of whether Herp may play a role in counteracting MPP+-induced 

disturbances in intracellular Ca2+ homeostasis. Our results indicate that knockdown 

of Herp increases MPP+-induced CHOP expression, ER Ca2+ leakage, and 
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vulnerability to MPP+-induced cytotoxic cell death, suggesting that Herp is critical for 

survival adaptation to this PD neurotoxin. 

Materials and Methods 

Materials 

1-methyl-4-phenylpyridinium (MPP+) and tunicamycin were purchased from 

Sigma Chemical. Lactacystin and LLVY-AMC were obtained from BioMol. The 

antibodies for Herp and CHOP were obtained from BioMol and Santa Cruz 

Biotechnology. The antibody for ERK1 was obtained from Cell Signaling. The antibodies 

to Grp78 and Bcl-2 were purchased from Stressgen and Millipore, respectively. 

Secondary antibodies conjugated to horseradish peroxidase (HRP) were from Jackson 

Immunoresearch, respectively. 7-dichloro-dihydrofluorescein diacetate (DCF-DA) was 

obtained from Molecular Probes. 

Generation of DNA Constructs 

Plasmids containing the full-length or mutant deletion human Herp cDNA 

were constructed as described previously (16). Site-directed mutagenesis was 

performed to generate by a PCR-based primer overlap extension method. In brief, 

the same pair of flanking primers and two different mutant overlapping primers were 

synthesized as described (16). The PCR products that contained the mutant 

sequence were subcloned into the PCR4 TOPO TA cloning vector (Stratagene), 

which was then amplified and digested with BamHI and EcoRII and subcloned into 

the pcDNA3.1 vector. The mutation was confirmed by automated DNA sequencing. 
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Generation of Stably Transfected Cell Lines 

Transfection of PC12 cells was carried out using the Lipofectamine reagent 

(Invitrogen) as previously described (16). Stably expressing clones were obtained 

after selection for growth in the presence of geneticin (500 mg/liter) and 

characterized for Herp expression by immunoblot analysis. For experiments, 

PC12 cells were plated onto glass coverslips and used between 18 and 48h after 

plating. Cells stably transfected with the empty vector were used as controls. 

Experimental Treatments 

PC12 and MN9D cells were treated with MPP+ (1 mM), tunicamycin (5 µg/ml), 

and lactacystin (5 µM) in OPTI-MEM (Invitrogen). Each of these compounds was 

prepared in Me2SO immediately before applying them to the cultures. When Me2SO 

was used as the solvent, their final concentration did not exceed 0.1%. At the end of 

each treatment, the cultures were processed for immunoblotting and for evaluating 

the extent of cell death. 

RNA Interference 

Herp and CHOP siRNA duplexes are designed to specifically target the 21-

nucleotide region 5'-CGC-AACAAATAGTCGGAACATC-3' of the Herp gene 

(NM_004562.1) and 5'-CTCTTGACCCTGCATCCCTA-3' of the CHOP gene 

(nucleotides 270 –291; NM_024134). These target sequences were chosen based 

on previous experiments testing the gene-silencing effectiveness of three to four 

siRNA duplexes (16, 20). Blast searches confirmed that these sequences were not 

homologous to any genes. A previously described scrambled sequence (20) is used 
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as siRNA-Control. The cells were transfected with the siRNA duplexes using 

Lipofectamine 2000 (Invitrogen) in Opti-MEM according to manufacturer’s protocol. 

After overnight incubation, the cultures were washed and replaced with 2 ml of fresh 

serum containing Dulbecco’s modified Eagle’s medium to allow recovery for 24 h. To 

monitor knockdown, the cells were harvested and processed for RT-PCR and/or 

Western blot analyses. 

Quantification of Cell Survival 

Cell viability was assessed by the trypan blue exclusion method and the 

lactate dehydrogenase release assay as described previously (16, 20). Cell viability 

was evaluated in triplicates for each treatment. All of the experiments were 

repeated at least three times. 

RNA Isolation and RT-PCR 

Total RNA from cells grown on 100-mm dishes was isolated with TRIzol 

(Invitrogen), and 2 µg of RNA was reverse transcribed with Superscript II reverse 

transcriptase and an oligo(dT) primer (Invitrogen). Semi-quantitative RT-PCR 

analyses of Herp, CHOP, and glyceraldehyde-3-phosphate dehydrogenase were 

performed using the following pairs of primers:  

rat Herp, 5'-CCACTACCACAACTACCA-CTG-3' (forward) and 5'-

CCTCTCTTTGGCTTTCTGGAA-3' (reverse); rat glyceraldehyde-3-phosphate 

dehydrogenase, 5'-TGTGATGGACTCCGGTGACGG-3' (forward) and 5'-

ACAGCTTCTCTTTGATGTCACGC-3' (reverse); rat CHOP, 5'-

AAGGTCTACGAAGGTGAACGACCCC-3 (forward) and 5'-
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GACCCCAAGACACGTGAGCAACTGC-3' (reverse); rat Grp78/Bip,5'-

CCACAAGGATGCAGACATTG-3' (forward) and 5'-

AGGGCCTCCACTTCCATAGA-3' (reverse); and rat glyceraldehyde-3-phosphate 

dehydrogenase (which served as an internal control), 5'-

CCACAAGGATGCAGACATTG-3' (forward) and 5'-AGGGCCTCCACTTCCATAGA-

3' (reverse).  

Measurement of ER and Mitochondrial Ca2+ Concentrations  

Free Ca2+ levels in the ER ([Ca2+]ER) will be evaluated using the ER-targeted YC4 

(YC4-ER; gift of Dr. W. F. Graier, University of Graz), a low affinity ratiometric 

“cameleon” indicator with a KDEL sequence and a calreticulin signal peptide, as 

previously described (21). For measurement of mitochondria Ca2+ level ([Ca2+]M), 

the mitochondria-targeted ratiometric-pericam (RP-mt; gift of Dr. A. Miyawaki, 

RIKEN Brain Science Institute) was used as described previously (22). Briefly, cells 

plated at 60% confluency on glass coverslips were transiently transfected with 2 g of 

p-BudCR4.1-YC4-ER or pcDNA3-Rp-mt using Lipofectamine. Twenty-four hours 

after transfection, the cells were incubated with MPP+, and changes in [Ca2+]ER and 

[Ca2+]M were monitored by confocal laser scanning imaging system with excitation 

set at 440 nm (for YC4-ER) or at 433 and 485 nm (for Rp-mt). Emission was 

monitored at 485 and 535 nm (for YC4-ER) or at 539 nm (for Rp-mt). Measurements 

were performed in Locke’s buffer containing: 154 mM NaCl, 5.6 mM KCl, 2.3 mM CaCl2, 

1.0 mM MgCl2, 3.6 mM NaHCO3,  5 mM HEPES, and 10 mM D-glucose, pH 7.2 (16, 20). 



103 
 

The data were expressed as the ratios of the fluorescence in treated relative to 

untreated cultures. 

Protein extraction, immunoprecipitation, and Western blotting 

Cell lysates for Western blotting were prepared in T-PER lysis buffer (Pierce). In 

all experiments, the same amount of total protein was loaded for each sample. The 

membranes were probed with the primary antibodies: Herp, Grp78/Bip, CHOP and 

ERK1, followed by horseradish peroxidase conjugated secondary antibody and 

developed with the Super Signal West Pico Chemiluminescent substrate (Pierce). For 

immunoprepitation, aliquots of cell lysates containing 300 µg of protein were incubated 

with rabbit polyclonal Herp antibody in immunoprecipitation buffer (150 mM NaCl, 2 mM 

EDTA, 1% Nonidet P-40, 5 µg/ml leupeptin, 5 µg/ml aprotinin, 2 µg/ml pepstatin A, 

0.25 mM phenylmethylsulfonyl fluoride, 50 mM Tris, pH 7.6). Antigen-antibody 

complexes were precipitated with immobilized protein A, washed three times in 

immunoprecipitation buffer, and solubilized by heating in Laemmli buffer containing 2-

mercaptoethanol at 100 °C for 4 min. The solubilized proteins were separated by SDS-

polyacrylamide gel and then immunoblotted with a polyclonal antibody to Bcl-2. 

Proteasomal activity  

Chymotrypsin-like activity of proteasome was assayed using the fluorogenic 

peptide Suc-Leu-Leu-Val-Tyr-7-amino-4-methylcoumarin (LLVY-AMC) according to the 

method reported previously (15). Briefly, after the treatment with MG132 or lactacystin 

for 30 min, cultures were harvested, lysed in proteasome buffer (10 mmol/L Tris–HCl, 

pH 7.5, 1 mmol/L ethylene diamine tetraacetic acid (EDTA), 2 mmol/L adenosine-5'-
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triphosphate, 20% glycerol, and 4 mmol/L dithiothreitol), and centrifuged at 13, 000 g at 

4 °C for 10 min. The supernatant (20 µg of protein) was then incubated with proteasome 

activity assay buffer (0.05 mol/L Tris–HCl, pH 8.0, 0.5 mmol/L EDTA, 40 µmol/L LLVY-

AMC) for 1 h at 37 °C. The reaction was stopped by adding 0.9 mL of cold water and 

placing the reaction mixture on ice for at least 10 min. Subsequently, the fluorescence of 

the solution was measured by Fluorescence Microplate Reader with excitation at 380 

nm (Ex) and emission at 440 nm (Em). All readings were standardized relative to the 

fluorescence intensity of an equal volume of free 7-amino-4-methylcoumarin solution. 

Statistical analysis 

Comparison between two groups was performed using Student's t-test, whereas 

multiple comparisons between more than two groups were analyzed by one-way 

ANOVA and post hoc tests. The data evaluated for the effects of two variables were 

analyzed using two-way ANOVA. The results are presented by mean ± standard 

deviation. For all analyses, statistical significance is defined as p-value of ≤0.05. 

Results 

Herp Is Required for Survival Adaptation to MPP+-induced ER Stress 

Several ER stress inducible proteins such as Grp78 and Herp are 

constitutively expressed. To address the role of Herp in the MPP+-induced cell 

death model, we used RNA interference to knockdown endogenous Herp 

expression. Transfection of PC12 cells with a siRNA that targets Herp (siRNA-Herp) 

resulted in a substantial reduction in the level Herp protein (Fig. 1A). To evaluate 
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the effect of Herp knockdown on neuronal vulnerability to MPP+ toxicity, we 

assessed cell viability by using the trypan blue exclusion (Fig. 1B) and lactate 

dehydrogenase release (not shown). Exposure of cultures to 0.5 mM MPP+ induced~ 

45–50% cell death within 24 h. Depletion of Herp protein markedly enhanced the 

vulnerability of PC12 cells to MPP+ toxicity. Compared with cultures transfected with 

a scramble control siRNA (siRNA-Con), there were significantly more dead cells in 

cultures treated with siRNA-Herp, indicating that down-regulation of Herp sensitizes 

PC12 cells to MPP+-induced death (Fig. 1B). Similar results were obtained in MN9D, 

a midbrain-derived dopaminergic neuronal cell line (Fig. 1B). Next, we determined 

whether PC12 cells stably overexpressing Herp (PC12-Herp) are resistant to MPP+-

induced death. Herp protein overexpression was confirmed in three independent 

clones by immunoblotting (Fig. 1C). Compared with PC12-VT, PC12-Herp cells 

were significantly more resistant to 0.5 mM MPP+ (Fig. 1D), a dose that yielded ~50% 

cell death 24 h post-treatment (Fig. 1B). Collectively, the results indicate that survival 

adaptation to MPP+ is dependent on Herp function. 

Given that Herp expression is responsive to ER stress (14 –16) and that ER 

stress has been shown to accompany neurotoxin-induced death (9 –11), we next 

evaluated whether MPP+ may induce the expression of Herp. Levels of Herp mRNA 

and protein in PC12 cells were not markedly increased after exposure to MPP+ (Fig. 

2A). The same dose of MPP+ also failed to robustly increase Herp protein expression 

in MN9D cells (Fig.2B), thus excluding the possibility that the observed anomaly in 

Herp induction was cell type-specific. By contrast, the protein level of Grp78, a 

marker of ER stress, was transiently up-regulated in PC12 and MN9D cells by MPP+ 
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(Fig. 2, A and B), indicating activation of the ER stress response by MPP+. For 

comparison, we treated sister cultures with tunicamycin, a known pharmacological 

ER stressor that causes protein accumulation in the ER by inhibiting protein 

glycosylation (16). Levels of both Herp and Grp78 protein were robustly up-regulated 

in both PC12 and MN9D cells after treatment with tunicamycin (Fig. 2C). Taken 

together, the above results suggest that cells are unable to induce Herp protein 

expression in response to MPP+.  

Herp Counteracts MPP+-induced Perturbation of ER Ca2+ Homeostasis 

Oxidative stress is an important factor implicated in the disruption of 

neuronal Ca2+ homeostasis (23). Consistent with previous reports (24, 25), MPP+ 

increased the intracellular accumulation of hydroxyl and peroxynitrite in PC12 and 

MN9D cells (Supplemental Fig. S1). Given that perturbations of intracellular Ca2+ 

homeostasis have been implicated in oxidative stress-induced cell death (19), we 

next examined the effects of MPP+ on ER Ca2+ handling. To this end, we monitor 

changes in the Ca2+ concentration in the ER lumen ([Ca2+]ER) of PC12 and MND9D 

cells at various time points after treatment with MPP+. The early rise in [Ca2+]ER was 

quickly followed by a gradual and progressive decline in MPP+-treated cells (Fig. 3A), 

suggesting that MPP+ increased Ca2+ leakage from the ER.  

Because Herp functions to stabilize ER Ca2+ homeostasis during ER stress 

(16, 17), we next evaluated whether overexpression of Herp prevents MPP+-induced 

perturbations of [Ca2+]ER. Compared with PC12-VT cells, PC12-Herp cells exhibited 

reduced ER Ca2+ leakage and were able to maintain [Ca2+]ER (Fig. 3B). Because 

uncontrolled ER Ca2+ release can lead to protracted rise in the Ca2+ concentration 

http://www.jbc.org/cgi/content/full/M109.020891/DC1
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M of the mitochondria ([Ca2+]M) (8, 29) and because aberrant mitochondrial Ca2+ 

handling has been shown to be involved in MPP+-induced toxicity (30, 31), we next 

assessed changes in [Ca2+]M in PC12 and MN9D cells at various time points after 

treatment with MPP+. The decrease of [Ca2+]ER was accompanied by an increase in 

[Ca2+]M in MPP+-treated cells (Fig. 3C), indicating that MPP+ induces Ca2+ 

mobilization from the ER to mitochondria. As expected, the magnitude of the 

increase in [Ca2+]M was significantly attenuated in PC12-Herp (Fig. 3D), suggesting 

that Herp likely inhibits the toxic Ca2+ transfer from the ER to mitochondria under 

oxidant-induced ER stress. Representative pseudocolored images of the indicated 

PC12 clones expressing the fluorescent Ca2+ indicators, YC4-ER and pericam-mt, 

are shown in Fig. 3 (B and D), respectively. Co-localization studies confirmed that the 

indicated fluorescent indicators are properly targeted and expressed either in the ER 

(YC4-ER) or in the mitochondria (pericam-mt) (Supplemental Fig. S3). 

Herp Blocks MPP+-induced Activation of CHOP  

CHOP has been implicated as a mediator of apoptosis in the context of ER 

and oxidative stress (32, 33). ER stress-induced cell death in cultures occurs only 

when CHOP is permanently up-regulated but not when the increase in CHOP is 

transient, suggesting that CHOP contributes to the activation of ER-initiated 

apoptosis signaling (31–34). Given that store depletion has been associated with 

CHOP up-regulation (20, 35) and that overexpression of Herp counteracts MPP+-

induced ER Ca2+ store depletion (Fig. 3B), we next evaluate whether CHOP is 

differentially induced by MPP+ in PC12-VT and PC12-Herp clones. The magnitude of 

the MPP+ induced increase in CHOP protein level was significantly lower in PC12-

http://www.jbc.org/cgi/content/full/M109.020891/DC1
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Herp when compared with PC12-VT (Fig. 4A). The Herp-mediated suppression of 

CHOP was also associated with reduced Grp78 induction (Fig. 4A), suggesting that 

Herp restores ER homeostasis in MPP+-treated cells by inhibiting downstream 

events caused by CHOP.  

By contrast, suppression of endogenous Herp by RNA interference 

potentiates CHOP induction in MPP+-treated PC12 cells (Fig. 4B). Treatment with 

siRNA-Con, which had no effect on Herp expression (Fig. 1A), did not enhance 

MPP+-induced CHOP up-regulation (Fig. 4B). These data are consistent with a 

previous study showing that Herp null cells displayed aberrant ER stress signaling 

with increased level of CHOP transcript when compared with wild-type control cells 

(15).  

Next, we determined whether suppression of CHOP induction by RNA 

interference is sufficient to inhibit MPP+ toxicity. siRNA targeting CHOP (siRNA-

CHOP) (20) was used to inhibit the MPP+-induced CHOP expression in PC12 cells 

(Fig. 4C). Cell viability assessed by trypan blue exclusion assay showed that siRNA-

induced silencing of CHOP provided significant protection against MPP+ toxicity (Fig. 

4D). By contrast, the siRNA-Con did not rescu PC12 cells from MPP+
 toxicity (Fig. 

4D). Interestingly, knockdown of CHOP did not further rescue PC12-Herp cells from 

MPP+-induced toxicity (Supplemental Fig. S2), suggesting that Herp promotes cell 

survival in large by suppressing CHOP-dependent pro-apoptotic signaling. 

Collectively, the above results indicate that Herp attenuates MPP+-induced cell 

death by inhibiting CHOP up-regulation. 

http://www.jbc.org/cgi/content/full/M109.020891/DC1
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CHOP Contributes to MPP+-induced Perturbation of ER Ca2+ Homeostasis 

To determine whether CHOP up-regulation in MPP+-treated cells is causally 

linked to ER Ca2+ store depletion, we measured the MPP+-induced perturbation in 

ER Ca2+ homeostasis in PC12 cells transfected with siRNA-CHOP. Compared with 

siRNA-Control, siRNA-CHOP substantially reduced  ER Ca2+ leakage in MPP+-

treated PC12 cells. CHOP knockdown also attenuates MPP+-induced ER Ca2+ 

store depletion (Fig. 5A). Because Herp suppressed CHOP induction in MPP+-

treated PC12 cells, we examined whether knockdown of Herp expression 

exacerbated MPP+-induced ER Ca2+ store depletion. As expected, knockdown of 

Herp exacerbated ER Ca2+ leakage (Fig. 5B) in MPP+-treated PC12 cells (Fig. 5C). 

These data indicate that Herp prevents CHOP-mediated ER Ca2+ store depletion in 

MPP+-treated PC12 cells. 

The Herp-dependent Protective Mechanism Is Not Mediated by the Anti-
apoptotic Bcl-2 Protein 

Because CHOP has been shown to down-regulate the expression of Bcl-2 

protein (36) and because overexpression of Bcl-2 affects Ca2+ handling by the ER (8, 

37), we next determined whether Bcl-2 protein may be acting downstream of Herp to 

maintain ER Ca2+ homeostasis in MPP+-treated PC12 cells. Levels of Bcl-2 protein 

in PC12-VT and PC12-Herp were not significantly different before and after exposure 

to MPP+ (Supplemental Fig. S4). To rule out the possibility that Herp might interact 

with Bcl-2 and therefore facilitated Bcl-2 association with the ER membrane, we 

measured the amounts of Bcl-2 protein in isolated microsomes. Levels of Bcl-2 

protein in the microsomes prepared from PC12-Herp were comparable with those 

http://www.jbc.org/cgi/content/full/M109.020891/DC1
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from PC12-VT and were nearly unchanged following exposure to MPP+ 

(Supplemental Fig. S4). No interaction between Bcl-2 and Herp was detected by co-

immunoprecipitation analysis (Supplemental Fig. S4). All in all, although Herp 

affects Ca2+ handling by the ER in a manner resembling the effects of Bcl-2 

overexpression, data from these experiments excluded a role for Bcl-2 in the Herp-

dependent stabilization of ER Ca2+ homeostasis in MPP+-treated cells. 

The Ubiquitin-like (UBL) Domain Is Essential for Herp-mediated ER Ca2+ 

Stabilization and Protection from MPP+-induced Toxicity 

Previous studies established a critical role of the N-terminal UBL domain in 

the cytoprotective action of Herp (15–17). Overexpression of a mutant Herp deletion 

construct lacking the UBL domain (UBL-Herp; Fig. 6A) failed to protect PC12 cells 

from ER stress-induced cell death (15–17). To determine whether the Herp-

dependent protection against MPP+ toxicity may also require the UBL domain, we 

generated PC12 clones stably overexpressing UBL-Herp. Stable transfection 

inducing overexpression of UBL-Herp was verified by immunoblotting (Fig. 6A). 

Compared with PC12-VT, PC12-UBL -Herp clones were not more resistant to 

MPP+-induced cell death (Fig. 6B), suggesting that the UBL domain is required for 

Herp-dependent cytoprotective action.  

To determine whether the UBL domain is essential for the stabilization of ER 

Ca2+ homeostasis, we measured [Ca2+]ER in PC12-UBL -Herp. The magnitude of 

the MPP+-induced ER Ca2+ leakage was indistinguishable in PC12-VT and PC12-

UBL -Herp, suggesting that the UBL domain is required for  the ability of Herp to 

maintain ER Ca2+ homeostasis (Fig. 6C). We also found that CHOP mRNA and 

http://www.jbc.org/cgi/content/full/M109.020891/DC1
http://www.jbc.org/cgi/content/full/M109.020891/DC1
http://www.jbc.org/cgi/content/full/M109.020891/DC1
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protein levels in PC12-VT clones are not significantly different in PC12-UBL - Herp 

clones (Fig. 6D), which further supports the notion that a functional Herp protein is 

required to suppress CHOP induction and to stabilize ER Ca2+ homeostasis. 

Herp-dependent Stabilization of ER Ca2+ Homeostasis Requires a Functional 
UPP 

Herp has recently been implicated in the regulation of  ERAD (38, 39), a 

protein quality control system of the ER, which eliminates misfolded proteins by UPP-

dependent degradation (4). To determine whether ERAD is involved in the Herp-

dependent stabilization of ER Ca2+ homeostasis, we blocked ERAD with the 

proteasomal inhibitor lactacystin. Treatment of PC12 cells with lactacystin for 12 

and 24 h significantly reduced proteasomal activity (Supplemental Fig. S5). 

Inhibition of proteasome function reversed the Herp-dependent suppression of 

CHOP induction (Fig. 7A) and accelerates ER Ca2+ depletion (Fig. 7B), suggesting 

that proteosomal activity is required for Herp-dependent stabilization of ER Ca2+ 

homeostasis. Consistent with the notion that the proteasomal function is  required 

for the neuroprotective action of Herp, we found that lactacystin not only increased 

the vulnerability of PC12 cells (Fig. 7C) but also restores the sensitivity of PC12-Herp 

clones to MPP+ toxicity (Fig. 7D). 

Discussion  

Elucidating the specific and sequential molecular events induced by MPP+ will 

provide a better understanding of the molecular basis of dopaminergic cell death. 

MPP+ is selectively toxic to dopaminergic neurons and has been studied extensively 

http://www.jbc.org/cgi/content/full/M109.020891/DC1
http://www.jbc.org/cgi/content/full/M109.020891/DC1
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as an etiologic model of PD because mitochondrial dysfunction is implicated in both 

MPP+ toxicity and the pathogenesis of PD. MPP+ toxicity has been attributed to the 

generation of reactive oxygen species (ROS) (24, 25). ROS generated from 

mitochondrial appear to be a main contributor of oxidative stress-mediated 

neurodegeneration in PD models (40). 

Oxidative stress is an important factor implicated in the disruption of 

neuronal Ca2+ homeostasis (19). In this study we showed that MPP+ induces the 

deregulation of ER Ca2+ homeostasis. There is a growing body of evidence that the ER 

can play pivotal roles in regulating cell survival and apoptosis in a variety of cell types 

including neurons. The ER serves many specialized functions in the cells including 

the biosynthesis of membrane and secretory proteins (7) and maintenance of 

neuronal Ca2+ homeostasis (41). Dysregulation of ER Ca2+ homeostasis occurs as 

an early event during many forms of apoptosis and has been implicated in the 

pathophysiology of several acute and chronic neurodegenerative diseases, including 

ischemic injury, trauma, and Alzheimer, Huntington, and prion diseases (41– 43). 

Uncontrolled Ca2+ release from the ER is a key proapoptotic event, as indicated by 

the ability of blockers of ER Ca2+ release to reduce the extent of ischemic injury (44) 

and to protect cultured neurons against cell death induced by glutamate, mutant 

huntingtin, Aβ, and prion peptides (21, 45). Whether dysregulation of ER Ca2+ 

homeostasis contributes to PD initiation and progression has not yet been 

established. 

Disturbances in intracellular Ca2+ homeostasis could play a role in 

dopaminergic degeneration because treatment with various PD neurotoxins has 
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been shown to perturb intracellular Ca2+ homeostasis (26 –28). The MPP+-induced 

cell death was inhibited by co-expression of calbindin-D28K or co-treatment with 

BAPTA (1,2-bis-(o-aminophenoxy)-ethane-N,N,N',N'-tetracidic acid), suggesting a 

critical role for intracellular Ca2+ loads in MPP+-induced toxicity (46). The pertinent 

mechanism whereby neurotoxins disrupt intracellular Ca2+ homeostasis remains 

poorly understood. Antagonists of glutamate and Ca2+ channels (47) have been 

reported ineffective in preventing MPP+ toxicity, suggesting that the Ca2+ 

perturbations induced by MPP+ are likely attributed to deregulated ER Ca2+ release. 

Consistent with the latter notion, inhibition of ER Ca2+ release prevents the MPP+-

induced perturbations of intracellular Ca2+ (47). 

Various pathological conditions that induce ER stress have been shown to 

perturb ER Ca2+ homeostasis (8, 16, 29), but the underlying mechanisms remain 

poorly characterized. Oxidative damage to the ER can lead to perturbations in ER 

Ca2+
 homeostasis. Protein folding in the ER can generate ROS, which in turn may 

exacerbate ER stress by perturbing the function of ER foldases and/or chaperones 

(48). ROS could also sensitize ryanodine receptor- and inositol triphosphate 

receptor-mediated ER Ca2+ release (49, 50) or block sarcoplasmic/endoplasmic 

reticulum Ca2+-ATPase-mediated Ca2+ sequestration by the ER (51). During ER 

stress, increased Ca2+ transfer from the ER to mitochondria leads to mitochondria 

Ca2+ overload and generation of mitochondrial-derived ROS, which could further 

disrupt protein folding in the ER and potentiate ER Ca2+ release through a positive 

feed-forward mechanism (52, 53). 
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Recent studies show that neurotoxins induce ER stress via the generation 

of ROS (54, 55), suggesting that ER stress may be involved downstream of ROS. 

The biological relevance of the neurotoxin induced-ER stress is still unknown. 

Given that ER is an important regulator of intracellular Ca2+ homeostasis, 

oxidant-induced deregulation of ER Ca2+ homeostasis could contribute to 

dopaminergic degeneration. 

Induction of ER stress proteins during oxidative and ER stress seems to be 

important to remedy the perturbations of ER Ca2+ homeostasis. We previously 

reported that Herp is essential for cell survival in response to ER stress (16). Here, we 

found that Herp is critical for cellular stress adaptation in response to MPP+. 

Consistent with this notion, we found that overexpression of Herp attenuated 

MPP+-induced toxicity, whereas knockdown of Herp increased not only CHOP 

expression but also ER Ca2+ leakage and mitochondrial Ca2+ accumulation, resulting 

in cell death (Fig. 1). Notably, we found that MPP+ failed to up-regulate Herp 

expression in dopaminergic cells in vitro (Fig. 2, A and B). Failure to induce a 

compensatory increase in Herp expression may deteriorate ER function in MPP+-

treated cells. Hence, exploring ways to increase Herp expression can increase the 

ability of dopaminergic cells to cope with ER stress and to protect from MPP+ 

toxicity. 

Given that Herp plays a crucial role in stabilizing ER Ca2+ homeostasis (16, 17), 

we determined whether stable expression of Herp counteracts MPP+-induced toxicity by 

inhibiting Ca2+ transfer for ER to mitochondria. Time course analysis of the of the MPP+-

induced alterations in [Ca2+]ER and [Ca2+]M revealed that knockdown of Herp 
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accelerates ER Ca2+ store depletion with a time course that parallels [Ca2+]M 

accumulation (Fig. 3B) and that overexpression of Herp reversed the toxic Ca2+
 

transfer between the ER and mitochondria (Fig. 3, A and B). The mitochondrial 

apoptotic pathway is an integral part of MPP+-induced apoptosis (24, 25). Excessive 

accumulation of [Ca2+]M causes collapse of the mitochondria membrane potential, 

which results in mitochondrial transition pore opening and release of pro-

apoptogenic factors including cytochrome c that promotes downstream caspase 

activation (53). Because mitochondria are linked to the ER both by proximity and 

through Ca2+ signaling (52, 56), various pathological conditions that perturb ER 

Ca2+ homeostasis could adversely impact the function of the mitochondria. Hence, 

oxidant-induced damage to the ER could cause a protracted elevation in [Ca2+]M that 

could enhance generation of mitochondrial-derived ROS that through a feed forward 

mechanism exacerbates the loss of Ca2+ from the ER (53). 

The underlying molecular and cellular mechanisms whereby Herp stabilizes 

ER Ca2+ homeostasis and preserves mitochondrial function in MPP+-treated cells 

remain to be established. It is unlikely that the ER membrane-associated Herp 

functions as a calcium-binding chaperone analogous to Grp78 and calreticulin (14). 

We excluded a role for Bcl-2 in the Herp-mediated stabilization of ER Ca2+ 

homeostasis based on the findings that Herp fails to bind to Bcl-2 and that total 

levels of Bcl-2 in the microsome fractions were not significantly different in PC12-VT 

and PC12-Herp cells (Supplemental Fig. S4). Hence, the mechanism by which 

Herp maintains ER Ca2+ homeostasis appears to be different from the proposed anti-

apoptotic action of Bcl-2 (37). Because the UBL domain is essential for Herp-

http://www.jbc.org/cgi/content/full/M109.020891/DC1
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mediated protection against neurotoxins (Fig. 7B), we determined that the UBL 

domain is essential for the ability of Herp to maintain ER Ca2+ homeostasis. 

Expression of Herp lacking the UBL domain fails to stabilize intracellular Ca2+ and to 

suppress the induction of CHOP in MPP+-treated cells (Fig. 7, C and D), indicating 

that UBL is critical for the cytoprotective function of Herp. 

How the UBL domain is involved in the protective function of Herp is not clear. 

The presence of the UBL domain, which faces into the cytosol (14), suggests that 

Herp may function as a proteasome-interacting domain, as has recently been 

demonstrated for Parkin (57). Several recent studies support a role of Herp in ERAD 

(38, 39). Herp interacts with Hrd1p, a membrane-anchored E3 ligase (38), and with 

ubiquilin, a shuttle protein that delivers ubiquitinated substrates to the proteasome 

for degradation (58). Overexpression of Herp enhances the degradation of the 

ERAD substrate CD3o, whereas siRNA-mediated reduction of Herp expression 

stabilized the ERAD substrate CD3γ but did not alter or increased degradation of 

non-ERAD substrates tested (38). It is possible that Herp may target yet to be 

identified CHOP-regulated ERAD substrates whose accumulation results in 

perturbations in ER Ca2+ homeostasis. Hence, elucidating the precise role of Herp 

in ERAD and the identity of the ERAD substrates that accumulate in Herp 

knockdown cells will likely provide clues to the mechanisms of Herp-mediated ER 

Ca2+ stabilization and protection from MPP+-induced toxicity. 
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Figure 3-1. Herp protects from MPP+ toxicity 

(A) PC12 cells were transfected with siRNA targeting Herp (Herp;100 nM) or 

nonsilencing control siRNA (Con;100 nM) for 24 and 48 h. For sequences of each 

siRNA-Herp or siRNA-Con, see "Materials and Methods". Total protein lysates were 

prepared and analyzed by immunoblotting using an anti-Herp antibody. Equal protein 

loading was confirmed by reprobing immunoblots with an anti-ERK1 antibody. (B) PC12 

cells and MN9D were transfected with siRNA-Herp or siRNA-Con (100 nM) for 24 h 

prior to exposure to 0.5 mM MPP+ or vehicle. At the indicated time points, the 

percentage of Trypan blue-positive cells in each culture was quantified. The values are 

the means and S.D. of three independent experiments, *p<0.01, #p<0.05 (ANOVA with 

Scheffe post-hoc tests) compared with vehicle-treated cultures. (C) PC12 clones were 
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stably transfected with plasmid containing Herp (Herp) or the empty plasmid (VT). Total 

protein lysates were analyzed in three independent clones by Western blotting using an 

anti-Herp antibody. Equal protein loading was confirmed by reprobing the immunoblots 

with an anti-ERK1 antibody. (D) Cultures of PC12-VT and PC12-Herp were left 

untreated or treated for the indicated time points with 0.5 mM MPP+ or vehicle, and cell 

viability was assessed. These results were expressed as percentage of Trypan blue-

positive cells in each culture, normalized to untreated cultures. The values represent 

mean  SD of 3 independent experiments, *p<0.01(ANOVA with Scheffe post-hoc 

tests). 
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Figure 3-2. MPP+ and tunicamycin induce Herp and CHOP expression with 
different kinetics 

PC12 (A) and MN9D (B) cells were treated with 0.5 mM MPP+ for the indicated time 

points. Total RNA and cell lysates were prepared and analyzed by semi-quantitative 

RT-PCR and immunoblotting for Herp and Grp78, respectively. As control (Ctrl) for 

equal loading, actin mRNA and ERK1 protein were determined. Densitometric analyses 

of protein bands are shown next to each panel. *p<0.01 (ANOVA with Scheffe post-hoc 

tests) compared to untreated cultures. Asterisks indicated the full-length Herp protein. 

(C) PC12 and MN9D cells were treated with 5 µg/ ml tunicamycin for the indicated time 

points. Total lysates were prepared and analyzed by by semi-quantitative RT-PCR and 
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immunoblotting for Herp and Grp78, respectively. Quantitation of the density of the 

protein bandsis shown next to each panel, *p<0.01, (ANOVA with Scheffe post-hoc 

tests) compared to untreated cells. 

 

 
 

 

Figure 3-3. Herp counteracts MPP+-induced depletion of ER Ca2+ store 

Statistical evaluations of the changes in the Ca2+ concentration in the ER ([Ca2+]ER) (A 

and B) and mitochondria ([Ca2+]m) (C and D) in PC12 and MN9D cells (A and C) and in 

the indicated stably tranfected PC12 clones (B and D) after treatment with MPP+ . The 

indicated cultures were transiently transfected with 2 µg YC4-ER or RP-mt for 24 h prior 

to incubation with 0.5 mM MPP+. At the indicated time points, [Ca2+]ER and [Ca2+]m were 

measured as described in Materials and Methods. The results were expressed as the 

ratio of the YC4-ER or RP-mt fluorescence signals in MPP+-treated relative to untreated 
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cultures. Values are mean and S.D. of measurements made in three or four cultures 

(n=4 dishes, 4-6 microscopic fields per dish, 25-30 cells per field), *p<0.01, #p<0.05 

(ANOVA with Scheffe post-hoc tests) compared to either untreated cultures or PC12-VT 

cultures. Representative pseudocolored images of the indicated PC12 clones at 

baseline and after exposure to MPP+ are shown in B and D. The pseudocolor bar shows 

the ratio range. Con, control. 
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Figure 3-4. Herp counteracts MPP+-induced upregulation of CHOP 

(A) Time course of CHOP and Grp78 protein levels in cultures of PC12-VT and PC12-

Herp before and after incubation with 0.5 mM MPP+. As control for equal loading, 

immunoblots were reprobed with an antibody to ERK1. Densitometric analysis of protein 

bands normalized to untreated control cultures is shown in the right panel. *p<0.01 

(ANOVA with Scheffe post-hoc tests), compared to PC12-VT (B) Time course of MPP+-

induced CHOP mRNA and protein levels in cultures of PC12 cells transfected with 

siRNA-Herp or siRNA-Con (100 nM). The cultures were incubated with 0.5 mM MPP+ 

24h after transfection. Actin and ERK1 were used as loading controls. Densitometric 

analyses of protein bands normalized to untreated control cultures are shown in the 

right panel. *p<0.01 (ANOVA with Scheffe post-hoc tests), compared to cultures 
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transfected with siRNA-Con. (C and D) PC12 cells were transfected with siRNA-CHOP 

or siRNA-Con (100 nM). One day after transfection, PC12 cells were exposed to 0.5 

mM MPP+ or vehicle for the indicated time points and subsequently harvested for 

detection of Herp mRNA and protein (C) or fixed for quantitation of cell death (D). Actin 

and ERK1 were used as loading controls. Densitometric analyses of protein bands 

normalized to untreated control cultures is shown in the right panel, *p<0.01 (ANOVA 

with Scheffe post-hoc tests), compared with cultures transfected with siRNA-Con. For 

quantitation of cell death, the percentages of Trypan blue-positive cells in each treated 

culture, normalized to vehicle-treated cultures, were shown. The values are the means 

and S.D. of three dishes per group for each time point, *p < 0.01, #p < 0.05 (ANOVA with 

Scheffe post-hoc tests) compared to cultures transfected with siRNA-Con.  
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Figure 3-5. CHOP and Herp modulates ER Ca2+ homeostasis in MPP+-treated cells 

Knockdown of CHOP (A) and Herp (B) alters ER Ca2+ store contents in MPP+-treated 

PC12 cells. Twenty-four hours after co-transfection with 2 µg pBudCE4.1-YC4-ER with 

the indicated siRNA duplexes (100 nM), cultures were incubated with 0.5 mM MPP+ or 

vehicle control (Con). Changes in ER Ca2+ concentration ([Ca2+]ER) were recorded at the 

indicated time points as described in Materials and Methods and presented as the ratios 

of the YC4-ER fluorescence signal in MPP+-treated relative to untreated cultures. The 

values are mean and S.D. of measurements made in three separate cultures (n=4 

dishes, 4-6 microscopic fields per dish, 25-30 cells per field), *p<0.01, #p<0.05 (ANOVA 

with Scheffe post-hoc tests), compared to cultures treated with siRNA-Con. 
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Figure 3-6. The ubiquitin-like (UBL)-domain is essential for Herp-mediated 
stabilization of ER Ca2+ homeostasis and rescue from MPP+ toxicity 

 (A) Schematic diagram of full-length Herp protein and a deletion mutant lacking the 

amino-terminal ubiquitin-like (UBL) domain (UBL-Herp). Expression of Herp and 

UBL-Herp protein in stably transfected PC12 clones is shown in the inset. ERK1 was 

used as the loading control. (B) UBL-Herp fails to rescue PC12 cells from MPP+ 

toxicity. The indicated PC12 clones were exposed to 0.5 mM MPP+ for the indicated 

time points. The results were expressed as percentage of Trypan blue-positive cells in 

each culture, normalized to vehicle-treated cultures, from three independent 

experiments, *p<0.01, #p<0.05 (ANOVA with Scheffe post-hoc tests). #p<0.05, (ANOVA 

with Scheffe post-hoc tests), compared to PC12-VT. (C) UBL-Herp fails to stabilize ER 

Ca2+ homeostasis. Twenty-four hours after transfection of pBudCE4.1-YC4-ER, the 

indicated PC12 clones were incubated with 0.5 mM MPP+. Changes in ER Ca2+ 
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concentration ([Ca2+]ER) were recorded at the indicated time points as described in 

Materials and Methods and presented as the ratio of the fluorescence signals in MPP+-

treated relative to untreated cultures. The values are mean and S.D. of measurements 

made in three or four cultures (n=4 dishes, 4-6 microscopic fields per dish, 25-30 cells 

per field), *p<0.01, (ANOVA with Scheffe post-hoc tests) compared to PC12-VT and 

PC12-UBL-Herp. #p<0.05, (ANOVA with Scheffe post-hoc tests), compared to PC12-

VT. (D) UBL-Herp fails to suppress MPP+ induced upregulation of CHOP. Time course 

of MPP+-induced increase in CHOP protein level in the indicated stably-transfected 

PC12 clones. As control for equal loading, immunoblots were reprobed with an antibody 

to ERK1. Densitometric analysis of protein bands normalized to untreated control 

cultures is shown in the right panel. *p<0.01 (ANOVA with Scheffe post-hoc tests), 

compared to PC12-VT and PC12-UBL-Herp. 
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Figure 3-7. Proteasomal-mediated degradation is essential for Herp-dependent 
stabilization of ER Ca2+ homeostasis and rescue from MPP+ toxicity 

(A) The proteasomal inhibitor lactacystin abolishes Herp-mediated suppression of 

CHOP in MPP+-treated PC12 cells. Time course of CHOP and Grp78 protein levels in 

PC12-Herp cultures incubated with 0.5 mM MPP+ in the presence or absence of 

lactacystin (5 µM). As control for equal loading, immunoblots were reprobed with an 

antibody to ERK1. (B) Lactacystin abolishes the Herp-dependent suppression of ER 

Ca2+ store depletion in MPP+-treated PC12 cells. Twenty-four hours after transfection 

with 2 µg pBudCE4.1-YC4-ER, the cultures of PC12-Herp were incubated with 0.5 mM 

MPP+ in the presence of lactacystin (5 µM) or its vehicle control. Changes in ER Ca2+ 

concentration ([Ca2+]ER) were recorded at the indicated time points as described in 

Materials and Methods and presented as the ratio of the YC4-ER fluorescence signal in 
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MPP+-treated relative to untreated cultures. The values are the means and S.D. of 

measurements made in three or four cultures (n=4 dishes, 4-6 microscopic fields per 

dish, 25-30 cells per field), *p<0.01, (ANOVA with Scheffe post-hoc tests). (C and D) 

Lactacystin enhances MPP+ toxicity (C) and reverses the Herp-dependent cell death 

rescue from MPP+-toxicity (D). Cultures of PC12 (C) and PC12-Herp clones (D) were 

exposed to 0.5 mM MPP+ in the presence of lactacystin (5 µM) or vehicle control for the 

indicated time points. Shown is the percentage of Trypan blue-positive cells in each 

culture, normalized to untreated cultures, from three independent experiments, *p<0.01, 

(ANOVA with Scheffe post-hoc tests) compared to vehicle-treated cultures. 

 

 

Supplementary Figure 3-1. MPP+ increases ROS accumulation 

PC12 cells were loaded with the fluorescence probe, 7-dichlorodihydrofluorescein 

diacetate (10 µM DCF-DA, Molecular Probes). Fluorescence images were acquired 

using a confocal microscope and quantified (20). Values are the average DCF 



129 
 

fluorescence pixel intensity per cell before and after exposure to 0.5 mM MPP+ at the 

indicated time periods. Values are mean ± S.D. of determinations made in four to five 

cultures; 30–40 cells assessed in each culture, *p<0.01, #p<0.05 (ANOVA with Scheffe 

post-hoc tests), compared to untreated cultures. 

 

 
 

Supplementary Figure 3-2. Effect of CHOP knockdown on the survival of PC12-
Herp clones 

The indicated PC12 clones were transfected with siRNA-CHOP or siRNA-Con (100 

nM). One day after transfection, PC12 cells were exposed to 0.5 mM MPP+ for the 

indicated time points and fixed for quantitation of cell death. Results were expressed as 

percentage of Trypan blue-positive cells in each culture, normalized to untreated 

cultures. Values represent mean  SD of determinations made in four separate cultures, 

*p<0.01, #p<0.05 (ANOVA with Scheffe post-hoc tests), compared to PC12-VT cultures. 



130 
 

 
 

Supplementary Figure 3-3. The fluorescent indicators are properly targeted and 
expressed in their respective organelles 

(A) YC4-ER co-localizes with the ER marker calnexin before and after exposure to 

MPP+ (0.5 mM). PC12 cells were transfected with YC4-ER, fixed and immunostained 

with the calnexin antibody. Fluorescence images were acquired using a confocal 

microscope. (B) Pericam-mt co-localizes with the vital dye MitoTracker red in PC12 cells 

before and after exposure to MPP+ (0.5 mM). Pericam-mt transfected PC12 cells were 

loaded with MitoTracker red and imaged using a confocal microscope. 
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Supplementary Figure 3-4. The Herp-dependent protective mechanism is not 
mediated by Bcl-2 

(A) Time course of Bcl-2 protein in total cell lysates (upper panels) and microsomes 

(lower panels) harvested from PC12-VT and PC12-Herp after incubation with 0.5 mM 

MPP+. Microsomal fractions were isolated by differential centrifugation as described 

previously (16). Equal protein loading was confirmed by reprobing the immunoblots for 

ERK1 and calnexin (an ER-resident protein), respectively. (B). Herp fails to interact with 

Bcl-2. A polyclonal mouse anti-Herp antibody was used for immunoprecipitation as 

described in Materials and Methods. The Bcl-2 protein is detected in the input (whole 

lysates) but not in the immune complexes bound to control IgG or Herp antibody. The 

heavy chain of IgG is indicated as IgG-h. 
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Supplementary Figure 3-5. Lactacystin treatment reduces proteasomal activity 

PC12 cells were treated with 5 µM lactacystin or vehicle control. At the indicated time 

points, chymotrypsin-like activity of the proteasome were assessed in whole cell lysates 

using the fluorogenic peptide Suc-Leu-Leu-Val-Tyr-7-amino-4-methylcoumarin (LLVY-

AMC) according to the method reported previously (15). Values are the average 

fluorescence intensity (360/440 nM) before and after exposure to 0.5 mM MPP+ at the 

indicated time points. Values are mean ± S.D. of determinations made in four to five 

dishes, *p<0.01 (ANOVA with Scheffe post-hoc tests), compared to vehicle-treated 

cultures. 
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Summary Diagram 3-1. Part 1. Schematic representation of MPTP entry into 
dopaminergic nerurons 
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Summary Diagram 3-2. Part 2. Schematic representation of the mechanisms 
involved in toxicity of MPTP 
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CHAPTER FOUR: ABERRANT ACCUMULATION OF -SYNUCLEIN WORSENS 
ISCHEMIA-INDUCED BRAIN DAMAGE BY INCAPACITATING DJ-1–MEDIATED 

NEUROPROTECTIVE RESPONSES 

Introduction 

Brain injury following cerebral ischemia or stroke results from the complex 

interplay of multiple pathways including ionic imbalance and excitotoxicity, oxidative and 

nitrative stress, and inflammation (1). Reactive oxygen species (ROS) are produced in 

excess during the course of cerebral ischemia reperfusion (I/R) by a variety of 

mechanisms such as aberrant electron transport in injured mitochondria, calcium influx 

and inflammatory reactions (2). A growing body of evidence supports the essential role 

of oxidative and nitrative stress in the initiation and progression of the injury process 

after I/R (3). Reoxygenation during reperfusion activates nitric oxide synthase and 

increases the generation of nitric oxide, which combines with superoxide to produce 

peroxynitrite, a potent oxidant that can modify cellular targets (proteins, lipids, and DNA) 

and participate in signaling mechanisms that result in exacerbation of infarct (4). 

Oxidation-modified proteins have been shown to accumulate and participate in the 

generation of protein aggregates (5).  

Protein aggregation is part of the etiology of many chronic neurodegenerative 

diseases such as Alzheimer's (AD), Parkinson’s (PD) and Huntington's (HD) diseases 

although the causes of protein aggregation vary among the diseases (6). Abnormal 

accumulation of protein aggregates also occurs after acute brain injury such as 

ischemic stroke and has been detected in vulnerable neurons from the onset of I/R until 
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delayed neuronal death (7, 8).  The protein aggregates formed after cerebral ischemia 

are detergent-resistant (7), consistent with the nature of irreversible protein aggregation 

in other pathologic conditions.  The role of protein aggregation in neuronal pathology 

after brain ischemia is not clear. It is believed that protein aggregation may contribute to 

delayed neuronal death as induction or transgenic overexpression of heat shock protein 

70 (Hsp70) and other molecular chaperones before ischemia reduces evidence of 

protein aggregation under conditions where neuronal survival is increased (9, 10). 

PD is the second most prevalent neurodegenerative disorder and is 

characterized pathologically by the relatively selective degeneration of midbrain 

dopaminergic neurons and the accumulation of insoluble -Syn containing 

intracytoplasmic inclusions called Lewy bodies (11, 12). -Syn was the first gene 

identified whose mutations cause autosomal dominant forms of familial PD (13). 

Overexpression of PD-causing mutant -Syn in animal models leads to -Syn 

aggregation and neurodegeneration (14).  Genetic and biochemical studies implicate 

protein misfolding and aggregation, aberrant expression and degradation in α-Syn-

induced pathology (15, 16). -Syn is a small 140 amino acid presynaptic protein that is 

intrinsically unfolded and assembles under pathological conditions into characteristic 

Lewy inclusion bodies that typify PD and other Lewy body-containing 

neurodegenerative diseases termed synucleinopathies (16). Familial PD mutants of -

Syn have increased propensity to aggregate. (17). Furthermore, exposure to oxidizing 

conditions has been shown to accelerate α-Syn aggregation (16). Specifically, nitration 

of α-Syn protein accelerates its rate of fibrillization (16). Triplication of its gene locus has 

also been identified in early onset familial PD suggesting that aberrant accumulation of 
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-Syn can play a crucial role in PD pathogenesis (18). While the normal function of -

Syn continues to be characterized, multiple lines of evidence suggest that PD 

pathogenesis is closely linked with a toxic gain of function associated with misfolded -

Syn. 

DJ-1 is another PD gene linked to early onset disease with autosomal recessive 

inheritance (12, 19). DJ-1 is a small 189 amino acid protein that is ubiquitously 

expressed and exhibits anti-oxidant and chaperone-like activities (20-23). The DJ-1-

mediated protective actions have been demonstrated in several pathological disease 

models both in vitro and in vivo (20-23). Consequently, PD-causing mutations that result 

in loss of DJ-1 function expose dopaminergic neurons to endogenous and exogenous 

stressors (19). Consistent with this notion, DJ-1 knockdown cells and DJ-1 null mice or 

flies are highly susceptible to PD-inducing neurotoxins such as paraquat, 6-

hydroxydopamine, rotenone and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) 

(20-23). DJ-1 null mice also display larger infarcts as compared to wild-type mice in a 

rodent model of ischemic stroke (24) suggesting that DJ-1 deficiency may concur in 

exacerbating oxidative damage. Conversely, overexpression of DJ-1 correlated 

positively with survival outcome (25).  

Given that oxidative stress is an established mediator of ischemia-induced 

neuronal injury and plays a critical role in mediating -Syn aggregate formation and 

toxicity, and the recent findings that DJ-1 inhibits -Syn aggregate formation and 

protects from ischemic brain damage (24), we explored the pathological interactions 

between these two PD-associated proteins in the context of oxidative stress, protein 

aggregation, and neuronal survival under ischemic conditions. 
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Materials and Methods 

Transient Middle Cerebral Artery (MCA) Occlusion  

C57BL/6, α-Syn-/- transgenic (B6;129X-SncatmlRosl, Stock #3692) and non-

transgenic control (129/Sv x C57BL/6; Jackson Labs, Bar Harbor) mice were housed in 

a pathogen free facility, about 4-5 animals per cage in a temperature controlled room 

with a 12 hour light/dark cycle and with food and water ad libitum. The generation of α-

Syn-/- mice was previously described (56). Male mice (10-12 weeks old) weighing 22–26 

g were anaesthetized with 1.5% halothane in 70% N2O and 30% O2, and focal cerebral 

ischemia was induced by occluding the left MCA by using the thread occlusion 

technique, essentially as described (57). Briefly, a 5-0 nylon filament, with its tip 

rounded by heating near a flame, was inserted through the external carotid artery stump 

and advanced into the right internal carotid artery until it blocked the MCA blood flow. 

Arterial blood pressure and cerebral blood flow were monitored during ischemia and the 

first 20 min of reperfusion as described previously (57).  Sixty min. after occlusion, the 

filament was gently withdrawn to restore blood flow. Rectal temperature was monitored 

and maintained at 37 ± 0.5 °C with a thermostatic blanket throughout the entire duration 

of the surgical procedure and in the recovery period until the animals regained full 

consciousness. Sham-operated animals were subjected to similar surgical procedures 

without occlusion of the MCA. At 3-72 h post-ischemic reperfusion, the animals were 

anesthesized with 5% halothane and sacrificed. The α-Syn-/- mice were compared to 

their own non-transgenic controls in the 129 x C57BL/6 genetic background (F10-F12). 

Morphological studies revealed no fundamental abnormalities in the adult brain thereby 

excluding the possibility that germ line deficiency would bias stroke outcome.  All 
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procedures and animal handling were approved by and conformed to the guidelines of 

the Institutional Animal Care and Use Committee of the University of Central Florida. 

Cerebral Infarct Volume Measurement  

After cerebral ischemia reperfusion (I/R), mice were sacrificed and brains 

removed. Two millimeter coronal sliced were made with a rodent brain matrix (Kent 

Scientific Corp) and stained for 20 min at 37 °C with 2% 2,3,5-triphenyltetrazoliun 

chloride monohydrate (TTC; Sigma) for detecting infarcted tissue (57) The total infarct 

volume was obtained from integrating infarcted areas and correcting for brain edema. 

Briefly, the sections were scanned and the infarcted area in each section was calculated 

by subtracting the non-infarct area of the ipsilateral hemisphere from the area of the 

contralateral hemisphere with NIH Image analysis software (Scion Image). Infarction 

areas in each section were summed and multiplied by section thickness to give total 

infarction volume.  

Neurological Evaluation  

The functional outcome of the stroke injury was determined blinded to the 

treatment history of the mice using a 5 grade neurological deficit score (0, no deficit; 1, 

failure to extend right paw; 2, circling to the right; 3, falling to the right; 4, lacking 

spontaneous locomotion) as described previously (57). Mice were evaluated before 

MCA occlusion to establish a baseline and at 24 h after I/R. 
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Primary Cultures  

Cultures of dissociated neocortical cells were prepared from brains of 18-d-old 

mouse embryos as previously described (58). Briefly, cerebral hemispheres were 

removed and incubated for 15 min in Ca2+- and Mg2+-free Hank's Buffered Salt Solution 

(Invitrogen) containing 0.2% trypsin. Cells were dissociated by trituration and plated into 

polyethyleneimine-coated plastic or glass-bottomed culture dishes containing Minimum 

Essential Medium with Earle's salts supplemented with 10% heat-inactivated fetal 

bovine serum and (in mM): 2 L-glutamine, 1 pyruvate, 20 potassium chloride, 10 sodium 

bicarbonate, and 1 HEPES, pH 7.2. After cell attachment (3-6 h after plating), the culture 

medium was replaced with maintenance medium (Neurobasal Medium containing 2% 

B27 supplement and 0.5 μM glutamine, Invitrogen). Thereafter, maintenance medium 

was changed every 3 days. Experiments were performed in 12-14-days old cultures.  

Production of Lentivirus Particles and Infection of Neuron Cultures  

The DJ-1 cDNA was amplified by PCR from its pcDNA3-based expression vector 

and cloned into a Gateway entry vector (pENTR4; Invitrogen). The viral constructs were 

obtained through homologous recombination between pENTR4-DJ-1 and the lentiviral 

destination vector pLenti6/V5-DEST (ViralPowerTM Lentiviral Expression System; 

Invitrogen). Cortical neurons in 48-well at around 70% confluence were infected with 

105 genomic particles / cell of pLenti6-DJ1 or pLenti6-LacZ (lactosidase) and then kept 

in regular complete medium. 
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RNA Interference  

Cortical cultures were transfected with prevalidated siRNA duplexes targeting 

mouse DJ-1 and Syn (Dharmacon), or a scramble control siRNA (siRNA-Con; Ambion) 

using Oligofectamine 2000 (Invitrogen) in Opti-MEM (Invitrogen) according to 

manufacturer's protocol. To monitor knockdown, neurons were harvested and 

processed for RT-PCR and Western blot analyses.  

Oxygen Glucose Deprivation (OGD) Treatment  

Cortical neuronal cultures were rinsed and incubated in glucose-free Locke's 

buffer (in mM: NaCl, 154; KCl, 5.6; CaCl2, 2.3; MgCl2, 1.0; NaHCO3, 5; and HEPES, 

5 mM; pH 7.2) in an anaerobic chamber (Billups-Rothenberg) containing 94% N2/ 5% 

CO2/ 1% O2 (59). Control cultures not deprived of oxygen and glucose were placed in 

Locke’s containing 5.5 mM glucose under a 95% air / 5% CO2 atmosphere. To 

terminate OGD, cultures were removed from the anaerobic chamber and incubated in 

the normal growth medium in the normoxic incubator. At various time points following 

reoxygenation, cell lysates were prepared. In knockdown experiments, cultures were 

trasnfected with siRNAs 12 h prior to OGD. In some experiments, the JNK (c-Jun N-

terminal kinase) and p53 inhibitors, SP600125 (Calbiochem) and pifithrin-, were added 

to cultures 2 h prior to OGD. 

Immunoprecipitation  

Tissues were solubilized in binding buffer containing 50 mM Tris–HCl (pH 7.4), 

150 mM NaCl, 1 mM EDTA, 1 mM DTT, 0.2 mM phenylmethanesulfonyl fluoride, and 

1.0% NP-40 as described previously (60). The homogenate was centrifuged at 20,000 × 
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g for 10 min. Solubilized proteins were adjusted to 0.1% NP-40 and incubated for 12 h 

at 4 °C with normal pre-immune IgG or antibody to mouse DJ-1 and Syn. After an 

additional incubation with protein A conjugated beads, the immune complexes were 

then recovered by low speed centrifugation and washed extensively with the binding 

buffer containing 0.1% NP-40. Immunoprecipitated proteins were eluted by boiling in 

SDS-PAGE sampling buffer and analyzed by immunoblotting. 

Immunoblotting  

Detergent-soluble and -insoluble fractions were prepared from dissected 

hemispheres by homogenization of samples with a Dounce homogenizer (50 strokes) in 

8 volumes of ice-cold homogenization buffer [10 mM Tris HCl (pH 7.4), 150 mM NaCl, 

5 mM EDTA, 0.5% Nonidet P-40, 10 mM Na-ß-glycerophosphate, and complete 

protease inhibitor mixture (Roche). After homogenization, samples were rotated at 4 °C 

for 30 min for complete lysis, then the homogenate centrifuged (10,000 g, 4 °C, 20 min.) 

and the resulting pellet and supernatant fractions were collected. The pellet fractions 

were washed t in lysis buffer containing 1% Triton X-100 on a shaker for 1 hour at 4°C, 

and then centrifuged at 20,000 g at 4 °C for 10 minutes to obtain Triton X-100 -soluble 

and -insoluble fractions. The resulting pellet was solubilized in lysis buffer containing 1% 

SDS. Protein amounts in the obtained fractions were determined using the BCA kit 

(Pierce). Protein samples were separated by sodium dodecyl sulfate-polyacrylamide gel 

electrophoresis and blotted to nitrocellulose membranes (BioRad) as described (61). All 

membranes were blocked with 5% non-fat dry milk in Tris-buffered saline (TBS) 

containing 0.1% Tween-20 and incubated with the following primary antibodies: DJ-1 

(Abcam or Chemicon); -Syn (Abcam or Millipore); ERK1/2 (Santa Cruz); phospho-



148 
 

JNK1/2 and total JNK1/2 (Santa Cruz); p53 (Cell Signaling); PARP (Cell Signaling); 

beta-Actin (Sigma). Protein bands were then detected using horseradish peroxidase 

conjugated secondary antibodies (Jackson Immunoreseacrh) and visualized using the 

enhanced chemiluminescent substrate kit (Pierce). The protein levels were quantified 

using NIH Image analysis software (Scion Image). 

Semi-Quantitative Reverse Transcriptase-PCR (RT-PCR)  

Abundance of mRNAs was examined by RT-PCR. After indicated time points, 

total RNA was extracted from dissected ipsilateral and contralateral hemispheres of 

sham-operated and ischemic brains using the RNeasy Mini kit (Qiagen). To prevent 

genomic DNA contamination, the isolated total RNA samples were treated with DNAse. 

Complementary DNA was synthesized from 2.5 µg of total RNA using the Superscript III 

system with oligo-dT primer (Invitrogen). The primer used were as follows: -Syn 

(NM_009221) forward 5’-GTGGAGCAAAAATACATCTTT AG-3’ and reverse: 5’- 

TGTACGCCATGGA AGAGCA GC-3’ ; DJ-1 (NM_007262.3.) forward 

5’GCTTCCAAAAGAGCTCTGGTCA-3′ and reverse 5′-

GCTCTAGTCTTTGAGAACAAGC-3′ ; p53 (NM_011640) forward 5’-CACGTACTCTC 

CTCCCCTCAAT-3’  and reverse 5’-AACT GCACAGGGCACGTCTT-3′ ; beta-Actin 

(NM_007393): forward 5′-CCTAGGCACCAGGG TGTGAT-3′ and reverse 5′-

GCTCGAAGTCTA GAGCAACA-3′; 18S rRNA (NM_X00686): forward 5’-

AGGGGAGAGCGGGTAAGAGA-3’-and reverse 5’-GGACAGGACTAGGCGGA ACA-3’; 

GADPH (NM M32599): forward 5’-AGGCCGGTGCTGAGTATGTC-3’ and reverse 5’-

TGCCTGCTTCACCACCTTCT-3’. All reactions were performed in triplicate using 

GADPH or 18S as internal controls. RT-PCR products were resolved on agarose gels 
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stained with ethidium bromide. Relative quantification of gene expression was 

performed by normalizing the fluorescence intensities of each band to those of internal 

controls. 

Immununohistochemistry  

Ischemia-induced changes cellular distribution of -Syn and DJ-1 proteins were 

evaluated by immunohisto-chemistry. Mice were anesthetized with sodium pentobarbital 

(120 mg/kg, i.p) and perfused transcardially with 4% paraformaldehyde in saline.  Brains 

were removed and post-fixed overnight, and placed in 30% sucrose for 24 h (62). 

Coronal sections (25 µm) were cut in a Leica cryostat and mounted on Superfrost slides 

(VWR). Sections were incubated with phosphate buffered saline (PBS) containing 0.2% 

(v/v) Triton X-100 and 5% goat or horse serum for 1 h. Subsequently, sections were 

incubated overnight at 4 °C with a monoclonal antibody against mouse -Syn (Syn102; 

EMD Millipore) or nitrated (Tyr39) -Syn (nSyn14; EMD Milipore), or a polyclonal 

antibody against DJ-1 (Chemicon). Antibody binding was visualized with a secondary 

anti-rabbit antibody conjugated to either fluorescein isothiocyanate (FITC) or anti-mouse 

conjugated to Texas Red (Invitrogen). To stain the nuclei, sections or coverslips were 

further incubated with the nucleic acid stain 4',6-diamidino-2-phenylindole (DAPI) in 

PBS containing 1% RNase and 0.2% Triton X-100 for 10 min, and then mounted in 

FluorSave aqueous mounting medium (Calbiochem). The immunofluorescent staining 

was analyzed and documented using a Nikon Eclipse 80i microscope equipped with a 

DXR1200C color digital camera. All images were acquired using the same laser 

intensity and photodetector gain to allow quantitative comparisons of relative levels of 
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immunoreactivity. For double immune-fluorescence staining, the primary antibodies 

were incubated sequentially and processed further as described above.  

Quantification of Cell Death  

Cell death was assessed by using a lactate dehydrogenase (LDH) Cytotoxicity 

Detection Kit (Roche) or by trypan blue exclusion. The LDH method quantifies cell death 

in culture based on the measurement of LDH released into the growth medium when 

cell membrane integrity is lost. Trypan blue stains only the cells with disrupted plasma 

membrane integrity so these cells were considered dead. Dead cells were counted in 

four microscopic fields per dish, with a minimum of 100 cells per field and results were 

expressed as a percentage of the total number of cells. All of the experiments were 

repeated at least three times without knowledge of treatment history. 

Statistical Analysis 

Values were expressed as mean ± SEM and comparisons between two groups 

were statistically evaluated by the Student’s t test using the GraphPad Instut software. 

The bonferroni correction was used when more than two groups were present. Results 

are presented as means ± SEM.  P-value of less than 0.05 was considered to be 

statistical significance. 

Supplementary Methods  

Primary glial cultures 

Enriched primary glial cultures were prepared from whole brains of 1-day old 

mice. After reaching confluence, microglia were isolated by shaking the flasks 
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containing mixed glia for 5 h at 150 rpm. Enriched microglia were maintained in DMEM 

containing 10% FBS and 1 mm sodium pyruvate. To obtain astroglia, the mixed glial 

cultures, after the separation of microglia, were detached with trypsin-EDTA and seeded 

in the same culture medium used for microglia. After at least six consecutive passages, 

highly enriched astroglia were used for experiments. The purity of glial cultures was 

routinely verified at >95% by Iba1 (microglia) and GFAP (astrocytes) immunoreactivity.  

Proteasomal Activity Assay 

Freshly prepared cortical homogenates (20 μg of protein) were diluted in 1x 

assay buffer (5x reaction buffer: 250 mmol/L Tris–HCL pH 7.6, 5 mmol/L dithiothreitol, 

50 mmol/L MgCl2, and 10 mmol/L ATP) with 10 μg of substrate III (Calbiochem) in a 96-

well plate. Reactions were carried out for 30 min. at 37°C and stopped by adding 5% 

SDS. Chymotrypsin-like proteasomal activity was measured with a spectrofluorometer 

via substrate consumption at 440 nm with an excitation wavelength of 380 nm.  Three 

independent reactions were performed for each sample in the presence or absence of 

the selective proteasomal inhibitor lactacystin (1 μmol/L; BioMol). Proteasome activity 

was calculated by subtracting the lactacystin-insensitive (or non-proteasome) peptidase 

activity from total peptidase activity. 

Results 

Cerebral Ischemia Reperfusion (I/R) Alters -Syn Protein Level and Solubility  

Given that mouse -Syn shares similar primary and secondary structures with 

human -Syn and that the mouse protein forms amyloid fibrils in vitro (27), we 
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determined whether -Syn constitutes a component of the protein aggregates in 

ischemic brains. As aggregate-prone proteins accumulate in the insoluble pellet (P)-

fraction as the result of decreased detergent-solubility, we monitored the chronological 

changes of -Syn protein in the detergent soluble (S)- and P-fractions obtained from the 

cortices of mice. Sham-operated mice subjected to the same surgical procedures but 

without induction of I/R were used as controls. Immunoblot analysis revealed a marked 

and sustained accumulation of -Syn protein in the P-fractions prepared from the 

ipsilateral ischemic cortices when compared to those from the contralateral nonischemic 

cortices. Insoluble -Syn monomers and oligomers were detected as early as 3 h post-

I/R and their levels increase progressively up to 72 h post-I/R (Fig 1A). Though the 

monoclonal -Syn antibody detected the -Syn dimer as the prominent oligomeric form 

in the P-fractions, high molecular oligomers were also present though at substantially 

lower levels (data not show). Levels of -Syn are not significantly altered in the S- and 

P- fractions obtained from the cortices of sham-operated mice (data not shown).  

Next, we examined the alterations in -Syn subcellular localization in the 

ischemic lesions by immunohistochemistry. The diffuse neurophilic -Syn staining 

observed in the contralateral non-ischemic neurons was replaced by discrete 

circumscribed clumps of intense immunolabeling in both the neurophil and somata of 

neurons in the ischemic lesions (Fig 1B). The observed somatic accumulation of -Syn 

has also been described in MPTP-intoxicated mice (27) suggesting that the aberrant 

accumulation and subsequent aggregation of α-Syn in the somata is likely attributed to 

impaired axonal transport resulting from ATP deficits in the ischemic neurons. 
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Application of the preabsorbed or omission of the -Syn antibody yields no appreciable 

labeling (data not shown).  

Because the nitratively modified form -Syn is less soluble and accumulates in 

human Lewy bodies and other -Syn containing inclusions (16), we stained ischemic 

brain sections with an antibody that recognizes the nitrated form of mouse α-Syn 

(nSyn14). nSyn14 immunoreactivity was detected in the ipsilateral but not contralateral 

cortices (Fig 1C) suggesting that α-Syn modifications resulting from I/R-associated 

oxidative and nitrative stress play a critical role in facilitating α-Syn aggregation. No 

appreciable Syn14 immunoreactivity was detected in the cortices of sham-operated 

mice (data not shown). Collectively, these data suggest that abnormal cellular 

accumulation of -Syn protein that can promote its self-aggregation is a pathological 

event initiated after I/R. 

-Syn is Upregulated in Neurons Subjected to Ischemic Insults In Vitro  

The aberrant accumulation of -Syn in the S-and P-fractions (Fig 1A) suggests 

that -Syn expression might be increased in ischemic neurons. As predicted, -Syn 

mRNA levels were elevated in the ipsilateral but not contralateral cortices after I/R 

(Suppl Fig 1A). Both -Syn mRNA and protein levels were increased in the primary 

mouse cortical cultures after OGD (Suppl Fig 1B), an in vitro model of I/R. The OGD-

induced upregulation of -Syn was more robust in neurons when compared to 

astrocytes and microglia (Suppl Fig 1B) and this may account for the relatively much 

weaker -Syn immunostaining of glial cells in ischemic brains (data not show). 

Collectively, these data indicate that -Syn expression is induced specifically in the 
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ischemic neurons and that -Syn upregulation may play a precipitating role in I/R-

induced neuronal injury. 

Accumulation of Insoluble -Syn in the Ischemic Lesions is Independent of 
Parkin and Proteasome Activity  

Parkin is an ubiquitin ligase controlling the degradation of some protein 

substrates by the proteasomes (28). Loss of function mutations in parkin gene cause 

early-onset PD with autosomal recessive inheritance (35). In sporadic form of PD, 

parkin has been shown to accumulate in the insoluble fraction (29). Recently, it has 

been shown that parkin mitigates -Syn-induced neuronal cell death in animal and 

tissue culture models (30), suggesting a functional relationship between these two PD-

associated proteins. Although the mechanism by which parkin protects from -Syn-

induced cytotoxicity is not completely understood, parkin may regulate the normal 

metabolism of -Syn or the clearance of pre-formed -Syn aggregates (30). To 

determine whether the appearance of -Syn-positive inclusions in the ischemic brains 

might be a consequence of decreased parkin solubility, we monitored the chronological 

changes of -Syn protein in the S- and P-fractions of lesioned and non-lesioned 

cortices. Parkin levels in the S-fractions were not markedly altered up to 12 h after I/R 

(Suppl Fig 2; upper panel) suggesting that the appearance of insoluble -Syn in the 

ischemic cortices at 3 h post-I/R (shown in Fig 1A) could not be attributed to decreased 

parkin solubility. Prolonged reperfusion (>12h) appears to impact parkin solubility as 

evidenced by the subtle changes in the amount of parkin in the S- and P-fractions 

(Suppl Fig 2; lower panel). Because proteosomal alterations are often found in patients 

with sporadic PD (11, 12) and may play a role in -Syn accumulation, we measured 
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proteasome activity in the S-fractions obtained from the ischemic and non-ischemic 

cortices (shown in Fig 1A). Though proteasome activity decreases progressively in the 

ischemic cortices (Suppl Fig 2B), -Syn aggregate formation precedes the significant 

reduction in proteasome activity indicating that -Syn accumulation and aggregation 

may not be attributed to altered proteasome activity. Taken together, these results 

suggest that under ischemic stress conditions decreased -Syn solubility may be 

attributed to the robust expression of -Syn that self-aggregates in a pro-oxidant 

environment. 

Cerebral I/R Alters DJ-1 Solubility and Localization  

Consistent with the notion that oxidative stress induces the expression of DJ-1 

(20), we found that DJ-1 mRNA levels in the ipsilateral cortices increased markedly and 

peaked at 18 h post-I/R (Fig 2A). By 24 h after reperfusion, mRNA levels of DJ-1 

returned close to those seen in the cortices of sham-operated mice (Fig 2A). The 

corresponding DJ-1 protein decreased in the S–fractions (Fig 2B,C) and accumulated 

time-dependently in the -Syn containing P-fractions (Figs 1 and 2B,C) suggesting that 

I/R decreases the solubility of these two PD-associated proteins and that accumulation 

of insoluble DJ-1 parallels that of insoluble -Syn. By contrast, DJ-1 mRNA and protein 

levels were not markedly altered in the contralateral cortices of I/R-treated mice when 

compared to the cortices of sham-operated mice (Fig 2A-C). The increase of DJ-1 

protein in the ipsilateral but not contralateral cortices was confirmed by 

immunofluorescent staining (Fig 2D).  
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DJ-1 is Recruited into Pathological -Syn-Containing Inclusions in the Ischemic 
Lesions 

Next, we determined whether the observed decrease in DJ-1 solubility after I/R 

might be related to its interaction with -Syn in vulnerable neurons. First, we evaluated 

the cellular localization of DJ-1 and -Syn in the ischemic brains by 

immunohistochemistry. After I/R, DJ-1 immunolabeling pattern changes from a relatively 

even distribution to a heterogenous granular pattern in the ipsilateral but not 

contralateral cortices (Fig 3A). Double immunofluorescence labeling confirmed that DJ-

1 immunopositive granules were co-localized with the somatic -Syn inclusions in the 

ischemic neurons (Fig 3A). The specificity of DJ-1 labeling was confirmed by omission 

or preadsorption of the primary antibody (data not shown). 

Next, we performed co-immunoprecipitation assay to determine whether the 

interaction of DJ-1 with -Syn accounts for the observed altered subcellular localization 

of DJ-1. Both proteins were readily detected in protein complexes immunoprecipitated 

from the nonfractionated homogenates of the ipsilateral cortices but not those of the 

contralateral cortices of ischemic brains (Fig 3B). Furthermore, nSyn14 was also 

detected in the DJ-1 containing protein complexes (data not show) indicating the 

association of DJ-1 with the less soluble modified form of -Syn. The specificity of the 

observed interaction was verified in the samples incubated with pre-immune IgG or no 

antibody (Con). 

Knockdown of -Syn Prevents the Ischemia-Induced Decrease of DJ-1 Solubility 

To further delineate the relationship between -Syn accumulation and decreased 

DJ-1 solubility in ischemic neurons, siRNA experiments were performed to block the 
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OGD-induced upregulation of -Syn in cultured mouse cortical neurons. Transfection 

with siRNA targeting -Syn mRNA (-Syn siRNA) markedly suppressed the OGD–

induced accumulation of -Syn mRNA and protein (Fig 4A). Fluorescein-labeled control 

siRNA (Con siRNA) with a scrambled sequence was used to determine the specificity of 

knockdown and to confirm siRNA delivery to > 90% neurons (data not shown). As DJ-1 

appears to function as a broad-spectrum neuroprotectant, it is conceivable that removal 

of DJ-1 from the soluble cellular compartment where it normally exerts its actions results 

in decreased amount of functional DJ-1 and thereby unfavorably impacts neuronal 

survival. Consistent with this notion, we found that knockdown of -Syn not only inhibits 

the accumulation of DJ-1 in the P-fraction (Fig 4B) but also improved the survival of 

transfected neurons under ischemic stress conditions (Fig 4C). Knockdown of -Syn did 

not increase DJ-1 mRNA levels suggesting that the increase in soluble DJ-1 protein 

could not be attributed to the compensatory increase of DJ-1 expression (Fig 4D). 

Collectively, these results indicate that the ischemia-induced upregulation of -Syn 

drives the abnormal accumulation of DJ-1 in pathological inclusions and that protection 

from ischemic stress is dependent on the sustained increase of DJ-1 in the soluble 

cellular compartment.  

DJ-1 Suppresses α-Syn Accumulation and Aggregate Formation in Ischemic 
Neurons 

Because DJ-1 has been shown to inhibit the generation of α-Syn aggregates (31, 

32), we next examined the impact of DJ-1 knockdown on α-Syn solubility in mouse 

cortical neurons under ischemic stress conditions. Treatment with the DJ-1 siRNA 

markedly suppressed the OGD-induced increase of DJ-1 mRNA and protein levels in 
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cortical cultures by 70 to 80% relative to those treated with the Con siRNA (Fig 5A). 

Consequently, knockdown of DJ-1 resulted in the accumulation of insoluble -Syn (Fig 

5B) and decreased neuronal survival after OGD (Fig 5C). To further determine whether 

-Syn aggregate formation was facilitated as the result of decreased DJ-1 function, we 

ectopically expressed DJ-1 in cortical neurons. Overexpression of DJ-1 inhibited the 

accumulation of α-Syn (Fig 5D) and protected neurons from OGD-induced death (Fig 

5E) suggesting that DJ-1 increases the threshold of ischemic neuronal death by 

suppressing the accumulation of α-Syn and its subsequent self-aggregation. Hence, 

decreased DJ-1 solubility may concur in triggering the accumulation of insoluble α-Syn 

that in turn accelerates the depletion of DJ-1 from the soluble cellular compartment. 

DJ-1 Counteracts Ischemia-Induced Activation of the p53 Pathway  

Next, we determined the mechanism(s) through which the effects of α-Syn on 

DJ-1 function might aggravate neuronal damage. Considering the critical role of DJ-1 in 

reducing cellular oxidative stress, we reasoned that the tumor suppressor protein p53 

might be an important downstream target of DJ-1 to counteract ischemic neuronal 

death. p53 is a transcription factor that is known to propagate oxidant-induced death 

signaling cascades as chemical inhibitors of p53 can rescue vulnerable neurons from 

ischemic insults in vivo and in vitro (32, 33). Normally, p53 exists at a very low level but 

is rapidly increased in response to a range of insults including oxidative stress and DNA 

damage (33). The Jun N-terminal kinase 1/2 (JNK1/2) is known to be activated by 

oxidative stress and increases p53 protein stability by phosphorylation (35). Knockdown 

of DJ-1 promotes p53 activation in part through the activation of JNK1/2 (Fig 6A). The 

OGD-induced increase of p53 was associated with apoptosis as evident by the 
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cleavage of poly (ADP-ribose) polymerase (PARP), a substrate of caspase-3 (Fig 6A). 

Pharmacological inhibition of JNK and p53 activation using SP600125 and pifitrin-, 

respectively, significantly rescued DJ-1 siRNA transfected neurons from OGD-induced 

death (Fig 6B) without significantly altering the expression of p53 (Fig 6C). Our results 

therefore strengthen the notion that DJ-1 counteracts ischemia-induced apoptotic 

signaling through the inhibition of redox-dependent p53 activation. 

-Syn Deficiency Ameliorates Cerebral I/R Injury  

If -Syn upregulation was indeed important in promoting ischemic brain damage, 

we hypothesize that -Syn deficiency would ameliorate the extent of anatomical and 

functional brain damage after cerebral ischemia. Accordingly, we evaluated lesion 

development in mice with targeted disruption of the -Syn gene 24 h following I/R by 

quantifying cerebral infarction and evaluating neurological function. -Syn-/- mice 

developed smaller infarct compared to -Syn+/+ mice (Fig 7B). The smaller infarct was 

associated with a faster recovery after stroke as measured by a neurological score (Fig 

7B).  These data indicate that -Syn-/- mice are less susceptible to I/R brain injury.  

To confirm that -Syn accumulation negatively impacts neuronal survival after 

I/R, cortical neurons from -Syn-/- and -Syn+/+ embryos were subjected to OGD. In line 

with the -Syn knockdown studies, we observed that -Syn-/- cortical neurons were 

significantly less vulnerable to OGD-induced cell death (Fig 7C). 

Because -Syn aggregation interferes with DJ-1 solubility, we next examined DJ-

1 accumulation in the S- and P-fractions obtained from -Syn-/- and -Syn+/+ cortical 

cultures under ischemic conditions. The amounts of DJ-1 in the P-fractions were 
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substantially lower in -Syn-/- when compared with -Syn+/+ neurons after OGD (Fig 

7D). Consistent with the finding that DJ-1 negatively modulates the p53 pathway under 

ischemic stress, we found that the accumulation of p53 protein was markedly lower in -

Syn-/- when compared to -Syn+/+ neurons (Fig 7D).  

Discussion  

The development of effective protective strategies requires a comprehensive 

understanding of the diverse mechanisms of ischemic brain damage. 

Pathophysiological processes associated with neuronal death in stroke and chronic 

neurodegenerative diseases are usually investigated independently. However, stroke 

and degenerative diseases may have common links as disease mechanisms or genes 

defined for one neurodegenerative condition might also be central in stroke. Stroke can 

either instigate or accelerate latent or progressive neurodegenerative events and is a 

known epidemiologic risk factor for Alzheimer’s disease (AD) (36). Whether stroke also 

increases the risk of developing PD or vice versa is still controversial due to the 

relatively small-scale studies and the confounding factors associated with PD 

medications that can influence stroke susceptibility and outcome (37). As PD patients 

also have symptoms not classically associated with movement such as cognitive 

defects, it is possible that, small “silent” strokes may predispose PD patients to cognitive 

impairments later in life (38). Because -Syn accumulates in neurons with age, it is 

likely that a similar mechanism may contribute to the progressive susceptibility to 

stroke-induced neuronal injury.  
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-Syn toxicity is generally considered a consequence of its aggregation (11, 12). 

It has been reported that both human and mouse α-Syn proteins are natively unfolded 

and that, at higher doses or following exposure to oxidizing conditions, the mouse 

protein adopts fibrillar amyloid structures resembling those comprising human wild-type 

and PD-linked (A53T and A30P) mutant α-Syn (26).  Supporting the notion that SNCA 

gene amplifications or polymorphisms with resultant relatively higher levels of the 

protein increase the risk for developing PD (18, 39), we found that the ischemia-induced 

upregulation of endogenous α-Syn and its subsequent aggregation in the presence of 

an oxidative environment plays an important role in the initiation of α-Syn driven 

perturbations that negatively impact neuronal survival. Genetic ablation of -Syn 

reduces brain damage and improves functional outcome in a mouse model of focal 

ischemic stroke. Ablation or knockdown of -Syn also improves neuronal survival to an 

ischemic challenge in vitro. The endangering consequence of -Syn accumulation has 

also been demonstrated in complex I-induced death of dopaminergic neurons (27) and 

-Syn-/- mice are resistant to the toxic effects of MPTP (40). Furthermore, α-Syn 

pathologies following traumatic brain injury were also prevented in -Syn-/- mice (41). 

Hence, elucidating the factor(s) responsible for driving the robust expression of -Syn in 

ischemic neurons could lead to a feasible therapeutic strategy aimed at inhibiting -Syn 

accumulation and the associated neurons loss not only after I/R but also in traumatic 

brain injury, AD, PD and related disorders. 

Although the underlying mechanisms remain to be determined, soluble oligomers 

and insoluble inclusions formed in different neurodegenerative diseases have been 

shown to inactivate cellular protective mechanisms (42). Biochemical and 
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immunohistochemical data support a scenario where the ischemic stress-induced 

accumulation of -Syn aggregates recruits DJ-1 into the insoluble inclusions and 

thereby interferes with DJ-1 solubility and subcellular distribution, and hence, its ability 

to execute broad-spectrum neuroprotective functions. Several studies provided 

evidence that DJ-1 forms high molecular weight complexes with -Syn in brain tissues 

from patients with PD and related disorders (43-46). Decreased DJ-1 solubility has been 

demonstrated in human brain tissues of patients inflicted with PD-related diseases but 

not normal control subjects (44). 

Though the interaction between DJ-1 and -Syn has been explored previously as 

a possible mechanism for DJ-1 accumulation into pathological inclusions in cellular 

models of -Syn overexpression (38, 39) and in human brain tissues (44), our data 

concurs with the interaction accounting for the altered DJ-1 solubility in ischemic 

neurons. We cannot exclude the possibilities that the interaction between these two PD-

associated proteins may be indirect and that the presence of accessory factors in the 

ischemic neurons may be required for the observed interaction in vivo. It is noteworthy 

that the DJ-1 chaperone activity is redox-dependent (31, 32) and thereby its interaction 

with -Syn may be regulated in the context of oxidative stress under ischemic 

conditions. 

Decreased DJ-1 solubility leads to impaired cellular anti-oxidant responses 

resulting in the aggravation of oxidative damage after I/R. DJ-1 can directly scavenge 

radicals and becomes more acidic in the presence of an oxidative environment (20, 47). 

The resulting acidic form of the molecule is present at significantly higher level in PD 

and AD brains when compared to control subjects (47). DJ-1 has been demonstrated to 
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redistribute to the mitochondria wherein it regulates the activity of complex I and 

protects against mitochondria damage (20). Consistent with this notion, DJ-1 

overexpression has been shown to confer neuronal resistance towards stimuli that 

promote mitochondria-dependent apoptosis (21-23). Hence, reduced DJ-1 solubility 

may promote mitochondrial dysfunction and aggravate ROS production resulting in the 

subsequent activation of p53, a redox-regulated transcription factor that propagates 

death responses to oxidative stress.  Support for a pivotal role of p53 in PD is provided 

by the recent findings that mice that are either deficient in p53 (48) or treated with 

pifithrin-  resist MPTP neurotoxicity (49). Activation of p53 is also essential for 

neuronal death in cerebral ischemia as mice given pifithrin- exhibited increased 

resistance of neurons to ischemic injury and excitotoxic damage (34). Consistent with 

the notion that α-Syn aggregation (50) and DJ-1 deficiency (51) lead to the activation of 

the p53 pathway, we found that -Syn-/- neurons exhibit less p53 accumulation following 

OGD and that the OGD-induced increase of p53 was substantially suppressed after 

ectopic expression of DJ-1. We demonstrated that the ischemic stress-induced -Syn 

accumulation contributes in part to the increase of p53 through the activation of JNK 

which in turn phosphorylates and stabilizes the p53 protein. Hence, DJ-1 likely 

suppresses p53 activation by ameliorating oxidative stress under ischemic conditions. 

Our data do not exclude the possible involvement of other DJ-1-mediated antioxidant 

mechanisms responsible for increasing the threshold for ischemia-induced neuronal 

death. DJ-1 has been reported to function as a co-activator required for the induction of 

neuroprotective and detoxifying genes likely through the interaction with NF-E2-related 

http://www.ncbi.nlm.nih.gov/pubmed/8910901
http://www.ncbi.nlm.nih.gov/pubmed/8910901
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factor (Nrf2), a transcription factor that coordinates the expression of a variety of 

antioxidant enzymes (52).  

DJ-1 has chaperone activity and can inhibit α-Syn aggregate formation through 

the induction of heat shock protein 70 (Hsp70) (53), a stress inducible chaperone that 

protects the brain from ischemic injury (9, 10). Ectopic expression of Hsp70 has been 

shown to inhibit α-Syn fibril formation (54, 55).  Consequently, decreased DJ-1 solubility 

and diminished protein function not only aggravates oxidative stress but also facilitates 

α-Syn aggregation that is accelerated by the pro-oxidant environment within ischemic 

neurons. Although oxidation of DJ-1 is necessary for its chaperone activity, excessive 

oxidation can lead to impaired activity and protein aggregation. Hence, we cannot 

exclude the possibility that compromised DJ-1 function could be attributed to additional 

mechanisms independent of the interaction with α-Syn. However, the differential 

solubility and localization of DJ-1 in α-Syn-/- and α-Syn+/+ neurons under ischemic stress 

provides compelling evidence that α-Syn accumulation plays an essential role in 

compromising DJ-1 function either directly by physical interaction or indirectly through 

the generation of oxidants.   In conclusion, although ischemic stroke has different 

causes than the slowly progressive neurodegenerative disorders, many of the common 

disease mechanisms may come into play after cerebral I/R. Biochemical 

characterization of the insoluble fractions from the ischemic lesions provides evidence 

for -Syn and DJ-1 co-aggregation which unfavorably impacts neuronal survival by 

interfering with DJ-1-mediated neuroprotective responses resulting in lowered threshold 

for oxidative stress-induced death. Our results not only provide a novel perspective on 

the potential pathogenic role of -Syn in cerebral I/R but also suggest that the 
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mechanism of neuronal death in ischemic stroke might have similar features with those 

of PD and related disorders. 
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Figures 

 
Figure 4-1. Impact of cerebral ischemia reperfusion (I/R) on -Syn protein level 
and solubility 

 (A) Representative immunoblots (left) and results of densitometric analysis (right) of -

Syn protein levels in the detergent-soluble (S) and -insoluble (pellet; P) fractions 
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obtained from the ipislateral and contralateral cortices of mice 3, 6, 12 (upper panels) 

and 18, 24, 48, 72 h (lower panels) after I/R. Total protein loading in the S- and P-

fractions was confirmed by reprobing the immunoblots for ERK1/2 or actin, respectively. 

The ipsilateral cortex of sham-treated mice sacrificed 24 h after was included as control 

(C). Asterisk indicates the detergent-resistant -Syn dimer. Values are the mean  

SEM. n=4-6 mice; *p < 0.01 versus ipsilateral. (B, C) Representative 

immunofluorescence images of sections from the ipsilateral and contralateral cortices 

labeled with antibodies against (B) α-Syn and (C) nitrated α-Syn. Both α-Syn and 

nitrated α-Syn immunoreactivities are shown in red and DAPI staining of the nuclei in 

blue. 
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Figure 4-2. Impact of cerebral ischemia reperfusion (I/R) on DJ-1 protein level and 
solubility 

 (A) Representative gel images of DJ-1 and GADPH mRNA levels in the ipsilateral and 

contralateral cortices of mice 3, 6, 12 (top) and 18, 24, 48, 72 h (bottom) after I/R. The 

ipsilateral cortex of sham-treated mice sacrificed 24 h after was included as control (C). 

GADPH is used as an internal control. PCR products amplified were separated on 

ethidium bromide stained agarose gels. (B, C) Representative immunoblots (B) and 

results of densitometric analysis (C) of DJ-1 protein in the detergent-soluble (S) and -

insoluble (pellet; P) fractions obtained from the ipsilateral and contralateral cortices of 

mice 3, 6, 12 (top) and 18, 24, 48, 72 h (bottom) after I/R. Blots were stripped and 

reprobed for ERK1/2 or actin to confirm equal protein loading. The ipsilateral cortex of 

sham-treated mice sacrificed 24 h after was included as control (C). Values are the 
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mean  SEM. n=4-6 mice; *p < 0.01. (D) Representative fluorescence images of DJ-1 

immunostained sections of the ipsilateral and contralateral cortices 12 h after I/R. Note 

that the uniform cytoplasmic staining (indicated by arrows in the inserts) in the 

contralateral cortex differs from the heterogenous inclusion-like staining in the ipsilateral 

cortex. 

 

Figure 4-3. DJ-1 interacts and colocalizes with -Syn after cerebral ischemia 
reperfusion (I/R) 

 (A) Representative fluorescence images of sections from the ipsilateral (top) and 

contralateral cortices (bottom) doubly immunostained for DJ-1 (green) and -Syn (red). 

Co-localization of both signals (yellow) is displayed in a merged image. DAPI (blue) was 

used to stain the nuclei. (B) Co-immunoprecipitation analysis of the interaction of DJ-1 

and -Syn in Triton X-100 soluble homogenates (100 μg total protein) of contralateral 
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(top) and ipsilateral (bottom) cortices 24 h after I/R. Samples were pre-cleared and 

subjected to immunoprecipitation with preimmune IgG and antibodies to DJ-1 and -

Syn. As an additional control (Con), the antibody was left out. Immune complexes were 

subjected to immunblot analysis with antibodies to DJ-1 and -Syn.  

 

 

Figure 4-4. Impact of α-Syn knockdown on DJ-1 protein solubility and neuronal 
vulnerability to oxygen-glucose deprivation (OGD) 

(A) RT-PCR (top) and immunoblot (bottom) analyses of α-Syn mRNA and protein levels 

in primary mouse cortical neurons that were transfected with either a siRNA targeting α-

Syn (α-Syn siRNA; 5 nM) or nontargeting control siRNA (Con siRNA; 5 nM) 18 h prior to 

OGD. Neurons were collected at the indicated time points during reoxygenation. 18S 

rRNA and ERK were used as internal controls. (B) Representative immunoblots of DJ-1 
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protein levels in the detergent-soluble (S) and -insoluble (pellet; P) fractions obtained 

from cortical neurons that were transfected with the indicated siRNAs 18 h prior to 

OGD. Neurons were collected at the indicated time points during reoxygenation. Blots 

were stripped and reprobed for ERK1/2 or actin to confirm equal protein loading. (C) 

Histogram shows the viability of cortical neurons transfected with the indicated siRNAs 

after OGD.  Cell death was quantified 12 and 24 h during reoxygenation. Values 

represent the mean ± SEM of three separate experiments. #p<0.05, *p<0.01 versus 

Con-siRNA.  (D) Representative gel images of DJ-1 and 18S rRNA mRNA levels in 

cortical neurons that were transfected with the indicated siRNAs 18 h prior to OGD.  

Neurons were collected at the indicated time points during reoxygenation. 

 

Figure 4-5. Impact of DJ-1 knockdown on α-Syn solubility and neuronal 
vulnerability to oxygen-glucose deprivation (OGD) 
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 (A) RT-PCR (top) and immunoblot (bottom) analyses of DJ-1 mRNA and protein levels 

in primary mouse cortical neurons that were transfected with either a siRNA targeting 

DJ-1 (DJ-1 siRNA; 5 nM) or nontargeting control siRNA (Con siRNA; 5 nM) 12 h prior to 

OGD. Neurons were collected at the indicated time points during reoxygenation. 18S 

rRNA and ERK were used as internal controls. (B) Representative immunoblots of α-

Syn protein levels in the detergent-soluble (S) and -insoluble (pellet; P) fractions 

obtained from cortical neurons that were transfected with the indicated siRNAs 12 h 

prior to OGD. Neurons were collected at the indicated time points during reoxygenation. 

Blots were stripped and reprobed for ERK1/2 or actin to confirm equal protein loading. 

(C, D) Histogram shows the impact of DJ-1 knockdown (C) or overexpression (D) on 

neuronal vulnerability to OGD. Cortical neurons were transfected with the indicated 

siRNAs or infected with pLenti6-DJ-1 or pLenti-LacZ. Eight hours after siRNA 

transfection or forty eight hours after infection, neurons were subjected to OGD. Cell 

death was quantified 12 and 24 h during reoxygenation. The values are the mean ± 

SEM of three-independent experiments. #p<0.05, *p<0.01 versus the respective 

controls. (E) RT-PCR (top) and immunoblot (bottom) analyses of DJ-1 mRNA and 

protein levels in cortical neurons that were infected with pLenti6-DJ-1 or pLenti6-LacZ 

48 h prior to OGD. Neurons were collected at the indicated time points during 

reoxygenation. 18S rRNA and actin were used as internal controls. 
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Figure 4-6.  DJ-1 suppresses p53 activation in neurons subjected to oxygen-
glucose deprivation (OGD) 

 (A) Representative immunoblots of phospho-JNK1/2, total JNK1, p53 and PARP 

protein levels in cortical neurons that were transfected with either a siRNA targeting DJ-

1 (DJ-1 siRNA; 5 nM) or non-targeting control siRNA (Con siRNA; 5 nM) 12 h prior to 

OGD. Neurons were collected at the indicated time points during reoxygenation. Blots 

were stripped and reprobed for ERK1/2 or actin to confirm equal protein loading. (B) 

Histogram shows the impact of pharmacological inhibition of JNK1 and p53 on neuronal 

vulnerability to OGD-induced death. Cortical neurons were treated with SP6001 (10 μM) 

or pifitrin-  (200 μM) 2 h prior to OGD. Cell death was quantified 24 h during 

reoxygenation. The values are the mean ± SEM of three-independent experiments. 

*p<0.01 versus respective vehicle controls. (C) Representative gel images of p53 and 

GADPH mRNA levels in cortical neurons that were transfected with the indicated 

siRNAs 12 h prior to OGD.  Neurons were collected at the indicated time points during 

reoxygenation. 
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Figure 4-7. Syn gene ablation ameliorates cerebral ischemia reperfusion (I/R) 
injury 

(A) Representative images of brain sections from -Syn-/- and -Syn+/+ mice 48 h after 

I/R that were stained with 2,3,5-triphenyltetrazoliun chloride monohydrate (TTC). (B) Bar 

graphs show the infarct volume (left) and neurological scores (right). The values are the 

mean ± SEM of 6-8 mice. *p<0.01 versus -Syn+/+.  (C) Histogram shows the impact of 

Syn gene ablation on neuronal vulnerability to oxygen-glucose deprivation (OGD)-

induced death. Cell viability was quantified 24 and 48 h during reoxygenation. The 

values are the mean ± SEM of three-independent experiments. *p<0.01 versus -

Syn+/+. (D) Representative immunoblots (left) and results of densitometric analysis 

(right) of protein levels of -Syn and DJ-1 in the detergent-soluble (S) and -insoluble 

(pellet; P) fractions obtained from -Syn-/- and -Syn+/+ cortical neurons after OGD. 
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Neurons were collected at 6 h during reoxygenation.  Total p53 protein level in total 

lysates is shown in the lower panel.  The values are the mean ± SEM of three-

independent experiments. #p<0.05,*p<0.01 versus -Syn+/+. 

 

 
Supplementary Figure 4-1. -Syn is up-regulated in brains and cultured neurons 
under ischemic stress   

 (A) RT-PCR analysis of -Syn mRNA expression in the ipsilateral and contralateral 

cortices after cerebral ischemia reperfusion at the indicated time points. Histogram 

shows the relative change in -Syn mRNA levels. Data were normalized on the basis of 

GADPH mRNA levels. Values represent mean ± SEM. n=4-6 mice, *p < 0.01 versus 

contralateral.  (B) Time course of -Syn mRNA (left) and protein (right) levels in cultured 

cortical neurons, microglia and astrocytes subjected to oxygen-glucose deprivation 

followed by reoxygenation for the indicated time points. Control cultures (Con) were left 

at 21% of O2 and in medium containing 25 mM of glucose.  
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Supplementary Figure 4-2. Effects of ischemia on parkin protein level and 
proteasome activity 

 (A) Representative immunoblots of the time course of parkin protein in the detergent-

soluble (S) and -insoluble (pellet; P) fractions obtained from the ipsilateral and 

contralateral cortices of mice (n=4-6) subjected to cerebral ischemia reperfusion at the 

indicated time points. Blots were stripped and reprobed for ERK1/2 or actin to confirm 

equal protein loading. The ipsilateral cortex of sham-treated mice was included as 

control (C). (B) Proteasome activity in whole cortical homogenates was assayed with 50 

µM succinyl-LLVY-AMC substrate in the presence or absence of 20 µM lactacystin. 

Release of fluorescent AMC was measured by at λ=460 nm using a spectral fluorimeter 

and proteasome activity was calculated by subtracting the lactacystin-insensitive (or 

nonproteasome) peptidase activity from total peptidase activity. Data are mean ± SEM. 

N=4-6 mice. #p<0.05, *p<0.01 versus contralateral.  
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Summary Diagram 4-1. Schematic representation of the pathological processes 
involved in ischemic brain injury 
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