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ABSTRACT 

 Staphylococcus is a significant cause of human infection and mortality, worldwide.  

Currently, there are greater than 60 taxa within Staphylococcus, and nearly all are pathogenic.  

The collective potential for virulence among species of Staphylococcus heightens the overall 

clinical significance of this genus and argues for a thorough understanding of the evolutionary 

relationships among species.  Within Staphylococcus, aureus is the most common cause of 

human infection, where nasal carriage of this bacterium is a known risk factor for autoinfection.  

The predisposition to infection by nasal carriers of S. aureus, and the ease with which strains are 

transferred between individuals, suggests that nasal carriage is a major vector for the 

transmission of virulent strains throughout the community.  This hypothesis, however, has not 

been assessed in any great detail to identify the genetic relationships between clinical isolates of 

S. aureus and those strains being carried asymptomatically throughout the community.  Also 

lacking within this field is a unified and robust estimate of phylogeny among species of 

Staphylococcus. 

Here, we report on a highly unified species phylogeny for Staphylococcus that has been 

derived using multilocus nucleotide data under multiple Bayesian and maximum likelihood 

approaches.  Our findings are in general agreement with previous reports of the staphylococcal 

phylogeny, although we identify multiple previously unreported relationships.  Regardless of 

methodology, strong nodal support and high topological agreement was observed with only 

minor variations in results between methods.  Based on our phylogenetic estimates, we propose 

that Staphylococcus species can be evolutionarily clustered into 15 groups, and six species 

groups.  In addition, our more defined phylogenetic analyses of S. aureus revealed strong genetic 
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associations between both nasal carriage strains and clinical isolates.  Genetic analyses of 

hypervariable regions from virulence genes revealed that not only do clinically relevant strains 

belong to identical genetic lineages as the nasal carriage isolates, but they also exhibited 100% 

sequence similarity within these regions.  Our findings indicate that strains of S. aureus being 

carried asymptomatically throughout the community via nasal colonization are genetically 

related to those responsible for high levels of infection and mortality. 

 Due to nasal carriage of S. aureus being a risk factor for autoinfection, standardized 

preoperative decolonization has become a major consideration for the prevention of nosocomial 

infection.  Toward this end, we have identified the macrocyclic θ-defensin analogue RC-101 as a 

promising anti-S. aureus agent for nasal decolonization.  RC-101 exhibited bactericidal effects 

against S. aureus in both epithelium-free systems, and ex vivo models containing human airway 

epithelia.  Importantly, RC-101 exhibited potent anti-S. aureus activities against all strains tested, 

including USA300.  Moreover, RC-101 significantly reduced the adherence, survival, and 

proliferation of S. aureus on human airway epithelia without any noted cellular toxicity or the 

induction of a proinflammatory response.  Collectively, our findings identify RC-101 as a 

potential preventative of S. aureus nasal colonization. 
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1. GENERAL INTRODUCTION 

1.1 Staphylococcus aureus nasal colonization 

Staphylococcus aureus was first identified in 1880 (145) and since then has become a 

progressively more virulent disease-causing agent throughout the world.  S. aureus is a primary 

human pathogen associated with high levels of morbidity and mortality worldwide (204), being 

responsible for tens of thousands of deaths each year (99).  S. aureus is currently one of the 

world’s leading causes of nosocomial infection (98), and is notable for its adaptability and 

increasing resistance to antibiotic treatments (203).  Infections caused by S. aureus range from 

mild to severe, resulting in superficial skin and soft tissue infections, septicemia, endocarditis, 

toxic shock syndrome (43), bacteremia, and pneumonia, among myriad others (147).  Outside 

clinical settings, S. aureus remains a prevalent bacterium within community settings with 

approximately 50% of healthy individuals being colonized (122, 197, 203).   

Colonization of healthy individuals typically occurs within the anterior nares; however, 

colonization also occurs on other surfaces of the body (203), presumably due to the ease with 

which bacteria are transferred over the body from the nose.  Colonization of the nose primarily 

occurs among the moist squamous epithelium on the septum, adjacent to the nasal ostium (30, 

153).  Nasal carriage of S. aureus has been implicated in aiding S. aureus infection as the 

bacterial strain found within an individual’s nose is frequently the same strain responsible for 

causing infection elsewhere in the body (200).  Based on this fact, nasal carriage of S. aureus is 

of particular clinical concern since asymptomatic carriage appears to provide an important vector 

for the transmission of virulent strains throughout the community.  Interestingly, however, the 
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extent to which nasal carriage strains present within the healthy population contribute to clinical 

infection, or the evolutionary similarities between nasal carrier strains and clinical isolates has 

not previously been well established (113, 129).    

 The carriage statuses of S. aureus within the human nares has historically been 

categorized into three classes: non-carriers, intermittent carriers, and persistent carriers (197).  

Non-carriers comprise approximately 50% of the general population (197, 203) and are those 

individuals who appear to never experience colonization of S. aureus within their nares.  

Intermittent carriers comprise approximately 30% of the general population (197, 203) and are 

those individuals who are at times observed to be colonized by S. aureus, but also undergo 

periods during which colonization is not observed.  Persistent carriers comprise the remaining 

approximately 20% of the general population (197, 203) and are those individuals who have 

been observed to be colonized by S. aureus within their nares at all times.  More recently, 

however, the nasal carriage classification system has been called into question with the 

observation that only persistent nasal carriers exhibit an increase in the levels of infection by 

their endogenous S. aureus strain.  Conversely, intermittent carriers experience only a low level 

of infection by their endogenous nasal strain, with no greater predisposition to infection than 

non-carriers (140, 197).  Moreover, the elimination kinetics of S. aureus experimentally 

inoculated in the nasal vestibule are similar between intermittent and non-carriers.  The 

elimination kinetics for intermittent and non-carriers both, however, are significantly higher than 

those observed in persistent carriers.  Patterns of anti-staphylococcal antibodies within 

intermittent and non-carriers are also similar to one another; however, they are significantly 

lower than the same antibodies in persistent carriers (197).  In particular, immunoglobulin (Ig) G 
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isotypes directed against S. aureus toxic shock syndrome toxin-1 (TSST-1) and surface protein G 

were found to be significantly higher in persistent carriers as opposed to intermittent and non-

carriers.  Similarly, levels of IgA isotypes directed against TSST-1, staphylococcal enterotoxin A 

and clumping factor A were also observed to be significantly higher in persistent carriers as 

compared to intermittent and non-carriers (which exhibit no significant difference compared to 

each other).  Based on these observations, it has been suggested that individuals be reclassified 

as “persistent” or “other” when describing the host’s nasal carriage status (197).   

 Given that nasal carriage is a major risk factor for staphylococcal disease, the prevention 

of S. aureus nasal carriage is desirable in preventing transmission and infection (150).  Due to 

the large number of strains that colonize healthy hosts and the growing number of antibiotics to 

which they are resistant, community-associated infections are relatively easy to transmit while 

becoming more difficult to combat.  As such, the eradication of S. aureus from noses would be a 

key step in preventing and combating infection throughout the community.  Difficulties in 

treating infection arise from the impressive adaptability and evolution of this bacterium, which 

results in an increasing number of antibiotics to which it is resistant (117).   

The remarkable speed at which S. aureus develops antibiotic resistance is a result of 

horizontal gene transfer facilitating allelic fixation within a population very rapidly (65).  Short 

doubling times and asexual reproduction also facilitate fixation of alleles conferring antibiotic 

resistance within S. aureus clonal populations (117).  The fact that S. aureus can adapt quickly to 

novel chemotherapeutics complicates treating infection and as such, the need for novel 

treatments is continually increasing.   

Identifying treatment options for S. aureus infections and, more generally, for the 
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prevention of nasal colonization would undoubtedly be made easier by determining the factors 

that are responsible for nasal carriage in humans.  To date, a multitude of research has focused 

on nasal carriage of S. aureus; however, the precise determinants have yet to be conclusively 

identified.  One certainty, however, is that nasal carriage is a multifactorial condition, involving 

an, as yet, unknown number of determinants from both the bacterium and the host (30, 139, 203).   

1.2 Factors affecting nasal colonization of Staphylococcus aureus 

 A large number of host and bacterial factors have previously been identified as 

contributing to the nasal carriage of S. aureus.  It is evident that no single determinant will be 

entirely responsible for carriage, but a variety of both host and bacterial factors working in sync 

are likely codeterminants of nasal carriage.  It has previously been postulated that four main 

events are required for successful nasal carriage (203).  The bacterium must come into contact 

with the nose, adhere to nasal epithelial cells via specific receptors, evade the host defense 

system; and must be able to proliferate within the nose.  Of these events, adherence to nasal 

epithelia and evasion of the host immune response are presumably the two most important 

elements for successful nasal colonization.  A multitude of bacterial factors must, therefore, be 

expressed by the colonizing pathogen to facilitate epithelial adhesion and evasion of the host’s 

immune system.  The host must also be permissive enough to allow for colonization to occur 

followed by proliferation of the bacterium.  Thus, the complex interplay between bacterial and 

host factors dictate the carriage status of an individual.  

1.2.1 Bacterial factors affecting nasal colonization 

A variety of bacterial factors have been implicated in aiding the nasal colonization of S. 



 5 

aureus.  The exact means by which this pathogen evades the host immune system and 

proliferates within the nose is not known; however, S. aureus does possess a variety of known 

factors that presumably aid in both of these events.  Primary host defense evasion strategies 

employed by S. aureus are the activities of immunoglobulin G (IgG)-binding proteins.  Two such 

proteins, staphylococcal protein A (SpA) (195) and the staphylococcal binder of IgG protein 

(Sbi) (209), have been identified in S. aureus as binding host IgG for the suppression of the host 

immune response, thereby evading phagocytosis and complement fixation (4, 209).  The first 

discovered and best characterized IgG-binding protein is SpA.  Protein A is membrane exposed 

and interacts with both IgG Fc receptors and Fab fragments (4).  Through these interactions, SpA 

prevents IgG from interacting with neutrophils, which would otherwise lead to the phagocytosis 

of S. aureus.  When bound to the Fab regions of IgG, SpA also induces a superantigen response, 

promoting the activation and depletion of the B-cell population within the host (4, 174).  

Interestingly, the binding of SpA to Fc and Fab portions of IgG are independent of one another 

and non-competitive.  Thus, a single SpA can bind simultaneously to each of these regions 

without causing interference with the other, independently bound SpA molecules (159). 

Sbi acts in a slightly different manner than SpA, although both function by binding to IgG 

to thwart host defense mechanisms (209).  Sbi is a secreted protein that is active towards a 

variety of different effectors of host defense.  As with SpA, Sbi binds to Fc regions of IgG; 

however, it does not bind to the Fab fragments.  Sbi has two immunoglobulin binding motifs 

with homology to the immunoglobulin binding domains of SpA, but apart from that, exhibits no 

homology to any other known protein (15).  In addition to binding Fc regions of IgG, Sbi also 

activates the alternative pathway of the complement system where it interacts with, and prevents 



 6 

the activation of complement component, C3 (15).  Collectively, the activities of both IgG-

binding proteins expressed by S. aureus are responsible in large part for successful immune 

evasion capabilities. 

In addition to evading the host immune response via IgG binding, proteins involved in the 

evasion of neutrophil-mediated phagocytosis are also known (176).  Among these are Sbi, 

clumping factor A (ClfA), capsular polysaccharide, and iron regulated surface determinant 

protein IsdH.  While these four act in different capacities to circumvent phagocytosis, all act to 

alter and evade the complement system by preventing opsonization and subsequent engulfment 

(176). 

Concurrent to the initial immune evasion events, invading S. aureus must also adhere to 

nasal epithelial cells to successfully proliferate within the host.  Myriad protein families have 

been implicated in S. aureus adhesion to eukaryotic cells, many of which are known as microbial 

surface components recognizing adhesive matrix molecules (MSCRAMMs).  MSCRAMMs are 

surface exposed proteins that are anchored to the bacterium and interact with one or more known 

host ligands (149).  In general, MSCRAMMs contain a number of different domains; however, 

they typically possess a signal sequence, one or more ligand-binding domains, a repetitive wall-

spanning domain, a non-repetitive wall spanning domain, a membrane spanning domain, and a 

positively charged C-terminal LPXTG anchoring domain (149).  While the functions of most 

domains within MSCRAMMs are known, the function of the repetitive wall-spanning domain is 

incompletely understood.  This domain is hypothesized to serve as a stalk to extent the ligand-

binding domain from the bacterium to the host, while another untested possibility is that the 

repeat domain length is directly correlated to bacterial wall thickness.  
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Among the MSCRAMMs of S. aureus are two primary virulence gene families, the 

clumping factor proteins (ClfA and ClfB), and the fibronectin binding proteins (FnbA, and 

FnbB) that derive notable significance due to their roles in human epithelial attachment, 

invasion, and subsequent virulence (22).  Due to their adhesive properties, the clumping factor 

and fibronectin binding proteins are promising candidates for nasal colonization of S. aureus.  

Clumping factors are surface proteins that have been found to bind fibrinogen and promote 

adhesion to desquamated epithelial cells, and the nares’ of both mice and humans.  clfB has 

previously been observed essential for nasal adhesion in an in vivo model, while clfA has not 

been tested; however, in another study, clfA was identified as being essential for infection 

morbidity and mortality in mice models (36, 92, 168, 204).  Fibronectin binding proteins (FnbA 

and FnbB) adhere to both fibronectin and fibrinogen (206), and have been shown to play a 

critical role in S. aureus adhesion to mammalian cells (63, 175).  Adhesion to epithelia by 

fibronectin binding proteins is accomplished through the interaction between the ligand binding 

domain and the host fibronectin, which in turn interacts with its receptor, integrin (175).   

In addition to the actions of bacterial effectors of nasal colonization, host factors also 

undoubtedly play a significant role in allowing or preventing carriage.  While the exact means by 

which host factors limit nasal colonization of S. aureus is not known, a number of mechanisms 

are known to continuously function to prevent its occurrence.   

1.2.2 Host factors affecting nasal colonization 

A variety of host factors affect the ability of S. aureus to colonize human noses.  Such 

factors are physical barriers, receptors that recognize the pathogen, and innate immune cells; all 

of which act to protect the host from invasion and colonization (153).  Nasal secretions have a 
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prominent role in host defense and contain a variety of factors involved in both adaptive and 

innate immune systems to combat bacterial infection (27).  Immunoglobulin A (IgA) and G 

(IgG) are major mediators of the adaptive immune system secreted by nasal epithelial cells.  

Mediators of the innate immune system in nasal secretions include: lysozyme, lactoferrin, uric 

acid, peroxidase, secretory leukoprotease inhibitor, defensins, and other antimicrobial peptides 

(27, 93); all of which exhibit differing antimicrobial and anti-staphylococcal activities.  

Importantly, most strains of S. aureus are resistant to lysozyme and lactoferrin (14) and of the 

defensins present within nasal secretions, only human beta-defensin 3 (hBD-3) has previously 

been reported as being anti-staphylococcal (128). 

Detection of S. aureus in the nose is mediated by toll-like receptors (TLRs) (69); 

prominent pattern recognition molecules of the innate immune system that recognize common 

microbial motifs (52).  The primary TLR responsible for detecting S. aureus in this milieu is 

TLR2 (69, 183).  Interestingly, the expression of TLR2, as well as the antimicrobial activity of 

hBD-3, have been observed to be suppressed in the nasal carriage state by colonizing strains of S. 

aureus (153).  Additionally, methicillin-resistant S. aureus (MRSA) strains are more resistant to 

hBD-3 than methicillin-sensitive S. aureus (MSSA) strains (128), adding to the likelihood that 

the strains more resistant to innate defense mechanisms are also the ones resistant to antibiotic 

treatments.   
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1.3 Antibiotic treatments and chemotherapies against Staphylococcus aureus 

1.3.1 General therapies against Staphylococcus aureus 

 Myriad anti-S. aureus therapeutics have been utilized to treat S. aureus infection; 

however, resistance to all of these has been observed (74, 164).  The first therapeutic strategies to 

be used against S. aureus were penicillin class β-lactam antibiotics.  Penicillin and methicillin 

were the first anti-S. aureus agents employed; however, resistance to these rapidly emerged.  

Current estimates suggest that 90-95% of all S. aureus strains are resistant to penicillin and 

approximately ~60% are resistant to methicillin (164).  β-lactam antibiotic resistance stems from 

the presence of the mecA gene, which is located on the 21-67 kilobase (kb) mobile genetic 

element referred to as the staphylococcal cassette chromosome mec (SCCmec) (90, 94).   

 The SCCmec element was acquired in S. aureus by unknown mechanisms; however, it is 

thought to be the product of a horizontal gene transfer event from a distantly related species (47, 

74).  Interestingly, SCCmec does not contain phage-related genes, virulence genes, or 

transposases; however, it does contain two recombinases (90).  Once present in the bacterium 

SCCmec becomes inserted into the S. aureus genome near the origin of replication within a gene 

of unknown function (74).  The mecA gene encodes an alternative penicillin binding protein 

(PBP) as compared to the endogenous PBP encoded by the S. aureus genome (126), and conveys 

resistance to methicillin.  In methicillin susceptible S. aureus (MSSA), β-lactams bind to the 

endogenous PBP located in the bacterial cell wall and disrupt synthesis of the peptidoglycan 

layer, thereby killing the bacterium.  In S. aureus containing mecA, the alternate PBP (PBP2) 
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binds β-lactams thereby sequestering these molecules and preventing their disruption of 

peptidoglycan synthesis (42).   

 Treatment of β-lactam resistant S. aureus (also referred to as methicillin or multidrug 

resistant S. aureus; MRSA) is typically achieved using the glycopeptide antibiotic, vancomycin.  

Vancomycin is typically used as a last resort for treating S. aureus and was first implemented in 

1958 (81, 164).  Resistance toward vancomycin was not observed until 1997 in Japan and 2002 

in the United States (81).  Since that time, resistance has not become widespread; however, 

increases in minimum inhibitory concentrations (MICs) have been observed.  Interestingly, 

minor increases in MIC appear to have heightened effects on therapeutic outcome with minor 

increases in MIC reducing the efficacy of vancomycin even though the MIC remains within the 

susceptible range (81). 

 Vancomycin functions by binding to the D-alanyl-D-alanine terminus of the growing 

peptidoglycan layer, thereby preventing cross linking from occurring (115).  In enterococci, 

resistance is caused by the presence of the van gene cluster.  These genes encode enzymes that 

produce altered peptidoglycan precursors (e.g. D-alanyl-D-lactate or D-alanyl-D-ser) that have 

much lower affinity for vancomycin (164).  While some strains of S. aureus have acquired genes 

from the van cluster (21), resistance toward vancomycin appears primarily a novel mechanisms 

resulting in modifications to the cell wall morphology (201).  While different vancomycin 

intermediate or resistant strains exhibit differences in cell wall morphology, an overall 

thickening of the cell wall and an upregulation of D-alanyl-D-alanine precursors are the most 

common phenotypes (81).  The mechanism of cell wall thickening is not currently known; 

however, it appears that the thickened wall hampers the diffusion of vancomycin to its active site 



 11 

at the location of cell wall biosynthesis (81, 173).  Vancomycin and other such therapeutics used 

for S. aureus infection are frequently issued intravenously.  This is due to the metabolites from 

these molecules being ineffective against the bacterium.  One other consideration is that many of 

these therapies, in particular vancomycin, are used as a last resort and thus, routine use is not 

recommended due to the potential for resistance to be acquired. 

1.3.2 Staphylococcus aureus nasal decolonization using mupirocin 

 Nasal colonization of S. aureus increases the likelihood of autoinfection in postoperative 

patients and the immunocompromised (discussed in Section 1.1).  As such a number of studies 

have detailed the benefits of nasal decolonization in clinical settings and the implementation of 

such a decolonization strategy in these settings is gaining increased attention.  Various therapies 

exist for preventing S. aureus nasal colonization; however, none of which are more prominent 

than that of mupirocin ointment. Mupirocin ointment is typically applied to the nasal vestibule 

multiple times daily for multiple days prior to surgery.  It is generally formulated as a 2% (w/w) 

nasal ointment and sold under the trade name, Bactroban
®
 (GlaxoSmithKline, London, UK).  

 Mupirocin is a naturally occurring polyketide antimicrobial compound, synthesized by 

Pseudomonas fluorescens, originally identified as pseudomonic acid (55).  It is an analogue of 

isoleucine (Ile) and is comprised of a pyran ring-containing monic acid joined to a 9-

hydroxynonanoic acid (188).  Antibiotic activity results from the irreversible binding of 

mupirocin to isoleucyl-transfer RNA synthetase (IleRS) which ultimately prevents protein 

synthesis (84, 148).  When mupirocin is bound to IleRS, isoleucine-charged tRNA are not 

continually produced thus, depleted from the bacterium.  Binding of mupirocin to IleRS occurs at 

two sites.  The methyl terminus of the monic acid mimics the side chain of Ile and occupies the 
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Ile-binding site of IleRS while the pyran ring within mupirocin occupies the ATP-binding pocket 

of IleRS (133, 148, 188).  Interestingly, the two amino acids on bacterial IleRS recognizing 

mupirocin are not present in eukaryotes (133). 

 The initial report of the anti-S. aureus activity of mupirocin in 1985 revealed a minimum 

inhibitory concentration (MIC) of 0.25 µg/mL (180); however, by the early 1990’s resistance to 

this chemical therapy had emerged (34, 188).  Currently, there are two levels of resistance for 

mupirocin in S. aureus.  Low-level mupirocin resistance (LL-MR) is defined by a MIC of 8-256 

µg/mL while high-level mupirocin resistance (HL-MR) is defined by a MIC ≥512 µg/mL (24).  

LL-MR is typically obtained with the acquisition of sporadic mutations among the IleRS gene, 

ileS; however, these mutations appear to only minimally affect the growth of the bacterium (87, 

188).  HL-MR among S. aureus has been attributed to the acquisition of plasmids containing a 

eukaryotic-like IleRS that possesses approximately 52% amino acid similarity and 30% 

nucleotide identity to the endogenous IleRS (75, 155, 188).  The mupA gene encoding the 

alternative IleRS is highly conserved in S. aureus, and other staphylococci (32, 156); however, 

the remainder of the plasmid carrying this gene is variable in size, and genetic content (207).   

 Recombination of the mupA gene occurs between plasmids due to the presence of 

recombination sequences flanking the gene (131).  Transfer of a plasmid containing mupA 

between S. aureus and S. epidermidis has been observed in vivo in the hospital setting (88) 

contributing to the spread of mupirocin resistance among S. aureus and other staphylococci.  The 

evolutionary relationships between staphylococci are incompletely understood; however, the 

exchange of genetic material between staphylococcal species is expected to enhance therapeutic 

resistance.  Thus, a detailed understanding of the species phylogeny of Staphylococcus is a 
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necessity for understanding better the pathogen-pathogen and host-pathogen interactions within 

this genus.  Supporting this claim is the observation that S. aureus strains found to previously 

colonize only ungulates and poultry have now been observed to colonize humans as well (204).   

1.4 Evolutionary relationships among Staphylococcus species 

Currently, greater than 60 recognized staphylococcal taxa exist with many of these 

responsible for human disease.  With the exception of S. aureus most taxa of clinical importance 

are coagulase-negative.  Indeed, coagulase negative staphylococci (CoNS) have become an 

increasing concern due to their emerging association with human infection (91) and their 

heightened resistance to conventional therapeutics with the acquisition of the SCCmec element 

(67).  Multidrug resistant CoNS (MR-CoNS) are commonly associated with nosocomial 

infections due to their biofilm formation on medical devices (56).  Interestingly, while S. aureus 

is known to be a highly adaptive pathogen, CoNS are historically more resistant to antibiotics 

(91). 

The distribution of antibiotic resistance and transfer of the SCCmec element is not 

currently well understood and the origin of SCCmec remains unknown; however, there is some 

evidence to suggest that Macrococcus caseolyticus is the parent donor (6).  Transfer between 

related staphylococci is presumed to occur via horizontal gene transfer where recipient 

staphylococci then act as SCCmec donors to other species (67).  Thus, a thorough understanding 

of the relationships between staphylococci is a necessity for understanding and preventing the 

spread of antibiotic resistant strains. 

Species discovery within Staphylococcus is a frequent occurrence with seven new species 
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identified within the last year.  Typically, when novel species are discovered, a number of 

biochemical tests are performed (53) along with an assessment of the 16S ribosomal RNA gene 

(16S rDNA), to estimate which species of Staphylococcus the new taxon is most closely related.  

Historically, this has been sufficient to yield a general understanding of the staphylococcal 

phylogeny; however, high sequence similarity among 16S rDNA hampers a more detailed 

description of evolutionary relationships within Staphylococcus.  As such, more variable genes 

have been assessed and used to infer species relationships in Staphylococcus.  Previous estimates 

of the staphylococcal phylogeny have relied upon simple and fast methods of phylogenetic 

inference (neighbor joining (NJ)) as opposed to more complex approaches such as Bayesian 

inference (BI) or maximum likelihood (ML).  Using BI and ML methodologies, it is possible to 

use complex modeling strategies for phylogenetic inference where dataset partitioning (for 

example, by stem and loop regions of 16S rDNA, and codon position for protein coding genes) 

facilitates the use of more biologically relevant models of sequence evolution.  NJ on the other 

hand, estimates phylogeny based on a model of minimum evolution and does not allow for 

assessment using alternative models of sequence evolution.  As such, previous analyses of the 

staphylococcal phylogeny may be under estimating the degree to which evolutionary changes 

have occurred within this genus.   

Within Staphylococcus, there are two primary lineages.  The most ancestral of these 

comprise the oxidase-positive species of the S. sciuri group (182), which are not frequently 

associated with human infection.  This group is also the most closely related to Macrococcus 

caseolyticus, a species previously belonging to Staphylococcus, but subsequently reclassified 

(100).  Most previous studies have grouped the remaining staphylococcal species (i.e. oxidase-
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negative) into between three and ten different lineages.  Among these are the prominent lineages 

represented by the clinically significant species of S. epidermidis, S. aureus, S. saprophyticus, S. 

simulans, S. intermedius, and S. hyicus (103, 182).  Within these groups, however, relationships 

have been variable depending on the locus analyzed, with no robust overall estimate between 

species.  Additionally, previous studies have typically only included species of human 

importance, failing to include a more complete set of staphylococcal taxa including those species 

not observed to directly colonize humans.  Thus, a more comprehensive estimation of species 

phylogeny within Staphylococcus is required for a fuller understanding of species evolution 

within this genus. 
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2. EVOLUTIONARY ANALYSES OF STAPHYLOCOCCUS AUREUS 

IDENTIFY GENETIC RELATIONSHIPS BETWEEN NASAL 

CARRIAGE AND CLINICAL ISOLATES  

2.1 Introduction 

Staphylococcus aureus is a prevalent human pathogen of increasing concern to public 

health worldwide.  This pathogen is one of the leading causes of hospital-acquired infection, and 

additionally leads to significant levels of infection via community transmission.  Approximately 

20-30% of the global population is persistently colonized with S. aureus in the anterior nares, 

with 60-100% of individuals projected to be transiently colonized at some point during their lives 

(197).  Though nasal carriage of S. aureus is hypothesized to be a major vector for transmission 

throughout hospitals and the community, neither the determinants of nasal colonization nor the 

role of carriage in the propagation of S. aureus infection throughout these settings are well 

established (129). 

Multiple studies have shown that nasal carriage of S. aureus is a risk factor for 

pathogenic infection (104, 200), but just recently was it observed that heightened risk is only 

evident in persistent nasal carriers whereas intermittent and non-carriers exhibit low levels of 

infection (197).  Aside from straightforward incidences in which endogenous strains establish 

pathogenic infections in their hosts, the overall extent to which nasal carriage strains are 

responsible for transmissible infection is not currently known. 

Population structure and genetic diversity of S. aureus has been extensively studied in the 

past using pulse-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) (46, 

49, 60, 107, 127, 166).  While PFGE provides adequate strain resolution, it encounters difficulty 
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in reproducing and comparing data between laboratories.  Thus, MLST is the primary means by 

which S. aureus strains have been analyzed for the past decade.  Yet, because of the slow rate of 

molecular evolution within MLST genes, this methodology is most useful on a global 

epidemiology scale (60, 106, 170).  When local investigations are carried out, where a greater 

level of strain resolution is desired (e.g. local applications such as patient to patient 

transmission), analyses of hypervariable virulence genes is required (109).  Moreover, recent 

interest in sub-classifying sequence types (STs) has also identified virulence genes (e.g. 

clumping factor and fibronectin binding protein gene families) as appropriate targets for 

obtaining high levels of strain resolution (60, 107).  In addition to their hypervariability, 

virulence genes are also attractive targets for the assessment of strain pathogenicity since these 

genes contribute to the invasiveness of the bacterium.   

Previous studies that have focused on virulence genes have typically done so in large 

cohorts of clinical strains where methodologies such as amplified fragment length polymorphism 

typing, spa typing, or double locus sequence typing have been employed (60, 106, 107, 109, 110, 

203).  Few studies have analyzed virulence genes to examine S. aureus within the community, or 

to identify the genetic relationships between nasal carriage isolates and those isolated from the 

clinical setting.  Previous studies have identified that most S. aureus strains, both nasal and 

clinical, belong to five major clonal complexes (CCs); CC5, CC8, CC22, CC30, and CC45 

(203); however, it is not well established whether the genes responsible for the pathogenicity of 

S. aureus are genetically similar between clinical and nasal carriage isolates. 

 Here we have performed evolutionary analyses on the seven MLST gene fragments, as 

well as the hypervariable regions of virulence genes in a cohort of S. aureus nasal carriage 
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strains to analyze the genetic diversity present therein.  Contrary to previous reports, we observe 

higher levels of nucleotide diversity among nasal carriage strains than those for clinical isolates.  

In addition to analyzing the genetic diversity in our cohort of nasal carriage strains, we also 

performed a genetic comparison between these strains and strains of clinical significance.  We 

find that both nasal carriage strains from our cohort and clinical strains isolated from 

symptomatic patients around the world exhibit the same genetic makeup in housekeeping and 

virulence genes. 

2.2 Materials and Methods 

2.2.1 Ethics statement for collection of nasal carriage isolates 

Nasal carriage isolates of S. aureus were collected from willing donors following 

University of Central Florida Institutional Review Board (IRB)-approved procedures.  Written 

informed consent was obtained for all donors throughout the study.  All study coordinators 

involved in the sample collection process were IRB-approved with Collaborative Institutional 

Training Initiative (CITI) certification.    

2.2.2 Bacterial isolates 

Two hundred and twenty-two healthy individuals at the University of Central Florida 

(Orlando, Florida, USA) were prescreened for the presence of S. aureus in their nares.  Of these, 

nasal carriage isolates were obtained from 56 (25.2%) individuals and utilized for genetic 

analyses in this study.  Isolates were collected by inserting a single cotton swab into each of a 

donor’s nostrils and circulating for approximately five to ten seconds.  As part of an ongoing 
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longitudinal study, we obtained multiple samples from repeat donors, at a minimum interval of 

one month, to monitor the population genetics of S. aureus over time.  Thus, our data are a 

reflection of one representative strain from all individuals involved in the current study, unless 

multiple samplings identified different strains from the same individual.  In those cases, all 

different strains from one individual were analyzed.  Nasal samples were plated on Trypticase
TM

 

Soy Agar (TSA) containing 5% sheep’s blood (Becton, Dickinson and Company, Franklin 

Lakes, New Jersey, USA), and incubated at 37
o
C for 16 hours.  Bacterial colonies were 

identified as S. aureus using Staphyloslide
TM

 Latex Test reagent (Becton, Dickinson and 

Company, Franklin Lakes, New Jersey, USA), and positive colonies were inoculated in 5 mL of 

Trypticase Soy Broth and grown for 16 hours at 37
o
C and 250 rpm.  Following inoculation, 1.5 

mL of bacterial culture was pelleted by centrifugation for two minutes at 16 000 x g and culture 

medium was discarded.  Pellets were then stored at -80
o
C until DNA isolation.   

 Twenty-eight clinical isolates of S. aureus were also utilized in this study to determine 

the evolutionary relationships between clinical strains and strains present in the nasal carriage 

population.  Gene sequences from 15 clinical isolates with complete genomes available were 

obtained from the NCBI nucleotide database (http://www.ncbi.nlm.nih.gov/nucleotide/).  The 

previously sequenced clinical strains were N315, Mu50, COL, MRSA252, MSSA476, MW2, 

USA300_FPR3757, NCTC8325, JH1, JH9, Newman, Mu3, USA300_TCH1516, 04-02981, and 

TW20 (Appendix A; Table A.1).  Thirteen additional clinical strains for which clumping factor 

A (clfA), clumping factor B (clfB), and fibronectin binding protein A (fnbA) repeat region 

sequences are available on the NCBI nucleotide database were also utilized in this study 
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(Appendix A; Table A.1) (109).  Refer to Appendix A, Table A.2 for accession numbers to all 

DNA sequences utilized in this study. 

2.2.3 DNA isolation/amplification 

S. aureus genomic DNA was isolated using GenElute
TM

 Bacterial Genomic DNA kit 

(Sigma-Aldrich Co., St. Louis, Missouri, USA), according to the manufacturer’s instructions.  

Following DNA isolation, extracts were quantified and stored at -20
o
C until DNA amplification.   

Amplification of multilocus sequence typing (MLST) gene fragments was carried out 

using primers and protocols described previously (46).  Briefly, 402-516 bp fragments for the 

seven MLST housekeeping genes (arcC, aroE, glpF, gmk, pta, tpi, and yqiL) were amplified and 

sequenced (see below).  Sequence types (STs) were determined for each strain based on the 

alleles identified at each of the seven loci using the S. aureus MLST database 

(http://www.mlst.net) (Appendix A; Table A.1).  For instances in which new alleles, or 

combinations of alleles (i.e. new STs), were identified the MLST database curator was contacted 

and new allele numbers and STs were obtained. 

For clfA, clfB, fnbA, and fnbB, the repeat-containing regions were chosen for molecular 

analysis within this study.  Chromosomal DNA was amplified using primers and protocols 

previously described by Gomes et al. (60).  All primers utilized in this study were synthesized by 

Integrated DNA Technologies, Inc. (Coralville, Iowa, USA).  For PCR amplification, 

approximately 20-30 ng of template DNA was added to a 100 µL reaction containing 0.02 U/µL 

of Platinum
®
 Taq DNA polymerase High Fidelity (Invitrogen Corporation, Carlsbad, California, 

USA), 1X PCR buffer (60 mM Tris-SO4 (pH 8.0), 18 mM ammonium sulfate), 2 mM MgSO4, 

0.3 mM dNTPs, 0.3 µM of each primer, and 2% (v/v) dimethyl sulfoxide.  PCR was conducted 
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using an iCycler
TM

 thermal cycler (Bio-Rad Laboratories, Hercules, California, USA) with the 

following cycling parameters:  1 cycle of 5 min. at 95
o
C; 40 cycles of 30 sec. at 94

o
C, 60 sec. at 

annealing temperature (46, 60), 60 sec. at 72
o
C; 1 cycle of 10 min. at 72

o
C; hold at 4

o
C. 

2.2.4 DNA sequencing 

Following DNA amplification, PCR products were purified using isopropanol 

precipitation and subjected to Sanger sequencing (167) at The Florida State University DNA 

Sequencing Facility (Tallahassee, Florida, USA).  Forward and reverse reads were generated for 

all amplicons and analyzed using BioEdit Sequence Alignment Editor (66) and MEGA 4.1 (184).  

While the use of these sequence analysis programs was sufficient for the fnb genes, additional 

DNA analysis tools were developed for the clf genes.  

2.2.5 Sequence analysis of clf genes 

To analyze the highly variable serine-aspartic acid (SD) repeat region of clfA and clfB, 

we developed sequence analysis software following that described by Koreen et al. (107).  

Briefly, the program analyzes a series of either clfA or clfB DNA sequences, beginning SD repeat 

profiling at the TCN-GAY (where N is any nucleotide and Y is either of the pyrimidines) in the 

first occurrence of GAT-TCN-GAY.  The program then analyzes tandemly repeating blocks of 

18 nucleotides (one repeat unit) unless nucleotides 13 to 15 are of the sequence TCN, in which 

case DNA strand-slippage had occurred and the previous 12 nucleotides are considered as one 

shortened repeat.  Each unique repeat unit is then assigned a number, effectively converting the 

DNA sequence into a numeric profile.  As described in (107), the analysis of clfB was terminated 

with the nucleotide immediately prior to the first occurrence of TCN-GAT-TCA-AGA.  For clfA, 
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this is the first time such a program has been used in profiling the SD repeats, hence no prior 

termination sequence has previously been reported.  Clumping factor A does not contain the 

same terminating sequence as clfB, and therefore, the program was modified to terminate the 

analysis with the nucleotide immediately prior to the first occurrence of TCN-AAC-AAT-AAT.  

Refer to Appendix A, sections A.1 and A.2 for the source code to both, clfA and clfB 

(respectively), SD repeat profiling programs.  

Using this program, genes of interest were converted to a numeric profile based on the 

nucleotide sequence of each repeating unit, as well as the order and number of repeats.  

Therefore, two samples that share identical repeat profiles also share 100% nucleotide identity.  

The program assigns numbers to unique repeat sequences as they are encountered throughout the 

dataset, and as such, no inference can be made as to the percent nucleotide similarity between 

two different repeat numbers (e.g. repeat number one is not necessarily more similar to repeat 

number two than any other repeat number).  

Following the generation of numeric clf repeat profiles, an additional program was 

generated to transform the numeric outputs to color-coded representations.  As input, the plotting 

software uses the numeric clf repeat profiles along with a file containing hexadecimal color 

codes.  All repeat units were assigned a uniquely colored box; therefore, all like-colored boxes 

are 100% identical in nucleotide sequence.  Refer to Appendix A, section A.3 for the source code 

to the graphing software utilized in this study.  

2.2.6 Phylogenetic reconstruction of MLST data 

To determine the genetic relationship between nasal carriage isolates and those isolates of 

clinical origin, phylogenetic analyses of the concatenated MLST data were carried out for all 
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isolates analyzed in this study using the Metropolis-Hastings coupled Markov chain Monte Carlo 

method (BI) 

in MrBayes v3.1.2 (83, 160).  The concatenated MLST dataset was partitioned by locus with the 

nucleotide substitution model for each being determined using the Akaike Information Criterion 

(AIC) within jModelTest v0.1.1 (64, 151).  For loci arcC, glpF, pta, and yqiL the K80 

substitution model (95) was used.  For locus gmk, the K80 plus Gamma substitution model was 

employed where Gamma indicates that, in addition to the substitution matrix determined by the 

model for specific nucleotide pairs, a gamma distribution was also applied to determine the 

overall substitution rate at each nucleotide site (11).  For loci aroE and tpi, the SYM (210) plus 

Gamma substitution model was used in BI runs.  Two independent BI runs were carried out 

using random starting trees with one cold chain and three heated chains.  Each run consisted of 5 

million generations with every 100 steps being sampled.  As verified using Tracer v1.5 (157), 

stationarity was reached after 500 000 generations and a conservative burn-in of 1.25 million 

(25%) generations was performed.   

2.2.7 Computational analyses of MLST data 

Sequence types were assigned to groups using the eBURST v3 program (50) where all 

members of a group share six of seven identical loci with at least one other member of the group.  

Using eBURST to compare nasal carriage strains to clinical isolates, nasal carriage strains were 

treated as the reference set while clinical isolates were treated as the query set.  To identify 

further relationships between isolates, a minimal spanning network of MLST data was generated 

using TCS v2.1 (23). 
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2.2.8 Statistical analyses of gene variability and evolution 

Nucleotide diversities were determined for aligned DNA sequences using DnaSP v5 

(116).  Molecular evolutionary analyses, including codon-based Z-tests and dN/dS ratios, were 

conducted using MEGA 4.1 (184) under the Nei-Gojobori P-distance method (134) using 1 000 

bootstrap replicates.  Indices of discrimination were calculated for all loci using the 

Discriminatory Power Calculator (http://biophp.org/stats/discriminatory_power/demo.php), 

which is a modification of the Simpson’s index of discrimination test (85, 86).   

2.3 Results 

2.3.1 Multilocus sequence typing reveals genetic associations between nasal carriage and clinical 

isolates 

Multilocus sequence typing (MLST) of all 93 S. aureus strains analyzed in this study 

identified 34 different sequence types (STs).  Among the 66 nasal carriage isolates, 26 different 

STs were observed, four of which were new.  Additionally, three new alleles were also identified 

by this study, all at locus tpi.   

Within the cohort of nasal carriage strains analyzed herein, ST30 was most prevalent, 

accounting for ~29% of all isolates.  Sequence types 5 and 8 were also prevalent among the nasal 

carriage strains analyzed within this study, together accounting for ~20% of all isolates tested 

(Appendix A; Table A.1).  While none of the clinical isolates analyzed in this study are of ST30, 

a combined ~32% belong to ST5 and ST8.  The observation of nasal carriage and clinical 

isolates belonging to ST5 and ST8 is in agreement with previous reports in which both nasal 

carriage and clinical isolates belong to these same major clusters (49, 50, 203).  Interestingly, at 
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the ST level, over half of the clinical isolates analyzed in this study (~54%) belonged to STs 

(such as ST105 and ST239) that do not contain nasal carriage strains (Appendix A; Table A.1).  

However, phylogenetic analyses of concatenated STs of all strains in this study revealed a close 

relationship among both nasal carriage and clinical isolates of S. aureus (Figure 2.1).  As can be 

seen in Figure 2.1, the vast majority of clades containing clinical isolates (strain names in red 

text) also contain nasal carriage strains from the cohort analyzed in this study (strain names in 

black text). 
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Figure 2.1. MLST analysis reveals phylogenetic relationships between S. aureus nasal carriage 

and clinical strains.  Bayesian phylogram indicating the evolutionary relationships of S. aureus 

strains analyzed in this study.  Represented are 66 nasal carriage strains (strains colored in black) 

and 27 clinical strains (strains colored in red).  Note that several clinical isolates cluster on the 

same genetic clade as major clinical strains.  Numbers represent posterior probabilities and grey-

filled circles represent nodes receiving 100% posterior probability support.  Colored boxes are 

consistent with strain groupings in Figure 2.2 (below). 

In addition to estimating phylogenetic relationships among strains we also utilized 

eBurst, which grouped the strains into nine clusters and eight singletons (Figure 2.2A).  As with 

the BI, eBURST identified a high degree of relatedness between nasal carriage and clinical 

isolates. While only four STs contain both nasal carriage and clinical isolates, six of the major 

clusters contain both classes of isolates.  eBURST groupings were based on strains sharing six of 

seven identical loci and takes into consideration the possibility for genetic recombination; 

therefore, the level of nucleotide divergence between two different STs contained within the 

same genetic cluster cannot be determined.  To identify whether large-scale nucleotide 

differences were present between isolates grouped in the same cluster, but belonging to different 

STs, a minimal spanning network was generated (Figure 2.2B).  This methodology does not take 

recombination events into consideration, but analyzes all mutations present between samples.  

The minimal spanning network revealed that many of the strains clustered by eBURST and BI 

contained only one or few polymorphisms between one another and may further indicate the 

clonality of the S. aureus genome.  Collectively, all three computational approaches employed to 

identify strain relatedness were highly concordant in revealing the genetic associations between 



 28 

nasal carriage strains belonging to the cohort generated for this study and clinical isolates from 

around the world. 

 

Figure 2.2. Nasal carriage and clinical isolates of S. aureus belong to the same genetic clusters.  

STs written in black are nasal carriage strains, those written in red are clinical strains and STs 

written in green indicate both nasal carriage and clinical isolates are contained within.  (A) 

eBURST application of MLST data from all isolates analyzed in this study.  Numbers represent 

ST.  STs that are linked by a line belong to the same cluster.  Circle sizes are proportional to the 
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number of strains within the ST.  (B) Minimal spanning network of MLST data from the same 

isolates analyzed in (A).  Circles represent STs with the numbers within.  Branches represent a 

single nucleotide change between neighboring STs.  Black squares indicate multiple nucleotide 

changes between adjoining STs with the number of differences indicated by the adjacent 

numbers.  Like-colored circles represent STs belonging to the same cluster, as in (A).  Non-

colored circles are singletons by eBURST analysis.  

Table 2.1. Diversity indices for virulence genes analyzed in this study. 

Locus 
Regions 

Analyzed 

Includes 

clinical 

strains? 

# of 

different 

strains 

# of 

different 

haplotypes 

Index of 

Discrimination 

(ID) (%) 

dN/dS 

ratio 

clfA R Yes 80 54 98.1 0.0750 

  No 52 39 98.4 0.0758 

clfB R Yes 89 58 98.4 0.0625 

  No 61 44 98.6 0.0641 

fnbA D, W, & M Yes 90 25 89.4 0.2017 

  No 63 20 92.1 0.1934 

fnbB D, W, & M Yes 67 22 90.3 0.1498 

  No 56 22 91.5 0.1513 

2.3.2 Virulence gene typing facilitates sub-sequence type strain resolution 

Since MLST is based on the analysis of slowly evolving housekeeping genes within the 

S. aureus genome, we also analyzed hypervariable virulence-related genes to characterize further 

the genetic relationships between nasal carriage and clinical isolates.  Virulence loci within clf 

and fnb gene families were chosen because they have previously been shown to facilitate strain 

resolution beyond that which is achievable using MLST alone (60, 107).  The genetic diversity 

of S. aureus nasal carriage strains was assessed at clfA, clfB, fnbA, and fnbB.  Between 52 (clfA) 

and 63 (fnbA) different isolates were typed over the hypervariable repeat regions of the clf and 

fnb genes (Figure 2.3), facilitating additional sub-ST strain resolution for 16 out of the 66 
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(~24%) nasal carriage isolates that underwent MLST (Appendix A; Table A.1).  As summarized 

in Table 2.1, the clf genes were more variable than the fnb genes, although both gene families 

exhibited high levels of genetic diversity, overall.  Both clf genes exhibited indices of 

discrimination (ID) of approximately 98.5%.  Within the fnb loci, both fnbA and fnbB were 

highly variable; however, fnbA was slightly more variable than fnbB.  With the exception of clfB, 

increased IDs were observed in this study as compared to those previously reported for epidemic 

strains of S. aureus where the IDs for clfA, fnbA, and fnbB were found to be 87.5%, 62.8%, and 

67.9%, respectively (60).  The elevated IDs observed here may, in part, be owed to the larger 

sample size analyzed within the current study.  When epidemic strains were included in the 

analysis with nasal carriage strains, the IDs for all four genes remained relatively unaffected, 

albeit slightly lower than with nasal carriage strains alone (Table 2.1).  

 

Figure 2.3. Genetic structure of clf and fnb.  Double-ended arrows indicate region of analysis for 

this study. For clf genes: S, signal sequence; A, fibrinogen/fibronectin-binding domain; R, 

serine-aspartic acid repeat region; W, wall spanning domain; M, membrane spanning domain.  

For fnb genes: S, signal sequence; A, fibrinogen-binding domain; B, region containing 2 repeats 

of unknown function (only present in fnbA); C, region containing Du repeats with fibronectin-

binding activity; D, region containing 4-5 repeats with fibronectin-binding activity; Wr, proline-
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rich repeat region of the wall spanning domain; Wc, constant region of the wall spanning 

domain; M, membrane spanning domain. 

2.3.3 Virulence genes in S. aureus provide evidence of purifying selection despite heightened 

nucleotide diversity 

Among the virulence genes analyzed in this study, overall nucleotide diversities were 

relatively high, with the clf genes exhibiting approximately three times more nucleotide diversity 

than the fnb genes (data not shown).  Nucleotide diversities represent the average number of 

nucleotide differences between two sequences at a given site.  The nucleotide diversities for clf 

genes were approximately 0.15 while those for the fnb genes were approximately 0.05 (data not 

shown).  Despite high nucleotide variability across all loci, strong purifying selection was 

observed (Table 2.1) by dN/dS ratios of less than 0.1 at both clf loci.  Similarly, fnb genes 

exhibited evidence of strong purifying selection (dN/dS  0.2) despite their heightened 

nucleotide diversity.  These findings suggest that the repeat domains within the virulence genes 

exhibit a specific and essential function, such that natural selection maintains amino acid 

homology in spite of high levels of nucleotide substitution. 

2.3.4 Virulence gene repeat domain lengths are identical between nasal carriage and clinical 

isolates 

The R regions of the clf genes have previously been assumed to function as a stalk for the 

extension of the ligand binding domain from the bacterial cell wall (138).  Thus, longer R region 

lengths may enhance bacterial adherence to nasal epithelia.  Since the repeat region of the wall-

spanning domain (Wr) within fnb genes may also serve a similar function, we extended this 
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hypothesis to include these domains as well.  As such, we aimed to elucidate whether longer 

repeat regions associated with nasal carriage strains as compared to clinical strains of S. aureus.   

Collectively, a large degree of length variability was observed among both nasal carriage 

strains of S. aureus, as well as clinical strains.  For nasal carriage strains, clf R region lengths 

ranged from 816 bp to 1212 bp for clfA and 417 bp to 981 bp for clfB.  Clinical strains analyzed 

in this study exhibited very similar (and often identical) R region lengths to those of the nasal 

carrier strains (Figure 2.4A).  Repeat region lengths within clinical strains of S. aureus ranged 

from 666 bp to 1224 bp for clfA and 615 bp to 939 bp for clfB.  

 

Figure 2.4. Repeat domain lengths of clf and fnb genes are indistinguishable between nasal 

carriage and clinical isolates.  Shown are Box and Whisker plots comparing repeat domain 

lengths between nasal carriage strains of S. aureus and clinical strains.  (A) Repeat domain 

lengths compared at clf loci; and (B) repeat domain lengths compared at fnb loci. 

When considering the degrees of DNA strand-slippage at each clf locus, slippage events 

were three to four times more prevalent in clfA than clfB.  Of 178 unique repeats observed in 
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nasal carriage strains at clfA, 32 (18%) were 12 nucleotides in length.  Of 107 unique repeats 

observed at clfB, only five (4.7%) were 12 nucleotides in length.  When all strains analyzed in 

this study (nasal carriage and clinical) were included in repeat profiling, a total of 185 unique 

repeats were observed at locus clfA with 34 (18.4%) of these being the result of slippage.  When 

all strains were included in the analysis of clfB, at total of 109 unique repeats were observed with 

six (5.5%) being the result of slippage events (refer to Appendix A; Tables A.3 and A.4).   

When analyzing the nucleotide sequences of the fnb genes, the majority of variation laid 

within the Wr domains in the form of indels, resulting in length differences.  No difference was 

observed in total length of the Wr domains between nasal carriage and clinical isolates (Figure 

2.4B).  At fnbA, Wr domain lengths ranged from 345 bp to 471 bp for nasal carriage isolates and 

273 bp and 429 bp for clinical isolates.  At fnbB, Wr domain lengths for nasal carriage isolates 

ranged from 273 bp to 378 bp while clinical isolates ranged from 303 bp and 345 bp.  Based on 

the analysis of repeat domain lengths alone at clf and fnb loci, it was not possible to distinguish 

between nasal carriage and clinical strains of S. aureus.  As such, an analysis of nucleotide 

sequences was carried out to determine if, at the nucleotide level, nasal carriage and clinical 

strains belong to the same genetic lineages, or if distinct populations were evident. 

2.3.5 Nasal carriage and clinical isolates of S. aureus belong to the same genetic lineages 

To identify relatedness between nasal carriage and clinical isolates of S. aureus, clf and 

fnb nucleotide sequences were analyzed.  Collectively, a large degree of nucleotide sequence 

diversity among the carrier strains present within our cohort was observed for the clf genes, as is 

indicated by the number of unique repeat units at each locus (refer to Appendix A; Tables A.3 

and A4).  For clfA, 52 nasal carriage isolates were genotyped and 178 unique repeat sequences 
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were identified.  Interestingly, clfB exhibits a similar index of discrimination to that of clfA 

(Table 2.1); however, only 107 unique repeat sequences were identified from 61 isolates.  While 

a large degree of variability within the clf gene fragments analyzed is the result of point 

mutations, insertions or deletions of repetitive units are the primary means of variability.  As 

such, strain relatedness cannot be determined using algorithms that rely on sequence alignment 

(170).  Therefore, in agreement with previous studies (37, 39, 106, 107, 170, 171), lineage 

assignments were carried out by visual inspection of R domain profiles.  On the basis of R 

domain typing, the 52 nasal carriage isolates for clfA were grouped into six lineages (1-6), and 39 

haplotypes (Appendix A; Table A.1).  Lineage 1 was the largest within the sample set containing 

26 of 52 (50%) nasal carriage isolates (Figure 2.5A).  Interestingly, 24 of the 28 (85.7%) clinical 

isolates analyzed herein also belong to this same lineage, including the highly prevalent and 

virulent USA300 and MW2 (USA400) strains. 
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Figure 2.5. Classification of S. aureus strains reveals lineage associations between nasal carriage 

and clinical isolates.  (A) clfA, N=52 nasal carriage and 28 clinical isolates; (B) clfB, N=61 nasal 

carriage and 28 clinical isolates; (C) fnbA, N=63 nasal carriage and 27 clinical isolates; and (D) 

fnbB, N=56 nasal carriage and 11 clinical isolates. 

 When performing the same R domain analysis at locus clfB, all 61 nasal carriage strains 

belonged to 12 lineages (1-12), and 44 different haplotypes (Figure 2.5B and Table S1).  

Lineages 2 and 3 contain the most nasal carriage isolates with 17 (27.9%) and 16 (26.2%), 

respectively.  As with clfA, a large proportion of the clinical isolates analyzed within this study 

also belong to these two lineages (including again, USA300). Twenty-two of the 28 (78.6%) 

clinical isolates analyzed in this study belonged to lineages 2 and 3.  Seventeen (60.7%) isolates 

share lineage 2 with nasal carriage strains while another five (17.9%) belong to lineage 3.   

Nucleotide sequence analyses of S. aureus isolates were carried out using the D, W (Wr 

and Wc) and M domains of the fnb genes as well.  DNA sequence analysis of these domains at 

locus fnbA made it possible to categorize all 63 strains analyzed into four lineages (1-4) while the 

56 strains analyzed at fnbB were separated into five different lineages (1-5) (Appendix A; Table 

A.1).  At both fnb loci, two separate lineages were identified that contained the majority of nasal 

carriage isolates.  At fnbA, lineages 1 and 4 contained 73% of the nasal isolates with 33.3% and 

39.7%, respectively (Figure 2.5C).  At fnbB, lineages 1 and 3 were most prevalent within the 

data set (76.8% of nasal isolates) with 46.4% and 30.4%, respectively (Figure 2.5D).  Within 

fnbA, a total of 59.2% of clinical strains were identified as belonging to lineages 1 and 4 (14.8% 

and 44.4%, respectively), while 100% of clinical strains, at fnbB, belonged to the two most 

prevalent nasal carriage lineages, 1 and 3 (36.4% and 63.6%, respectively).  The lineage 
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assignment data for both clf and fnb genes identify further the genetic relatedness between the 

nasal carriage strains analyzed in this study and clinically relevant isolates of S. aureus.  

However, to further verify the relatedness we next sought to determine the prevalence of nasal 

carriage and clinical strains of S. aureus exhibiting identical virulence gene sequences. 

 

Figure 2.6. Nasal carriage and clinical isolates of S. aureus share (near-) identical clf repeat 

region sequences.  Shown are clf repeat regions represented as color-coded bars.  Like-colored 

boxes indicate 100% sequence similarity between isolates.  (A) clfA and (B) clfB repeat region 

sequences from a representative sampling of all isolates analyzed within this study.  Isolate 

names written in black are nasal carriage strains and those written in red are clinical strains. 

2.3.6 Nasal carriage and clinical isolates of S. aureus are identical in clf and fnb gene sequences 

At locus clfA, 11 (39.3%) of the clinical isolates (including USA300) analyzed exhibited 

identical nucleotide sequence to isolates from healthy donors.  Refer to Figure 2.6A for a 

representation of the sequence similarities within a subset of the clinical and nasal carriage 

isolates analyzed herein.  For the complete clfA data set, refer to Appendix A, Table A.5 and 
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Figure A.1.  At clfB, nine (32.1%) clinical isolates, including USA300 and MW2, exhibit 100% 

sequence identity to nasal carrier strains analyzed in this study.  Refer to Figure 2.6B for a 

comparison of R regions from a subset of nasal carrier and clinical isolates.  Refer to Appendix 

A, Table A.6 and Figure A.2 for the complete clfB data set.   

When considering the D and W domains of the fnb genes, a large percent of clinical 

isolates exhibited similar, and in many cases identical, genetic sequences to the nasal carriage 

strains.  In fact, 22 (81.5%) of the clinical isolates at locus fnbA shared 100% nucleotide 

sequence identity with nasal carriage isolates.  Similarly, for fnbB, the same was observed for 8 

(72.7%) of the clinical isolates analyzed in this study. Among the clinical strains exhibiting 

100% sequence identity with nasal carriage strains at fnbA are USA300, N315 and COL (Figure 

2.7).  Shown in Figure 2.7 is an amino acid alignment of eight S. aureus strains analyzed in this 

study (four nasal carriage and four clinical strains) revealing the large degree of homology 

between the two classifications of strains.  At fnbB, USA300 was again observed to exhibit 

100% sequence identity with nasal carriage strains (data not shown), further supporting the 

relatedness of nasal carriage strains from the cohort analyzed in this study and clinical isolates of 

worldwide origin. 
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Figure 2.7. Comparison of FnbA amino acid sequences between four representative nasal 

carriage and four representative clinical S. aureus isolates.  Note that identical sequences are 

evident between both nasal carriage and clinical isolates.  D1-D4, repeat region containing 

fibronectin-binding activity; Wr1-Wr7, proline-rich repeat region of the wall spanning domain; 

Wc, constant region of the wall spanning domain.  Isolate names written in black are nasal 

carriage strains and those written in red are clinical strains.  Regions of amino acid variability are 

shaded grey and underlined. 

2.4 Discussion 

Due to the increasing public health concern regarding the severity and rates of S. aureus 

infection throughout the world, it was the goal of this study to perform an evolutionary genetic 

analysis of nasal carriage strains of S. aureus from a healthy population while also analyzing the 

relatedness of these isolates to strains responsible for pathogenic infection.  Using MLST data, 
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computational analyses were conducted to determine the relatedness of clinical and nasal 

carriage isolates.  Bayesian estimation of strain relatedness identified clades containing both 

nasal carriage and clinical isolates, indicating that these two groups share a recent common 

ancestor.  One drawback to this approach is that, presumably due to the low variability and slow 

rate of evolution within housekeeping genes, low posterior probabilities are observed due to lack 

of genetic variability.  As such, eBURST and a maximum parsimony minimum spanning 

network analyses were carried out.  eBURST takes into consideration the fact that genetic 

recombination events within bacterial genomes occur and therefore, highly related strains may 

still exhibit large-scale nucleotide variation at one or few loci.  Here, we generated eBURST 

clusters requiring six of seven identical loci between strains.  Using this method, all of the strains 

analyzed in this study (nasal carriage and clinical) were clustered into few groups, identifying 

high genetic relatedness between the nasal carriage strains analyzed in this study and clinical 

isolates previously identified from around the world.   

While many bacterial genomes exhibit high levels of genetic recombination, S. aureus 

has previously been shown to be highly clonal (49, 203), and therefore, a minimal spanning 

network based on maximum parsimony analysis was also conducted.  Once again, the MLST 

data identified that nasal carriage and clinical strains are genetically related, with only few, if 

any, single nucleotide polymorphisms present between groups.  Moreover, many of the sequence 

types (STs) that were clustered using BI and eBURST were also identified by this method as 

being closely related.   

Collectively, MLST of nasal carriage and clinical strains in this study indicates that these 

strains share common genetic lineages based on housekeeping gene fragments in the common 
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minimal genome.  This finding unto itself is not surprising given previous reports of nasal 

carriage and clinical isolates sharing common lineages (49, 50, 203) and that the nature of MLST 

limits the distinction between strains, which may in turn over represent the relatedness of nasal 

carriage and clinical isolates.  To increase discrimination between strains virulence genes were 

also analyzed.  Not only are virulence genes attractive because of their suitability for analyzing 

small geographic regions and providing sub-sequence type resolution (60, 106, 170), but also 

because of their involvement in the pathogenicity of S. aureus.  Adhesion genes from the 

clumping factor gene family (specifically, clfB) are known to play a significant role in nasal 

colonization (204) while fibronectin binding protein genes are major contributors to the virulence 

of S. aureus in clinical settings (144).  A number of reports utilized genetic typing of these 

virulence genes for their discriminatory capabilities between isolates, particularly those 

belonging to the same ST.  By contrast, the current study is, to our knowledge, the first report on 

the sequence diversity of virulence-related genes from nasal carriage strains of S. aureus from a 

cohort of healthy individuals in the United States. 

 Here, we have observed a discriminatory power among the virulence genes superior to 

that reported previously for only clinical strains (60).  This discrepancy may, in part, be owed to 

the ethnic diversity within our study area, but may also be an indication of the complex 

evolutionary processes of S. aureus; namely the potential for nasal carriage strains to 

continuously adapt to new environments and evade the host immune system (via continual host-

to-host transmission).  Using the enhanced discriminatory power of virulence genes, sub-ST 

strain resolution was achieved for a large percent (~24%) of strains analyzed in this study.  The 

heightened discriminatory ability of virulence genes was attributable to the high degree of 
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genetic variability at these loci.  Interestingly, while a high level of genetic variability was 

identified among the clf and fnb loci, a strong indication of purifying selection was still observed.  

Purifying selection is a reflection that, on average, little to no adaptive diversification (positive 

selection) of the gene’s protein product is being maintained in the population (61), thus 

suggesting a possible role in the preservation of a specific function.  

In order to assess the relatedness of nasal carriage isolates obtained for this study to 

clinical isolates, the first analysis identified length differences within the repeat regions of the clf 

and fnb genes.  The repeat regions of the clf and fnb genes are highly variable in their number of 

repeating units and these regions are presumed to show the greatest variability between different 

strains.  Discrimination based on the number of repeat units within these regions did not facilitate 

distinction between nasal carriage strains and clinical isolates.  Perhaps the mere presence of 

determinant virulence genes is sufficient to confer pathogenicity and is not necessarily related to 

any genetic differences within virulence genes between strains.  This hypothesis requires further 

exploration, as few studies have focused their efforts on the contributions of different genetic 

regions to pathogen virulence.  Initial support to this hypothesis is observed with ClfA.  

Interestingly, the ClfA protein requires a minimum of 80 amino acid residues within its repeat 

domain (68); below this critical length, reduced ClfA activity is observed, while no obvious 

difference in activity is observed when the length increases.  It is possible that the length of the 

repeat domains within clfB or fnb genes is sufficient for protein function and as long as they are 

greater than an, as yet unknown, minimum length, protein function and consequential virulence 

are indistinguishable between strains.   
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While differences in repeat length may not directly promote virulence, they may be 

important in the ability of a strain to colonize nasal epithelia.  The difference between persistent, 

intermittent, or non-carriage may be dependent upon the repeat domain lengths of adhesion 

genes.  Such a consideration has previously been addressed for the coagulase and protein A 

genes, with no correlation between carriage status and repeat length identified (196); however, 

never before has such a longitudinal study been conducted for the clf or fnb genes, which were 

previously identified as putative determinants of nasal carriage. 

Variable number of tandem repeat profiling did not yield clear distinctions between nasal 

carriage and clinical isolates, and as such an analysis of nucleotide sequence variability was 

subsequently carried out for clf and fnb genes.  With increasing frequency, analyses such as this 

for the clf genes are being conducted (60, 107, 161-163), and we feel that a database, much like 

that for spa typing and MLST, would be beneficial for the transfer and continuity of R domain 

data between laboratories.  The software for R region profiling used in this study is publicly 

available, and could be combined in a database with all previous repeat sequences and profiles to 

facilitate faithful identification of strains worldwide.  The large amount of data being obtained 

for clf genes and the observed importance of these genes in the classification of strains 

necessitates the transfer and continuity of genetic data between laboratories.  Using the software 

for clf repeat region profiling developed in this study and multiple sequence analysis of fnb 

genes, the classification of nasal carriage and clinical isolates into genetic lineages was 

conducted.   

A high proportion of clinical isolates analyzed in this study (>75%) belonged to the same 

genetic lineages as nasal carriage strains, revealing an evolutionary relationship stronger than has 
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heretofore been identified.  That being said, it is recognized that a full appreciation for the 

genetic relatedness between nasal carriage and clinical isolates will require future endeavors with 

employment of large scale molecular typing on large cohorts of both nasal carriage and clinical 

isolates from the same geographic region.  Here we have provided a foundation from which to 

build upon where a diverse population of clinical strains from around the world has shown 

genetic relatedness to strains from a nasal carriage population.  Furthermore, as next generation 

sequencing becomes a more feasible option for bacterial typing, and strain collections become 

more prevalent, the relatedness of nasal carriage and clinical isolates will be more easily and 

reliably identified. 

Of particular interest to this study are the molecular similarities between nasal carriage 

strains and the highly virulent community-associated methicillin-resistant (CA-MRSA) strains 

USA300 and MW2 (USA400).  These are the two most prevalent strains responsible for CA-

MRSA infection within the United States, responsible for 97-99% of all community-acquired 

skin and soft tissue infections (72, 96, 130).  Interestingly, while USA300 and MW2 do not 

belong to the same ST, they do share common lineages to each other at clfA and fnbB (Table S1).  

They also share common lineages with many nasal carriage strains at all four virulence genes 

analyzed, belonging to the same lineages as the majority of nasal carriage strains in all cases.  

Collectively, nucleotide diversities within the repeat regions of clf and fnb loci facilitate high 

discriminatory power between strains; however, the molecular data do not distinguish the nasal 

carriage strains belonging to the cohort analyzed in this study from clinical isolates.  In fact, the 

molecular population analyses indicate that nasal carrier strains share molecular lineages, and are 

often genetically identical to those strains of clinical significance.  While the virulence of a 



 44 

bacterial strain is undoubtedly multifactorial, involving an as yet unknown number of virulence 

genes, not to mention host factors, the genetic associations identified within this study between 

clinical and nasal carriage isolates suggest that strain relatedness between nasal carriage and 

clinical isolates may be higher than has previously been recognized.



 45 

3. CHARACTERIZATION OF THE RETROCYCLIN ANALOGUE RC-101 

AS A PREVENTATIVE OF STAPHYLOCOCCUS AUREUS NASAL 

COLONIZATION 

3.1 Introduction 

 Nasal colonization by Staphylococcus aureus occurs in approximately 20-30% of healthy 

individuals (197).  The primary reservoir for S. aureus is the anterior nares, but the occurrence of 

nasal colonization also increases the prevalence of this bacterium on other surfaces of the body 

(104).  As such, nasal carriage of S. aureus is a major risk factor for endogenous infection 

(autoinfection), ranging from minor skin and soft tissue infections to serious bacteremia (24, 

200).  Multiple studies have shown that removal of S. aureus from the nasal vestibule using 

antimicrobial agents (referred to as nasal decolonization), prior to hospitalization, significantly 

reduces incidences of nosocomial infection (10, 80, 105, 200, 202).  For the past 25 years, the 

most common means of nasal decolonization prior to hospitalization has been the use of 

mupirocin ointment; however, resistance to this antibiotic is increasing (24, 35).  Thus, there is 

urgent need to develop novel compounds to prevent or treat S. aureus nasal carriage, particularly 

in preoperative patients.   

Toward this goal, we discovered that the retrocyclin class of θ-defensins is potently 

active against a broad spectrum of microbes including strains of S. aureus (28).  Retrocyclins are 

18-residue peptides that contain three intramolecular disulfide bonds, which stabilize a β-sheet 

conformation (191), and represent the first truly circular peptides of vertebrate origin (114, 185, 

192).  They are extremely stable and can resist boiling, acidic conditions, and other harsh 

environments.  Notably, RC-101 has been recovered and found to remain bioactive after nine 
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days of treatment in an ex vivo model of organotypic human vaginal tissue containing vaginal 

mucus (25).  Similarly, RC-101 was observed to be stable and bioactive after eight days of in 

vivo vaginal treatment in pigtailed macaques (29), thus highlighting the stability of this peptide 

in mucosal environments. 

Whereas both human and non-human primates produce α- and β- defensin peptides (185), 

humans do not produce endogenous θ-defensin peptides because a premature stop codon 

precludes translation (28, 137).  As such, these peptides have been recreated by solid-phase 

synthesis and found to exhibit broad-spectrum antimicrobial activity against a number of 

bacteria, fungi and viruses (28, 114, 185, 192, 208), without any noted cellular toxicity or 

inflammation in vivo, ex vivo and in vitro (25, 29).  One retrocyclin analogue, RC-101, contains a 

single arginine to lysine mutation as compared to wild type retrocyclin, exhibits heightened 

activity in antiviral assays (146), is non-hemolytic to human red blood cells, and is not cytotoxic 

to a number of human cell lines at concentrations up to 500 µg/mL (25, 28, 29, 54, 199).   

In the current study, we have characterized further the antimicrobial properties of RC-101 

against both nasal carriage and clinical isolates of S. aureus.  Importantly, RC-101 prevents the 

adherence and survival of S. aureus on cultured human nasal epithelia while inducing no 

noticeable cytotoxicity or proinflammatory responses.  These findings identify RC-101 as a 

potentially promising therapeutic agent for nasal decolonization of S. aureus and supports further 

development of this peptide as an intranasal antibiotic.   
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3.2 Methods and Materials 

3.2.1 Bacterial isolates 

 Nasal carriage strains of S. aureus were collected from the anterior nares of donors at the 

University of Central Florida (UCF; Orlando, Florida, USA) following the protocol described in 

(113).  Written consent was obtained from all donors and samples were collected under a human 

subjects protocol approved by the UCF Institutional Review Board.  The clinical strains, 

USA300, N315, and COL, were obtained from the Network on Antimicrobial Resistance in 

Staphylococcus aureus (Eurofins Medinet, Inc., Chantilly, Virginia, USA), of which our 

laboratory is a member. 

3.2.2 Peptide synthesis, storage and utilization 

 The 18 amino acid peptide RC-101 was synthesized as previously described (26, 28).  

Following synthesis, lyophilized peptide was stored at -20
o
C until use.  Prior to use, RC-101 was 

reconstituted in sterile water/0.01% (v/v) acetic acid and diluted accordingly to desired working 

concentrations.  Surplus peptide was aliquoted in single-use volumes and stored at -20
o
C.  As 

such, working volumes of peptide were limited to not more than one freeze-thaw cycle prior to 

use. 

3.2.3 Turbidity assay 

 As an initial screen of the anti-S. aureus activity of RC-101, turbidity assays were 

performed as adapted from (135).  Briefly, bacteria were grown to logarithmic growth phase and 

diluted in Mueller Hinton Broth (Sigma-Aldrich Co., St. Louis, Missouri, USA) containing 0.5% 
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sucrose.  Aliquots of approximately 10
4
 colony-forming units (80 µL) were added to the wells of 

a flat bottom 96-well plate (MidSci, St. Louis, Missouri, USA) with 20 µL of either vehicle or 

RC-101 (2.5-20 µM final).  Plates were incubated in a SpectraMax 190 microplate reader 

(Molecular Devices, Sunnyvale, California, USA) at 37
o
C for 16 hrs.  Turbidity readings at 550 

nm were acquired every five minutes following 15 seconds of agitation.  Optical density data 

were plotted against time to generate growth curves for all samples.  The time at which each 

sample entered logarithmic growth was considered the growth threshold (Gt) for these assays.  

The Gt for each sample was compared to the Gt of the vehicle treated sample and the retardation 

in growth was represented as delta Gt. 

3.2.4 Tissue culture 

 Human nasal epithelia (RPMI 2650, American Type Culture Collection, Manassas, 

Virginia, USA) were grown to confluence on collagen-coated Transwell
®
 inserts (12 mm 

diameter, 0.4 µm pore size, Corning Inc., Corning, New York, USA).  Cell culture media 

contained Dulbecco’s Modified Eagle’s Medium (DMEM; Mediatech Inc., Manassas, Virginia, 

USA) with glucose (4.5 g/L), L-glutamine (584 mg/L), and sodium pyruvate (110 mg/L), 

supplemented with 10% (v/v) fetal bovine serum (FBS; Gemini Bioproducts, West Sacramento, 

California, USA), penicillin (100 U/mL), and streptomycin (100 µg/mL).  Antibiotic-

supplemented media were changed daily until epithelia reached confluence.  Following 

confluence, cells were cultured in antibiotic-free media at the air-liquid interface at 37
o
C and 5% 

CO2 for four days prior to use in adhesion assays.  During culturing at the air-liquid interface, 

antibiotic-free media were changed daily. 
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Organotypic airway epithelial tissues (EpiAirway
TM

) were obtained from MatTek 

Corporation (Ashland, Massachusetts, USA) and maintained according to the manufacturer’s 

instructions.  These tissues resemble closely epithelial tissue of the respiratory tract.  They are 

representative of healthy human donors and contain pseudo-stratified, highly differentiated 

tracheal/bronchial epithelia. 

3.2.5 Colony forming unit (CFU) assay 

 To study the bactericidal effects of RC-101 on S. aureus, CFU assays were carried out 

with an adapted procedure from (27, 31).  Briefly, nasal carriage isolates of S. aureus were 

grown to logarithmic growth phase in Trypticase Soy Broth at 37
o
C and 250 rpm and diluted in 

minimal media containing DMEM with glucose (4.5 g/L), L-glutamine (584 mg/L), and sodium 

pyruvate (110 mg/L), supplemented with 0.05% (v/v) FBS to approximately 100 000 CFU/mL.  

S. aureus survivability reactions were prepared by incubating 4 µL of dilute bacteria with 1 µL 

of either vehicle or RC-101 at the appropriate concentration (1-10 µM final).  Cultures of 5 µL 

were grown in sterile 72-well polystyrene Nunc
TM

 MiniTrays (Nalge Nunc International, 

Rochester, New York, USA) with 3 µL of liquid wax overlaid to prevent evaporation.  Cultures 

were incubated at 37
o
C and 5% CO2 for 0, 0.25, 0.5, 1, 2, 3, 6, and 9 hrs. after which time the 

entire sample, or dilutions thereof, were plated on Trypticase Soy Agar (TSA) and incubated for 

16 hrs. at 37
o
C.  The survival of S. aureus was determined by enumerating CFUs from RC-101 

treated samples and comparing to that of the vehicle treated samples. 

 For studies assessing the effects of bacterial starting inocula on RC-101 activity, RC-101 

(10µM final concentration) was incubated with increasing starting concentrations of S. aureus.  

Cultures were incubated at 37
o
C and 5% CO2 for 0, 0.5, 1, 2, 3, 6, and 9 hrs. after which time the 
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entire sample, or dilutions thereof, were plated on TSA and incubated for 16 hrs. at 37
o
C.  The 

survival of S. aureus was determined by enumerating CFUs from RC-101 treated samples and 

comparing to that of vehicle treated samples.  

3.2.6 Epithelial cell adhesion assays 

 Epithelial cell adhesion assays have previously been used to assess the binding of 

bacteria to human epithelia under a number of different conditions (33, 153, 154, 189, 190).  

Here, we have employed this assay to elucidate the nasal epithelial cell adhesion properties of S. 

aureus in the presence of RC-101.  Adhesion assays were carried out as previously described 

(153, 154) using two different models of human airway epithelia.  EpiAirway
TM

 tissues (MatTek 

tissues) or confluent layers of human nasal epithelia (RPMI 2650), exposed to the air-liquid 

interphase for four days (described above) were inoculated with 10-50 bacteria (100 µL) in 

minimal media containing DMEM with glucose (4.5 g/L), L-glutamine (584 mg/L), and sodium 

pyruvate (110 mg/L), supplemented with 0.05% (v/v) FBS.  Inoculated epithelial layers were 

incubated at 37
o
C and 5% CO2 for 15 min. prior to treatment with either vehicle or RC-101 (1-20 

µg/tissue).  At 0, 3, 6, and 9 hrs. post-treatment, wash fractions containing non-adherent bacteria 

were collected by rinsing the apical epithelial cell surface three times in 300 µL of minimal 

media (900 µL total).  Following collection of the wash fraction, adherent bacteria (adhere 

fraction) were isolated by scraping the cell layer, and the sample was collected in 900 µL of 

minimal media.  To liberate bacteria from epithelia, the adhered fraction was then sonicated 

(Model 100 Sonic Dismembrator; Fisher Scientific, Pittsburgh, Pennsylvania, USA) using 10 X 

0.5 sec. pulses on power setting three.  Samples were then plated on Trypticase Soy Agar and 
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incubated for 16 hrs. at 37
o
C.  The survival of S. aureus was determined by graphing CFU from 

RC-101 treated samples and comparing to that of the vehicle treated samples. 

3.2.7 Epithelial cell viability assays 

 Human nasal epithelial cell viability was quantified using a MTT (3-[4,5-

Dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) reduction assay, according to the 

manufacturer’s instructions (Trevigen Inc., Gaithersburg, Maryland, USA).  Cytotoxicity was 

also measured by protease release using the CytoTox-GLO™ Cytotoxicity Assay (Promega 

Corp., Madison, Wisconsin, USA) according to the manufacturer’s instructions.  Cell viability 

for organotypic airway epithelia was measured using a MTT assay from the tissue supplier 

(MatTek Corporation, Ashland, Massachusetts, USA), following the manufacturer’s instructions. 

3.2.8 Detection of proinflammatory cytokines 

 To identify possible proinflammatory effects of RC-101 on human nasal epithelia or 

organotypic human airway epithelial tissues, multiplex enzyme-linked immunosorbent assays 

were performed.  For these assays, conditioned underlay (basal media) was collected after 24 hr. 

and/or 72 hr. incubations of human nasal epithelia, or organotypic airway epithelia, treated with 

RC-101 or vehicle.  Following collection, basal media was subjected to multiplex suspension 

bead arrays assessing 27 human proinflammatory cytokines and analyzed using a Bio-Plex 200 

System (Bio-Rad Laboratories, Inc., Hercules, California, USA) following the manufacturer’s 

instructions. 
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3.2.9 Statistical analyses 

 Statistical analyses were conducted throughout this study using GraphPad Prism 4 

software (GraphPad Software, La Jolla, California, USA).  Bacterial counts from CFU and 

adhesion assays were log10 reduced and statistical analyses were performed on the transformed 

data.  For turbidity, CFU, and adhesion assays, one-tailed Student’s t-tests were performed 

assuming a two-sample unequal variance (heteroscedastic).  For epithelial cell viability assays 

and cytokine analyses, two-tailed Student’s t-tests were performed assuming a two-sample 

unequal variance (heteroscedastic).  For all analyses, p < 0.05 was considered statistically 

significant. 

3.3 Results and Discussion 

3.3.1 Growth of S. aureus is retarded by RC-101 treatment 

 Previous studies have shown that retrocyclin exhibits antibacterial activity against a 

laboratory strain of S. aureus (28); however, the robustness of RC-101 activity has not been well 

characterized, nor has the efficacy of this peptide as a potential therapeutic against S. aureus 

been assessed in any great detail.  As an initial assessment of the robustness of RC-101’s anti-S. 

aureus activity, turbidity assays were performed.  A sampling of five nasal carriage and three 

clinical isolates were treated with RC-101 and their growth kinetics were monitored over a 16 

hour period.  In all assays, RC-101 retarded bacterial growth in a concentration-dependent 

manner.  Shown in Figure 3.1 are turbidity data for S. aureus nasal carriage strains D20-7, D535-

6 and D30, as well as the clinical isolate, USA300.  Data have been transformed to reflect growth 

retardation time (delta Gt) in RC-101 treated samples as compared to vehicle.  RC-101 (2.5 M) 
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was sufficient to retard S. aureus growth for up to five hours beyond vehicle treated bacteria, 

while 20 µM concentrations were observed to retard growth beyond 10 hours in nasal carriage 

strains, and five hours in the hypervirulent USA300 strain.  Clones of D20-7 and USA300 

surviving the 16-hour treatment of 20 µM RC-101 were reassessed by CFU assay for evidence of 

enhanced resistance to RC-101.  No indication of resistance toward RC-101 was observed after 

this initial round of passaging (data not shown).  In addition to the four S. aureus strains shown 

in Figure 3.1, four more strains were also examined using this assay.  Included in these 

additional strains were two nasal carriage isolates, D547-4 and D566-5, and two clinical isolates, 

N315 and COL.  Upon treatment with RC-101, the additional strains were found to exhibit 

similar growth kinetics to those shown in Figure 3.1 (data not shown).  Collectively, RC-101 

exhibited robust anti-S. aureus activity against all strains tested in this study. 
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Figure 3.1. RC-101 retards the growth of nasal carriage and clinical strains of S. aureus.  Shown 

are growth curves for three representative nasal carriage strains (names beginning with “D”) and 

one representative clinical strain (USA300) treated with RC-101.  Delta Gt represents the time 

difference between RC-101 and vehicle treated samples to reach their respective Gt values (onset 

of logarithmic growth phase).  Left panels, representative growth curves for one of three assays.  

Right panels, data representative of three assays.  *p < 0.05.  **p < 0.01.  ***p < 0.001.  n/s, 

non-significant.  P-values indicate statistical significance as compared to vehicle treated samples. 



 55 

3.3.2 RC-101 exhibits bactericidal effects against S. aureus 

 To elucidate further the effects of RC-101 on S. aureus growth, CFU assays were 

performed.  A total of eight S. aureus strains were tested, five of which were nasal carriage 

isolates and three of which were strains of clinical origin.  As shown in Figure 3.2 (top panels), 

RC-101 exhibited a concentration dependent inhibition of growth in nasal carriage strains of S. 

aureus (D20-7, D535-6 and D30) and the clinical isolate, USA300.  Importantly, bactericidal 

effects were observed within 15 minutes of RC-101 treatment.  RC-101 concentrations as low as 

5 µM resulted in significant reductions (p=0.017-0.0002 for all strains) in bacterial growth within 

15 minutes as compared to vehicle treated bacteria.  Peptide concentrations of 10 µM were 

observed to be almost completely bactericidal over the same 15-minute timeframe (p≤0.0014 for 

all strains compared to their respective vehicle treatments) with complete growth inhibition 

observed after 30 minutes.  Within three hours of treatment with RC-101 significant reductions 

in bacterial growth were observed for all peptide concentrations (Figure 3.2, top panels).   
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Figure 3.2. RC-101 is bactericidal toward both nasal carriage and clinical isolates of S. aureus.  

Shown are growth rate data from three nasal carriage (strain names beginning with “D”) and one 

clinical isolate (USA300) of S. aureus in the presence and absence of RC-101.  Top panels show 

RC-101 treatment for 0-3 hours while bottom panels show RC-101 treatment for 3-9 hours.  

Limit of detection equals 200 (i.e. log10=2.3) CFU/mL.  N ≥ 3 for all strains.  Error bars 

represent the mean ± SEM.  *Indicates the starting inoculum.  #p < 0.05.  ##p < 0.01.  ###p < 

0.001.  P-values indicate statistical significance as compared to vehicle treated samples.  For 

clarity of presentation, p-values are shown for three- and nine-hour treatments only. 

 To monitor the propensity for recovery among RC-101 treated strains, growth was 

monitored over an extended time course of nine hours.  A RC-101 concentration of 5 µM 

significantly inhibited bacterial growth in all nasal carriage strains after 9 hours while a peptide 

concentration of 10 µM completely prevented bacterial growth from being observed in these 

same strains over 9 hours (Figure 3.2, bottom panels).  The clinical isolate, USA300 also 

experienced a significant reduction in growth after nine hours of 5 µM RC-101 treatment with a 

10 µM concentration completely preventing growth from being observed over the same nine 

hour timeframe.  In addition to the four S. aureus strains shown in Figure 3.2, four more strains 

were also treated with RC-101, all of which revealed similar growth kinetics (data not shown).  

Among the additional strains were two nasal carriage isolates, D547-4, and D566-5 and two 

clinical isolates, N315 and COL.   

 The starting inocula used for CFU assays (Figure 3.2) approximate the physiological 

concentrations of S. aureus in nasal fluid from carriers (27, 30, 104); however, the effect of 

increased starting inocula on RC-101 activity was also assessed.  As shown in Figure 3.3, 10 µM 
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RC-101 remained bactericidal to S. aureus with starting bacterial concentrations of 

approximately 2.5 million CFU/mL.  Within 30 minutes of treating the 2.5 million CFU/mL 

starting concentration of D20-7 and USA300 with 10 µM RC-101, significant reductions (p=0.04 

and p=0.01, respectively) in viable bacteria were observed (Figure 3.3).  Regardless of starting 

bacteria concentration, a continued reduction in CFU/mL was observed until undetectable levels 

of bacteria remained.  No recovery was observed among RC-101 treated bacteria for up to nine 

hours. 

 

Figure 3.3. RC-101 exhibits robust anti-S. aureus activity in CFU assays with increasing starting 

inocula.  Shown are bacterial growth data for S. aureus strains D20-7 and USA300 treated with 

10 µM RC-101 under increasing bacterial starting concentrations.  Starting inocula 

concentrations are indicated in the legend.  Open symbols with dotted lines represent vehicle 

treated samples while closed symbols with solid lines represent RC-101 treated samples.  Limit 

of detection equals 200 (i.e. log10=2.3) CFU/mL.  N = 3.  Error bars represent the mean ± SEM. 

 3.3.3 RC-101 prevents adherence of S. aureus to human nasal epithelia 

 To test the capacity for RC-101 to prevent adherence of S. aureus to human nasal 

epithelia, ex vivo adhesion assays were performed.  In all strains analyzed, 1 µg to 2 µg of RC-
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101 per tissue was sufficient to reduce S. aureus adherence to nasal epithelia.  RC-101 

concentrations of 4 µg per tissue yielded significant reductions in S. aureus adherence to nasal 

epithelial cells while 10 µg completely prevented attachment (Figure 3.4, left panels).  For these 

assays, three nasal carriage strains were tested along with the hypervirulent USA300 strain.  

USA300 was analyzed as a measure of the effectiveness of RC-101 in preventing adhesion of 

strains frequently encountered in the clinical setting.  To analyze whether RC-101 was inhibiting 

S. aureus growth on human nasal epithelial cells or was merely preventing adherence, the wash 

fraction was also analyzed.  As can be seen in Figure 3.4 (right panels), a significant reduction in 

S. aureus growth was apparent in all isolates, similar in trend to that observed in the adhered 

fraction.  Collectively, treatment with RC-101 exhibited a robust inhibition in human nasal 

epithelial cell attachment and survival of all strains of S. aureus tested.  The simultaneous 

reductions in total CFUs in both the adhere and wash fractions suggests that RC-101 is 

exhibiting anti-S. aureus activity as opposed to an anti-adhesive property.  Anti-adhesive 

property would have been expected to result in an increase in wash fraction CFUs with a 

simultaneous reduction in adhere fraction CFUs.  Therefore, the reduction in total CFUs in both 

fractions suggests a more antibacterial activity by RC-101. 
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Figure 3.4. RC-101 prevents adherence and survival of S. aureus on human nasal epithelia.  

Shown are growth curve data for adhered and wash fractions from human nasal epithelia co-

cultured with S. aureus in the presence and absence of RC-101.  Nasal carriage strains are 

represented by names beginning with “D”.  USA300 represents a clinical isolate.  Limit of 

detection for the three-hour time point is nine (i.e. log10=0.95) total CFU while the limit of 

detection for six- and nine-hour time points equals 18 (i.e. log10=1.26) total CFU.  N ≥ 3 for all 
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strains.  Error bars represent the mean ± SEM.  *Indicates the starting inoculum.  #p < 0.05.  ##p 

< 0.01.  ###p < 0.001.  P-values indicate statistical significance as compared to vehicle treated 

samples.  For clarity of presentation, p-values are shown for nine-hour treatments only. 

3.3.4 RC-101 does not exhibit cytotoxic effects to human nasal epithelia or induce inflammation 

 Though many agents exhibit potent antimicrobial activity, it is important that high levels 

of cytotoxicity do not accompany this activity.  While RC-101 is effective at preventing S. 

aureus adherence and survival on human nasal epithelia, we also analyzed the cytotoxicity 

inflicted upon the nasal epithelia by RC-101 treatment.  Nasal epithelia, under identical 

conditions to those used during adhesion assays, were subjected to either vehicle or 10 µg of RC-

101 for a 24-hour period, after which time MTT reduction assays were performed.  As shown in 

Figure 3.5A, no significant reduction in nasal epithelial cell viability was observed.  Trypan blue 

dye exclusion assays were also carried out to visualize the number of viable epithelial cells after 

24 hours of RC-101 treatment.  As with MTT reduction assays, no cellular toxicity was observed 

as the result of RC-101 treatment (Figure 3.5B).   

To analyze further the possibility of RC-101 cytotoxicity to nasal epithelia, increasing 

peptide concentrations were incubated with human nasal epithelial cells for 24 hours, after which 

time the viability of nasal epithelia was measured as a function of metabolic activity (indicated 

by MTT reduction) along with cellular apoptosis (indicated by protease release using the 

CytoTox-GLO™ assay).  As can be seen in Figure 3.5C and Figure 3.5D, RC-101 concentrations 

of up to 200 µM were not cytotoxic to nasal epithelia.  The notable lack of cytotoxicity to nasal 

epithelia may be owed to the fact that RC-101 is an analogue of a once-functional primate gene.  
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Figure 3.5. RC-101 is not cytotoxic to human nasal epithelia.  Transwell inserts containing 

human nasal epithelia were incubated in the presence of RC-101 or vehicle for 24 hours and 

assayed for cellular viability using A) MTT reduction and B) trypan blue dye exclusion.  Nasal 

epithelia (in 96-well plate format) were treated with increasing concentrations of RC-101 for 24 

hours and assayed for cellular viability using C) MTT reduction and D) protease release 

(CytoTox-GLO™ Cytotoxicity Assay).  Note that RC-101 does not exhibit cytotoxicity to nasal 

epithelia under any of the tested conditions.  N=3 for all assays.  Error bars represent the mean ± 

SEM. 

To assess whether RC-101 promotes an inflammatory response in human nasal epithelia, 

expression levels of 27 proinflammatory cytokines were analyzed.  Nasal epithelia treated for 24 

hours with either vehicle or RC-101 (10 µg/tissue) revealed no significant difference in cytokine 

expression as compared to vehicle treated samples.  Expression profiles for nine representative 

cytokines are shown in Figure 3.6.  The remaining 18 cytokines tested also exhibited similar 
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trends to those shown in Figure 3.6, with no significant difference in expression profile observed 

as the result of RC-101 treatment  (data not shown).  Collectively, the lack of both cytotoxicity 

and an inflammatory response by RC-101 underscores the safety of this peptide in human nasal 

epithelia. 

 

Figure 3.6. RC-101 does not stimulate a proinflammatory response in human nasal epithelial 

cells.  Nasal epithelia were incubated with either vehicle or RC-101 (10 µg/tissue) for 24 hours 

and assayed for the production of human proinflammatory cytokines.  Shown are nine 

representative plots from 27 cytokines analyzed.  IL, interleukin; TNF- , tumor necrosis factor 

alpha; IFN- , gamma interferon; IP-10, gamma interferon induced protein 10.  Note that no 

significant difference in cytokine expression was observed as the result of RC-101 treatment.  

N=3.  Error bars represent the mean ± SEM. 
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3.3.5 RC-101 prevents adherence of S. aureus to organotypic human airway epithelial tissues 

 To mimic better the physiologic state, anti-S. aureus assays with RC-101 were also 

carried out using an organotypic model of human airway epithelia.  Bacterial adhesion assays 

using two carrier strains of S. aureus (D20-7 and D30) were performed on these tissues for nine 

hours in the presence of 4 µg and 20 µg of RC-101 per tissue.  As can be seen in Figure 3.7A, 20 

µg of peptide per tissue completely prevented the attachment of carrier strain D20-7, reducing 

adhesion by more than 2.5 log10 when compared to vehicle treated tissues alone.  Similar data 

were also observed for strain D30 where 20 µg of peptide per tissue completely prevented 

attachment to airway epithelia, again reducing attachment by approximately 2.5 log10 when 

compared to vehicle treated tissues (data not shown).   

 Organotypic airway epithelia were also treated with RC-101 (20 µg/tissue) for 24- and 

72-hour periods, after which time cell viability was measured by MTT reduction.  As with the 

nasal epithelia, no reduction in cell viability was observed in the organotypic model as a result of 

RC-101 treatment (Figure 3.7B and Figure 3.7C).  In addition to measuring the cytotoxic 

potential of RC-101 in organotypic airway epithelia, a panel of 27 proinflammatory cytokines 

were also analyzed after 24 and 72 hours of treatment to assess whether this peptide promotes an 

inflammatory response.  As shown in Figure 3.7D, RC-101 (20 µg/tissue) did not promote 

inflammation in these tissues after 72 hours of treatment, reinforcing the safety of this peptide to 

human epithelia.  Similar expression profiles were also observed for the additional 18 cytokines 

tested, as well as for samples treated for 24 hours with RC-101 (data not shown).  The lack of 

both cytotoxicity and an inflammatory response imparted by RC-101 on these tissues, as well as 

the ability of RC-101 to exhibit antibacterial activities in these tissues support the potential of 
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RC-101 as a therapeutic to combat respiratory infections.  Toward this end, additional research 

detailing the antimicrobial activity of RC-101 on a wide range of microbes will first be 

necessary.  Previous studies have shown retrocyclin is effective against a multitude of bacteria, 

including Pseudomonas aeruginosa (28), which supports the evaluation of RC-101 in 

antibacterial applications other than nasal decolonization of S. aureus (e.g. treatment of cystic 

fibrosis).  

 

Figure 3.7. RC-101 prevents bacterial adherence to organotypic airway epithelial tissue, but does 

not exhibit cytotoxicity or induce a proinflammatory response.  Shown are A) total CFU counts 

when nasal carriage strain D20-7 was inoculated for nine hours on organotypic human airway 

epithelia in the presence of RC-101.  Organotypic airway epithelia were also treated with RC-
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101 or vehicle for B) 24 and C) 72 hours and assayed for cellular viability using MTT reduction.  

D) Following treatment of airway epithelia with RC-101 (20 g/tissue) for 72 hours, cytokine 

production was assessed.  Shown are nine representative plots of the 27 cytokines assayed.  Note 

that RC-101 does not significantly alter expression profiles for any of the tested cytokines.  Limit 

of detection in panel A) is 18 (i.e. log10=1.26) total CFU.  N ≥ 3.  Error bars represent the mean ± 

SEM.  *Indicates the starting inoculum.  **p < 0.001.  P-values indicate statistical significance 

as compared to vehicle treated samples. 

 Collectively, our studies have shown the retrocyclin analogue RC-101 is a potential 

treatment option for the prevention and decolonization of S. aureus nasal carriage, and warrants 

further investigation in this capacity.  Future studies will be instrumental in identifying the 

mechanism of the anti-S. aureus action of RC-101, as well as the efficacy of this peptide as a 

treatment option, or preventative measure, for S. aureus nasal colonization. 
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4. PHYLOGENETIC RELATIONSHIPS AMONG STAPHYLOCOCCUS 

SPECIES INFERRED FROM MULTILOCUS DATA 

4.1 Introduction 

 The genus Staphylococcus currently contains more than 60 taxa.  Many are of clinical, 

agricultural, and economic interest because they lead to high levels of infection among human 

populations or agricultural loss within the dairy, swine, and poultry industries.  Moreover, 

multiple species within this genus are common pathogens in non-human animals and thus should 

be monitored with concern as these animals provide reservoirs for pathogenic bacteria (70, 141, 

165).  Although seemingly uncommon, host “jumping” is an important consideration of species 

evolution, much like what has been observed to occur with S. aureus and human, avian (120), 

and ungulate (165) hosts.  As such, a thorough understanding of species relatedness is a necessity 

for understanding host-pathogen and pathogen-pathogen relationships within this genus (57, 62, 

97).   

 Many previous estimates of the staphylococcal phylogeny have been based on single 

locus gene trees, which in many cases, exhibit marked discord.  As such, robust species tree 

estimations have proved to be difficult.  Also, due to the public health impact of staphylococcal 

species, many previous studies have primarily been concerned with those species responsible for 

human infection and as such, species that have not previously been found to directly colonize 

humans have been underrepresented.  Thus, a robust and comprehensive assessment of 

staphylococcal evolution is a necessity for understanding better the evolutionary context and 

diversity of this important genus.  The frequency with which novel species are being discovered 
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(six new species in 2010 alone) also heightens the necessity for a thorough understanding of 

staphylococcal phylogenetics.    

 Historically, staphylococcal species identification has been a laborious task, requiring 

multiple biochemical and genotypic methodologies (53).  Fortunately, PCR-based analyses have 

become commonplace as part of the identification process of novel species (and differentiating 

closely related species), potentially relieving the necessity for many of the phenotypic analyses.  

While DNA sequencing has improved the understanding of staphylococcal (and many other 

microbial) phylogenies, molecular data are frequently analyzed as single genetic loci where 

multiple gene trees are generated using different gene fragments in isolation.  The inherent 

caveats in this approach are that marked discord is observed between gene trees, and the lack of 

resolution and support, prevents any reliable estimation of the overall species phylogeny.  

Adding to this complication is the widespread use of the 16S rDNA fragment that exhibits only 

limited variability for phylogenetic reconstruction. 

 As with most bacterial systems, 16S rDNA continues to be the most common method for 

staphylococcal species identification, although its utility is limited due to high sequence 

similarity among different staphylococcal species (101, 186).  For this reason, increased 

emphasis has recently been devoted towards identifying additional genes for use in species 

identification that offer greater taxonomic resolution between closely related species, while also 

limiting the incidence of misidentification.  Such genes as rpoB ( -subunit of RNA polymerase), 

tuf (elongation factor Tu), and dnaJ (heat shock protein 40), have been found useful for the 

identification of staphylococcal species, although with the exception of one study where dnaJ 
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and rpoB were concatenated and assessed under a single evolutionary model (71), each has only 

been analyzed singularly in a phylogenetic context.   

 The central goal in this study was to infer a robust and comprehensive estimate of the 

phylogeny among staphylococcal species by utilizing evidence from multiple loci 

simultaneously.  Here, we analyzed a large multilocus Staphylococcus dataset in multiple ways 

to thoroughly explore the phylogenetic signal in the data, and provide robust confirmatory 

evidence for the relationships among species.  We first analyzed the combined four-gene dataset 

using partitioned Bayesian and maximum likelihood analyses, in which a single species tree was 

inferred.  Such probabilistic methods of phylogeny are particularly powerful, but their accuracy 

can be dependent on the complexity and biological realism of the models of sequence evolution 

used.   

 There is a tradeoff between having enough parameters to accurately capture the 

complexity of sequence evolution in a multilocus dataset, while not having more parameters than 

can be accurately estimated from the data (13, 18-20).  We therefore tested multiple differently 

partitioned model schemes to identify which best fit the multilocus dataset.  Generally, we expect 

such partitioned model analysis of the combined (concatenated) dataset will have the best power 

for inferring the phylogeny of Staphylococcus, as long as basic assumptions of the approach are 

met.  The most important of these assumptions is that all the underlying gene trees are the same 

as the species tree.  There are, however, plausible scenarios whereby the gene trees and species 

tree are not the same (40, 41), or where systematic error in gene-tree estimation may lead to 

overconfidence in an incorrect species tree (17).  There is some indication, however, that in such 

cases, maximum likelihood bootstrap support values may be more sensitive to conflicting 
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phylogenetic signals in the data than Bayesian posterior probability support for nodes, although 

both concatenated data analysis approaches are likely to experience some error (48, 79, 205).   

 Therefore, we also used an alternative approach to estimate relationships among species 

of Staphylococcus in which gene trees are estimated separately, and jointly considered to 

estimate an underlying species tree.  This approach, called Bayesian Estimation of Species Trees 

analysis (45), thereby avoids concatenation of multiple loci, and estimates a species tree based on 

a model that accounts for deep coalescence of gene trees.  Although this approach does not 

specifically model all possible scenarios that may violate the assumptions of the concatenated 

analysis, comparisons of results between this approach and concatenated analyses provides 

added perspective on the relative robustness of species-level phylogenetic inferences. 

4.2 Methods and Materials 

4.2.1 DNA sequence acquisition and alignment 

 DNA sequences for a total of four genes from 57 staphylococcal species, and two 

outgroup species (Macrococcus caseolyticus - strain JCSJ5402, and Bacillus subtilis - strain 168) 

were downloaded from NCBI's GenBank.  For each species included in the analysis, sequences 

were specifically downloaded from the type strain.  The four loci collected included the non-

coding 16S rRNA gene (16S rDNA), and the three protein coding genes: dnaJ, rpoB, and tuf.  

The list of all species analyzed in this study with the accession numbers for each of the four gene 

fragments is given in Appendix B, Table B.1. 

 Nucleotide sequences were aligned using ClustalW in MEGA 4.1 (184), with manual 

adjustment to ensure that complete codons remained intact for downstream analyses.  The 
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concatenated alignment totaled 3 521 nucleotides for each species.  Regions of high variability 

were omitted from the alignments because assessment of homology was questionable (18).  

Secondary structure predictions (i.e. stem and loop regions) for 16S rDNA fragments were 

estimated using the RNAalifold approach (8, 76).  Nucleotide diversities and species divergence 

calculations were performed using MEGA 4.1 (184) and DnaSP v5 (116). 

4.2.2 Nucleotide model selection 

 Models of nucleotide evolution for each gene and nominal partition of the data were 

estimated using jModelTest v0.1.1 (64, 151) based on Akaike Information Criterion (AIC).  For 

the purpose of model testing (and later partitioned Bayesian analyses) we divided the dataset by 

gene, and into biologically relevant subsets: coding versus non-coding gene fragments, codon 

position, and stem versus loop secondary structures (for 16S rDNA).  These individual partitions, 

and the best-fit evolutionary model selected for each partition, are shown in Appendix B, Table 

B.2.   

 For analyses of the combined data with partitioned models, we formulated nine different 

partitioning schemes.  These were designed to provide a hierarchical spectrum of model 

complexity, and parameter richness, with increasing partitioning of biologically reasonable sets 

of the data (Table 4.1).   The simplest model (MB1) was a single evolutionary model (GTR + I) 

fit to the entire dataset followed by additional models (MB2-MB9) that were created by the 

addition of dataset partitions among and within non-coding and coding gene fragments (Table 

4.1).   
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Table 4.1. Description of alternative model partitioning strategies tested for fit to the combined 

nucleotide data.    

Model 

name 

# of 

partitions 

# of free model 

parameters 
Description of model partitions 

MB1 1 10 Single model for concatenated dataset 

MB2 2 13 16S; All protein coding gene fragments (dnaJ; rpoB; tuf) 

MB3 4 29 
Independent partition for each gene fragment (16S; dnaJ; 

rpoB; tuf) 

MB4 7 48 
16S; two partitions for each gene fragment (codon 

positions 1 and 2; codon position 3) 

MB5 8 62 
16S, stems; 16S, loops; two partitions for each gene 

fragment (codon positions 1 and 2; codon position 3) 

MB6 10 78 
16S; three partitions for each gene fragment (codon 

positions 1, 2, and 3, separately) 

MB7 11 92 
16S, stems; 16S, loops; three partitions for each gene 

fragment (codon positions 1, 2 and 3, separately) 

MB8 3 26 
16S, stems; 16S, loops; All protein coding gene 

fragments (dnaJ; rpoB; tuf) 

MB9 5 43 
16S, stems; 16S, loops; Independent partition for each 

protein coding gene fragment (dnaJ; rpoB; tuf) 

4.2.3 Bayesian phylogenetic analysis 

 Bayesian inference (BI) was carried out using the Metropolis-Hastings coupled Markov 

chain Monte Carlo method in MrBayes v3.1.2 (83, 160) and BEST v2.3.1 (118).  All Bayesian 

phylogenetic analyses performed in this study were carried out using the STOKES IBM High 

Performance Computing Cluster at the University of Central Florida.  MPI-enabled versions of 

MrBayes v3.1.2 and BEST v2.3.1 were compiled and run in parallel (3).  For each BI run, gaps 

in alignments were treated as missing data.  For each analysis, two independent BI runs were 

carried out using random starting trees with one cold chain and three heated chains (following 

program defaults).  Each model was assessed in triplicate with summary statistics being 

estimated from all runs.   
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 In addition to performing BI runs on the unpartitioned multilocus dataset (using the 

evolutionary model specified by AIC), eight additional models were assessed where independent 

models of evolution were applied to different nucleotide regions within the combined dataset 

(refer to nucleotide model selection section).  This was achieved by using the “unlink” command 

in MrBayes v3.1.2.  Each BI run consisted of 4 million generations with every 100 steps being 

sampled.  As verified using Tracer v1.5 (157), stationarity was reached in all BI runs prior to 500 

000 generations and a conservative burn-in of 1 million (25%) generations was performed.   

 In addition to reconstructing phylogenies using MrBayes v3.1.2, Bayesian phylogenetic 

reconstruction was also performed using BEST v2.3.1, which is a modified version of MrBayes.  

In BEST, each gene was assigned a single model of nucleotide substitution (based on AIC, 

estimated in jModelTest).  BI runs using BEST v2.3.1 were performed using 4 million 

generations with sampling every 100 steps and a burn-in of 1 million generations.   

4.2.4 Assessment of BI runs 

 All partitioning strategies were run in triplicate to verify reproducibility.  Subsequently, 

BI runs under each model were assessed using multiple criteria to determine the success of each 

model and the overall best-fit model.  Bayes factors (BF; 2∆lnB10) were calculated from 

estimates of the harmonic mean of the posterior distribution of cold chain likelihoods.  

Consistent with previous reports (13, 19, 143), we set a cutoff of BF>10 to support one model 

over another.   Akaike weights (Aw) (1) were also used to identify best-fit partitioned models 

(20).  Initially AIC values were calculated by the equation AIC = -2lnL + 2k where k equals the 

total number of free parameters within the model.  For small samples sets, where the sample size 

(n) to free parameter (k) ratio is <40, it has been suggested that a small-sample bias adjustment 
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be applied to the AIC calculation, thus calculating AICc instead (89, 194).  The sample size of the 

staphylococcal dataset (with outgroups) is 59 and the minimum number of free parameters was 

10 for model MB1.  As such, the n/k ratio was always <40, so we calculated the AICc instead.  

The equation for AICc = -2lnL + 2k + 2k(k+1)/n-k-1.  The ∆AICc was then calculated by 

subtracting the model with the minimum AICc (AICcmin) (i.e. highest lnL) from the ith model 

using the equation ∆AICci = AICci – AICcmin.  Following calculations of the ∆AICc for each 

model, Aw were calculated using the equation Aw = e
(-∆AICci/2) 

/ ∑ e
(-∆AICci/2)

.  By this equation, 

the relative likelihood of a model given the data is normalized over all models and thus, the 

greater the Aw for a given model, the greater the relative support for that model (19).   

 Further assessment of model performance was based on examining the output of model 

parameters and carried out by analyses of multiple additional features.  Posterior distributions of 

parameters and analysis of trace plots were assessed for failed convergence and stationarity using 

Tracer v1.5 (157).  Also, because model overparameterization has been linked to estimates of 

tree length in partitioned Bayesian analyses (123), we also compared tree length estimates among 

runs. 

4.2.5 Maximum likelihood analysis 

 Phylogenetic reconstruction using maximum likelihood (ML) analysis was carried out 

using the program GARLI v.2.0 (211), using default parameters except where specified.  

Phylogenetic estimates using ML were performed using both the combined, unpartitioned dataset 

as well as the combined dataset partitioned by locus (Appendix B; Table B.2).  Five ML search 

replicates were run for each dataset using random starting trees, and up to five million 

generations were employed for each run unless the scoring topology lnL did not improve by ≥ 
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0.01 for 20 000 generations, in which case the run was terminated prematurely and the next 

bootstrap replicate was begun.  Two hundred bootstrap replicates were conducted for each run 

and consensus trees were generated using the SumTrees v.3.0 software which is part of the 

DendroPy v.3.7 phylogenetic computing library (178).  Likelihood ratio tests (LRTs) (51, 82) 

were performed to compare competing model partitioning schemes, M0 and M1.  Statistical 

support for model M0 over M1 (or vice versa) was assessed using the Chi-square distribution for 

q degrees of freedom (df) where q equals the difference in the number of free parameters 

between model M0 and M1 (df = 19 in this study) (82).   

4.3 Results 

4.3.1 Gene fragments used for analyses contain differing degrees of variability 

 Among the four gene fragments analyzed in this study, 3 521 nucleotides were included 

(1 481 from 16S rDNA, 816 from dnaJ, 474 from rpoB, and 750 from tuf) for 59 different taxa.  

The dataset contained 1 016 parsimony-informative sites and 2 142 conserved sites.  The 

nucleotide diversity of the 16S rDNA fragment was 0.029 substitutions (subs.) per site, while 

that for dnaJ, rpoB, and tuf was 0.241, 0.147, and 0.097 subs. per site, respectively.  The lowest 

interspecies divergence was between S. pseudintermedius and S. delphini (0.014 subs. per site).  

The highest estimated evolutionary divergence within the complete dataset was between S. 

piscifermentans and the outgroup species, B. subtilis (0.266 subs. per site), while the highest 

level among staphylococcal taxa was between S. piscifermentans and S. vitulinus (0.182 subs. 

per site). 
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4.3.2 Dataset partitioning improves likelihood estimates of Bayesian phylogenetic analyses 

 Regardless of partitioning strategy employed, all Bayesian inference (BI) runs yielded 

highly reproducible phylogenetic inferences (Appendix B; Figure B.1).  Within BI runs, log-

likelihood (lnL) estimates rapidly reached stationarity and convergence.  Log-likelihoods ranged 

from -38830.66 (MB1) to -37421.36 (MB7) with intermediate lnL generally increasing with 

partition complexity (Figure 4.1).  Increased dataset partitioning improved posterior lnL values, 

except where less partitioning occurred within protein coding regions, but 16S rDNA was 

partitioned by stems and loops (Figure 4.1, compare MB5 and MB6).   

 

Figure 4.1. Increasing model complexity improves posterior likelihood estimates of phylogeny. 

Shown are log-likelihood plots comparing each partitioning strategy assessed in this study.  Note 

that as model complexity increases so do posterior lnL.  Error bars represent the mean ± 95% 

confidence interval. 
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 Dataset partitioning for BI runs ranged from the most simple (unpartitioned) to highly 

complex (11 partitions; Table 4.1).  Initial assessments of Bayes factors (BF; 2∆lnB10) were used 

to compare topological likelihoods across each different model.  As shown in Table 4.2, a large 

disparity between the lnL from various partitioning strategies was observed.  Partitioning 

strategy MB7 yielded the highest lnL (Figure 4.1) with a BF>230 that of the next best model 

(MB5) and >2800 compared to the unpartitioned model (MB1).  Model MB7 was the most 

complex strategy (11 different partitons) with a separate model for each codon position of each 

protein-coding gene, as well as stem versus loop regions of 16S rDNA (Table 4.1).  The model 

with the second highest likelihood was MB5 whereby the 16S rDNA fragment was again 

partitioned by stem and loop position, however, only two independent partitions were applied to 

each individual protein coding gene fragment (codon positions 1 & 2; and codon position 3).  

Using AICc for the Aw calculation identified model MB5 as the best-fit model (Aw=1.000; 

Table 4.2).  Thus, based on lnL-centric criteria, models MB5 and MB7 are the preferred models.   

 Inspection of TL identified that the more highly partitioned models (MB4-MB7) yielded 

TLs 15 as compared to the less partitioned models (MB1-3; MB8-9) where TLs were  7 

(Appendix B; Figures B.2 and B.3).  The more highly-partitioned model runs with high TLs also 

tended to show very high TL variance among generations, resulting in quite broad TL posteriors 

(Appendix B; Figures B.2 and B.3).  Considering this evidence for unreliability in the more 

highly partitioned model runs, we tempered our choice of partitioning scheme.  A combination of 

lnL (BF and Aw) and TL reliability criteria suggest that MB8 is the preferred partitioned model, 

since it had better lnL than other models (e.g., MB1-2) while resulting TL estimates were 

apparently uninflated and of low variance (Appendix B; Figures B.2 and B.3).  Hereafter, we 
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discuss results based on the BI runs from model MB8, and identify any notable differences 

between this model and others (particularly MB5 and MB7).   

Table 4.2. Bayes factors and Akaike weights reveal differences in model fitness for the different 

partitioning strategies applied to the multilocus dataset. 

M1  
a
2∆lnB10 Akaike 

Weight M0  MB1 MB2 MB3 MB4 MB5 MB6 MB7 MB8 MB9 

MB1 --- 412.11 700.90 2371.08 2584.86 2462.04 2818.59 603.91 891.39 0.000 

MB2 -412.11 --- 288.79 1958.97 2172.74 2049.93 2406.48 191.80 479.28 0.000 

MB3 -700.90 -288.79 --- 1670.18 1883.96 1761.14 2117.70 -96.99 190.49 0.000 

MB4 -2371.08 -1958.97 -1670.18 --- 213.77 90.96 447.51 -1767.17 -1479.69 0.000 

MB5 -2584.86 -2172.74 -1883.96 -213.77 --- -122.82 233.74 -1980.95 -1693.46 1.000 

MB6 -2462.04 -2049.93 -1761.14 -90.96 122.82 --- 356.56 -1858.13 -1570.65 0.000 

MB7 -2818.59 -2406.48 -2117.70 -447.51 -233.74 -356.56 --- -2214.68 -1927.20 0.000 

MB8 -603.91 -191.80 96.99 1767.17 1980.95 1858.13 2214.68 --- 287.48 0.000 

MB9 -891.39 -479.28 -190.49 1479.69 1693.46 1570.65 1927.20 -287.48 --- 0.000 
a
Positive Bayes factors (2∆lnB10) support model M0 over model M1 and negative values support 

model M1 over model M0.  Bayes factor support values >10 are shown in bold.   

4.3.3 Bayesian inference of partitioned datasets reveals highly supported relationships among 

staphylococci 

 Regardless of the model under which the staphylococcal dataset was analyzed, high 

overall nodal support was observed for nearly all nodes in the tree.  Tree topologies were highly 

concordant between different partitioned model schemes, with only a single topological 

inconsistency between models.  Beside this single topological difference, nodal support differed 

by very little among models (Pp≤0.02), with only two cases (MB1 and MB6) in which a single 

node differed by a Pp=0.05.  In addition to the placement of S. devriesei in Figure 4.2A, this 

species was estimated to form a clade with S. lugdunensis under four models (MB2-4, and MB6) 

while also being estimated to diverge after S. lugdunensis, forming a single species sister lineage 
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to a clade containing S. haemolyticus and S. hominis under two models (MB5 and MB7; data not 

shown).  Nodal support for these alternative relationships was quite low (avg. Pp=~0.64), 

however, in comparison to the support of S. devriesei forming a clade with S. haemolyticus 

(Pp=0.85; Figure 4.2A). 

 

Figure 4.2. Bayesian MCMC analysis estimates a strongly supported staphylococcal phylogeny.   

Shown is A) a 50% majority rule phylogram from BI runs under the combined, partitioned 

dataset in MrBayes and B) a consensus cladogram from BI runs analyzing the unconcatenated 



 79 

dataset using BEST.  Both inferences of topology are highly concordant with only minor 

variations.  Red boxes highlight topological differences in B).  Branch lengths in B) are not 

informative.  Numbers represent posterior probabilities with grey-filled circles representing a 

posterior support of 1.00. 

 Bayesian concatenated phylogenetic estimates supported strongly (Pp=1.00) the 

separation of staphylococcal species into two deeply-diverging major clades (Figure 4.2A).  One 

of the two clades contained all of the oxidase positive staphylococcal species (frequently referred 

to as the Sciuri group), with the second group containing all other oxidase negative 

staphylococcal species (Figure 4.2A).  The single lineage S. auricularis formed the sister group 

to all other members of this second group, with the next most basally-diverging lineage in this 

clade including the following species: S. simulans, S. condimenti, S. carnosus (both subspecies), 

and S. piscifermentans (Pp=1.00).  The subspecies of S. carnosus proved to cluster tightly 

together, as expected, and formed the sister group to S. condimenti. 

 The next major divergence within the staphylococcal tree was that of a strongly 

supported clade (Pp=1.00) containing the pathogenic species S. saprophyticus (Figure 4.2A).  

This clade contained many members of the polyphyletic group of coagulase negative, novobiocin 

resistant species, and included the recently described species S. massiliensis (2) and S. 

pettenkoferi (193).  Following this divergence, species of heightened clinical significance 

diverged, including S. aureus, S. epidermidis, S. warneri, S. haemolyticus and S. lugdunensis, 

which formed a well-supported clade (Pp=1.00) (Figure 4.2A).  We also found that the most 

recently discovered Staphylococcus species, S. agnetis (187) formed a strongly supported clade 

(Pp=1.00) with S. hyicus, for which S. chromogenes was the sister lineage.   
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4.3.4 Broad agreement between concatenated and unconcatenated analyses 

 Estimation of staphylococcal phylogeny was also performed on the unconcatenated 

dataset using Bayesian Estimation of Species Trees (BEST) analysis (118).  The BEST species 

tree estimate (Figure 4.2B) was nearly identical in topology to the BI concatenated data result, 

with overall high nodal support for all but four nodes which received Pp<70.  Overall, the nodal 

Pp support values from MrBayes and BEST were generally quite similar, with a clear linear 

trend between Pp for one method versus the other (Figure 4.3).   

 
Figure 4.3. Phylogenetic relationships and nodal support are highly similar between MrBayes 

and BEST.   Shown is a scatter plot comparing the differences in posterior probabilities (Pp) 

between MrBayes and BEST for identical nodes (Figure 4.2).  Open circles represent discordant 

nodes between MrBayes and BEST where MrBayes has been taken as the reference.  Posterior 

probabilities from discordant nodes could not be matched between methodologies and thus, 

BEST Pp for those nodes are not relevant.  Open circles are only present to reveal the MrBayes 

Pp at discordant nodes.  Note that the overall nodal support between MrBayes and BEST are in 

strong agreement. 
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 There were, however, several alternative relationships resolved in the BEST tree (Figure 

4.2B, red-indicated nodes) relative to the partitioned-model BI tree (Figure 4.2A).  These 

included the earlier (more basal) divergence of S. felis and the clade containing S. chromogenes, 

S. hyicus, and S. agnetis in the BEST results, although this was weakly supported (Pp<0.50; 

Figure 4.2).  BEST analysis also resolved (with weak support) a slightly different arrangement 

with S. devriesei and S. lugdunensis sharing a clade (Pp=0.56), contrasting the combined data BI 

analysis that suggested S. devriesei and S. haemolyticus form an exclusive clade (Figure 4.2).  

An additional discordant node between Bayesian methodologies involved the relationship 

between S. condimenti and S. carnosus (both subspecies) (Figure 4.2B).   This relationship 

inferred by BEST is the only difference compared to the combined data BI tree in which both 

results have conflicting relationships with strong Pp support.  While the combined BI tree 

inferred a clade containing both subspecies of S. carnosus (Pp=1.0), the BEST tree inferred a 

clade containing S. condimenti and S. carnosus carnosus, with S. carnosus utilis as its sister 

lineage (Pp=1.0 for both clades; Figure 4.2).   

 The concatenated-data maximum likelihood estimation of the staphylococcal phylogeny 

was consistent with reconstructions from concatenated BI and BEST methods (Figure 4.4).  

Maximum likelihood inference under a single evolutionary model yielded a lnL of -39186.39 

while partitioning the concatenated dataset by individual gene yielded a lnL = -36632.34.  The 

likelihood-ratio test supported the partitioned dataset as the best-fit model (p<0.0001; likelihood-

ratio (-2∆lnL) = 5 108; degrees of freedom (df) = 19).  Topologies estimated under both models 

were identical except for a single discordant node: S. devriesei formed a single-species sister 

taxon to S. haemolyticus and S. hominis in the unpartitioned dataset (Bootstrap support 
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(BS)=59%), while in the dataset partitioned by individual gene, S. devriesei shared a clade with 

S. haemolyticus (BS=72%).  Within the ML topology (Figure 4.4), the clade containing S. 

muscae, S. rostri, and S. microti diverged more deeply from the larger clade containing S. felis, 

S. hyicus, and S. intermedius (similar to the BI concatenated analysis; Figure 4.2A) as opposed to 

S. felis being the most divergent species from this clade and forming a sister lineage to the 

remaining clades containing S. microti, S. hyicus, and S. intermedius (as was estimated by BEST; 

Figure 4.2B).   Among the oxidase containing species clade, ML estimated a more basal 

divergence of S. lentus and S. stepanovicii than was estimated under either of the Bayesian 

methodologies (Figure 4.4). 
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Figure 4.4. Maximum likelihood cladogram of staphylococcal species yields a highly unified 

topology, similar to that estimated in BI runs.   Shown is a ML cladogram obtained from the 

assessment of the locus-partitioned dataset (similar to MB3) using GARLI v.2.0 (211).  The 

consensus cladogram was generated from 200 bootstrap replicates with five ML search replicates 

per bootstrap.  Nodes receiving Pp=1.00 or BS=100% are indicated by grey-filled circles; 

otherwise, MrBayes support is shown in red text (Pp), BEST support is shown in blue text (Pp), 

and ML support is shown in black text (BS).  Clades that were not present in MrBayes or BEST 

are indicated by a red or blue §, respectively. 
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4.4 Discussion 

4.4.1 Using multilocus data to infer the Staphylococcus phylogeny 

 Staphylococcus is a species-rich genus of importance from both a human health and 

economic perspective.  Greater than 60 taxa of Staphylococcus exist, although a comprehensive 

study of species phylogeny within this genus was lacking.  Most assessments of the 

staphylococcal phylogeny are provided when novel species are identified, and are often based on 

trees estimated from a single locus (16, 119).  The predominant locus of choice for 

staphylococcal phylogenetics, as in most other studies of bacterial phylogenetics, is 16S rDNA 

(177).  When used by itself, however, this locus does not provide adequate resolution for 

determining species relatedness (9, 57).   Difficulties often arise in identifying species 

relationships because 16S rDNA sequences can be nearly identical between staphylococcal 

species (101, 186).  This has led to recent reports utilizing sequence data from more variable loci 

to allow better species identification and phylogenic reconstructions for the group (9, 44, 57, 

125, 152, 169).  Interestingly, however, only rarely have multiple loci been used together in joint 

analyses for phylogenetic inference within this genus (71). 

 We have found in this study that Bayesian and maximum likelihood analysis of 

multilocus data yields high-resolution species trees with overall strong nodal support values for 

relationships among Staphylococcus species.  We also found that partitioned-model analysis of 

the combined dataset, versus the concatenation-free analysis using BEST, produced near-

identical estimates of phylogeny.  Collectively, the multiple methodologies employed provide 

confirmatory evidence for the robustness of our estimated Staphylococcus phylogeny.  To extract 
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as much accurate phylogenetic signal out of our multilocus dataset, we applied and tested various 

partitioned-model schemes for analysis of the concatenated data.  Despite likelihood-based 

statistical evidence favoring highly partitioned models, we observed hallmarks of tree length 

estimate inconsistency, as is known to occasionally occur among parameter rich models (123, 

124).  Thus, we focused on partitioned models that appeared to have more reasonable tree length 

estimates with lower variance.  It is notable that we found model partitioning (especially within 

16S rDNA fragment stem and loop regions) to result in a marked increase in model fit with some 

non-trivial changes in topological support.  These findings suggest that partitioned models may 

be of heightened use in other microbial phylogenetic studies, particularly ones utilizing 16S 

rDNA. 

 Our phylogenetic reconstructions based on the multilocus staphylococcal data confirmed 

many previous hypotheses of relationships, while also suggesting some novel relationships 

among members of the group.  Historically, staphylococcal species have been clustered into 

between four and eleven species groups (57, 102, 103, 112, 152, 182).  Most of these groupings, 

however, were inferred based on a single locus with a small number of staphylococcal taxa.  

Phylogenetic estimates from this study supported the separation of staphylococcal species into 

six major staphylococcal species groups comprised of 15 cluster groups (Figure 4.5).  We use 

our Bayesian, partitioned-model concatenated data estimate (i.e., Figure 4.2A) as the phylogeny 

for illustrating evolutionary groupings of Staphylococcus, and indicate on this tree where BEST 

and ML concatenated inferences differed (Figure 4.5).  Wherever possible, we have attempted to 

name cluster groups and species groups following the original nomenclature put forth by 
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Takahashi et al. (182), while recognizing only evolutionarily distinct, monophyletic groupings 

based on our estimates of phylogeny.   

4.4.2 The phylogeny and classification of Staphylococcus 

 Consistent with previous studies (2, 44, 112, 181, 182), our analyses identified the 

monophyletic group containing the novobiocin-resistant, oxidase positive species (Sciuri group; 

Figure 4.5, blue cluster group) as the sister group to all other Staphylococcus.  This cluster group 

also contains the recently discovered species, S. stepanovicii (71).  Within this group, we inferred 

a close relationship, with little sequence divergence, between S. vitulinus and S. pulvereri (BI 

and BEST Pp=1.00; BS=100%), potentially supporting the reclassification of S. pulvereri as a 

later synonym of S. vitulinus (181).  After the basal divergence of the Sciuri group, the second 

lineage to diverge from the remaining staphylococcal lineages was the oxidase negative 

Auricularis group, containing only S. auricularis (Figure 4.5).  Our phylogeny therefore suggests 

that cytochrome C oxidase was lost in Staphylococcus sometime in the common ancestor of S. 

auricularis and the remaining Staphylococcus species, after their divergence from the Sciuri 

group (Figure 4.5, red star).   

 Our phylogenetic placement of S. auricularis as the sister lineage to all non-Sciuri group 

staphylococci is unique to our study, and we find strong unilateral support for this inference 

across all of our analyses (Pp=1.00 for both Bayesian analyses and ML BS=99%).  Based on 16S 

rDNA alone, Takahashi et al. (182) estimated that S. auricularis shared a common ancestor with 

the S. saprophyticus, S. lugdunensis, S. haemolyticus, S. warneri, S. epidermidis and S. aureus 

cluster groups.  More recently, Ghebremedhin et al. (57) estimated a similar relationship to that 

of Takahashi et al. based on 16S rDNA alone.  Analyses of subsequent gene fragments, however, 
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yielded varying relationship estimates for S. auricularis, and no previous studies have found 

particularly strong support for the placement of this lineage.  For example, Ghebremedhin et al. 

(57) recovered bootstrap support of 31% for a clade containing S. auricularis and S. kloosii 

based on 16S rDNA, although average BS support across their tree was particularly low, at 

BS=52.1%.  Similarly, S. auricularis was placed as the sister lineage to S. kloosii plus the S. 

saprophyticus group, with BS=25% based on analysis of 16S rDNA by Takahashi et al. (182). 

 We inferred that the next lineage of Staphylococcus to diverge was the Simulans species 

group (Figure 4.5), which contains four species that are all novobiocin susceptible and coagulase 

negative.  For consistency with previous nomenclature (57, 182), we refer to this clade as the 

Simulans-Carnosus cluster group and the species group as the Simulans group (Figure 4.5).  Our 

estimate of relationships among species of this group agree with previous studies, although the 

inclusion of S. condimenti in our trees is novel (57, 182).  We inferred a single clade (Simulans-

Carnosus cluster) containing the novobiocin susceptible, coagulase negative species, S. simulans, 

S. condimenti, S. carnosus and S. piscifermentans.  It is notable that while S. carnosus carnosus 

and S. carnosus utilis formed a well supported clade (with S. condimenti as its sister taxon) in 

our concatenated analyses, our BEST analysis resolved S. carnosus carnosus and S. condimenti 

as forming a clade, with S. carnosus utilis as the sister taxon.  Based on this result, we conducted 

independent gene analyses (not shown) that suggested that 16S rDNA seemed to place the two 

subspecies of S. carnosus distantly from one another, while other genes clustered them together.  

This highlights a strength in using multiple approaches with differential sensitivity, and suggests 

that in the past, processes such as horizontal transfer, introgression, or incomplete lineage sorting 

may have occurred that account for this apparent discrepancy among genes.   
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 Following the split of these three early-diverging lineages, the remaining Staphylococcus 

species diverged into three large species groups.  The first of these to diverge from the remaining 

was the Saprophyticus species group (Figure 4.5), which we inferred consists of four cluster 

groups.  Within this species group, the Pettenkoferi-Massiliensis cluster group contains 

novobiocin susceptible species while all of the remaining members of the Saprophyticus group 

are novobiocin resistant.  Thus, it seems that an alternative gyrase B gene conferring novobiocin 

resistance may have been acquired in this clade sometime after the Pettenkoferi-Massiliensis 

cluster group diverged from the rest of the Saprophyticus species group.  Based on analysis of 

16S rDNA, Al Masalma et al. (2) reported the newly discovered species S. massiliensis to be a 

member of the Simulans group, although they failed to recover this relationship in analyses of 

the dnaJ, rpoB, and tuf genes, where they instead placed it with S. pettenkoferi as we have here.  

It is also notable that the close relationship between these coagulase-negative species was also 

suggested based on their phenotypic similarities across a range of biochemical tests (2).  

Additionally, in the Saprophyticus cluster group, we inferred a close relationship between S. 

equorum, S. succinus, S. saprophyticus, and S. xylosus with S. gallinarum as the sister lineage to 

these four species.  The placement of S. gallinarum in other studies is variable, but on multiple 

occasions has clustered with the Arlettae-Kloosii group (57, 112, 152, 182, 187).  This 

alternative placement of S. gallinarum seems reasonable as we find the Arlettae-Kloosii cluster 

group to be closely related to the Saprophyticus cluster group (Figure 4.5). 

 The Epidermidis-Aureus species group contained five cluster groups, including the most 

common taxa of heightened clinical significance (57).  In general, our estimates of relationships 

among these species are consistent with previous reconstructions (182, 187).  Relationships 
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within the Haemolyticus cluster group also agree with previous estimates (182), although the 

placement of the recently discovered coagulase-negative bovine strain, S. devriesei, remains an 

open question (179).  The original report of S. devriesei agrees with our concatenated BI and ML 

results placing it in a clade with S. haemolyticus, albeit with weak support (BI Pp=0.85, ML 

BS=72%).  Our BEST analysis, however, inferred S. devriesei forms a clade with S. lugdunensis, 

although again with weak support (Pp=0.56).   

 Lastly, the Hyicus-Intermedius species group contained species of the "S. hyicus-S. 

intermedius cluster group" originally proposed by Takahashi et al. (182) based on a 16S rDNA 

dataset, and additional studies have found similar estimates of relationships based on analyses of 

other loci (57, 103, 112, 141, 152, 158).  The limited number of taxa assessed in these studies 

has, however, prevented a more detailed understanding of species relationships within this 

species group prior to our analysis here.  Moreover, recent novel species discovery (in particular 

S. rostri (158), S. microti (141), and S. agnetis (187)) has also contributed to the enhanced 

diversity of the Hyicus-Intermedius group.  We have divided this species group into three cluster 

groups based on their phylogenetic relationships, which is also supported by their phenotypic 

diversities (Figure 4.5).  Species among the Intermedius cluster group are all coagulase positive, 

excepting S. schleiferi schleiferi.  Interestingly, S. schleiferi coagulans is coagulase positive, 

consistent with the other members of this cluster group, implying a recent loss in S. schleiferi 

schleiferi.  In contrast, the Muscae cluster group contains only coagulase negative species (S. 

muscae, S. rostri, and S. microti).  Within the last year, both S. rostri (158) and S. microti (141) 

were discovered and found to cluster with S. muscae, thus altering previously known 

relationships within this species group.  The Hyicus cluster group is coagulase-variable, 
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including coagulase positive (S. hyicus), negative (S. chromogenes, S. felis), and variable (S. 

agnetis) species (Figure 4.5, red cluster group).   

 

Figure 4.5. Staphylococcal species can be combined into six species groups and 15 cluster 

groups.   Shown is a summary phylogram adapted from Figure 4.2A with clades collapsed to 

represent staphylococcal groupings.  Whenever possible, cluster and species group names were 

kept consistent with (182).  Cluster groups have been color-coded to represent: blue, species that 



 91 

are novobiocin resistant, coagulase negative, and oxidase positive; green, species that are 

novobiocin susceptible, coagulase negative, and oxidase negative; orange, species that are 

novobiocin resistant, coagulase negative, and oxidase negative; purple, species that are 

novobiocin susceptible, coagulase positive, and oxidase negative; and red, species that are 

novobiocin susceptible, coagulase variable, and oxidase negative.  Color scheme exceptions are: 

#S. schleiferi schleiferi is coagulase negative; *S. simiae is coagulase negative; ‡S. hominis 

novobiosepticus is novobiocin resistant; and †S. equorum linens is novobiocin susceptible.  

Members of each cluster group are listed below the cluster group name.  Nodes receiving 

Pp=1.00 or BS=100% are indicated by grey-filled circles; otherwise, MrBayes support is shown 

in red text (Pp), BEST support is shown in blue text (Pp), and ML support is shown in black text 

(BS).  Clades that were not present in BEST or ML are indicated by a blue or black §, 

respectively. 

 Through the analysis of multiple loci under a variety of phylogenetic methods, we 

achieved our primary goal of inferring a robust and comprehensive estimate of the phylogeny of 

Staphylococcus.  Additionally, we have used this estimate to revise the systematics and 

nomenclature of phylogenetic groupings for this important genus.  The availability of such a 

robust and comprehensive estimate of the evolutionary origins of, and relationships among, 

staphylococci provides an important context for understanding patterns of gain and loss of 

genetic and physiological attributes.  This is of particular relevance considering the clinical and 

economical significance of some Staphylococcus species.  Additionally, our apparent success in 

interpreting multiple loci, using multiple types of analysis, to build this robust estimate argues 

strongly for the utility of doing so in other microbial groups.  Approaches such as this will 
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provide a more natural classification of species based on phylogenetic inferences and lend 

support to future evolutionarily-informed studies of microbial diversity and physiology. 
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5. GENERAL DISCUSSION, CONCLUSIONS, AND FUTURE 

CONSIDERATIONS 

5.1 Asymptomatic nasal carriage of clinical Staphylococcus aureus isolates 

 Staphylococcus aureus and other coagulase-negative staphylococci are becoming an 

increasing concern to public health worldwide.  Of particular concern is the ease and frequency 

with which S. aureus causes human disease.  Central to this concern is the fact that nasal 

colonization of S. aureus increases the risk of autoinfection.  Moreover, nasal carriage of S. 

aureus has been considered a major vector for transmission of virulent strains throughout the 

community.  This hypothesis, however, had not been well studied prior to this dissertation.  In 

Chapter Two, we reported on our investigative findings of the evolutionary relationships among 

and between nasal carriage strains of S. aureus, and clinical isolates.  Importantly, we have 

observed strong supporting evidence that nasal carriage strains and clinical isolates have both 

evolved from the same genetic background and are genetically (near-) identical within the 

hypervariable virulence related genes, clfA, clfB, fnbA, and fnbB.  These findings support that 

these two types of strains are in fact genetically indistinguishable.  The implication of this 

finding is that strains being carried asymptomatically within the nares of healthy individuals are 

also the strains responsible for high levels of infection and death.  Recognizing this fact, efforts 

to understand better the population dynamics of S. aureus, as well as the interplay between the 

host and bacterial factors involved in nasal colonization have been the focus of a number of 

studies.  Of the virulence genes assessed in this study, clumping factor B (clfB) is known to be 

required for S. aureus nasal colonization; however, the requirement for the clumping factor A 

gene (clfA) and fibronectin binding protein genes (fnbA and fnbB) remains unknown.   
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 While our research has observed nasal carriage and clinical isolates, as genetically 

identical at clumping factor (clf) and fibronectin binding protein (fnb) virulence gene loci, it 

should be noted that additional virulence gene loci, accessory plasmids, and other genetic 

elements known to contribute to virulence were not assessed in this study.  For example, the 

assessment of such mobile genetic elements as the staphylococcal cassette chromosome mec 

(SCCmec) or another feature common to community acquired S. aureus strains, the Panton-

Valentine leukocidin (PVL) genetic element (172, 198) would be welcomed additions to future 

studies detailing the genetic similarities between nasal carriage and clinical isolates.  The 

presence of SCCmec provides methicillin resistance and is present in approximately 1.3% of 

nasal carriage strains.  Interestingly, when healthcare workers are excluded from studies of 

MSRA prevalence among community members, the frequency of MRSA drops to 0.2% (121).  

The presence of MRSA among clinical isolates is approximately 43.2% (12, 108).  The PVL 

element is responsible for encoding two pore-forming β-toxins that are responsible for causing 

necrotizing lesions.  This element is ubiquitous in strains responsible for community-acquired 

infections while it is only present in approximately 1-5% of strains responsible for Hospital-

acquired infections (172).  Future assessment of additional factors such as these will be 

important to gain a fuller understanding of the relationships between clinical S. aureus isolates 

and those being carried asymptomatically within the nares of healthy individuals throughout the 

community.   

 Collective research, including that from our laboratory, supports the hypothesis that nasal 

carriage of S. aureus is a major vector for the transmission of virulent strains throughout the 

community.  Thus, prevention of S. aureus nasal carriage, particularly in clinical patients and 
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healthcare workers, would contribute substantially to the reduction or prevention of healthcare 

associated S. aureus infection.  For successful nasal decolonization regimens to be implemented 

in healthcare settings, robust and potent anti-staphylococcal therapies must be used.  Currently, 

only very few options for such practices exist, with resistance a concern. 

5.2 Prevention of Staphylococcus aureus nasal colonization 

 Due to the capacity for autoinfection among persistent nasal carriers of S. aureus (197), 

nasal decolonization prior to hospitalization has become a primary consideration within 

healthcare settings.  Nasal decolonization of S. aureus would be expected to substantially reduce 

the length of hospitalization and associated costs as well as the number of subsequent infections 

and deaths (132).   

 Toward this end, the most common means of nasal decolonization has been through the 

use of mupirocin ointment.  Widespread use of mupirocin ointment within healthcare settings, 

however, has led to increased resistance among S. aureus isolates.  As such, there is a necessity 

for the development of anti-S. aureus antibiotics that will be safe for human use while exhibiting 

potent antimicrobial activities.  In Chapter Three, we characterized the retrocyclin analogue RC-

101 as a preventative agent for S. aureus nasal colonization.  Importantly, RC-101 exhibits 

robust anti-S. aureus activity, but does not impart cytotoxicity or inflammation to human 

epithelia.   

Retrocyclins exhibit broad-spectrum antimicrobial properties (38) which, pending further 

investigation, may indicate that RC-101 is useful in treating a number of other microbial 

conditions as well.  The safety of RC-101 has been revealed in a number of studies, including a 
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recent in vivo study (29), and may be due to the fact that RC-101 is an analogue of the once-

expressed primate peptide, Retrocyclin.  Retrocyclin is effective against a number of microbes in 

addition to S. aureus, including Pseudomonas aeruginosa.  S. aureus and P. aeruginosa are 

predominant causes of infection in cystic fibrosis patients and detailed assessments of the extent 

to which RC-101 is active against P. aeruginosa may reveal its therapeutic potential in treating 

this condition as well.  RC-101 may also reveal heightened efficacy toward other species of 

Staphylococcus as well.  While S. aureus is the primary infectious species among humans, 

coagulase negative species are exhibiting increased virulence among the human population.  An 

important assessment of RC-101’s anti-staphylococcal capacity among other species as well as 

the activity of this peptide in the presence of multiple species simultaneously will be an 

important future consideration as this peptide is developed as a therapeutic for nasal 

decolonization. 

5.3 Updated species phylogeny within Staphylococcus 

 The updated species phylogeny of Staphylococcus revealed in Chapter Four is the most 

comprehensive and robust assessment of phylogeny within this genus to date.  The necessity for 

such an assessment within Staphylococcus (and other genera) becomes apparent when studies of 

species relatedness, or evolutionarily-informed studies including phenotypic and biochemical 

assessments are being conducted.  For instance, robust evolutionary assessments of phylogeny 

can be used to reveal evolutionary events leading to pathogen virulence and antibiotic resistance.  

Within Staphylococcus, novobiocin resistance is frequently assessed as an indicator of the 

efficacy of using gyrase inhibitors as treatment options.  Our phylogenetic inference of 
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Staphylococcus indicates that novobiocin resistance within this genus was acquired sometime 

after the split of the Pettenkoferi-Massiliensis cluster group, but prior to divergence of the 

Arlettae-Kloosii cluster group (Figure 4.5).  Thus, when these or related species are discovered 

in the healthcare setting, treatment options should not include gyrase inhibitors.  Future studies 

addressing the origin of novobiocin resistance among staphylococci may also indicate the 

pathogen-pathogen interactions leading to the acquisition of the alternative gyrase gene 

responsible for novobiocin resistance. 

 Coagulase positive staphylococci comprise only few species of Staphylococcus, including 

S. aureus; however, S. aureus is responsible for the majority of all human staphylococcal 

infections.  Interestingly, S. aureus is a member of the polyphyletic clade containing coagulase 

positive staphylococci.  More basally diverging species that share a clade with S. aureus are 

coagulase negative while other species from more distinct lineages are also coagulase positive.  

Based on our phylogeny, it appears as though the coagulase gene was acquired two times within 

Staphylococcus; however, the evolutionary processes behind these acquisitions remain unknown.  

Future assessments of coagulase acquisition among staphylococci will reveal if two independent 

acquisitions have occurred, or if horizontal transfer between staphylococci contributed to the 

spread of the coagulase gene.  Processes of horizontal gene transfer within Staphylococcus or 

between Staphylococcus and other microbial populations remain only weakly understood, and 

the acquisition of the coagulase gene provides an important avenue for future evolutionary 

assessment in this regard. 
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APPENDIX A: CHAPTER TWO SUPPLEMENT 
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Table A.1. Genotyping details for S. aureus isolates analyzed in this study. 

Sample
a
 

Sequence 

Type (ST) 

Genes
b
 

Reference 
clfA clfB fnbA fnbB 

MSSA476 1 1 4 1 3 (77) 

MW2 1 1 4 1 3 (7) 

D535-3 5 1 2 2 1 This study 

D543 5 1 2 2 1 This study 

D582 5 1 2 2 1 This study 

D618 5 1 2 2 1 This study 

D619 5 1 2 2 1 This study 

D623 5 1 2 2 1 This study 

D635 5 1 2 2 1 This study 

N315 5 1 2 2 1 (111) 

Mu50 5 1 2 2 1 (111) 

Mu3 5 1 2 2 1 (136) 

H6556 5 1 2 2 NA (109) 
H7920 5 1 2 2 NA (109) 
D30 8 1 2 4 3 This study 

D517 8 1 2 4 3 This study 

D521-3 8 1 2 4 3 This study 

D554 8 1 2 4 3 This study 

D637 8 1 2 4 3 This study 

USA300_FR3757 8 1 2 4 3 (43) 

NCTC8325 8 1 2 4 3 (59) 

Newman 8 1 2 NA NA (5) 

USA300_TCH1516 8 1 2 4 3 (73) 

D540 15 2 4 4 3 This study 

D566 15 2 4 4 3 This study 

D597 15 2 4 4 3 This study 

D627 15 2 4 4 3 This study 

H13911 15 2 4 4 NA (109) 
D512 30 5 3 4 1 This study 

D512-2 30 1 3 4 1 This study 

D512-4 30 1 3 4 1 This study 

D512-5 30 1 3 1 1 This study 

D521 30 NA 3 1 1 This study 

D521-2 30 2 3 1 1 This study 

D524 30 NA 3 1 1 This study 

D531 30 NA 3 NA 1 This study 

D535-2 30 2 3 1 1 This study 

D547 30 NA 3 1 1 This study 

D563 30 NA 3 4 1 This study 

D592 30 3 3 1 1 This study 

D599 30 4 3 NA 1 This study 

D607 30 NA 3 2 1 This study 

D608 30 NA 3 1 1 This study 

D651 30 NA 3 1 1 This study 

D662 30 NA 3 2 1 This study 

D710 30 NA 3 2 1 This study 

D719 30 1 NA 4 3 This study 
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D574 34 1 9 4 1 This study 

MRSA252 36 3 3 1 NA (77) 

D558 45 4 5 4 2 This study 

D584 45 4 NA 4 2 This study 

D589 45 4 5 4 2 This study 

D657 45 4 5 4 2 This study 

H6606 45 4 5 4 NA (109) 
H13717 45 4 5 4 NA (109) 
D553 50 6 12 NA NA This study 

D20 59 3 1 1 2 This study 

D535 59 NA 1 1 2 This study 

D547-4 59 3 1 2 2 This study 

D664 72 2 6 1 3 This study 

H7639 80 1 2 4 NA (109) 
D714 81 1 4 1 3 This study 

D565 87 2 1 1 2 This study 

D613 97 1 8 1 3 This study 

JH9 105 1 2 2 NA Copeland 2007 Unpub. 

JH1 105 1 2 2 NA Copeland 2007 Unpub. 

H9140 105 1 2 2 NA (109) 
H13199 105 1 2 2 NA (109) 
D628 109 1 4 4 NA This study 

D629 109 1 4 3 NA This study 

D523-5 188 1 2 1 5 This study 

D594 188 1 2 1 5 This study 

04-02981 225 1 2 2 1 (142) 

H9502 228 1 2 2 NA (109) 
TW20 239 1 3 4 3 (78) 

H7051 239 1 3 4 NA (109) 
H7951 239 1 3 4 NA (109) 
H7681 239 1 3 4 NA (109) 
COL 250 1 2 4 3 (58) 

D579 398 3 11 1 1 This study 

D560 508 4 5 4 2 This study 

D643 508 4 5 4 1 This study 

D507 582 5 4 4 3 This study 

D577 672 5 7 3 3 This study 

D681-2 1159 2 7 3 4 This study 

D605 1181 1 2 4 3 This study 

D547-2 1434 NA 6 1 1 This study 

D547-3 1507 2 2 1 1 This study 

D720 1657 NA 3 1 1 This study 

D636 1658 1 3 4 1 This study 

D636-2 1658 NA 3 2 1 This study 

D20-5 1723 2 6 1 3 This study 

D672-2 1724 1 2 3 5 This study 

D564 NR 1 10 4 NA This study 

D717 NR 1 4 3 NA This study 

H9779 NR 1 4 1 NA (109) 
a
Sample names beginning in “D” are nasal carriage strains while all others are clinical strains 

b
Number indicates lineage 

NR; not reported, NA; no sequence obtained 
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Table A.2. GenBank accession numbers for nucleotide sequences utilized/generated in this study. 

Isolate Sequence available GenBank accession # 

N315 Whole genome NC_002745 

Mu50 Whole genome NC_002758 

COL Whole genome NC_002951 

MRSA252 Whole genome NC_002952 

MSSA476 Whole genome NC_002953 

MW2 Whole genome NC_003923 

USA300_FPR3757 Whole genome NC_007793 

NCTC8325 Whole genome NC_007795 

JH1 Whole genome NC_009632 

JH9 Whole genome NC_009487 

Newman Whole genome NC_009641 

Mu3 Whole genome NC_009782 

USA300_TCH1516 Whole genome NC_010079 

04-02981 Whole genome CP001844 

TW20 Whole genome FN433596 

H6556 Partial clfA, SD repeats AM406905 

H7920 Partial clfA, SD repeats AM406930 

H13911 Partial clfA, SD repeats AM406870 

H6606 Partial clfA, SD repeats AM406906 

H13717 Partial clfA, SD repeats AM406861 

H7639 Partial clfA, SD repeats AM406923 

H9140 Partial clfA, SD repeats AM406950 

H13199 Partial clfA, SD repeats AM406847 

H9502 Partial clfA, SD repeats AM406958 

H7051 Partial clfA, SD repeats AM406914 

H7951 Partial clfA, SD repeats AM406931 

H7681 Partial clfA, SD repeats AM406924 

H9779 Partial clfA, SD repeats AM406961 

H6556 Partial clfB, SD repeats AM407049 

H7920 Partial clfB, SD repeats AM407074 

H13911 Partial clfB, SD repeats AM407014 

H6606 Partial clfB, SD repeats AM407050 

H13717 Partial clfB, SD repeats AM407005 

H7639 Partial clfB, SD repeats AM407067 

H9140 Partial clfB, SD repeats AM407094 

H13199 Partial clfB, SD repeats AM406991 

H9502 Partial clfB, SD repeats AM407102 

H7051 Partial clfB, SD repeats AM407058 

H7951 Partial clfB, SD repeats AM407075 

H7681 Partial clfB, SD repeats AM407068 

H9779 Partial clfB, SD repeats AM407105 

H6556 Partial fnbA, D and W domains AM407190 

H7920 Partial fnbA, D and W domains AM407215 

H13911 Partial fnbA, D and W domains AM407158 

H6606 Partial fnbA, D and W domains AM407191 

H13717 Partial fnbA, D and W domains AM407149 
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H7639 Partial fnbA, D and W domains AM407208 

H9140 Partial fnbA, D and W domains AM407235 

H13199 Partial fnbA, D and W domains AM407135 

H9502 Partial fnbA, D and W domains AM407243 

H7051 Partial fnbA, D and W domains AM407199 

H7951 Partial fnbA, D and W domains AM407216 

H7681 Partial fnbA, D and W domains AM407209 

H9779 Partial fnbA, D and W domains AM407246 

D20     Partial clfA, SD repeats HQ325854 

D20-5   Partial clfA, SD repeats HQ325855 

D30     Partial clfA, SD repeats HQ325856 

D507    Partial clfA, SD repeats HQ325857 

D512    Partial clfA, SD repeats HQ325858 

D512-2  Partial clfA, SD repeats HQ325859 

D517    Partial clfA, SD repeats HQ325860 

D521-2  Partial clfA, SD repeats HQ325861 

D521-3  Partial clfA, SD repeats HQ325862 

D523-5  Partial clfA, SD repeats HQ325863 

D535-2  Partial clfA, SD repeats HQ325864 

D535-3  Partial clfA, SD repeats HQ325865 

D540    Partial clfA, SD repeats HQ325866 

D543    Partial clfA, SD repeats HQ325867 

D547-3  Partial clfA, SD repeats HQ325868 

D547-4  Partial clfA, SD repeats HQ325869 

D553    Partial clfA, SD repeats HQ325870 

D554    Partial clfA, SD repeats HQ325871 

D558    Partial clfA, SD repeats HQ325872 

D560    Partial clfA, SD repeats HQ325873 

D564    Partial clfA, SD repeats HQ325874 

D565    Partial clfA, SD repeats HQ325875 

D566    Partial clfA, SD repeats HQ325876 

D574    Partial clfA, SD repeats HQ325877 

D577    Partial clfA, SD repeats HQ325878 

D579    Partial clfA, SD repeats HQ325879 

D582    Partial clfA, SD repeats HQ325880 

D584    Partial clfA, SD repeats HQ325881 

D589    Partial clfA, SD repeats HQ325882 

D592    Partial clfA, SD repeats HQ325883 

D594    Partial clfA, SD repeats HQ325884 

D597    Partial clfA, SD repeats HQ325885 

D599    Partial clfA, SD repeats HQ325886 

D605    Partial clfA, SD repeats HQ325887 

D613    Partial clfA, SD repeats HQ325888 

D618    Partial clfA, SD repeats HQ325889 

D619    Partial clfA, SD repeats HQ325890 

D623    Partial clfA, SD repeats HQ325891 

D627    Partial clfA, SD repeats HQ325892 

D628    Partial clfA, SD repeats HQ325893 

D629    Partial clfA, SD repeats HQ325894 

D635    Partial clfA, SD repeats HQ325895 
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D636    Partial clfA, SD repeats HQ325896 

D637    Partial clfA, SD repeats HQ325897 

D643    Partial clfA, SD repeats HQ325898 

D657    Partial clfA, SD repeats HQ325899 

D664    Partial clfA, SD repeats HQ325900 

D672-2  Partial clfA, SD repeats HQ325901 

D681-2  Partial clfA, SD repeats HQ325902 

D714    Partial clfA, SD repeats HQ325903 

D717    Partial clfA, SD repeats HQ325904 

D719    Partial clfA, SD repeats HQ325905 

D20     Partial clfB, SD repeats HQ325906 

D20-5   Partial clfB, SD repeats HQ325907 

D30     Partial clfB, SD repeats HQ325908 

D507    Partial clfB, SD repeats HQ325909 

D512    Partial clfB, SD repeats HQ325910 

D517    Partial clfB, SD repeats HQ325911 

D521    Partial clfB, SD repeats HQ325912 

D521-3  Partial clfB, SD repeats HQ325913 

D523-5  Partial clfB, SD repeats HQ325914 

D524    Partial clfB, SD repeats HQ325915 

D531    Partial clfB, SD repeats HQ325916 

D535    Partial clfB, SD repeats HQ325917 

D535-2  Partial clfB, SD repeats HQ325918 

D535-3  Partial clfB, SD repeats HQ325919 

D540    Partial clfB, SD repeats HQ325920 

D543    Partial clfB, SD repeats HQ325921 

D547    Partial clfB, SD repeats HQ325922 

D547-2  Partial clfB, SD repeats HQ325923 

D547-3  Partial clfB, SD repeats HQ325924 

D547-4  Partial clfB, SD repeats HQ325925 

D553    Partial clfB, SD repeats HQ325926 

D554    Partial clfB, SD repeats HQ325927 

D558    Partial clfB, SD repeats HQ325928 

D560    Partial clfB, SD repeats HQ325929 

D563    Partial clfB, SD repeats HQ325930 

D564    Partial clfB, SD repeats HQ325931 

D565    Partial clfB, SD repeats HQ325932 

D566    Partial clfB, SD repeats HQ325933 

D574    Partial clfB, SD repeats HQ325934 

D577    Partial clfB, SD repeats HQ325935 

D579    Partial clfB, SD repeats HQ325936 

D582    Partial clfB, SD repeats HQ325937 

D589    Partial clfB, SD repeats HQ325938 

D592    Partial clfB, SD repeats HQ325939 

D594    Partial clfB, SD repeats HQ325940 

D597    Partial clfB, SD repeats HQ325941 

D599    Partial clfB, SD repeats HQ325942 

D605    Partial clfB, SD repeats HQ325943 

D607    Partial clfB, SD repeats HQ325944 

D608    Partial clfB, SD repeats HQ325945 
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D613    Partial clfB, SD repeats HQ325946 

D618    Partial clfB, SD repeats HQ325947 

D619    Partial clfB, SD repeats HQ325948 

D623    Partial clfB, SD repeats HQ325949 

D627    Partial clfB, SD repeats HQ325950 

D628    Partial clfB, SD repeats HQ325951 

D629    Partial clfB, SD repeats HQ325952 

D635    Partial clfB, SD repeats HQ325953 

D636    Partial clfB, SD repeats HQ325954 

D637    Partial clfB, SD repeats HQ325955 

D643    Partial clfB, SD repeats HQ325956 

D651    Partial clfB, SD repeats HQ325957 

D657    Partial clfB, SD repeats HQ325958 

D662    Partial clfB, SD repeats HQ325959 

D664    Partial clfB, SD repeats HQ325960 

D672-2  Partial clfB, SD repeats HQ325961 

D681-2  Partial clfB, SD repeats HQ325962 

D710    Partial clfB, SD repeats HQ325963 

D714    Partial clfB, SD repeats HQ325964 

D717    Partial clfB, SD repeats HQ325965 

D720    Partial clfB, SD repeats HQ325966 

D20     Partial fnbA, D and W domains HQ325967 

D523-5  Partial fnbA, D and W domains HQ325968 

D521    Partial fnbA, D and W domains HQ325969 

D524   Partial fnbA, D and W domains HQ325970 

D535   Partial fnbA, D and W domains HQ325971 

D565   Partial fnbA, D and W domains HQ325972 

D594   Partial fnbA, D and W domains HQ325973 

D608    Partial fnbA, D and W domains HQ325974 

D535-2  Partial fnbA, D and W domains HQ325975 

D547    Partial fnbA, D and W domains HQ325976 

D592   Partial fnbA, D and W domains HQ325977 

D512-5 Partial fnbA, D and W domains HQ325978 

D720   Partial fnbA, D and W domains HQ325979 

D579   Partial fnbA, D and W domains HQ325980 

D521-2  Partial fnbA, D and W domains HQ325981 

D20-5   Partial fnbA, D and W domains HQ325982 

D664    Partial fnbA, D and W domains HQ325983 

D547-2  Partial fnbA, D and W domains HQ325984 

D613    Partial fnbA, D and W domains HQ325985 

D651   Partial fnbA, D and W domains HQ325986 

D714   Partial fnbA, D and W domains HQ325987 

D710   Partial fnbA, D and W domains HQ325988 

D582   Partial fnbA, D and W domains HQ325989 

D635   Partial fnbA, D and W domains HQ325990 

D543   Partial fnbA, D and W domains HQ325991 

D636-2  Partial fnbA, D and W domains HQ325992 

D618    Partial fnbA, D and W domains HQ325993 

D607    Partial fnbA, D and W domains HQ325994 

D547-4  Partial fnbA, D and W domains HQ325995 
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D535-3  Partial fnbA, D and W domains HQ325996 

D623    Partial fnbA, D and W domains HQ325997 

D662   Partial fnbA, D and W domains HQ325998 

D619   Partial fnbA, D and W domains HQ325999 

D629   Partial fnbA, D and W domains HQ326000 

D717   Partial fnbA, D and W domains HQ326001 

D577    Partial fnbA, D and W domains HQ326002 

D672-2  Partial fnbA, D and W domains HQ326003 

D681-2  Partial fnbA, D and W domains HQ326004 

D560    Partial fnbA, D and W domains HQ326005 

D657   Partial fnbA, D and W domains HQ326006 

D563   Partial fnbA, D and W domains HQ326007 

D643   Partial fnbA, D and W domains HQ326008 

D558   Partial fnbA, D and W domains HQ326009 

D589   Partial fnbA, D and W domains HQ326010 

D507   Partial fnbA, D and W domains HQ326011 

D540   Partial fnbA, D and W domains HQ326012 

D597   Partial fnbA, D and W domains HQ326013 

D627   Partial fnbA, D and W domains HQ326014 

D512   Partial fnbA, D and W domains HQ326015 

D566   Partial fnbA, D and W domains HQ326016 

D719   Partial fnbA, D and W domains HQ326017 

D512-2  Partial fnbA, D and W domains HQ326018 

D30     Partial fnbA, D and W domains HQ326019 

D636    Partial fnbA, D and W domains HQ326020 

D521-3  Partial fnbA, D and W domains HQ326021 

D517    Partial fnbA, D and W domains HQ326022 

D584   Partial fnbA, D and W domains HQ326023 

D637   Partial fnbA, D and W domains HQ326024 

D574   Partial fnbA, D and W domains HQ326025 

D628   Partial fnbA, D and W domains HQ326026 

D605   Partial fnbA, D and W domains HQ326027 

D554   Partial fnbA, D and W domains HQ326028 

D564   Partial fnbA, D and W domains HQ326029 

D662   Partial fnbB, D and W domains HQ326030 

D592   Partial fnbB, D and W domains HQ326031 

D531   Partial fnbB, D and W domains HQ326032 

D710   Partial fnbB, D and W domains HQ326033 

D651   Partial fnbB, D and W domains HQ326034 

D599   Partial fnbB, D and W domains HQ326035 

D608   Partial fnbB, D and W domains HQ326036 

D574   Partial fnbB, D and W domains HQ326037 

D636   Partial fnbB, D and W domains HQ326038 

D512   Partial fnbB, D and W domains HQ326039 

D521   Partial fnbB, D and W domains HQ326040 

D607   Partial fnbB, D and W domains HQ326041 

D563   Partial fnbB, D and W domains HQ326042 

D524   Partial fnbB, D and W domains HQ326043 

D720   Partial fnbB, D and W domains HQ326044 

D535-2  Partial fnbB, D and W domains HQ326045 
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D643    Partial fnbB, D and W domains HQ326046 

D579    Partial fnbB, D and W domains HQ326047 

D618   Partial fnbB, D and W domains HQ326048 

D619   Partial fnbB, D and W domains HQ326049 

D547-2  Partial fnbB, D and W domains HQ326050 

D623    Partial fnbB, D and W domains HQ326051 

D582   Partial fnbB, D and W domains HQ326052 

D543   Partial fnbB, D and W domains HQ326053 

D535-3  Partial fnbB, D and W domains HQ326054 

D635    Partial fnbB, D and W domains HQ326055 

D20     Partial fnbB, D and W domains HQ326056 

D565   Partial fnbB, D and W domains HQ326057 

D535    Partial fnbB, D and W domains HQ326058 

D547-4  Partial fnbB, D and W domains HQ326059 

D657    Partial fnbB, D and W domains HQ326060 

D589   Partial fnbB, D and W domains HQ326061 

D584   Partial fnbB, D and W domains HQ326062 

D558   Partial fnbB, D and W domains HQ326063 

D560   Partial fnbB, D and W domains HQ326064 

D681-2  Partial fnbB, D and W domains HQ326065 

D597    Partial fnbB, D and W domains HQ326066 

D613   Partial fnbB, D and W domains HQ326067 

D20-5  Partial fnbB, D and W domains HQ326068 

D507    Partial fnbB, D and W domains HQ326069 

D540   Partial fnbB, D and W domains HQ326070 

D664   Partial fnbB, D and W domains HQ326071 

D566   Partial fnbB, D and W domains HQ326072 

D577   Partial fnbB, D and W domains HQ326073 

D627   Partial fnbB, D and W domains HQ326074 

D714   Partial fnbB, D and W domains HQ326075 

D554   Partial fnbB, D and W domains HQ326076 

D719   Partial fnbB, D and W domains HQ326077 

D637   Partial fnbB, D and W domains HQ326078 

D605   Partial fnbB, D and W domains HQ326079 

D521-3  Partial fnbB, D and W domains HQ326080 

D30     Partial fnbB, D and W domains HQ326081 

D517    Partial fnbB, D and W domains HQ326082 

D594    Partial fnbB, D and W domains HQ326083 

 D523-5  Partial fnbB, D and W domains HQ326084 

 D672-2  Partial fnbB, D and W domains HQ326085 
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Table A.3. Nucleotide sequences for SD repeats at clfA. 

Repeat numbers and sequences Repeat numbers and sequences 

1 TCAGATTCTGACCCAGGT 94 TCAGATTCCGACAGCGAT 
2 TCAGATAGTGGT 95 TCAGACAGCGAT 
3 TCAGATTCTGGCAGCGAT 96 TCTGACTCAGATAGTGAC 
4 TCTAATTCAGATAGCGGT 97 TCCGACTTAGACAGCGAC 
5 TCAGATTCGGGTAGTGAT 98 TCCGAGTCAGAT 
6 TCTACATCAGATAGTGAT 99 TCAGATTCTGGCAGTGAT 
7 TCAGATTCAGATAGTGAT 100 TCAGATTCAGACCCAGGT 
8 TCAGATTCAGCAAGCGAT 101 TCAGACTCAGTGAGCGAT 
9 TCAGATTCAGCGAGCGAT 102 TCCTACTCAGATAGCGAC 
10 TCAGATTCAGCAAGTGAT 103 TCAGACTCGGATAGCGAT 
11 TCAGATTCAGCGAGTGAT 104 TCAGAATCAGATAATGAC 
12 TCCGACTCCGACAGTGAC 105 TCTGACTCAGGTAGTGAC 
13 TCCGACTCAGATAACGAT 106 TCGGATTCAGATAGCGAA 
14 TCTGACTCAGACAGTGAC 107 TTAGATTCAGACAGCGAC 
15 TCAGACTCAGATAGCGAT 108 TCAGATTCAGGTAGCGAT 
16 TCAGATTCAGAGAGCGAT 109 TCAGATTCAGAC 
17 TCGGATTCAGATAGTGAT 110 TCCGATTCTGAC 
18 TCTGACTCAGACAGCGAC 111 TCCGATTCAGATAGCGGT 
19 TCAGACTCAGACAGCGAC 112 TCCGATTCAGCAAGTGAT 
20 TCAGACTCAGACAGTGAT 113 TCAGACTCAGAAAGTGAC 
21 TCAGATTCCGACAGTGAT 114 TCAAATTCCGATAGCGAT 
22 TTAGACTCAGACAGTGAC 115 TCAGATTCCGAC 
23 TTAGACTCAGACAGCGAC 116 TCAGGTAGTGCC 
24 TCAGACTCAGACAGTGAC 117 TCCGACTCAGACAGTGAT 
25 TCAGATTCCGACAGTGAC 118 TCAGACTCAGGTAGTGCC 
26 TCGGATTCCGATAGCGAT 119 TCTGATTCAGATAGTGAC 
27 TCCGACTCAGACAGCGAC 120 TCAACGAGTGACAAAGAA 
28 TCCGACTCAGACAGCGAT 121 TCAGACAATGAC 
29 TCCGACTCAGATAGCGAC 122 TCAATAGCGATTCCGAGT 
30 TCAGACTCAGACAGCGAT 123 TCAGACTCAAACAGCGAT 
31 TCAGATTCAGACAGTGAT 124 TCAGATTTAGCAAGCGAT 
32 TCAGATTCCGATAGCGAT 125 TCCGATTCAGCGAGTGAC 
33 TCAGAATCAGATAGCGAC 126 TCAGATTCCAACAGTGAC 
34 TCCGACTCAGTTAGCGAT 127 TCAGACTCAGATAATGAC 
35 TCAGATTCAGATAGCAAT 128 TCAGATTCATCAAGTGAT 
36 TCAGAATCAGATAGTGAT 129 TCAGATTTGGGTAGTGAT 
37 TCAGATTCCGACAGCGAC 130 TCCGATTCAGCGAGCGAT 
38 TCCGACTCAGGTAGTGAC 131 TCAGACTCAGCGAGCGAT 
39 TCCGACTCAGATAGTGAT 132 TCAGATTTAGACAGCGAC 
40 TCAGATTCAACGAGTGAT 133 TCAGACTCACGTAGTGAC 
41 TCCGATTCTGAT 134 TCCGAGTCAGTT 
42 TCAACGAGTGACACAGGA 135 TCAGATTCAGTGAGTGAT 
43 TCAGACAACGAC 136 TCAGACTCAGAC 
44 TCTGACTCAGAAAGTGAT 137 TCAGAATCGGATAGCGAC 
45 TCAAATAGCGAT 138 TCAGACAGCGAC 
46 TCCGACTCAGGT 139 TCAGAATCAGAAAGCGAC 
47 TCAGATAGCGGT 140 TCCGATTCAGACAGTGAC 
48 TCCGACTCAGCGAGCGAT 141 TCCGACTCAGACAGTGCC 
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49 TCAGACTCAGATAGTGAC 142 TCGGATTCAACGAGTGAC 
50 TCCGATAGCGAT 143 ACAGGATCAGACAACGAC 
51 TCAGATTCAGACAGCGAT 144 TCTGAGTCAGGT 
52 TCCGACTCAGATAGCGAT 145 TCAGACTCAGGTAGTGGC 
53 TCAGATTCAGACAACGAT 146 TCCGATTCAGCAAGCGAT 
54 TCTGACTCAGACAGCGAT 147 TCAGACTCAGAAAGCGAC 
55 TCCGACTCAGACAGTGAC 148 TCAGACAGTGTT 
56 TCGGATTCAGACAGCGAT 149 TCAGACTCGGATAGTGAA 
57 TCGGATTCCGACAGTGAT 150 TCCGACTCGGATAGCGAT 
58 TCAGATTCCGATAGTGAC 151 TCGGATTCCGACAGCGAT 
59 TCGGATTCAGCGAGTGAT 152 TCCGACTCAGATAGTGCC 
60 TCCGATTCATCAAGTGAT 153 TCCGATTCAGAT 
61 TCCGACTCAGAAAGTGAT 154 TCAGATAACGAC 
62 TCCGAGTCAGGT 155 TCAGACTCAGAAAGTGAT 
63 TCTACATCAGATAGTGGT 156 TCGAATAGCGAT 
64 TCAGACTCAGCGAGTGAT 157 TCCGATTCAGGT 
65 TCCGACTCAGACAATGAC 158 TCAGATTCGGGTAGAGGT 
66 TCGGATTCAGATAGCGAT 159 TCAGACTCTGGCAGCGAT 
67 TCAGATTCAGATAGCGAT 160 TCAGACTCAGAT 
68 TCTGACTCCGACAGTGAT 161 TCTGACTCAGAT 
69 TCGGATTCAGATAGCGAC 162 TCTGACTCAGACAGTGAT 
70 TCAGACTCGGATAGCGAC 163 GCAGACTCAGACAGTGAC 
71 TCGGACTCAGATAGCGAT 164 TCAGATTCACGTAGCGAT 
72 TCAGAATCAGACAGCGAT 165 TCCGACTCAGATAGTGAC 
73 TCAGATTCAGACAGCGAC 166 TCCGACTCAGCAAGTGAT 
74 TCAGACAGTGAC 167 TCTAATTCAGATAGCGGC 
75 TCAGATTCAGATAGTGAC 168 TCAGACTCAGCAAGCGAT 
76 TCAGACTCAGGTAGTGAC 169 TCTGACTCAGAC 
77 TCAGATTCAGGCAGCGAT 170 TCAGACTCAGGTAGTGAT 
78 TCTACATCAGATAGCGAT 171 TCCGACTCAGGTAGTGAT 
79 TCTGACTCAGATAGCGAT 172 TCCGACTCAGGTAGTGCC 
80 TCAGATTCAGATAGCGAC 173 TCGGATTCAACCAGTGAC 
81 TCAGACTCAGATAGCGAC 174 ACAGGATCAGATAACGAC 
82 TCAGATTCGGATAGCGAT 175 TCAGATTCTGACAGTGCC 
83 TCAGATTCAGACAGTGAC 176 TCGGAATCAGCGAGTGAT 
84 TCAGAATCAGATAGTGAC 177 TCAGATTCTGAT 
85 TCCGATTCAGACAGCGAT 178 TCGGAGTCAGGT 
86 TCCGATTCAGATAGCGAT 179 TCCGACTCGGATAGCGAC 
87 TCAGATTCCGAT 180  TCAGATTCCAATAGCGAT 
88 TCAGACAGTGAT 181  TCAGATTCAGCGAGTGGT 
89 TCAGATTCGGACCCAGGT 182  TCTACATCAGATAGCGAC 
90 TCAGATAGCGAT 183  TCGGATTCCGAC 
91 TCAGATTCGGGTAGTGAC 184  TCAGACTCAGATAACGAT 
92 TCAGACTCAGCAAGTGAT 185  TCAAATTCTGGCAGTGAT 
93 TCGGATTCAGATAGTGAC   
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Table A.4. Nucleotide sequences of SD repeats at clfB. 

Repeat numbers and sequences Repeat numbers and sequences 

1 TCGGATTCGGACAGTGAC 56 TCAGGTTCAGACAGTGAG 

2 TCAGGCTCAGACAGCGAC 57 TCGGACTCAGATAGCAAC 

3 TCAGGTTCAGACAGTGAC 58 TCGGATTCGGACAGCGAC 

4 TCGGACTCAGACAGCGAC 59 ACAGATTCAGATAGTGAC 

5 TCAGATTCAGATAGTGAC 60 ACAGATTCAGACAGCGAC 

6 TCAGACTCAGATAGTGAC 61 TCTGATTCAGACAGCGAC 

7 TCAGATTCAGACAGCGAT 62 TCCGATTCAGATAGTGAT 

8 TCGGATTTAGACAGCGAT 63 TCAGACTCAGGTAGCGAT 

9 TCGGATTCAGACAGCGAC 64 TCAGACTCAGATAGTGAG 

10 TCAGATTCAGATAGTGAT 65 TCAGATTCCGATAGTGAC 

11 TCAGATTCAGACAGCGAC 66 TCCGACTCCGAC 

12 TCAGACTCAGATAGTGAT 67 TCCGACAGCGAT 

13 TCAGACTCAGACAGTGAG 68 TCCGATTCAGACAGCGAT 

14 TCAGATTCAGATAGCGAT 69 TCCGACTCCGACAGCGAT 

15 TCAGACTCAGACAGTGAC 70 TCAGATTCAGACAGCGAG 

16 TCCGATTCAGATAGCGAT 71 TCCGACACGGACAGCGAC 

17 TCGGACTCAGATAGCGAC 72 TCAGATTCAGAAAGTGAC 

18 TCCGATTCAGATAGCGAG 73 TCTGATTCAGACAGCGAT 

19 TCAGACTCAGACAGTGAT 74 TCAGATTCAGAGAGCGAT 

20 TCGGATTCAGACAGCGAT 75 TCCGACTCAGACAGCGAC 

21 TCGGATTCAGACAGTGAC 76 TCCGGTTCAGATAGTGAT 

22 TCAGAATCAGACAGTGAT 77 TCAGATTCCGACAGCGAT 

23 TCAGACTCAGACAGCGAC 78 TCGGATTCCGACAGCGAC 

24 TCAGGTTCAGATAGCGAT 79 TCAGATTCCGACAGTGAT 

25 TCAGACTCAGATAGCGAT 80 TCCGACTCAGACAGCGAT 

26 TCAGAATCAGATAGTGAG 81 TCAGATTCCGACAGCGAC 

27 TCAGATTCAGACAGTGAC 82 TCCGATTCAGATAATGAC 

28 TCGGACTCAGACAGTGAT 83 TCCGATTCTGATAGTGAC 

29 TCAGACTCAGACAGCGAT 84 TCCGACTCTGATAGTGAC 

30 TCAGATTCAGATAGCGAC 85 TCTGATTCAGATAGTGAT 

31 TCAGAATCAGACAGCGAC 86 TCCGATTCAGACAGTGAC 

32 TCAGACTCAGATAGCGAC 87 TCAGACTCAGAAAGCGAT 

33 TCAGAATCAGACAGTGAC 88 TCGGACTCAGATAGTGAT 

34 TCAGGTTCAGATAGCGAC 89 TCGGATTCAGACAGTGAG 

35 TCAGAATCAGATAGCGAT 90 TCCGATTCAGATAGTGAC 

36 TCGGATTCAGACAGTGAT 91 TCCGATTCAGACAGTGAG 

37 TCAGAATCAGATAGCGAC 92 TCAGGCTCAGACAGCGAT 

38 TCGGACTCAGACAGCGAT 93 TCGGATTCAGACAAAGAT 

39 TCAGACTCGGATAGCGAT 94 TCAGACTCAGAC 

40 TCAGACTCGGATAGCGAC 95 TCAGATAGCGAT 

41 TCGGATTCAGATAGCGAC 96 TCAGGCTCAGACAGTGAC 

42 TCAGAATCAGACAGTGAG 97 TCAGACTCAGAGAGTGAC 

43 TCAGATTCAGATAGTGAG 98 TCAGATTCGGACAGTGAC 

44 TCGGACTCAGATAGCGAT 99 TCAGACAGTGAC 

45 TCGGATTCAGATAGTGAC 100 TCAGACTTAGACAGTGAC 

46 TCAAACTCAGACAGTGAG 101 TCGGACTCAGAGAGTGAC 

47 TCGGACTCAGATAGTGAC 102 TCAGATTTAGATAGCGAC 

48 TCGGACTCAGACAGTGAG 103 TCAGATTCGGACAGCGAT 
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49 TCGGATTCAAACAGCGAT 104 TCAGATTCAGATAGCAAC 

50 TCGGACTCAGACAGTGAC 105 TTAGATTCAGATAGCGAT 

51 TCAAACTCAGATAGTGAC 106 TCGGATTCAGACAACGAT 

52 TCGGATTCAGATAGCGAT 107 TCGGAGTCAGAGAGTGAC 

53 TCAGAATCAGACAGCGAT 108 TCAGATAGCGAC 

54 TCAGACCCAGACAGTGAG 109 TCAGACCCAGATCCGGAT 

55 TCAGATTCAGACAGTGAG   
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Table A.5. Repeat profiles for clfA. 

Lineage Haplotype Sample Numeric Profile 

1 1 714 
1-3-4-5-63-11-11-10-64-8-9-11-11-11-8-65-66-14-32-14-67-67-21-28-68-28-21-52-29-

51-51-67-126-25-66-25-25-20-59-17-12-69-70-66-71-72-72-73-75-59-76-60-61-45-62 

 40 MW2 
1-3-4-5-63-11-11-10-64-8-9-11-11-8-65-66-14-32-14-67-67-21-28-68-28-21-52-29-51-

51-67-126-25-66-25-25-20-59-17-12-69-70-66-71-72-72-73-75-59-76-60-61-45-62 

 41 H7051 
1-3-4-5-63-181-11-10-64-8-48-65-66-14-25-67-14-67-67-21-28-68-28-21-52-29-51-

51-67-25-25-66-25-25-20-59-17-12-69-70-66-71-72-72-73-74-75-59-76-60-61-45-62 

  H7951 
1-3-4-5-63-181-11-10-64-8-48-65-66-14-25-67-14-67-67-21-28-68-28-21-52-29-51-

51-67-25-25-66-25-25-20-59-17-12-69-70-66-71-72-72-73-74-75-59-76-60-61-45-62 

 42 H9779 
1-3-4-5-63-11-10-64-8-9-11-11-8-65-66-14-32-14-67-67-21-28-68-28-21-52-29-51-51-

67-126-25-66-25-25-20-59-17-12-69-70-66-71-72-72-73-75-59-76-60-61-45-62 

 2 574 
1-3-4-5-63-11-10-64-8-48-65-66-14-25-67-14-66-67-21-28-68-28-21-52-29-51-51-67-

25-25-66-25-25-20-59-17-12-69-70-66-71-72-132-74-75-59-133-60-61-45-134 

 3 636 
1-3-4-5-63-11-10-64-8-48-65-66-14-25-67-14-66-67-21-28-68-28-21-52-29-51-51-67-

25-25-66-25-25-20-59-17-12-69-70-66-71-72-132-74-75-59-76-60-61-45-134 

 4 605 
1-3-4-5-63-11-10-64-8-48-65-66-14-25-67-14-67-67-21-28-68-28-21-52-29-51-51-67-

25-25-66-25-25-20-59-17-12-69-70-66-71-51-72-73-74-75-59-76-60-61-45-62 

 5 30 
1-3-4-5-63-11-10-64-8-48-65-66-14-25-67-14-67-67-21-28-68-28-21-52-29-51-51-67-

25-25-66-25-25-20-59-17-12-69-70-66-71-72-72-73-74-75-59-76-60-61-45-62 

  637 
1-3-4-5-63-11-10-64-8-48-65-66-14-25-67-14-67-67-21-28-68-28-21-52-29-51-51-67-

25-25-66-25-25-20-59-17-12-69-70-66-71-72-72-73-74-75-59-76-60-61-45-62 

  COL 
1-3-4-5-63-11-10-64-8-48-65-66-14-25-67-14-67-67-21-28-68-28-21-52-29-51-51-67-

25-25-66-25-25-20-59-17-12-69-70-66-71-72-72-73-74-75-59-76-60-61-45-62 

  USA300_FPR3757 
1-3-4-5-63-11-10-64-8-48-65-66-14-25-67-14-67-67-21-28-68-28-21-52-29-51-51-67-

25-25-66-25-25-20-59-17-12-69-70-66-71-72-72-73-74-75-59-76-60-61-45-62 

  Newman 
1-3-4-5-63-11-10-64-8-48-65-66-14-25-67-14-67-67-21-28-68-28-21-52-29-51-51-67-

25-25-66-25-25-20-59-17-12-69-70-66-71-72-72-73-74-75-59-76-60-61-45-62 

  USA300_TCH1516 
1-3-4-5-63-11-10-64-8-48-65-66-14-25-67-14-67-67-21-28-68-28-21-52-29-51-51-67-

25-25-66-25-25-20-59-17-12-69-70-66-71-72-72-73-74-75-59-76-60-61-45-62 

 6 719 
1-3-4-5-63-11-10-64-8-48-65-66-14-25-67-14-67-67-21-28-68-28-21-52-29-51-51-67-

25-25-66-25-25-20-59-17-12-69-70-66-71-72-72-73-75-59-76-60-61-45-178 

 43 NCTC8325 
1-3-4-5-63-11-10-64-8-48-65-66-14-25-67-14-66-67-21-28-68-28-21-52-29-51-51-67-

25-25-66-25-25-20-59-17-12-69-70-66-71-72-73-74-75-59-76-60-61-45-134 

 7 512-2 
1-3-4-5-63-11-10-64-8-48-65-66-14-25-67-14-67-67-21-28-68-28-21-52-29-51-51-67-

25-25-66-25-25-20-59-17-12-69-70-66-71-72-72-73-75-59-76-60-61-45-62 

  517 1-3-4-5-63-11-10-64-8-48-65-66-14-25-67-14-67-67-21-28-68-28-21-52-29-51-51-67-
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25-25-66-25-25-20-59-17-12-69-70-66-71-72-72-73-75-59-76-60-61-45-62 

  521-3 
1-3-4-5-63-11-10-64-8-48-65-66-14-25-67-14-67-67-21-28-68-28-21-52-29-51-51-67-

25-25-66-25-25-20-59-17-12-69-70-66-71-72-72-73-75-59-76-60-61-45-62 

 44 TW20 
1-3-4-5-63-11-10-64-8-48-65-66-14-25-67-14-67-67-21-28-68-28-21-52-29-51-51-67-

25-25-66-25-25-20-59-17-12-69-70-66-71-72-73-74-75-59-76-60-61-45-62 

 45 MSSA476 
1-3-4-5-63-11-11-10-64-8-9-11-11-8-65-66-14-32-21-28-68-28-21-52-29-51-51-7-126-

25-66-25-25-20-59-17-12-69-70-66-71-72-72-73-75-59-76-60-61-45-62 

 46 H7681 
1-3-4-5-63-11-10-64-8-48-65-66-14-25-67-14-67-67-21-28-68-28-29-51-51-67-25-25-

66-25-25-20-59-17-12-69-70-66-71-72-72-73-74-75-59-76-60-61-45-62 

 8 564 
1-3-4-5-63-11-10-64-8-48-65-66-14-25-67-14-67-21-28-68-28-21-52-29-51-51-67-25-

25-20-59-17-12-69-70-66-71-72-72-73-74-75-59-76-60-61-45-62 

 9 554 
1-3-4-5-63-11-10-64-8-48-65-66-14-25-67-14-67-21-28-68-28-21-52-29-51-51-67-25-

25-20-59-17-12-69-70-66-71-72-72-73-74-75-59-76-60-61-122 

 10 628 
1-3-4-5-63-11-10-10-92-11-8-9-11-48-49-32-50-29-51-28-24-32-55-32-24-32-21-48-

52-29-51-51-24-32-31-15-51-25-30-55-66-14-59-24-75-59-165-60-61-45-62 

 11 629 
1-3-4-5-63-11-10-10-92-11-8-9-11-48-49-32-50-29-51-28-24-32-55-32-24-21-48-52-

29-51-51-24-32-31-15-51-25-30-55-66-14-59-24-75-59-49-60-61-45-62 

 12 717 
1-3-4-5-63-11-10-10-92-11-8-9-11-48-49-32-50-29-51-28-24-32-55-32-24-21-48-52-

29-51-51-24-32-31-15-51-25-30-55-66-14-59-24-75-59-49-60-61-45-98 

 13 613 

1-3-4-158-159-4-99-63-11-10-64-11-10-64-10-10-10-48-24-32-117-67-21-29-51-51-

160-90-161-90-21-28-162-28-21-29-51-51-51-55-67-31-15-163-19-30-55-66-14-57-

55-75-59-49-60-61-45-62 

 47 H7920 

1-3-4-99-63-11-10-64-64-10-10-10-92-10-8-9-9-11-48-49-32-29-51-54-14-32-55-32-

55-180-21-52-29-51-51-14-32-31-15-25-30-32-25-58-59-67-84-20-75-30-84-85-84-86-

59-76-60-87-42-43-88-45-62 

 14 582 

1-3-4-99-63-11-10-64-10-10-10-92-10-8-9-9-11-48-49-32-29-51-54-14-32-55-32-55-

32-21-52-29-51-51-14-32-31-15-25-30-32-25-58-59-67-84-20-75-30-84-85-84-86-59-

145-60-87-42-43-88-45-62 

 48 H9502 

1-3-4-99-63-11-10-64-10-10-10-92-10-8-9-9-11-48-49-32-29-51-54-14-32-55-32-55-

32-21-52-29-51-51-24-67-31-15-25-30-32-25-58-59-67-84-20-75-30-84-85-84-86-59-

76-60-87-42-43-88-45-62 

 15 535-3 

1-3-4-99-63-11-10-64-10-10-10-92-10-8-9-9-11-48-49-32-29-51-54-14-32-55-32-55-

32-21-52-29-51-51-14-32-31-15-25-30-32-25-58-59-67-84-20-75-30-84-85-84-86-59-

76-60-87-42-43-88-45-62 

  618 

1-3-4-99-63-11-10-64-10-10-10-92-10-8-9-9-11-48-49-32-29-51-54-14-32-55-32-55-

32-21-52-29-51-51-14-32-31-15-25-30-32-25-58-59-67-84-20-75-30-84-85-84-86-59-

76-60-87-42-43-88-45-62 

  619 
1-3-4-99-63-11-10-64-10-10-10-92-10-8-9-9-11-48-49-32-29-51-54-14-32-55-32-55-

32-21-52-29-51-51-14-32-31-15-25-30-32-25-58-59-67-84-20-75-30-84-85-84-86-59-



 113 

76-60-87-42-43-88-45-62 

  623 

1-3-4-99-63-11-10-64-10-10-10-92-10-8-9-9-11-48-49-32-29-51-54-14-32-55-32-55-

32-21-52-29-51-51-14-32-31-15-25-30-32-25-58-59-67-84-20-75-30-84-85-84-86-59-

76-60-87-42-43-88-45-62 

  635 

1-3-4-99-63-11-10-64-10-10-10-92-10-8-9-9-11-48-49-32-29-51-54-14-32-55-32-55-

32-21-52-29-51-51-14-32-31-15-25-30-32-25-58-59-67-84-20-75-30-84-85-84-86-59-

76-60-87-42-43-88-45-62 

  N315 

1-3-4-99-63-11-10-64-10-10-10-92-10-8-9-9-11-48-49-32-29-51-54-14-32-55-32-55-

32-21-52-29-51-51-14-32-31-15-25-30-32-25-58-59-67-84-20-75-30-84-85-84-86-59-

76-60-87-42-43-88-45-62 

  H6556 

1-3-4-99-63-11-10-64-10-10-10-92-10-8-9-9-11-48-49-32-29-51-54-14-32-55-32-55-

32-21-52-29-51-51-14-32-31-15-25-30-32-25-58-59-67-84-20-75-30-84-85-84-86-59-

76-60-87-42-43-88-45-62 

 49 Mu50 
1-3-4-99-63-11-10-64-10-10-10-92-10-8-9-9-11-48-49-32-29-51-54-14-32-14-32-31-

15-25-30-32-25-58-59-67-84-20-75-30-84-85-84-86-59-76-60-87-42-43-88-45-62 

  Mu3 
1-3-4-99-63-11-10-64-10-10-10-92-10-8-9-9-11-48-49-32-29-51-54-14-32-14-32-31-

15-25-30-32-25-58-59-67-84-20-75-30-84-85-84-86-59-76-60-87-42-43-88-45-62 

 50 H13199 
1-3-4-185-63-11-10-64-10-10-10-92-10-8-9-9-11-48-49-32-29-51-54-14-32-28-32-25-

58-59-67-84-20-75-30-84-85-84-86-59-76-60-87-42-43-88-45-62 

 16 543 
1-3-4-99-63-11-10-64-10-10-10-92-10-8-9-9-11-48-49-32-29-51-54-14-32-28-32-25-

58-59-67-84-20-75-30-84-85-84-86-59-76-60-87-42-43-88-45-62 

  JH9 
1-3-4-99-63-11-10-64-10-10-10-92-10-8-9-9-11-48-49-32-29-51-54-14-32-28-32-25-

58-59-67-84-20-75-30-84-85-84-86-59-76-60-87-42-43-88-45-62 

  JH1 
1-3-4-99-63-11-10-64-10-10-10-92-10-8-9-9-11-48-49-32-29-51-54-14-32-28-32-25-

58-59-67-84-20-75-30-84-85-84-86-59-76-60-87-42-43-88-45-62 

  04-02981 
1-3-4-99-63-11-10-64-10-10-10-92-10-8-9-9-11-48-49-32-29-51-54-14-32-28-32-25-

58-59-67-84-20-75-30-84-85-84-86-59-76-60-87-42-43-88-45-62 

  H9140 
1-3-4-99-63-11-10-64-10-10-10-92-10-8-9-9-11-48-49-32-29-51-54-14-32-28-32-25-

58-59-67-84-20-75-30-84-85-84-86-59-76-60-87-42-43-88-45-62 

 51 H7639 

1-3-4-91-63-8-10-11-11-10-92-10-92-9-11-11-51-24-58-81-58-30-7-67-93-80-67-25-

94-25-20-66-24-66-55-94-25-20-66-24-66-55-66-79-24-30-32-25-95-24-66-96-97-67-

25-82-84-46 

 17 523-5 

1-3-4-91-63-8-10-11-11-10-92-10-92-9-11-51-24-58-81-58-30-7-67-93-80-67-25-94-

25-20-66-24-66-55-94-25-20-66-24-66-55-66-79-24-30-32-25-95-24-66-96-97-67-25-

82-84-46 

  594 

1-3-4-91-63-8-10-11-11-10-92-10-92-9-11-51-24-58-81-58-30-7-67-93-80-67-25-94-

25-20-66-24-66-55-94-25-20-66-24-66-55-66-79-24-30-32-25-95-24-66-96-97-67-25-

82-84-46 

 18 672-2 1-3-4-91-63-8-10-11-11-10-92-10-92-9-11-51-24-58-81-58-30-7-67-93-80-67-25-94-



 114 

25-20-66-24-66-55-66-79-24-30-32-25-95-24-66-96-97-67-25-82-84-46 

2 19 547-3 
1-47-5-4-11-10-48-49-32-50-29-51-30-14-32-50-52-29-109-110-95-14-32-29-51-54-

24-32-55-32-24-32-31-52-52-55-56-55-57-55-58-59-49-60-61-45-62 

 20 521-2 
89-47-5-4-11-10-48-49-32-50-29-51-30-14-32-50-52-29-53-54-14-32-29-51-54-24-32-

55-32-24-32-31-52-52-55-56-55-57-55-58-59-49-60-61-90-62 

 21 565 
1-47-5-4-11-10-48-49-32-50-29-51-30-14-32-50-52-29-53-54-14-32-29-51-30-24-32-

55-32-24-32-31-52-52-55-56-55-57-55-58-59-49-60-61-45-62 

 22 535-2 
1-47-5-4-11-10-48-49-32-50-29-51-30-14-32-50-52-29-53-54-14-32-29-51-54-24-32-

55-32-24-32-31-52-52-55-56-55-57-55-58-59-49-60-61-45-98 

 23 20-5 
1-47-5-4-11-10-48-49-32-50-29-51-30-14-32-50-52-29-53-54-14-32-29-51-54-24-32-

55-32-24-32-31-52-52-55-56-55-57-55-58-59-49-60-61-45-62 

 24 540 

100-47-5-4-11-10-10-92-9-11-101-9-9-11-101-49-32-102-51-30-24-30-25-103-25-24-

80-24-32-21-55-67-21-28-104-30-84-30-11-105-7-55-106-83-7-55-24-107-108-84-61-

45-62 

 25 566 

1-47-5-4-11-10-10-92-92-10-8-9-9-11-131-49-32-102-51-30-24-30-25-103-25-24-80-

24-32-21-55-67-21-28-104-30-84-30-11-105-7-55-106-83-7-55-24-107-108-84-61-45-

62 

  597 

1-47-5-4-11-10-10-92-92-10-8-9-9-11-131-49-32-102-51-30-24-30-25-103-25-24-80-

24-32-21-55-67-21-28-104-30-84-30-11-105-7-55-106-83-7-55-24-107-108-84-61-45-

62 

  H13911 

1-47-5-4-11-10-10-92-92-10-8-9-9-11-131-49-32-102-51-30-24-30-25-103-25-24-80-

24-32-21-55-67-21-28-104-30-84-30-11-105-7-55-106-83-7-55-24-107-108-84-61-45-

62 

 26 627 
1-47-5-4-11-10-10-92-92-10-8-9-9-11-131-49-32-102-51-30-30-25-24-80-24-32-21-

55-67-21-28-104-30-84-30-11-105-7-55-106-83-7-55-24-107-164-84-61-45-62 

 27 681-2 

1-47-5-167-11-10-168-10-11-11-11-11-11-8-10-9-11-20-51-169-95-7-83-94-25-20-71-

163-19-170-55-19-170-171-172-83-173-174-74-36-37-128-118-119-59-76-128-81-

175-59-76-128-81-175-176-177-42-43-88-45-46 

 28 664 
1-47-5-4-11-10-8-10-48-10-8-10-48-49-32-50-29-51-30-14-32-50-52-29-53-54-14-32-

29-51-54-24-32-55-32-24-32-31-52-52-24-56-55-57-55-58-59-49-60-166-45-62 

3 52 MRSA252 

1-2-3-4-5-63-9-10-11-10-11-10-11-40-40-146-75-30-75-15-25-66-55-80-147-51-39-

73-148-83-149-19-73-149-24-19-81-67-19-15-179-15-150-84-67-29-94-31-22-66-55-

151-31-22-66-152-80-30-84-67-141-75-59-153-42-154-155-156-157 

 29 592 

1-2-3-4-5-63-9-10-11-10-11-10-11-40-40-146-75-30-75-15-25-66-55-80-147-51-39-

73-148-83-149-27-73-149-24-19-81-19-15-150-84-67-29-94-31-22-66-55-151-31-22-

66-152-80-30-84-67-141-75-59-153-42-154-155-156-157 

 30 20 

1-2-3-4-5-6-7-8-9-10-6-10-11-8-12-13-14-15-16-12-17-18-19-20-21-22-13-14-15-16-

12-17-18-19-20-21-23-24-25-26-27-15-28-29-30-29-11-31-28-32-33-34-14-35-36-37-

11-38-32-39-37-40-41-42-43-44-45-46 



 115 

  547-4 

1-2-3-4-5-6-7-8-9-10-6-10-11-8-12-13-14-15-16-12-17-18-19-20-21-22-13-14-15-16-

12-17-18-19-20-21-23-24-25-26-27-15-28-29-30-29-11-31-28-32-33-34-14-35-36-37-

11-38-32-39-37-40-41-42-43-44-45-46 

 31 579 

1-2-3-4-5-6-9-9-11-40-40-40-40-11-11-40-40-135-8-75-136-95-75-136-95-67-25-66-

55-67-51-137-138-139-25-75-85-140-24-15-141-15-140-20-127-30-59-38-60-141-54-

59-38-60-141-119-142-143-61-45-144 

4 32 584 

1-2-3-4-5-6-11-40-11-8-75-123-75-15-83-15-25-66-55-67-73-24-83-67-73-24-31-19-

15-130-10-81-32-28-124-11-125-86-28-126-15-19-94-82-51-127-30-59-38-60-55-64-

41-42-43-128-117-27-62 

  589 

1-2-3-4-5-6-11-40-11-8-75-123-75-15-83-15-25-66-55-67-73-24-83-67-73-24-31-19-

15-130-10-81-32-28-124-11-125-86-28-126-15-19-94-82-51-127-30-59-38-60-55-64-

41-42-43-128-117-27-62 

  599 

1-2-3-4-5-6-11-40-11-8-75-123-75-15-83-15-25-66-55-67-73-24-83-67-73-24-31-19-

15-130-10-81-32-28-124-11-125-86-28-126-15-19-94-82-51-127-30-59-38-60-55-64-

41-42-43-128-117-27-62 

 33 643 

1-2-3-4-5-6-11-40-11-8-75-123-75-15-83-15-25-66-55-67-73-24-83-67-73-24-31-19-

15-130-10-81-32-28-124-11-125-86-28-126-15-19-94-82-51-104-30-59-38-60-55-64-

41-42-43-128-117-27-62 

 34 558 

1-2-3-4-5-6-11-40-11-8-75-123-75-15-83-15-25-66-55-67-73-24-83-67-73-24-31-19-

15-9-10-81-32-28-124-11-125-86-28-126-15-19-94-82-51-127-30-59-38-60-55-64-41-

42-43-128-117-27-62 

 53 H6606 

1-2-3-4-5-6-11-75-123-75-15-83-15-25-66-55-67-73-24-83-67-73-24-31-19-15-130-

10-81-32-30-124-11-125-86-28-126-15-27-94-82-51-127-30-59-38-60-55-64-41-42-

43-128-117-27-62 

 35 560 

1-2-3-4-129-6-11-40-11-8-83-15-25-66-55-67-73-24-83-67-73-24-31-19-15-130-10-

81-32-28-124-11-125-86-28-19-94-82-51-104-30-59-38-60-55-64-41-42-43-128-117-

27-62 

 36 657 

1-2-3-4-5-6-11-40-11-8-75-123-75-15-83-15-25-66-55-67-73-24-83-67-73-24-31-19-

15-130-10-81-32-28-124-11-125-86-28-126-15-19-94-82-51-127-30-59-38-60-117-27-

62 

 54 H13717 
1-2-3-4-5-182-32-28-124-11-125-86-29-28-126-15-19-94-82-51-127-30-59-38-60-55-

64-41-42-43-128-117-183-74-184-112-27-62 

5 37 507 

1-77-4-5-78-8-8-8-11-11-11-67-79-17-80-73-73-51-24-15-25-24-67-24-67-15-19-80-

30-81-67-24-66-24-82-83-58-11-67-84-20-75-30-84-85-84-86-59-76-60-87-42-43-88-

45-62 

  512 

1-77-4-5-78-8-8-8-11-11-11-67-79-17-80-73-73-51-24-15-25-24-67-24-67-15-19-80-

30-81-67-24-66-24-82-83-58-11-67-84-20-75-30-84-85-84-86-59-76-60-87-42-43-88-

45-62 

 38 577 
1-77-4-5-78-8-8-8-11-11-11-67-15-17-80-73-73-51-24-15-25-24-67-24-67-15-19-80-

30-81-67-24-66-24-82-83-58-11-67-84-20-75-30-84-85-84-86-59-76-60-87-42-43-88-



 116 

45-62 

6 39 553 
100-47-5-8-111-5-10-8-112-5-8-112-5-32-55-113-114-27-7-31-28-32-52-55-19-95-

115-116-21-52-10-117-66-36-37-11-118-119-59-76-10-117-56-59-41-120-121-46 

 

 



 117 

Table A.6. Repeat profiles for clfB. 

Lineage Haplotype Sample Numeric Profile 

1 1 20 
1-2-3-4-5-5-6-6-7-8-4-5-6-7-8-7-9-10-6-11-11-10-12-7-13-14-15-12-13-16-17-18-7-

15-10-19-20-14-17 

  535 
1-2-3-4-5-5-6-6-7-8-4-5-6-7-8-7-9-10-6-11-11-10-12-7-13-14-15-12-13-16-17-18-7-

15-10-19-20-14-17 

  547-4 
1-2-3-4-5-5-6-6-7-8-4-5-6-7-8-7-9-10-6-11-11-10-12-7-13-14-15-12-13-16-17-18-7-

15-10-19-20-14-17 

 2 565 1-2-3-4-5-5-6-6-6-7-8-4-10-12-7-13-14-15-12-13-16-17-18-7-15-10-19-20-14-17 

2 3 672-2 
21-2-34-35-36-11-35-37-14-14-14-36-11-37-26-27-28-25-25-29-11-11-32-23-14-23-

23-32-14-23-14-38-11-39-14-36-11-40-29-32-40-41-6 

 4 30 
21-2-34-35-36-11-35-37-14-14-14-36-11-37-26-27-28-25-25-29-11-11-23-14-23-23-

32-14-23-14-38-11-39-14-36-11-40-29-32-40-41-6 

  USA300_FPR3757 
21-2-34-35-36-11-35-37-14-14-14-36-11-37-26-27-28-25-25-29-11-11-23-14-23-23-

32-14-23-14-38-11-39-14-36-11-40-29-32-40-41-6 

  USA300_TCH1516 
21-2-34-35-36-11-35-37-14-14-14-36-11-37-26-27-28-25-25-29-11-11-23-14-23-23-

32-14-23-14-38-11-39-14-36-11-40-29-32-40-41-6 

 5 554 
21-2-34-35-36-11-35-37-14-14-14-36-11-37-26-27-28-25-25-29-11-11-32-23-35-23-

23-32-14-23-14-38-11-39-14-36-11-40-29-40-41-6 

 45 COL 
21-2-34-35-36-11-35-37-14-14-14-36-11-37-26-27-28-25-25-11-11-32-23-14-23-23-

32-14-23-14-38-11-39-14-36-11-40-29-32-40-41-6 

  Newman 
21-2-34-35-36-11-35-37-14-14-14-36-11-37-26-27-28-25-25-11-11-32-23-14-23-23-

32-14-23-14-38-11-39-14-36-11-40-29-32-40-41-6 

 6 637 
21-2-34-35-36-11-35-37-14-14-14-36-11-37-26-27-28-25-29-11-11-23-14-23-23-32-

14-23-14-38-11-39-14-36-11-40-29-32-40-41-6 

 7 517 
21-2-34-35-36-11-35-37-25-14-14-36-11-37-26-27-28-25-25-29-11-11-23-23-32-14-

23-14-38-11-39-14-36-11-40-29-32-40-41-6 

  521-3 
21-2-34-35-36-11-35-37-25-14-14-36-11-37-26-27-28-25-25-29-11-11-23-23-32-14-

23-14-38-11-39-14-36-11-40-29-32-40-41-6 

 8 523-5 
21-2-34-37-14-14-14-36-11-37-26-27-28-25-25-29-11-11-32-23-14-23-32-14-23-14-

38-11-39-14-36-11-40-29-32-40-41-6 

  594 
21-2-34-37-14-14-14-36-11-37-26-27-28-25-25-29-11-11-32-23-14-23-32-14-23-14-

38-11-39-14-36-11-40-29-32-40-41-6 

 46 H6556 
21-2-34-35-36-11-35-37-14-14-35-36-11-37-26-27-28-25-25-29-7-11-31-32-23-14-23-

31-25-23-14-38-11-39-11-40-45 

 9 605 
21-2-35-36-11-35-37-14-14-14-36-11-37-26-27-28-25-25-23-14-23-23-32-14-23-14-

38-11-39-14-36-11-40-29-40-41-6 



 118 

 10 535-3 
21-2-34-35-36-11-35-37-14-14-35-36-11-37-26-27-28-25-25-29-11-23-32-23-14-23-

23-25-23-14-38-11-39-11-40-45 

  618 
21-2-34-35-36-11-35-37-14-14-35-36-11-37-26-27-28-25-25-29-11-23-32-23-14-23-

23-25-23-14-38-11-39-11-40-45 

  619 
21-2-34-35-36-11-35-37-14-14-35-36-11-37-26-27-28-25-25-29-11-23-32-23-14-23-

23-25-23-14-38-11-39-11-40-45 

  635 
21-2-34-35-36-11-35-37-14-14-35-36-11-37-26-27-28-25-25-29-11-23-32-23-14-23-

23-25-23-14-38-11-39-11-40-45 

  H7920 
21-2-34-35-36-11-35-37-14-14-35-36-11-37-26-27-28-25-25-29-11-23-32-23-14-23-

23-25-23-14-38-11-39-11-40-45 

  H9502 
21-2-34-35-36-11-35-37-14-14-35-36-11-37-26-27-28-25-25-29-11-23-32-23-14-23-

23-25-23-14-38-11-39-11-40-45 

 11 543 
21-2-34-35-36-11-35-37-14-14-35-36-11-37-26-27-28-25-25-29-11-31-32-23-14-23-

23-25-23-14-38-11-39-11-40-45 

  N315 
21-2-34-35-36-11-35-37-14-14-35-36-11-37-26-27-28-25-25-29-11-31-32-23-14-23-

23-25-23-14-38-11-39-11-40-45 

  Mu50 
21-2-34-35-36-11-35-37-14-14-35-36-11-37-26-27-28-25-25-29-11-31-32-23-14-23-

23-25-23-14-38-11-39-11-40-45 

  Mu3 
21-2-34-35-36-11-35-37-14-14-35-36-11-37-26-27-28-25-25-29-11-31-32-23-14-23-

23-25-23-14-38-11-39-11-40-45 

  04-02981 
21-2-34-35-36-11-35-37-14-14-35-36-11-37-26-27-28-25-25-29-11-31-32-23-14-23-

23-25-23-14-38-11-39-11-40-45 

  H9140 
21-2-34-35-36-11-35-37-14-14-35-36-11-37-26-27-28-25-25-29-11-31-32-23-14-23-

23-25-23-14-38-11-39-11-40-45 

  H13199 
21-2-34-35-36-11-35-37-14-14-35-36-11-37-26-27-28-25-25-29-11-31-32-23-14-23-

23-25-23-14-38-11-39-11-40-45 

 47 JH9 
21-2-34-35-36-11-37-37-14-14-35-36-11-37-26-27-28-25-25-29-11-31-32-23-14-23-

23-25-23-14-38-11-39-11-40-45 

  JH1 
21-2-34-35-36-11-37-37-14-14-35-36-11-37-26-27-28-25-25-29-11-31-32-23-14-23-

23-25-23-14-38-11-39-11-40-45 

 12 547-3 
21-2-34-35-36-11-35-37-14-14-35-36-11-37-26-27-28-25-25-29-11-31-37-23-14-23-

23-25-23-14-38-11-39-11-40-45 

  582 
21-2-34-35-36-11-35-37-14-14-35-36-11-37-26-27-28-25-25-29-11-31-37-23-14-23-

23-25-23-14-38-11-39-11-40-45 

 48 NCTC8325 
21-2-34-35-36-11-37-26-27-28-25-25-29-11-11-32-23-14-23-23-32-14-23-14-38-11-

39-14-36-11-40-29-32-40-41-6 

 49 H7639 
21-2-34-35-36-11-35-21-14-37-43-27-44-106-23-30-31-32-23-14-29-29-29-32-31-32-

14-29-23-25-19-7-33-14-17 

 13 623 21-2-34-35-36-11-35-37-14-14-35-36-11-37-26-27-28-25-25-29-11-31-32-23-14-23-
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23-25-23-14-38-11-40-45 

3 50 TW20 
45-2-24-45-6-46-27-47-14-7-48-30-49-50-47-47-46-27-17-44-21-56-7-45-45-47-7-52-

7-53-21-41-20-50-16-42-14-33-33-7-29-13-55-7-17 

 14 535-2 
45-2-24-45-6-46-27-47-14-7-48-30-49-50-47-47-46-27-17-44-21-56-7-41-45-47-7-52-

7-53-21-41-20-50-16-42-14-33-13-7-29-13-55-7-17 

  547 
45-2-24-45-6-46-27-47-14-7-48-30-49-50-47-47-46-27-17-44-21-56-7-41-45-47-7-52-

7-53-21-41-20-50-16-42-14-33-13-7-29-13-55-7-17 

 51 H7681 
45-2-24-45-6-46-27-47-14-7-48-30-49-50-47-47-46-27-17-44-21-56-7-45-45-47-7-52-

7-53-21-41-20-50-16-42-14-33-53-29-13-55-7-17 

 15 720 
45-24-45-6-46-27-47-14-7-48-30-49-50-46-27-17-44-21-56-7-41-45-47-7-52-7-53-21-

41-20-50-16-42-14-33-15-7-29-13-55-7-17 

 52 H7051 
45-2-24-45-6-46-27-47-47-47-46-27-17-44-21-56-7-45-45-47-7-52-7-53-21-41-20-50-

16-42-14-33-33-7-29-13-55-7-17 

  H7951 
45-2-24-45-6-46-27-47-47-47-46-27-17-44-21-56-7-45-45-47-7-52-7-53-21-41-20-50-

16-42-14-33-33-7-29-13-55-7-17 

 16 524 
45-2-24-45-6-46-27-47-14-7-48-30-49-50-47-47-51-7-52-7-53-21-41-20-50-16-42-14-

42-14-33-54-7-29-13-55-7-17 

 17 592 
45-2-24-45-6-46-27-47-5-14-7-48-30-49-50-47-47-51-7-52-7-53-21-41-20-50-16-42-

14-33-54-7-29-13-55-7-17 

 18 512 
45-2-24-45-6-6-46-27-47-14-7-48-30-49-50-47-47-51-7-52-53-21-41-20-50-16-42-14-

33-54-7-29-13-55-7-17 

 19 521 
45-2-24-45-6-46-27-47-14-7-48-30-49-50-47-47-51-7-52-7-53-21-41-20-50-16-42-14-

33-54-7-29-13-55-7-17 

  563 
45-2-24-45-6-46-27-47-14-7-48-30-49-50-47-47-51-7-52-7-53-21-41-20-50-16-42-14-

33-54-7-29-13-55-7-17 

  636 
45-2-24-45-6-46-27-47-14-7-48-30-49-50-47-47-51-7-52-7-53-21-41-20-50-16-42-14-

33-54-7-29-13-55-7-17 

  662 
45-2-24-45-6-46-27-47-14-7-48-30-49-50-47-47-51-7-52-7-53-21-41-20-50-16-42-14-

33-54-7-29-13-55-7-17 

 20 599 
45-2-24-45-46-27-47-14-7-48-30-49-50-47-47-51-7-52-7-53-21-41-20-50-16-42-14-

33-54-7-29-13-55-7-17 

 21 651 
45-2-24-45-6-46-27-47-14-53-48-30-49-50-47-47-51-7-52-7-53-21-41-20-50-16-42-

14-33-54-7-29-42-7-17 

 53 MRSA252 
45-2-24-45-6-46-27-47-14-7-48-14-50-47-47-51-7-52-7-53-21-41-20-50-16-42-14-33-

54-7-29-13-55-7-17 

 22 531 
45-2-24-45-6-46-27-47-14-7-48-30-49-50-47-47-51-7-52-7-53-21-41-20-50-16-42-14-

33-54-7-29-42-7-17 

  607 
45-2-24-45-6-46-27-47-14-7-48-30-49-50-47-47-51-7-52-7-53-21-41-20-50-16-42-14-

33-54-7-29-42-7-17 
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  608 
45-2-24-45-6-46-27-47-14-7-48-30-49-50-47-47-51-7-52-7-53-21-41-20-50-16-42-14-

33-54-7-29-42-7-17 

 23 710 
45-2-24-45-6-46-27-47-14-7-48-30-49-50-47-47-51-7-53-21-41-20-50-16-42-14-33-

54-7-29-42-7-17 

 

4 

 

24 

 

540 

9-24-20-23-24-9-42-14-37-43-27-44-29-23-29-37-43-5-44-29-23-32-43-27-32-14-29-

7-23-23-35-29-30-29-30-23-35-29-11-40-45 

 25 627 
9-24-20-23-24-9-42-14-37-43-27-44-29-23-30-29-37-43-5-44-29-23-32-43-27-32-14-

29-7-23-23-35-29-30-29-30-23-11-40-45 

 26 507 
9-24-20-23-24-9-42-14-37-43-27-44-29-23-30-29-37-43-5-44-29-23-32-43-27-32-14-

29-7-29-30-29-30-23-35-29-11-40-45 

 27 597 
9-24-20-23-24-9-42-14-37-43-27-44-29-23-30-29-37-43-5-44-29-23-32-43-27-32-14-

29-7-23-23-35-29-11-40-45 

 28 628 9-24-20-23-24-9-42-14-29-23-32-43-27-32-14-29-7-23-23-35-29-11-40-45 

  629 9-24-20-23-24-9-42-14-29-23-32-43-27-32-14-29-7-23-23-35-29-11-40-45 

  717 9-24-20-23-24-9-42-14-29-23-32-43-27-32-14-29-7-23-23-35-29-11-40-45 

 29 566 9-24-20-23-24-9-42-14-29-7-11-35-29-30-29-30-23-25-29-11-40-45 

 54 H13911 
9-24-20-23-24-9-42-14-37-43-27-44-29-23-30-29-37-43-5-44-29-23-32-43-27-32-14-

29-7-23-23-35-29-30-29-30-23-35-29-11-40-45 

 30 714 
9-24-20-23-24-9-42-14-37-43-27-44-29-23-30-29-37-43-5-44-29-23-32-43-27-29-29-

7-23-23-35-29-30-29-30-23-35-29-11-40-107 

 55 MSSA476 
9-24-20-23-24-9-42-14-37-43-27-44-29-23-30-29-37-43-5-44-29-23-32-43-27-25-29-

7-23-23-35-29-30-29-108-23-35-29-11-40-45 

 56 MW2 
9-24-20-23-24-9-42-14-37-43-27-44-29-23-30-29-37-43-5-44-29-23-32-43-27-25-29-

7-23-23-35-29-30-29-30-23-35-29-11-40-45 

 57 H9779 
9-24-9-42-14-37-43-27-44-29-23-30-29-37-43-5-44-29-23-32-43-27-25-29-7-23-23-

35-29-30-29-30-23-35-29-11-40-45 

5 31 558 
7-63-64-7-63-64-7-21-16-17-65-66-67-14-20-20-15-14-48-7-9-68-13-14-48-7-7-20-15-

16-20-15-14-9-68-13-14-48-7-20-15-14-52-48-7-20-13-14-41-15-38-17 

 32 560 
7-63-64-7-63-64-7-21-16-17-65-69-14-20-20-15-14-48-7-9-68-13-14-48-70-7-20-15-

14-9-68-17 

 33 657 
7-63-64-7-63-64-7-21-16-17-65-69-14-20-20-15-14-48-7-9-68-13-14-48-70-7-20-15-

16-20-15-14-9-68-13-105-48-7-20-15-14-52-48-7-20-13-14-41-15-38-17 

 58 H6606 
7-63-64-7-63-64-7-21-16-17-65-69-14-20-20-15-14-48-7-9-68-13-14-48-7-7-20-15-16-

20-15-14-9-68-13-14-48-7-20-15-14-52-48-7-20-13-14-41-15-38-17 

 34 589 
7-63-64-7-63-64-7-21-68-15-14-48-7-9-68-13-14-48-70-7-20-15-16-20-15-16-20-15-

14-9-68-13-14-48-7-20-15-14-52-48-7-20-13-14-41-15-38-17 

 59 H13717 
7-63-64-7-21-14-44-20-20-15-14-48-7-9-68-13-14-48-70-7-20-15-16-52-48-7-20-15-

16-41-13-7-20-15-16-52-48-7-20-15-16-41-109-7-32 

 35 643 7-63-64-7-63-64-7-21-16-17-65-69-14-20-15-14-48-7-9-68-13-14-48-70-7-20-15-14-
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20-15-14-9-68-17 

6 36 664 
21-22-20-23-24-9-25-26-27-28-25-25-29-11-11-32-23-14-23-30-31-32-23-14-29-29-

32-23-32-23-25-23-14-29-23-25-19-7-33-14-17 

 37 20-5 
21-22-20-23-24-9-25-26-27-28-25-25-29-11-30-14-23-30-31-32-23-7-29-29-29-29-32-

23-32-23-25-23-14-29-23-25-19-7-33-14-17 

  547-2 
21-22-20-23-24-9-25-26-27-28-25-25-29-11-30-14-23-30-31-32-23-7-29-29-29-29-32-

23-32-23-25-23-14-29-23-25-19-7-33-14-17 

7 38 577 

21-2-34-35-36-11-35-37-14-14-14-36-14-37-43-11-24-20-21-92-21-14-37-43-27-44-

93-23-30-31-32-23-14-29-29-29-94-95-29-32-31-32-23-25-23-14-29-23-25-19-7-33-

14-17 

 39 681-2 
43-11-24-20-21-92-36-33-14-37-43-27-44-106-23-31-25-23-14-29-32-29-29-32-23-32-

23-32-23-25-23-14-29-23-25-19-7-33-14-17 

8 40 613 

27-2-24-52-103-32-104-21-22-53-15-14-37-43-23-41-35-36-37-13-14-37-43-14-29-7-

29-23-35-35-11-13-14-37-43-27-17-23-25-31-14-29-25-19-31-25-30-52-47-32-23-25-

17 

9 41 574 
1-2-24-41-52-9-88-31-52-21-14-42-11-14-17-88-31-52-17-88-31-52-21-45-46-27-14-

42-14-33-13-7-41-13-7-41-16-89-29-17-90-91-30 

10 42 564 
71-72-24-41-68-44-47-36-73-17-74-75-76-77-17-52-75-14-78-30-52-75-79-25-80-75-

81-82-83-32-81-84-27-32-85-11-86-11-87 

11 43 579 
1-96-20-50-52-33-97-33-47-5-6-46-98-14-99-29-17-15-3-21-6-100-101-20-52-33-102-

9-6-14-20-33-6-7-22-14-9-38-17 

12 44 553 
1-2-3-57-4-7-58-30-59-30-60-11-13-61-44-41-62-12-7-13-14-13-11-15-13-16-17-18-7-

13-62-19-20-14-17 
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Figure A.1. Color-coded repeats of clfA R domains. 
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Figure A.2. Color-coded repeats of clfB R domains. 
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A.1 Repeat profiling program for clfA 

 

 The clf repeat profiling program, gensh, was written using the C++ programming language 

and designed to convert DNA sequences in the serine-aspartic acid repeat domain (R domain) 

into numeric profiles. When a series of DNA sequences are entered into the program, the R 

domain start site is identified and used as the beginning of the first repeat unit. Beginning with 

the first repeat, consecutive 18 bp segments of DNA are then analyzed. All unique repeat units 

are given a different number in the sequence in which they are encountered (all identical repeats 

are given the same number). When identifying repeat units, 18 bp segments are analyzed; 

however, 12 bp repeats are identified by the presence of "TCN" at bases 13-15. When "TCN" is 

present at bases 13-15, the program treats this a the start of a new repeat unit and identifies the 

previous repeat as only 12 bp. This process continues until the stop sequence, which identifies 

the end of the R domain, is encountered. Note that because the program arbitrarily numbers 

repeat units in the order in which they are encountered, no inference can be made as to the 

degree of nucleotide similarity between different numbers (e.g. repeat number 1 is not 

necessarily more similar to repeat number 2 than any other repeat number). After the program is 

complete, two files will be generated. One contains a log of the numbered repeat sequences that 

were identified throughout the complete dataset while the other is a file containing the sample 

names and their numeric repeat profiles. Note that the source code below is only for clfA DNA 

sequences. DNA sequences from clfA and clfB cannot be combined and analyzed in the same 

data set. For DNA sequences of clfB R domains, refer to Supplementary Text A2. 

To use the program, gensh: 
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compile using g++ example: g++ gensh.cpp -o gensh 

 This creates a gensh file that can be run by: ./gensh INFILE OUTFILE1 OUTFILE2 

where the INFILE is a fasta formatted DNA file containing clf R domain DNA sequences and 

OUTFILEs are the files that the program produces. OUTFILE1 is a tab delimited file containing 

all repeat units identified in the dataset along with their repeat numbers. OUTFILE2 is also a tab 

delimited file and contains the sample names and their numeric repeat. 

#include <iostream> #include <fstream> #include <list> #include <vector> 
using namespace std; 
//Global Variables fstream INFILE; fstream OUTFILE1; fstream OUTFILE2; 
typedef struct{ string Segment; int Number; 
}TChunk; vector<string> SeqName; 
//Function Declarations void ReadInput(list<string> &SeqList); void CreateOutput(list<string> SeqList); int 
FindChunk(vector<TChunk> list, string chunk); 
int main(int argc, char* argv[]) { 
/*cout << "argc = " << argc << endl; for(int i = 0; i < argc; i++) 
cout << "argv[" << i << "] = " << argv[i] << 
profiles. 
endl;*/ 
if(argc < 4 || argc > 4){ cout << "Program input as follows:" << endl; cout << "\t./gensh INFILE OUTFILE1 
OUTFILE2\n" << endl; return 0; 
} INFILE.open(argv[1], ios::in); 
} 
} 
OUTFILE1.open(argv[2], OUTFILE2.open(argv[3], 
string FirstSeq; list<string> SeqList; 
ReadInput(SeqList); CreateOutput(SeqList); 
return 0; 
ios::out); ios::out); 
void ReadInput(list<string> &SeqList){ //Hold the sequence name just in case we need it later... string Line; string 
CompleteSeq; bool SequenceStored = false; 
if (INFILE.is_open()) { /* ok, proceed with output */ cout << "WOHO, lets collect some strings!" << endl; 
} 
while( !INFILE.eof() ){ 
//Read in the Sequence Name getline(INFILE, Line); 
switch (Line[0]){ case '>': 
} 
//Handle the Line as a name SeqName.push_back(Line.substr(1, Line.size()-1)); if(SequenceStored){ 
//cout << "SEQ = " << CompleteSeq << endl; SeqList.push_back(CompleteSeq); SequenceStored = false; 
} CompleteSeq.clear(); break; 
default: //Keep adding up the String... SequenceStored = true; if(Line[Line.size()-1] == '\n') 
CompleteSeq += Line.substr(0, Line.size()-1); else 
CompleteSeq += Line.substr(0, Line.size()); break; 
} SeqList.push_back(CompleteSeq); INFILE.close(); 
void CreateOutput(list<string> SeqList) { 
bool terminated = false; vector<TChunk> UniqueSeq; vector<TChunk> Outfile; //Temporary Chunk that will be 
pushed onto the list it is not a duplicate TChunk tmp; 
string chunk; int count = 0; for (list<string>::iterator it = SeqList.begin(); it != SeqList.end(); it++) { 
string seq = *it; //cout << seq << endl; 
for(int i=0; i<seq.size()-2; i++) { 
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if(seq.substr(i,3) == "GAT") 
{ 
{ 
OUTFILE2 
cout << "Found a MATCH!" << endl; 
//From the newly found chunk to the end of the complete seq. seq = seq.substr(i+3, seq.size()); 
//Find the terminating seq, if not found skip out of everything. terminated = false; for(int j=0; j<seq.size(); j++) { 
if(seq.substr(j,2) == "TC" && seq.substr(j+3, 9) == "AACAATAAT") { 
terminated = true; seq = seq.substr(0,j); 
} 
} if(terminated) { << SeqName.at(count) << '\t'; 
//cout << "TERMINATED" << endl; //cout << seq << endl; while(seq.size() >= 12) { 
//location of the chunk, -1 if not found in the list. int chunk_location; 
if(seq.substr(i+3, 2) == "TC" && (seq.substr(i+6, 3) == "GAC" || seq.substr(i+6, 3) == "GAT")) 
} 
} 
//Grab the 18 character chunk if(seq.size() < 18) { 
chunk = seq; seq.clear(); 
} else { 
and check to see if it matches specs 
chunk = seq.substr(0, 18); //cout << "CHUNK = " << chunk //If the chunk has "TC" in pos 13-14, copy only the first 12 
and //restart chunks from TC... if(chunk.substr(12, 2) == "TC") { 
//cout << "TCN found :" << endl; chunk = chunk.substr(0,12); seq = seq.substr(12, seq.size()); 
} else { 
//cout << "TCN Not found : " << endl; seq = seq.substr(18, seq.size()); 
} } chunk_location = FindChunk(UniqueSeq, chunk); 
if(chunk_location >= 0) { 
OUTFILE2 << (chunk_location+1); //UniqueSeq.at(chunk_location).Number += 1; 
} else { 
TChunk tmp = {chunk, 1}; UniqueSeq.push_back(tmp); OUTFILE2 << UniqueSeq.size(); 
} if(seq.size() >= 12) 
OUTFILE2 << '-'; 
<< endl; 
/* 
} 
} if(terminated) 
OUTFILE2 << '\n'; //Output everything to a file yo... 
OUTFILE1 << SeqName.at(count) << '\n'; OUTFILE2 << SeqName.at(count) << '\t'; for(int i=0; i<UniqueSeq.size(); 
i++) { 
OUTFILE1 << (i+1) << ' ' << UniqueSeq.at(i).Segment << '\n'; for(int j=0; j<UniqueSeq.at(i).Number; j++) 
OUTFILE2 << (i+1) << '-'; 
} OUTFILE1 << '\n'; OUTFILE2 << '\n';*/ count++; 
} 
} 
else { 
OUTFILE2 << SeqName.at(count) << '\t' << "ERROR" << '\n'; break; 
} 
for(int i=0; i<UniqueSeq.size(); i++) { 
OUTFILE1 << (i+1) << ' ' << UniqueSeq.at(i).Segment << '\n'; 
} 
int FindChunk(vector<TChunk> list, string chunk) { 
} 
} 
for(int i=0; i<list.size(); i++) { 
string tmp = list.at(i).Segment; if(tmp == chunk) 
return i; return -1; 
} 



 127 

A.2 Repeat profiling program for clfB 

 

 This clf repeat profiling program is intended to be used with clfB R domain DNA 

sequences only. It is similar to that for clfA repeat profiling; however, the stop site has been 

changed for use with locus clfB. Refer to Text A1 for a detailed description of what the program 

does and how it works. 

To use the program, gensh: 

compile using g++ example: g++ gensh.cpp -o gensh 

 This creates a gensh file that can be run by: ./gensh INFILE OUTFILE1 OUTFILE2 

where the INFILE is a fasta formatted DNA file containing clf R domain DNA sequences and 

OUTFILEs are the files that the program produces. OUTFILE1 is a tab delimited file containing 

all repeat units identified in the dataset along with their repeat numbers. OUTFILE2 is also a tab 

delimited file and contains the sample names and their numeric repeat profiles. 

#include <iostream> #include <fstream> #include <list> #include <vector> 
using namespace std; 
//Global Variables fstream INFILE; fstream OUTFILE1; fstream OUTFILE2; 
typedef struct{ string Segment; int Number; 
}TChunk; vector<string> SeqName; 
//Function Declarations void ReadInput(list<string> &SeqList); void CreateOutput(list<string> SeqList); int 
FindChunk(vector<TChunk> list, string chunk); 
int main(int argc, char* argv[]) { 
} 
/*cout << "argc = " << argc << endl; for(int i = 0; i < argc; i++) 
cout << "argv[" << i << "] = " << argv[i] << endl;*/ 
if(argc < 4 || argc > 4){ cout << "Program input as follows:" << endl; cout << "\t./gensh INFILE OUTFILE1 
OUTFILE2\n" << endl; return 0; 
} INFILE.open(argv[1], ios::in); 
OUTFILE1.open(argv[2], OUTFILE2.open(argv[3], 
string FirstSeq; list<string> SeqList; 
ReadInput(SeqList); CreateOutput(SeqList); 
return 0; 
ios::out); ios::out); 
void ReadInput(list<string> &SeqList){ //Hold the sequence name just in case we need it later... 
} 
string Line; string CompleteSeq; bool SequenceStored = false; 
if (INFILE.is_open()) { /* ok, proceed with output */ cout << "WOHO, lets collect some strings!" << endl; 
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} 
while( !INFILE.eof() ){ 
//Read in the Sequence Name getline(INFILE, Line); 
switch (Line[0]){ case '>': 
} 
//Handle the Line as a name SeqName.push_back(Line.substr(1, Line.size()-1)); if(SequenceStored){ 
//cout << "SEQ = " << CompleteSeq << endl; SeqList.push_back(CompleteSeq); SequenceStored = false; 
} CompleteSeq.clear(); break; 
default: //Keep adding up the String... SequenceStored = true; if(Line[Line.size()-1] == '\n') 
CompleteSeq += Line.substr(0, Line.size()-1); else 
CompleteSeq += Line.substr(0, Line.size()); break; 
} SeqList.push_back(CompleteSeq); INFILE.close(); 
void CreateOutput(list<string> SeqList) { 
bool terminated = false; vector<TChunk> UniqueSeq; vector<TChunk> Outfile; //Temporary Chunk that will be 
pushed onto the list it is not a duplicate TChunk tmp; 
string chunk; int count = 0; for (list<string>::iterator it = SeqList.begin(); it != SeqList.end(); it++) { 
string seq = *it; //cout << seq << endl; 
for(int i=0; i<seq.size()-2; i++) { 
if(seq.substr(i,3) == "GAT") { 
if(seq.substr(i+3, 2) == "TC" && (seq.substr(i+6, 3) == "GAC" || seq.substr(i+6, 3) == "GAT")) 
{ 
cout << "Found a MATCH!" << endl; 
//From the newly found chunk to the end of the complete seq. seq = seq.substr(i+3, seq.size()); 
//Find the terminating seq, if not found skip out of everything. terminated = false; for(int j=0; j<seq.size(); j++) { 
if(seq.substr(j,2) == "TC" && seq.substr(j+3, 9) == "GATTCAAGA") 
/* 
} 
} else { 
{ 
} 
terminated = true; seq = seq.substr(0,j); 
} if(terminated) { << SeqName.at(count) << '\t'; 
//cout << "TERMINATED" << endl; //cout << seq << endl; while(seq.size() >= 12) { 
OUTFILE2 
} 
} 
} if(terminated) 
OUTFILE2 << '\n'; //Output everything to a file yo... 
OUTFILE1 << SeqName.at(count) << '\n'; OUTFILE2 << SeqName.at(count) << '\t'; for(int i=0; i<UniqueSeq.size(); 
i++) 
//location of the chunk, -1 if not found in the list. int chunk_location; 
//Grab the 18 character chunk if(seq.size() < 18) { 
chunk = seq; seq.clear(); 
} else { 
and check to see if it matches specs 
chunk = seq.substr(0, 18); //cout << "CHUNK = " << chunk //If the chunk has "TC" in pos 13-14, copy only the first 12 
and //restart chunks from TC... if(chunk.substr(12, 2) == "TC") { 
//cout << "TCN found :" << endl; chunk = chunk.substr(0,12); seq = seq.substr(12, seq.size()); 
} else { 
//cout << "TCN Not found : " << endl; seq = seq.substr(18, seq.size()); 
} } chunk_location = FindChunk(UniqueSeq, chunk); 
if(chunk_location >= 0) { 
OUTFILE2 << (chunk_location+1); //UniqueSeq.at(chunk_location).Number += 1; 
} else { 
TChunk tmp = {chunk, 1}; UniqueSeq.push_back(tmp); OUTFILE2 << UniqueSeq.size(); 
} if(seq.size() >= 12) 
OUTFILE2 << '-'; 
OUTFILE2 << SeqName.at(count) << '\t' << "ERROR" << '\n'; break; 
} 
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<< endl; 
} 
} 
} 
{ 
OUTFILE1 << (i+1) << ' ' << UniqueSeq.at(i).Segment << '\n'; for(int j=0; j<UniqueSeq.at(i).Number; j++) 
OUTFILE2 << (i+1) << '-'; 
} OUTFILE1 << '\n'; OUTFILE2 << '\n';*/ count++; 
for(int i=0; i<UniqueSeq.size(); i++) { 
OUTFILE1 << (i+1) << ' ' << UniqueSeq.at(i).Segment << '\n'; 
} 
int FindChunk(vector<TChunk> list, string chunk) { 
for(int i=0; i<list.size(); i++) { 
string tmp = list.at(i).Segment; if(tmp == chunk) 
return i; return -1; 
} 
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A.3 clf color-coded repeat generator 

 The program, wgraph, was written using the C++ programming language and designed to 

convert numeric clf R domain profiles (such as those created by the accompanying program, 

gensh) into color-coded representations. When a file containing numeric repeat profiles is 

entered into the program, a color coded visual representation is generated. Identical numbers are 

colored the same throughout the data set so repeats containing identical DNA sequence are 

colored the same. When initiated, the program automatically reads an input file containing 

hexadecimal colors that it then uses to generate the output. The output can be saved by using the 

print screen command. The size of the individual boxes on the graph can be adjusted as per the 

user's preference by changing the S_WIDTH and S_HEIGHT parameters. 

To use the program, wgraph: 

compile using g++ example: g++ wgraph.cpp -o wgraph 
This creates a wgraph ./wgraph INFILE.dat 
where the INFILE is a 
#include <GL/glut.h> #include <iostream> #include <fstream> #include <string> #include <stdlib.h> #include 
<string.h> #include <stdio.h> #include <vector> 
using namespace std; 
#define WINDOW_X 1000 #define WINDOW_Y 1000 #define S_WIDTH 12 #define S_HEIGHT 44 
file that can be run by: .dat file containing numeric profiles for clf R domain DNA sequences. 
void displayCB(void); void SetPenColorHex(unsigned long color); void DrawFillBox(double x0, double y0, double x1, 
double y1); int xtoi(const char* xs, unsigned long* result); 
int ypos = WINDOW_Y - 10; int xpos = 10; 
void displayCB(void) /* function called whenever redisplay needed */ { 
glClear(GL_COLOR_BUFFER_BIT); 
//Open and read the hex datafile... //unsigned long hex; string line; vector<string> HexList; 
ifstream myfile ("hex.dat"); if (myfile.is_open()) { 
while (! myfile.eof() ) { 
getline (myfile,line); HexList.push_back(line); /*xtoi(line.c_str(), &hex); //cout << hex << endl; SetPenColorHex(hex); 
/* clear the display */ 
//cout << line << endl; DrawFillBox(xpos, ypos-S_HEIGHT, xpos+S_WIDTH, ypos); xpos += (S_WIDTH+1); if(xpos > 
(WINDOW_X - 20)) { 
xpos = 10; cout << "BEFORE: " << S_HEIGHT << endl; ypos = ypos - S_HEIGHT - 10; 
cout << "Y POS: " << ypos << endl; }*/ 
} myfile.close(); 
} else cout << "Unable to open hex file" << endl; //Read the Datfile and print this... myfile.open("infile.dat"); if 
(myfile.is_open()) { 
} 
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int pos; string Name; while (! myfile.eof() ) { 
getline(myfile,line); if(line.length() > 0) { 
pos = line.find("\t"); Name = line.substr(0,pos); cout << "Name: " << Name << " Size=" << line.length() << endl; line = 
line.substr(pos+1, line.length()); cout << "Line: " << line << endl; 
int found=line.find_first_of("-"); unsigned long hex; while (found!=string::npos) { 
int val = atoi(line.substr(0,found).c_str()); xtoi(HexList.at(val).c_str(), &hex); SetPenColorHex(hex); DrawFillBox(xpos, 
ypos-S_HEIGHT, xpos+S_WIDTH, ypos); xpos += (S_WIDTH+1); 
line = line.substr(found+1, line.length()); found=line.find_first_of("-"); 
} int val = atoi(line.c_str()); xtoi(HexList.at(val).c_str(), &hex); SetPenColorHex(hex); DrawFillBox(xpos, ypos-
S_HEIGHT, xpos+S_WIDTH, ypos); 
xpos = 10; ypos = ypos - S_HEIGHT - 10; 
} myfile.close(); 
} 
//DrawFillBox(20, 20, 40, 70); glFlush(); /* Complete any pending operations */ 
} 
void keyCB(unsigned char key, int x, int y) { 
if( key == 'q' ) exit(0); 
} 
int main(int argc, char *argv[]) { 
/* called on key press */ 
int win; glutInit(&argc, argv); /* initialize GLUT system */ 
glutInitDisplayMode(GLUT_RGB); glutInitWindowSize(WINDOW_X,WINDOW_Y); /* width=400pixels 
height=500pixels */ win = glutCreateWindow("Triangle"); /* create window */ 
/* from this point on the current window is win */ 
} 
} 
glClearColor(1.0,1.0,1.0,1.0); gluOrtho2D(0,WINDOW_X,0,WINDOW_Y); glutDisplayFunc(displayCB); 
glutKeyboardFunc(keyCB); 
/* set background to black */ /* how object is mapped to window */ 
/* set window's display callback */ /* set window's key callback */ 
glutMainLoop(); /* execution never reaches this point */ return 0; 
void SetPenColor(double red, double green, { 
glColor3d(red,green,blue); 
} 
void SetPenColorHex(unsigned long color) { 
double blue) 
SetPenColor((color >> 16) / 256.0, (color >> 8 & 0xFF) / 256.0, 
(color & 0xFF) / 256.0); 
void DrawFillBox(double x0, double y0, double x1, double y1) { 
} 
glBegin(GL_POLYGON); glVertex2d(x0,y0); glVertex2d(x1,y0); glVertex2d(x1,y1); glVertex2d(x0,y1); 
glVertex2d(x0,y0); 
glEnd(); 
// Draw a connected line from // corner to 
// Converts a hexadecimal string to integer int xtoi(const char* xs, unsigned long* result) { 
size_t szlen = strlen(xs); int i, xv, fact; 
if (szlen > 0) { 
// Converting more than 32bit hexadecimal value? if (szlen>8) return 2; // exit 
// Begin conversion here *result = 0; fact = 1; 
// Run until no more character to convert for(i=szlen-1; i>=0 ;i--) { 
if (isxdigit(*(xs+i))) { 
if (*(xs+i)>=97) { 
xv = ( *(xs+i) - 97) + 10; 
} else if ( *(xs+i) >= 65) { 
xv = (*(xs+i) - 65) + 10; 
} else { 
xv = *(xs+i) - 48; 
} *result += (xv * fact); fact *= 16; 
/* start processing events... */ 
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// lcorner to // corner to // corner to // corner, 
// then stop--we're finished. 
} 
} else { // Conversion was abnormally terminated // by non hexadecimal digit, hence // returning only the converted 
with // an error value 4 (illegal hex character) 
return 4; 
} 
// Nothing to convert return 1; 
} 
} 
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Table B.1. GenBank accession numbers for 16S rDNA, dnaJ, rpoB, and tuf gene fragments 

analyzed in this study. 

No. Staphylococcus Species Subspecies 
a
Strain 

b
Genes 

16S dnaJ rpoB tuf 

1 S. agnetis  DSM 23656 HM484980.1 N/A HM484993.1 HM485006.1 

2 S. arlettae  ATCC 43957 AB009933.1 AB234056.1 AF325874.1 EU652781.1 

3 S. aureus aureus ATCC 12600 D83357.1 AB234058.1 N/A AB472826.1 

4  anaerobius ATCC 35844 D83355.1 AB234057.1 AF325894.1 HM352930.1 

5 S. auricularis  ATCC 33753 D83358.1 AB234059.1 AF325889.1 EU652784.1 

6 S. capitis capitis ATCC 27840 L37599.1 AB234060.1 AF325885.1 AF298798.1 

7  urealyticus ATCC 43926 AB009937.1 AB234061.1 DQ120729.1 EU652786.1 

8 S. caprae  ATCC 35538 AB009935.1 AB234062.1 AF325896.1 EU652787.1 

9 S. carnosus carnosus ATCC 51365 AB009934.1 AB234063.1 AF325880.1 EU652788.1 

10  utilis DSM 11676 AB233329.1 AB234064.1 DQ120730.1 EU652789.1 

11 S. chromogenes  ATCC 43764 D83360.1 AB234065.1 AF325892.1 EU652790.1 

12 S. cohnii cohnii ATCC 29974 D83361.1 AB234066.1 AF325893.1 EU652791.1 

13  urealyticus ATCC 49330 AB009936.1 AB234067.1 DQ120732.1 HM352939.1 

14 S. condimenti  DSM 11674 Y15750.1 AB234068.1 DQ120733.1 EU652792.1 

15 S. delphini   ATCC 49171 AB009938.1 AB234319.1 DQ120735.1 EU157611.1 

16 S. devriesei  CCUG 58238 FJ389206.1 FJ907454.1 FJ389232.1 FJ389248.1 

17 S. epidermidis  ATCC 14990 D83363.1 AB234069.1 AF325872.1 AF298800.1 

18 S. equorum equorum ATCC 43958 AB009939.1 AB234070.1 AF325882.1 EU652795.1 

19  linens DSM 15097 AF527483.1 EU652838.1 DQ120736.1 EU652796.1 

20 S. felis  ATCC 49168 D83364.1 AB234071.1 AF325878.1 EU652797.1 

21 S. fleurettii  ATCC BAA274 AB233330.1 AB234072.1 DQ120737.1 HM352961.1 

22 S. gallinarum  ATCC 35539 D83366.1 AB234073.1 AF325890.1 EU652799.1 

23 S. haemolyticus  ATCC 29970 L37600.1 AB234074.1 AF325888.1 HM352923.1 

24 S. hominis hominis ATCC 27844 L37601.1 AB234075.1 AF325875.1 EU652801.1 

25  novobiosepticus ATCC 700236 AB233326.1 AB234076.1 DQ120738.1 EU652802.1 

26 S. hyicus  ATCC 11249 D83368.1 AB234077.1 AF325876.1 EU571080.1 

27 S. intermedius  ATCC 29663 D83369.1 AB234078.1 AF325869.1 EU652804.1 

28 S. kloosii  ATCC 43959 AB009940.1 AB234079.1 AF325891.1 EU652813.1 

29 S. lentus  ATCC 29070 D83370.1 AB234080.1 AY036973.1 HM352944.1 

30 S. lugdunensis  ATCC 43809 AB009941.1 AB234081.1 AF325870.1 AF298803.1 

31 S. lutrae  ATCC 700373 AB233333.1 AB234082.1 DQ120739.1 EU652806.1 

32 S. massiliensis  CCUG 55927 EU707796.1 EU652841.1 N/A EU652827.1 

33 S. microti  DSM 22147 EU888120.1 FN433124.1 EU888121.1 N/A 

34 S. muscae  ATCC 49910 S83566.1 AB234083.1 AF325884.1 EU652807.1 

35 S. nepalensis  DSM 15150 AJ517414.1 GQ222247.1 GQ222237.1 EU652808.1 

36 S. pasteuri  ATCC 51129 AB009944.1 AB234084.1 DQ120742.1 EU652809.1 

37 S. pettenkoferi  DSM 19554 DQ538517.1 EU652829.1 DQ120744.1 EU652810.1 
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38 S. piscifermentans  ATCC 51136 AF041359.1 AB234085.1 DQ120745.1 HM352955.1 

39 S. pseudintermedius  CCUG 22219 AJ780976.1 EU652840.1 AM921786.1 EU157680.1 

40 
c
S. pulvereri  ATCC 51698 AB009942.1 AB234086.1 AF325879.1 N/A 

41 S. rostri  DSM 21968 FM242137.1 FM244714.1 FM242139.1 N/A 

42 S. saccharolyticus  ATCC 14953 L37602.1 AB234087.1 AF325871.1 EU652814.1 

43 S. saprophyticus bovis DSM 18669 AB233327.1 AB234088.1 DQ120746.1 HM352934.1 

44  saprophyticus ATCC 15305 D83371.2 AB234089.1 EF173662.1 EU571085.1 

45 S. schleiferi schleiferi ATCC 43808 D83372.1 AB234321.1 AF325886.1 EU652818.1 

46  coagulans ATCC 49545 AB009945.1 AB234320.1 DQ120747.1 EU571086.1 

47 S. sciuri carnaticus ATCC 700058 AB233331.1 AB234322.1 DQ120748.1 EU652819.1 

48  rodentium ATCC 700061 AB233332.1 AB234323.1 DQ120749.1 EU652820.1 

49  sciuri ATCC 29062 AJ421446.1 AB234324.1 HM146323.1 HM352947.1 

50 S. simiae  DSM 17636 AY727530.2 GQ222248.1 EU888127.1 HM352931.1 

51 S. simulans  ATCC 27848 D83373.1 AB234325.1 AF325877.1 EU571090.1 

52 S. stepanovicii  CCM 7717 GQ222244.1 GQ222254.1 FJ906724.1 N/A 

53 S. succinus succinus ATCC 700337 AF004220.1 AB234326.1 DQ120751.1 EU652824.1 

54  casei DSM 15096 AJ320272.1 EU652830.1 DQ120750.1 EU652823.1 

55 S. vitulinus  ATCC 51145 AB009946.1 AB234327.1 DQ120752.1 EU652825.1 

56 S. warneri  ATCC 27836 L37603.1 AB234328.1 AF325887.1 AF298806.1 

57 S. xylosus  ATCC 29971 D83374.1 AB234329.1 AF325883.1 HM352950.1 
a
All are type strains; DSM, German Collection of Microorganisms and Cell Cultures; ATCC, 

American Type Culture Collection; CCUG, Culture Collection, University of Gothenburg; CCM, 

Czechoslovak Collection of Microorganisms. 
b
N/A, no sequence analyzed.  Numbers indicated are GenBank accession numbers. 

c
Reclassified as a later synonym of S. vitulinus (181).  
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Table B.2. Evolutionary models for each partition were chosen based on AIC using jModelTest. 

Partition Model 

All gene fragments GTR + I 
16S, whole fragment K80 + I 

16S, stem nucleotides SYM + I 

16S, loop nucleotides GTR + I 
All protein coding gene fragments GTR +  

dnaJ, whole fragment GTR + I 
dnaJ, codon positions 1 and 2 GTR +  

dnaJ, codon position 1 SYM +  
dnaJ, codon position 2 HKY + I 

dnaJ, codon position 3 GTR +  
rpoB, , whole fragment SYM + I 

rpoB, codon positions 1 and 2 SYM + I 
rpoB, codon position 1 GTR + I 

rpoB, codon position 2 SYM + I 
rpoB, codon position 3 GTR + I 

tuf, whole fragment GTR +  
tuf, codon positions 1 and 2 JC +  

tuf, codon position 1 GTR +  
tuf, codon position 2 GTR +  

tuf, codon position 3 GTR +  
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Figure B.1. Bayesian inferences of phylogeny are highly reproducible, regardless of model 

employed.  Shown are plots of post-burnin generational log likelihoods (lnL) from five 

representative partitioning strategies across triplicate BI runs. All runs were highly reproducible 

regardless of partitioning strategy.  
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Figure B.2. Tree length (TL) analysis indicates that overparameterization may be occurring 

within more highly partitioned datasets.  Shown are post-burnin generational TL estimates for 

partitioning strategies assessed in this study.  Note that as the complexity of partitioning 

increases evidence of increased TL and failed convergence is observed. 
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Figure B.3. Model partitioning increases the mean tree length (TL) and run variance.   

Shown is a box plot indicating the mean TL and 95% confidence interval among partitioning 

strategies. 
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