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ABSTRACT 
 

Neuronal culture systems have many applications, such as basic research into 

neuronal structure, function, and connectivity as well as research into diseases, 

conditions, and injuries affecting the brain and its components.  In vitro dissociated 

neuronal systems have typically been derived from embryonic brain tissue, most 

commonly from the hippocampus of E18 rats.  This practice has been motivated by 

difficulties in supporting regeneration, functional recovery and long-term survival of adult 

neurons in vitro.  The overall focus of this dissertation research was to develop a 

dissociated neuronal culture system from human and animal adult brain tissue, one 

more functionally and developmentally correlative to the mature brain.  To that end, this 

work was divided into five interrelated topics:  development of an adult in vitro neuronal 

culture system comprised of electrically functional, mitotically stable, developmentally 

mature neurons from the hippocampus of adult rats; creation of stable two-cell neuronal 

networks for the study of synaptic communication in vitro; coupling of electrically active 

adult neurons to microelectrode arrays for high-throughput data collection and analysis; 

identification of inadequacies in embryonic neuronal culture systems and proving that 

adult neuronal culture systems were not deficient in similar areas; augmentation of the 

rat hippocampal culture system to allow for the culture and maintenance of electrically 

active human neurons for months in vitro.  The overall hypothesis for this dissertation 

project was that tissue engineered in vitro systems comprised of neurons dissociated 

from mature adult brain tissue could be developed using microfabrication, defined 

medium formulations, optimized culture and maintenance parameters, and cell-cycle 

control.  
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Mature differentiated glutamatergic neurons were extracted from hippocampal 

brain tissue and processed to purify neurons and remove tissue debris.  Terminally 

differentiated rat hippocampal neurons recovered in vitro and displayed mature 

neuronal morphology.  Extracellular glutamate in the culture medium promoted neuronal 

recovery of electrical function and activity.  After recovery, essential growth factors in 

the culture medium caused adult neurons to reenter the cell cycle and divide multiple 

times.  Only after reaching confluence did some neurons stop dividing.  Strategies for 

inhibition of neuronal mitotic division were investigated, and manipulation of the cdk5 

pathway was ultimately found to prevent division in vitro.  Prevention of mitotic division 

as well as optimization of culture and maintenance parameters resulted in a neuronal 

culture system derived from adult rats in which the neuronal morphology, cytoskeleton 

and surface protein expression patterns, and electrical activity closely mirrored mature, 

terminally differentiated adult neurons in vivo.  Improvements were also made to the 

growth surfaces on which neurons attached, regenerated, and survived long-term.  

Culture surfaces, in this case glass cover slips, were modified with the chemical 

substrate N-1 [3-(trimethoxysilyl) propyl]-diethylenetriamine (DETA) to create a 

covalently modified interface with exposed cell-adhesive triamine groups.  DETA 

chemical surfaces were also further modified to create high-resolution patterns, useful in 

creating engineered two-cell networks of adult hippocampal neurons.  Adult 

hippocampal neurons were also coupled to microelectrode array systems (MEAs) and 

recovered functionally, fired spontaneously, and reacted to synaptic antagonists in a 

manner consistent to adult neurons in vivo.  Last, neurons from the brains of deceased 

Alzheimer’s disease (AD) patients and from brain tissue excised during surgery for 
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Parkinson’s disease (PD), Essential Tremor (ET), and brain tumor were isolated and 

cultured, with these neurons morphological regenerating and electrically recovering in 

vitro. 
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CHAPTER 1 - GENERAL INTRODUCTION 
 

The field of neuroscience is an interdisciplinary endeavor that is devoted to the 

scientific study of the nervous system.  The nervous system is composed of networks of 

neurons, supporting cells (i.e. glial cells), and other tissue types.  The formation of 

functional in vitro circuits from neurons allows studies to be performed at both the 

systems and cognitive level as well as at the molecular and cellular level [1], both of 

which are still understood poorly.  Overall, the goals of biologists, chemists, physicists, 

psychologists, medical doctors, computer scientists, engineers, and mathematicians 

that make up the field fall into three main categories:  ―To describe the human brain and 

how it functions, to determine how the nervous system develops, matures, and 

maintains itself through life, and to find ways to prevent or cure many devastating 

neurological and psychiatric conditions [2].‖  Eric Kandel stated the task of neural 

science ―is to explain behavior in terms of the activities of the brain. How does the brain 

marshal its millions of individual nerve cells to produce behavior, and how are these 

cells influenced by the environment...? The last frontier of the biological sciences—their 

ultimate challenge—is to understand the biological basis of consciousness and the 

mental processes by which we perceive, act, learn, and remember‖ [1]. 

 At the molecular, cellular, and systems level, neuroscience research 

investigations are reliant upon the existence of accurate systems that mimic the human 

brain and/or conditions found in the human brain.  Commonly, however, researchers 

have been forced to rely upon abstract models that have flaws or inadequacies due to 

either the complexity of the brain or the complex nature of most neurological conditions, 

injuries, or diseases.  Human-based model systems for neurodegenerative diseases 
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such as AD and for central nervous system (CNS) injury such as traumatic brain injury 

(TBI) are limited, and this limitation has been a major bottleneck in translating basic 

science into clinical applications and therapeutic discoveries. The ideal research model, 

from a purely experimental standpoint, would be to utilize human volunteers in 

experiments in order to understand various diseases and injuries [3]. However, from an 

ethical standpoint this is impossible in any situation where damage would knowingly or 

potentially occur to the human subject. Thus, over most of the last century drug 

development and research aimed at solving clinical neuropathologies has been limited 

to observational studies or studies utilizing live animals, brain slices, or single cells from 

animal/human systems. The main problems with these approaches are that in most 

cases research using animal models does not translate well to the human condition and 

more applicable functional in vitro model systems derived from adult and/or human 

tissue are limited. 

 Rat and mouse disease models mimicking pathological symptoms of human 

neurological and neurodegenerative conditions are widely used in research to 

understand their onset and progression as well as in testing of drugs and therapies in 

their reversal [4-6].  Hippocampal slice cultures, where thin slices of intact hippocampal 

tissue are removed from adult brain tissue, are most widely used for 

electrophysiological studies into synaptogenesis, neuronal communication, long-term 

potentiation (LTP) and plasticity, and pathophysiology of brain disease [7-10].  During 

the last decade several functional in vitro systems have been developed to study CNS 

and peripheral nervous system (PNS) disorders using embryonic and fetal rat and 

mouse tissues, with studies of communication in dissociated cultures typically relying 
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upon hippocampal neurons extracted from the brains of embryonic rat / mouse embryos 

[11-22].  Some work has been performed on the refinement of in vitro dissociated 

neuronal systems to use adult brain tissue rather than embryonic brain tissue [11, 12].  

While these systems supported the morphological recovery of adult hippocampal 

neurons in vitro, issues with support of long term survival and full recovery of electrical 

activity of neurons in these culture systems has prevented its widespread use as a 

research tool [4, 23, 24].  Additional studies have been conducted to develop short-term 

culture systems using human neurons, which while partially successful in supporting 

short-term survival of dissociated human neurons or neural progenitors, however the 

neurons were not evaluated for basic electrical functionality [25-27]. 

 The creation of functional in vitro systems has become a great priority not just for 

neuroscientists but for researchers in general.  The economics of scientific research has 

driven the need for more efficient research mediums, and the simplicity of in vitro 

systems allowed quick gathering and interpretation of results [28].  Recent problems 

with drugs or therapies that have shown potential in rat or mice studies, before failing in 

human trials, highlights the need for more correlative research systems.  Finding and 

creating research models that more closely relate to the adult human brain has the 

potential to lower research costs, decrease the duration of research projects, and 

increase the chances of finding beneficial treatments and therapies for neurological and 

neurodegenerative conditions [29].  

 This dissertation research focuses on the development of a dissociated neuronal 

culture system from mature brain tissue of adult rats, improving upon existing embryonic 

and adult neuronal culture systems [11-22, 30] to create an in vitro model that is more 
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functionally and developmentally correlative to neurons in the mature adult brain.  To 

that end, this work has been divided into four interrelated topics:  development of an 

adult in vitro neuronal culture system comprised of electrically functional, mitotically 

stable, developmentally mature neurons from the hippocampus of adult rats; creation of 

stable two-cell neuronal networks for the study of synaptic communication in vitro; 

coupling of electrically active adult neurons to microelectrode arrays for high-throughput 

data collection and analysis; extending the rat hippocampal culture system to allow for 

the culture and maintenance of electrically active human neurons for months in vitro.  

The overall hypothesis for this dissertation project is that tissue engineered in vitro 

systems comprised of neurons dissociated from mature adult brain tissue can be 

developed using microfabrication, defined medium formulations and optimized culture 

and maintenance parameters.  

 The importance of the hippocampus in both memory formation and in the 

manifestation and progression of neurodegenerative diseases points toward its 

usefulness as a research tool into both basic brain research as well as 

neurodegenerative conditions.  The hippocampus is considered a major component of 

the brain of mammals, playing important roles in the consolidation of information from 

short-term to long-term memory and spatial navigation [7, 31-33].  During AD, the 

damage suffered by neurons in the hippocampus manifests in the memory problems 

and disorientation exhibited by sufferers of the disease [34].  Memory formation in the 

hippocampus is a function of electrical transmission of signals from one neuron to 

another, in the process forming new synaptic connections between neurons, 

strengthening existing synaptic connections, and modifying synaptic parameters 
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through LTP or long-term depression (LTD).  Synaptic connections between neurons in 

the hippocampus can be considered either inhibitory or excitatory.  In excitatory 

synapses, the neurotransmitter glutamate conveys fast excitatory neurotransmission, 

primarily acting via the activation of ionotropic and metabotropic receptors [35].  

Excitatory neurons in the hippocampus release the neurotransmitter glutamate into the 

synaptic cleft which binds to ligand-gated ion channels in the postsynaptic membrane, 

producing an influx of ions to create an excitatory postsynaptic potential (EPSP) [36-38].  

If the EPSP is strong enough to reach the threshold potential, an action potential will be 

triggered in the postsynaptic cell [39].  In addition, activation of these receptors plays a 

major role in neuronal differentiation, CNS development, LTP, and memory formation in 

vivo [35, 40, 41].  At very high levels, glutamate causes excitotoxicity, where activation 

of ion channels leads to the influx of toxic levels of calcium into the neuron [11, 42, 43].   

 In vitro dissociated neuronal culture can model the various functions and 

capacities of the hippocampus and hippocampal neurons in the brain.  The goal of 

developing functional in vitro neuronal systems is to produce long-term culture systems 

that support recovery of electrical activity of neurons in a controlled environment that is 

also capable of reproducing disease states. Most commonly, embryonic hippocampal 

neurons extracted from the brains of embryonic rat or mouse embryos have been used 

to model adult brain systems [11-22].  Embryonic neurons have been used because of a 

number of factors, but mainly because of the following: 

1. Extraction and processing of E18 rat hippocampal tissue yields a homogeneous 

neuronal culture system. 



6 
 

2. Lack of tissue debris after the dissociation of the neuronal tissue allows for cell 

counting and deposition of specific densities of neurons onto culture surfaces. 

3. Embryonic neurons are electrically active in vitro. 

4. Synaptic connections form between embryonic neurons in vitro. 

5. Embryonic neurons survive in vitro for periods of time long enough for the 

completion of scientific investigations. 

Conversely, utilization of adult tissue as the source for neurons for dissociated 

culture systems, while most accurate in reflecting the properties of neurons in vivo, has 

been limited [11, 12, 14, 42, 44, 45].   Many issues exist in the creation of adult neuronal 

culture systems:  

1. Difficulty in limiting damage to neurons during the dissociation of adult brain 

tissue 

2. Presence of cell debris after dissociation of adult neuronal tissue, debris which 

has previously been shown to be inhibitory to neuronal viability and neurite 

regeneration [46-49].  This debris contains nerve-growth inhibiting factors that act 

as inhibitors of axonal growth and cell survival.  Three distinct CNS myelin 

proteins inhibit axon regeneration by binding to the Nogo66 receptor (NgR): 

Myelin-associated glycoprotein (MAG), Nogo-A, and Oligodendrocyte-myelin 

glycoprotein (Omgp).  Chondrotin sulfate proteoglycan (CSPG), arretin, and 

tenascin have also been associated with the inhibition of regeneration  

3. Presence of tissue debris after the dissociation of the neuronal tissue prevents 

cell counting and deposition of specific densities of neurons onto culture 

surfaces. 
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4. Difficulty in supporting in vitro survival and physical regeneration of adult neurons 

5. Difficulty in achieving in vitro functional electrical recovery of adult neurons [14, 

50]  

6. In vitro, post mitotic adult neurons revert to a proliferative state due to the action 

of the essential culture medium factor basic fibroblast growth factor (bFGF) [51].   

The factor bFGF promotes GABA-negative neurons to survive by influencing 

both glucosyceramide synthesis and the voltage-dependent calcium channels 

(VDCCs) [51, 52].  It also up-regulates cyclin-dependent kinase 5 (cdk5) 

expression, triggering neuronal re-entry into the cell cycle [51, 53].  Cdk5, while 

generally expressed in neurons in the cdk5/p35 complex, is normally expressed 

by neurons at levels that exert an influence on neurite outgrowth and migration 

but not proliferation [53-55].  Removal of bFGF from culture medium causes 

death of adult neurons in vitro. 

7. Synaptic connectivity of adult neurons has not been achieved in vitro. 

8. Medium formulations, while providing trophic support for adult neurons for 1-2 

weeks in vitro, have not consistently supported long-term survival of these 

neurons. 

In the hippocampus of embryonic rats, neural progenitors differentiate into 

neurons between E15-E18 [56-58].  While these are differentiated neurons, they are 

developmentally immature, with transcriptional profiling identify two-thirds of genes are 

only expressed postnatal and with >95% of expressed genes showing highly significant 

changes during postnatal development [57].  When examining the machinery 

responsible for synaptic transmission and EPSP, gene expression for the NMDA 
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channel subunits NR2A and NR2B is not detected until near birth on E21-22, with 

expression not peaking until P20 [59].  In vitro, NR2A/B channels are detected at only 

very low levels until after 2 weeks in embryonically derived neurons [60].  AMPA 

channel expression is also limited at birth, only increasing postnatal [61].  Gene 

expression for the axonal sodium transporter subunit 1 begins around P15, increasing 

until P30 [62, 63].  In vitro and in vivo, expression patterns for all genes, specifically 

axonal and synaptic channels responsible for signal transmission, show significant 

changes over the course of the first few weeks after birth [58-60, 62, 64, 65].  The 

usefulness of these developmentally immature neurons for studies of neuronal electrical 

activity and synaptic transmission is limited by this lack of or limited expression of the 

neuronal machinery responsible for electrical transmission in the adult brain.  In 

addition, using immature neurons in studies of neurodegenerative diseases or drug 

discovery can yield results that at times cannot be correlated to the function or action of 

mature neurons in adult brain tissue.  Conversely, an adult hippocampal culture system 

could be used to study the function of neurons, neuronal interactions, aging and 

neurodegenerative disease from a new perspective where the essential ion channels, 

receptors and other cellular components had matured in these neurons in vivo [66]. 

 This dissertation research has attempted to solve some of the difficulties 

associated with culturing adult neurons in dissociated cell culture conditions.  The 

dissection and dissociation of the tissue, the culture process, the cellular attachment 

substrate DETA, the use of anti-apoptotic and oxidative molecules Trolox ® and cerium 

oxide nanoparticles [67, 68], and the defined serum-free media used during dissection, 

dissociation, plating, and long-term maintenance of adult hippocampal neurons were all 
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optimized to try to maximize the number of cells that attached, survived, and 

regenerated in vitro.  Mature differentiated glutamatergic neurons were extracted from 

hippocampal brain tissue and processed to purify the neurons and remove tissue 

debris.  Terminally differentiated rat hippocampal neurons recovered in vitro and 

displayed mature neuronal morphology.  After recovery, adult neurons returned to the 

cell cycle and divided multiple times.  During each mitotic division, the neuron retracted 

their neurites and divided, and each post-mitotic neuron quickly re-extended their axons 

and dendrites.  This neuronal cell division cycle was repeated every 24-48 hours, a 

period also marked by limited neuronal electrical activity [69].  Only after the neurons 

reached confluence did some neurons stop dividing, and neurons were stimulated to 

recover in vivo-like electrical activity through the introduction of glutamate to the 

maintenance medium of the culture.  Strategies for inhibition of neuronal mitotic division 

were investigated, and roscovitine, a purine analog that is a potent and selective 

inhibitor of cdk5 [33, 70], was identified as an effective agent in the prevention of bFGF 

triggered division in vitro.  Prevention of mitotic division as well as optimization of culture 

and maintenance parameters resulted in a neuronal culture system derived from adult 

rats in which the morphology, cytoskeleton and surface protein expression patterns, and 

electrical activity closely mirror neurons in vivo.  Maturity of neurons in dissociated cell 

culture is not only a function of the maturity of the original tissue source but also in the 

expression patterns of receptors, receptor subunits, and structural proteins.  Neurons 

expressed synaptophysin, the presynaptic vesicle glycoprotein used to quantify 

synapses [71].  The NMDA and AMPA channel subunits NR2A, NR2B, and GluR2/3, 

the distinctive postsynaptic ligand-gated ion channels that control EPSP [72-75], were 
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all present in adult hippocampal neurons in this culture system.  These and other 

improvements have allowed electrically active, developmentally mature adult neurons to 

survive for several months in vitro, providing a stable system with potential for a wide 

range of applications.  

 Improvements were also made to the growth surfaces on which neurons attach, 

regenerate, and survive long-term.  Culture surfaces, in this case glass cover slips, 

were modified with the chemical substrate DETA to create a covalently modified 

interface with exposed cell-adhesive amine groups that has been shown to be stable for 

long periods in culture.  This stability in vitro contrasts to poly-D-lysine (PDL) and poly-

ornithine which are physisorbed.  DETA has been previously shown to be superior in 

the promotion of attachment, regeneration and long-term survival of embryonic neurons 

in vitro [30, 44, 76-78].  In addition, DETA, with its triamine functional group exposed at 

the surface, strongly attaches to neurons and allows for all non-neuronal debris such as 

extracellular matrix (ECM) proteins, myelin debris, and cell fragments to be washed 

from the cover slip surface.  DETA chemical surfaces were also further modified to 

create high-resolution patterns, which could be useful for the creation of engineered 

two-cell networks of these adult hippocampal neurons [78, 79].  Adult hippocampal 

neurons were also able to be coupled to MEAs, recovering functionally, firing 

spontaneously, and reacting to synaptic antagonists in a manner consistent to 

connected neurons in vivo.  Last, we were also able to isolate and culture neurons from 

the brains of deceased Alzheimer’s disease patients as well as from brain tissue 

excised during surgery for Parkinson’s disease, Essential Tremor, and brain tumor, with 

these neurons morphological regenerating and electrically recovering in vitro. 



11 
 

 This novel neuronal culture system of synaptically connected excitatory neurons 

derived from adult brain tissue has many potential uses.  Such a system could be used 

to study the function of neurons, neuronal interactions, aging and neurodegenerative 

disease from a new perspective where the different ion channels, receptors and other 

cellular components matured in vivo instead of in vitro [66]. This system provides a 

unique tool that can be used for studies into LTP [66, 80, 81].  It also would be useful in 

high-throughput drug studies, neurocomputing and biorobotics [5, 6, 23, 24], and has a 

unique application to studying regeneration of injured adult neurons, especially in TBI.  

Additionally, targeted and reversible induction of mitotic activity in neurons in vivo has 

great potential as a therapeutic intervention for late-stage neurodegenerative disease, 

such as Alzheimer’s disease or TBI [33, 82, 83].   
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CHAPTER 2 - ADDITION OF GLUTAMATE TO SERUM FREE CULTURE 
PROMOTES RECOVERY OF ELECTRICAL ACTIVITY IN ADULT 

HIPPOCAMPAL NEURONS IN VITRO 

Introduction 

As people live longer, neurological disorders and diseases that affect the aging 

brain have become more common, however success to date for reversing these 

diseases has been limited. One of the reasons this research has been hindered has 

been the flawed, limited, or non-existent research models of aged or diseased human 

brain tissue.  Neuronal cell culture, one of the most commonly used research models, is 

generally derived from embryonic rat or mouse tissue.  Although this system has been 

used effectively in many studies, a neuronal culture system derived from adult brain 

tissue could be a much more relevant and effective model system.  Such a system 

could be used to study the function of neurons, neuronal interactions, aging and 

neurodegenerative disease but from a new perspective where the different ion 

channels, receptors and other cellular components matured in vivo instead of in vitro [1]. 

It also would be useful in drug studies, neuroprosthetic devices, neurocomputing and 

biorobotics for the same rational [2-4], and has a unique application to studying 

regeneration of injured adult neurons, especially in traumatic brain injury (TBI).  These 

applications were the goal behind an earlier attempt at creating an adult hippocampal 

culture system, developed using a serum-free culture media with a biological surface 

[5].  While this system supported the morphological recovery of adult hippocampal 

neurons in vitro, issues with the support of both long-term survival and full recovery of 

electrical activity of neurons in this culture system appears to have prevented its 

widespread use as a research tool [3, 4, 6]. 
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To overcome these issues, modifications were made to a defined neuronal 

culture system previously developed for embryonic hippocampal neurons [7].  First, 

culture surfaces were modified with the chemical substrate DETA, creating a covalently 

modified interface with exposed cell-adhesive amine groups,  which has previously 

been shown to promote the attachment, regeneration and long-term survival of 

embryonic neurons in vitro [7-11].  Second, a neurotransmitter was added to the adult 

hippocampal culture media, an approach found to successfully trigger 

electrophysiological recovery in cultured adult spinal cord neurons [12].  This 

neurotransmitter, glutamate, conveys fast excitatory neurotransmission in vivo, primarily 

acting via the activation of ionotropic and metabotropic receptors [13].  In addition, 

activation of these receptors plays a major role in neuronal differentiation, CNS 

development, long-term potentiation and memory formation in vivo [13-15].  In most 

embryonic hippocampal cultures, microMolar concentrations of glutamate are 

incorporated into the culture media in order to replicate these effects in vitro [16-18].  

However, issues with excitotoxicity led to the removal of glutamate from the media 

gradually beginning at day 4 in earlier attempts to culture adult hippocampal neurons [5, 

19, 20].  Our hypothesis was that, lacking this vital neurotransmitter, the adult neurons 

in vitro could not fully recover the characteristic electrical activity found for neurons in 

vivo in the previous system. 

In this study, the earlier adult hippocampal cell culture technique was modified to 

include silane-modified DETA surfaces and the application of 25 M glutamate for 1 to 7 

days, which was introduced after 21 days in vitro (div) to minimize excitotoxicity.  These 

changes promoted long-term neuronal survival and full recovery of electrical activity, 
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providing a system for studying neurodegenerative diseases and disorders such as 

Alzheimer’s disease and especially neuroregeneration of injured adult tissue.  



22 
 

Materials and Methods 

 

Surface Modification of the Cover Slips 

Glass cover slips (Thomas Scientific 6661F52, 22 x 22 mm2 no. 1) were cleaned 

by acid washing using a 50/50 mixture of concentrated hydrochloric acid and methanol.  

The cover slips were washed three times, 30 minutes per wash, and were rinsed in 

distilled de-ionized water between each washing.  The DETA (N-1 [3-(trimethoxysilyl) 

propyl]-diethylenetriamine, United Chemical Technologies Inc., Bristol, PA, T2910KG) 

monolayer was formed by the reaction of the cleaned surface with a 0.1% (v/v) mixture 

of the organosilane in freshly distilled toluene (Fisher T2904) [9].  The DETA-coated 

cover slips were heated to just below the boiling point of toluene, rinsed with toluene, 

reheated to just below the boiling temperature, and then oven dried.  The DETA formed 

a reaction site limited monolayer on the surface of the cover slip [9]. 

 

Surface Characterization of the Cover Clips after DETA Monolayer Formation 

 The DETA cover slips were characterized to authenticate the monolayer 

formation.  First, contact angle measurements were taken using an optical contact angle 

goniometer (KSV Instruments, Monroe, CT, Cam 200).  The contact angle for the 

DETA-coated cover slips was 54.2 +/- 0.2, which was previously shown to be 

acceptable for neuronal hippocampal culture [9].  Second, X-ray Photoelectron 

Spectroscopy (XPS) (FISONS ESCALab 220i-XL) was used to characterize the 

elemental and chemical state of the DETA-coated cover slip surfaces.  The XPS survey 
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scans as well as high-resolution N 1s and C 1s scans, using monochromatic Al K  

excitation, were obtained, similar to previously reported results [9, 21, 22].  

 

Isolation and Culture of Adult Hippocampal Neurons 

 Hippocampi were removed from 3-6 month-old Sprague Dawley rats, which were 

purchased from Charles River.  Hippocampal cells were extracted and isolated based 

upon a previously described method [5].  In brief, adult rats were euthanized by 

exposure to CO2 according to practices that adhered to IACUC policies and the 

hippocampal regions of the brain were removed. The hippocampi were sliced into small 

pieces, collected in a mixture of Hibernate A (http://www.brainbitsllc.com) and an 

antibiotic/antimycotic (Ab/Am, Invitrogen, 15240-062), and enzymatically digested in a 

papain solution (2 mg/ml Hibernate A) (Worthington, LS003119).  Next, the tissue was 

triturated in 6 ml of fresh Hibernate A - Ab/Am to dissociate the tissue into a cell 

suspension.  This 6 ml cell suspension was then layered over a 4 ml step gradient 

(Optiprep diluted 0.505:0.495 [v/v] with Hibernate A-Ab/Am and made to 15, 20, 25 and 

35% [v/v] in Hibernate A-Ab/Am) and centrifuged at 800  g for 15 minutes, 4ºC.  

Hippocampal neurons were collected from the second and third layers within the 

gradient.  These layers were collected, diluted with 5 ml of fresh Hibernate A-Ab/Am 

and centrifuged at 500 x g for 7 minutes.  The supernatant was removed and the cell 

pellet resuspended in culture media, composed of Neurobasal A (Gibco, 10888), B27 

supplement (Invitrogen, 17504-044), glutamax (Invitrogen, 35050-061), 

antibiotic/antimycotic (Invitrogen, 15240-062) and basic FGF (5 ng/ml, Invitrogen, 

13256-029).  500 l of the cell suspension was applied to each cover slip for 1 hour, the 
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cells adhered during this time, and then an additional 2 ml of media was added to each 

cover slip.  After four days, the existing media was replaced by fresh culture media.  

Thereafter, every four days half the media was removed and replaced with fresh media.  

Remaining cultures were discarded after 90 days. 

 

Application of Glutamate 

 This study utilized the excitatory neurotransmitter glutamate, N-Acetyl-L-glutamic 

acid (Sigma, 855642), which is essential for normal brain function [23]. It was applied at 

different dosages, where the initial concentrations were derived from previous glutamate 

excitotoxicity studies [14, 17, 18].  Glutamate doses, 10 M (Group G21-10), 25 M 

(Group G21-25) and 100 M (Group G21-100), were separately applied to adult 

hippocampal neurons after 21 div.  After incubating for different time periods, neuronal 

viability and electrical activity were evaluated and compared to cultured neurons not 

exposed to glutamate.  Short-, medium-, and long-term effects from the application of 

25 µM glutamate to adult hippocampal neurons 21 div were evaluated after 1 hr (Group 

G21-1h), 1 day (Group G21-1d), 7 days (Group G21-7d) and 14 days (Group G21-14d).  

The optimal parameter for in vitro glutamate application was used to comprehensively 

study the effect of this neurotransmitter on neurons cultured for different periods.  25 M 

glutamate was added to neurons 14 div (Group G14-25), 21 div (Group G21-25), 31 div 

(Group G31-25) and 38 div (Group G38-25).  After 24 hours, neuronal electrical activity 

and viability were evaluated.  Control cultures, where glutamate was not applied, were 

also evaluated after 14 div (Group C14), 21 div (Group C21), and 31 div (Group C31).  

The neurotransmitter solution was freshly prepared for each experiment.  The 
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underlying mechanism behind the glutamate-mediated improvement in neuronal 

electrical properties was investigated through the use of cycloheximide (CHX, Sigma, 

C4859), which is a protein synthesis inhibitor shown to block preconditioning in neurons 

[24].  CHX was first applied at concentrations of 10 g/ml (Group CHX10), 20 g/ml 

(Group CHX20), and 80 g/ml (Group CHX80) to neurons 21 div, with cell viability in 

each group assessed after 24 hours.  Next, 20 g/ml CHX was applied to neurons 21 

div for 1 hour before 25 M glutamate was introduced (Group G21CHX20).  The 

neurons were evaluated for changes in viability and electrical properties after 1 day. 

 

Immunocytochemistry 

 Cover slips were rinsed with 1X PBS two times.  Cells on these cover slips were 

fixed with 10% glacial acetic acid and 90% ethanol for 20 minutes at room temperature.  

Cover slips were again rinsed 3 times with 1X PBS.  Cells were permeabilized for 5 min 

with a permeabilizing solution (5 mM Lysine + 0.5% Triton X-100 + 100 ml of 1X PBS), 

and were then blocked for 2 hr (5% normal donkey serum in permeabilizing solution).  

Anti-neurofilament M polyclonal antibody (Chemicon, AB1981, diluted 1:1000), anti-

MAP 2A/2B (MAB364, Chemicon, diluted 1:1000), anti-nestin (MAB5326, Chemicon, 

diluted 1:1000) and anti-GFAP monoclonal antibody (MAB360, Chemicon, diluted 

1:400) were added in blocking solution for 12 hr at 4ºC.  After 3X washes with 1X PBS, 

fluorescently labeled secondary antibodies were applied for 2 hours.  Vectashield 

mounting medium (H1000, Vector Laboratories, Burlingame, CA) was used to mount 

the cover slips onto slides.  The cover slips were observed and photographed with an 

Ultra VIEWTM LCI confocal imaging system (Perkin Elmer).   
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Electrophysiology 

Whole-cell, patch-clamp recordings were performed in a recording chamber that 

was placed on the stage of a Zeiss Axioscope, 2 FS Plus, upright microscope in 

Neurobasal culture medium (pH was adjusted to 7.3 with N-2-hydroxyethylpiperazine-

N -2-ethane-sulfonic acid [HEPES]) at room temperature.  Patch pipettes (6-8 M ) were 

filled with intracellular solution (K-gluconate 140 mM, ethylene glycol-

bis[aminoethylether]-tetraacetic acid 1 mM, MgCl2 2 mM, Na2ATP 5 mM, HEPES 10 

mM; pH 7.2).  Voltage clamp and current clamp experiments were performed with a 

Multiclamp 700A (Axon, Union City, CA) amplifier.  Signals were filtered at 3 kHz and 

digitized at 20 kHz with an Axon Digidata 1322A interface.  Data recordings and 

analysis were performed with pClamp 8 (Axon) software.  Inward currents that had the 

characteristics of fast sodium currents (ISCs), and outward currents that had the 

characteristics of potassium currents (OPCs) were measured in voltage clamp mode 

using voltage steps of 10 mV from a –70 mV holding potential.  Whole-cell capacitance 

and series resistance were compensated and a p/6 protocol was used.  The access 

resistance was less than 22 M  and tight seals were measured to be above 1 G .  

Action potentials (APs) were measured with 1 s depolarizing current injections from the 

– 70 mV holding potential. 

Selection of cells for electrophysiological characterization was based upon 

morphology.  Phase bright pyramidal neurons with large branching apical dendrites and 

small basal dendrites were selected.  Cells with this morphology stained positive for 

neurofilament and negative for GFAP.  Neurons cultured for 14, 21, 28 and 38 days 
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were electrically characterized for evaluation of glutamate-mediated electrical recovery.  

Additionally, neurons cultured between 1-14 div and 39-87 div were electrically 

characterized to evaluate recovery and maintenance of electrical activity. 

 

Cell Survival Study  

Survival of the cultured adult hippocampal neurons was evaluated following the 

addition of glutamate (10, 25, 100 M), cycloheximide (10, 20, 80 g/ml), or 

simultaneous addition of 25 M glutamate and 20 g cycloheximide.  In the first method, 

the total number of neurons on each cover slip was approximated both before and after 

the application of each factor(s).  Using a phase contrast microscope at 20X 

magnification, neuronal cell counts were made from 20 random spots on each cover 

slip, an area equal to 4% of the total area of the cover slip (22  22 mm).  The total 

number of living neurons on each cover slip was mathematically determined.  In the 

second method, the number of living versus dead neurons was quantified using a 

Live/Dead Assay kit (Molecular Probe, L-3224).  The percentage of living neurons on 

each cover slips was calculated from total cells counted, both living and dead.  Cell 

counts were made using a phase-contrast microscope with epiflourescent light source.  

Total cells were approximated after cells, both living and dead, were counted on 20 

randomly selected spots at 20X magnification.  Neurons in vitro were also 

morphologically evaluated throughout the culture period.   

 

Statistical Analysis 
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Statistical analysis included performing a two-sample t-test on the morphological, 

immunocytochemical, live/dead assay and electrophysiological data.  Parameters 

obtained from the DETA-plated adult hippocampal neurons treated with glutamate ± 

cycloheximide were compared with DETA-plated hippocampal control neurons which 

were not treated.  Numerical summary results are reported as a mean, plus or minus 

the sample standard error of the mean (  SEM).  For two-group comparisons, the 

student’s t-test was used. 
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Results 

Regeneration of Adult Hippocampal Neurons with Limited Recovery of Electrical Activity 
in a Defined System 

After deposition onto DETA surfaces, the adult hippocampal neurons adhered to 

the surface within 60 minutes (Figure 2-1 A).  Immediately following attachment, most 

neurons displayed characteristics indicative of recovery from the trauma of cell culture, 

with some regeneration occurring in all viable neurons by the end of the initial 24 hours.  

After 2 div, recovery of axonal and dendritic processes was clearly visible (Figure 2-1 B, 

C) and by 14 div the vast majority of adult neurons had typical neuronal morphology 

(Figure 2-1 B, C), which was maintained up to 80 div (Figure 2-1, D-I).  These adult 

neurons exhibited phase-bright, smooth-appearing somas, with one or more small 

dendrites and a large apical dendrite with second-order dendritic branching.  While few 

non-neuronal cells were present after 14 div, a small population of glial cells (astrocytes, 

oligodendrocytes, microglia) remained for the duration of the cultures.  Terminally 

differentiated, mature neurons were distinguished from immature neurons and 

progenitor cells through immunocytochemical analysis with antibodies against MAP-2, a 

protein specific to mature neurons [25], and nestin, a protein found specifically in 

immature and progenitor cell populations [26].  During the first 14 div, recovering adult 

neurons displayed MAP2 as well as nestin expression, possibly pointing to the 

regression of mature neurons to a more immature phenotype during regeneration.  After 

14 div, nestin expression was not observed. The majority of the cells after 21 div and 38 

div (90% and 94% respectively) displayed expression of the neuronal structural proteins 

neurofilament and/or MAP-2, while the remaining cells expressed the glial-specific 

structural protein GFAP (Figure 2-1 J, K, L).  The low percentage of non-neuronal cells 
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may be attributed to the poor support of glial growth and survival provided by the 

Neurobasal-A/B27 media [5].   

In a previous study of in vitro adult neuronal electrical properties, both embryonic 

and adult hippocampal neurons were evaluated based upon recovery of electrical 

activity and the ability to fire action potentials [27].  The embryonic hippocampal 

neurons were able to fire action potentials in approximately 84% of the neurons studied 

at 14 div in this earlier work.  However, the percentage of neurons obtained from the 

hippocampus of adult rats that were able to fire action potentials was much lower, 

between 25% and 55%.  In the current study, whole-cell patch-clamp experiments were 

used to evaluate in vitro electrical activity of cultured adult hippocampal neurons using 

the same conditions and the results obtained were similar to those found in the previous 

study.   Additionally, adult neurons were selected for 4 different periods for the initial 

electrical property study: 14 div (Group C14), 21 div (Group C21), 28 div (Group C28) 

and 38 div (Group C38).  The current flow (inward and outward) in these control 

populations of neurons was limited or non-existent in many cases.  The number of 

neurons with induced inward sodium currents ranged from 38.5% (Group C14) to 53.8% 

(Group C38), while the number with induced outward currents ranged from 38.5% 

(Group C14) to 76.9% (Group C38) (Table 2-1, rows 1-4).  The percentage of these 

neurons that fired action potentials was similar to the previously reported results (Table 

2-1, rows 1-4: 23.1% to 38.5%).  

 
Lower Concentrations of Glutamate Trigger Excitotoxicity in Recovering Neurons versus 
Morphologically Recovered Neurons in Vitro 
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To test our theory that neurotransmitter treatment enables functional recovery of 

injured neuronal cells, adult hippocampal neurons were challenged with various 

concentrations of glutamate during the following periods:  1) recovery, during which the 

neurons recovered from the trauma of cell culture (0-3 div), 2) regeneration, during 

which morphology characteristic of in vivo neurons, was recovered (3-14 div), and 3) 

after long-term survival (14-x div).  10 M, 25 M or 100 M aliquots of glutamate were 

added to the adult neuronal culture medium during each of these culture periods, and 

the effect upon neuronal health and viability was assessed after 1 hr, 1 day, and 4 days.  

Excitotoxicity caused by each concentration of glutamate (10 M, 25 M, 100 M) and 

application period (1 h, 1 d, 4 d) was measured, as well as on the in vitro neuronal 

viability during each culture period (0-3 div, 3-14 div, 14-x div). 

The different concentrations of glutamate evoked significantly different levels of 

excitotoxicity in the neurons for each culture period examined.  When glutamate was 

added to the culture media after the initial 1 h plating period (0-3 div), even low 

glutamate concentrations were strongly excitotoxic; damaging and killing the majority of 

the cultured neurons within 1 day.  During the regeneration period (3-14 div), although a 

longer incubation period was required, glutamate damaged or killed the majority of 

neurons within 4 days.  However, in the third period (14-x div), minimal excitotoxicity 

was observed after the adult neurons were incubated with low concentrations of 

glutamate (10 M, 25 M).  Higher concentrations of glutamate (≥ 100 M) remained 

significantly excitotoxic. 

In the next step of the investigation, glutamate was applied after the cultured 

neurons appeared to be completely regenerated morphologically in the culture system.  
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First, adult hippocampal neurons 21 div were incubated with 25 M glutamate for 1 h, 1 

d, 7 d, and 14 d.  Short-term application of glutamate was found to cause very little 

excitotoxicity in these neurons, while long-term incubation of glutamate provoked 

excitotoxicity to a greater degree (Table 2-1).  Next, 21 div adult hippocampal neurons 

were incubated for 1 d with 10 M, 25 M or 100 M glutamate.  Glutamate at 

concentrations of 10 M and 25 M was minimally excitotoxic, causing very little 

damage and death in these neurons.  However, at 100 M, glutamate evoked significant 

neuronal death, with only 69% of the neurons surviving after the incubation period 

(Table 2-1).  Finally, 14, 21, 31, and 38 div adult hippocampal neurons were incubated 

with 25 M glutamate for 1 day.  A small percentage of neurons in each of these 

cultures died in response to glutamate, with toxicity the same in each culture.  Overall, 

glutamate at low M concentrations, and with a short incubation time, was minimally 

excitotoxic to adult neurons that were morphologically recovered in vitro, and this 

provided the baseline culture system conditions for the electrophysiological 

characterization. 

 

Glutamate Applied for a Minimum of 24 Hours Increases the Number of Electrically 
Active Adult Hippocampal Neurons in Vitro 
 

After morphological recovery of the adult hippocampal neurons (≥ 14 div), 

recovery of in vitro neuronal electrical activity was investigated to determine if the 

introduction of glutamate to the neurons through the culture medium had a positive 

effect on functional recovery.  In order to determine the parameters that produced the 

best electrical recovery, glutamate was applied for periods of 1 h to 14 days at 
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concentrations of 10, 25, or 100 M to the hippocampal neurons at 14, 21, 31 or 38 div. 

After the application of glutamate under each set of conditions, the electrical properties 

of these neurons were fully evaluated by whole cell patch-clamp electrophysiology and 

compared to the electrical activity of neurons without the glutamate treatment.  In 

addition, the electrical activity of adult neurons up to 80 div was measured in cultures 

where 25 M glutamate had been applied from 21 to 28 div as shown in Figure 2-1I and 

detailed in Figure 2-3.  

Initially, the shortest and best incubation time that induced improved activity was 

evaluated.  25 M glutamate was applied to 21-day-old adult, hippocampal neuronal 

cultures for periods of 1 h, 1 d, 7 d or 14 d, after which neuronal electrical activity was 

immediately analyzed.  After an incubation period of 1 h with glutamate, the cultured 

neurons exhibited no improvement in activity, both in the number of neurons with 

current flow (ISCs, OPCs) and action potentials (APs) (Table 2-1, Groups G21-1h vs. 

C21).   However, after glutamate was applied for longer durations (1 d, 7 d, 14 d), the 

number of neurons with ISCs and/or OPCs increased significantly, to 71% and 85% 

respectively in those neurons exposed for 24 hours (Table 2-1, Group G21-1d).  In 

addition, a significant increase in the number of neurons with the ability to fire APs was 

triggered by exposure to glutamate for 1 or more days.  After 25 M glutamate was 

applied for 1 d, 7 d, or 14 d, 70-80% of the adult neurons were able to fire APs, a 35-

40% improvement versus untreated neurons (Table 2-1, Groups G21-1d vs. C21; 

Groups G21-7d vs. C28; Groups G21-14d vs. C38). 

Efficacy versus excitotoxicity of glutamate at different concentrations was re-

examined to find the least excitotoxic level of glutamate that still triggered the recovery 
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of neuronal electrical activity in vitro.  10 M, 25 M, or 100 M glutamate was added to 

neurons at 21 div for 1 day.  After incubation with 10 M glutamate, ISCs, OPCs and 

APs were observed in 51%, 63% and 53% of patched neurons respectively, a very 

slight improvement in electrical activity versus untreated neurons.  After incubation with 

25 M glutamate, only slightly excitotoxic under these in vitro conditions, 71% of 

neurons had ISCs, 85% had OPCs and 71% fired APs. This was an improvement of 24, 

32 and 35% respectively versus untreated neurons.  The 100 M dose of glutamate 

indicated similar efficacy, but triggered a significant excitotoxic response (Table 2-1, 

Groups G21-10; G21-25; G21-100; C21).  Finally, a dose of 25 M glutamate was 

applied to the neurons at 14, 21, 31, and 38 div for 24 hours.  When compared to 

untreated control cultures of similar age, a higher percentage of neurons in each treated 

culture exhibited ISCs (15-24%), OPCs (20-30%) and APs (24-36%).  However, 

approximately 20% fewer neurons displayed electrical activity when glutamate 

treatment was initiated after 14 div versus 21, 31, and 38 div. 

The best experimental conditions for improving adult neuronal cultures were 

found by minimizing glutamate excitotoxicity while maximizing glutamate-mediated 

recovery of neuronal electrical activity in vitro.  Challenging cultured adult neurons at 21 

div with 25 M glutamate for 1 to 7 days caused manageable levels of excitotoxicity, 

while significantly improving the electrical potential of these cultured neurons.  This 

combination of culture age, glutamate concentration and incubation time yielded 

significantly improved electrical activity with minimal neuronal cell loss.  Representative 

voltage and current clamp traces (21 and 78 div) are displayed in Figure 2-2.  
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Extracellular Glutamate Applied for a Minimum of 24 Hours to Fully Recovered Adult 
Hippocampal Neurons in vitro Resulted in Increased Inward and Outward Current Flow 
in Electrically Active Neurons 
 

The effect from glutamate at various concentrations and incubation times to 

neurons at different days in vitro was measured in relation to the changes in mean 

resting membrane potential, membrane resistance, membrane capacitance, peak 

inward current, peak outward current and action potential amplitude.  These results are 

summarized as mean  SE (Table 2-2). Statistical analysis performed on the results 

between the different group’s resting membrane potential, membrane resistance, 

membrane capacitance and action potential height indicated no significant change due 

to adult neuronal exposure to glutamate.  However, incubation with glutamate triggered 

significant changes in the peak inward and outward currents (Table 2-2).  The amplitude 

of current flow into the cultured neurons after application of glutamate on average 

doubled as compared to the current flow observed in the control neurons, from – 188.3 

 72.4 (Group C21) to – 403.6  98.5 (Group G21-25).  Likewise, the amplitude of 

current flowing out of the glutamate-treated cultured neurons increased on average 2.5 

to 3 times versus the control neurons, from 304.2  144.2 (Group C21) to 923.5  201.2 

(Group G21-25).  In the different cultures incubated with 25 M glutamate for at least 1 

d (1 d, 7 d, 14 d), no significant amplitude differences in mean peak ISCs or OPCs were 

evident between these cultures.  

In addition, cycloheximide (CHX), an inhibitor of protein synthesis that had 

previously been used to block preconditioning in neurons [24], was used to block all 

possible changes in protein synthesis induced by incubation of the neurons with 

glutamate.  When hippocampal neurons (21 div) were pre-incubated for 1 h with CHX 
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(20 mg/ml) prior to the introduction of 25 mM glutamate, all improvements in neuronal 

electrical activity were completely blocked (Tables 2-1 & 2-2). 
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Discussion 

In this study, a defined culture system for adult hippocampal neurons was 

developed that included a cell-adhesive silane surface and a serum-free media 

containing glutamate.  This culture system allowed adult neurons to recover full 

electrical activity and survive long-term in vitro for more than 80 div.  First, culture 

surfaces, in this case glass cover slips, were modified with the chemical substrate 

DETA to create stable surfaces with exposed cell-adhesive amine groups.  These 

chemically modified surfaces not only promoted adult neuron attachment, regeneration 

and long-term [28], but were also stable, reproducible and can be further modified to 

create high-resolution patterns, which could be useful for the creation of engineered 

networks of these adult hippocampal neurons [9, 10, 29].  Second, the optimal 

glutamate concentration, culture age for glutamate application and duration of glutamate 

exposure were determined such that excitotoxicity was minimized and neuronal 

electrical improvements was maximized, which resulted in the long-term survival of 

electrophysiologically functional adult neurons.  Based on the experimental results, 

challenging 21 div adult neurons with 25 M glutamate for 1 to 7 d caused minimal 

excitotoxicity, while inducing recovery of full electrical activity in vitro.  Together, these 

improvements allowed adult neurons to functionally recover and to survive for several 

months in vitro, providing a stable test-bed for long-term study of the mature 

mammalian brain. 

In fast excitatory neurotransmission, the neurotransmitter glutamate primarily 

acts via the activation of ionotropic and metabotropic receptors.  In addition to 

conveying fast excitatory neurotransmission, activation of these channels appears to 
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play a major role in neuronal differentiation and CNS development, as well as in 

processes that give rise to long-term potentiation and memory formation [13].  Recovery 

of the neuronal electrical activity in this culture system, induced by the application of 

glutamate, illustrates a role for glutamate beyond simple neurotransmission.  The 

application of glutamate triggered this change either through transient or persistent 

cellular changes.  Transient changes in activity could have occurred as a direct result 

from the presence of glutamate, triggering changes in passive membrane properties 

(capacitance and resistance), alteration in the magnitude of the voltage-activated 

sodium, potassium and calcium currents [30-33], or alteration in the activity levels of the 

ion channels.  Persistent changes to neuronal excitability would be dependent upon the 

induction of gene expression to cause long-lasting changes in the adult neurons.  

Results from this study point to the induction of persistent changes in these cultured 

adult neurons as improved electrical activity was not evident in the adult neurons after 

only one hour of glutamate application.  

In this culture system, glutamate appears to activate gene transcription through 

the same mechanism found in vivo.  Through activation of ionotropic and metabotropic 

receptors in vivo, glutamate has been shown to trigger gene activity in immature, 

newborn and mature hippocampal neurons.  In immature neurons, glutamate regulates 

cell proliferation, neuronal differentiation and survival responses primarily through the N-

methyl-D-aspartate receptor (NMDAR) channels activation [34-36]. However, in mature 

neurons glutamate regulates the expression of adaptive response genes as well as 

genes that regulate more complex neural functions, such as learning and memory, 

though the activation of L-type voltage gated calcium channels (L-VGCC) rather than 
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NMDAR channels [36].  Activation of these channels triggers calcium influx, thus 

activating a number of signaling molecules.  These molecules potentiate the signals 

through the activation of downstream signaling proteins such as protein kinase A (PKA), 

Ca2+/calmodulin dependent protein kinase type IV (CaMK-IV), regulated S6 protein 

kinase (Rsk) and other pathways to amplify the calcium signal and carry it to the 

nucleus.  In the nucleus these kinases phosphorylate transcription factors, such as 

cyclic AMP response element binding protein (CREB) or myocyte enhancer factor 2 

(MEF2), make them competent to mediate gene transcription [37].  Although glutamate 

activates transcription factors like CREB in both mature and immature neurons, different 

genes are activated in each case.  Overall, different signaling pathways trigger the 

expression of genes that regulate the survival, differentiation and function of immature 

neurons (cAMP-CREB pathway) [14, 38], neurite outgrowth [13, 17, 18] or activity-

dependent synaptic plasticity and trophic factor-dependent neuronal survival [37, 39].  In 

this adult neuronal culture system, glutamate appeared to induce gene activation, 

resulting in increased numbers of neurons firing APs and in significantly increased 

sodium and potassium current amplitude. The initiation of protein synthesis by the 

glutamate treatment is supported by the experiments where CHX addition blocked any 

functional recovery of electrical activity due to glutamate addition. These differences in 

the activated signaling pathways in the adult neurons from that observed in 

development may give insight to pathways necessary for neuroregeneration, specifically 

for recovery in TBI. 

In this study, silane-modified DETA surfaces and the transient application of 

glutamate have been incorporated into an adult, hippocampal cell culture system in 
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order to sustain long-term neuronal survival as well as to promote full recovery of 

electrical activity in vitro.  Together, these improvements allowed electrically active adult 

neurons to survive for several months in vitro, providing a stable system with potential 

for a wide range of applications.  Promising applications include the long-term study of 

the mature brain, neurological disorders, and diseases affecting the aging brain.  In 

addition, because DETA monolayers can be applied not only to glass cover slips but 

also to electrodes, this system can be extended to integrate living and electronic 

systems.  Overall, potential uses for such a system range from research into the 

function of neurons, neuronal interactions, aging, and neurodegenerative disease [1] as 

well as drug studies, neuroprosthetic devices, neurocomputing, and biorobotics [2-4], or 

most importantly, neuroregeneration, especially in TBI. 
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Table 2-1.  Sample groups (based upon the timing, duration, and dosages of glutamate 
application):   

Groups 
Total number of 

cells patched 

Number of cells 
with induced 

inward sodium 
current (ISC) 

Number of cells 
with induced 

outward 
potassium 

current (OPC) 

Number of cells 
which fired single 
action potentials 

(SAP) 

Average fraction 
of cells alive (vs 
total number of 

cells, live + 
dead) 

C14 13 5 (38.5%) 5 (38.5%) 3 (23.1%) 94% 
C21 17 8 (47.1%) 9 (52.9%) 6 (35.3%) 96% 
C28 14 7 (50.0%) 8 (57.1%) 5 (35.7%) 95% 
C38 13 7 (53.8%) 10 (76.9%) 5 (38.5%) 95% 
G21-10 19 10 (52.6%) 12 (63.2%) 10 (52.6%) 88% 
G21-25 34 24 (70.6%) 29 (85.3%) 24 (70.6%) 84% 
G21-100 17 15 (88.2%) 15 (88.2%) 12 (70.6%) 69% 
G21-1h 15 7 (46.7%) 10 (66.7%) 4 (26.7%) 93% 
G21-1d 34 24 (70.6%) 29 (85.3%) 24 (70.6%) 84% 
G28-7d 15 10 (66.7%) 12 (80.1%) 11 (73.3%) 78% 
G35-14d 14 11 (78.6%) 11 (78.6%) 11 (78.6%) 65% 
G14-25 13 7 (53.8%) 9 (69.2%) 7 (53.6%) 86% 
G21-25 34 24 (70.6%) 29 (85.3%) 24 (70.6%) 84% 
G31-25 18 12 (66.7%) 14 (77.8%) 13 (72.2%) 82% 
G38-25 16 11 (68.8%) 11 (68.8%) 10 (62.5%) 83% 
CHX10     89% 
CHX20     84% 
CHX80     52% 
G21CX20 23 8 (34.8%) 12 (52.2%) 5 (21.7%) 66% 

Comparison of the total number of neurons patched after exposure to different culture 
conditions. The groups were designed to find the optimal conditions under which 
glutamate induced maximal improvements to the electrical activity of the cultured, adult 
hippocampal neurons while causing the least amount of neuronal cell death.  These 
various conditions resulted in different groups which measured the effect of neuronal 
electrical activity and cell death of the following conditions:  no glutamate application – 
controls (day 14 (C14), day 21 (C21), day 28 (C28), day 38 (C38)); different 

concentrations of glutamate applied to day 21 neurons (10 M (G21-10), 25 M (G21-

25), 100 M (G21-100)); different durations for the application of 25 M glutamate to 
day 21 neurons (1 hour (G21-1h), 1 day (G21-1d), 7 days (G21-7d), 14 days (G21-

14d)), 25 M glutamate applied for 24 hours to different aged cultures (day 14 (G14-25), 
day 21 (G21-25), day 31 (G31-25), day 38 (G38-25)), different concentrations of 

cycloheximide (CHX) (10 g/ml (CHX10), 20 g/ml (CHX20), 80 g/ml (CHX80)), and 

inhibition that protein synthesis (20 g CHX / ml media) has on glutamate (25 M, 24 
hour duration, day 21 culture) induced improvement (G21CX20).  Cell death was 
measured both through a live/dead assay and through cell counts.  The live neuron 
percentage value is the fraction of neurons that are live versus the total (live and dead).  
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Table 2-2.  Comparison of the electrical properties of those neurons that exhibited action potentials.   

 C14 C21 C28 C38 G21-10 G21-25 G21-100 G21-1h G21-7d G21-14d G14-25 G31-25 G38-25 G21CX20 

               

               

Days in vitro before 
addition of glutamate n/a n/a n/a n/a 20 20 20 21 21 21 13 30 37 20 

Total days in vitro 14 21 28 38 21 21 21 21+1 hour 28 35 14 31 38 21 

Number of neurons (n) 13 17 14 13 19 34 17 15 15 14 13 18 16 23 

Resting potential (mV) -70 

-69 

±1.56 

-69.05 

±1.05 

-69.63 

±0.45 

-70.25 

±1.92 

-71.4 

±0.88 

-70.9 

±0.54 

-71.4 

±1.36 

-69 

±1.24 

-69.1 

±1.42 

-70.3 

±0.84 

-69.75 

±1.06 

-69.5 

±0.92 

-68.1 

±0.53 

Input resistance (m ) 23.1 

23.1 

±9.62 

23.1 

±2.34 

22.9 

±1.74 

23 

±14.15 

25.74 

±10.06 

19.11 

±5.64 

23.1 

±11.49 

22.75 

±2.21 

23.1 

±6.3 

26.86 

±9.51 

22.3 

±11.15 

27.44 

±6.06 

16.11 

±8.34 

Capacitance (pF) 15.41 

15.77 

±8.1 

14.57 

±6.5 

14.67 

±4.8 

12.86 

±11.69 

10.55 

±4.96 

8.9 

±3.88 

13.14 

±9.28 

11.22 

±2.7 

10.63 

±5.76 

11.13 

±6.75 

12.13 

±3.65 

10.96 

±7.62 

9.35 

±7.45 

Peak inward current 
(pA) -172.4 

-188.3 

±72.4 

-165.2 

±57.3 

-178.1 

±66.3 

-237.2 

±77.3 

-403.6 

±98.5 

-388.3 

±97.4 

-173.3 

±88.9 

-402.2 

±77.5 

-343.7 

±87.4 

-302.5 

±93.6 

-378.8 

±73.4 

-379.8 

±43.9 

-255.6 

±92.4 

Peak outward current 
(pA) 285.4 

304.2 

±144.2 

298.6 

±74.9 

285.6 

±71.4 

479.3 

±177.7 

923.5 

±201.2 

788.3 

±243.6 

276.3 

 ±81.4 

802.4 

±344.5 

734.0 

±133.2 

723.4 

±174.3 

893.2 

±202.4 

933.1 

±355.3 

402.5 

±166.3 

Action potential height 
(mV) 28.2 

29.7 

±2.1 

31.8 

±3.1 

30.3 

±2.8 

34.2 

±4.2 

30.6 

±2.8 

27.1 

±4.3 

34.2 

±4.4 

31.7 

±1.9 

32.6 

±3.2 

26.4 

±2.1 

29.1 

±3.2 

28.4 

±1.1 

31.2 

±2.3 

The different glutamate application conditions resulted in different groups, which measured the effect of neuronal electrical 
properties in the following conditions:  no glutamate application – controls (day 14 (C14), day 21 (C21), day 28 (C28), day 

38 (C38)); different concentrations of glutamate applied to day 21 neurons (10 M (G21-10), 25 M (G21-25), 100 M 

(G21-100)); different duration for the application of 25 M glutamate to day 21 neurons (1 hour (G21-1h), 1 day (G21-1d), 

7 days (G21-7d), 14 days (G21-14d)), 25 M glutamate applied for 24 hours to different aged cultures (day 14 (G14-25), 

day 21 (G21-25), day 31 (G31-25), day 38 (G38-25)), and inhibition that protein synthesis (20 g CHX / ml media) has on 

glutamate (25 M, 24 hour duration, day 21 culture) induced improvement (G21CX20). 
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Figure 2-1.  Rat hippocampal neuron in vitro.  Representative phase-contrast and 
anti-neurofilament/anti-GFAP immunostained pictures of neurons cultured from adult 
hippocampal tissue.  This figure ilustrates both the recovery of the hippocampal neurons 
in this defined in vitro system as well as the purity of the neuronal culture, neurons 
versus glial cells.  A-I illustrates phase-contrast images of living cultures taken during 
different culture ages, immediately following cell culture through 28 days in vitro, 40x 
view. (A) Phase picture of neurons in vitro 1 hour following the attachement of neurons 
onto a silane-modified coverslip.  (B) 6 hours post-attachment (C) 2 days post-
attachment.  Note the rapid recovery of axons as well as the phase bright cell soma.  
(D) Phase picture of the neurons after 7 days in vitro.  (E) Phase picture of the neurons 
after 14 days in vitro.  Morphologically these adult-derived hippocampal neurons are 
fully recovered.  (F) Phase picture of neurons after 22 days in vitro.  (G) Phase picture 

of neurons after 22 days in vitro, with a prior 1-day exposure to 25 M glutamate added 
to the culture media on day 21.  (H) Phase picture of neuron after 78 days in vitro.  (I) 

Phase picture of neuron after 78 days in vitro, after incubation with 25 M glutamate 
between days 21 to 28, further visualized after application of antibodies against 
neurofilament (red) and GFAP (green) antibodies (J, K) and (red) MAP-2 (L) 
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Figure 2-2. Representative traces for voltage and current clamp of an adult 
neuron 21 div.  Neurons retain the ability to move current into and out of cells through 
the voltage-gated ion channels (voltage clamp trace) as well as to fire single action 
potentials after electrical stimulation (current clamp trace).  These traces originated from 

adult hippocampal neurons after 21 days in vitro, where 25 M glutamate had been 
applied to the culture medium between days 20 and 21. 
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Figure 2-3.  Representative phase-contrast pictures and electrophysiological 
recordings of adult hippocampal neurons after approximately 80 div.  (A, B) Phase 
contrast pictures of neurons 80 div.  (C) Representative traces for voltage and current 
clamp of an adult neuron 78 div.  Neurons retain the ability to move current into and out 
of cells through the voltage-gated ion channels (voltage clamp trace) as well as to fire 
single action potentials after electrical stimulation (current clamp trace).  These traces 

originated from adult hippocampal neurons after 78 days in vitro, where 25 M 
glutamate had been applied to the culture medium between days 21 and 28. 
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CHAPTER 3 - DERIVATION OF A POPULATION OF STABLE 
ELECTRICALLY ACTIVE NEURONS FROM THE ADULT RAT BRAIN 

THROUGH MANIPULATION OF CDK5 ACTIVITY 

Introduction 

Neurodegenerative conditions as well as traumatic brain injury (TBI) are 

characterized by widespread loss of functional, active neurons [1, 2].  Investigations into 

treatments and therapies for these conditions are reliant upon the existence of accurate 

systems mimicking the conditions found in the human brain.  Widely used systems 

include rat and mouse disease models mimicking pathological symptoms of the 

diseases, embryonic neuron cell culture systems including dissociated cell culture and 

brain slices, and later stage testing on human subjects [3-5].  Some work has been 

performed on the refinement of in vitro dissociated neuronal systems to use adult brain 

tissue rather than embryonic brain tissue [6, 7].  Problems exist with these current in 

vitro culture systems.  Difficulty in limiting damage during the dissociation of adult brain 

tissue, mitigation of cellular trauma from the release of myelin inhibitory proteins, 

problems promoting both regeneration and long-term survival of adult brain-derived 

neurons, and proliferation of previously quiescent terminally differentiated neurons are 

among the most common problems encountered in creating such an in vitro system. 

 Adult central nervous system neurons have long been described as post mitotic, 

with neurons arrested in a G0 phase of the cell cycle.  A new hypothesis has emerged, 

however, that this cell cycle arrest in neurons is not permanent, but rather mature 

differentiated neurons must constantly regulate themselves to keep from progressing 

through the cell cycle [8].  In vitro, post mitotic neurons revert to a proliferative state due 

to the action of the essential factor basic fibroblast growth factor (bFGF) [9].   The factor 
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bFGF also promotes GABA-negative neurons survival by influencing both 

glucosyceramide synthesis and the voltage-dependent calcium channels (VDCCs) [9, 

10].  It also up-regulates cyclin-dependent kinases 5 (cdk5) expression, triggering 

neuronal re-entry into the cell cycle [9, 11].  Cdk5, while generally expressed in neurons 

in the cdk5/p35 complex, is normally expressed by neurons at levels that exert an 

influence on neurite outgrowth and migration but not proliferation [11-13].  Cyclin-

dependent kinase inhibitors (CKIs), which includes the competitive cdk5/p35 inhibitor 

roscovitine, normally play an important role in regulatory decisions controlling 

progression through the cell cycle [13, 14]. 

 In this study we have developed a dissociated neuronal cell culture system 

derived from the hippocampus of adult rats.  Through the action of regeneration 

promoting growth factors, most importantly bFGF, and the dose-dependent application 

of novel anti-mitotic factors we are able to activate or deactivate cdk5 mediated cell 

cycle progression to promote or control the division of mature, terminally differentiated 

neurons.  The application of this cell cycle control to an improved serum-free culture 

system has allowed for either the expansion of primary adult neuronal cells under 

controlled conditions or for the development of a stable population of primary neurons 

that both morphologically and functionally regenerate without expansion.  These 

neurons are applied to culture surfaces coated with the chemical substrate N-1 [3-

(trimethoxysilyl) propyl]-diethylenetriamine (DETA), a surface previously shown to be 

superior in the promotion of attachment, regeneration and long-term survival of neurons 

in vitro [15-20].  A stable population of electrically active neurons has been derived 

through this system from adult rat hippocampal tissue, neurons that have been 
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maintained for over 80 days in vitro (div).  Overall, potential uses for such a system 

range from research into the function of neurons, neuronal interactions, aging, and 

neurodegenerative disease [21] as well as drug studies, neuroprosthetic devices, 

neurocomputing, biorobotics [4, 5, 22], and most importantly neuroregeneration, 

especially in TBI.  
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Materials and Methods 

DETA surface modification and characterization 

Glass cover slips (Thomas Scientific 6661F52, 22mm×22mm no. 1) were 

cleaned by acid washing using a 50/50 mixture of concentrated hydrochloric acid and 

methanol. The cover slips were washed three times, 30 min per wash, and were rinsed 

in distilled de-ionized water between each washing. The DETA (N-1 [3-(trimethoxysilyl) 

propyl]-diethylenetriamine, United Chemical Technologies Inc., Bristol, PA, T2910KG) 

monolayer was formed by the reaction of the cleaned surface with a 0.1% (v/v) mixture 

of the organosilane in freshly distilled toluene (Fisher T2904) [17]. The DETA-coated 

cover slips were heated to just below the boiling point of toluene, rinsed with toluene, 

reheated to just below the boiling temperature, and then oven dried. The DETA formed 

a reaction site limited monolayer on the surface of the cover slip [17].  The DETA cover 

slips were characterized to authenticate the monolayer formation. First, contact angle 

measurements were taken using an optical contact angle goniometer (KSV Instruments, 

Monroe, CT, Cam 200). The contact angle for the DETA-coated cover slips was 

54.2±0.2, which was previously shown to be acceptable for neuronal hippocampal 

culture [17]. Second, X-ray Photoelectron Spectroscopy (XPS) (FISONS ESCALab 

220i-XL) was used to characterize the elemental and chemical state of the DETA-

coated cover slip surfaces. The XPS survey scans as well as high-resolution N 1s and 

C 1s scans, using monochromatic Al Kα excitation, were obtained, similar to previously 

reported results [15, 17]. 

 

Cell culture methodology and medium used for adult rat hippocampal culture 
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The hippocampus of adult rats (Charles River, age 6-12 months) were dissected 

and homogenized into small tissue fragments in cold medium (~4ºC) consisting of 

Hibernate-A, Glutamax, and antibiotic-antimycotic.  The tissue was then digested for 30 

minutes at 37°C in calcium-free Hibernate-A (HA) containing 6 mg papain / 12 ml (HA).  

Following digestion, the tissue was washed three times with cold Hibernate-A media to 

remove any active enzyme.  Next, the tissue was suspended in Dissociation Media 

(Table 3-1), formulated for dissociation of rat and mouse adult brain tissue into 

individual cells, and dissociated into individual cells through mechanical dissociation 

with fire-polished Pasteur pipettes.  The cells were suspended in Plating Media (Table 

3-1), used after tissue break-up to promote neuronal attachment and regeneration, and 

then deposited onto DETA-coated glass cover slips for 30-45 minutes.  DETA, with its 

triamine functional group exposed at the surface, strongly attaches to neurons and 

allows for all non-neuronal debris such as ECM proteins, myelin debris, and cell 

fragments to be washed from the cover slip surface [15, 16, 18, 19].  Following this 

washing step fresh Plating medium was applied and remained for the first 3 div.  On 3 

div and every fourth subsequent day, ½ of the medium was removed and replaced with 

Maintenance Media (Figure 3-1, Table 3-1), supporting the long-term maintenance of 

these neurons.  Each type of media was formulated to specifically meet the challenges 

presented during each stage of the cell culture process, allowing for significantly 

improved survival, regeneration, and long-term growth (Table 3-1, Figure 3-1).  The 

osmolarity of the media was adjusted to match the osmolarity of adult rat cerebrospinal 

fluid (295-305mOsm) [23, 24].  In the Dissociation Medium (Table 3-1), the use of 

caspase inhibitors and antioxidants [25] during the dissociation of the tissue minimized 
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both oxidative damage as well as the progression into apoptosis which normally results 

from cellular damage during this stage.  Inclusion of these anti-oxidants as well as 

specific growth factors in the Plating Media (Table 3-1) was found to promote 

attachment and regeneration of neurons in vitro.  For long-term survival, the anti-

oxidants were removed from the Maintenance Medium (Table 3-1).  

 

Control of Neuronal Division in vitro 

bFGF (invitrogen, 13256-029, 5ng/ml) triggered neuronal cell proliferation until 

confluence, a period marked both my rapid neuronal division as well as limited or 

absent functional electrical activity.  After neuronal confluence, 25µM glutamate ((N-

Acetyl-L-glutamic acid, Aldrich, 855642) triggers induction of neuronal electrical 

recovery [20].  Control of the division of neurons in this culture system was investigated 

experimentally as follows:  (1) bFGF removal from both the Plating and Maintenance 

medium.  (2) Fluorodeoxyuridine (FudR, Sigma-Aldrich, F-0503) addition at 10 and 50 

µM (3) arabinoside-D (ara-C, Sigma, C-6645) plus deoxycytidine addition.  (4) Trolox 

(Sigma, 238813) addition at 40 and 100 µM.  (5) Aphidicolin (Aph, Sigma, A0781) 

addition at 1.5 µM.  (6) Roscovitine (Rosc, Sigma, R7772) addition at 1, 5, and 10 µM.  

All factors were added before the onset of neuronal division (2 div), some after the 

onset of division (after 3 div).   

 

Time-Lapse Microscopy 

Time-lapse recording was performed immediately after the cells were plated.  

Living cells were observed under an inverted microscope (Zeiss-Axiovert 100) equipped 
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with Plan-Neofluar 10x objective (Zeiss, Oberkochen, Germany) and a humidified 

incubation chamber for constant temperature at 37ºC and 5% CO2.  Pictures were 

captured with a Hamamatsu C8484-05G digital charge-coupled device camera 

(Hamamatsu Photonics, Shizuoka, Japan). Experiments were run under the control of 

Okolab software (OKO-lab, Ottaviano, NA, ITALY). Pictures were taken under the 

control of the software every 5 minutes, and live cell image sequences were compiled to 

create videos, 12 images per second (video 3-1). 

 

Electrophysiology 

Whole-cell, patch-clamp recordings were performed at room temperature.  PH 

was adjusted to 7.3 with HEPES acid and base, ion concentrations with NaCl to 

approximately 130 mM, and osmolarity of 290-300 mOsm.  Cells were visualized on the 

stage with a Zeiss Axioscope, 2 FS Plus, upright microscope in maintenance culture 

medium.  Patch pipettes (4-8 M ) were filled with intracellular solution (K-gluconate 140 

mM, EGTA 1 mM, MgCl2 2 mM, Na2ATP 5 mM, HEPES 10 mM; pH 7.2), osmolarity 

approximately 260 mOsm.  Voltage clamp and current clamp experiments were 

performed with a Multiclamp 700A (MDS Analytical Devices) amplifier.  Signals were 

filtered at 3 kHz and digitized at 20 kHz with an Axon Digidata 1322A interface.  Data 

recordings and analysis were performed with pClamp software.  Whole-cell capacitance 

and series resistance were compensated electronically.  Only cells with access 

resistance less than 22 M  were analyzed.  Inward currents that had the characteristics 

of fast sodium currents, and outward currents that had the characteristics of potassium 

currents were measured in voltage clamp mode using voltage steps of 10 mV from a –
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70 mV holding potential.  Action potentials were measured with 1 s depolarizing current 

injections to elicit action potentials from a –70 mV holding potential.  Cells were 

morphologically selected for electrophysiological characterization.  Selected cells were 

phase bright pyramidal neurons with large branching apical dendrites and small basal 

dendrites.  Cells with this morphology stained positive for anti-neurofilament-M (Nf-M) 

and/or MAP2.  Neurons were electrically characterized after 6, 13, and 25 div. 

 

Immunocytochemistry 

To prepare cells for immunocytochemical characterization, cover slips were 

rinsed twice with Phosphate Buffered Saline (PBS).  Cells were fixed with 4% 

paraformaldehyde for ten minutes at room temperature, and subsequently rinsed three 

times with PBS.  Cells were permeabilized for five min in PBS with 5 mM Lysine and 

0.5% Triton X-100, and were then blocked for two hours by adding 5% normal donkey 

serum.  Anti-Neurofilament-M polyclonal antibody (Nf-M, intracellular filament found in 

mature neurons, Chemicon, AB1981, diluted 1:1000), anti-NeuN (nuclear marker in 

mature neurons, Chemicon, diluted 1:1000), anti-Ki-67 (nuclear marker in dividing cells, 

Chemicon, diluted 1:1000), anti-NR2A (NMDA channel subunit expressed in the post-

synaptic cell membrane, AB1548, diluted 1:75), anti-NR2B (NMDA channel subunit 

expressed in the post-synaptic cell membrane, MAB5216, diluted 1:150) were added in 

blocking solution for 12 hr at 4ºC.  After 3 washes with PBS, fluorescently labeled 

secondary antibodies (Invitrogen, A11011, A21449, and A11029) were applied for two 

hours.  Vectashield mounting medium (H1000, Vector Laboratories, Burlingame, CA) 
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was used to mount the cover slips onto slides.  The cover slips were observed with an 

Ultra VIEWTM LCI confocal imaging system (Perkin Elmer).   

 

Statistical analysis 

Numerical summary results are reported as a mean, plus or minus the sample 

standard error of the mean (  SEM).  Neuronal cell density immediately following plating 

onto cover slips was normalized to 100 to allow for comparisons of the effect of growth 

factor removal or mitotic factors intervention.  For two-group comparisons, statistical 

analysis included a two-sample student’s t-test on electrophysiological data. 
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Results 

In this study we have created an improved primary dissociated neuronal culture 

system derived from the hippocampus of adult rats.  Previous attempts at this have 

yielded culture systems in which the neurons survive and eventually recover electrically, 

but unfortunately exhibit uncontrolled proliferation [6, 20, 26].  We discovered a means 

to control the proliferation of neurons in vitro, allowing for functionally active primary 

adult neurons to be maintained for long periods of time under dissociated cell culture 

conditions.  Additionally, we were able to expand a population of primary mature 

neurons, arrest proliferation at any point, and promote functional electrical recovery as 

mediated by the addition of glutamate at 25 µM to the culture medium [20]. 

 

Conditions for culturing neurons derived from the hippocampus of adult rats: 

All parameters of the adult culture system were optimized for the support of 

neuronal attachment, regeneration, and long-term survival in vitro (Figure 3-1, Table 3-

1).  Cellular trauma during the cell culture process was minimized by first lowering the 

temperature of the Dissection medium to 4ºC.  Next, extracellular matrix proteins and 

connective tissue in the brain fragments were digested using papain (2 mg / ml HA 

minus Ca2+, 37ºC shaking water bath, 80 revolutions per minute) followed by repeated 

rinses of the tissue to inactivate the enzyme.  Oxidative damage from free radicals 

released during tissue dissociation was limited by inclusion of the powerful anti-oxidants 

Trolox [27] and dextrose-coated cerium oxide nanoparticles [25] in the Dissociation and 

Plating medium.  Direct neuroprotection against apoptotic agents was achieved by 

adding caspase inhibitors (1, 3, and 6) to the Dissociation medium.  The tissue was 
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dissociated with fire-polished glass Pasteur pipettes in order to maximize cell breakup 

while minimizing cellular trauma.  Last, applying the dissociated neurons onto glass 

cover slip(s) coated with the cell adhesive surface DETA in Plating medium for 45 

minutes allowed adherent neurons to attach with minimal attachment of cellular debris.  

Following this plating period, a gentle wash of the cover slip(s) with warm HA (37ºC) 

caused the majority of cellular debris, including myelin inhibitory factors present after 

the breakup of myelin sheaths [28], to be removed. Improvements to these basic culture 

parameters optimized neuronal survival and regeneration (Figures 3-2 to 3-4), allowing 

for investigation into the electrical properties and expression patterns displayed by adult 

neurons in a controlled in vitro environment (Figure 3-5). 

 

Inhibition of cell cycle progression in mature neurons in vitro 

New media formulations (Table 3-1) along with the time- and dose-dependent 

application of growth factor and transcription factor mediators (Figure 3-1) were applied 

to promote neuronal recovery and long-term functional survival.  While these improved 

culture system parameters supported adult neurons, they also forced these terminally 

differentiated primary neurons to enter the cell cycle and divide (Figure 3-2).  While 

critical growth factors, specifically basic fibroblast growth factor (bFGF), and dissociated 

cell culture conditions supported the survival and regeneration of mature neurons 

derived from adult rat hippocampal tissue, they also triggered re-entry into the cell cycle 

and division through upregulation of cyclin and cyclin-dependent kinase (cdk) 

expression [9, 11, 29-31].  The mitotic division of these neurons was arrested in vitro 

after neurons reached confluence (Figure 3-3B, control) and these previously dividing 
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neurons were shown to exhibit both morphological and electrically recovery after 25µM 

glutamate was added to the culture media for at least 24 hours [20].  Despite the utility 

of this system, for more relevant investigations into primary dissociated neurons the 

rapid proliferation of neurons must be eliminated. 

Multiple strategies were investigated to prevent primary terminally differentiated 

adult hippocampal neurons from returning to the cell cycle and dividing.  The ultimately 

successful strategy for preventing proliferation under cell culture conditions was to add 

roscovitine, a competitive cdk inhibitor.  Roscovitine was introduced into the culture 

medium at 1, 5, and 10 µM both before the onset of neuronal division (2 div) and after 

the onset of neuronal division (7 div) (Figure 3-3 A, B).  When 1 µM roscovitine was 

applied on day 2, the cell population increased more slowly than without roscovitine 

(Figure 3-3A).  10 µM roscovitine caused a decrease in the neuronal population when 

applied on day 2, and a sharp loss of neurons when introduced on day 7 (Figure 3-3B).  

A stable population of neurons was achieved through the application of 5 µM roscovitine 

on days 2-7 in vitro and 2 µM after day 7 as a long-term ―booster‖ concentration (Figure 

3-3B).  In addition, the health and maturity of this stable neuronal population was 

evident in the rapid and lengthy extension of primary axons by these neurons, to as 

much as 4-5 times longer on average versus untreated control neurons (Figure 3-3C).  

A stable population of neurons derived from the hippocampus of adult rats was 

achieved using this cell culture system and roscovitine treatment.  Where control neuron 

populations proliferated to confluence (Figure 3-3D, left column), roscovitine treated 

neuronal populations did not.  These roscovitine treated, non-proliferating cultured 

neurons exhibited morphological characteristics (Figure 3-3D, right column) previously 
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seen exclusively in cultured embryonic neurons.  Additionally, these non-proliferating 

neurons expressed the mature neuronal markers MAP2 and NeuN, but lacked 

expression for the nuclear marker of proliferating cells, Ki-67 (Figure 3-3E).  After 

several weeks in culture, the population of neurons in vitro remained stable (Figure 3-3 

A, B), with very few neurons detaching from the DETA surfaces.  

Other strategies for mitotic elimination that ultimately proved ineffective in the 

prevention of neuronal proliferation in vitro were also investigated.  First, bFGF was 

removed from the Plating media and/or the Maintenance media.  Neurons exposed to 

medium lacking bFGF did not divide.  Rather than remaining static, however, neuronal 

populations deprived of bFGF decreased rapidly in vitro, with almost complete loss of 

neurons evident after two weeks (Figure 3-3A: FGF-P AND FGF-M, 4A).  During this 

two week period, the morphology of the neurons dramatically changed, with the axon 

and branched dendrites retracting toward the cell body and  ultimately forming a 

branched ring of neurites that surrounded the cell soma (Figure 3-4B).  The factor bFGF 

proved to be an essential component of the serum-free culture medium for support of 

neuronal survival, recovery, and regeneration. 

Mitotic inhibitors were also investigated to eliminate the division of the cultured 

neurons.  FudR (10 and 50 µM) and ara-C were added to the culture medium on 2 div 

(Figure 3-3A: F-10, F-50, and ara-C).  This strategy was unsuccessful because all 

dividing cells were forced into apoptosis, eliminating the cultured primary neurons rather 

than preventing neuronal division.  Additional new agents, Trolox and Aphidicolin, both 

with potential anti-mitotic activity, were tested to inhibit the division of neurons in this 

culture system.  Trolox, an antioxidant with anti-mitotic properties toward cancerous 



63 
 

human breast cancer cells [32], was not effective in preventing primary neurons from 

returning to cycle in vitro at both 40 and 100µM (Figure 3-3A: T-40, T-100).  Its 

antioxidant activity was found, however, to improve neuronal survival (Figure 3-3A), and 

was incorporated into both the Dissociation and Plating media at 70nM (Table 3-1). 

Aphidicolin, a cell cycle inhibitor previously effective against bone marrow cell division 

[33], also did not display effective antimitotic activity.  At 1.5 µM, a concentration high 

enough to impede the return of the neurons to the cell cycle, aphidicolin caused most 

cultured neurons to either necrose or apoptose (Figure 3-3A: A-1.5), and limited 

regeneration of neurites and functional electrical properties of those surviving neurons.   

 

Electrical activity and membrane channel expression of adult hippocampal neurons in 
vitro after elimination of mitotic activity 
 

Neurons were evaluated for electrical recovery after 6, 13, and 25 div using 

whole-cell patch clamp electrophysiology to evaluate the electrical potential of neurons, 

defined by the ability to move current into and out of the cell and to fire and propagate 

action potentials.  The recovery of electrical activity in vitro was found to be significantly 

different between populations of neurons allowed to divide unchecked and neurons 

where mitotic division was prevented through application of roscovitine.  When allowed 

to mitotically divide unchecked in vitro, neurons did not fully recover electrically for up to 

3 weeks in vitro, and then only after the neurons reached confluency and were 

stimulated with 25 µM glutamate for more than 24 hours [20].  Prevention of neuronal 

division in vitro through application of roscovitine (5 µM days 2-7 in vitro followed by 2 

µM roscovitine after day 7) significantly changed the time-scale required for electrical 

recovery of neurons in vitro.  Glutamate (25 µM) had been applied after 5 div.  Neurons 
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recovered after 6 div and showed the ability to move current into and out of the cell as 

well as to fire action potentials (Table 3-2, column 1, Figure 3-5 A).  Further recovery of 

these neurons was found after 13 and 25 div, as seen in increased resting membrane 

potential (Vm), increased membrane resistance (Rm), increased current flow, both 

inward sodium and outward potassium, as well as increased action potential amplitude 

(Table 3-2, Figure 3-5 A).  Figure 3-5A shows example traces displaying current flow 

into and out the neuron and an action potential.  

 

Protein expression indicates maturity of adult hippocampal neurons in vitro 

The maturity of neurons cultured in this system was examined.  Neurons that 

were allowed to mitotically proliferate were probed for expression of neurofilament-M, 

Ki-67, and NeuN (Figure 3-2C).  While positive for the neuron-specific structural protein 

neurofilament-M, none of the neurons were positive for the mature neuronal nuclear 

marker NeuN.  Instead, all neurons were positive for Ki-67, expressed exclusively in 

dividing neurons active in the cell cycle.  After roscovitine was added to the cell culture 

medium, neurons no longer divided and the expression pattern changed.  Neurons still 

expressed mature structural proteins (MAP2), but instead of the proliferation marker Ki-

67 they expressed the mature nuclear marker NeuN (Figure 3-3E).  These neurons 

were also probed for NMDA channel subunit expression. Neurons in this cell culture 

system were probed immunocytochemically for each of the two subunits, and NR2A 

subunits outnumbered NR2B subunits, with both subunits present (Figure 3-5B, 1-2). 

 

Expansion of a population of primary neurons in vitro 
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The combination of bFGF and roscovitine has allowed for a culture system of 

terminally differentiated primary adult hippocampal neurons in which the neuronal 

population can be kept stable or can be expanded.  When these neurons were 

expanded under the basic culture conditions described in Figure 3-1 and Table 3-1 

without roscovitine, three distinct phases were observed.  In phase 1 (0-3 div), mature 

neurons were able to recover from the trauma of cell culture and regenerated 

morphologically, as shown by the expression of neurofilamant-M, the 150 kDa structural 

protein uniquely found in neurons in the brain, and NeuN, a nuclear marker expressed 

exclusively in mature neurons [34].  The components of the Plating medium (Table 3-1), 

specifically growth factors, anti-oxidants, and Neurobasal-A with adjusted osmolarity, 

were essential for this recovery and regeneration.  In phase 2 (3-21 div), bFGF in the 

Maintenance media (Table 3-1) induced neurons to re-enter the cell cycle through its 

activity in up regulating cdk5 expression [2, 11, 35, 36].  Previously quiescent, terminally 

differentiated phase bright neurons with long axons and branched dendritic trees first 

retracted their neurites into the cell soma (Figure 3-2A: 18-32 minutes), divided (Figure 

3-2A: 60 minutes), and finally re-extended their axons and dendrites (Figure 3-2A: 60-

108 minutes, 2B), a period observed to occur on average 90 minutes from neurite 

retraction, division, and neurite extension.  Neurons that have previously divided repeat 

this process of cell division and double in number on average every 24-36 hours.  

During these periods, neurons displayed expression patterns consistent with both 

neurons and dividing cells, with all cells displaying both neuronal morphology and 

expression of Ki-67, a nuclear marker for proliferating cells [37], and Nf-M (Figure 3-2, 

C).  At the same time, however, these dividing neurons were not expressing NeuN.  
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Based on the pattern of all neurons during phase 1, specifically with all cells expressing 

mature neuronal markers, as well as the universal expression of proliferation markers 

throughout phase 2, it was determined that mature neurons were dividing, not the 

subset of neural progenitors known to exist in the dentate gyrus of the hippocampus.  If 

only amplification of the smaller progenitor neuronal population of neurons had been 

occurring, then only a subset of neurons present would have shown evidence of Ki-67 

expression. 

In phase 3 (21-90 div), neurons reached confluence and stopped proliferating, a 

point at which neuronal expression of Ki-67 ended and NeuN reappeared.  However, a 

passage of the confluent neurons from one DETA cover slip to multiple DETA cover 

slips at a lower cell density allowed for the continued proliferation of neurons beyond 

that seen on one cover slip alone, extending phase 2.  During phase 2 neuronal 

electrical activity, specifically the ability to move current into and out of the cell and to 

fire action potentials (APs) was limited or non-existent.  As the cells moved into phase 

3, neurons were stimulated to recover their electrical activity through the introduction of 

25 µM glutamate to the Maintenance medium.  When cycloheximide (CHX), an inhibitor 

of protein synthesis that had previously been used to block preconditioning in neurons 

[38], was used to block all possible changes in protein synthesis induced by incubation 

of the neurons with glutamate all improvements in neuronal electrical activity were 

completely blocked.  The introduction of glutamate mediated the cellular transcription 

activity to mature the previously dividing neurons [20]. 
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Discussion 

 In this study we developed a dissociated neuronal cell culture system derived 

from the hippocampus of adult rats.  Through the action of regeneration promoting 

growth factors, most importantly bFGF, and the dose-dependent application of novel 

anti-mitotic factors we were able to activate or deactivate cdk5 mediated cell cycle 

progression to promote or control the division of mature, terminally differentiated 

neurons.  The application of this cell cycle control to an improved serum-free culture 

system supported the expansion of primary adult neuronal cells under controlled 

conditions across multiple passages with the ability to arrest mitotic division at any time 

through the application of roscovitine.  Functional recovery of these previously dividing 

neurons could then be triggered by glutamate. Cell cycle control also allowed for the 

development of a stable population of primary neurons that both morphologically and 

functionally regenerated without expansion.   

In this system, the dissection and dissociation of the tissue, the culture process, 

and the medium used for the dissection, dissociation, plating, and long-term 

maintenance of the neurons were all optimized to maximize the number of neurons that 

attach, survive, and regenerate in vitro.  Mature differentiated glutamatergic neurons 

were extracted from hippocampal brain tissue and processed to purify the neurons and 

remove tissue debris.  Terminally differentiated rat hippocampal neurons recovered in 

vitro and displayed mature neuronal morphology.  After recovery, adult neurons 

returned to the cell cycle and divided multiple times.  During each mitotic division, the 

neuron retracted their neurites and divided, and each post-mitotic neuron quickly re-

extended their axons and dendrites.  This neuronal cell division cycle was repeated 
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every 24-48 hours, a period also marked by limited neuronal electrical activity [20].  

Only after the neurons reached confluence did some neurons stop dividing, and 

neurons were stimulated to recover in vivo-like electrical activity through the introduction 

of glutamate to the maintenance medium of the culture.  Strategies for inhibition of 

neuronal mitotic division were investigated, and roscovitine was identified as an 

effective agent in the prevention of bFGF triggered division in vitro.  Prevention of 

mitotic division as well as optimization of the culture and maintenance parameters has 

resulted in a neuronal culture system derived from adult rats in which the morphology, 

cytoskeleton and surface protein expression patterns, and electrical activity closely 

mirror neurons in vivo.  Maturity of neurons in dissociated cell culture is not only a 

function of the maturity of originating source of tissue but also in the expression patterns 

of receptors, receptor subunits, and structural proteins.  The NMDA channel subunits 

NR2A and NR2B are examples of differential subunit expression between immature 

neurons in the embryonic and postnatal brain and mature neurons in the adult brain.  

Neither NR2A nor NR2B channel subunits are expressed in embryonic neurons.  

Expression of these channels begins around postnatal day 7 [39], and may not be 

expressed in neurons derived from E18 embryos at all.  Both NMDA channel subunits 

were expressed by neurons in this culture system.  These and other improvements 

have allowed electrically active adult neurons to survive for several months in vitro, 

providing a stable system with potential for a wide range of applications.  

Improvements were also made to the growth surfaces on which neurons attach, 

regenerate, and survive long-term.  Culture surfaces, in this case glass cover slips, 

were modified with the chemical substrate DETA to create a covalently modified 
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interface with exposed cell-adhesive amine groups that has been shown to be stable for 

long periods in culture.  This stability in vitro contrasts to PDL and poly-ornithine which 

are physisorbed.  DETA has been previously shown to be superior in the promotion of 

attachment, regeneration and long-term survival of embryonic neurons in vitro [15-19].  

In addition, DETA, with its triamine functional group exposed at the surface, strongly 

attaches to neurons and allows for all non-neuronal debris such as ECM proteins, 

myelin debris, and cell fragments to be washed from the cover slip surface.  DETA 

chemical surfaces can also be further modified to create high-resolution patterns, which 

could be useful for the creation of engineered networks of these adult hippocampal 

neurons [19, 40].  

Adult central nervous system neurons have long been described as post mitotic, 

with neurons arrested in a G0 phase of the cell cycle.  A new hypothesis has emerged, 

however, that this cell cycle arrest in neurons is not permanent, but rather mature 

differentiated neurons must constantly regulate themselves to keep from progressing 

through the cell cycle [8].  Cyclin/cdk complexes normally play an important role in 

regulatory decisions controlling progression through the cell cycle [13].  In neurons, 

cyclin-dependent kinase inhibitors (CKIs), small peptides that block cyclin/cdk activity 

either by forming an inactive complex or by acting as a competitive ligand, seem to be 

naturally involved in the mechanism of cell cycle arrest [41, 42].  In fact, loss of CKIs in 

vivo results in alteration of neuronal cell cycle kinetics [41].  While this arrest of neuronal 

cell division is life-long, late-onset neurodegenerative diseases may be accompanied by 

loss of neuronal cell cycle control.  Cell-cycle protein re-expression has been reported in 

neurons from patients with Alzheimer’s disease, Parkinson’s disease, stroke, TBI, and 
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other neurodegenerative conditions [1, 2, 43-45], and dysregulation of this enzyme has 

been implicated in multiple neurodegenerative conditions including Alzheimer’s [12, 46]. 

The factor bFGF, a member of the family of heparin binding growth factors [47], 

has been shown to be an essential component of the adult neuronal maintenance 

medium as it promotes both the survival and regeneration of neurons in vitro.  In fact, 

the promotion of neuronal survival by bFGF is almost exclusively exerted on GABA-

negative neurons [9].  The factor bFGF induces glucosylceramide synthesis in cultured 

hippocampal neurons, stimulating axonal growth [10].  It also interacts with the L-type 

voltage dependent Ca2+ channels (VDCCs) to stimulate both neuronal survival and 

neurite branch formation [9].  These actions make bFGF an essential factor in the 

culture and maintenance of mature neurons in vitro.  The utility of this mature neuronal 

cell culture system was disrupted, however, by another action of bFGF.  bFGF triggered 

neuronal re-entry into the cell cycle through the up regulation of cdk5 expression [11], 

which resulted in the uncontrolled proliferation of previously post mitotic neurons.  Cdk5, 

which is generally expressed in neuronal cells and plays an important role in neurite 

outgrowth and migration [11], is expressed by neurons in the presence of bFGF in vitro 

at very low levels between 24-48 hours (lag phase), at high levels during 72-112 hours 

(proliferative phase) and remains constant after 112 hours (stationary phase) [11].  The 

level of cdk5 expression corresponded to the proliferative capability of neurons in this 

culture system, with mitotic division of neurons initiating after 3 div and continuing until 

the neurons reached confluence on the surface.  Passage of these confluent neurons to 

a lower density culture resulted in continued proliferation. 
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 In order to develop a culture system of primary neurons that both morphologically 

and functionally regenerate without expansion, the initiation and progression of neurons 

through the cell cycle had to be regulated.  First, bFGF was removed from the culture 

and growth media.  This resulted in massive changes in the cultured neurons, with 

evidence of reorganization of axons, loss of the dentritic trees, appearance of vesicular 

inclusions, and ultimate loss of neurons due to death.  Mature differentiated neurons did 

not survive long-term or regenerate properly under serum-free culture conditions without 

the presence of bFGF in the culture medium, and bFGF was reintroduced to the culture 

medium.  In initial attempts to modulate the proliferative effect from bFGF on neurons, 

commonly used mitotic inhibitors such as FudR and ara-C were used in an attempt to 

eliminate neuronal cell proliferation.  However, because all mitotically active cells were 

eliminated, this approach proved to be ineffective [48].  As an alternative to these mitotic 

inhibitors, other agents previously found to have an effect against dividing populations 

of neurons were investigated.  The alpha-tocopherol analog trolox [32, 49], aphidicolin 

[33], and roscovitine [11, 13, 29] were each shown to be effective in limiting or 

eliminating cancer and/or progenitor cell division.  Of these three agents, roscovitine 

eliminated neuronal division in this culture system with limited impact on neuronal 

recovery, regeneration, and long-term survival.  Roscovitine, a purine analog that is a 

potent and selective inhibitor of cdks, is particularly effective as a competitive inhibitor of 

cdk5/p35 [2, 50], and was introduced into the culture medium in a time- and dose-

dependent manner.  Roscovitine exerted a strong inhibitory effect upon proliferation and 

cell cycle progression triggered by the up regulation of cdk5 by bFGF.  While cdk5/p35 

is active in post mitotic neurons, normal physiological levels do not induce mitotic 
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division of neurons [11, 13].  The proliferative effect due to the over expression of cdk5 

was inhibited by roscovitine, and a stable population of neurons was established.  This 

stable, non-dividing population of mature neurons demonstrated more activity, greater 

mean axonal length, and more highly branched neurites when compared to neuronal 

populations where cell cycle re-entry had not been regulated with roscovitine. 

  This newly discovered ability to both culture primary adult hippocampal neurons 

under serum-free culture conditions, maintain them in a primary, non-dividing state, and 

utilize them for purposes of both basic research, drug discovery, and therapeutic testing 

represents a new and exciting breakthrough in the quest for faster and more targeted 

drug discovery.  The described ability for these post mitotic neurons to re-enter and 

progress through the cell cycle in vitro, ultimately dividing multiple times, represents a 

new paradigm previously thought to be beyond the capability of primary neurons in the 

brains of higher vertebrates.  The use of cdk inhibitors, specifically roscovitine, to 

prevent the induction of neuronal division and return neurons to a quiescent yet 

functionally and electrically active state, capable of forming complex network 

connections and communication, opens up possibilities into a whole new realm of 

research in disease mechanisms and potential therapeutics.  While neurons in the 

mature brains of higher vertebrates had previously been thought to be terminally 

differentiated and incapable of cellular division, we have proven not only can they be 

induced to divide but to also to return to a non-dividing and functional state. 

 The ability of mature neurons to divide in vitro after bFGF was introduced to the 

culture medium has potential implications in vivo.  Overexpression of bFGF or 

introduction of bFGF into the adult brain potentially could trigger mature neurons to 
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retract neurites, undergo mitotic division, regenerate mature morphology, and reconnect 

into the neuronal network.  Similar mechanisms have previously been seen in the 

conversion of non-neuronal cells to functional neurons through the introduction of 

defined factors [51].  Targeted and reversible induction of mitotic activity in neurons in 

vivo has great potential as a therapeutic intervention for late-stage neurodegenerative 

disease, such as Alzheimer’s disease, or TBI [2, 8, 46].  If the same conditions and 

environment were to be created in vivo as was present in this in vitro cell culture 

system, the remaining mature neurons present in the brains of patients ravaged by age, 

disease, or injury could potentially be induced to divide and integrate into the brain as a 

functional network.  These neurons could replace those neurons previously lost to 

damage, age, and disease.  In addition, there has been much conjecture about using 

neural stem cells in cell replacement therapies in various neurodegenerative disease 

[51, 52].  Using populations of the patients own neurons that have been expanded and 

then returned to a non-proliferative state with CKIs in vitro may be a more effective 

therapy.  Last, because DETA monolayers can be applied not only to glass cover slips 

but also to electrodes, another potential use of this system lies in its ability to be 

extended to integrate living and electronic systems. 
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Table 3-1: Media compositions  
Component Quantity Vendor Catalog # 
    

    

Dissection medium:    
  Hibernate-A, calcium free 500ml Brain Bits HA-Ca 
  Antibiotic / Antimycotic 1% Gibco 15240-096 
    

Dissociation medium:    
  Hibernate-A 500ml Brain Bits HA 
  B27 2% Gibco 17504-044 
  Glutamax 2mM Gibco 35050-061 
  Antibiotic / Antimycotic 1% Gibco 15240-096 

  Z-Asp(OMe)-Gln-Met-Asp(OMe) fluoromethyl ketone 4 M Sigma C0480 

  Z-Val-Ala-Asp fluoromethyl ketone 5 M Sigma C2105 
  Dextrose-coated Cerium Oxide Nanoparticles 100nM   
  (±)-6-Hydroxy-2,5,7,8-tetramethylchromane-2-
carboxylic acid 70nM Sigma 238813 
Osmolarity adjusted to 295mOsm with NaCl 
    

Plating medium:    
  Neurobasal-A 500ml Gibco 10888 
  B27 2% Gibco 17504-044 
  Glutamax 2mM Gibco 35050-061 
  Antibiotic / Antimycotic 1% Gibco 15240-096 

  BDNF, recombinant human 20ng/ml 
Cell 

Sciences 
CRB600B 

  NT-3, recombinant human 20ng/ml 
Cell 

Sciences 
CRN500B 

  bFGF, recombinant human 5ng/ml Invitrogen 13256-029 
  Insulin-like Growth Factor-I (E3R) human 20ng/ml Sigma I2656 
  Dextrose-coated Cerium Oxide Nanoparticles 100nM   
  (±)-6-Hydroxy-2,5,7,8-tetramethylchromane-2-
carboxylic acid 

70nM Sigma 238813 

Osmolarity adjusted to 295mOsm with NaCl 
    

Maintenance medium:    
  Neurobasal-A 500ml Gibco 10888 
  B27 2% Gibco 17504-044 
  Glutamax 2mM Gibco 35050-061 
  Antibiotic / Antimycotic 1% Gibco 15240-096 

  BDNF, recombinant human 20ng/ml 
Cell 

Sciences 
CRB600B 

  NT-3, recombinant human 20ng/ml 
Cell 

Sciences 
CRN500B 

  bFGF, recombinant human 5ng/ml Invitrogen 13256-029 
  Insulin-like Growth Factor-I (E3R) human 20ng/ml Sigma I2656 
Osmolarity adjusted to 295mOsm with NaCl    

Culture periods for use of each medium:  Dissection - dissection and enzymatic 
digestion of the tissue specimen.  Dissociation – mechanical dissociation of the tissue 
specimen.  Plating – attachment of individual cells to substrate through culture day 3.  
Maintenance – culture day 3 through the end of the culture  
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Table 3-2:  Electrical properties of adult rat hippocampal neurons after 6, 13, or 25 
div, examined through whole-cell patch clamp electrophysiology 

  6 div 13 div 25 div 

    
    
Number of cells examined 14 14 13 

Vm (mV)  -36.5 ± 2.8 -45.6 ± 2.9 -45.9 ± 4.3 

Rm (mΩ)  185 ± 37.4 328 ± 32.1 337 ± 38.9 

Cm (pF)  13.1 ± 2.9 18.2 ± 1.2 17.6 ± 2.1 

Rseries (mΩ) 16.7 ± 2.8 17.2 ± 1.3 17.9 ± 2.0 

Inward Current, Na2+ (pA) -722 ± 47.0 -868 ± 87.7 -849 ± 122.8 

Outward Current, K+ (pA) 1110 ± 121.5 1332 ± 84.3 1412 ± 74.2 

Vthr (mV) -41.5 -42.7 -41.9 

AP Amplitude (mV)  87.6 ± 9.1 98.3 ± 8.2 96.4 ± 11.1 

AP Duration (ms) 4.6 ± 0.9 5.3 ± 1.7 5.2 ± 1.8 

div=culture days in vitro, Vm=resting membrane potential, Rm=membrane resistance, 
Cm=membrane capacitance, Rseries=series resistance, Vthr=action potential threshold 
voltage, AP=action potential.  Data is presented as mean +/- S.E.M. 
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Figure 3-1:  Culture methodology for processing and dissociation of adult rat 
hippocampal tissue to create and maintain a dissociated neuronal cell culture.  
The time scale of the cell culture shows timed application of growth factors and 
quantification of various neuronal parameters.  The cells were examined 
immunocytochemically after 6, 14, and 25 days in vitro (Neurofilament-M, Ki-67, NeuN, 
MAP2, Synapsin, and GFAP).  Electrical parameters of cells were examined after 6, 13, 
and 25 days in vitro. Cell division examined with and without applied Roscovitine 
between 1-80 days in vitro  
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Figure 3-2:  bFGF induces adult hippocampal neurons to divide in vitro. A: Screen 
shots from time-lapse video of neurons dividing in vitro.   Scale bar 50 microns .  B: 
Adult neuron(s), after mitotic division, reestablishing neurites and connections.  Scale 
bar 20 microns . C:  Dividing cells express Ki-67 (green) and neurofilament-M (red), do 
not express NeuN.  Scale bar 20 microns   
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Figure 3-3:  Roscovitine prevents mature adult hippocampal neurons from 
returning to the cell cycle in the presence of bFGF and dividing in vitro.  A.  
Neuronal population after growth factor removal or addition of mitotic factors.  All day 0 
cell densities normalized to 100 to allow for comparison. C – control, standard medium 
and factors, FGF-P - bFGF removed from both the plating and maintenance medium, 
FGF-M - bFGF removed from the maintenance medium, F-10 – 10 µM FudR on 2 div, 
F-50 – 50 µM FudR on 2 div, ara-C – ara-C on 2 div, T-40 – 40 µM Trolox  on  2 div, T-
100 – 100 µM Trolox on 2 div, A-1.5 – 1.5 µM Aph on 2 div,  R-1 – 1 µM Rosc on 2 div,  
R-5 – 5 µM Rosc on 2 div, R-10 – 10 µM Rosc on 2 div.  B, C: Effect on neuronal cell 
division and neurite length from the addition of different concentrations of Rosc in vitro.  
All day 0 cell densities normalized to 100 to allow for comparison.  Control - neurons 
were not treated. Group 1 – neurons treated with 10µM Rosc days 2-6, 2 µM Rosc after 
day 6.  Group 2, neurons treated with 10 µM Rosc days 7-11, 2µM Rosc after day 11.  
Group 3, neurons treated with 5 µM Rosc days 2-6, 2 µM Rosc after day 6. D: Phase 
pictures of control, untreated neurons (bFGF, no Rosc) and neurons in the presence of 
both bFGF and Rosc, between 11-20 div.  Adult neurons not treated with Rosc divide in 
vitro until confluent, while the population of neurons after treatment with 5 µM Rosc was 
stable in vitro.  scale 50 microns. E: Neurons express MAP2, NeuN, do not express Ki-
67 in vitro in the presence of 5 µM Rosc. Scale 20 microns 
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Figure 3-4:  Effect from bFGF removal on neuronal survival and proliferation.  A.  
bFGF in culture medium caused neurons to divide in vitro, while removal of bFGF 
caused neuronal  loss through apoptosis and necrosis.  All day 0 cell densities 
normalized to 100 to allow for comparison.   B.  Removal of bFGF from the culture 
media prevented neuronal division but triggered apoptosis.  6, 7, and 8 days in vitro in 
neuronal populations grown in media without bFGF.  Scale, 20 microns  
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Figure 3-5:  Neuronal maturity identified through electrical activity and protein 
expression analysis:  A. Representative trace for voltage and current clamp of an 
adult neuron firing a single action potential as well as moving current into and out of the 
cell through voltage-gated ion channels.  These traces originated from a adult rat 
hippocampal neurons after 13 div, B,  NR2A and NR2B expression after 20 div in 
neurons in roscovitine treated cultures.  Scale bars 20 microns.   
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CHAPTER 4 - TWO CELL NETWORKS OF ADULT HIPPOCAMPAL 
NEURONS ON SELF-ASSEMBLED MONOLAYERS FOR THE 

STUDY OF NEURONAL COMMUNICATION IN VITRO. 

Introduction 

 Chemical conduction of action potentials in the central nervous system (CNS) 

depends upon the formation of synapses between the axon of one neuron and the 

dendrite or soma of another [1, 2].  At a synapse, the plasma membrane of the 

presynaptic terminal, or synaptic bouton, comes in close contact with the membrane of 

the target postsynaptic cell, with extensive molecular machinery present in each to link 

the two membranes together [3].  Excitatory neurons in the hippocampus release the 

neurotransmitter glutamate into the synaptic cleft which binds to ligand-gated ion 

channels in the postsynaptic membrane, producing an influx of ions to create an 

excitatory postsynaptic potential (EPSP) [4-6].  If the EPSP is strong enough to reach 

the cell’s activation threshold, an action potential will be triggered in the postsynaptic 

cell [7].   

 Synaptogenesis, synaptic communication, and synaptic plasticity have been 

extensively studied using hippocampal brain slice or dissociated cell cultures in a variety 

of serum containing or serum-free in vitro systems [8].  Studies of communication in 

dissociated cultures typically rely upon hippocampal neurons extracted from the brains 

of embryonic rat or mouse embryos [9].  Hippocampal slice cultures, where thin slices of 

intact hippocampal tissue are removed from adult brain tissue, are most widely used for 

electrophysiological studies into neuronal communication, long-term potentiation (LTP) , 

and pathophysiology of brain disease [10-12].   
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 Previously, we developed an adult hippocampal culture system utilizing a novel 

culture method, novel serum-free media formulation, and the non-biological substrate N-

1 [3-(trimethoxysilyl) propyl]-diethylenetriamine (DETA) [13, 14].  This substrate forms 

self assembled monolayers (SAMs) on any hydroxylated surface, is non-degradable by 

cells, promotes both the attachment and regeneration of neurons in vitro, and, through 

photolithographic patterning, can be used to control neuronal attachment and direct 

axonal outgrowth [15, 16].  Laser ablation photolithography has been used to generate 

patterned surfaces with regions that support cell adhesion and regeneration, and other 

regions that do not [17].  Poly(ethylene) glycol (PEG) SAMs prevent the adsorption of 

proteins on glass surfaces by the entropy/hydrated surface hypothesis [18-20].  

Therefore, a surface composed of small connected regions of DETA surrounded by 

PEG would facilitate the adhesion of small numbers of neurons and direct regeneration 

to facilitate the formation of small networks of synaptically connected neurons.       

 In this study, we demonstrate the formation of small networks of electrically 

active, synaptically connected neurons derived from the hippocampus of adult rats.  

Limited neuronal attachment and directed neurite outgrowth to form these small 

networks was controlled using the photolithographic patterned substrates PEG-DETA.  

Serum-free media formulations, anti-mitotic factors, and the neurotransmitter glutamate 

supported the formation of small synaptically connected networks composed of mature, 

terminally differentiated glutamatergic neurons that were stable for long periods of time 

in vitro.  These finding fill a void in the study of synaptogenesis, synaptic 

communication, synaptic plasticity, neuropharmacology, and brain disease 

pathophysiology in mature neurons by allowing for easy identification of connected 
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neurons and by providing a stable culture system by which the same neurons can be 

studied over time. 
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Materials and Methods 

DETA surface modification and characterization 

Glass cover slips (VWR cat. nr. 48366067, 22×22 mm2 No. 1) were chemically 

cleaned by using serial acid baths. First, the surfaces were soaked in a 50:50 solution of 

concentrated hydrochloric acid (VWR cat. nr. EM1.00314.2503) in methanol (VWR cat. 

nr. BJLP230-4) for 2 hours. Second, the surfaces were immersed in concentrated 

H2SO4 for at least 2 hours. After each acid soak, the surfaces were carefully washed 3 

times with DI water. The final water rinse was followed by boiling the glass slides in DI 

water for 30 minutes. The cleaned glass slides were placed in an oven set at 110 °C 

and allowed to dry overnight.   The DETA (N-1 [3-(trimethoxysilyl) propyl]-

diethylenetriamine, United Chemical Technologies Inc., Bristol, PA, T2910) monolayer 

was formed by the reaction of the cleaned and dried cover slips with a 0.1% (v/v) 

solution of the organosilane in dry toluene (VWR cat. nr. BDH1151) [21]. Dry toluene 

was prepared by distillation over metallic sodium to remove any water or other 

contaminants. The cover slips were heated to 100 °C in DETA-toluene solution, rinsed 

with toluene, reheated to 100 °C in toluene, and then oven dried. 

 

PEG surface modification 

Glass cover slips (VWR cat. nr. 48366067, 22×22 mm2 No. 1) were chemically 

cleaned and dried as mentioned above. The cover slips were then coated with a PEG-

terminated silane by a modified protocol from Papra et al [22].  Grafting was done by 

incubation of the glass cover slips in 3 mM PEG-silane, 2-[Methoxypoly 

(ethyleneoxy)propyl]trimethoxysilane (Gelest, Tullytown, PA), solution in toluene with 
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37% HCl added to achieve a final concentration of 0.08% (0.8 ml HCl/l) for 45 minutes 

at room temperature. The glass cover slips were then rinse once in toluene, twice in 

ethanol and twice in DI water, and sonicated in DI water for 5 minutes to remove the 

non-grafted material. The surfaces were blown dry with nitrogen and stored in a 

dessicator until needed. 

 

Deep-UV photolithography of PEG-silane monolayers 

 PEG-silane modified glass cover slips were patterned using a deep UV (193 nm) 

excimer LASER (Lambda Physik, Santa Clara, CA) at a pulse power of maximum 200 

mJ and a frequency of 10 Hz for 45 seconds through a quartz photomask (Bandwidth 

Foundry, Eveleigh, Australia). The photomask was written in dark-field polarity such that 

the patterns were transparent and the area surrounding the patterns was opaque. The 

UV irradiation of PEG-silane slides through this mask resulted in the formation of glass 

patterns surrounded by a PEG-coated background. After patterning the samples were 

immediately derivatized with DETA (back-fill). 

 

Back-fill of patterned PEG-silane monolayers with DETA-silane 

The patterned PEG-silane substrates were backfilled with DETA following a 

protocol similar to the one mentioned above. The difference consisted in using mild 

reaction temperatures, in order to protect the PEG monolayer. A 0.1% (v/v) DETA-

toluene solution was prepared inside the glove box. The DETA-toluene solution was 

removed from the glove box and transferred to the beaker containing the samples. The 

cover slips were gently heated to no more than 65 °C in DETA-toluene solution, rinsed 
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with toluene and reheated to 65 °C in toluene. After the final wash the samples were 

allowed to dry at room temperature for at least 48 h before use.   The values are 

reported as the mean ± SEM. 

 

Contact angle goniometry analysis 

The surface contact angle of un-modified (clean glass cover slips) and modified 

(PEG or DETA) substrates was measured by contact angle goniometry using a Ramé 

Hart (Netcong, NJ) contact angle goniometer. In all cases, the contact angle of a static 

sessile drop (5µl) of water placed on the sample was measured three times and 

averaged. A contact angle of less than 5 degrees was obtained for clean substrates.  An 

average of 37 ± 2o was measured for PEG substrates, and of 49 ± 2o for DETA control 

slides.   

 

X-Ray Photoelectron Spectroscopy  

In order to authenticate the monolayer formation, both PEG and DETA control 

surfaces were characterized by X-ray Photoelectron Spectroscopy (XPS) using a VG 

ESCALAB 220i-XL spectrometer equipped with an aluminum anode and a quartz 

monochromator. The spectrometer was calibrated against the reference binding 

energies of clean Cu, Ag and Au samples. XPS survey scans were recorded in order to 

determine the relevant elements (pass energy of 50 eV, step size of 1 eV). Si 2p, C 1s, 

N 1s, and O 1s high resolution spectra were recorded in order to determine the quality 

of the surfaces (pass energy of 20 eV, step size of 0.1 eV). The fitting of the peaks was 

performed with Avantage version 3.25 software provided by Thermo Electron 
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Corporation.  The quality of the surfaces was in agreement with previously reported 

results [21-23]. 

 

Palladium-catalyzed metallization of patterned silane monolayers 

Patterned samples were visualized using a palladium-catalyzed copper reduction 

reaction, modified from Kind et al [24]. In this reaction, copper is deposited in regions 

containing the amine terminated silane DETA. 

 

Adult rat hippocampal dissociated cell culture methodology 

Adult neurons are extracted, dissociated, cultured, and maintained using a 

protocol  and medium described elsewhere [14].  Briefly, the hippocampus of adult rats 

(Charles River, age 6-12 months) were dissected and homogenized into small tissue 

fragments in cold medium (~4ºC) consisting of Hibernate-A, glutamax, and antibiotic-

antimycotic.  The tissue was digested for 30 minutes at 37°C in calcium-free Hibernate-

A (HA) containing 6 mg papain / 12 ml (HA no calcium).  Following digestion, the tissue 

was washed three times with cold HA media to remove any active enzyme.  Next, the 

tissue was suspended in Dissociation Medium and broken apart into individual cells 

through mechanical dissociation with fire-polished Pasteur pipettes.  The dissociated 

cells were suspended in Plating medium and then deposited onto DETA-coated glass 

cover slips for 30-45 minutes.  The cover slips were washed with warm HA by gently 

swirling the medium to remove tissue debris.  Following this washing step fresh Plating 

medium was applied and remained for the first 3 div.  On 3 div the medium was 

removed and replaced by Maintenance Medium with 5 µM Roscovitine (Rosc, Sigma, 
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R7772).  All research was approved by the Institutional Animal Care and Use 

Committee at the University of Central Florida and conformed to NIH guidelines.  

    

Adult neuronal network formation on patterned PEG-DETA surfaces 

After 4 div, the adult hippocampal neurons on the DETA cover slips were 

passaged to PEG-DETA patterned cover slips.  Briefly, neurons were dislodged from 

the DETA with trypsin (.05% trypsin / EDTA in HBSS, Gibco, 25200).  Trypsin inhibitor 

(trypsin inhibitor, soybean, Gibco, 17075-029) in Dissociation medium at 0.5 mg per ml 

deactivated the trypsin.  The dislodged neurons were collected and spun at 500 x g for 

5 minutes.  The supernatant of deactivated trypsin in HBSS was discarded, and the 

neuronal cell pellet was suspended in 1 ml Plating medium.  The neurons in suspension 

were counted using a Bright-Line hemacytometer, and neurons were plated onto the 

PEG-DETA patterned cover slips at 50 cells / mm2 in Plating medium supplemented 

with 5 µM Rosc.  After two days post-plating (dpp), glutamate (N-Acetyl-L-glutamic acid, 

Aldrich, 855642) was added to the plating medium to a final concentration of 25 µM.  On 

3 dpp and again every 4 day after, ½ the medium was removed and replaced with fresh 

Maintenance medium supplemented with 2 µM Rosc. 

 

Time-Lapse Microscopy 

Time-lapse recording was performed immediately after the cells were plated onto 

PEG-DETA Fish patterns.  Living cells were observed under an inverted microscope 

(Zeiss-Axiovert 100) equipped with Plan-Neofluar 40x objective (Zeiss, Oberkochen, 

Germany) and a humidified incubation chamber for constant temperature at 37ºC and 
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5% CO2.  Pictures were captured with a Hamamatsu C8484-05G digital charge-coupled 

device camera (Hamamatsu Photonics, Shizuoka, Japan). Experiments were run under 

the control of Okolab software (OKO-lab, Ottaviano, NA, ITALY). Pictures were taken 

under the control of the software every 5 minutes, and live cell image sequences were 

compiled to create videos, 12 images per second (video 4-1). 

 

Immunocytochemistry and Laser Scanning Confocal Microscopy 

To prepare cells for immunocytochemical characterization, cover slips were 

rinsed twice with Phosphate Buffered Saline (PBS).  Cells were fixed with 4% 

paraformaldehyde for ten minutes at room temperature, and subsequently rinsed three 

times with PBS.  Cells were permeabilized for five minutes with 0.5% Triton X-100 in 

PBS, and were then blocked for two hours in 5% normal goat serum in PBS.  Anti-

neurofilament-M (Chemicon, AB5735, 1:500), anti-synaptophysin (Chemicon, MAB368, 

1:300), and either anti-NMDAR2A (Chemicon, AB1555P, 1:200), anti-NMDAR2B 

(Chemicon, AB15557P, 1:200), or anti-glutamate receptor 2 & 3 (Chemicon, AB1506, 

1:50) were added in blocking solution for 12 hr at 4°C.  After 3 washes with PBS, 

fluorescently labeled secondary antibodies (Invitrogen, A11011 (594nm), A21449 

(647nm), and A11029 (488nm), 1:200) in blocking buffer were applied for two hours.  

Vectashield mounting medium with DAPI (H1200, Vector Laboratories, Burlingame, CA) 

was used to mount the cover slips onto slides.  Fluorescent images were acquired with 

the UltraView spinning disc confocal system (PerkinElmer) with AxioObserver.Z1 (Carl 

Zeiss) stand, and a Plan-Apochromat 40x/1.4 Oil DIC plan-apochromat objective with 
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26 µm resolution. Z-stack projections of the scanned images were generated and 

modified within the Volocity image processing program (PerkinElmer). 

 

Dual whole-cell patch clamp electrophysiology 

Extracellular recording solution was comprised of Neurobasal-A medium.  The 

solution contained 130 mM NaCl, 1.8 mM CaCl2, 5.2 mM KCl, 1 mM MgCl2, 2.2 mM 

NaHCO3, and 10 mM HEPES (pH 7.3) (300 mOsm).  Patch pipettes (4-8 MΩ) were 

filled with intracellular solution (K-gluconate 140 mM, EGTA 1 mM, MgCl2 2 mM, 

Na2ATP 5 mM, HEPES 10 mM; pH 7.2). Cells were visualized on the stage with a Zeiss 

Axioscope, 2 FS Plus, upright microscope in Maintenance culture medium.  Voltage 

clamp and current clamp experiments were performed with a Multiclamp 700A (MDS 

Analytical Devices) amplifier. Signals were low-pass filtered at 3 kHz and digitized at 20 

kHz with an Axon Digidata 1322A interface. Data recordings and analysis were 

performed with Clampex software. Whole-cell capacitance and series resistance were 

compensated electronically. Only cells with access resistance less than 22 MΩ were 

analyzed. Inward currents that had the characteristics of fast sodium currents, and 

outward currents that had the characteristics of potassium currents, were measured in 

voltage clamp mode.  Voltage step length was 50 ms, incremented 20 mV per step, 1 s 

between each step, with a holding potential of -70 mV. The action potential threshold 

was measured in current-clamp mode with increasing 1 s depolarizing current 

injections. The protocol for determining the presence and type of neuronal synapses 

has been described previously [24].  In brief, the presynaptic neuron was set in current 

clamp mode and the postsynaptic neuron in voltage clamp mode.  The type of synapse 
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is determined by holding the presynaptic membrane at 3 different holding potentials:  -

70 mV, -30 mV, 0 mV.  
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Results 

Surface modification to create cell-adhesive “Fish” patterns of DETA against a 
background of non-cell supportive PEG 
 
 The DETA foreground surrounded by PEG background provided a pattern that 

supported the attachment of neurons and directed regeneration of dendrites and axons 

along surface cues in order to promote the formation of small networks of neurons 

(Figure 4-1).  Control cover slips were used in order to test the quality of the PEG-DETA 

patterns:  (1) one PEG cover slip was ablated without a photomask followed by DETA 

deposition, and (2) a DETA monolayer was deposited upon a second PEG without prior 

ablation.  Laser irradiation and DETA deposition were done in the same conditions as 

for the PEG-DETA patterns.  

 The XPS measurements of the control cover slips show that PEG formed a SAM 

on glass cover slips (Figure 4-1 A).  Additionally, DETA formed a SAM on ablated PEG, 

but was not incorporated (or only incorporated in traces amounts) in the unexposed 

PEG regions (Figure 4-1 B-C). Further, static water contact angle measurements of 

92±2 validated the hydrophilicity of the laser exposed PEG after DETA rederivatization. 

However, the non-ablated PEG monolayer was not affected by the reaction with DETA, 

as was also revealed by the contact angle values of 45±3 on unexposed PEG control 

cover slip(s), values that are close to the ones for pure PEG. 

 The pattern uniformity was verified by copper reduction metallization (Figure 4-1 

D), with the light regions representing the cell-adhesive DETA regions of the patterns.  

The ―Fish‖ patterns, so named because of its similarity to a fish icon, have two somal 

adhesion sites (SAS) of 30 µm diameter approximately 150 µm apart connected by 5 

µm lines of DETA.  The dimensions of the patterns promoted the attachment of neurons 
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onto the SAS, regrowth of axons along the connecting lines, and dendritic branching 

along the dotted strips of DETA.  Copper deposition results were consistent between 

Fish pattern batches, showing the reproducibility of these patterns. 

 

Attachment and regeneration of neurons on patterns  

 Small patterns of adult hippocampal neurons were prepared using defined media 

formulations and a two step culture process that allowed the optimal number of neurons 

to be deposited for proper in vitro neuronal network formation (Figure 4-2).  In the first 

step, the hippocampus of adult rats was processed to dissociate the neurons.  These 

neurons were plated on DETA cover slips (Figure 4-3, 4 div).  After 4 div, a period 

during which the neurons recover and regenerate, the neurons were passaged from the 

DETA cover slip(s), counted, and plated at 50 cells / mm2 on PEG-DETA Fish patterned 

cover slips.  Neuronal conformity to the Fish patterns was analyzed throughout the 

study, with the optimum conformity being 2 neurons per Fish pattern, each on opposite 

SAS, with 100% of neurons found on the DETA patterns versus the PEG background.  

As shown in Table 4-1, pattern conformity improves over time, increasing from 7.1 ± 1.2 

neurons per pattern after 2 dpp to 3.5 ± 0.4 after 14 dpp.  Similar improvements to 

pattern conformity were seen in neurons per SAS and the percentage of neurons on the 

patterns versus the background (72.3±6.7% on 14 dpp).  Pattern conformity improved 

over time in part due to the non-adhesive nature of the PEG background, with neurons 

either migrating to the more adhesive DETA regions or washing off the cover slip(s).  

Additionally, adult neurons on the patterned regions continued to regenerate neurites 

and to migrate along the patterned area (video 4-1). 
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Formation and maintenance of synaptic connections 

 While the adult neurons physically connected their axons and dendrites along the 

guided DETA path of the Fish pattern, testing was needed to determine whether 

functional synaptic connections had formed.  First, control cover slips with passaged 

neurons were examined immunocytochemically after 14 dpp to determine the 

expression of pre- and postsynaptic markers.  The presynaptic marker synaptophysin 

and the postsynaptic receptor sub-units for AMPA and NMDA channels were all present 

(Figure 4-4 A).  These pre- and postsynaptic proteins indicated the presence of mature 

synapses [24-28].  

 Dual-patch clamp electrophysiology was performed on neurons on Fish patterns 

after 14 dpp in order to measure the function of the synaptic connections between 

neurons.  By varying the holding potential of the presynaptic neurons to -70 mV, -30 

mV, or 0 mV, the type of synapse(s) present, either excitatory, inhibitory, or electrical, 

was able to be measured.  Each type of synapse manifests in different responses in the 

postsynaptic neuronal current flow [24]. 

 Two neurons on the Fish pattern were simultaneously patched (Figure 4-4 B-a), 

and electrophysiological recordings were performed to show the neuronal nature of 

these cells.  The channel conductance of each of the cells was measured in voltage 

clamp mode, with both cells showing strong inward and outward sodium and potassium-

dependent current flow consistent with neurons (Figure 4-4 B-b).  The electrical ability of 

each cell, as a function of ability to fire action potentials, was measured in current clamp 

mode.  Each cell generated a single action potential upon stimulation, consistent with 
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adult hippocampal neurons in dissociated cell culture (Figure 4-4 B-c).  Next, neuron A, 

the presynaptic neuron, was held at -70 mV (Figure 4-4 B-d), -30 mV (Figure 4-4 B-e), 

or 0 mV (Figure 4-4 B-f), an action potential was evoked, and the postsynaptic currents 

were measured in neuron B.  The large inward current response at -70 mV holding, 

lower response at -30 mV holding, and very small response at 0 mV holding were 

consistent with excitatory synaptic connections.  
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Discussion 

 The development of an in vitro system where attachment and regeneration of 

adult hippocampal neurons was guided using photolithography to form small 

synaptically connected neuronal networks represents a significant technological 

advancement.  PEG-DETA surfaces prepared by laser ablation photolithography were 

sufficient to direct the attachment of cells specifically to the DETA ―Fish‖ patterns while 

restricting attachment to the PEG background.  Mature, terminally differentiated neurons 

derived from hippocampal brain tissue of adult rats attached, adhered, and regenerated 

functional neurites along the guided DETA cues of the Fish pattern.  These neurons 

were found to be both electrically active and synaptically connected, and displayed 

synaptic connectivity characteristic of excitatory glutamatergic neurons. 

 In previous experiments we developed a culture system that supported the 

attachment, survival, and regeneration of electrically active neurons derived from the 

hippocampus of adult rats [13, 14].  Neurons cultured under these conditions were 

passaged from unpatterned DETA cover slips to PEG-DETA fish patterned cover slips.  

These cells reacted to the guidance cues provided by the DETA substrate to attach and 

regenerate along the DETA lines to form small engineered neuronal networks.  Initially 

the majority of cells attached to the PEG background but over time fewer cells were 

found on the PEG background versus the DETA patterns (23.5 ± 13.2% on DETA 

patterns on 2 dpp, improving to 72.3 ± 6.7% on DETA patterns on 14 dpp).  Additionally, 

pattern conformity improved over time, improving from 7.1 ± 1.2 neurons per DETA 

pattern on 2 dpp to 3.5 ± 0.4 on 14 dpp. 
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 The electrical characteristics of individual adult hippocampal neurons were 

identified in earlier experiments [13, 14, 29].  Individual neurons on DETA fish patterns 

have distinctive adult neuronal sodium and potassium currents and fire action potentials 

when stimulated (Figure 4-5 B-b, c).  Using dual whole cell patch-clamp 

electrophysiology, the function and properties of synaptic connections between neurons 

on these patterns were measured.   Excitatory synapses, with large inward current 

response in the postsynaptic neuron in response to action potential in the presynaptic 

neurons at -70 mV holding, lower response at -30 mV holding, and very small response 

at 0 mV holding, were identified. 

 Chemical conduction of action potentials in the CNS depends upon the formation 

of synapses between the axon of one neuron and the dendrite or soma of another [1, 2].  

At a synapse, the plasma membrane of the presynaptic terminal, or synaptic bouton, 

comes in close contact with the membrane of the target postsynaptic cell, with extensive 

arrays of molecular machinery present in each to link the two membranes together [3].  

Excitatory neurons in the hippocampus release the neurotransmitter glutamate into the 

synaptic cleft which binds to ligand-gated ion channels in the postsynaptic membrane, 

producing an influx of ions to create an EPSP [4-6].  If the EPSP is strong enough to 

reach the threshold, an action potential will be triggered in the postsynaptic cell [7].  

Expression of the machinery required for excitatory synaptic connections was evaluated 

in adult hippocampal neurons in this culture system.  Neurons expressed 

synaptophysin, the presynaptic vesicle glycoprotein used to quantify synapses [28].  

The NMDA and AMPA channel subunits NR2A, NR2B, and GluR2/3, the distinctive 

postsynaptic ligand-gated ion channels that control EPSP [24-27], were all present in 
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adult hippocampal neurons in this culture system.  The presence of both presynaptic 

and postsynaptic EPSP proteins and characteristic excitatory synaptic 

electrophysiological parameters confirmed the presence of excitatory synapses 

between neurons on Fish patterned cover slips.       

 DETA’s efficacy as a biological substrate for bioengineering applications is 

founded in its reproducible nature and its ability to be patterned using photolithography 

[21].  Its role in patterning applications as the cell-permissive substrate that is 

surrounded by non-cell permissive SAMs is further strengthened because it is not 

degraded by the cells plated on it [22, 23].  This characteristic of DETA allows it to form 

sharp patterns that do not blend with the non-cell permissive PEG background 

monolayer and promotes pattern stability under long-term culture conditions [15, 23].  

PEG SAMs prevent the adsorption of proteins on glass surfaces by the 

entropy/hydrated surface hypothesis [18-20].  Therefore, a surface composed of small 

connected regions of DETA surrounded by PEG facilitates the adhesion of small 

numbers of neurons and directs regeneration form small networks of synaptically 

connected neurons.  These SAMs can also be applied to any hydroxylated surface or 

material, meaning these fish patterns can be applied to micro-electrode array (MEA) 

devices for high throughput electrical studies of small networks of neurons. 

 In this study, the adhesion of adult hippocampal neurons and neurite outgrowth 

were managed using patterned PEG-DETA Fish patterns.  Neurons in this system 

recovered to form small networks of synaptically connected excitatory neurons.  This 

system provides a unique tool that can be used for studies into LTP [30-32].  In addition, 

this functional in vitro system would enable high-throughput neuropharmacology 
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studies, facilitating drug development and furthering research into different neurological 

disorders.   
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Table 4-1:  Neuronal conformity to PEG-DETA Fish Pattern(s). 
 

Culture Day (post passage) 
Neurons per 

Pattern 
Neurons per 

SAS % on Patterns 
    

    

Day 2 7.1 ± 1.2 1.3 ± 1.1 23.5 ± 13.2 
Day 6 5.2 ± 0.9 2.2 ± 0.7 47.5 ± 11.2 
Day 10 3.7 ± 0.5 2.1 ± 0.6 65.3 ± 9.8 
Day 14 3.5 ± 0.4 2.0 ± 0.7 72.3 ± 6.7 

 
Attachment and regeneration of neurons on the Fish patterns was quantified by 
counting the number of neurons (1) attached to any part of the two-cell network pattern 
and (2) specifically to the somal adhesion sites (SAS).  The percentage of neurons 
attached to the DETA patterns versus the PEG background was quantified.  
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Figure 4-1:  XPS analysis and metallization reaction for PEG-DETA patterns.  A)  
XPS survey spectrum of PEG-coated glass cover slip (insert shows C1s spectrum),   B)  
XPS survey spectrum of DETA on PEG-coated glass cover slip (insert shows N1s 
spectrum) analysis of the two layers,  C)  XPS survey spectrum of DETA on ablated 
PEG-coated glass cover slip,   D)  Image of the two-cell network Fish pattern visualized 
using palladium catalyzed copper reduction metallization (light lines indicate the DETA 
regions).  Scale bar = 75 µm, line width 5 µm, somal adhesion site (SAS) = 30 µm  
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Figure 4-2:  Time-line of the adult hippocampal cell culture process and passage 
onto PEG-DETA Fish patterned cover slips.  div – days in vitro, dpp - days post-
passage  
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Figure 4-3:  Time-course pictures of neurons on culture after 4 div, 1 dpp, 2 dpp, 6 
dpp, 10 dpp, 14 dpp, 21 dpp.  Scale bar = 50 µm 
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Figure 4-4:  Functional two-cell networks.  A, NR2A, NR2B, or GluR2/3 (red); 
synaptophysin (green); neurofilament-M (far-red); and DAPI (blue) expression after 14 
dpp in adult neurons on DETA-coated control cover slips.   Scale bars 17 µm. B.  Dual 
patch clamp recordings were performed on neurons on Fish patterns (B-a).  
Electrophysiological recordings showed both cells were neurons (B-b:  voltage-gated 
sodium and potassium channels in voltage-clamp experiments.  B-c:  action potentials 
generated upon stimulation in current clamp mode where the cells were held at -70 mV.  
Neuron A – Channel 1, Neuron B – Channel 2).  Synaptic connections between the 
neurons and the type of synapse were measured.  Pre-synaptic neurons (Channel 1) 
were held at -70 mV (B-d), -30 mV (B-e), or 0 mV (B-f) and action potentials were 
evoked.  Postsynaptic Currents (Channel 2) were measured.   
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CHAPTER 5 – THE COMPARISON OF NMDA AND AMPA CHANNEL 
EXPRESSION AND FUNCTION BETWEEN EMBRYONIC AND ADULT 

NEURONS UTILIZING MICROELECTRODE ARRAY SYSTEMS. 

Introduction 

Electrophysiological studies into learning, memory formation, neurotoxic 

compounds and neurodegenerative conditions, and drug discovery most commonly rely 

upon patch-clamp electrophysiology [1, 2].  While this method provides detailed 

information, it is very labor-intensive, complicated, and has very low throughput in 

relation to non-invasive techniques for measuring electrical activity like MEAs.  MEAs 

are innovative tools used to perform electrophysiological experiments for the study of 

neuronal activity and connectivity in populations of neurons from dissociated cultures [3, 

4].  Where patch-clamp electrophysiology can only measure the activity of cells over the 

short-term (< few hours), MEA systems can measure the same population of neurons 

and the chronic effect of toxic compounds, drugs, etc on those neurons for long periods 

of time (days – months) [5-8].  Uses for these systems include studies into the 

mechanisms of learning and memory formation [9] and investigations into drug 

discovery, neurodegenerative diseases, and biosensor applications [5, 6, 10]. 

  A common limitation of neuronal MEA systems has been the reliance upon 

neurons derived from embryonic tissue [3, 10, 11].  While these are differentiated 

neurons, they are developmentally immature, with transcriptional profiling showing two-

thirds of genes are only expressed postnatal and >95% of expressed genes showing 

highly significant changes during postnatal development [12].  When looking at the 

machinery responsible for synaptic transmission, gene expression for the NMDA 

channel subunits NR2A and NR2B was not detected until near birth, with expression not 
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peaking until P20 [13].  In vitro, NR2A/B channels are detected at only very low levels 

until after 2 weeks in embryonically derived neurons [14].  AMPA channel expression is 

also limited at birth, only increasing postnataly [15].  Gene expression for the axonal 

sodium transporter subunit 1 begins around P15, increasing till P30 [16, 17].  In vitro, 

expression patterns for all genes,  specifically axonal and synaptic channels responsible 

for signal transmission, is similar to that seen in vivo at the same time point, with gene 

expression showing significant changes over the course of the first few weeks after birth 

[13, 14, 16, 18-20].  The usefulness of these developmentally immature neurons for 

studies of neuronal electrical activity and synaptic transmission is severely limited by 

this lack or limited expression of the neuronal machinery responsible for transmission in 

the adult brain.  In addition, using these immature neurons in studies of 

neurodegenerative diseases or drug discovery can yield results that cannot be 

correlated to the function or action of mature neurons in adult brain tissue.       

We have developed a dissociated culture system of mature, terminally 

differentiated neurons derived from adult rat hippocampal tissue [21, 22].  Adult neurons 

recover and regenerate in vitro, display expression patterns consistent with mature 

neurons in vivo, are electrically active, and form functional synaptic connections [23].  

These neurons were used to develop a dissociated neuronal culture system on MEAs.  

Moving toward using a high-throughput hybrid in vitro system utilizing mature, adult 

neurons will expand and improve drug testing and basic research by providing a viable, 

easily manipulatable alternative to expensive, resource intensive in vivo testing.  Both 

embryonic and adult cultures were maintained for more than 90 days in vitro (div) on 

MEAs to obtain baseline recordings of spontaneous activity.  We probed the cultures 
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with synaptic transmission antagonists against NMDA, AMPA, and GABAA channels 

and found significant differences indicative of differing receptor profiles of adult and 

embryonic neurons in vitro.  We then evaluated both embryonic and adult neurons for 

NMDA channel subunit expression and AMPA channel subunit expression over 36 div.  

Our results signify that neurons derived from embryonic tissue did not express mature 

synaptic channels for several weeks, and consequently their response to synaptic 

antagonists was significantly different than that of neurons derived from adult tissue 

sources.  These results establish the usefulness of this unique hybrid system derived 

from adult hippocampal tissue for drug discovery and fundamental research.   
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Materials and Methods 

Substrates and surface modification 

Glass cover slips (Thomas Scientific 6661F52, 22mm×22mm no. 1) were 

cleaned by acid washing using a 50/50 mixture of concentrated hydrochloric acid and 

methanol. The cover slips were washed three times, 30 min per wash, and were rinsed 

in distilled de-ionized water between each washing. The DETA (N-1 [3-(trimethoxysilyl) 

propyl]-diethylenetriamine, United Chemical Technologies Inc., Bristol, PA, T2910KG) 

monolayer was formed by the reaction of the cleaned surface with a 0.1% (v/v) mixture 

of the organosilane in freshly distilled toluene (Fisher T2904) [24]. The DETA-coated 

cover slips were heated to just below the boiling point of toluene, rinsed with toluene, 

reheated to just below the boiling temperature, and then oven dried. The DETA formed 

a reaction site limited monolayer on the surface of the cover slip [24].  The DETA cover 

slips were characterized to authenticate the monolayer formation. First, contact angle 

measurements were taken using an optical contact angle goniometer (KSV Instruments, 

Monroe, CT, Cam 200). The contact angle for the DETA-coated cover slips was 

54.2±0.2, which was previously shown to be acceptable for neuronal hippocampal 

culture [24]. Second, X-ray Photoelectron Spectroscopy (XPS) (FISONS ESCALab 

220i-XL) was used to characterize the elemental and chemical state of the DETA-

coated cover slip surfaces. The XPS survey scans as well as high-resolution N 1s and 

C 1s scans, using monochromatic Al Kα excitation, were obtained, similar to previously 

reported results [24, 25]. 

Clean gold MEAs (MUSE, Axion Biosystems, 8x8 electrodes) were sterilized with 

70% alcohol and then incubated with 1 ml poly-L-lysine (100 µg/ml) for 30 minutes. An 
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area just large enough to cover all electrodes was additionally coated with 3 ml laminin 

(2 µg/ml) for 30 minutes. 

 

Embryonic rat hippocampal dissociated cell culture methodology 

Embryonic hippocampal neurons were cultured using a protocol described 

previously [26, 27].  Pregnant rats, 18 days in gestation, obtained from Charles River 

were euthanized with carbon dioxide and the fetuses were collected in ice-cold 

Hibernate E (BrainBits)/B27/Glutamaxtm/Antibiotic-antimycotic (Invitrogen) (Dissecting 

Medium).  Each fetus was decapitated and the whole brain was transferred to fresh ice 

cold dissecting medium.  After isolation, the hippocampi were collected in a fresh tube 

of dissecting medium.  The tissue was enzymatically digested at 37°C for 10 minutes 

with papain (Worthington 3119), 12 mg / 6 ml Hibernate-A (- calcium) (BrainBits) + 0.5 

mM Glutamax (Invitrogen).  Hippocampal neurons were obtained by triturating the 

tissue using a fire-polished Pasteur pipette.  After centrifugation, the cells were 

resuspended in culture medium (Neurobasal/B27/Glutamaxtm/antibiotic-antimycotic) and 

plated on MEAs at 500 cells / mm2.  All research was approved by the Institutional 

Animal Care and Use Committee at the University of Central Florida and conformed to 

NIH guidelines. 

   

Adult rat hippocampal dissociated cell culture methodology 

Adult neurons were extracted, dissociated, cultured, and maintained using a 

protocol  and medium described elsewhere [22].  Briefly, the hippocampus of adult rats 

(Charles River, age 6-12 months) were dissected and homogenized into small tissue 
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fragments in cold medium (~4ºC) consisting of Hibernate-A, glutamax, and antibiotic-

antimycotic.  The tissue was digested for 30 minutes at 37°C in calcium-free Hibernate-

A (HA) containing 6 mg papain / 12 ml (HA no calcium).  Following digestion, the tissue 

was washed three times with cold HA media to remove any active enzyme.  Next, the 

tissue was suspended in Dissociation Medium and broken apart into individual cells 

through mechanical dissociation with fire-polished Pasteur pipettes.  The dissociated 

cells were suspended in Plating medium and then deposited onto DETA-coated glass 

cover slips for 30-45 minutes.  The cover slips were washed with warm HA by gently 

swirling the medium to remove tissue debris.  Following this washing step fresh Plating 

medium was applied and remained for the first 3 div.  On 3 div the medium was 

removed and replaced by Maintenance Medium with 5 µM Roscovitine (Rosc, Sigma, 

R7772).  All research was approved by the Institutional Animal Care and Use 

Committee at the University of Central Florida and conformed to NIH guidelines. 

After 4 div, the adult hippocampal neurons on the DETA cover slips were 

passaged to MEAs.  Briefly, neurons were dislodged from the DETA with trypsin (.05% 

trypsin / EDTA in HBSS, Gibco, 25200).  Trypsin inhibitor (trypsin inhibitor, soybean, 

Gibco, 17075-029) in Dissociation medium at 0.5 mg per ml deactivated the trypsin.  

The dislodged neurons were collected and spun at 500 x g for 5 minutes.  The 

supernatant of deactivated trypsin in HBSS was discarded, and the neuronal cell pellet 

was suspended in 1 ml Plating medium.  The neurons in suspension were counted 

using a Bright-Line hemacytometer, and neurons were plated onto the MEAs at 500-

1000 cells / mm2 in Plating medium supplemented with 5 µM Rosc.  After two days, 

glutamate (N-Acetyl-L-glutamic acid, Aldrich, 855642) was added to the plating medium 
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to a final concentration of 25 µM.  After 3 days and again every 4th day after, ½ the 

medium was removed and replaced with fresh Maintenance medium supplemented with 

2 µM Rosc. 

 

Immunocytochemistry and Laser Scanning Confocal Microscopy 

To prepare cells for immunocytochemical characterization, cover slips were 

rinsed twice with Phosphate Buffered Saline (PBS).  Cells were fixed with 4% 

paraformaldehyde for ten minutes at room temperature, and subsequently rinsed three 

times with PBS.  Cells were permeabilized for five minutes with 0.5% Triton X-100 in 

PBS, and were then blocked for two hours in 5% normal goat serum in PBS.  Anti-

neurofilament-M (Chemicon, AB5735, 1:500), anti-synaptophysin (Chemicon, MAB368, 

1:300), and either anti-NMDAR2A (Chemicon, AB1555P, 1:200), anti-NMDAR2B 

(Chemicon, AB15557P, 1:200), or anti-glutamate receptor 2/3 (Chemicon, AB1506, 

1:50) were added in blocking solution for 12 hr at 4°C.  After 3 washes with PBS, 

fluorescently labeled secondary antibodies (Invitrogen, A11011 (594nm), A21449 

(647nm), and A11029 (488nm), 1:200) in blocking buffer were applied for two hours.  

Vectashield mounting medium with DAPI (H1200, Vector Laboratories, Burlingame, CA) 

was used to mount the cover slips onto slides.  Fluorescent images were acquired with 

the UltraView spinning disc confocal system (PerkinElmer) with AxioObserver.Z1 (Carl 

Zeiss) stand, and a Plan-Apochromat 40x/1.4 Oil DIC plan-apochromat objective with 

26 µm resolution. Z-stack projections of the scanned images were generated and 

modified within the Volocity image processing program (PerkinElmer). 
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Extracellular recordings 

The MEA chips (Axion Biosystems) provided 64 platinum-black coated gold-

electrodes with a diameter of 30 µm, organized in an 8 by 8 array with 200 µm pitch. 

The head stage of the recording system (Axion Biosystems) was pre-heated to 37 °C 

before MEAs with adult or embryonic hippocampal cultures were investigated. Baseline 

activities of neuronal networks were recorded for 3 minutes with 25 kHz. Network 

activity was recorded five times per week for more than 90 div using the software 

Axion’s Integrated Studio (AxIS). Signal amplitudes 6 times larger than the standard 

deviation of the base line were detected as action-potential spikes. The spike data was 

then imported into Matlab 2010b (The MathWorks) for further processing.  

 

Experimental Procedure 

 Baseline spontaneous activity in adult and embryonic neurons was recorded for 3 

minutes daily, starting on 7 div and continuing until either the MEAs lost activity or more 

than 90 days elapsed.  Synaptic antagonists were administered to both adult and 

embryonic neurons on 14 div and at various time points between 30 and 60 div, and 3 

minute recordings were made to quantify the effect from these antagonists on 

spontaneous activity.  D-(-)-2-Amino-5-phosphonopentanoic acid (D-AP5, 25µM, Tocris 

Bioscience, 0106), 6-Cyano-7-nitroquinoxaline-2,3-dione disodium (CNQX, 25µM, 

Tocris Bioscience, 1045), and (-)-Bicuculline methobromide (Bicuculline, 50µM, Tocris 

Bioscience, 0109) were separately administered.  Each experiment was followed by a 

complete washout of the antagonist and replacement with fresh medium.   
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Evaluation and statistics 

 Data analysis was performed off-line using programs written in MATLAB to 

analyze ―spike‖ files created during each MEA recording.  Each 3 minute dataset was 

processed using a 3-step method to remove or exclude inactive and / or noisy channels.  

Channels with less than 7.5 action potentials (APs) per minute were treated as inactive.  

After processing, the following parameters were extrapolated:  ―active channels‖ – a 

number from 0 to 64.  ―AP Frequency‖ – number of total measured APs divided by 

recording time.  The mean and standard deviation of that number was independent from 

active channels.  ―AP Activity‖ – 1 divided by the time between two subsequent APs, or 

frequency 1/s.  ―Burst‖ – where more than 1 AP showed up with 1 ms.  ―Average burst 

frequency‖ – 1 divided by the time-difference between two subsequent bursts.  ―In-burst 

frequency‖ – amount of APs within a burst divided by the duration of that burst.  ―Non-

burst frequency‖ – like the activity, but only APs not associated with burst were 

included.  ―Burst duration‖ – time-interval from the first AP in a burst to the last AP in a 

burst.  Effect from synaptic antagonists were measured as the percent of active 

channels or AP frequency of treated embryonic or adult cultures versus the baseline 

activity of the same cultures recorded before administration of the antagonist.  
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Results 

 Embryonic rat hippocampal neurons were plated directly on MEAs at a density of 

500 cells / mm2.  Adult rat hippocampal neurons were first cultured on DETA coated 

cover slips. While basic fibroblast growth factor (bFGF) was necessary for survival of 

adult neurons in culture, bFGF caused rat neurons to divide in vitro; administration of 

Roscovitine at 3 div prevented neuronal mitotic activity [22].  After 4 days on DETA 

cover slips, the adult neurons were passaged onto MEAs at a density of 500-1000 cells 

/ mm2 (Figure 5-1).  Supplementing the adult neurons with 25 µM glutamate on the 2 div 

increased the electrical activity of the adult neurons [21].  Sporadic spontaneous firing 

activity was detected in both the adult and embryonic neurons between 7–10 div, with 

stable, reliable recordings thereafter.  Phase-contrast pictures of the neurons and the 

MEAs were taken daily to daily assess the condition of the cells as well as verify of lack 

of physical electrode degradation (Figure 5-2).  Three-minute recordings of 

spontaneous activity were taken of each active MEA daily.  Neurons, both adult and 

embryonic, were stable and electrically active on MEAs for more than 90 div.  

Movement of MEAs from the incubator to the recording stage and the subsequent 3 

minute recording period did not significantly affect the pH or temperature of the medium, 

represented by consistent baseline activity.  MEAs were incubated with their covers off 

to allow gas exchange but covered upon removal from the incubator to reduce 

contamination, media evaporation, and gas exchange while recordings were taken.  No 

significant changes were observed in baseline neuronal activity, either adult or 

embryonic neurons, as a result of medium changes.    
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Spontaneous activity of Adult and Embryonic Neurons 

 Adult and embryonic neurons were cultured at similar cell densities on MEAs, 

and spontaneous activity was recorded for 3 minutes daily from 1 to 90 div.  Each daily 

recording was processed using a 3-step method to exclude inactive or noisy channels 

(Figure 5-3).  Channel by channel activity levels for each 180 second recording period 

were illustrated in the event map raster plot, activity map raster plot, and burst event 

histogram.  Active channels and channel activity levels were also diagramed in the 2-D 

channel map, where color is the third dimension of data.  The frequency range across 

the different active electrodes has been graphed in the frequency distribution plot.  

Finally, all the captured and processed parameters have been listed for each MEA 

recording, including active channels, AP frequency, AP activity, average burst 

frequency, and average in-burst frequency.   

Over the more than 90 day culture period, embryonic MEAs consistently 

displayed a higher number of active channels, with an average of 40 channels active 

per MEA versus 20 channels in adult MEA cultures (Figure 5-4A).  Action potential (AP) 

firing frequency, or APs per second, was consistent between the two cultures.  A firing 

frequency of approximately 2 - 4 APs per second in embryonic and 1.5 - 4 APs per 

second in adult MEAs was measured (Figure 5-4B).  The AP activity had a much 

greater variance and was consistently higher in adult neurons (Figure 5-4C).  Adult 

neurons spent less time resting before subsequent firing events. Spontaneous bursting 

activity, where more than 1 AP was fired within 1 ms, was captured in both the adult and 

embryonic neurons.  Both the burst frequency and the in-burst frequency were 

consistent between the systems (Figure 5-4 D, E). 
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The effect on the activity of adult and embryonic neurons by synaptic antagonists 

 Prior to the addition of synaptic channel antagonists, activity baselines were 

recorded for all embryonic and adult MEAs.  In separate experiments, 25 µM D-AP5 

(NMDA channel antagonist), 25 µM CNQX (AMPA channel antagonist), and 50 µM 

bicuculline (GABAA antagonist) were administered to embryonic and adult MEAs, and 

activity was recorded for 3 minutes.   

 D-AP5 (25 µM) caused a significant decrease in the number of active channels in 

both adult and embryonic MEA cultures (Figure 5-5).  Adult cultures lost a greater 

percentage of active channels (-90.12 ± 5.9% on 14 div, -82.22 ± 5.9% on 30-60 div) 

versus embryonic cultures (-64.92 ± 3.85% on 14 div, -36.23 ± 7% on 30-60 div).  

Changes in the action potential frequency also varied with lower frequencies in adult 

cultures (-76.31 ± 8.3% on 14 div, -82.47 ± 16.6% on 30-60 div) which were significantly 

different from the measured effect on embryonic cultures.  On 14 div, the firing rate of 

embryonic neurons increased +90.39 ± 6.1%, while in 30-60 day old cultures the firing 

rate decreased -69.5 ± 7%.  The difference in NMDA channel expression (NR2A and 

NR2B subunits) in adult and embryonic neurons in vitro likely caused the contrasting 

reaction to D-AP5 in the two populations of neurons.  While NMDA channel expression 

in 14 div embryonic neurons was low or non-existent, expression was high in adult 

neurons on 14 div (Figure 5-6 A,B).  Because adult neurons expressed a greater 

number of NMDA channels, their reaction to the competitive NMDA antagonist D-AP5 

was much more pronounced. 
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 Addition of CNQX (25 µM) caused the activity of far fewer channels to be lost in 

both adult and embryonic MEA cultures as compared to D-AP5 (Figure 5-5).  Adult 

cultures lost a greater percentage of channel activity (-52.14 ± 2.5% on 14 div, -24.35 ± 

5.0% on 30-60 div) versus embryonic cultures (-23.25 ± 4.5% on 14 div, -0.34 ± 6.5% 

on 30-60 div).  Changes in the action potential frequency in both the adult and 

embryonic cultures was not affected by CNQX after 14 div.  The activity of the neurons 

was only slightly lower in both embryonic and adult cultures between 30 to 60 div (-

30.58 ± 5.5% drop in adult MEAs, -46.89 ± 4.5% drop in embryonic MEAs).  While 

expression of the AMPA channel subunits GluR2/3 was not observed in embryonic 

neurons on 2 div, expression had increased to mirror adult levels by 14 div, so no 

differences were expected between adult and embryonic neurons to AMPA channel 

antagonists (Figure 5-6, C).   

 After MEA measurements were recorded, the antagonists were washed from the 

neurons with an entire media change.  24 hours after, the activity of the neurons had 

returned to baseline levels. 
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Discussion  

Our results demonstrated that adult neurons cultured from the hippocampus of 

rats recovered functionally and had the capacity to fire spontaneously on MEAs for 

more than 90 div.  Additional culture conditions were employed to allow adult neurons to 

be densely deposited on the MEAs, to prevent these neurons from reentering the cell 

cycle and dividing, and to improve recovery of electrical activity in vitro.  Adult 

hippocampal neurons were first cultured onto DETA cover slips.  Dense debris that was 

present along with neurons and glia after dissociation of the hippocampal tissue 

prevented cell counting, and cells were placed on these cover slips at unknown 

concentrations.  After the cells had recovered for 3 div, roscovitine, a cdk5 inhibitor, 

acted to prevent neuronal reentry into the cell cycle, an action mediated by bFGF [22].  

Cells in this low-density cell culture were passaged and deposited onto MEAs at 500-

1000 cells / mm2, a density high enough to allow the formation of multiple synaptic 

connections.  This along with the action of glutamate in the culture media promoted 

elevated electrical activity in the adult neurons [21].  After 7 to 10 div, sporadic 

spontaneous firing activity was detected, and stable reliable recordings were evident 

after this point.  

Neuronal MEA systems have typically relied upon neurons derived from 

embryonic tissue [3, 5-7, 10, 11].  We compared this adult hippocampal MEA system to 

traditional embryonic MEA systems.  Embryonic neurons were plated onto MEAs at a 

density of 500 cells / mm2.  As on adult MEAs, sporadic spontaneous firing was 

detected between 7-10 div, with more stable activity after 10 div.  Recording from both 

adult and embryonic MEAs were made daily for more than 90 div.  Embryonic MEAs 
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consistently displayed higher numbers of active channels, with an average of 40 

channels active versus 20 active on adult MEAs.  The majority of other parameters, 

including AP frequency, activity, average burst frequency, and average in-burst 

frequency, all displayed similar characteristics between the adult and embryonic MEA 

systems.  This new adult MEA system, at its core, exhibited similar firing characteristics 

to the more traditional embryonic MEA systems.   

While embryonic neurons regenerate and fire APs on MEAs, the developmental 

maturity of these neurons had not been established.  In the hippocampus of embryonic 

rats, neural progenitors differentiate into neurons between E15-E18 [12, 18, 28].  While 

these are differentiated neurons, they are developmentally immature, with 

transcriptional profiling showing two-thirds of genes are only expressed postnatal and 

>95% of expressed genes show highly significant changes during postnatal 

development [12].  When looking at the machinery responsible for synaptic 

transmission, gene expression for the NMDA channel subunits NR2A and NR2B was 

not detected until near birth on E21-22, with expression not peaking until P20 [13].  

During this developmental period, NR2B was predominantly expressed in the early 

postnatal brain while NR2A expression increased to eventually outnumber NR2B, with 

each subunit lending different kinetics of excitotoxicity, neurotoxicity, and plasticity [29].  

In vitro, NR2A/B channels are detected at only very low levels until after 2 weeks in 

embryonically neurons [14].  AMPA channel expression is also limited at birth, only 

increasing postnatal [15].  Gene expression for the axonal sodium transporter subunit 1 

begins around P15, increasing till P30 [16, 17].  In vitro, expression patterns for all 

genes,  specifically axonal and synaptic channels responsible for signal transmission, is 
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similar to that seen in vivo, with gene expression showing significant changes over the 

course of the first few weeks after neuronal differentiation [13, 14, 16, 18-20].  The 

importance of these dynamics of neuronal maturation highlights the need for gene and 

protein expression in study population of neurons to mirror that in mature adult neurons 

in vivo.  If embryonic neurons do not express the same machinery responsible for 

electrical activity or signal propagation in adult neurons, then their response to 

neurotoxic agents or drug therapies may not be correlative to responses in the mature 

adult brain.      

Our method of culturing MEAs with adult neurons resulted in a system where 

NMDA and AMPA channel subunits were expressed throughout the lifespan of the 

culture.  NMDA channel subunits NR2A and NR2B as well as AMPA channel subunits 

GluR2/3 were expressed on and after 2 div.  This contrasted greatly from neurons 

derived from embryonic tissue, with delayed NMDA channel expression until after 14 div 

and delayed AMPA channel expression until 14 div.  Responses of these neurons to 

NMDA and AMPA channel antagonists were found to be significantly different in 

embryonic neurons as compared to adult neurons, with each antagonist decreasing 

activity in adult neurons to a greater degree than in embryonic neurons.  Our results 

show that embryonic neurons in culture develop a mature profile of ion channel subunits 

after 3-4 weeks.  Therefore, embryonic neurons should not be used until they have fully 

matured in culture especially in studying neurodegenerative diseases such as 

Alzheimer’s where synaptic protein profiles may play a critical role in the process of 

synaptic failure. 



133 
 

In comparison to embryonic MEA systems, our method, measurements of 

neuronal activity using adult hippocampal neurons on MEAs, is more applicable to the 

adult brain.  While preparation of these MEAs was slightly more complicated than 

embryonic neuronal MEAs, the end result yielded a high-throughput screen 

methodology that is directly correlative to the dynamics of learning and memory 

formation in the adult brain.  Additionally, this system can facilitate quicker, more 

reliable, and more correlative investigations into drug discovery, neurotoxic agents, and 

neurodegeneration.  Last, this method and be used in the future to allow for the 

generation of MEAs using adult human neurons.      

In conclusion, we have demonstrated critical differences between adult and 

embryonic neurons and their respective synaptic connections which could be highly 

relevant in neurodegenerative disease research. By demonstrating the similarities and 

differences between adult and embryonic neurons and the response of each to synaptic 

antagonists, the usefulness of this adult neuron culture system has been established for 

application in neuronal regeneration and drug discovery studies.  By incorporating adult 

neurons into an MEA system, a high-throughput system has been created to enable the 

screening of a large number of cells and the study of pathogen and drug effects on the 

same population of cells over an extended period of time.  This screen could find 

important applications in pharmaceutical drug development by providing an in vitro high-

throughput test platform for investigations into neurodegenerative disease, traumatic 

brain injury, stroke, drug discovery, and fundamental research. 
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Figure 5-1:  Adult and embryonic MEA culture and lifecycle.  Adult neurons:  Mature 
terminally differentiated  adult neurons were extracted from the hippocampus of adult 
rats and plated onto DETA cover slips.  After 4 days the neurons were passaged from 
these cover slip(s) onto MEAs that had been coated with PDL / laminin (for cell 
adhesion).  Embryonic neurons:  Neurons from the hippocampus of embryonic day 18 
rat fetuses were extracted and plated directly on MEAs that had been coated with PDL / 
laminin.  Electrical recordings of spontaneous neuronal activity were performed for up to 
3 months.  In addition, ion channel receptor antagonists were introduced and their 
effects were measured against baseline electrical activity.  64-channel axion biosystems 
MEAs were used.  
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Figure 5-2:  Phase contrast images of cultures on MEAs after 3 div and 30 div.   
Neurons were applied between 500 to 1000 cells / mm2.  Cells attached and 
regenerated on the PDL / laminin surface covering the MEAs, seen in the dense 
collection of cells covering the electrodes.  Each 64-Channel MEA is arranged in an 8 x 
8 array of electrode 30 µM in diameter and spaced 200 µM apart. The MEA was 
sampled 25,000 times per second, at 16 bits of depth. Scale bar = 50 µm.  
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Figure 5-3:  MEA data processing: The spontaneous  activity of embryonic and adult 
neurons was recorded for 3 minutes each day over the study period.  Each 3 minute 
dataset was processed in a 3-step method.  This method allowed inactive or noisy 
channels to be excluded.  After processing, the following parameters were extrapolated:  
―active channels‖ – a number from 0 to 64.  Channels with less than 7.5 APs per minute 
were treated as inactive.  ―AP Frequency‖ – number of total measured APs divided by 
recording time.  The mean and stdev of that number is independent from active 
channels.  ―AP Activity‖ – is 1 divided by the time between two subsequent APs,  or 
frequency  1/s.  ―Burst‖ – where more than 1 AP shows up with 1 ms.  ―average burst 
frequency‖ – 1 divided by the time-difference between two subsequent bursts.  ―In-burst 
frequency‖ – amount of APs within a burst divided by the duration of that burst.  ―Non-
burst frequency‖ – like the activity, but considers on APs that are not associated with 
bursts.  ―Burst duration‖ – time-interval from the first AP in a burst to the last AP in a 
burst.   
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Figure 5-4:  Basic firing patterns of embryonic and adult hippocampal neurons on 
MEAs over time.   The spontaneous  activity of embryonic and adult neurons was 
recorded for 3 minutes each day over the study period.   The activity data from each day 
was processed to filter out inactive channels.  (A) Number of active channels.  (B) 
Frequency of APs.  (C) Average activity, or 1 divided by the time between two 
subsequent APs (frequency 1/s).  (D)  Burst frequency.  (E)  In-burst frequency. MEA 
number to plating date:  Embryonic:  MEA 23 – 3/14, MEA 29 – 3/14, MEA 30 – 3/14, 
MEA 31 – 3/14, MEA 21 – 2/14, MEA 26 – 2/14, MEA 27 – 2/14.  Adult:   MEA 22 – 
1/31, MEA 28 – 2/17, MEA 25 – 2/17, MEA 24 – 2/17, MEA 40 – 3/21, MEA 33 – 3/21, 
MEA 34 – 3/21, MEA 36 – 3/21, MEA 37 – 3/21, MEA 38 – 3/21.  Gaps in graphs 
indicates activity was not recorded on that day.  
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Figure 5-5:  Comparison of the impact on adult or embryonic spontaneous 
activity from addition of synaptic antagonists.  Active channels (A,B) or AP 
frequency (C,D) were evaluated in adult or embryonic hippocampal neuron MEA 
systems on either 14 or 30-60 div in the presence of D-AP5 (25 µM), CNQX (25 µM), or 
Bicuculline (50 µM) in culture medium.  Adult neurons showed significantly decreased 
active channels and AP frequency due to D-AP5 in both early 14 div cultures as well as 
older 30-60 div cultures.  This drop in activity was significantly different from embryonic 
14 div, where fewer active channels were lost and activity increased in the remaining 
channels.   The AMPA-channel antagonist CNQX also caused a decrease in 
spontaneous activity.  The drop in activity between adult and embryonic cultures was, 
however, only reflected in the loss of more active channels in the adult system.  AP 
frequency declines were consistent between the two culture systems.   Bicuculline had 
limited effect on spontaneous activity in both embryonic and adult neurons.  
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Figure 5-6:  Expression of presynaptic proteins and postsynaptic channel 
subunits in embryonic and adult neurons in vitro:  NR2A, NR2B, or GluR2/3 (red); 
synaptophysin (green); neurofilament-M (far-red); and DAPI (blue) expression after 2, 
14, and 36 div.  NMDAR2A (A) and NMDAR2B (B) were not expressed in embryonic 
neurons on 2 div and were not strongly expressed on 14 div (when compared to 
channel expression in adult neurons).  After 36 div, the channels were expressed by the 
embryonic neurons at similar levels to the adult neurons.  The AMPA receptor subunits 
GluR2/3 (C) were expressed by embryonic neurons by 14 div. These postsynaptic 
channel subunits were all found in adult neurons from 2 – 36 div.  Synaptophysin and 
Neurofilament-M expression grew stronger as both the embryonic and adult neurons 
recovered and regenerated in vitro.  Scale bars 17 µm.  
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CHAPTER 6 - A DEFINED, DISSOCIATED, AND FUNCTIONAL 
NEURONAL CULTURE SYSTEM DERIVED FROM HUMAN BRAIN 

TISSUE SAMPLES. 

Introduction 

Human-based model systems for neurodegenerative diseases such as AD and 

for CNS injury such as traumatic brain injury (TBI) are limited, and this limitation has 

been a major bottleneck in translating basic science into clinical applications and 

therapeutic discoveries. The ideal research model, from a purely experimental 

standpoint, would be to utilize human volunteers in experiments in order to understand 

various diseases and injuries.[1] However, from an ethical standpoint this is impossible 

in any situation where damage would knowingly or potentially occur to the human 

subject. Thus, over most of the last century drug development and research aimed at 

solving clinical neuropathologies has been limited to studies that have utilized live 

animals, animal slice cultures or single cells from animal / human systems. The main 

problems with these approaches are that in most cases research using animal models 

does not translate well to the human condition and more applicable functional in vitro 

model systems derived from human tissue are limited. 

The goal of developing functional in vitro neuronal systems is to produce long-

term culture systems that facilitate recovery of functional electrical properties of neurons 

in a controlled environment that is also capable of reproducing disease states. In the 

case of in vitro systems that seek to use neurons derived from adult tissue to recreate 

sub-systems from the central nervous system (CNS) and peripheral nervous system 

(PNS), the utilization of human tissue has been limited. Ideally, using primary cells 
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derived from both healthy and compromised adult humans for all of these model 

systems could more accurately reflect the disease state that exists in humans.[2] 

This is especially true for Alzheimer’s disease (AD) where there has been a 

multitude of factors postulated to be involved with disease pathogenesis, but there is 

still little consensus on a definitive causative factor or treatment of this debilitating 

disease.[3],[4] AD is one of the most common neurodegenerative disorders affecting 

approximately 5-10% of the human population over the age of 65 years, numbers 

expected to rise in the next decades.[5],[3]   Most of the current research focus in AD 

has been in trying to determine the cause of the disease, developing biomarkers for 

early detection, and treating the symptoms after the disease clinically manifests. 

However, very little research has been directed at restoring function in neurons 

damaged by Amyloid-β (Aβ), Tau, or other proposed causative agents. This gap in 

research is in large part due to larger difficulties currently existing in translational and 

clinical research as well as a current lack of good model systems that mimic the human 

disease conditions. The ability to observe the diseased neurons directly in a controlled 

model system could be used to effectively target the causative effects of AD. 

During the last decade several functional in vitro systems have been developed 

to study CNS and PNS disorders using adult, fetal, and embryonic rat and mouse 

tissues.[6-16] Additional studies have been conducted to develop short-term culture 

systems using human neurons.[17, 18] [19] Though these culture systems were partially 

successful in supporting short-term survival of dissociated human neurons or neural 

progenitors, these neurons were not evaluated for basic electrical functionality.[17-19] 

Currently, no dissociated cell culture system of diseased primary neurons from the 
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human brain has been reported. The creation of such a system to analyze the function 

of neurons under defined conditions combined with the ability to collect, manipulate, and 

observe diseased human neurons would be of great benefit in fundamental research, in 

the development of therapeutic interventions by clinicians, and in personalized medical 

diagnostics. 

In this study, we have developed a serum-free in vitro culture system for neurons 

isolated from the brains of deceased AD patients as well as from brain tissue excised 

during surgery for Parkinson’s disease (PD), Essential Tremor (ET), and brain tumor. 

Culture conditions and media formulations were developed to maximize morphological 

regeneration, electrical recovery, and long-term survival in vitro. The resulting model is 

comprised of a unique serum-free medium, auto-catalytic nanoparticles, a surface 

engineered substrate and a defined culture methodology. This novel system allowed 

functional electrical recovery and long-term survival of healthy human neurons and 

limited recovery of diseased neurons in culture. Further, dissociated neurons from AD 

samples expressed in vitro those features characteristic of neurons exhibiting AD 

pathology in vivo, including a lack of dendritic branching and spine formation.  
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Materials and Methods 

The culture method has been modified over the three years of the project. Initial 

experiments were performed on brain specimens extracted from the hippocampus 

during autopsy of patients who had died from complications due to neurodegenerative 

disease.  These specimens were processed using an earlier unrefined culture technique 

and media formulations.  This technique and media was subsequently optimized and 

used to process all brain tissue specimens extracted from living patients with 

Parkinson’s, Central Tremor, or brain tumor.  Later cadaver brain tissue samples were 

processed with the new refined technique, as seen in Table 6-4.   

 

Patients and tissue samples 

Two types of brain tissue samples were obtained and processed. Initially, brain 

tissue specimen(s) were extracted during autopsy from the hippocampus of patients.  

The majority of these patients had died due to complications from neurodegenerative 

diseases (11 samples).  However, one specimen was extracted from a patient with no 

known neurodegenerative condition (Table 6-4). Brain tissue slices, approximately 3 - 

10 mm in width, were removed from the parahippocampal region of the brain during 

autopsy, two to six hours after death.  The length of time between the death of the 

patient and the removal of the brain tissue was minimized when possible, as this period 

directly correlates to the subsequent culture results.  This was seen in a supplemental 

study performed on rats. Rats were killed through exposure to CO2 and periods of 0, 2, 

or 4 hours elapsed prior to dissection of the brain tissue.  The number and quality of 
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living neurons after 1, 3, and 6 div was significantly lower the longer the period between 

death and dissection (Figure 6-8 A, B) 

Second, brain tissue specimen(s) were removed from living patients undergoing 

two types of surgical intervention:  electrode implantation for deep brain stimulation 

(DBS, 12 samples total) or cancerous brain tumor excision (TE, 3 samples total) (Table 

6-2). For the treatment of non-Parkinsonian ET, electrodes were placed in the 

ventrointermedial nucleus (VIM) of the thalamus. For dystonia and symptoms 

associated with PD, the lead was placed in either the globus pallidus or subthalamic 

nucleus.[20] During both types of electrode implantation a small section of brain tissue 

was removed in order to make room for the electrode. Because the size of the tissue 

section removed was very small, the yield of cells from the subsequent dissociation and 

cell culture was also generally low (Table 6-2, between 300 – 13,800 total cells). During 

brain cancer surgery small sections of brain tissue were removed in close proximity to 

the tumor. These tissue sections were generally larger than those obtained during 

electrode implantation and were obtained from widely varying areas of the brain.  Due to 

the larger specimen size, greater numbers of cells were evident following the cell culture 

(Table 6-2, between 27, 900 – 65,700 total cells). Specimen(s) were processed only 

when the time between surgical excision and cell culture was less than six hours. 

Longer periods of time between surgical excision and cell culture resulted in lower 

neuronal yield as well as shorter survival time for the neurons in vitro (Figure 6-8 C, D). 

All procedures were approved by the International Review Boards (IRBs) from 

both the University of Central Florida (UCF) and from Orlando Regional Medical Center. 
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Optimized cell culture methodology and medium used for surgical and later AD samples 

Brain samples were collected in cold medium (~4ºC) consisting of Hibernate-A, 

Glutamax, and antibiotic-antimycotic. The samples were digested for 30 minutes at 

37°C in Hibernate-A (HA) containing 6 mg papain / 12 ml (HA). Dissociation Media, 

initially formulated for the dissociation of rat and mouse adult brain tissue into individual 

cells[21-23], was used during the mechanical dissociation of tissue. Plating Media, 

which followed the dissociation media, promoted attachment and then regeneration of 

cells on the DETA-coated surfaces. Maintenance Media promoted the long-term 

maintenance of dissociated surgical cells and was applied to cultured cadaver neurons 

and surgical neurons after four days in vitro. 

Each type of media was formulated to meet the challenges present during a 

specific stage of the cell culture process, and allowed for significantly improved survival, 

regeneration, and long-term growth (Table 6-1, Figure 6-1). The osmolarity of the media 

was adjusted with NaCl to match the osmolarity of human cerebrospinal fluid (295-305 

mOsm).[24, 25] In the Dissociation Medium, antioxidants, both cerium-oxide 

nanoparticles [26] and Trolox [27], were added during the dissociation of the tissue to 

minimize oxidative damage.  In addition, the inhibitors of caspase 1, 3, and 6 (Sigma, 

C0480 & C2105) were added to limit apoptosis during the dissociation of the tissue. 

Antioxidants and growth factors (Table 6-1) in the Plating Media promoted the 

regeneration and survival of the cells. The cells survived in some cases for 48 div with 

½ media replacement (Maintenance medium) every fourth day (Figure 6-1). 

 

Initial cell culture-methodology and medium used for AD samples 



152 
 

In early experiments, AD samples were dissociated and the cells were plated in 

medium that consisted of Neurobasal A/ 2% B27/ Glutamax/ Antibiotic-Antimycotic/ G5 

Supplement/ Recombinant Mouse PDGF-BB/ IGF/ anti-apoptotic/ nanoactive Cerium 

Oxide nanoparticles.  Cerium-oxide nanoparticles were obtained and used as described 

by Das et al, 2007 [26].  After two days in culture, the complete plating medium was 

replaced with culture medium consisting of Neurobasal A/ 2% B27/ Glutamax / 

antibiotic-antimycotic / recombinant mouse basic FGF. Thereafter half of the medium 

was replaced every four days. Later AD tissue samples were processed using the 

protocol described above for the surgical samples. The conditions for each sample are 

listed in the Results. 

 

DETA surface modification 

Glass cover slips (VWR 48366067, 22×22 mm2 No. 1) were cleaned using 1:1 

HC l-methanol followed by a concentrated H2SO4 soak for two hours. The DETA (United 

Chemical Technologies Inc. T2910-KG) film was formed by the reaction of the cleaned 

surfaces with 0.1% (v/v) mixture of organosilane in freshly distilled toluene (VWR 

BDH1151). In brief, the cleaned surfaces were heated to about 100°C in organosilane 

mixture, rinsed with toluene, reheated to about 100°C in toluene, and then dried 

overnight (100°C). Surfaces were characterized by static water contact angle 

measurements using a Rame-Hart Model 250 goniometer, and by X-ray photoelectron 

spectroscopy (XPS) using an Escalab 200i spectrometer (VG Scientific) by monitoring 

the N 1s peak.[28-30] 
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Electrophysiology 

Whole-cell, patch-clamp recordings were performed at room temperature.  

Extracellular recording solution was comprised of Neurobasal-A medium.  The solution 

contained 130 mM NaCl, 1.8 mM CaCl2, 5.2 mM KCl, 1 mM MgCl2, 2.2 mM NaHCO3, 

and 10 mM HEPES (pH 7.3) (300 mOsm).  Patch pipettes (4-8 M ) were filled with 

intracellular solution (K-gluconate 140 mM, EGTA 1 mM, MgCl2 2 mM, Na2ATP 5 mM, 

HEPES 10 mM; pH 7.2). Cells were visualized on the stage with a Zeiss Axioscope, 2 

FS Plus, upright microscope in maintenance culture medium.  Voltage clamp and 

current clamp experiments were performed with a Multiclamp 700A (MDS Analytical 

Devices) amplifier. Signals were low-pass filtered at 3 kHz and digitized at 20 kHz with 

an Axon Digidata 1322A interface. Data recordings and analysis were performed with 

Clampex software. Whole-cell capacitance and series resistance were compensated 

electronically. Only cells with access resistance less than 22 M  were analyzed. Inward 

currents that had the characteristics of fast sodium currents, and outward currents that 

had the characteristics of potassium currents, were measured in voltage clamp mode.  

Voltage step length was 50 ms, incremented 20 mV per step, 1 s between each step, 

with a holding potential of -70 mV. The action potential threshold was measured in 

current-clamp mode with increasing 1 s depolarizing current injections. Cells were 

electrically characterized on Days 4, 13, and 15 in vitro. 

 

Immunocytochemistry 

After electrophysiological characterization, cover slips were rinsed twice with 

Phosphate Buffered Saline (PBS). Cells were fixed with 4% paraformaldehyde for ten 
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minutes at room temperature, and subsequently rinsed three times with PBS. Cells 

were permeabilized for five min with a permeabilizing solution (0.5% Triton X-100 in 

PBS), and were then blocked for two hours (5% normal donkey serum in PBS). Anti-

neurofilament-M polyclonal antibody (intracellular filament found in mature neurons, 

Chemicon, AB1981, diluted 1:1000), anti-NeuN (nuclear marker in mature neurons, 

Chemicon, diluted 1:1000), anti-Ki67 (nuclear marker in dividing cells, Chemicon, 

diluted 1:1000) and anti-GFAP (cytoplasmic marker in glial cells, MAB360, Chemicon, 

diluted 1:400) antibodies were added in blocking solution for 12 hr at 4ºC. After three 

washes with PBS, fluorescently labeled secondary antibodies were applied for two 

hours. Vectashield mounting medium (H1000, Vector Laboratories, Burlingame, CA) 

with DAPI (nuclear stain) was used to mount the cover slips onto slides. The cover slips 

were observed with an Ultra VIEWTM LCI confocal imaging system (Perkin Elmer). 

 

Statistical analysis 

Numerical summary results are reported as a mean, plus or minus the sample 

standard error of the mean (  SEM). Statistical analyses were performed using the 

student’s t-test on electrophysiological data. 

 

Role of the Funding Source  

Neither NIH nor the Johnnie B Byrd, Sr. Alzheimer’s Center & Research Institute 

had any role in the design, execution or interpretation of the results and had no 

participation in the preparation of this manuscript. 
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Results 

General culture conditions for samples obtained from human subjects: 

The attachment, survival, and regeneration of the dissociated neurons after cell 

culture were maximized through careful control of the following parameters: temperature 

of the Dissection and Transport media (4ºC) and time between death or surgery and 

initiation of the culture (two to six hours). The tissue sample was processed first by 

enzymatic dissociation of tissue in Hibernate A (HA) (37ºC shaking water bath, 80 

revolutions per minute), then repeated washes of the tissue solution to wash away the 

papain, gentle dissociation of the tissue into cells with Dissociation Media using a fire-

polished glass Pasteur pipette. This was followed by the plating of the cells onto the cell 

adhesive surface (DETA).  After 45 minutes, a gentle wash of the cover slip with warm 

HA (37ºC) removed the majority of cellular debris, including myelin and myelin inhibitor 

factors.[31] Maintenance of the culture occurred every four days with half media 

removal and replacement with fresh Maintenance Media. This regimen (Figure 6-1) 

supported neuronal survival and regeneration (Figure 6-2; Table 6-2, culture results), 

and allowed for the investigation of the electrical properties (Table 6-3) and expression 

patterns displayed by adult human neurons in a controlled in vitro environment (Figures 

6-3, 6-7). 

 

Details of cell culture results from human brain tissue surgically removed during DBS or 
TE surgery:  
 

Neurons cultured from the 12 DBS and 3 TE surgical brain tissue specimens 

demonstrated similar regeneration and survival in vitro (Figure 6-2). These neurons 

exhibited morphological regeneration within two to four div, with the neurons displaying 



156 
 

phase bright cell somas, multi-branched dendrites, and strong, polarized axons. 

Neurons retained this morphology over the life-span of the culture, which averaged 30 

days and for up to 48 div (Figure 6-2).  The small size of the brain tissue specimens 

available was reflected in the low cell yield for each sample (Table 6-2, total number of 

cells after 6 div).  Because the TE samples were larger than the DBS samples, the cell 

yield was higher. 

The time between surgical excision of the brain tissue and the initiation of the cell 

culture strongly influenced the culture results.  Longer periods of time between surgical 

excision and cell culture resulted in lower neuronal yield as well as shorter survival time 

for the neurons in vitro.  This was quantified using adult rat hippocampal tissue that was 

cultured after storage in Transport medium for 0, 3, or 6 hours on ice.   The number of 

neurons living after 1, 3, and 6 div was quantified for each sample (Figure 6-8 C, D).  

The number of living neurons was significantly lower for those samples stored for 6 

hours.  The living cells in this batch also had shorter and less highly branched neurites.   

 

Immunocytochemical investigations of cells from surgical samples:  

Two TE samples (Table 6-2) previously investigated electrophysiologically were 

probed with neurofilament-M, NeuN, and Ki67, allowing for both the determination of the 

neuronal nature of these cells as well as the lack of cellular division. The cells 

expressed both the neuronal cytoskeletal protein neurofilament-M and the neuronal 

nuclear marker NeuN.  The cells did not express Ki67, a nuclear marker for dividing 

cells (Figure 6-3).  A dividing population of neurons derived from the hippocampus of 



157 
 

adult rats was used as a positive control, and the nuclei of these cells stained for Ki67 

expression. 

Four DBS cultures (Table 6-2) previously investigated electrophysiologically were 

probed with neurofilament-M and GFAP to determine the ratio of neurons to glial cells.  

Very few cells expressed GFAP (4.3 ± 2.7%), while neurofilament-M expression was 

seen in most cells (87.6 ± 6.8%)(Figure 6-3).  An adult rat hippocampal culture (14 div) 

was used as a positive control, with 8% staining for GFAP and 88% staining for 

neurofilament-M.   

 

Electrical investigations of neurons from surgical samples:  

The surgical sample neurons were evaluated for functional electrophysiological 

recovery.  Day 4 and day 15 DBS cultures and day 4 and day 13 TE cultures were 

evaluated (Table 6-2, survival / electrical activity).  For DBS neurons, after four div the 

Na+ current flow averaged -637 pA and after 15 div it was -758 pA. K+ current flow after 

four div averaged 937 pA and after 15 div it was 1221 pA. For TE neurons, after four div 

Na+ current flow averaged -432 pA and after 13 div it was -873 pA (Table 6-3, Inward 

Currents). K+ current flow after four div averaged 637 pA and after 13 div it was 1231 pA 

(Table 6-3, Outward Currents). These properties were not found to be significantly 

different between sample types or culture age.  This indicates that in both cases the 

cultured human neurons exhibited consistent electrical activity in vitro beginning just a 

few days in vitro, and this activity was maintained.  The main electrical difference 

between DBS and TE neurons was in the firing frequency exhibited by neurons derived 

from the two sources. DBS neurons fired single action potentials, while the majority of 
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TE neurons were able to repetitively fire action potentials (Table 6-3, Firing Frequency).  

Voltage and current clamp traces for both the DBS and TE samples show both the 

inward and outward sodium and potassium currents and the single or multiple action 

potentials generated after depolarizing current injections (Figure 6-4).  Groups of 

individual time series have been averaged, with only the average displayed.   

 

Details of cell culture results from AD samples: 

Neurons were cultured from hippocampal slices removed from the brain of AD 

and dementia patients during autopsy between 2-6 hours after death.  Shorter periods 

between death and the initiation of the culture resulted higher yields of healthy neurons 

(Figure 6-8 A, B).  In five cases, four of advanced AD and one from vascular dementia, 

the cells did not survive or recover in vitro. In one experiment, where tissue was 

obtained from a patient suffering from Lewy body dementia (LBD), the cells survived for 

four to five days but exhibited poor regeneration and contained a large number of 

vesicular bodies throughout the cell somas. In five other cases, where deceased 

individuals were suffering from mid stage AD, the cells survived for 10-15 days. In each 

of these ten cases, lack of dendritic branching as well as large vesicles indicative of 

trauma and early to late stage apoptosis or autophagy were evident[32] (Figure 6-5, A-

C). In one age matched patient with no known neurodegenerative condition (Table 6-4, 

NOR-110209) cells survived for 15 days with phase bright cell somas, branching apical 

dendrites, small basal dendrites, and limited vesicles in the cell soma. Nine neurons 

from this sample were patched.  None was electrically active (Figure 6-5, D). 
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In vitro culture of dissociated AD hippocampal brain tissue resulted in 

heterogeneous cellular morphologies indicative of the cell populations present in this 

region of the brain. Some cells had characteristic pyramidal morphologies, whereas 

others had bipolar morphologies. Additionally, there were large numbers of cells which 

had no distinct morphologies or were devoid of any distinct processes. Cell bodies were 

rough and filled with numerous vacuole-like structures, indicative of the initiation of 

apoptosis or autophagy. The dendritic processes were missing in most of the neuron-

like cells. Beyond ten days in vitro, these vacuole like inclusions in the cell body became 

more spread out, resulting in detachment of the cells from the substrate and / or 

apoptotic cell death (Figure 6-5).[32] The results from the live / dead assay (Figure 6-6) 

show the viability of most attached neurons at five through seven days in vitro. After day 

ten, however, most of the cells began to detach or undergo apoptosis and die. In 

addition to the viability of the cells in vitro, the live / dead assay indicated the different 

morphologies (pyramidal, multi-polar, bipolar, irregular shaped) of the hippocampal cells 

present in vitro. 

AD neurons were probed with Neurofilament-M and DAPI after 12 days in vitro 

(Figure 6-7). Most neurons lacked dendritic processes or branching, and several 

neurons were multinucleated (Figure 6-7, C–D).  23 neurons from 5 diseased brain 

samples were patched.  None was electrically active.  
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Discussion 

Currently there is enormous interest in developing in vitro cell culture models for 

the study of human neurodegenerative diseases and traumatic brain injuries. This 

stems in part from the growing interest in moving away from animal model test. A 

straightforward technique to culture human neurons from both healthy and diseased 

patients, especially AD patients, could enable a new paradigm in personalized medicine 

and clinical diagnostics.  In addition, traumatic brain injury (TBI) has been elevated to 

new prominence in the neurological field due to returning war veterans and a more 

focused effort to evaluate the consequences of sports injuries.[33, 34] 

In this study we successfully developed a defined in vitro culture model for 

primary human neurons consisting of an engineered synthetic substrate, serum-free 

medium formulation, and novel culture methodology. This tissue was derived from 

deceased patients as well as DBS and TE surgical samples. This novel culture system 

can be used to study individual or small networks of dissociated neurons isolated from 

human brain tissue. The main component of this novel in vitro system was (1) the media 

formulations and (2) the culture methodology, each of which were adapted from 

previous studies.[21-23] Anti-apoptotic molecules, Trolox ® and cerium oxide 

nanoparticles were added to the dissociation medium in order to limit apoptotic 

pathways and oxidative cell damage.[22, 35] The osmolarity of all media was adjusted 

to more closely mirror that found in human cerebral spinal fluid.[24, 36] Growth factors 

known to be important in adult CNS regeneration and maintenance (BDNF, NT-3, 

bFGF, and IGF-1[37-39] (Table 6-1)) were present in the medium. 
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Another crucial component of this cell culture system was an engineered growth 

substrate consisting of a DETA monolayer self-assembled on a clean glass cover 

slip(s).[29, 30] There are three major rationales for using the synthetic DETA substrate 

in this study. First, the triamine moiety in DETA mimics the growth factor spermadine, 

which has been shown to prolong cell life.[40] Second, DETA substrates can be coupled 

with specific extracellular matrix molecules and different contact molecules to 

systematically study the role of ECM proteins during brain injury and disease. Third, 

these surfaces can be used to create high-resolution patterns of hippocampal neurons 

for circuit formation and analysis either on cover slips or MEAs.[29]  

The neurons isolated from tissue removed during DBS or TE recovered a healthy 

morphology and survived in long-term culture for up to 48 days in vitro (Figure 6-2). 

Immunocytochemical characterization of the surgical samples was conducted using the 

mature neuronal marker NeuN and the proliferation marker Ki67, and showed that most 

cells were mature, non-proliferating neurons (Figure 6-3). Both DBS and TE neurons 

were electrically evaluated, and both types were electrically active (Figure 6-4, Table 6-

3).  Results from these cultures contrast to cultured cells isolated from AD cadaver brain 

tissue. While these cells were neurofilament-M positive, indicating they were neurons, 

they exhibited limited morphological recovery, a shortened survival time, and lack of 

electrical activity recovery in vitro. Additionally, among cultured neurons derived from 

AD tissue a sub-population of neurons with multiple nuclei was present. We believe that 

such multiple nuclei could be a signature of AD samples, as has been noted in rare 

instances where multinucleated giant cells were filled with dense Abeta42 and 

Abeta40.[41]  
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We hypothesize the observed limitations in recovery noted from the AD neurons 

compared to the surgically excised neurons in vitro were a function of two factors: (1) 

the diseased state of the AD neurons and (2) the amount of time between death and 

extraction of tissue from the deceased AD patients. While the time from tissue removal 

to culture could be somewhat controlled with the surgical samples, this was less so with 

the samples from the AD cadavers. However, during the three year time period of the 

study the coordination between the recovery pathology teams and our lab was improved 

and this time was reduced, leading to a more efficient process. Despite its limitations 

this system provides a novel test bed for drugs for studying the survival, morphological 

recovery, and promotion of electrical recovery in a controlled environment of human 

neurons. Additionally, this system provides a new modality to investigate neuronal 

pathology associated with AD disease separate from the surrounding brain tissue and 

support cells, can be used to further understanding of the mechanisms of disease 

onset, progression, and end stage, and most importantly could facilitate the quick 

evaluation of potential drug targets and treatments for both AD markers and AD 

therapies, potentially on a personalized basis.  

As noted above, a primary obstacle identified in this study was time between 

patient death, autopsy and tissue collection, and elapsed time for cell culture (Table 6-2, 

6-4). With the surgical samples, which were collected during controlled situations where 

tissue samples were immediately introduced to cold storage and transport media, 

limited cell trauma and death was encountered. However, in tissue samples received 

from AD cadaver patients, the issues were more complex and include inconsistencies in 

the time period between patient death, varying transport times to the medical facility for 
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autopsy, time of autopsy, the ischemic environment present in the brain after death, and 

most importantly the neurodegenerative brain condition itself. These issues manifested 

in limited cell survival and regeneration in vitro. However, hippocampal samples 

removed from an age matched patient with no known neurodegenerative condition 

exhibited improved survival, morphological recovery, and longer term survival despite 

the presence of all previously described obstacles with the exception of AD pathology 

(Table 6-4, NOR-110209). This suggests that the disease condition could be the 

dominant factor involved in neuronal recovery and suggests a clear target for 

investigating reversal of neurodegeneration in a controlled environment. 

The effect on survival and regeneration from the previously described obstacles 

in AD cultures was investigated using rat brain tissue. This animal study measured the 

effects resulting from the amount of time between the death of the animal and the 

initiation of the cell culture process. The length of time between the death of the animal 

and the initiation of cell culture directly influenced the survival and regeneration of the 

cells (Figure 6-8 A, B). We hypothesize that the ischemic conditions in the brain after 

death was a primary factor influencing the difference in success observed between AD 

patient samples and surgical samples. Through closer coordination between the 

recovery team, pathologist, and culture effort this could be overcome to a certain degree 

in future efforts in our lab as well as for others attempting this culture process. 

In drug-discovery research, there is an increasing demand for cost effective high-

throughput in vitro test methods as a substitute for in vivo toxicity testing and drug 

candidate evaluations. With in vitro experiments, the development and validation of a 

complex set of methods is necessary to accomplish this substitution[42-44] and many 
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cell-culture based methods have been proven to possess predictive values for different 

aspects of a compound’s effect (absorption[45], metabolism[46], neurotoxicity[47], 

cardiac toxicity[48], etc.). Thus, a new function-based assay focused on human primary 

neurons would be of use from the general field of drug discovery to basic neuroscience, 

but especially for evaluating causative effects of AD disease and its possible remedies. 

This would be especially useful in investigating methods for the restoration of function of 

damaged neurons, as little or no progress has been made in reversing the effects of this 

tragic disease or in neuronal damage due to TBI. 

As compared to previous models,[17, 18] [19] this system would be more robust 

due to the long-term survival of the human neurons obtained from the surgical samples. 

Further it was demonstrated for the first time that these healthy neurons regain both 

neuronal morphology and electrical activity in vitro. The diseased neurons obtained from 

the AD patients did not survive as long in culture but exhibited the characteristic 

features of degenerating AD neurons. The hope is that future improvements to both the 

speed of tissue reclamation as well as improved culture processing will make a culture 

system derived from AD brain tissue a more viable research tool. This tissue was 

obtained from deceased AD patients as well as DBS and TE surgical samples, but 

could be extended to include tissue from any part of the CNS to provide models for 

diseases such as Parkinson’s, Multiple Sclerosis, and other neurological disorders. 

 In summary, we have established a robust system to enable functional studies of 

healthy and diseased human neurons which could be used for understanding disease 

pathology in drug discovery through changing electrical characteristics in individual 

neurons from toxic disease agents and after drug therapy.   
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Table 6-1: Media compositions   
Component Quantity Vendor Catalog # 
    

Dissection & Transport:    
  Hibernate-A 500ml Brain Bits HA 
  Antibiotic / Antimycotic 1% Gibco 15240-096 
    

Dissociation medium:    
  Hibernate-A 500ml Brain Bits HA 
  B27 2% Gibco 17504-044 
  Glutamax 2mM Gibco 35050-061 
  Antibiotic / Antimycotic 1% Gibco 15240-096 

  Z-Asp(OMe)-Gln-Met-Asp(OMe) fluoromethyl ketone 4 M Sigma C0480 

  Z-Val-Ala-Asp fluoromethyl ketone 5 M Sigma C2105 

  Dextrose-coated Cerium Oxide Nanoparticles 100nM   
  (±)-6-Hydroxy-2,5,7,8-tetramethylchromane-2-
carboxylic acid 

70nM Sigma 238813 

Osmolarity adjusted to 294mOsm with NaCl    
    

Plating medium:    
  Neurobasal-A 500ml Gibco 10888 
  B27 2% Gibco 17504-044 
  Glutamax 2mM Gibco 35050-061 
  Antibiotic / Antimycotic 1% Gibco 15240-096 

  BDNF, recombinant human 20ng/ml 
Cell 
Sciences 

CRB600B 

  NT-3, recombinant human 20ng/ml 
Cell 
Sciences 

CRN500B 

  bFGF, recombinant human 5ng/ml Invitrogen 13256-029 
  Insulin-like Growth Factor-I (E3R) human 20ng/ml Sigma I2656 
  Dextrose-coated Cerium Oxide Nanoparticles 100nM   
  (±)-6-Hydroxy-2,5,7,8-tetramethylchromane-2-
carboxylic acid 

70nM Sigma 238813 

Osmolarity adjusted to 296mOsm with NaCl    
    

Maintenance medium:    
  Neurobasal-A 500ml Gibco 10888 
  B27 2% Gibco 17504-044 
  Glutamax 2mM Gibco 35050-061 
  Antibiotic / Antimycotic 1% Gibco 15240-096 

  BDNF, recombinant human 20ng/ml 
Cell 
Sciences 

CRB600B 

  NT-3, recombinant human 20ng/ml 
Cell 
Sciences 

CRN500B 

  bFGF, recombinant human 5ng/ml Invitrogen 13256-029 
  Insulin-like Growth Factor-I (E3R) human 20ng/ml Sigma I2656 

Osmolarity adjusted to 297mOsm with NaCl    

 
Culture periods for use of each medium:  Dissection and Transport - dissection, 
transport, and enzymatic digestion of the tissue specimen.  Dissociation – mechanical 
dissociation of the tissue specimen.  Plating – attachment of individual cells to substrate 
through culture day 3.  Maintenance – culture day 3 through the end of the culture  
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Table 6-2:  Temporal Lobectomy samples and cell culture results per sample 

Sample 
Patient 

Age 
Patient 

Sex 
Patient 

Condition 

Cause of 
Surgical 

Intervention 
Brain 

Region 

Time btwn 
Surgery & 

Culture 
(hrs) 

Total 
Number of 

Cells (6 
div) Survival / Electrical Activity in Culture 

         

DBS-0821 57 M P DBS TL 5.02 1,400 Survived 15-20 div 

DBS-0828 57 M P DBS FL  300 Survived 10 div 

DBS-0902 62 F     3,700 Survived 15-20 div 

DBS-0925a 79 M P DBS FL 6.32 450 Survived 8 div 

DBS-0925b 57 M ET DBS FL 7.81  Survived 10 div 

DBS-1003 
68 F P DBS FL 3.07 2,200 

Survived 35-40 div (EC day 15, IC day 15, 
35) 

DBS-1014 67 F P DBS FL  1,600 Survived 15-20 div 

DBS-1104 82 M P DBS FL 4.01 1,700 Survived 30-35 div (EC day 4, IC day 25) 

DBS-1202 54 M P DBS FL 3.50 4,200 Survived 45-50 div (EC day 15, IC day 10) 

DBS-1209 71 F ET DBS FL 5.00 13,800 Survived 45-50 div (EC day 4, IC day 18) 

DBS-0127 58 M ET DBS FL 8.23 2,900 Survived 25-30 div 

DBS-0210 63 M P DBS FL 6.02 3,000 Survived 10-15 div 
         

TE-0828 
67 M Tumor TE  2.79 27,900 

Survived 45-50 div  (EC day 4, 13, IC day 
18) 

TE-0916 
79 M Tumor TE  3.54 41,900 

Survived 45-50 div  (EC day 4, 13, IC day 
22) 

TE-1202 44 F Tumor TE FL 5.52 65,700 Survived 30-35 div  (EC day 13) 

 
TL=Temporal Lobe, FL=Frontal Lobe, DBS=Deep Brain Stimulation, insertion of electrode, TE=Tumor Excision, 
IC=Immunocytochemistry, EP=Electrophysiology.  Specimen taken from patients with Parkinson’s, Central Tremor, or 
brain tumors.  Specimen usually from ventral infundibular nucleus.  12 total samples were recovered during DBS surgery, 
3 total samples from TE surgery.  Specimen put into media within 15 minutes.  Culture conditions for all sample outlined in 
Figure 6-1.  Average cell yield was higher from TE surgery.  The maximum period cells were observed to survive in vitro 
was between 45-50 days.   
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Table 6-3:  Electrical properties of neurons after 4, 13, or 15 days in vitro, 
examined through single cell patch-clamp electrophysiology 

 
Surgical, DBS Surgical, TE 

  4 div 15 div 4 div 13 div 

     

Number of cells examined 13 15 16 15 

Vm (mV)  -38.7 ± 3.4 -43.6 ± 2.1 -25.7 ± 5.7 -32.9 ± 8.9 

Rm (mΩ)  255 ± 27.6 344 ± 22.6 177 ± 23.9 223 ± 18.7 

Cm (pF)  14.1 ± 1.3 17.3 ± 2.1 19.6 ± 3.2 17.8 ± 2.7 

Rseries (mΩ) 17.6 ± 2.0 18.1 ± 1.7 16.3 ± 1.7 18.2 ± 2.9 

Inward Current, Na
+
 (pA) -637 ± 57.6 -758 ± 74.3 -432 ± 233 -873 ± 322 

Outward Current, K
+
 (pA) 937 ± 47.2 1221 ± 74.0 637 ± 111 1231 ± 288 

Vthr (mV) -37.6 -43.7 -52.1 -57.2 

Firing Frequency 0.9 ± 0.05 1.0 ±.07 1.7 ± 0.6 2.67 ± 0.38 

AP Amplitude (mV)  89.6 ± 11 97.2 ± 12.1 83.4 ± 13.2 92.3 ± 11.1 

AP Duration (ms) 4.2 ± 1.2 5.1 ± 2.3 3.9 ± 1.2 5.4 ± 2.1 

AHP Amplitude (mV) -5.3 -5.47 -7.9 -8.92 

AHP Duration (ms) 42.3 53.2 32.1 37.8 
 

DBS = samples removed during Deep Brain Stimulation electrode implantation, TE = 
samples removed during Tumor Excision, div = culture days in vitro, Vm = resting 
membrane potential, Rm = membrane resistance, Cm = membrane capacitance, 
Rseries = series resistance, Vthr = action potential threshold voltage, AP = action 
potential.  Firing frequency:  within the 1 s depolarizing current injection, the firing 
frequency is the number of action potentials generated per voltage step after the 
threshold has been reached.  Electrical properties of neurons in vitro derived from 
human neuronal tissue removed either during electrode implantation or tumor excision 
surgery.  Data is presented as mean +/- S.E.M. 
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Table 6-4:  Human cadaver brain tissue samples and cell culture results per sample 

Diseased Sample 

Patient 

Age 

Patient 

Sex 

Patient 

Condition 

Brain Region, 

weight (grams) 

Tissue 

Collection 

Medium 

Culture Dissociation 

Parameters 

Culture Medium (per 

sample) Survival in Culture 
         

AD-91507 83 F AD Hip, ND HA+B27+ 

Ceria 

Papain 30 min + 

Gradient 

G5+PDGF and followed by 

Basic FGF 

Survived in culture for 10-15 div 

(L-D Assay) 

AD-92607 80 M AD Hip, ND HA+B27+ 

Ceria 

Papain 30 min+ 

Gradient 

G5+PDGF and followed by 

Basic FGF 

Survival in culture for 10 div (L-

D Assay) 

VD-113007 90 M VD Hip, ND HA+B27+ 

Ceria 

Papain 30 min+ 

Gradient 

G5+PDGF and followed by 

Basic FGF 

No Survival 

VD-121707 86 F AD Hip, ND HA+B27+ 

Ceria 

Papain 30 min+ 

Gradient 

G5+PDGF and followed by 

Basic FGF 

Survival in culture for 20 div (IC 

on day 12) 

AD-10708 74 M AD, Mid-Stage Hip, ND HA+B27+ 

Ceria 

Papain 30 min+ 

Gradient 

G5+PDGF and followed by 

Basic FGF 

Survival for 10 div 

AD-10708 90 M AD, Advanced Hip, ND HA+B27+ 

Ceria 

Papain 30 min+ 

Gradient 

G5+PDGF and followed by 

Basic FGF 

No Survival 

DLBD-42308 79 M DLBD Hip, ND HA+B27+ 

Ceria 

Papain 30 min+ 

Gradient 

G5+PDGF and followed by 

Basic FGF 

Survival for 4-5 div 

AD-50508 80 M AD, Advanced Hip, ND HA+B27+ 

Ceria 

Papain 30 min+ 

Gradient 

G5+PDGF and followed by 

Basic FGF 

No Survival 

AD-52109 87 M AD, Advanced Hip, 1020gr HA+B27+ 

Ceria 

Papain 30 min + 

Dissociation Media 

See Figure 6-1 No Survival 

AD-60909 82 M AD, Advanced Hip, 932gr HA+B27+ 

Ceria 

Papain 30 min + 

Dissociation Media 

See Figure 6-1 No Survival 

AD-90409 87 F AD, Mid-Stage Hip, ND HA+B27+ 

Ceria 

Papain 30 min + 

Dissociation Media 

See Figure 6-1 Survival 10 div 

         

NOR-110209 91 F No 

neurological 

condition 

Hip, 1320gr HA+B27+ 

Ceria 

Papain 30 min + 

Dissociation Media 

See Figure 6-1 Survival and regeneration 14 div 

 
AD = Alzheimer’s Disease, VD = Vascular Dementia, DLBD = Lewy Body Dementia, NOR = no neurological condition, M 
= Male, F = Female, Hip = Hippocampus, ND = not determined, HA = Hibernate A, G5 = G5 Supplement, PDGF = Platelet 
Derived Growth Factor, L-D Assay = Live dead assay, Ceria = cerium oxide nanoparticles, div = days in vitro.  Summary 
of hippocampal cultures from brain tissue removed during autopsy.  All but one individual suffered from a 
neurodegenerative condition. 
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Figure 6-1: Culture methodology for the processing and dissociation of human 
brain specimens to create and maintain a dissociated neuronal cell culture. The 
time scale of the cell culture indicates timed application of growth factors and 
quantification of various neuronal parameters. The cells were examined 
immunocytochemically after 4, 6, 14, and 23 days in vitro (Neurofilament-M, Ki-67, 
NeuN, Synapsin, and GFAP). Electrical parameters of the cells were examined after 4, 
13, and 15 days in vitro. 
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Figure 6-2:  Phase contrast pictures of dissociated cells in vitro derived from 
Temporal Lobectomy brain specimen.  Cells in vitro cultured from brain tissue 
extracted from patients with Parkinson’s, Central Tremor, or brain tumors. Parkinson’s 
or Central Tremor specimens were extracted during DBS electrode implantation.  Brain 
tumor specimens were extracted during tumor excision surgery.  Each sample was 
processed to dissociate the cells, and the cells regenerated and survived for up to 48 
div.  div = days in vitro, DBS = Deep Brain Stimulation.  Scale bar = 40 µm.   
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Figure 6-3:  Immunocytochemical characterization of dissociated cells in vitro 
derived from surgical brain samples obtained during deep brain stimulation 
surgery or tumor excision surgery.   From specimen removed during tumor excision:  
Phase, Neurofilament-M (red) , NeuN (blue), Ki67 (green, not expressed), composite .  
Expression of Nf-M and NeuN indicated maturity of neurons, lack of Ki67 expression  
indicated lack of cell division.   From brain tissue extracted during DBS electrode 
implantation:  Phase, Neurofilament-M (green), GFAP (red), composite.  Cells positive 
for neuronal marker neurofilament-M, negative for glial marker GFAP.  Scale bar = 25 
µm 
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Figure 6-4:  Electrical properties of neurons in vitro derived from brain 
specimen(s) excised during (A) electrode implantation for DBS or (B) tumor 
excision surgery.  After neurites have reformed, neurons were probed electrically to 
determine their in vitro properties.  Both current flow (voltage clamp) and AP generation 
(current clamp) were measured in cells extracted from surgical samples extracted 
during either electrode implantation (A) or tumor excision (B) surgery. Voltage-gated 
sodium and potassium channels were measured in voltage-clamp experiments, action 
potentials were measured in Current-clamp mode.   Voltage clamp stimulation protocol:  
Voltage step length of 50 ms, increment of 20 mV per step, time between the starts of 
each step was 1 s, holding potential of -70 mV.  Current clamp stimulation protocol:  
The action potential threshold was measured with increasing 1 s depolarizing current 
injections.   Groups of individual time series have been averaged, with only the average 
displayed.    
 

  



174 
 

  
Figure 6-5:  Pictures of dissociated cells in vitro derived from the hippocampus of 
deceased Alzheimer’s patients during autopsy.  (A-C) cells cultured from a brain 
specimen(s) removed during autopsy from a patient with a neurodegenerative disorder, 
5-7 div.  Multiple vesicles were evident in the cell bodies, commonly found in neurons 
undergoing autophagy or apoptosis.  (D) cells cultured from a brain specimen(s) 
removed during autopsy from a patient without a neurodegenerative disorder (NOR-
110209).  Vesicular exclusions not present.  Scale bar = 40 µm. 
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Figure 6-6: Live Dead Assay of dissociated cells in vitro derived during autopsy 
from the hippocampus of deceased patients with a neurodegenerative disorder.  
Cells between 5-7 div.  Live cells – green, dead cells – red.  Despite the presence of 
vesicles in the cell bodies, the majority of cells were alive between 5-7 div.  div = days in 
vitro.  Scale bar = 30 µm. 
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Figure 6-7:  Immunocytochemical characterization of dissociated cells in vitro 
derived from the hippocampus of deceased Alzheimer’s patients.  
Immunocytochemical evidence for the presence of neurons after 12 days in vitro 
(Neurofilament-M - red, DAPI - blue).  (A) neuron with minimal branching, (B) neuron 
lacking branched processes, (C-D) multinucleate neurons with minimal branching.  
Scale bar = 30 µm. 
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Figure 6-8:  In vitro effect from a dissection delay or culture delay on neuronal 
viability of rat hippocampal neurons.  (A, B) dissection of the brain tissue did not 
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occur for 0, 2, or 4 hours after the death of the rat.  (A)  Dissection after 0, 2, or 4 hours.  
Live / Dead assay for viable neurons cultured after dissection of the brain tissue was 
delayed for 0, 2, or 4 hours after the death of the rat.   The number of living neurons 
after 1 div was significantly lower for the 2 and 4 hour samples versus the 0 hour 
sample.  Further loss of neurons was seen in the 2 and 4 hour samples after 3 and 6 
div.  (B) 6 div, the neurites on those cells derived from brain tissue extracted without 
delay were longer and more highly branched than those cell derived from brain tissue 
extracted after a 2 or 4 hour delay.  Scale bar = 50 µm. (C, D) dissection of the 
hippocampus occurred immediately, but the tissue was stored in Transport medium on 
ice for 0, 3, or 6 hours before the culture was initiated. (C)  Culture after 0, 3, or 6 hour 
storage in Transport medium.  Live / Dead assay for viable neurons cultured after rat 
hippocampal tissue had been stored in Transport medium on ice for 0, 3, or 6 hours.  
The number of living neurons after 1, 3, and 6 div was only slightly lower after 3 hours 
storage, but was significantly lower if the tissue had been stored for 6 hours before the 
initiation of the culture. Regeneration of the neurons was significantly less after 6 days 
for those samples stored for 6 hours. (D) 6 div, the neurites on those cells derived from 
brain tissue processed with a delay of 3 hours or less were longer and more highly 
branched than those cell derived from brain tissue  processed after a 6 hour delay.  
Scale bar = 50 µm. 
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CHAPTER 7 - GENERAL DISCUSSION 
 

Tissue engineering, an interdisciplinary field that applies the concepts and 

methodologies of engineering toward studying problems in the life sciences [1], is an 

emerging field with widespread applications into both basic and translational research in 

the field of neuroscience.  At the molecular, cellular, and systems level, neuroscience 

research investigations are reliant upon the existence of accurate networks that mimic 

the human brain and/or functions of the human brain.  Tissue engineered neuronal 

systems that mirror the function of individual or small networks of neurons in the brain 

can be used to determine basic neuronal function, to extrapolate disease processes, 

and to translate this knowledge into new drugs, devices, and treatment options for 

clinical patients [2]. 

Historically, researchers have been forced to rely upon in vivo or in vitro models 

that have flaws or inadequacies due to either the complexity of the brain or the complex 

nature of most neurological conditions, injuries, or diseases.   Rat and mouse in vivo 

disease models have been created that mimic pathological symptoms of human 

neurological and neurodegenerative conditions.  These models have been widely used 

in research to understand the onset and progression of these conditions as well as in 

testing of drugs and therapies in their reversal [3-5].  Hippocampal slice cultures, where 

thin slices of intact hippocampal tissue are removed from adult brain tissue, have been 

used for electrophysiological studies into synaptogenesis, neuronal communication, 

long-term potentiation, and pathophysiology of brain disease [6-9]. During the last 

decade several functional in vitro systems have been developed to study central and 

peripheral nervous system disorders using embryonic and fetal rat or mouse tissues, 
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typically with rat E18 hippocampal neurons [10-21].  This practice of using embryonic 

rather than mature brain tissue has been predicated upon difficulties in supporting 

regeneration, functional recovery and long-term survival of adult neurons in vitro.   

Some work has been performed on the refinement of in vitro dissociated neuronal 

systems using adult brain tissue rather than embryonic brain tissue [10, 11].  While 

these systems supported the morphological recovery of adult hippocampal neurons in 

vitro, issues with the support of both long-term survival and full recovery of electrical 

activity of neurons in these culture systems have prevented its widespread adoption as 

a research tool [3, 22, 23].  Additional studies have been conducted to develop culture 

systems using human neurons, which while partially successful in supporting short-term 

survival of dissociated human neurons or neural progenitors, were not evaluated for 

basic electrical functionality [24-26]. 

 One of the main challenges in translational neuroscience research can be found 

in using the knowledge gained from abstract models of neuronal or neurological function 

in the development of human clinical treatments or therapies.  The main problems with 

using these systems: 

1. Animal models of neurodegenerative or neurological conditions do not translate 

well to the human condition 

2. More applicable functional in vitro model systems derived from adult and / or 

human tissue have been limited or unavailable 

3. In vitro embryonic neuronal culture systems are not mature functionally nor do 

they display mature neuronal protein expression patterns [27-35].  The 

usefulness of these developmentally and functionally immature neurons for 
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studies of neuronal electrical activity and synaptic transmission is severely limited 

by the lack or limited expression of the neuronal machinery responsible for 

electrical transmission in the adult brain.  In addition, using these immature 

neurons in studies of neurodegenerative diseases or drug discovery can yield 

results that cannot be correlated to the function or action of mature neurons in 

adult brain tissue.   

Conversely, an adult hippocampal culture system could be used to study the function of 

neurons, neuronal interactions, aging and neurodegenerative disease from a new 

perspective where the essential ion channels, receptors and other cellular components 

found in adult neurons had matured in vivo [36]. 

This dissertation research has sought to create a new, more relevant dissociated 

neuronal culture system derived from the hippocampus of adult rats.  A few studies 

have shown that neurons derived from the hippocampal tissue of adult rats could 

survive and regenerate in vitro under serum-free conditions [3, 10, 11, 22, 23].  

However, while the adult neurons regenerated morphologically under these conditions, 

both the electrical activity characteristic of in vivo neurons as well as long-term neuronal 

survival was not consistently recovered in vitro.  In chapter 2, we demonstrated a 

defined culture system with the ability to support functional recovery and long-term 

survival of adult rat hippocampal neurons. In this system, the cell-adhesive substrate, N-

1 [3-(trimethoxysilyl) propyl]-diethylenetriamine (DETA), supported neuronal attachment, 

regeneration, and long-term survival of adult neurons for more than 80 days in vitro. 

Additionally, the excitatory neurotransmitter glutamate, applied at 25 M for 1 to 7 days 

after morphological neuronal regeneration in vitro, enabled full recovery of neuronal 
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electrical activity.  This low concentration of glutamate promoted the recovery of 

neuronal electrical activity but with minimal excitotoxicity.  These improvements allowed 

electrically active adult neurons to survive in vitro for several months, providing a stable 

test-bed for the long-term neuronal studies. 

This newly developed neuronal culture system derived from adult rat 

hippocampal tissue simplified the culture process while demonstrating reliability, 

reproducibility, and relevancy.  In chapter 3, this dissociated neuronal cell culture 

system was modified.  Through the action of regeneration promoting growth factors, 

most importantly bFGF, and the dose-dependent application of the novel anti-mitotic 

factor roscovitine cdk5 mediated cell cycle progression was activated or deactivated to 

promote or control the division of mature, terminally differentiated neurons.  The 

application of this cell cycle control to an improved serum-free culture system supported 

the expansion of primary adult neuronal cells under controlled conditions across 

multiple passages with the ability to arrest mitotic division at any time.  Functional 

recovery of these previously dividing neurons could then be provoked by glutamate. Cell 

cycle control also allowed for the development of a stable population of primary neurons 

that both morphologically and functionally regenerated without expansion.   

This newly discovered ability to both culture primary adult hippocampal neurons 

under serum-free culture conditions, maintain them in a primary, non-dividing state, and 

utilize them for purposes of basic research, drug discovery, and therapeutic testing 

represents a new and exciting breakthrough in the quest for faster and more targeted 

drug discovery.  Additionally, the described ability for these post mitotic neurons to re-

enter and progress through the cell cycle in vitro, ultimately dividing multiple times, 
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represents a new paradigm previously thought to be beyond the capability of primary 

neurons in the brains of higher vertebrates.  The use of cdk inhibitors, specifically 

roscovitine, to prevent the induction of neuronal division and return neurons to a 

quiescent yet functionally and electrically active state capable of forming complex 

network connections and communication, opens up possibilities into a whole new realm 

of research in disease mechanisms and potential therapeutics.  While neurons in the 

mature brains of higher vertebrates had previously been thought to be terminally 

differentiated and incapable of cellular division, it has been proven not only that they 

can be induced to divide but to also to return to a non-dividing and functional state. 

In chapter 4, the directed formation of small networks of electrically active, 

synaptically connected adult neurons was demonstrated through the use of engineered 

chemically modified culture surfaces.  Although synaptogenesis, synaptic 

communication, synaptic plasticity, and brain disease pathophysiology can be studied 

using brain slice or dissociated embryonic neuronal culture systems, the complex 

elements found in neuronal synapses makes specific studies more difficult to examine 

using these random cultures.  The study of synaptic transmission in mature adult 

neurons and factors affecting synaptic transmission are generally studied in organotypic 

cultures, in brain slices, or in vivo.  However, engineered neuronal networks can allow 

these studies to be performed instead on simple functional two-cell neuronal networks 

derived from adult brain tissue.  Photolithographic patterned self-assembled monolayers 

(SAMs) were used to create the two-cell ―Fish‖ network pattern.  This pattern consisted 

of the cell permissive SAM DETA and was composed of two 30 µm somal adhesion 

sites connected with 5 µm lines acting as surface cues for guided axonal and dendritic 
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regeneration.  Surrounding the DETA pattern was a background of a different non-cell 

permissive SAM poly(ethylene glycol) (PEG).  Adult hippocampal neurons were first 

cultured on cover slips coated with DETA monolayers and were later passaged onto the 

PEG-DETA Fish patterns in serum-free medium.  These neurons followed surface cues, 

attaching and regenerating only along the DETA substrate to form small engineered 

neuronal networks.  These networks were stable for more than 21 days in vitro. 

The development of an in vitro system where attachment and regeneration of 

adult hippocampal neurons was guided using photolithography to form small 

synaptically connected neuronal networks represents a significant technological 

advancement.  PEG-DETA surfaces prepared by laser ablation photolithography were 

sufficient to direct the attachment of cells specifically to the DETA ―Fish‖ patterns while 

restricting attachment to the PEG background.  Mature, terminally differentiated neurons 

derived from hippocampal brain tissue of adult rats attached, adhered, and regenerated 

functional neurites along the guided DETA cues of the Fish pattern.  These neurons 

were found to be both electrically active and synaptically connected, and displayed 

synaptic connectivity characteristic of excitatory glutamatergic neurons.  This system 

provides a unique tool that can be used for studies into LTP [36, 38, 39].  In addition, 

this functional in vitro system would enable high-throughput neuropharmacology 

studies, facilitating drug development and furthering research into different neurological 

disorders. 

Microelectrode arrays (MEAs) are innovative tools used to perform 

electrophysiological experiments for the study of neuronal activity and connectivity in 

populations of neurons from dissociated cultures.  A common limitation of neuronal 
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MEA systems has been the reliance upon neurons derived from embryonic tissue.  The 

results described in chapter 5 demonstrate an adult dissociated neuronal culture system 

on MEAs. To characterize the type of synaptic connections between cell types, 

spontaneous network activity from both embryonic and adult neurons on MEAs were 

concurrently measured in the presence/absence of synaptic transmission antagonists 

against NMDA, AMPA, and GABAA channels for more than 90 days in vitro (div). In 

addition, both embryonic and adult neurons were evaluated for NMDA and AMPA 

channel subunit expression over 36 div.  These results established that neurons derived 

from embryonic tissue did not express mature synapses for several weeks in vitro, and 

consequently their response to synaptic antagonists was significantly different than that 

of neurons derived from adult tissue sources.  These results establish the utility of this 

unique hybrid system derived from adult hippocampal tissue for drug discovery and 

fundamental research including neuronal development and regeneration.  Moving 

toward using this high-throughput hybrid in vitro system will expand and improve drug 

testing and basic research by providing a viable, easily manipulatable alternative to 

expensive, resource intensive in vivo testing. 

We have demonstrated critical differences between adult and embryonic neurons 

and their respective synaptic connections which could be highly relevant in 

neurodegenerative disease research. By demonstrating the similarities and differences 

between adult and embryonic neurons and the response of each to synaptic 

antagonists, the usefulness of this adult neuron culture system has been established for 

application in neuronal regeneration and drug discovery studies.  By incorporating adult 

neurons into an MEA system, a high-throughput system has been created to enable the 
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screening of a large number of cells and the study of pathogen and drug effects on the 

same population of cells over an extended period of time.  This screen could find 

important applications in pharmaceutical drug development by providing an in vitro high-

throughput test platform for investigations into neurodegenerative disease, traumatic 

brain injury, stroke, drug discovery, and fundamental research. 

In vitro culture models of primary human neurons have enormous application in 

developing therapies for neurodegenerative diseases and traumatic brain injuries. 

Electrically functional primary human neurons had not been cultured in vitro.  The 

research in chapter 6 describe the process to dissociate neurons from brain tissue 

samples of Alzheimer’s disease (AD) cadavers and from brain tissue extracted from 

patients undergoing brain surgery.  These neurons were cultured on silane-modified 

cover slips in a serum-free, defined system containing antioxidant nanoparticles.  

Neurons isolated from AD cadavers and surgical samples were cultured and 

regenerated in vitro.  These neurons were electrically active, fired repetitive action 

potentials and survived in culture up to 48 days. Neurons from AD patient cadavers 

exhibited limited survival duration and many exhibited pathological properties found in 

AD such as limited process regeneration, the absence of dendritic spine formation and 

vesicular inclusions.  This in vitro model facilitated the recovery and long-term culture of 

neurons obtained from surgical procedures as well as the limited regeneration of 

neurons from AD disease patients, where the AD neurons appeared to recapitulate the 

diseased phenotype. This in vitro model system could be applicable for studies in 

traumatic brain injury (TBI) as well as for personalized medicine evaluation in 

neurodegenerative diseases. 
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 Overall, the novel elements of these new culture system that allowed adult 

neurons to survive, recover, regenerate, and become electrically active in vitro are: 

1. Cell-adhesive DETA substrate which supports attachment, regeneration, and 

long-term survival of adult neurons.  

2. Serum-free medium 

3. Key growth factors for support of cell survival, regeneration, and recovery 

4. Neurotransmitter (glutamate) mediated electrical activity recovery 

5. Optimized cell culture process to remove neurotoxic myelin inhibitory proteins 

present in tissue debris released after tissue dissociation 

6. Anti-apoptotics (caspase 1, 3, 6 inhibitors) in the cell dissociation medium.   

7. Cerium oxide nanoparticles and Trolox©, used during the culture through 2 days 

in vitro 

8. Control of neuronal cell division, prompted by bFGF and inhibited by roscovitine. 

9. Photolithographic patterned self-assembled monolayers for guided attachment 

and regeneration of neurons.  This allowed for the formation of small networks of 

neurons for easy evaluation of electrical connectivity between neurons in vitro. 

10. Passage of neurons to allow the deposition of specific densities of adult neurons 

onto patterned surfaces, supporting 2-cell network formation, expansion of 

populations of adult neurons dividing due to the action of the cdk5 activator 

bFGF, or deposition of dense concentrations of neurons onto microelectrode 

array systems (MEAs) 

11. High-throughput MEA systems. 
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These elements supported the survival, regeneration, electrical activity, synaptic 

connectivity, and long-term survival of mature adult neurons in vitro.   

Overall, potential uses for such systems range from research into the function of 

neurons, neuronal interactions, aging, neurodegenerative disease [36], drug studies, 

neuroprosthetic devices, neurocomputing, biorobotics [40-42], and neuroregeneration.  

The ability of mature neurons to divide in vitro caused by bFGF has potential 

implications in vivo.  Overexpression of bFGF or introduction of bFGF into the adult 

brain potentially could trigger mature neurons to retract neurites, undergo mitotic 

division, regenerate mature morphology, and reconnect into the neuronal network.  

Similar mechanisms have previously been seen in the conversion of non-neuronal cells 

to functional neurons through the introduction of defined factors [43].  Targeted and 

reversible induction of mitotic activity in neurons in vivo has great potential as a 

therapeutic intervention for late-stage neurodegenerative disease, such as Alzheimer’s 

disease, or TBI [44-46].  If the same conditions and environment were to be created in 

vivo as was present in this in vitro cell culture system, the remaining mature neurons 

present in the brains of patients ravaged by age, disease, or injury could potentially be 

induced to divide and integrate into the brain as a functional network.  These neurons 

could replace those neurons previously lost to damage, age, and disease.  In addition, 

there has been much conjecture about using neural stem cells in cell replacement 

therapies in various neurodegenerative disease [43, 47].  Using populations of the 

patients own neurons that have been expanded and then returned to a non-proliferative 

state with cyclin-dependent kinase inhibitors (CKIs) in vitro may be a more effective 

therapy.  Last, because DETA monolayers can be applied not only to glass cover slips 
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but also to electrodes, another potential use of this system lies in its ability to be 

extended to integrate living and electronic systems. 

 In chapter 4, the adhesion of adult hippocampal neurons and neurite outgrowth 

were managed using patterned PEG-DETA Fish patterns.  Neurons in this system 

recovered to form small networks of synaptically connected excitatory neurons.  This 

system provides a unique tool that can be used for studies into LTP [36, 38, 39].  In 

addition, this functional in vitro system would enable high-throughput 

neuropharmacology studies, facilitating drug development and furthering research into 

different neurological disorders.  In chapter 5 we described the creation of a high-

throughput adult MEA system that can evaluate drugs and neurotoxic agents very 

quickly.  In comparison to embryonic MEA systems, this method, measurements of 

neuronal activity using adult hippocampal neurons on MEAs, is more applicable to the 

adult brain.  While preparation of these MEAs was slightly more complicated than 

embryonic neuronal MEAs, the end result yielded a high-throughput screen 

methodology that is directly correlative to the dynamics of learning and memory 

formation in the adult brain.  Additionally, this system can facilitate quicker, more 

reliable, and more correlative investigations into drug discovery, neurotoxic agents, and 

neurodegeneration.  Last, this method can be used in the future to allow for the 

generation of MEAs using adult human neurons.  

 Last, in drug-discovery research, there is an increasing demand for cost effective 

high-throughput in vitro test methods as a substitute for in vivo toxicity testing and drug 

candidate evaluations. With in vitro experiments, the development and validation of a 

complex set of methods is necessary to accomplish this substitution[48-50] and many 
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cell-culture based methods have been proven to possess predictive values for different 

aspects of a compound’s effect (absorption[51], metabolism[52], neurotoxicity[53], 

cardiac toxicity[54], etc.). Thus, a new function-based assay focused on human primary 

neurons would be of use from the general field of drug discovery to basic neuroscience, 

but especially for evaluating causative effects of AD disease and its possible remedies. 

This would be especially useful in investigating methods for the restoration of function of 

damaged neurons, as little or no progress has been made in reversing the effects of this 

tragic disease or in neuronal damage due to TBI. 
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