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ABSTRACT 
 

The antibacterial property of silver (Ag) has been known since ancient time. It is reported 

in the literature that silver nanoparticles (AgNPs) exhibit improved antibacterial properties in 

comparison to silver ions of equivalent metallic Ag concentration. Such improvement in 

antibacterial activities is due to the high surface area to volume ratio of AgNPs (which facilitates 

interaction with the bacterial cells), increased release of silver ions and direct intra-cellular 

uptake of AgNPs leading to localized release of Ag ions.  To date, over 300 consumer products 

containing AgNPs are available in the market and the inventory is rapidly expanding. The 

antibacterial efficacy is related to the loading of AgNPs (which controls availability of active Ag 

ions). It is perhaps challenging to increase AgNPs loading in consumer products without 

compromising its aesthetic appearance. AgNPs exhibit yellow-brown color due to strong Surface 

Plasmon Resonance (SPR) absorption; and therefore, it is expected that an increase in loading 

would change the color of AgNP-containing materials. For applications, such as creating a fast-

acting touch-safe surface, higher loading of AgNPs is desirable. It is also desirable to obtain a 

non-color forming surface.  To meet the demands of desirable higher loading of AgNPs and non-

color forming surface, the objective of this study is to minimize SPR by engineering Ag 

containing nanomaterials for potential fast-acting spray-based applications. Within this thesis 

several reports have been made including synthesis, characterization and antibacterial properties 

of Ag-loaded silica nanoparticle/nanogel (AgSiNP/NG) material containing nanoformulations. 

The effects of nanoformulation pH and metallic Ag content on the SPR absorption and 

antibacterial properties have been studied. The AgSiNP/NG materials were synthesized using 

silica sol-gel technique at room temperature in water. The color formation of the AgSiNP/NG 



  

 iv 

material was found to be dependent on silver ion loading (15.4 wt% and 42.3 wt %) as well as on 

the pH (pH 4.0 and pH 7.0). A number of material characterization techniques such as HRTEM, 

SEM and AFM were used to characterize particle size, crystalline and surface morphology in dry 

state. Dynamic light scattering (DLS) technique was used to characterize particle size and size 

distribution in solution. UV-VIS spectroscopy technique was applied to characterize Ag ions and 

AgNPs in the AgSiNP/NG material. Antibacterial studies were conducted against gram negative 

E.coli and gram positive B.subtilis and S.aureus. A number of qualitative (well diffusion, 

BacLight
TM

 live-dead
®

 viability) and quantitative (turbidity, resazurin viability) assays were used 

for antibacterial studies. It was observed that lower pH and low Ag loading minimized SPR 

absorption, resulting in no yellow-brown color formation. The HRTEM confirmed the formation 

of ~5-25 nm size highly crystalline AgNPs which were coated with dielectric silica layer (silica 

gel). AFM, SEM and DLS studies confirmed formation of AgSiNPs in the range between 100 

nm – 200 nm. The AgSiNP/NG material was effective against both gram-negative and gram-

positive bacteria. Based on this research it is suggested that by coating AgNPs with a dielectric 

material (such as silica); it is possible to suppress SPR absorption. 
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CHAPTER 1 INTRODUCTION 

1.1 Silver as an antibacterial material 

 

Silver is a transition metal with atomic number 47 and atomic mass 107.87. It has widely 

been used as an antibacterial agent for centuries because it is a non-selective toxic biocide (1). 

During old times, silver metal-based pots and cups were used for storage of water to inhibit the 

contamination. Prior to advent of antibiotics colloidal silver was used as a bactericidal agent.  

Silver based biocides have been used as preservatives, disinfectants, antifungal, antibacterial, and 

antiviral agents. Silver citrate salts have been known to treat skin infections; silver nitrate was 

used to treat ophthalmic infections, such as opthalmia neonatorum for more than one hundred 

years (2). Several silver salts, such as silver acetate were formulated in lotions and creams to 

treat eye infections. To treat bladder infections silver nitrate salts were used and silver lactate 

was used as general antiseptic. Sulfadiazine was mixed with the silver to control the release of 

the silver ions. This silver sulfadiazine mixture was introduced in creams to treat burn wounds 

and to prevent infection (3). Silver sulfadiazine is a water insoluble, non-ionized powder used as 

1% suspension as antiseptic. Colloidal preparation of silver salts is still used medically to prevent 

and treat numerous diseases, such as cancer, diabetes, AIDS and herpes (4).  Nylon fibers coated 

with silver were used to treat the post operative wounds.  Silver is also employed in water 

disinfection in order to avoid use of chlorine, which causes formation of carcinogens.  Silver 

treated charcoal filters are used in drinking water disinfection to remove odors and organics. Due 
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to increase in the amount of antibiotic resistant bacterial strains, scientists today are trying to find 

the antibacterial materials based on metals. Since silver is a very effective antibacterial material, 

with little toxicity towards human cells it has been widely studied against the multiple drug 

resistant bacteria (5). 

1.2 Mode of action of silver ions and its resistance towards bacteria 

 

The mode of action of silver ions against bacteria is widely studied. Silver ions can kill 

the bacteria by various methods. Some of them are described in this section. Silver ions react 

with electron donors to form complexes with thiols, carboxylates, phosphates, hydroxyls, 

amines, imidazoles and indoles, thus inactivating the enzymes(6). It was reported by Swanson et 

al that respiratory chains of bacteria were inhibited by silver ions at two sites one being between 

cytochrome b and cytochrome d and the second being between the site where the substrate enters 

the respiratory chain and flavoprotien in NADH and succinate dehydrogenase (7). It was shown 

that silver ions at 86μM were able to inhibit the oxidation of carbohydrates such as glucose, 

fumarate, succinate and glycerol in E.coli (8). Reports showed that there was change in enzyme 

conformation within bacterial cells at concentrations between 0.001 to 1.00mM of Ag
+
 ions (9). 

It was also shown that Ag ion formed complexes with nucleic acid bases present in DNA (10). 

Silver ions were also known to form deformation of cell membranes as shown by Coward et 

al(11) .  

Even though silver is a strong and rapid acting antibacterial material, silver ion resistant 

bacterial strains have been isolated from various places such as clinic, silver mines as well as 

laboratories (12).  The resistance of bacteria to silver ions is attributed to presence of resistant 
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plasmid which brings about active efflux of silver ions from the cell, sequestration of silver ions 

in periplasm, conversion of silver ions to colloidal form and reduction of the outer membrane 

porins which brings about the intake of silver ions (13). 

1.3 Silver Nanoparticles 

 

Due to the emerging resistance of bacteria towards antibiotics and metal ions, there is a 

necessity to engineer antimicrobial, biocompatible and functionalized materials, which can be 

effectively used. Various metallic nanoparticles, such as copper, silver, titanium and gold have 

been studied rigorously. The properties of these nanoparticles are different from that of the bulk 

material because of the large surface area to volume ratio, surface energy and spacial 

confinement (14).  Silver nanoparticles are widely used because of its antibacterial and antiviral 

properties, superior catalytic activity and improved enhancement factors for Surface Enhanced 

Raman Spectroscopy (SERS) (15, 16).  Various methods have been used to synthesize silver 

nanoparticles such as chemical reduction, photo reduction, sonochemical reduction, radiolytic 

reduction, micro emulsion, and ion beam deposition. From all of these methods, chemical 

reduction is widely studied. The silver nanoparticles produced by these methods have various 

shortcomings including aggregation of nanoparticles, which reduces the activity of the particle 

(17). Several methods are being investigated to reduce these problems, such as formation of 

silver-polymer composites as biomaterials (18). As a result, silver embedded biomaterials are 

raising interest that is aimed towards the broad antibacterial spectrum of silver and its potential 

as an anti-inflammatory agent and its wound-healing properties. 
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Another potential application of silver nanoparticles in biomedicine is its use as substrate 

for Surface Enhanced Raman Spectroscopy( SERS) (19). Silver nanoparticles are also known to 

enhance fluorophore emission intensity thus they are used in sensitive fluorescence screening as 

metal enhanced fluorescence in biomedicine.  

The antibacterial effect of silver nanoparticles is stronger than the silver salts. The strong 

antibacterial property of silver nanoparticle is because of the increased surface area as well as 

increase potential to produce silver ions. The silver nanoparticles because of its small size can 

accumulate in the cytoplasmic membrane of the bacteria and can cause an increase in 

permeability of the cell wall leading to bactericidal effect. Also, surface of silver nanoparticles 

can produce free radicals which can cause damage to cell membrane leading to cell death (38). 

Silver nanoparticles have gained various antibacterial applications in industries. 

More than 300 products are available in market containing silver nanoparticles 

(www.nanotechproject.org). They are mostly used as a surface disinfectant, anti-odor anti 

bacterial textiles and also to coat surgical instruments. None of these materials have 

claimed that they are colorless and non-staining.  The common problem found in these 

products is the formation of color due to oxidation of silver particles, as well as increased 

Surface Plasmon Resonance (SPR) of silver particles. The color formation decreases the 

aesthetic view of the coated surface of the material creating a brown coloration that is 

observed around the silver nanoparticle-coated products.  
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1.4 Proposed Research 

 

Many researchers have reported the synthesis of Silver containing silica (Egger et al, Kim 

et al, Min et al), but their synthetic methodologies are complicated, time-consuming, require 

heating and various complex processes. Silica is a chemically inert, stable and biocompatible 

material. There are various advantages to entrapping silver in silica gel, such as a better stability 

of silver nanoparticles in the silica matrix since their dispersion in silica matrix prevents their 

agglomeration and oxidation, and also higher durability of the antibacterial property of the 

nanocomposite because of the controlled release of the silver nanoparticles as well as its ions 

(17). Silica nanogel in general because of its high surface area and strong intermolecular forces 

has known to have good adherence to various surfaces including glass, plastics, cellulose fibers 

etc. We have synthesized water based silver embedded silica nanoparticle/nanogel material using 

simple one pot sol-gel technique. By entrapping silver in silica gel matrix it is possible produce a 

durable antibacterial inorganic gel with prolonged antibacterial properties. Since silica is a 

dielectric material, coating the silver nanoparticles with silica will shift the Surface Plasmon 

Resonance (SPR) absorption of the silver nanoparticles towards UV range and thus reduce the 

coloration or staining by silver nanoparticles at low pH or low silver ion loading. It is 

hypothesized that SPR absorption of silver nanoparticles can be significantly suppressed by 

coating with silica (a dielectric material) and the antibacterial efficacy of silver will not be 

compromised upon loading into silica matrix. 
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Figure 1 - Proposed schematic of entrapment of silver nanoparticles in silica matrix. 
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CHAPTER 2 LITERATURE REVIEW 

2.1 What is sol-gel method? 

 

Sol-gel is the technology of making glass or ceramic composites at lower temperatures 

allowing doping of various active agents such as inorganic, organic and biological materials 

during gel formation (20).  The sol-gel process has recently gained momentum because of  its 

various applications in a number of areas including optics, hydrogen storage material, 

semiconducting devices, sunscreen formulation, chemical and biological sensors. Sol-gel 

technology is ideal for fabrication of bioactive material because of low processing temperature, 

intrinsic biocompatibility and also environmental friendliness of the material. It manipulates the 

structure of the material at molecular level and can control the nature of the interfaces precisely 

(20). Thus this technique can be used for wide range of applications. The sol-gel process 

involves transition of a sol or colloidal material into solid gel material. The common silica 

precursors used in this technique are tetramethylorthosilicate (TMOS) and tetraethylorthosilicate 

(TEOS).  Synthetic silica gel was first  reported by Ebelmen in 1844 (21).  The sol-gel reaction 

requires a silica or polymer precursor, water and solvent equivalent to precursor i.e. either 

methanol or ethanol. A base or an acid is used as a catalyst. In sol-gel reaction, hydrolysis and 

condensation occurs simultaneously. Silanol group (≡Si–OH) is produced by hydrolysis and 

condensation produces siloxane bonds (≡Si–O–Si≡).Water and alcohol are produced as by 

products. By controlling the reaction parameters i.e. the H2O/Si molar ratio and the concentration 
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and nature of the catalyst, the properties and structure of sol-gel silicates can be varied over wide 

ranges (22). Hydrolysis of alkoxysilane  catalyzed by acid with low water to Si ratio produces 

weakly branched polymeric network, thus forming gel, whereas hydrolysis catalyzed by base 

having high water to Si ratio produces highly branched colloidal particles (silica particles)(23). 

 

 
Figure 2 - Chemical reactions in sol-gel synthesis (Adapted from Gupta R. et al(20)) 

2.2 Surface Plasmon Resonance 

 

Michael Faraday was the first to show that metal particles many times smaller than the 

wavelength of light scatter and absorb light strongly such that even the dilute solution of the 

particles exhibit bright colors (24). The conducting electrons within the metal particles 

collectively oscillate and thus enable scattering and absorption of light at that particular 
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frequency, giving the color to the solution in case of gold and silver nanoparticles. Surface 

Plasmon Resonance (SPR) is a phenomenon in which there is a collective oscillation of electrons 

on the surface of a metal.  According to Wiley et al, the SPR  peak changes according to the size 

and shape of the silver nanocrystal (25). The characteristic SPR of silver nanoparticle is seen at 

wavelengths from 390nm-450nm depending on the size of silver nanoparticle (26). The 

characteristic yellowish brown color of silver nanoparticle is formed because of this SPR 

phenomenon.  

2.3 Silver-Silica composites 

 

Various methods have been reported for the synthesis of silver-silica nanocomposites. 

These silver silica composites have attracted attention due to their high antibacterial activity (17). 

Many methods are used to synthesize silver nanoparticles including micro emulsion, 

sonochemical reduction, photochemical technique etc. (27-29). They mostly incorporate PVP 

coatings for better dispersibility of silver nanoparticles.  These methods are time consuming and 

usage of expensive instruments is required to produce silver nanoparticles. The silver 

nanoparticles produced by the above methods also has a disadvantage of forming aggregations, 

which changes their chemical property as well as reduces its antibacterial efficacy. It was shown 

that silica support could solve this problem by allowing silver nanoparticles to grow on them 

(17).  It is also shown that if Ag particles are produced on a supporting material the time required 

to release the silver ions will be prolonged and thus material supporting Ag have great potential 

in antibacterial applications (30-33).  Ag is supported mainly on organic materials. These 

materials are not chemically durable. Inorganic materials can overcome this deficit. Various 
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inorganic materials are developed as a support for antibacterial Ag-containing materials 

including zeolites, calcium phosphate and carbon fiber (34, 35). Silica-Ag composites in form of 

glass and films are known to show good chemical durability and good antibacterial efficacy (36, 

37). Since silica is chemically inert, stable and biocompatible material and abundantly available 

in nature it is advantageous to use the silver-silica composite. 

  In procedure explained by Kim et al (17) they used  already synthesized silica 

nanoparticles as silica support for Ag nanoparticle formation. As explained earlier the silica on 

hydrolysis produces silanol group (≡Si–OH) which deprotonates under high alkaline condition to 

form ≡Si–O
- 

that reacts with electrophilic ions such as Ag, Au, and Cu etc. Thus Si-O-Ag is 

formed.  Under basic or neutral conditions more or this electrophilic attack occurs thus 

increasing the Ag
+ 

attachment on the silica surface. Whereas in acidic condition, the process is 

slower since Ag
+
 covalently attaches to the (≡Si–OH) and protonation occurs during acid 

hydrolysis. As a result a mixture of silver ions and silver nanoparticles embedded in silica gel 

matrix is formed.  

Egger et al described the synthesis of silver-silica nanocomposite material using  flame 

spray pyrolysis process. The advantage of embedding silver nanoparticles in silica matrix is 

dispersion of the silver nanoparticles through the silica matrix, thus avoiding formation of 

aggregates between silver particles. Smaller sized silver nanoparticles (<25nm) are also formed 

by this method. Very small sized silver-silica material allows uniform dispersion of material and 

could be incorporated on various substrates such as fibers, plastic, glass, textile etc. Silica gel 

conveniently works as a delivery agent to embed the fine silver particles on plastic, coatings and 
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textiles. Also the entrapment of silver in silica matrix limits the release and disposal of silver 

nanoparticles, which make the material environmentally safe(38). 

Preparation of silver-silica core shell material was reported by Jiang et al to study the 

optical properties of the material (39). Silica nanogel/ nanoparticle has high adherence towards 

various surfaces including cellulose. Textile when coated with silver-silica spheres were able to 

show strong antibacterial properties even after ten wash cycles(40). Silver containing silica 

micro beads were shown to have good antimicrobial properties as described by Quang et al (41). 

Min et al have reported white-pigmented silver chloride nanoparticles embedded in mesoporous 

silica had shown stability against the reduction by photon or heat thus exhibiting antibacterial 

properties as well as control the color formation by silver(42).   
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CHAPTER 3 MATERIALS AND METHODS 

3.1 Materials 

 
Silver Nitrate; Acros organics; Cat#419360250; Tetraethyl Orthosilicate; Aldrich 

Chemistry; Cat# 86578; Nitric Acid solution, ACS AR, Macron; Cat# 2704-14; Sodium 

hydroxide, Fisher Scientific; Cat# S320-500; Hydrion pH papers; Escherichia coli (E.coli, 

ATCC 35218); Bacillus subtilis (B.subtilis, ATCC 9372); Staphylococcus aureus (S.aureus, 

ATCC 25923); Muller Hinton Agar 2 (Fulka Analytical, cat#97580); Mueller Hinton Broth 

2(Fulka Analytical, Cat# 90722); Sodium Chloride (Fisher Scientific, Cat# S 271-3); Resazurin 

(Acros Organics, Cat# 41890-0050); Streptomycin sulfate salt (Sigma life science, Cat# S0774-

256); Penicillin-G potassium salt (Sigma Life Science, P8721-108MU); eppendorff 2ml micro 

centrifuge tubes; BacLight™ LIVE/DEAD® bacterial viability kit (Invitrogen, Molecular 

Probes, Cat# L7012); Microscopic Glass slides (Fisher Scientific); Cover Slips (VWR), AFM 

Tips (App Nano, Cat# ACT-10); Silicon Wafers; Plastic cuvettes (Fisher Scientific); TEM Grids 

(Electron Microscopy Sciences, carbon film on 400 square mesh copper grids, Cat# CF 400-Cu); 

De Ionized sterile water; Plastic sterile petriplates (Fisher Scientific); Sterile eppendorff tips and 

pipettes; sterile 96 well plates (Nunc™, Nuncoln® Surface); sterile glass conical flask; magnetic 

stirrer. 
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3.2 Synthesis 

 

Simple water based sol-gel method was used to synthesize the silver embedded 

silica nanogel/nanoparticle. Four formulations containing silver and silica were prepared 

as follows: 

3.2.1 Silver (Ag) loaded silica nanoparticle/nanogel 200 pH 4 (AgSiNP/NG200 pH 4) 

 
120mg of silver nitrate salt was dissolved in DI water. The mixing was done on a 

magnetic stirrer at 400rpm. After completely dissolving Silver Nitrate salt in the water, 600 l of 

Tetraethyl Orthosilicate (TEOS) (a silane precursor for silica gel) was added to the silver nitrate 

solution drop wise under continuous stirring condition. The above solution was allowed to mix 

for 5 minutes. In order to decrease the pH of the mixture to approximately 4 and induce acid 

hydrolysis, 1800 l of 1% Nitric Acid solution in DI water was added to the solution drop-wise.  

The prepared mixture was stirred on a magnetic stirrer for 24 hours at room temperature.  After 

24 hours, a transparent colorless mixture was obtained at pH 4, thus forming Ag loaded silica 

nonoparticle/nanogel (AgSiNP/NG) 200 at pH 4 solution. 

3.2.2 Silver (Ag) loaded silica nanoparticle/nanogel 200 pH 7 (AgSiNP/NG200 pH 7) 

 
After 24 hours 100 ml of the AgSiNP/NG200 mixture prepared above was taken in a 

separate flask.  Under continuous stirring condition, the pH of the AgSiNP/NG200 mixture was 

raised from pH 4 to pH 7 by adding freshly prepared 2mM of sodium hydroxide solution in DI 

water in drops (approximately 200ul) under continuous stirring condition. The pH of the 
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AgSiNP/NG 200 was checked using Hydrion papers. The AgSiNP/NG200 mixture at 7 showed 

pale yellowish-brown colored transparent solution.   

3.2.3 Silver (Ag) loaded silica nanoparticle/nanogel 50 pH 4 (AgSiNP/NG50 pH 4) 

 

34mg of silver nitrate salt was dissolved in 200ml of DI water. The mixing was done on a 

magnetic stirrer at 400rpm. After completely dissolving Silver Nitrate salt in the water, 600 l of 

TEOS (a silane precursor for silica gel) was added to the silver nitrate solution drop-wise under 

continuous stirring condition. The prepared solution was allowed to mix for 5 minutes. In order 

to decrease the pH of the mixture to approximately 4 and induce acid hydrolysis, 1800 l of 1% 

Nitric Acid solution in DI water was added to the solution drop-wise.  The above mixture was 

allowed to stir on a magnetic stirrer for 24 hours at room temperature.  After 24 hours, a 

transparent colorless mixture was obtained at pH 4 forming AgSiNP/NG50 pH 4 solution.  

3.2.4 Silver (Ag) loaded silica nanoparticle/nanogel 50 pH 7 (AgSiNP/NG50 pH 7) 

 

After 24 hours 100 ml of the above-prepared AgSiNP/NG50 solution was taken in a 

separate flask.  Under continuous stirring condition, the pH of the AgSiNP/NG50 solution was 

raised from pH 4 to pH 7 by adding freshly prepared 2mM of sodium hydroxide solution in DI 

water in drops (approximately 140ul) under continuous stirring condition. The pH of the 

AgSiNP/NG50 was checked using Hydrion papers. Initially this solution at pH 7 was transparent 

and colorless, brown coloration was observed after progression of time. 
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Figure 3- Schematic of synthesis of AgSiNP/NG200 and AgSiNP/NG50 at pH 7 and pH 4 

 

3.2.5 Controls 

 

For preparation of negative control i.e. Silica nanogel without silver 200 ml of sterile DI 

water was taken in a clean sterile conical flask. 600 l of TEOS was added to the water in drops 

and was allowed to stir on the magnetic stirrer for 5 min. 1800 l of 1% Nitric Acid was added to 

this solution drop-wise and was allowed to stir at room temperature for 24 hours. After 24 hours 

100 ml of this SiNGpH 4 solution was taken in another clean sterile flask and the pH was raised 

to 7 by adding 2mM NaOH to get SiNGpH 7 formulations. To prepare positive control i.e. 

control with silver Nitrate without TEOS. The silver nitrate salt with same concentration used for 
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AgSiNP/NG200 and AgSiNP/NG50 was taken in DI water. Same amount of 1% nitric acid used 

in all the formulations was added to this solution to make pH 4 solution of silver nitrate and in 

order to make pH 7 silver nitrate solution 2mM NaOH was added. In the case of silver nitrate 

solution at pH 7, both the concentrations of silver showed blackish-brown colored formulation 

equivalent to silver oxide formation. 

                                                        

3.3 Material Characterization 

3.3.1 Dynamic Light Scattering (DLS) 

 

Dynamic Light Scattering (DLS) technique is also known as photon correlation 

spectroscopy. It determines the size of spherical or semi-spherical shaped particles by its 

Brownian motion in solution. It is a wet-characterization of the material. All the materials were 

characterized to determine whether there is formation of sol-gel or sol-particles. All the 

measurements in DLS were taken by using disposable plastic cuvettes. The DLS measurements 

were taken using Precision Detector/ Cool batch 4T machine.  

3.3.2 Atomic Force Microscopy (AFM) 

 

Atomic Force Microscopy (AFM) technology is used to determine the morphology of the 

material coated on a surface of either glass slide or cover slip. It uses the tapping mode of the 

cantilever on the AFM tip, which in turn deflects the angle of the laser light, which is used to 

image the morphology of the material. AFM was done on AgSiNP/NG200 pH 7 and pH 4 
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samples and also on SiNGpH 7 and pH 4 samples. All the samples were spin coated on cover 

slips and then analyzed by VEECO Dimensions 3100 Atomic force microscope 

 

3.3.3 Scanning Electron Microscopy (SEM) 

 
SEM was done on AgSiNP/NG200 pH 7 and pH 4, AgSiNP/NG50 pH 7 and pH 4, 

SiNGpH 7 and pH 4. All the samples were spin coated on a silica wafer and then analyzed under 

Zeiss ULTRA-55 FEG, which scans the surface topography of the sample suggesting the 

formation of either particle or gel. 

3.3.4 UV-Visible spectroscopy 

 

In order to determine the formation silver nanoparticles (because of the brown coloration) 

as well as to determine the Ag
+ 

ions and cluster formation UV-Visible spectra was done for 

AgSiNP/NG200 pH 7 and pH 4 and also for AgSiNP/NG50 pH 7 and pH 4. SiNG at pH 4 and 

pH 7 respectively was taken as baseline and blank to remove any absorbance shift observed by 

the presence of silica. Cary 300 bio spectrophotometer was used to do UV-Visible Spectroscopy. 

Disposable plastic cuvettes were used for measuring the absorbance. 
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3.3.5 High Resolution Transmission Electron Microscopy 

 
HRTEM was performed to see the presence of silver nanoparticles in the silica gel 

matrix. HRTEM was done for AgSiNP/NG200 pH 4 and pH 7 and AgSiNP/NG50 pH 4 and pH 

7. Samples were prepared by placing a drop of AgSiNP/NG/NP on a carbon coated copper grid 

(400 mesh size) followed by vacuum drying for 18 hours. It was made sure that no water 

molecules were present in the samples since it hinders with the imaging of crystalline properties 

viewed under HRTEM.  

3.4 Antibacterial Studies 

 
The antibacterial studies of AgSiNP/NG200 and AgSiNP/NG50 were performed on gram 

negative E.Coli and gram positive B.subtilis and S.aureus. All the antibacterial assays were done 

on Mueller Hinton broth 2 or Mueller Hinton agar 2. 

3.4.1 Well Diffusion assay 

 

The well diffusion assay was done to study the qualitative analysis of antibacterial 

properties of AgSiNP/NG200 and AgSiNP/NG50 at both pH 4 and pH 7. In order to conduct the 

primary study of inhibition of growth of bacteria the well diffusion assay method was done as 

described by Schillinger et al (43). Muller Hinton Agar plates were used for this assay. 10
8
 

CFU/ml of each bacterium was spread on the plate by cotton swab. 6 holes of 3mm size were 

punched aseptically in the plate 10 l of AgSiNP/NG200 both pH 4 and pH 7, Silver Nitrate 200 
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solution pH 4 and pH 7 and SiNG at pH 4 and pH 7 were added to each holes. Care was taken 

that no spillage occurred outside the hole on the agar. Similarly another plate was made in which 

each hole had 10 l    AgSiNP/NG50 pH 7 and pH 4, Silver Nitrate 50 solution pH 7 and pH 4 

and SiNGpH 7 and pH 4. The plates were incubated at 36
o
C for 24 hours. The zone of clearance 

was recorded after 24 hours of growth 

3.4.2 Bacterial Growth inhibition assay in broth using turbidity 

 
The inhibition studies of AgSiNP/NG were done for gram negative E.coli and gram 

positive B.subtilis and S.aureus as described by Rastogi et. al (44) with some modifications. All 

the organisms were grown in Mueller Hinton agar-2 plates and were cultured in Mueller Hinton 

broth-2 for 24 hours at 36
o
C. Different concentrations of AgSiNP/NG200 (381μg/ml of metallic 

silver) both pH 7 and pH 4 and AgSiNP/NG50 (100.7μg/ml of metallic silver) pH 7 and pH 4 

were prepared in sterilized Mueller Hinton broth-2. The volume was adjusted to 0.9ml by adding 

sterile 0.85% saline in sterile micro-centrifuge tubes. For positive control Silica Nanogel (SiNG) 

without silver at both pH 7 and pH 4 was taken. The growths of bacteria were monitored with 

AgSiNP/NG200 pH 7 and pH 4 at metallic silver concentrations of 63.5μg/ml, 38.1μg/ml, 

19.05μg/ml, 9.53μg/ml, 4.77μg/ml, 2.68μg/ml, 1.34μg/ml, 953ng/ml, 477ng/ml, 95.3ng/ml and 

47.7ng/ml. The silver nitrate with same metallic silver content described earlier was used as 

negative control. Also the growths of bacteria were monitored with AgSiNP/NG50 pH 7 and pH 

4 at metallic silver concentrations of 30.24μg/ml, 20.16μg/ml, 10.08μg/ml, 5.04μg/ml, 

2.52μg/ml, 1.26μg/ml, 630ng/ml and 63ng/ml. The silver nitrate controls as described earlier 

with similar metallic silver content were used as negative control. The final volume of the 
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solution was made to 1ml by adding 0.1ml of 10
6
 CFU/ml of bacteria making the final 

concentration of bacteria to 10
5 

CFU/ml. Blanks without any material were also inoculated with 

same concentration of bacteria as second positive control. The tubes were incubated at 36 
o
C on 

a 200rpm shaker. The optical density (O.D.) was measured for zero hour, every one hour until 

the 9
th

 hour passed and after 24 hours at 600nm wavelength of visible spectrophotometer. The 

OD obtained at zero time was cancelled from the OD obtained later.  Graphs were plotted for OD 

Vs Time (hrs) for all three bacteria with different concentrations of metallic silver in both 

AgSiNP/NG200 and AgSiNP/NG50. 

3.4.3 Minimum Inhibitory Concentration assay using resazurin indicator 

 
Resazurin is a non-fluorescent dye, which on oxidation produces fluorescent pink colored 

resorufin. The Reazurin indicator based assay is a confirmatory test for the minimum inhibitory 

concentration since the growing cells turns the dye in pink color whereas the non-growing ones 

remain blue in color. The MIC using resazurin test was done as described by Sarker et.al(45). 

For this assay we used 10
5 

CFU/ml of E.Coli, B.subtilis and S.aureus. Sterile 96 well plates were 

taken. 100 μl of 5 times diluted samples of AgSiNP/NG200 pH 7, AgSiNP/NG200 pH 4, Silver 

Nitrate 200 pH 7, Silver Nitrate 200 pH 4, SiNGpH 7 and SiNGpH 4 were taken in first column 

respectively. For AgSiNP/NG50 sample 100 μl of the samples were taken as prepared without 

any dilution. As the negative control 100 μl of 1mg/ml Penicillin G and 1mg/ml of Streptomycin 

were used. Here Silica nanogel (without Silver, SiNG both pH 7 and pH 4) was used as the 

positive control. 50 μl of normal saline (0.85%) was added to all other wells. The samples were 

diluted 2 fold serially. Finally each well had 50 μl serially diluted sample in ascending order. 10 
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μl of resazurin indicator (6.75 mg/ml) was added to each well. To each well, 30 μl of Mueller 

Hinton broth 2 was added. 10 μl of the 10
6
 CFU of bacterial suspension was added to each well 

so that the final bacterial concentration in 100μl volume became 10
5 

CFU/ml. The plates were 

incubated at 36
o
C for 24 hours. The color change was then visually assessed. Color change from 

purple to pink was considered as positive for growth. MIC was taken as the lowest concentration 

showing no color change to pink. The plates were prepared in triplicates. 

3.4.4 BacLight
™

 LIVE/DEAD® assay 

 
The BacLight™ LIVE/DEAD® assay experiment was carried out to determine the 

viability of E.coli, B.subtilis and S.aureus in presence and absence of AgSiNP/NG (44). For 

control experiments silver nitrate salt and silica nanogel (SiNG) without silver were taken. 10
8 

CFU count of bacterial suspension was inoculated with 190.5 μg/ml of metallic silver content of 

AgSiNP/NG200 pH 7 and pH 4 for two hours. The BacLight™ kit contains two dyes propidium 

iodide and STYO9. STYO9 (green) selectively stains cell membrane whereas propidium iodide 

(red) stains the nucleus. These dyes were taken in ratio of 1:1. After 2 hours of incubation the 

cells with AgSiNP/NG and controls, they were washed from the suspension using sterile normal 

saline and were then stained with the mixed BacLight™ dye for 15 minutes. 5μl of the stained 

bacterial suspension was taken on a glass slide, covered with a cover slip and this slide was 

analyzed under a fluorescent microscope with a green filter (535nm) for live cells and red filter 

(642nm) for dead cells at 60X magnification. 
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CHAPTER 4 RESULTS 
 

We obtained the following materials, these were characterized using various material 

science tools and tested for antibacterial properties: 

 

 

 

 
Figure 4 - Digital images for A) AgSiNP/NG200 pH 7 B) AgSiNP/NG200 pH 4 C) AgSiNP/NG50 pH 7 

D) AgSiNP/NG50 pH 4. 

 

From the digital images it can be clearly seen that there is a formation of yellowish brown 

color solution similar to that seen for silver and silver oxide nanoparticles. The color formation 

can be because of addition of NaOH triggering the formation of electrophiles and thus increasing 

the formation of silver nanoparticles, which are further oxidized to form silver oxide particles. 

 

At pH 4 clear, transparent and colorless formulation can be observed; this is because of the 

dielectric layer of silica around the silver nanoparticles. Silica acts as a reducing agent for 

formation of silver nanoparticles within the gel.  

D C B A 
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4.1 Material Morphology 

4.1.1 Dynamic light scattering 

 

The results obtained from DLS shows formation of sol-particles at both pH 7 and pH 4, 

but after a month, for pH 4 particles there is formation of gel because the solution was not 

allowed to condense by adding a base to change the pH to neutral. As a result aggregations can 

be seen leading to gel formation at a lower pH. For AgSiNP/NG200 pH 7 the particle size 

average of 191nm is recorded, whereas that of pH 4, as synthesized, shows the particle size 

average of 67.8nm corresponding to sol particles.  For AgSiNP/NG50 pH 7 the particle size seen 

is 111nm whereas that of pH 4, as synthesized, is 67.2nm. For SiNG200 the particle size is 168 

and 216 nm for pH 7 and pH 4 respectively.  
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Figure 5- DLS seen for AgSiNP/NG200 A) pH 7 B) pH 4 as synthesized C) pH 4 after a month 



  

 25 

 

 
 

Figure 6 - DLS seen for AgSiNP/NG50 A) pH 7 B) pH 4 as synthesized C) pH 4 after a month. 
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  Figure 7 - DLS seen for SiNG A) pH 7 B) pH 4 as synthesized C) pH 4 after a month. 
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4.1.2 Atomic force microscopy 

 

Figure 8 - AFM image of AgSiNP/NG200 pH 7 with sectional analysis stating the size of particle. 

 

 

Figure 9 - AFM image of AgSiNP/NG200 pH 4 with sectional analysis stating the size of particle. 
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Figure 10 - AFM image of SiNG pH 7 with sectional analysis stating the size of particle. 

 

 

Figure 11 - AFM image of SiNG pH 4 with sectional analysis stating the size of particle. 
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From the AFM images the DLS results are proved. It can be clearly seen that there is a 

formation of distinct particles for the pH 7. The pH 4 formulations show mixture of gel and 

particle formations at the nanoscale range. AgSiNP/NG200 pH 7 shows particle formation of 

approximately 168nm, which are distinct and not aggregated, but for AgSiNP/NG200 pH 4 

shows particles as well as gel like formation on the cover slip. 

4.1.3 Scanning Electron Microscopy 

 

 

Figure 12 - Scanning Electron microscopy of AgSiNP/NG200 pH 4 
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Figure 13 - SEM image of AgSiNP/NG200 at pH 7 

 

 

Figure 14 - SEM Image of AgSiNP/NG50 at pH 4 
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Figure 15 - SEM Image of AgSiNP/NG50 at pH 7 

 

 

 

Figure 16 - SEM Image of SiNG at pH 4 
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Figure 17 - SEM Image of SiNG at pH 7 

 

From the SEM images, it can be seen that the sol particle formations occurred at higher 

pH. At lower pH i.e. 4, there are formations of either aggregates or flake like silica structure 

as seen in AgSiNP/NG50 pH 4 (figure 12). Small particulate features can also be seen in the 

background as well as inside the flakes. For SiNG without silver there is plain gel formation 

with some very less sol –particles in background. 
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4.2. Confirming the production of Silver Nanoparticles 

4.2.1 UV-Visible spectroscopy 

 
Figure 18 - UV-Vis spectroscopy of A) AgSiNP/NG200 pH 4 B) AgSiNP/NG200 pH 7 

 

We can study the UV-Vis spectroscopy of AgSiNP/NG 200 from figure 18. It is seen that 

at pH 4 one peak is observed at 300nm. Whereas at pH 7 two peaks are seen one at 296nm and 

other at 419nm. The peak observed at 300 or 296nm is due to the Ag ion cluster formation (26). 

The peak at 419nm is the surface Plasmon resonance (SPR) absorption peak which is a 

characteristic peak of silver as well as silver oxide nanoparticles (46). Also a slight shift of the 

silver ions peak can also be observed from the change in pH. 
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Figure 19 - UV-Vis spectroscopy of A) AgSiNP/NG50pH 4 B) AgSiNP/NG50 pH 7 

 

AgSiNP/NG 50 formulation at pH 4 does not show any significant surface plasmon 

absorption peak characteristic to the formation of Ag nanoparticles, but a peak characteristic to 

silver ion clusters can be seen at 305nm. At pH 7 formulation a very clear surface plasmon 

absorption band can be seen at 421nm. Also a characteristic peak at 295nm can be seen because 

of presence of silver ion cluster.  Surface plasmon absorption is responsible for yellow/brown 

coloration of Ag nanoparticles and Ag nanoparticle containing materials.  

Thus from UV-Vis absorption spectra the formation of silver nanoparticles can be seen at 

pH 7 of both formulations because of the formation of surface Plasmon resonance. From 420nm 

surface Plasmon absorbance it can be concluded that the average particle size of the silver 

nanoparticle must be around 20-25nm. Also the presence of silver ion cluster peak shows that 

there are silver ions embedded in the gel matrix along with silver nanoparticles. 

305nm 
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4.2.2 High Resolution Transmission electron Microscopy 

 

 

 

Figure 20 - HRTEM Image of AgSiNP/NG200 A) Formation of silver NpS uniformly in gel as seen at 

low magnification B) Formation of silica nanoparticles around 18nm in size is seen surrounded by 

amorphous silica C) The diffraction pattern confirming the presence of crystalline material (Silver) by d-

spacing of analysis. 
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Figure 21 - HRTEM high magnification image of AgSiNP/NG200 pH 7 shows silver spherical silver 

nanoparticle crystal structure with silica matrix in background with average size ranging from 1 to 10nm. 

 

 

Figure 22 - HRTEM of AgSiNP/NG200 pH 4. This shows uniformly distributed silver nanoparticles 

through the silica matrix A) Low magnification showing uniform distribution of particles of different 

sizes average size being 30nm and B) showing high magnification of the nanoparticles embedded in silica 

gel at lower pH 4. 
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Figure 23 - Highly crystalline highly magnified silver nanoparticle can be seen in AgSiNP/NG200 pH 4. 

 

The HRTEM micrographs show that there is formation of uniformly distributed silver 

nanoparticles through the matrix of silica gel of both AgSiNP/NG200 pH 7 and AgSiNP/NG200 

pH 4. . It is seen that no aggregation of the particles are formed and the average size of the 

particle is around 25nnm. In order to analyze the elemental silicon and silver composition in the 

matrix surrounding the silver nanoparticles we did energy dispersive X-ray spectroscopy 

(EDAX). From STEM images, we were able to select an area to be analyzed. For our 

information we selected one area of AgSiNP/NG200 pH 4 on the silver nanoparticle and another 

area outside the silver nanoparticle. 
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Figure 24- HR-TEM EDAX for AgSiNP/NG200 pH 4 A) Selected area for diffraction (with nanoparticle) 

A’) EDAX analysis of the area shown in A.  B) Selected area for diffraction (outside particle) B’) EDAX 

analysis of the area shown in B. 

 

From the elemental analysis we can see that when EDAX was done on the silver 

nanoparticle there is very strong peak of elemental silver, whereas there is also a small peak of 

silica stating that there is a layer of silica on the nanoparticle. From figure 24 B it is seen that 

when the position is changed to the area around the particle there is stronger peak of silica as 

well as some elemental silver can also be seen. This states that the silver in ionic form is also 

present in the silica matrix as shown in UV-Vis spectra for AgSiNP/NG200 pH 4 (figure 18)(26). 

The copper peak seen is because of the copper grid on which the sample was placed for HRTEM 

analysis. 
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Figure 25 - HRTEM of AgSiNP/NG50 pH 7-particle A) low magnification B) high magnification 

 

From figure 25 it is clearly seen that the silver nanoparticles are also present in 

AgSiNP/NG50, which are enclosed in the silica matrix. The approximate size of the silver 

nanoparticle is around 10-20 nm. Since the concentration of silver nitrate was low in this 

formulation less formation of silver nanoparticles is seen than compared to AgSiNP/NG200. We 

performed EDAX for this material to find the elemental composition of silver and silica. 
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Figure 26 - HRTEM of AgSiNP/NG50 pH 7 A) low magnification image of the gel B) Crystalline 

diffraction pattern of AgSiNP/NG50 pH 7 B) EDAX of ASiNG50 pH 7 taken from a point in image A. 

Here it shows that there is more silica gel formation than the formation of silver 

nanoparticles. From fig 26 (A) it can be clearly seen that there is a gel formation with small 

particles entrapped in the gel matrix. To analyze the particle we did X-ray diffraction and we 

found the presence of highly crystalline material in the diffraction (figure 26 B). The diffraction 

corresponds to that seen for silver nanoparticles. From EDAX (figure 26 C) it can be seen that 

both silica and silver are present in elemental form.  Copper peak is seen because of the copper 

grid used. 
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Figure 27 - HRTEM image for AgSiNP/NG50 pH 4 A) Low magnification B) high magnification 

 

Figure 27 shows formation of silver nanoparticles of approximately 20nm in size for 

AgSiNP/NG50 pH 4. One can clearly see that amorphous silica material is enclosing the silver 

nanoparticle. Thus from HRTEM results we can state that there is formation of silver 

nanoparticles in both the formulation AgSiNP/NG200 and AgSiNP/NG50 at both pH 4 and pH 

7. These results do not match the results from UV-Vis spectroscopy since there is no surface 

Plasmon resonance characteristic to silver nanoparticles observed in both formulations at pH 4. 

There is some phenomenon occurring because of the enclosing of silica matrix around the silver 

nanoparticles that plays role in shifting the SPR absorption. 



  

 42 

4.3 Anti-bacterial Studies 

4.3.1 Well Diffusion Method 

 

Samples E.coli B.subtilis S.aureus 

AgSiNP/NG200pH 7 9mm

 

10mm

 

12mm

 

AgSiNP/NG200 pH 

4 

9mm

 

10mm

 

10.5mm

 
Silver Nitrate 200 

pH 7 

8mm

 

9mm

 

9mm

 
Silver Nitrate 200 

pH 4 

8mm

 

9mm

 

9mm

 
SiNG pH 7 0mm 0mm 0mm
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SiNG pH 4 0mm

 

0mm

 

0mm

 
 

Table 1  - Well diffusion zones for AgSiNP/NG200 

From the well diffusion method it can be seen that AgSiNP/NG200 can give good zone 

of clearance against all three bacteria. There is no zone of clearance seen for SiNG formulations. 

Samples E.coli B.subtilis S.aureus 

AgSiNP/NG50pH 7 9mm

 

9mm

 

10mm

 
AgSiNP/NG50 pH 4 9mm

 

8mm

 

9mm

 
Silver Nitrate 50pH 7 8mm

 

8mm

 

8mm
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Silver Nitrate 50 pH 4 8mm

 

7.5mm

 

8mm

 
SiNG pH 7 0mm

 

0mm

 

0mm

 
SiNG pH 4 0mm

 

0mm

 

0mm

 
 

Table 2  - Well diffusion zones for AgSiNP/NG50 

AgSiNP/NG50 has low loading of silver as compared to AgSiNP/NG200 but from the 

diffusion assay it is seen that AgSiNP/NG50 gives equivalent zone of clearance to that of 

AgSiNP/NG200.  The well diffusion method was done confirm the action of AgSiNP/NG at both 

pH 7 and pH 4 against three bacteria E.coli, B.subtilis and S.aureus.  From the results it can be 

seen that the material can effectively diffuse out of the well into agar and cause zone of 

clearance. These results were not seen when disc diffusion assay was used because of adherence 

of the material to the cellulose fibers of the disc so it was not able to diffuse out in the agar(47). 

The control silver nitrate also gives equivalent zone of clearance so it can be seen that silica gel 

does not interrupts the action of silver nanoparticles present in them. Silica gel by itself does not 

show any zone of clearance thus it can be said that the gel itself is just working as a delivery 

agent but silver is the main active component. 
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4.3.2 Bacterial Growth inhibition assay in broth using turbidity 
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Figure 28 - Growth curve of E.coli in presence of A) AgSiNP/NG200 pH 4 B) AgSiNP/NG200 pH 7C) 

Silver Nitrate 200 (381μg/ml metallic silver content) pH 4 D) Silver Nitrate 200 (381μg/ml metallic silver 

content) pH 7. 
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Figure 29 - Comparative end point growth inhibition of E.coli by A) AgSiNP/NG200 pH 7 Vs Silver 

Nitrate 200 pH 7 B) AgSiNP/NG200 pH 4 Vs Silver Nitrate 200 pH 4 

 

From the growth curve of E.coli in presence of AgSiNP/NG200 pH 7 and pH 4 no 

difference in inhibition is seen stating that both the materials are equivalently effective against 

gram negative E.coli. The inhibition of growth of E.coli was seen at 2.68ppm for both 

AgSiNP/NG200 as well as the negative control silver nitrate having same metallic concentration. 

The growth of E.coli was not inhibited by SiNG formulations at both pH 7 and pH 4. 
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Figure 30 - Growth curve of E.coli in presence of A) AgSiNP/NG50 pH 4 B) AgSiNP/NG50 pH 7 C) 

Silver Nitrate 50 (100.8μg/ml metallic silver content) pH 4 D) Silver Nitrate 50 (100.8μg/ml metallic 

silver content) pH 7. 
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Figure 31 - Comparative end point growth inhibition of E.coli by A) AgSiNP/NG50 pH 4Vs Silver 

Nitrate 50 pH 4 B) AgSiNP/NG50 pH 7 Vs Silver Nitrate 50 pH 7. 

 

AgSiNP/NG 50 formulations at both pH 7 and pH 4 were able to inhibit the growth of 

E.coli equivalently. The metallic silver content of 2.52ppm was able to inhibit the growth of 

gram-negative E.coli in presence of both AgSiNP/NG50 as well as silver nitrate with same pH 

and metallic silver concentration. Silica gel at both pH 7 and pH 4 did not show any inhibition 

action against the bacteria. 
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Figure 32 - Growth curve of B.subtilis in presence of A) AgSiNP/NG200 pH 4 B) AgSiNP/NG200 pH 7 

C) Silver Nitrate 200 (381μg/ml metallic silver content) pH 4 D) Silver Nitrate 200 (381μg/ml metallic 

silver content) pH 7. 
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Figure 33 - Comparative end point growth inhibition of B.subtilis by A) AgSiNP/NG200 pH 7 Vs Silver 

Nitrate 200pH 7 B) AgSiNP/NG200pH 4 Vs Silver Nitrate 200pH 4 

 

The growth of gram-negative B.subtilis was successfully inhibited by AgSiNP/NG200 

formulation at both pH 7 and pH 4. The formulation AgSiNP/NG 200 was able to inhibit the 

growth of the bacteria at 2.68ppm, so was silver nitrate at the same metallic concentration and 

both the pH 7 and pH 4. Silica gel did not show any inhibition in growth compared to the blank. 
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Figure 34 - Growth curve of B.subtilis in presence of A) AgSiNP/NG50 pH 4 B) AgSiNP/NG50 pH 7    

C) Silver Nitrate 50 (100.8μg/ml metallic silver content) pH 4. D) Silver Nitrate 50 (100.8μg/ml metallic 

silver content) pH 7. 
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Figure 35- Comparative end point growth inhibition of B.subtilis by A) AgSiNP/NG50 pH 4 Vs Silver 

Nitrate 50pH 4 B) AgSiNP/NG50pH 7 Vs Silver Nitrate 50pH 7 

 

From the growth curve obtained from growing B.subtilis in presence of AgSiNP/NG50 at 

both pH 7 and pH 4, one can see that there is no difference between the different pH 

formulations. B.subtilis grew well in both pH 7 and pH 4 SiNG in comparison to blank, thus 

silica does not provide any antibacterial efficacy.  The growth inhibition was seen at 2.68 ppm.  

Silver Nitrate at same metallic silver concentration and pH showed similar antibacterial efficacy 

as that of AgSiNP/NG50 towards B.subtilis. 
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Figure 36 - Growth curve of S.aureus in presence of A) AgSiNP/NG200 pH 4 B) AgSiNP/NG200 pH 7 

C) Silver Nitrate 200 (381μg/ml metallic silver content) pH 4. D) Silver Nitrate200 (381μg/ml metallic 

silver content) pH 7. 
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Figure 37 - Comparative end point growth inhibition of S.aureus by A) AgSiNP/NG200 pH 7 Vs Silver 

Nitrate 200pH 7 B) AgSiNP/NG200pH 4 Vs Silver Nitrate 200 pH 4 

 

The formulation AgSiNP/NG200 was able to inhibit the growth of S.aureus at both pH4 

and pH7 successfully.  The metallic silver content required to inhibit total growth of S.aureus 

was 2.68ppm. There was no significant difference between the inhibition of silver nitrate salts to 

that of AgSiNP/NG formulation at same metallic content and same pH. Silica at both pH 7 and 

pH 4 did not show any significant inhibition of growth. 
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Figure 38 - Growth curve of S.aureus in presence of A) AgSiNP/NG50 pH 4 B) AgSiNP/NG50 pH 7.    

C) Silver Nitrate50 (100.8μg/ml metallic silver content) pH 4. D) Silver Nitrate50 (100.8μg/ml metallic 

silver content) pH 7. 
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Figure 39 - Comparative end point growth inhibition of S.aureus by A) AgSiNP/NG50 pH 4 Vs Silver 

Nitrate 50pH 4 B) AgSiNP/NG50pH 7 Vs Silver Nitrate 50pH 7 

  

AgSiNP/NG50 showed good inhibition for the growth of S.aureus in broth at both pH 7 

and pH 4. Silver Nitrate showed same efficacy of growth inhibition as seen for AgSiNP/NG 50. 

2.52 ppm of silver was able to inhibit the growth of S.aureus. Silica was not able to inhibit the 

growth of the bacteria. 
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4.3.3 Minimum Inhibitory Concentration assay using resazurin indicator 

 

 
 

Figure 40 - Resazurin assay for AgSiNP/NG200 A) E.coli B) B.Subtilis C) S.aureus. 
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Figure 41- Resazurin assay for AgSiNP/NG50 for A) E.coli B) B.subtilis C) S.aureus. 
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From the resazurin assay test, one can see that the MIC values vary for each bacterium. 

From the result it could be concluded that the MIC from AgSiNP/NG200 and AgSiNP/NG50 is 

in range from 1ppm to 0.5 ppm, which is the acceptable range for MIC of silver nanoparticles. 

The results here show inhibition at lower ppm because the amount of nutrient broth added is 

comparatively lower than that used in the growth curve assay. The following results were 

obtained from the average of triplicate. 

Sample E.Coli (ppm) B.subtilis (ppm) S.aureus (ppm) 

AgSiNP/NG200 pH 7 0.773 0.992 0.992 

AgSiNP/NG200 pH 4 0.773 0.992 0.992 

AgNO3 200 pH 7 1.191 1.389 1.191 

AgNO3 200 pH 4 1.191 1.389 1.389 

AgSiNP/NG50 pH 7 0.787 0.787 1.05 

AgSiNP/NG50 pH 4 0.787 0.918 1.05 

AgNO3 50 pH 7 1.009 1.009 1.311 

AgNO3 50 pH 4 1.009 1.311 1.311 

SiNGpH 7 - - - 

SiNGpH 4 - - - 

Penicillin-G 208.33 333.33 333.33 

Streptomycin  36.455 26.385 25 

 

Table 3 - Average MIC obtained from resazurin assay 
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4.3.4 BacLight® LIVE/DEAD assay 

 

 
 

Figure 42 -  E.coli treated for 2 hours with A) AgSiNP/NG200 pH 7 B) AgSiNP/NG200 pH 4 C) AgNO3 

pH 7 D) AgNO3 pH 4 E) SiNG pH 4 F) Untreated cells. 
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Figure 43 -  B.subtilis treated for 2 hours with A) AgSiNP/NG200 pH 7 B) AgSiNP/NG200 pH 4 C) 

AgNO3 pH 7 D) AgNO3  pH 4 E) SiNG pH 4 F) Untreated cells. 



  

 68 

 
 

Figure 44 -  S.aureus treated for 2 hours with A) AgSiNP/NG200 pH 7 B) AgSiNP/NG200 pH 4 C) 

AgNO3 pH 7 D) AgNO3 pH 4 E) SiNG pH 4 F) Untreated cells. 

 

 

 

From figure 42, 43 and 44 it can be seen that the cells treated with silver containing silica 

gels as well as silver nitrate are stained red, showing that the propidium iodide is able to enter the 

cells because of cell membrane disruption. Whereas the cells treated with just SiNG and the 

untreated cells shows green color thus proving that they have intact membrane and no propidium 

iodide has entered in the cell to stain their nucleus and are live cells. From this result we can say 

that AgSiNP/NG was able to kill the bacteria in 2 hours of incubation. 
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CHAPTER 5   DISCUSSION 
 

We synthesized four silver containing silica nanogel formulations AgSiNP/NG200 and 

AgSiNP/NG50 with different silver loading (3.52mM and 1mM loading respectively). Both 

these formulations were further classified according to their pH value. The AgSiNP/NG200 pH 4 

showed transparent colorless formulation. AgSiNP/NG200 pH 7 showed yellowish-brown color 

formation.  AgSiNP/NG 50 at pH 4 showed colorless transparent formulation. AgSiNP/NG 50 at 

pH 7 showed a slight yellowish color formation few weeks after synthesis. 

From the results of DLS, AFM and SEM there was clear indication that by adding silver 

in the preparation of sol-gel itself there was formation of silica-silver sol particles which 

remained as particles at neutral pH whereas at lower pH sol particles formed gel since 

aggregation of silica particles could be seen. The presence of particles was because of increase in 

activity of silica-silver interaction at the higher pH, the silver did not allow silica to grow and 

thus particles approximately at the size from 100-200nm were seen in both AgSiNP/NG200 and 

AgSiNP/NG50 at pH 7. SEM did show very small sol-gel formation for SiNG at both pH and the 

rest of the sol was converted to gel this could be because the silica sol particles were free to 

condense with each other (20). No solvent was used in this process.  

Surface Plasmon Resonance (SPR) absorption was seen in the UV-Vis spectroscopy for 

both formulations at pH 7 at around 420 nm. The presence of the SPR peak indicated that at pH 7 

there was production of silver nanoparticles in the gel formulation at around 10-20nm. These 

samples were yellowish brown in color due SPR absorption of the silver nanoparticles. The 

presence of color could also because of silver oxide nanoparticles due to interaction of silver 

with sodium hydroxide, which was used to raise the pH to 7 (48).  The SPR was not seen for pH 
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4 formulations, which were colorless and transparent solutions. A peak at 296-300nm was also 

seen in the UV region for all the four formulations, characteristic to Ag+, Ag
2+

, Ag
3+ 

ion cluster 

peak (36). Also slight peak shift can be observed for the ion cluster peak for the formulations at 

pH 4 and pH 7.  As a result it could be seen that the silver is present in the formulations at pH 4 

in ionic form and in pH 7 formulations in nanoparticulate form.  

HRTEM was carried out for both the formulations at both pH 7 and pH 4. From HRTEM 

results it was clearly seen that silver nanoparticles were present in all the formulations at pH 4 as 

well as pH 7. Uniformly distributed, non-aggregated, highly crystalline, spherical silver 

nanoparticles can be seen from the sizes of 10-25nm.  These nanoparticles were enclosed by the 

silica nanogel. More nanoparticles were seen in AgSiNP/NG200 formulation than compared to 

AgSiNP/NG50 formulations. From the diffraction pattern of the silver nanoparticles it could be 

seen that elemental silver nanoparticles as well as silver oxide nanoparticles were present at pH 

7, whereas that for pH 4 formulations only elemental silver nanoparticles were seen.  

Silica acts as a reducing agent. Data suggested that; silica reduced silver ions to elemental 

silver, leading to formation of silver nanoparticles which were embedded within the silica 

matrix(17). TEOS hydrolysis produces silica, water and ethanol. Ethanol also helps to reduce the 

silver salts; since no ethanol was added as a solvent in this formulation ethanol produced by 

TEOS hydrolysis could have played some role in facilitating the formation of silver 

nanoparticles. The EDAX spectra also showed the presence of silica around the silver 

nanoparticle, also silica was seen when the analysis was done on the surface of silver 

nanoparticle stating that silica has enclosed the silver nanoparticles in its matrix.  
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Literature shows that silver-silica formulation is able to adhere strongly to cellulose 

fibers(47), thus the disc diffusion assay did not work since the material was not able to diffuse 

out of the disc. Thus we had to follow more traditional well diffusion assay. From the well 

diffusion assay one can see that there is formation of zone of clearance for both the formulations 

of AgSiNP/NG at both pH 7 and pH 4. The zone of clearance was equivalent to silver nitrate 

solutions at the same metallic silver concentration. The presence zone of clearance indicated that 

the entrapment of silver in silica did not reduce its antibacterial property.  Overall, slow release 

of the Ag+ ions took place, thus prolonging the antibacterial property of the material. Silica 

nanogel by itself did not show any zone of clearance. This showed that silica nanogel does not 

have any anti-bacterial effect. Silver-silica gel was also able to diffuse out in agar leading to 

antibacterial activity.  

From growth inhibition assay in broth using turbidity, it was seen that AgSiNP/NG200 at 

both pH 7 and pH 4 were able to inhibit the growth of all the three microorganisms at 2.68μg/ml 

of metallic silver content. Silver Nitrate was also able to inhibit the growth at that same metallic 

silver concentration. As a result one could see that AgSiNP/NG200 has same antibacterial 

efficacy as seen for silver nitrate salt at similar concentration and pH. Similarly, it was seen that 

for AgSiNP/NG50 the growth was inhibited at 2.52 μg/ml of the metallic silver. Silver nitrate at 

the same metallic silver concentration also showed inhibition at the same concentration of 

metallic silver. It is reported that Ag+ ions are released from the silica matrix when suspended in 

aqueous medium (17, 38, 42, 49). This ion released from the silica matrix produces antibacterial 

effect of the material.  
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From the resazurin MIC assay it could be seen that the MIC of AgSiNP/NG 200 were 

better than that seen for AgSiNP/NG 50. This could be due to the increase in loading of the silver 

particle in the gel. Again there was no significant difference seen in the results obtained from 

silver nitrate salt.  The similarity in antibacterial efficacy of silver nitrate and AgSiNP/NG could 

be because of the availability of free silver ions in its biologically active form in silver nitrate 

solution (38) whereas silver entrapped in silica gel releases silver ions at much controlled rate, 

concluding that even if silver nitrate shows equivalent amount of growth inhibition, its effect is 

short lived, but in case of AgSiNP/NG formulation because of the controlled  release of ions the 

antibacterial effect is going to be prolonged.  

From the BacLight™ assay after two hours of incubation of the bacteria with 

AgSiNP/NG completely dead cells were seen under microscope (propidium iodide stained-red). 

From this result one could say that there is bactericidal effect of AgSiNP/NG since it ruptures the 

cell membrane allowing propidium iodide to enter the cell to stain the nucleus. Whereas the cells 

which were either treated with SiNG as well as untreated cells shows green fluorescent staining 

from STYO9 indicating that they had intact cell membranes; thus, the cells were alive.  
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CHAPTER 6. CONCLUSION 
 

The AgSiNP/NG materials have been synthesized using sol-gel method. Materials were 

characterized using various microscopic and spectroscopic techniques. In all of these materials 

silver nanoparticles were formed and these nanoparticles were embedded in silica matrix as 

characterized by the HRTEM. UV-Vis results confirmed characteristic SPR absorption of silver 

nanoparticles and presence of ionic silver. Colorless AgSiNP/NG formulations were obtained at 

pH 4.0 at which minimal or characteristic SPR absorption was found. The non-color formation in 

pH 4 formulations suggests that silica coating (a dielectric material) is able to shift the SPR 

towards the UV region. All the four materials showed excellent antibacterial activity against 

gram-negative E.coli and gram-positive B.subtilis and S.aureus. Loading of silver in 

AgSiNP/NG formulations did not compromise antibacterial properties of the silver. 

The AgSiNP/NG containing formulation can be successfully used to produce touch-safe 

(antibacterial) non-color forming surface. A number of potential applications including 

antibacterial coating on medical instruments, textiles, glass & ceramic substrates, plastics and 

paints could be realized using AgSiNP/NG materials. Strong antibacterial properties against 

S.aureus could lead to development of a spray-formula to be used in health care facilities to 

minimize Methicillin-Resistant Staphylococcus Aureus (commonly known as MRSA) infections.    
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