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ABSTRACT 

Major diseases such as cardiovascular diseases, diabetes, obesity and tumor 

growth are known to involve inflammatory angiogenesis. MCP-induced protein 1 

(MCPIP1) encoded by ZC3H12A gene, was reported to promote angiogenesis and is 

addressed in my dissertation as MCPIP. The mechanism/s involved in the angiogenic 

differentiation induced by MCPIP was however unknown. The aim of this study was to 

bridge this gap in our knowledge and delineate the molecular mechanisms and 

sequential processes involved in angiogenesis mediated via MCPIP. To determine if 

angiogenesis induced by inflammatory cytokines, TNF-, IL-1 and IL-8 is mediated via 

induction of MCPIP, knockdown of MCPIP by its specific siRNA, in human umbilical vein 

endothelial cells was performed. Oxidative stress, ER stress and autophagy are known 

to be involved in mediating inflammation. We hypothesized that MCPIP-induced 

angiogenic differentiation is mediated via induction of oxidative stress, ER stress and 

autophagy. Chemical inhibitors and specific gene knockdown approach were used to 

inhibit each process postulated. Oxidative stress was inhibited by apocynin or cerium 

oxide nanoparticles or knockdown of NADPH oxidase subunit, phox47. Endoplasmic 

reticulum (ER) stress was blocked by tauroursodeoxycholate or knockdown of ER 

stress signaling protein IRE-1 and autophagy was inhibited by the use of 3methyl 

adenine, or LY 294002 or by specific knockdown of beclin1. Matrigel assay was used as 

an in vitro tool to assay angiogenic differentiation. Inhibition of each step inhibited the 

subsequent steps postulated. The results reveal that angiogenesis induced by 

inflammatory agents is mediated via sequential induction of MCPIP that causes 
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oxidative and nitrosative stress resulting in ER stress leading to autophagy required for 

angiogenesis.  

MCPIP has deubiquitinase and anti-dicer RNase activities. If and how the dual 

enzymatic activities of MCPIP mediate angiogenesis was unknown. Our results showed 

that hypoxia-induced angiogenesis is mediated via MCPIP. MCPIP deubiquitinated 

ubiquitinated hypoxia-inducible factor (HIF-1) and the stabilized HIF-1 entered the 

nucleus to promote the transcription of its target genes, cyclooxygenase-2 and vascular 

endothelial growth factor causing the activation of p38 MAP kinase involved in 

angiogenesis. MCPIP expression promoted angiogenesis by inhibition of 

thrombospondin-1 synthesis via induction of silent information regulator (SIRT)-1 and/or 

via suppression of VEG-inhibitor levels caused by inhibition of NF-B activation. MCPIP 

inhibited the production of the anti-angiogenic microRNAs (miR)-20b and miR-34a that 

repress the translation of HIF-1 and SIRT-1, respectively. Cells expressing the RNase-

dead mutant of MCPIP, D141N, that had lost the ability to induce angiogenesis had 

deubiquitinase activity but did not inhibit the production of miR-20b and miR-34a. 

Mimetics of miR-20b and miR-34a inhibited MCPIP-induced angiogenesis. These 

results show for the first time that both deubiquitinase and anti-dicer RNase activities of 

MCPIP are involved in inflammatory angiogenesis. Results from our study delineate key 

processes that could be potential targets for therapeutic intervention against 

inflammatory angiogenesis.  
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CHAPTER1: GENERAL INTRODUCTION 

Angiogenesis is a complex physiological processes resulting in the growth of new 

blood vessels from pre-existing vasculature [1]. It plays a fundamental role in a broad 

array of physiological processes such as embryonic development [2] and wound healing 

[3]. Evidence implicates the involvement of angiogenesis in inflammatory pathological 

disorders such as cardiovascular disease, tumor development, multiple sclerosis, 

endometriosis and metabolic syndrome-associated disorders, including visceral obesity, 

atherosclerosis and diabetes that affect millions of people worldwide [4, 5]. A cascade of 

events regulating angiogenesis involve endothelial cell activation, proliferation, 

migration and is maintained by a tight balance between pro-angiogenic and anti-

angiogenic growth factors and cytokines [6].  

Inflammatory Angiogenesis 

The inflammatory response is an integral component of the innate immune 

system. It is a defense mechanism that is triggered by the organism against pathogen 

attack or physical injury or chemical insult. It is orchestrated by interplay between 

multiple components that are under stringent controls [7]. Acute inflammation is a short-

lived process occurring in response to the attack by the pathogen/s (bacterial, fungal, 

and viral infections) or tissue injury and is characterized by rapid migration of 

granulocytes (ie, neutrophils, eosinophils, and basophils) to the inflammatory site. The 

acute inflammatory phase gets resolved with clearing up of the infection or injury and by 

cessation of pro-inflammatory signaling that results in removal of the pathogen and cell 

debris by phagocytosis. Failure in resolving the acute phase of inflammatory response 
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results in chronic inflammation that is involved several pathologies including, cancer, 

cardiovascular diseases, obesity-induced type 2 diabetes, rheumatoid arthritis and 

neurodegenerative diseases, such as Alzheimer’s disease [8, 9]. Cytokines such as 

tumor necrosis factor (TNF)-, interleukin (IL)-1 and IL-8 are vital players that 

contribute to inflammatory response and serve as signaling cues for leukocyte 

recruitment [10]. Monocyte chemotactic protein, (MCP-1)/CCL2, a well-known potent 

chemokine has also been implicated in inflammation [11]. It belongs to the CC family of 

chemokines which on binding to its trimeric G-protein–coupled CCR2 receptor initiates a 

signaling cascade to induce changes in gene expression and thus help regulate 

activation, migration and infiltration of the monocytes/macrophages to the site of 

inflammation caused due to  stress, injury or infection [12, 13]. MCP-1, an angiogenic 

chemokine, plays a crucial role in promoting inflammatory angiogenesis [14].  

MCPIP mediates inflammatory angiogenesis 

MCP-1 treatment of human peripheral blood monocytes resulted in the 

transcriptional activation of an array of genes encoding for cytokines and chemokines, 

extracellular matrix degrading enzymes, cell adhesion proteins, and a set of expression 

sequence tags (ESTs). The most highly induced EST encoded an unknown protein that 

was designated as MCP-induced protein1 (MCPIP1) which was mapped to ZC3H12A 

gene, which was later reported also to be induced by interleukin (IL)-1β stimulation of 

human monocyte-derived macrophages[15].  

ZC3H12A belongs to the MCPIP family consisting four members numbered 1 to 

4 and is encoded by ZC3H12A (at 1p34.3), ZC3H12B (at Xq12), ZC3H12C (at 

11q22.3), ZC3H12D (at 6q25.1), respectively. ZC3H12A which is mainly deciphered as 
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a Toll-like receptor (TLR) inducible gene belongs to CCCH zinc finger family. MCPIP1 

gene is 8.9 kb in length and contains 5 exons and 4 introns [16]. MCPIP protein 

contains 599 amino acids and a mass of 65.8 kDa. Protein motif analysis revealed that 

MCPIP contains two proline-rich activation domains, a putative nuclear localization 

signal (NLS) and one RNA-binding zinc finger motif containing 3 cysteines and 1 

histidine suggesting MCPIP1’s potential as a transcription factor[15]. Furthermore, 

CCCH -type zinc-finger proteins are also known to participate in mRNA metabolism by 

processes such as mRNA splicing, polyadenylation and decay regulation of the mRNA. 

Bioinformatic analyses by sequence alignment of the MCPIP1 sequence shows a 

conserved N-terminal domain (139–297) that shares remote homology to the PilT N-

terminus (PIN) domain that is just before the zinc-finger domain (300–324). Structural 

modeling of MCPIP1 revealed that four acidic residues (D141, E185, D226, D244) in the 

PIN domain form a conserved, negatively charged pocket that is important for 

magnesium binding and for its potential enzymatic activity[17]. Studies also report a 80 

and 82% sequence identity at the nucleotide and amino acid levels between mouse and 

human MCPIP1, respectively[15].   

MCPIP1 expression induces a variety of genes known to be involved in biological 

functions ranging from cell death such as in hyperglycemia-induced cardiomyocyte 

death [18] and in cell differentiation such as adipogenesis [19] and osteoclastogenesis 

[20]. MCPIP was shown to promote angiogenesis via induction of vital players of 

angiogenesis, hypoxia-inducible factor-1α (HIF-1) and vascular endothelial growth 

factor (VEGF). The enhanced expression of cadherin 12 and 19 in MCPIP1-induced 

angiogenesis was attributed to the transcription-factor activity of MCPIP1[21]. The 
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biological processes and the molecular mechanisms by which MCPIP1 expression 

results in inflammatory angiogenesis was however unknown.  

Furthermore, several published data from independent laboratories have established 

that MCPIP1 is a multifunctional protein and is involved in regulating inflammation[22]. 

The highlights enlist the documented mechanisms via which MCPIP1 modulates 

inflammatory signaling: 

 MCPIP1 is crucial in inhibiting the development of severe autoimmune responses 

by targeting the 3UTR of pro-inflammatory cytokines, IL-6, IL-12p40 and IL-1 

[17, 23].  

 MCPIP1 acts as a negative regulator of LPS-dependent activation of 

macrophages. The mechanism of this inhibition involves the deubiquitinase 

activity of MCPIP1 that blocks LPS- or p65-induced NF-B activation thereby 

negatively regulating the expression of inflammatory cytokines. MCPIP1 does not 

affect the mRNA stability of TNF-α like TTP, a CCCH-zinc finger protein, which 

promotes the decay of TNF-α mRNA by binding to the ARE element on at the 

3UTR[16]. 

 MCPIP1 acts as an anti-dicer RNase and suppresses the microRNA biogenesis 

by cleaving the terminal loops of pre-microRNAs [24].  

If and how the enzymatic activities of MCPIP1 may modulate inflammatory 

angiogenesis is not understood. 

HIF-1α 

MCPIP expression induces an important angiogenic factor known as hypoxia-

inducible factor-1 (HIF-1) [21]. It is an oxygen-sensitive transcription factor and is a 
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crucial physiological regulator of cell biological processes such as embryonic 

development and innate immunity. HIF-1 plays an integral role in response to hypoxia 

leading to the transcriptional induction of a wide spectrum of genes involved in energy 

homeostasis, cell differentiation, angiogenesis, apoptosis, and other genes whose 

protein products increase oxygen delivery or facilitate metabolic adaptation to hypoxia 

[25]. Since HIF-1 can modulate angiogenesis, it is an important potential target for 

promoting the vessel proliferation needed for oxygenation in ischemic patients. HIF-1 

also facilitates the survival and proliferation of cancerous cells, suggesting the need for 

the therapeutic inhibition of HIF-1 and its angiogenic properties for the treatment of 

diseases such as tumor malignancies [26]. 

HIF-1 domain structure 

HIF-1 is a heterodimeric complex and consists of an oxygen-regulated, inducible 

alpha subunit and a constitutively expressed beta subunit. Both HIF-1α and HIF-1β 

proteins contain basic helix-loop-helix- Per-ARNT-Sim (bHLH-PAS) motifs that ensure 

subunit dimerization on binding to the DNA and specific binding to the hypoxia response 

element (HRE; 5′-RCGTG-3′) in the DNA sequence. HIF-1 α contains an oxygen-

dependent degradation domain (ODDD) that regulate its expression levels. The alpha 

subunit contains two transactivation domains, N-terminal (N-TAD) and C-terminal (C-

TAD), both of which help in regulating HIF-1 α expression and binding of coactivators 

such as CREB binding protein (CBP) and p300 to activate HIF-1 α-target gene 

transcription [27] and is depicted in Figure 1. 
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Regulation of HIF-1:  

The expression levels of HIF-1 are under stringent control through synthesis and 

degradation and are regulated by multiple mechanisms. Under normoxia, prolyl 

hydroxylases (PHD1, PHD2 and PHD3) hydroxylate two conserved proline residues 

(Pro402 and Pro564) located within the oxygen-dependent degradation (ODD) domain 

of HIF-1 α. Factor inhibiting HIF-1 (FIH-1), an asparaginyl hydroxylase hydroxylates 

HIF-1α at Asn 803 in the TAD domain. Hydoxylation in the TAD domain abrogates the 

interaction with coactivator, p300 and thus the HIF-1 α is rendered inept in mediating 

activation of transcription. Furthermore, hydroxylation either by PHDs or FIH results in 

binding of von Hippel Lindau (pVHL) E3 ubiquitin ligase complex to the HIF-1 α ODD 

directing the poly-ubiquitylation followed by proteasomal degradation of HIF-1 α. De-

ubiquitination by pVHL-interacting de-ubiquitylating enzyme (VDU2; also called USP20) 

results in the binding  and de-ubiquitylation of HIF-1 α thereby salvaging HIF-1 α from 

proteasomal degradation. In literature, VDU2 is the only enzyme known to de-

ubiquitylate ubiquitinated HIF-1α [28]. If and how MCPIP1 would mediate HIF-1 

stabilization has not been elucidated.  

HIF-1 target genes: VEGF and COX2 

Induction of HIF-1 promotes the transcription of a set of genes, including 

vascular endothelial growth factor (VEGF) and cyclooxygenase (COX)2 [29]. VEGF is a 

pro-angiogenic family of proteins and plays an integral role in angiogenesis[30]. Though 

five members have been reported in the human VEGF family, VEGF-A,-B,-C,-D, and 

placental growth factor (PlGF), alternative splicing of the pre-mRNAs generates multiple 

isoforms of VEGF. VEGF has three receptor protein-tyrosine kinases namely, 
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VEGFR1/Flt-1, VEGFR2/Flk-1/KDR, and VEGFR3/ Flt-4. Binding of VEGF on the 

tyrosine receptor/s initiates tyrosine phosphorylation that activates downstream 

signaling enzymes, p38 MAPK, ERK1/2, eNOS and NAPDH oxidase subunits Rac1 and 

NOX2, resulting in stimulating endothelial cell proliferation and migration[31]. 

Furthermore, VEGF-induced angiogenesis was reported to induce COX2 expression via 

activation of p38 MAPK [32]. 

COX also known as prostaglandin H synthase (PGHS) exists in three isoforms: a 

constitutively expressed COX1, which regulates “housekeeping’ physiological functions 

such as intercellular communication ; and an inducible COX2 that controls inflammatory 

pathways and COX3 that is reported to be a splice variant of COX1. COXs are a family 

of fatty-acid oxygenases that oxygenates arachidonic acid to prostaglandin G2 by its 

cyclooxygenase activity followed by reduction of prostaglandin G2 (PGG2) to 

prostaglandin H2 (PGH2) by its peroxidase activity. PGH2 is a precursor for a group of 

biologically active molecules called prostanoids known to exert effects on a myriad of 

physiological and pathophysiological processes such as differentiation and 

inflammation, respectively[33]. The major difference between the COX1 and COX2 

isoenzymes is the substitution of isoleucine at position 434 in COX-1 with a smaller 

valine residue in COX-2 that prevents stearic hindrance and allows access to a 

hydrophobic side-pocket in the enzyme and a smaller active site in COX1[34]. 

Furthermore, presence of hypoxia-responsive element (HRE) on the COX-2 promoter 

suggests its induction via HIF-1[29]. While several reports suggest that COX2 

induction induces VEGF levels, analysis of several studies pertaining to angiogenesis 

suggest a significant level of correlations in the expression levels of VEGF and COX2 
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[35].  Whether and how MCPIP-induced angiogenesis is mediated via induction of HIF-

1α target genes has not been elucidated. 

Oxidative stress 

Oxidative stress is caused by an imbalance between the production of reactive 

oxygen species (ROS) termed as pro-oxidants and their elimination by antioxidant 

mechanisms. This dysregulation of balance results in significant damage to the cellular 

organization and important biomolecules, proteins, lipids, and DNA thus leading to a 

harmful impact as a whole. Oxidative stress has been widely recognized as a 

contributing factor in various forms of pathophysiology that are mediated by chronic 

inflammation such as in cancer, diabetes and cardiovascular diseases [36-39].  

Endothelial cells (ECs) form a thin layer that line the innermost surface of the 

entire circulatory system called as the endothelium. ECs reduce the friction caused due 

to constant blood flow and thus allow smooth flow of blood. Under normal conditions, 

ECs mediate controlling the volume and the levels of electrolyte content of the 

intravascular and extravascular spaces in the blood vessels. Any imbalance in these 

levels is caused due to endothelial dysfunction and is predominant in several 

pathophysiologies, including cardiovascular diseases such as atherosclerosis. Another 

form of alteration in the ECs occurs due to an inflammatory response where there is 

alteration in the permeability or cell-cell adhesion and is called as endothelial activation. 

This endothelial activation is of significance and occurs during inflammatory 

angiogenesis. 

http://www.news-medical.net/health/What-are-Lipids.aspx
http://www.news-medical.net/health/What-is-DNA.aspx
http://www.news-medical.net/health/Atherosclerosis.aspx
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Superoxide anion (O
2
·
_

) and hydrogen peroxide (H
2
O

2
) are ROS species 

generated by ECs that mediate stress and growth responses and are involved in the 

signaling pathways such as angiogenesis. ROS at physiological concentrations serve 

as signaling molecules important to mediate biological responses. Though ROS is 

generated via multiple physiological stimuli such as the mitochondrial electron transport 

system, xanthine oxidase, cytochrome p450, uncoupled NO synthase (NOS), and 

myeloperoxidase, nicotinamide  adenine dinucleotide phosphate (NADPH) oxidase is 

known to be the major source of ROS production and has been reported to be required 

for proliferation and migration by ECs [40] . The structure of NADPH oxidase is complex 

and consists of 5 major components. Two membrane-bound factors (gp91
phox 

or NOX2 

and p22
phox

) that form the flavocytochrome b558 and are involved in electron-

transporting function of the enzyme and three cytosolic elements (p67
phox 

or NoxA1, 

p47
phox

 or NoxO1 and p40
phox

) and a low-molecular-weight inactive GTPase (Rac1 or 

Rac2). The cystosolic components form of a complex containing a NADPH binding site. 

Upon activation, the cytosolic component p47
phox

 gets phosphorylated by PKC and then 

is translocated to the cell membrane along with p67
phox

 and p40
phox

 to form an active and 

complete NADPH oxidase complex [41, 42] . After successful assembly of all its 

components NADPH oxidase starts the serial production of ROS by converting 

molecular O
2
 to O

2
·
_

 that can be converted to H
2
O

2
 by another enzyme, superoxide 

dismutase (SOD), or to peroxinitrite (OONO.
_

) by reacting with nitric oxidase (NO) or to 

highly reactive OH·
_ 

[43]. 
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In vitro studies in ECs have reported H
2
O

2
 to stimulate cell migration and 

proliferation. In vivo studies in pathological conditions such as diabetic retinopathy have 

also shown that elevated oxidative stress levels directly correlate with the degree of 

neovascularization [44]. Furthermore, evidences suggest that hypoxia-or VEGF-induced 

proliferation and migration by endothelial cells is mediated via ROS production [45] and 

is severely hampered in in vivo studies involving knockout of NADPH oxidase subunit, 

NOX2 [46]. If MCPIP-induced angiogenesis involves oxidative stress production is not 

known. 

ER stress 

Endoplasmic reticulum, the first organelle in the secretory pathway, functions to 

synthesize, modify and deliver the proteins to their proper target sites. In the ER, protein 

folding occurs along with an array of post-translational modifications coupled with 

formation of intra- and intermolecular disulfide bonds. Only the correctly folded and 

modified proteins are exported whereas the proteins that cannot adopt a correctly folded 

native confirmation are retrotranslocated for proteosomal degradation by a process 

called as ER-associated protein degradation (ERAD) [47]. An imbalance between the 

folding capacity and its ability to process the proteins causes ER stress. Multiple factors   

such as ischemia, hypoglycemia, mutations or viral infections can provoke ER stress as 

have been reported in inflammatory pathophysiologies, including diabetes and 

atherosclerosis[48]. 

In cells not experiencing ER stress, an ER chaperone GRP78/BiP binds to 

unfolded proteins and luminal domains of ER stress transducers, IRE1, PERK, and 

ATF6 and thus maintain them in an inactive state [49]. Under ER stress wherein 
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accumulation of misfolded proteins within the ER results in the activation of a signalling 

pathway known as the unfolded protein response (UPR), BiP dissociates from the ER 

stress sensors to help in protein folding. In an effort to adapt and re-establish normal ER 

functions, activation of the UPR pathway induces transcription of ER stress-responsive 

genes that potentiate the protein folding capacity of the ER and/or enhance protein 

degradation to aid in removal of misfolded proteins. ER stress activates the tripartite 

signaling network via activation of the ER transmembrane proteins-IRE-1, PERK and 

ATF6 that function in regulating ER stress at both transcriptional and translational 

levels.  PERK activation inhibits protein biosynthesis by phosphorylating the translation 

initiation factor 2 (eIF2) in an effort to attenuate translation and thus reduce protein 

folding load although selectively increasing the translation of activating transcription 

factor 4 (ATF4) that in turn induces the levels of its downstream gene GADD34 that is 

needed for recovery from ER stress and thus survival. UPR activation causes IRE1-

dependent splicing of a 26-nucleotide intron from the XBP-1 mRNA converting it into a 

potent transcriptional activator that potentiates self-transcription to generate substrate 

for IRE-1 and thus sustain the UPR response. Activation of the UPR processes ATF6 

protein to generate 50–60 kDa cytosolic bZIP which after entering the nucleus acts as a 

transcription factor to promote the transcription of XBP-1, an IRE-1 substrate [50]. 

Despite all the efforts by the ER to ameliorate the stress caused due to protein 

overload, persistent ER stress induces apoptosis by caspase-12 activation [51]. If ER 

stress is vital in angiogenesis induced by MCPIP expression is unknown. 
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Autophagy 

In an effort to remove the accumulated misfolded protein aggregates that are 

larger for being degraded by the 26s proteasome or exceeds the capacity of the ERAD 

system, the autophagy machinery is activated to help the cell undergo the bulk 

degradation. Furthermore, eIF2 phosphorylation upregulates transcription by ATF4 that 

promotes the transcription of autophagy gene, ATG12 and induces LC3 conversion thus 

stimulating autophagy[52].  

Autophagy is of physiological importance to the cell and though autophagy is 

known for the self-digestion mechanism it is mainly activated to protect against cell 

death [53]. Briefly, autophagy is initiated by sequestering portions of the soluble 

cytoplasm/organelle/aggregates by a double-membrane bounded autophagic vacuole 

called the autophagosome which upon maturation fuses with the lysosomal membrane 

to deliver the contents into the autolysosome, where they are degraded by the 

lysosomal degradative enzymes and the resulting macromolecules, such as amino 

acids, carbohydrates are recycled [54], Figure 3. 

Differentiation 

Cell differentiation, an important biological event involves complex signal 

transduction pathways and requires synthesis of specific macromolecules to continue a 

differentiated state. Thus cell differentiation is maintained by a delicate balance in 

synthesis and degradation of these vital macromolecules. Overwhelming evidence 

suggest the involvement of autophagy in differentiation. Autophagy plays an important 

role in regulating nutrient supply, renovating the cell cytosol by modifying its protein 

content and organelle turnover, thus modifying the exposed receptors, transcriptional 
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factors inside the nucleus, and cytoskeletal dynamics in an effort to help the cell 

respond better to the extrinsic stimuli/stress. Analysis of in vitro studies performed by 

expression of dominant-negative atg1 in granule cells of the cerebral cortex from a 

mouse model resulted in inhibition of neurite outgrowth. Results from studies in neural 

differentiation suggest that autophagy plays a vital role in retinoic acid-induced 

differentiation [55]. Knockdown of atg7 in pre-adipocytes resulted in inhibition of lipid 

accumulation and differentiation of the cells and adipocyte-targeted Atg7-knockout mice 

exhibit reduced white adipose tissue [56]. Furthermore, depletion of beclin1 was 

reported to impair both autophagy and differentiation thus forming a bridge between the 

two. Moreover, beclin-/- mice exhibited reduced size and developmental delay [57]. 

Several in vivo studies on mice with global knockouts of vital autophagy-related genes, 

ambra1, atg5, and atg7, have revealed that developmental defects occur in the absence 

of autophagy giving rise to the concept that autophagy is a prosurvival mechanism that 

is involved in regulating development by modulating critical cellular remodeling functions 

that are essential for differentiation [58]. Induction of autophagy by overexpression of 

atg5 resulted in increased tube formation whereas knockdown of atg5 was reported to 

attenuate VEGF-induced angiogenesis in BAECs thus suggesting the involvement of 

autophagy in angiogenic differentiation [59]. If autophagy is crucial for angiogenic 

differentiation induced by MCPIP has not been studied. 

Sirtuin 

Cells possess the ability to detect extracellular stimuli, such as cytokines or 

stress and execute the appropriate response by the transcriptional induction or 

repression of distinct sets of genes that is crucial to alter and regulate its cellular 
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functions [60]. The transcriptional regulation involves the acetylation modifications by 

the opposing actions of histone acetyltransferases (HATs) and histone deacetylases 

(HDACs). Acetylation of histones on the chromatin releases the suppression and 

promotes transcription whereas deacetylation results in compacting the chromatin with 

subsequent inhibition/silencing of the gene transcription. Among the three classes of 

HDACs, class III HDACs, sirtuins (SIRT1-7)s are unique in their need for nicotinamide 

adenine dinucleotide (NAD+) as a cofactor. SIRT1 is reported to be involved in 

regulating cellular differentiation, senescence and to regulate metabolic pathways [61]. 

SIRT1 mediates its function by deacetylating key transcription factors such as forkhead 

box o (Foxo) [62] and tumor suppressor, p53, known to mediate cell growth, survival 

and differentiation. In vitro studies in which 20 residue-long oligopeptide corresponding 

to residues of p53 protein were acetylated at Lys373 and Lys382 [63]. When the above 

acetylated oligopeptide was incubated with SIRT1 in presence of NAD+, there was a 

preferential deacetylation of Lys 382 by SIRT1 suggesting its possible role in repressing 

p53 and its target genes, such as the well-known angiogenesis inhibitor, 

thrombospondin (TSP1)[64]. TSP-1 is a matricellular glycoprotein and mediates its 

effects through interactions with the cell surface receptors CD36. Binding of TSP1 to its 

CD36 receptor was reported to activate apoptosis and exert the anti-angiogenic activity 

[65]. It is unknown if and how SIRT-1 induction mediates angiogenesis induced by 

MCPIP1 expression. 

Ubiquitination and deubiquitination 

Covalent ligation of ubiquitin (Ub), 76 amino acid polypeptide, to a protein, 

targets it for degradation. Post-translational modification of the target proteins by Ub 
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ligation controls multiple cellular processes, including protein degradation, signal 

transduction pathways, transcriptional regulation, to name a few. Ubiquitination is the 

formation of an isopeptide bond between the C-terminus glycine of Ub and the ε-amino 

group Lysine (K) of the target protein catalyzed by sequential action of Ub-activating 

enzyme E1, Ub-conjugating enzyme E2, and Ub ligase E3 [65]. Furthermore, Ubs can 

also ligate to additional Ub molecules to form branched poly-Ub chains. Seven potential 

lysine residues, K6, K11, K27, K29, K33, K48 and K63 in ubiquitin form the polyUb 

chains. Linear polybiquitination in which the amino and carboxy termini of Ub are linked 

have also been reported [66]. Length of the poly-ub chain and its position of linkage on 

the protein determine the fate of the ubiquitinated protein. While K-29 and K-48 linked 

proteins are targeted for proteosomal degradation [67], K-63 linkage results in mediating 

signaling pathways such as kinase activation[68]. Evidence suggests that activation of 

nuclear factor-B (NF-B) is regulated by ubiquitination of key signaling molecules[69]. 

NF-B is an inducible transcription factor that has been reported to mediate 

inflammation, stress, and developmental processes, is tightly regulated by the 

ubiquitination-deubiquitination pathway [70]. NF-B, a heterodimer, is composed of p50 

and p65 (RelA) subunits that reside in a latent form in the cytoplasm of nonstimulated 

cells. Association of inhibitory family of proteins, IB, help maintain NF-B in the 

cytoplasm by either sterically hindering their nuclear localization signal or by inhibiting 

their DNA binding and capacity of transactivation. Following stimulation by cytokines, 

stress or infection, Ser32 or Ser36 phosphorylation of IBs by IKKs result in the 

ubiquitination and thus its degradation by the proteosomal pathway. Briefly, stimulation 

by TNF-α, IL-1β or LPS results in K-63 linked autoubiquitination of the TRAF2/6 by E3 
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ligases, RIP1 or IRAK1/4, which causes the recruitment of TAK1 and IKK kinases 

through binding of ubiquitin-binding adaptors, TAB2/3 and NEMO, leading to NF-B 

activation [71].  

Given the significance of ubiquitination in NF-B activation, it is of utmost 

importance that the process of ubiquitination be under stringent regulation to prevent 

this well-known inflammatory signaling pathway. Reversal of this protein ubiquitination, 

by removal of Ub conjugated to the protein, is catalyzed by deubiquitinating enzymes 

(DUBs). Deubiquitination is a process by which the (a) PolyUb chains are edited to yield 

Ub monomers or (b) reverses Ub conjugated to proteins so as to prevent the 

degradation of important cellular proteins or (c) recycle Ub moieties, all mechanisms 

critical in regulating signaling pathways, including transcriptional regulation, 

development, and differentiation [72]. DUBs, CYLD and A20 that are induced by NF-B 

activation have been reported to modulate cell differentiation by serving as a negative 

feedback loop to terminate NF-B activation via multiple mechanisms [73]. A20 

functions both as a DUB and E3 ligase. A20 cleaves the K-63 linked polyUb on RIP1 by 

its DUB activity and then by the E3 ligase activity catalyzes the K-48 linked polyUb on 

RIP1 to target its degradation thus inhibiting the activation of downstream targets, 

IKKβ/NEMO and thus downregulating NF-B activation[74]. Reports on A20 deficient 

mice show that owing to spontaneous multi-organ inflammation and defects in resolving 

the inflammatory responses resulted in the premature death of these mice and thus 

serve as an important insight into the crucial role of A20.  A defect in terminating NF-B 

activation on TNF-α induction was observed in MEFs cultured from A20 deficient mice 

thus proving the importance of A20 in negatively regulating NF-B activation[75, 76]. If 
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downregulation of NF-B activation may mediate MCPIP-induced angiogenic 

differentiation is important but unknown. Furthermore, if the deubiquitinase activity of 

MCPIP1 may stabilize/destabilize other known players in angiogenesis remains 

unknown. 

MicroRNA 

 

MicroRNAs (miRNAs) have emerged as novel, important regulators of multiple 

biological functions such as angiogenesis [77]. They are a group of small (20–25 

nucleotides in length), non-coding RNAs that form a crucial layer in regulating gene 

expression at the posttranscriptional level. miRNAs modulate gene expression either by 

degrading the mRNA or by repressing its translation. miRNAs biogenesis involves two 

sequential mechanisms: (a) nuclear processing of longer transcripts (termed pri-

miRNAs) by ribonuclease drosha to generate smaller (~70) nucleotide pre-miRNAs 

followed by its export to the cytoplasm by exportin-5  (b) cytoplasmic processing of pre-

miRNAs by dicer RNase to generate double stranded mature miRNAs. Of the two 

strands in the mature miRNAs, the strand with lower stability preferentially associates 

with RNA-induced silencing complex (RISC) and can degrade the mRNA through direct 

cleavage or by inhibiting translation thus regulating multiple genes/mechanisms[78, 79]. 

MiR-20b, was reported to bind the promoters of both HIF-1α and its target gene, 

VEGF thus downregulating their translation and serving as an anti-angiogenic miR. 

Inhibitor of mir-20b was also reported to increase protein levels of HIF-1α and VEGF 

[80]. MiR-34a, an important tumor suppressor, has been found to be deregulated in 

several forms of cancer. Silent information regulator 1 (Sirt1), novel modulator of 
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angiogenesis, is one of the potential targets of miR-34a[81]. Additionally, the promoter 

of miR-34a has NF-B binding sites suggesting its possible regulation by NF-B 

activation [82]. If the anti-dicer activity of MCPIP1 has a role in mediating angiogenic 

differentiation has not been studied. 

 Thus, the overall mechanism/s by which MCPIP promotes inflammatory 

angiogenesis has not been elucidated. We postulated that MCPIP-induced 

differentiation involves induction of oxidative stress, ER stress and autophagy. 

Furthermore, we hypothesized that the induction and stabilization of pro-angiogenic 

factor, HIF-1 involves the deubiquitinase and anti-dicer RNase enzymatic activities of 

MCPIP. The anti-dicer RNase activity of MCPIP mediates the expression levels of 

SIRT-1 that down regulates the angiogenic inhibitor, TSP-1. With this current knowledge 

in the field of inflammatory angiogenesis as presented above, my study aims at 

understanding the mechanism by which MCPIP1 expression promotes angiogenic 

differentiation with the following objectives-  

 To determine the biological processes involved in angiogenic differentiation 

induced by MCPIP expression 

 To decipher the mechanism/s by which MCPIP1 expression promotes 

angiogenesis. 

 

The data presented here suggest for the first time that the sequential induction of 

oxidative stress, ER stress and autophagy is essential for angiogenic differentiation 

induced by MCPIP expression. The deubiquitinase activity of MCPIP was shown to be 

involved both in (a) stabilizing HIF-1α leading to the induction of its pro-angiogenic 

target genes, VEGF and COX2; and (b) downregulating NF-B activation resulting in 
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lower levels of anti-angiogenic VEGI. Furthermore, induction of SIRT1 by MCPIP 

expression resulted in inhibition of anti-angiogenic TSP-1. The biogenesis of anti-

angiogenic miRs, mir-20b and mir-34a, was significantly suppressed by MCPIP 

expression. Reduced levels of mir-20b and mir-34a could no longer inhibit their 

angiogenic targets HIF-1α and SIRT1, repectively. Thus the overall mechanism of 

inflammatory angiogenesis mediated by MCPIP expression involves tilting the 

angiogenic balance by inducing the production of angiogenic molecules and 

suppressing the production of anti-angiogenic factors. 
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 Figure 1: Regulation of HIF-1α  

 Under normoxia, HIF-1 is degraded. Hydroxylation of proline residues by 

PHDs result in the ubiquitination of HIF-1 followed by proteosomal 

degradation. FIH, an aspargine hydroxylase hydroxylates the aspargine 

residue and prevents the binding of co-activators, CBP and p300 that are 

known to help transactivation of HIF-1 to the nucleus. During hypoxia, 

PHDs and FIH can no longer hydroxylate the proline or aspargine residues 

thus preventing the ubiquitination of HIF-1 resulting in stabilized HIF-1 

that can enter the nucleus to function as a transcription factor. 
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 Figure 2: NADPH oxidase in endothelial cells 

 In stimulated endothelial cells, the cytoplasmic subunits of NADPH, 

NOXO1, NOXOA1 (p47 phox, p40 phox, RAC) translocate to the membrane 

to form an active NADPH complex on binding to the membrane subunits, 

NOX2, p22phox. NADPH oxidase generates ROS by converting molecular 

molecular oxygen O2 to O2·_ that is converted to H2O2 by superoxide 

dismutase (SOD), or to peroxinitrite (OONO._) by nitric oxidase (NO) or to 

highly reactive OH·_  
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 Figure 3: ER stress and Autophagy 

 Oxidative stress induces ER stress resulting in processing of ER proteins, 

PERK, IRE-1 and ATF6. PERK activation results in eIF2 phosphorylation 

that results in repressing protein synthesis and inducing autophagic 

vacuole formation. IRE-1 activation processes the XBP-1 mRNA thus 

activating XBP1 as a transcription factor that promotes the transcription of 

IRE-1 and UPR-related genes. ATF6 after cleavage in the Golgi complex 

also promotes the synthesis of XBP-1 thus acting as a positive feedback 

loop. Uncontrolled ER stress could result in autophagy by the excessive 
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calcium release or it may also result in the activation of Caspase12 and 

promote apoptosis. 

CHAPTER 2: MONOCYTE CHEMOTACTIC PROTEIN-INDUCED 

PROTEIN (MCPIP) PROMOTES INFLAMMATORY ANGIOGENESIS VIA 

SEQUENTIAL INDUCTION OF OXIDATIVE STRESS, ENDOPLASMIC 

RETICULUM STRESS AND AUTOPHAGY 

Introduction 

Angiogenesis, the formation of new blood vessels from pre-existing vessels, is 

involved in important physiological processes such as embryogenesis and wound repair 

as well as in the pathophysiology of many inflammatory diseases such as 

atherosclerosis, ischemic heart disease, rheumatoid arthritis, diabetes and obesity [83, 

84]. Vessel growth also contributes to tumor growth and metastasis [1, 85, 86]. The 

multi-step complex process of angiogenesis is controlled by a wide range of activating 

and inhibitory chemokines involving degradation of extracellular matrix, disruption of 

cell-cell contacts, proliferation, migration and capillary-like tube formation of endothelial 

cells. There is clear evidence for the role of pro-inflammatory cytokines monocyte 

chemotactic protein-1 (MCP-1), tumor necrosis factor-α (TNF-α), interleukin- (IL)-1 and 

IL-8 in angiogenesis and several angiogenesis-related disorders [87-89] including the 

development of cardiovascular diseases in humans [90-92].  

MCPIP (MCP-1-induced protein), originally discovered as a novel zinc finger 

protein, ZC3H12A, induced by treatment of monocytes with MCP-1 is also induced by 

other inflammatory agents [15, 17, 21, 93]. MCP-1 treatment of human umbilical vein 

endothelial cells (HUVECs) induces angiogenic differentiation resulting in capillary-like 
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tube formation via induction of MCPIP [21]. MCPIP can induce hypoxia inducible factor 

(HIF)-1 and vascular endothelial growth factor (VEGF), that are known to be involved 

in angiogenesis [21].  VEGF can stimulate reactive oxygen species (ROS) production 

via activation of NADPH oxidase and nitric oxide production [94, 95] that are involved in 

angiogenic differentiation [96]. ROS generated from NADPH oxidase activation serves 

as secondary messengers for stimulating multiple signaling pathways leading to 

angiogenesis [46, 97]. Oxidative and nitrosative stress has been reported to induce 

endoplasmic reticulum (ER) stress [98-100]. Furthermore, ER stress can lead to 

autophagy [101] that can be involved in cell differentiation [102, 103]. Based on such 

scattered observations we postulate that angiogenesis induced by inflammatory agents 

is mediated via MCPIP that leads to induction of oxidative and nitrosative stress causing 

ER stress resulting in autophagy involved in angiogenic differentiation. The 

experimental data presented here show that angiogenesis induced by inflammatory 

agents, TNF-, IL-1, MCP-1 and IL-8, is mediated via MCPIP and that the 

inflammatory angiogenesis is mediated via oxidative stress, ER stress and autophagy. 

The results provide the first molecular insight into the probable mechanism involved in 

inflammatory angiogenesis and thus contribute to the pathological conditions related to 

angiogenic differentiation such as cancer, cardiovascular diseases and obesity. 

Material and methods 

Cell culture conditions 

 

The human umbilical vein endothelial cells ([HUVECs]; CC-2519, LONZA) were 

grown in endothelial cell basal medium (CC-3124) as recommended by the 



25 
 

manufacturer. HUVECs were used between passages 4 and 8. All cells were 

maintained at 37C in presence of 5% CO2. 

Transfection procedure 

 

The human MCPIP cDNA encoding the full-length MCPIP [Accession number: 

AY920403] was cloned in pEGFP/N1 vector to generate MCPIP-GFP fusion protein as 

previously described [15]. HUVECs were transfected with vectors expressing MCPIP 

fused to GFP or GFP alone using Lipofectamine and PLUS Reagents (Invitrogen) 

according to manufacturer’s protocol. The transfection efficiency was about 60-70% and 

was determined by the green fluorescence. 

Knockdown with small interfering RNA (siRNA) 

 

HUVECs were transfected for 6 hours with 100 nmol/l of a chemically 

synthesized siRNA targeted for the MCPIP or IRE-1 or beclin geneor non-specific 

siRNA (Santacruz) using Lipofectamine and PLUS Reagents (Invitrogen) prior to 

transfection with MCPIP–GFP or GFP expression vectors. 

HUVEC treatments 

 

MCP-1 (100ng/ml), TNF- (10ng/ml), IL-1 (10ng/ml) and IL-8 (100ng/ml) were 

used to treat HUVECs for 24 hours. HUVECs were treated with following chemical 

inhibitors 3 hours before transfection with expression constructs for MCPIP-GFP or GFP 

alone: ROS inhibitors, apocynin (50µM) and cerium oxide nanoparticles (CeO2) 

nanoparticles (100nM); RNS inhibitor, L-Name (50 µM); ER stress inhibitor,  
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tauroursodeoxycholate (TUDC; 50µM); and autophagy inhibitor, 3Methyl Adenine 

(50µM); LY 294002 (10µM). 

In vitro capillary-like tube formation assays 

 

After treatment under various conditions, HUVECs were trypsinized and then 

seeded onto the surface of the polymerized matrigel (1 ×104 cells / per well, BD 

Matrigel™ Basement Membrane Matrix (Cat#354234) in 96-well plates according to the 

manufacturer’s protocol followed by incubation in EBM medium for 24 hours at 37ºC in 

5% CO2. Tube formation was photographed under a phase-contrast microscope and 

quantified as previously described[21]. The experiments were repeated at least three 

times. The results were expressed as the mean percentage of branches and expressed 

as a ratio to the untreated or empty vector (control).  

ROS measurements 

 

HUVECs were treated with inhibitors or transfected with specific siRNAs for 3-6 

hours before being transfected with MCPIP–GFP or GFP expression plasmids. After 24 

hours the cells were incubated with 1 μmol/l DHR123 (dihydrorhodamine 123) for 30 

min at 37C and 5% CO2. ROS was measured with a fluorimetric plate reader 

(excitation wavelength 550 nm and emission wavelength 590 nm) as per manufacturer’s 

recommendations. 

Real-time PCR  

 

Total RNA was isolated from HUVECs using Trizol reagent (Invitrogen). cDNA 

was synthesized using the High-Capacity cDNA Reverse Transcription kit (Applied 
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Biosystems) utilizing 1 μg of total RNA (DNase-treated). GAPDH (glyceraldehyde-3-

phosphate dehydrogenase) served as an internal control. The sequences of primers 

designed for RT–PCR are as mentioned in earlier study [21]. The sequences of other 

primers used are:   

IRE-1-Forward-5 GCGAACAGAATACACCATCAC-3, IRE-1-Reverse - 

5ACCAGCCCATCACCATTG-3; Beclin- Forward-5AAGAGGTTGAGAAAGGCGAG-3, 

Beclin-Reverse - 5 TGGGTTTTGATGGAATAGGAGC-3 

phox47 antisense – CCAGCAGGGCGATGTGACGGATGAA ;phox47 sense- 

GGAGTAGTGCGTAGTGAGCCTTGAC. 

Immunoblot analysis 

 

HUVECs were lysed with CellLytic lysis Buffer (Sigma) and the cell lysate was 

collected from different experimental conditions. An equal amount of protein sample 

from each condition was subjected to immunoblot analysis using the primary antibodies 

namely, anti-mouse polyclonal GAPDH (1:1000); anti-mouse GRP 78 (1:500); anti-

rabbit beclin (1:1000) and HRP-conjugated secondary antibodies (1:5000). 

Immunoreactive proteins were detected using an enhanced chemiluminescence (ECL) 

kit (Amersham, UK). Immunoblots were quantified as a ratio over endogenous GAPDH. 

Statistical analysis 

 

Each experiment was repeated three times. The error bars represent ± S.E.M.  

An asterisk (*) indicates a significant difference as compared to the control as indicated 

in each experiment.  P value of < 0.05 was considered significant as determined by 

student’s t-test. 
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Results 

Inflammatory cytokines induce angiogenesis via MCPIP: 

 

HUVECs were treated with inflammatory agents, TNF-, IL-1, IL-8 and MCP-1 

with or without siRNA specific for MCPIP. Knockdown of MCPIP significantly inhibited 

the angiogenic differentiation induced by inflammatory cytokines Figure 4 a and b.   

Efficiency of MCPIP knockdown on MCPIP protein levels was determined by western 

blot analysis Figure 4c. 

MCPIP overexpression induces oxidative stress, endoplasmic reticulum stress, 

autophagy and angiogenesis: 

 

Since it is known that ROS signaling plays a major role in angiogenesis [104] we 

tested whether forced expression of MCPIP induces ROS production.  Flourometric 

analysis with the redox sensitive dye, dihydrorhodamine 123, showed that 

overexpression of MCPIP induced oxidative stress (Figure 5 a and b). iNOS transcript 

levels were measured to determine nitrosative stress in MCPIP expressing HUVECs. 

Nitrosative stress was also measured by the diazotization of Griess reagent by nitrite 

produced as a result of MCPIP overexpression. Our data show that forced expression of 

MCPIP induced oxidative and nitrosative stress (Figure 5 c and d). It is known that 

NADPH oxidase is a major source of ROS production in endothelial cells and 

membrane association of phox47 subunit is essential for the formation of an active 

NADPH oxidase complex.  Forced expression of MCPIP caused increase in the protein 

level of phox47 in HUVECs (Figure 5e) and induced translocation of phox47 to the 

membrane (Figure 5f). 
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Experimental data suggest that endoplasmic reticulum is sensitive to oxidative 

stress resulting in an ER stress response [105]. We determined whether forced 

expression of MCPIP would result in ER stress. Our findings show that forced 

expression of MCPIP resulted in significant increase in transcript and protein levels of 

the ER stress markers GRP78, and IRE-1 (Figure 6a and b). 

Since it is known that ER stress can trigger autophagy in some cases [52, 101, 

106, 107] we tested whether forced expression of MCPIP would also induce autophagy 

in HUVECs. Forced expression of MCPIP caused significant increase in protein levels 

of autophagy marker, beclin, compared to the cells expressing the vector alone (Figure 

7a). Furthermore, HUVECs expressing MCPIP showed increased appearance of 

autophagosomes as detected by LC3 immunostaining thus demonstrating that 

autophagy is induced by MCPIP in HUVECs (Figure 7b). 

Since autophagy can play a role in development and differentiation [58], we 

tested whether forced expression of MCPIP induced tube formation in HUVECs. Data 

shown in Figure 8 indicate that forced expression of MCPIP-GFP induced tube 

formation as compared to cells expressing GFP alone. 

Inhibition of ROS production reduces MCPIP-induced ER stress and autophagy 

and attenuates angiogenesis  

 

We tested whether MCPIP-induced oxidative stress is essential for the induction 

of ER stress response in HUVECs. Inhibitors of oxidative stress, apocynin and CeO2 

nanoparticles reduced oxidative stress as shown in Figure 9 and knockdown by 

antisense phox47 nucleotides  reduced phox 47 levels (Figure 10a), and also 
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decreased transcript levels of a major signaling component of ER stress response, 

IRE1, and GRP78 in MCPIP-GFP expressing cells (Figure 10b and c). We next tested 

whether MCPIP-induced autophagy is mediated via oxidative stress. Inhibition of 

oxidative stress with apocynin and CeO2 nanoparticles resulted in marked decrease in 

the transcript and protein levels of autophagy marker, beclin, in MCPIP-GFP expressing 

cells (Figure 10d). That oxidative and nitrosative stress is essential for angiogenesis 

mediated by MCPIP, was demonstrated by the observation that inhibition of oxidative 

stress by treatment with apocynin, CeO2 nanoparticles, L-NAME or phox47 antisense 

oligonucleotides before transfection with MCPIP expression vector attenuated MCPIP-

induced tube formation in HUVECs (Figure 10e).  

Inhibition of ER stress reduces MCPIP-induced autophagy and attenuates tube 

formation: 

 

To determine whether ER stress is critical for MCPIP-induced autophagic 

response and angiogenesis in HUVECs, the effect of inhibition of ER stress by chemical 

inhibitor, TUDC or by knockdown of IRE-1, an ER stress marker, with its specific siRNA, 

on autophagy marker expression and tube formation were determined. Inhibitors of ER 

stress showed reduced level of ER stress marker, GRP 78 (as shown in Figure 11). 

Efficiency of si-IRE-1 knockdown on IRE-1 protein levels was determined by western 

blot analysis (Figure 12a). Inhibition of ER stress by levels lowered both the transcript 

and protein levels of autophagy marker, beclin (Figure 12b-d) and also attenuated 

MCPIP-induced tube formation in HUVECs (Figure 12e). These findings suggest that 

ER stress is involved in MCPIP-induced autophagy and angiogenesis. 
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Inhibition of autophagy attenuates MCPIP-induced tube formation: 

 

Since it is known that autophagy can be involved in differentiation in diverse 

cellular contexts [103, 108], we tested if MCPIP-induced tube formation is mediated via 

autophagy. Efficiency of beclin knockdown by its specific siRNA on beclin protein levels 

was determined by western blot analysis, (Figure 13a) and inhibition of beclin by 

autophagy chemical inhibitors, 3MA and LY 294002 was determined as shown in 

Figure 13b. We found that inhibition with 3MA (3-methyladenine) and LY 294002 and 

knockdown of beclin-1 with specific siRNA significantly attenuated MCPIP-induced tube 

formation (Figure 13c).  

Discussion 

Pro-angiogenic factors, TNF-, IL-8, IL-1, and MCP-1 play a key role in inducing 

inflammatory angiogenesis [21, 89, 99, 109-113]. It has been reported that MCP-1 

mediates angiogenesis in HUVECs by inducing a novel zinc-finger protein, MCPIP [21, 

114]. However, it is unknown if other pro-inflammatory cytokines induce angiogenesis 

via MCPIP. Furthermore, the molecular and cellular processes by which MCPIP 

mediates its angiogenic effects has not been elucidated. Our findings show that 

inflammatory angiogenesis induced by TNF-, IL-8, IL-1 is mediated via MCPIP. 

Experimental data presented here provide a molecular insight into the mechanism by 

which MCPIP induces angiogenesis. In this study, we sought to delineate the sequential 

processes induced by MCPIP that lead to inflammatory angiogenesis. Our study tested 

the postulate that angiogenic differentiation induced by inflammatory cytokines is 

mediated via MCPIP that leads to production of oxidative stress resulting in ER stress 
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causing autophagy. Specific inhibition of each postulated process with chemical 

inhibitors or gene knockdown inhibited all subsequent steps postulated. 

Inflammatory angiogenesis has been reported to be mediated via HIF-1α and 

VEGF [115]. Experimental results from our previous studies show that MCPIP induces 

HIF-1α and VEGF in HUVECs. In the present study we found that MCPIP-induced HIF-

1α results in VEGF production (data not shown). Studies also confirm that VEGF 

expression directly correlates with elevated levels of oxidative stress in pathological 

conditions, diabetic retinopathies and atherosclerosis [30, 116]. Evidence also suggests 

that VEGF induction results in excessive ROS production via NADPH oxidase complex 

in a Rac-1 dependent manner [117]. Our finding that inhibiting MCPIP over expression 

induces oxidative stress and angiogenic differentiation are in line with the previous 

observations. 

 

In the current study, we show that MCPIP -induced angiogenesis is mediated via 

ROS and RNS production. Oxidative stress refers to the imbalance between the ROS 

production and the ability of the cell to have an anti-oxidant response. Though ROS is 

generated from a multitude of sources including mitochondrial electron chain system, 

xanthine oxidase and NO synthase, NADPH oxidase family is a major source of ROS 

production in endothelial cells [118].  Our results indicate that MCPIP mediates the 

induction and membrane translocation of NADPH oxidase subunit, phox47 that is 

required for activation of NADPH oxidases. Inhibition of oxidative and nitrosative stress 

attenuated tube-formation induced by MCPIP in HUVECs. Previous studies suggest that 
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vascular inflammation in the pathogenesis of atherosclerosis is mediated by elevated 

levels of oxidative stress and also plays a significant role in the development and 

progression of Type II diabetes and heart failure [119] . Elevated levels of ROS play a 

vital role in tumorigenesis and are thus the target for therapeutic intervention [120]. 

Many studies also report that NADPH oxidase complex as an important component in 

mediating the angiogenic signaling cascades and is vital in the regulation of 

angiogenesis [37, 119, 121]. Our results are consistent with a variety of previous 

observations concerning the potential role of oxidative stress in angiogenesis and 

places oxidative stress in the context of the sequential events involved in angiogenesis. 

Experimental evidence suggests that oxidative stress plays a vital role in inducing ER 

stress [105, 108, 114, 122, 123]. Recent findings in different in vitro studies also 

suggest that ER plays an important role in response to damage induced by oxidative 

stress[105].  

 

Furthermore, in transgenic MCP-mice (cardiomyocyte-targeted expression of 

MCP-1), in which MCPIP expression was elevated [114], also exhibited ROS and RNS 

production along with elevated ER stress levels [124, 125]. Our results from the present 

study demonstrate that MCP-1 treatment of HUVECs induces ER stress response and 

this response is mediated via MCPIP. Increased accumulation of ROS results in 

induction of unfolded protein response (UPR) by complex intracellular signal 

transduction pathways. GRP78 (Bip) and inositol-requiring protein 1 (IRE1) are 

important members of UPR signaling pathway[52]. Our results show that forced 

expression of MCPIP in HUVECs results in elevated transcript and protein levels of ER 
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stress-related proteins, GRP 78 and IRE-1. Furthermore, inhibition of oxidative stress 

reduced the levels of MCPIP-induced ER stress. In addition, ER stress inhibition 

attenuated the MCPIP-induced angiogenic differentiation thereby suggesting that 

MCPIP-induced oxidative stress is involved in elevating the ER stress response that 

mediates angiogenic differentiation in HUVECs. Our findings are consistent with the 

accumulating evidence that persistent oxidative stress induces ER stress. Studies show 

that ER stress mediates the differentiation of human embryonic stem cells under retinoic 

acid treatment by upregulating GRP78/Bip and XBP-1[126]. Inhibition studies of IRE-1 

show that reduced levels of IRE-1 result in decreased growth rate, reduced 

angiogenesis and lower blood perfusion in tumours [127], consistent with our findings 

that ER stress inhibition attenuates MCPIP-induced angiogenic differentiation.  

It is known that UPR is initiated by ER stress to ameliorate the protein overload 

on the ER [52].  However, if these measures fail to reestablish proper ER homeostasis, 

prolonged ER stress upregulate the autophagy machinery [128, 129]. Consistent with 

these findings our results show that forced expression of MCPIP in HUVECs increased 

levels of autophagy marker, beclin-1 and autophagosome formation.  Inhibition of 

oxidative stress and ER stress resulted in decreased levels of MCPIP-induced beclin 

expression. However, inhibition of autophagy did not result in reduction of oxidative 

stress or ER stress levels (data not shown). Our findings thereby suggest that MCPIP 

induced oxidative and ER stress is upstream of autophagy. Several reports suggest that 

autophagy sustains the cell survival mechanism, although the final outcome of 

autophagy induction is dependent on the cell type and intensity of the stimulus. There is 

accumulating evidence to suggest that autophagy is vital for development and 
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differentiation. Autophagy plays an important role in recycling cellular proteins and 

organelles thereby maintaining ATP levels during situations of cellular stress so that the 

cell can maintain important cellular processes such as replication, transcription, protein 

synthesis and growth [103, 130-132]. MCPIP has been reported to mediate both death 

and differentiation in cells depending on the cell type [93] . MCPIP can mediate death in 

post-mitotic cardiomyocyte resulting in cardiomyopathies [108] or MCPIP can mediate 

differentiation in pre-adipocytes, monocytic cells and endothelial cells resulting in 

adipogenesis, osteoclastogensis and angiogenesis, respectively[93]. The results from 

the present study demonstrate that inhibition of autophagy attenuates MCPIP-induced 

cell differentiation thereby suggesting that autophagy is involved in MCPIP-induced 

angiogenic differentiation in HUVECs. Autophagy probably recycles some of the cellular 

proteins to provide the aminoacids needed for the synthesis of the new proteins needed 

for angiogenic differentiation.  

The results reveal for the first time the sequence of events involved in 

angiogenesis mediated by pro-inflammatory cytokines and consequent MCPIP induction 

Figure 14. The experimental data presented suggest that MCPIP-induces differentiation 

via induction of oxidative stress that leads to ER stress that causes autophagy involved 

in tube formation in HUVECs. In future studies, it will be important to ascertain whether 

or not MCPIP actually accelerates vasculogenesis in vivo and also to determine its 

therapeutic potential to treat multiple diseases associated with inflammatory 

angiogenesis. 
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 Figure 4: Effect of MCPIP knockdown on TNF-α, IL-1β, IL-8 and MCP-1 

treatments on HUVECs  

 HUVECs were transfected with siMCPIP and siScramble for 6 hours before 

treating with MCP-1 (100ng/ml), TNF- (10ng/ml), IL-1 (10ng/ml) or IL-8 

(100ng/ml). (a) After 24 hours cells were trypsinized and placed on matrigel. 

(b)Quantification of phase-contrast photomicrographs of the tube 

formation is represented; =p <0.001. (c) Efficiency of MCPIP knockdown 

on MCPIP protein levels induced by IL-8 was determined by western blot 

analysis. Quantification of the immunoblot was performed and normalized 

to GAPDH; =P<0.01. 
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 Figure 5 : MCPIP overexpression induces ROS/RNS in HUVECs 

  (a) Total ROS/RNS was measured at 24 hours by treating these cells with 

1µmol/L DHR123 for 30 min and (b) examined flurometrically (excitation 

wavelength 550nm and emission wavelength 590nm); =P<0.01; (c) Real 

time RT-PCR was used to assess iNOS transcript levels. =P<0.01. (d) Cell 

culture media was used to determine nitrite levels on MCPIP-GFP and GFP 

transfection of HUVECs. Griess diazotization reaction was used to 



0

20

40

60

GFP MCPIP-GFP

R
O

S
 p

ro
d

u
ct

io
n

 
(A

rb
itr

a
ry

 U
n

its
)

GFP MCPIP-GFP

a b

d

0

1

2

3

4

GFP MCPIP

p
h

o
x4

7
/F

A
S



phox47 

FAS

0

1

2

3

4

5

GFP MCPIP

p
h

o
x4

7
/G

A
P

D
H



phox47

GAPDH

e f

0

20

40

60

80

100

120

GFP MCPIP-GFP

N
O

  
co

n
ce

n
tr

a
tio

n
 (

µ
M

)


0

1

2

3

4

5

GFP MCPIP

iN
O

S
m

R
N

A
 F

o
ld

 C
h

a
n

g
e



c



39 
 

spectrophotometrically (548nm) detect NO present in the media. (e) 

Densitometric analysis of total phox47 was performed and normalized 

against GAPDH; =P<0.01. (f) Plasma membrane was isolated from total 

cell lysate and was subjected to immunoblot analysis using antibodies 

specific for phox47 or the plasma-membrane-specific protein FAS. 

Quantification of the immunoblot was carried out and normalized to FAS; 

=P<0.01. 

 

 Figure 6: Forced expression of MCPIP induces ER stress response in 

HUVECs 

 HUVECs were transfected with MCPIP-GFP or GFP expression vector. After 

24 h RNA and  total cell lysate were isolated for transcript (a) and protein 

analysis (b) of ER stress markers GRP78 and IRE-1; =P< 0.01.   
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 Figure 7: MCPIP over expression induces autophagy in HUVECs 

 (a) HUVECs were transfected with MCPIP–GFP or GFP expression vector. 

After 24h, cell lysates were subjected to immunoblot analysis with antibody 

against beclin. Quantification of immunoblot data is shown after 

normalizing against GAPDH (*=P <0.02). (b) LC3 immunostaining of 

autophagosomes (arrows) after 24hours of HUVECs transfected with GFP 

and MCPIP-GFP. DAPI staining was used to detect cell number. 
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 Figure 8: MCPIP expression induces angiogenic differentiation in HUVECs 

 (a,b) Huvecs were tranfected with MCPIP or MCPIP-GFP expression vector. 

After 24 hours of treatment, HUVECs were trypsinized and placed on 

matrigel for 24 hours. Quantification of phase-contrast photomicrographs 

of the tube formation is represented; =P <0.01. 
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 Figure 9: Inhibition of ROS/RNS induced by MCPIP 

 (a) HUVECs were treated with apocynin or cerium oxide nanoparticles b) 

Antisense and sense oligonucleotides specific for phox47 before 

transfecting with MCPIP-GFP expression vector. Total ROS was detected at 

24 hours with 1µmol/L DHR123 for 30 min and then examined 

flurometrically (excitation wavelength 550nm and emission wavelength 

590nm; =P<0.01).  
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 Figure 10: Inhibition of ROS production reduces MCPIP-induced ER stress 

and autophagy and attenuates tube formation 

 HUVECs were treated with or without apocynin, or free radical scavenger 

CeO2 nanoparticles or phox47 antisense oligonucleotides prior to 

transfection with MCPIP-GFP or GFP expression vectors. (a) Efficiency of 

phox47 knockdown by antisense phox47 nucleotides on phox47 protein 

levels was determined by western blot analysis. Quantification of the 

immunoblot was performed and normalized to GAPDH; =P<0.02. After 24 

 

0

2

4

6

m
 R

N
A

 F
o

ld
 C

h
a
n
g
e

IRE-1

GRP78

0

1

2

3

4

5

m
 R

N
A

 F
o

ld
 C

h
a
n
g

e

IRE-1

GRP78



a c

Sense 

(S)Phox47

MCPIP

GAPDH

Phox 47

Anti-sense 

(AS) Phox47

0

0.2

0.4

0.6

0.8

1

1.2

 phox47 (S)+MCPIP phox47 (AS)+MCPIP

p
h

o
x
4
7

/G
A

P
D

H



b

MCPIP

GAPDH

Beclin

Apo CeO2



0

1

2

3

B
e
c
lin

/G
A

P
D

H

MCPIP

0

10

20

30

40

50

60

N
u
m

b
e

r 
o

f 
tu

b
e

s
/H

P
F




MCPIP+ 

Apocynin

MCPIP+ 

CeO2

MCPIP

GFP

MCPIP+Phox-47 

Antisense

MCPIP+Phox-

47 Sense

MCPIP+

L-Name

Untreated

d e



44 
 

h, transcript levels were evaluated for the ER stress proteins IRE1 and 

GRP78 (b and c) and protein levels (d) were evaluated for the autophagy 

marker, beclin. After 24 hours of treatments, HUVECs were trypsinized and 

placed on matrigel for 24 hours. (e) Phase-contrast photomicrographs of 

the tube formation were quantified at 24 hours, =P <0.01. 

 

 Figure 11: Inhibition of ER stress induced by MCPIP by TUDC treatment 

 Huvecs were treated with TUDC before transfection with MCPIP-GFP 

expression vector. After 24 hours, GRP78 transcript analysis was 

performed by real time PCR; =P <0.01 
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 Figure 12: Inhibition of ER stress reduces MCPIP- induced autophagy and 

attenuates tube formation 
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 HUVECs were treated with or without ER-stress-specific inhibitor TUDC 

(tauroursodeoxycholate), or siIRE1 or si-scrambled before transfection with 

MCPIP-GFP and GFP expression vectors. (a) Efficiency of si-IRE-1 

knockdown on IRE-1 protein levels was determined by western blot 

analysis. Quantification of the immunoblot was performed and normalized 

to GAPDH; =P<0.01. After 24 hours of treatments, cells were evaluated for 

the autophagy marker, beclin (b and c) using real time RT–PCR =P <0.01; 

and immunoblot analysis and quantification (d); after normalizing against 

GAPDH (*P <0.01) is shown. (e) After 24 hours of treatments, HUVECs were 

trypsinized and placed on matrigel for 24 hours. Quantification of phase-

contrast photomicrographs of the tube formation is represented; =P <0.02. 
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 Figure 13: Inhibition of autophagy attenuates MCPIP-induced tube 

formation 

 HUVECs were treated with and without autophagy inhibitors, 3MA (3-

methyladenine) and LY 294002 three hours prior to transfection and 

knockdown of beclin by siRNA, 6 hours before transfection with MCPIP-

GFP and GFP expression vectors. Scrambled siRNA served as a control. . 

(a and b) Efficiency of beclin knockdown by its specific siRNA on beclin 

protein and transcript levels were determined by western blot analysis and 

real time PCR. Quantification of the immunoblot was performed and 

normalized to GAPDH; =P<0.01. (c) Phase-contrast photomicrographs of 

the tube formation in the matrigel assay were quantified at 24 hours; =P 

<0.01. 

 

 Figure 14: Summary of events - Sequential processes that mediate 

inflammatory angiogenesis via MCPIP in human endothelial cells 
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CHAPTER 3: INVOLVEMENT OF BOTH THE DEUBIQUITINASE AND 

ANTI-DICER RNASE ACTIVITIES OF MONOCYTE CHEMOTACTIC 

PROTEIN-INDUCED PROTEIN-1 (MCPIP1) IN INFLAMMATORY 

ANGIOGENESIS 

Introduction 

Angiogenesis is a tightly controlled process involving proper balance between the 

levels of pro-and anti-angiogenic factors [85]. Dysregulation of these processes is 

involved in inflammatory diseases such as, psoriasis, cardiovascular diseases, obesity 

and cancer [114]. A recent study suggests that inflammatory cytokines TNFα, IL-1β, IL-

8, and MCP-1 mediate angiogenesis via the induction of ZC3H12A gene encoding 

MCP-1-induced protein-1 (MCPIP1) [133], originally identified as a protein induced by 

MCP-1 treatment of human monocytes[13]. MCPIP1 is the first member of a novel 

CCCH-type zinc finger protein family [16] and we refer to it as MCPIP in this paper. 

MCPIP has been shown to mediate several biological functions such as 

angiogenesis[133, 134], adipogenesis[135], osteoclastogenesis[20] and hyperglycemia-

induced death of cardiomyocytes [18]. MCPIP was reported to have deubiquitinase 

activity [93, 136] and RNase activity [17, 22, 23]. If and how the dual enzymatic 

activities of MCPIP are involved in mediating any of its biological functions remains 

unknown. 

HIF-1α that is known to be involved in angiogenesis is a key transcription factor 

that is activated under hypoxic conditions. It plays important roles in many biological 

processes such as embryonic development and in pathophysiological processes 

involving ischemia[26]. HIF-1 is a crucial regulator that induces genes assisting in 
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cellular processes such as oxygen transport, glucose metabolism, angiogenesis and 

cell survival[25]. HIF-1 is a heterodimeric protein complex consisting of hypoxia-

inducible subunit, HIF-1  and constitutively expressed HIF-1  subunit. Under normoxic 

conditions, HIF-1  is an unstable protein with a half-life of ~5 minutes and is under 

stringent negative regulation by multiple mechanisms. HIF-1 is hydroxylated in an 

oxygen-dependant manner by prolyl hydroxylase domain (PHD) enzymes at proline 

residues in its oxygen-dependent degradation domain [137]. Upon HIF-1 

hydroxylation, von Hippel–Lindau protein, an E3 ligase, binds to it resulting in the 

ubiquitination of HIF-1  and its degradation by the ubiquitin-proteosome pathway [28, 

138]. Under hypoxic conditions PHD can no longer hydroxylate HIF-1 resulting in its 

stabilization and consequent entry into the nucleus to form a complex with HIF-1 

subunit. In the nucleus the dimer can bind to the hypoxia response element (HRE; 

RCGTG) on the promoters of its target genes. COX2 and VEGF are HIF-1 target 

genes. (COX)-2 is an inducible isoform of the cyclooxygenases (COX) family of 

enzymes that are involved in the production of biological mediators of inflammation, 

prostanoids generated from arachidonic acid [33, 139]. Induction of COX-2 is influenced 

by pro-inflammatory stimuli and has been implicated in pathologies involving 

inflammatory angiogenesis, such as cancer [140, 141]. VEGF is a well-established pro-

angiogenic factor[31]. MCPIP is known to cause elevation of HIF-1 levels during 

MCPIP-induced angiogenesis[134]. The molecular mechanism by which MCPIP causes 

stabilization of HIF-1 is unknown. It is unknown whether MCPIP-induced angiogenesis 

could be mediated via stabilization of HIF-1 by removal of the ubiquitin moieties linked 

to HIF-1 by the MCPIP’s deubiquitinase activity, that was reported to negatively 



51 
 

regulate NF-B activation [136]. Moreover, it is unknown whether inhibition of NF-B 

activation by MCPIP is involved in mediating angiogenesis.  Our study aims to decipher 

whether MCPIP deubiquitinates ubiquitinated HIF-1 and promotes its nuclear entry to 

mediate transcription of pro-angiogenic genes, VEGF and COX2, and if inhibition of NF-

B, a key pro-inflammatory transcription factor, promotes angiogenesis. 

Silent information regulator (SIRT) -1 enhances the angiogenic potential of 

endothelial cells by deacetylating forkhead box O (FoxO), a negative regulator of 

angiogenesis [142]. It is a member of the sirtuins family of nicotinamide adenine 

dinucleotide (NAD+) dependent histone deacetylases that regulate several biological 

processes including cell survival, metabolism, longevity, inflammation, and 

tumorigenesis [60, 143]. SIRT1 SIRT1 regulates cellular differentiation by deacetylating 

p53, a tumor suppressor resulting in the inhibition of p53 transcription. A target gene of 

p53 is thrombospondin (TSP) -1, an inhibitor of angiogenesis [81, 144-146]. Whether 

MCPIP mediated angiogenesis involves SIRT1 or TSP-1 is unknown.  

MicroRNA (miR)s play a vital role in regulating inflammation [147]and in 

modulating the levels of HIF-1  and SIRT-1. MiR-20b binds to the 3UTR of HIF-1  

and thus inhibit translation of HIF-1. Inhibition of miR 20b production increased the 

levels of HIF-1, thus suggesting its anti-angiogenic role [80]. miR 34a is anti-

angiogenic and SIRT-1 is one of its targets [148]. It was reported that miR-34a inhibits 

SIRT-1 translation by binding to the 3UTR of SIRT-1 mRNA [81]. MCPIP can cleave the 

terminal loops of precursor miRNAs and this anti-dicer activity can suppress miRNA 
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biogenesis [24]. Whether the anti-dicer RNase activity of MCPIP plays a role in 

angiogenesis-induced by MCPIP is not known. 

We tested whether angiogenic differentiation in human umbilical vein endothelial 

cells (HUVECs) induced by MCPIP is mediated via the deubiquitinase and/or anti-dicer 

RNase activities of MCPIP that might regulate the stability and levels of angiogenic 

players, HIF-1, VEGF, COX2 and SIRT-1. Results from the present study suggest that 

MCPIP would stabilize HIF-1  by its deubiquitinase activity and thus promote 

angiogenesis via induction of pro-angiogenic factors, VEGF and COX2. Our findings 

suggest that MCPIP-induced angiogenic differentiation is also mediated via suppression 

of anti-angiogenic factors. Thus, MCPIP induces of SIRT-1 that downregulates anti-

angiogenic TSP-1. Furthermore, we show that the anti-dicer activity of MCPIP causes 

the inhibition of production of anti-angiogenic miRNAs, miR-20b and miR-34a, thus 

promoting angiogenic differentiation of HUVECs. MCPIP suppresses the production of 

anti-angiogenic VEG-inhibitor (VEGI) via inhibition of NF-B activation. In conclusion, 

our findings suggest that both the deubiquitinase and anti-dicer RNase activities of 

MCPIP are involved in promoting angiogenesis thus elucidating, for the first time, role of 

the two enzymatic activities in one of the biological functions of MCPIP.  

Materials and Methods 

Cell culture conditions 

 

The human umbilical vein endothelial cells (HUVECs; CC-2519, LONZA, NJ, 

USA) were cultured in endothelial cell basal medium (EBM, CC-3124, LONZA) 

according to manufacturer’s protocol. HUVECs used were between passages 4-8. All 



53 
 

cells were maintained at 37C in 5% CO2. Experiments under hypoxic conditions [149] 

were performed in the chamber with 1% O2 at 37C and 5% CO2.  

Plasmid construction 

 

The human wildtype MCPIP (Accession No: AY920403) was sub-cloned into the 

pCMV-MAT-FLAG vector (Sigma-Aldrich). MAT-FLAG sequence and HISx8 tag were 

added at the 5' and the 3' end, respectively. The D141N mutation was produced using 

the QuickChange Lightning Site-Directed Mutagenesis Kit (Stratagene), according to 

the manufacturer’s directions using pCMV-MAT-FLAG wildtype-MCPIP as template 

DNA and D141N mutagenic primers (Sense: 5'-AGA-CCA-GTG-GTC-ATC-AAC-GGG-

AGC-AAC-GTG-GCC-3'; Antisense: 5'-GGC-CAC-GTT-GCT-CCC-GTT-GAT-GAC-

CAC-TGG-TCT-3'). The Qiagen Plasmid Maxi Kit was used to prepare the pCMV-MAT-

FLAG MCPIP-WT and D141N expression vectors.  

Transfection procedure 

 

HUVECs were transfected with vectors expressing MCPIP or empty vector using 

Lipofectamine and PLUS Reagents (11668; 11514, Life Technologies, NY, USA). The 

transfection efficiency was 60-70% and was determined by the immunoblotting with 

antibody against FLAG (1:500; Sigma). 

Treatment/Transfection of HUVECs 

 

HUVECs were treated with following chemical inhibitors: p38 MAPK inhibitor, SB 

203580 (20µM), three hours prior to transfection with expression construct for MCPIP or 

empty vector. HUVECs were transfected for 6 hours with 100 nmol/l of a chemically 
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synthesized siRNA targeted for the HIF-1 or SIRT-1 or COX2 with 100 nmol/l non-

specific siRNA (Santa Cruz Biotechnology, Inc.) using Lipofectamine and PLUS 

Reagents (Life Technologies) according to the manufacturer’s protocol prior to 

transfection with MCPIP–MAT or empty vector. 

Real-time PCR  

 

Total RNA was isolated from HUVECs by using Trizol reagent (Invitrogen). cDNA 

was synthesized utilizing 1 μg of total RNA (DNase-treated) as previously 

described[134]. GAPDH (glyceraldehyde-3-phosphate dehydrogenase) served as 

internal controls for transcript analysis. Results presented are of three independent 

experiments, each measured in triplicate. The sequences of the primers used for real 

time analysis are as stated below:  

HIF-1-Forward-5 CTTTTACCATGCCCCAGAT-3; 

HIF-1-Reverse - 5 CATTGACCATATCACTATCCACA-3;  

VEGF-Forward -5 CGAGGCAGCTTGAGTTAA -3,  

VEGF -Reverse - 5 GCGTGGTTTCTGTATCGATC -3;  

SIRT-1- Forward -5CCCTCAAAGTAAGACCAGTAGC -3,  

SIRT-1- Reverse - 5 CACAGTCTCCAAGAAGCTCTAC -3 

TSP-1 - Forward –5 CTCCCCTATGCTATCACAACG -3  

TSP-1 - Reverse –5 AGGAACTGTGGCATTGGAG -3  

COX-2-Forward-5CTATGGCTACAAAAGCTGGG-3; 

COX-2-Reverse - 5CCACAATCTCATTTGAATCAGG-3 
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MicroRNA analysis 

 

MicroRNAs were isolated from HUVECs after treatments using Trizol method. 

Primers (5S rRNA: 203906; U6 snRNA: 203907; hsa-miR-20b: 204755; hsa-miR-34a: 

204318) for microRNA analysis were purchased from Exiqon and were used as per 

manufacturer’s recommendations. Mimics of miR-20b (MC10975) and miR-34a 

(MC11030) and negative control (4464058) were ordered from LifeTechnologies, CA, 

USA. All real time PCR reactions were performed using the 7500 real-time PCR system 

(Applied Biosystems). The amplification steps consisted of denaturation for 10 min at 

95°C, followed by 40 cycles of denaturation at 95°C for 10 s and then annealing at 60°C 

for 1 min. using the SYBR green master Mix (203450, Exiqon, USA). U6 and 5s were 

used as endogenous controls and fold changes were calculated for each gene. Each 

RNA sample assay was run in triplicate and the assay repeated for three times. 

In vitro capillary-like tube formation assays 

 

Matrigel assay was performed as described [134] . Briefly, HUVECs after 

treatment for 3 hours were transfected with expression vector for MCPIP or empty 

vector for 24 hours before being trypsinized and seeded onto the surface of the matrigel 

according to the manufacturer’s protocol, followed by incubation in at 37ºC in 5% CO2 

for 24 hours. Tube formation was quantified using photographs captured by phase-

contrast microscope. 
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Purification of MCPIP 

 

HEK293 cells were transfected with pCMV-MAT-FLAG -MCPIP expression 

vector for 48 hrs. Transfected cells were lysed at 4oC in Cell-Lytic M lysis buffer (C2978; 

Sigma-Aldrich, MO, USA) supplemented with a protease and phosphatase inhibitor 

cocktails (Sigma-Aldrich). Upon centrifugation, the cleared lysate was loaded onto a 

column containing Ni-NTA Agarose beads (Qiagen) that was previously prepared as per 

manufacturer’s protocol. The column was washed several times with wash buffer 

(50mM Tris-HCl [pH7.5] and 150mM NaCl) along with increasing concentrations of 

Imidizole (10mM, 50mM). MCPIP protein was eluted using 500mM Imidizole.  

Preparation of Ubiquitinated HIF-1α substrate 

 

Human embryonic kidney (HEK) cells were transfected with HA-HIF1-pcDNA3 

expression vector (cat # 18949, Addgene, MA, USA). Hypoxic conditions were induced 

by CoCl2 (200M) and proteasome inhibition by MG132 (10M) for 24 hours. The 

lysates were subjected to immunoprecipitation with HA-coated beads to yield HIF-1-

HA as the substrate. In vitro ubiquitination of the substrate was performed by Ubiquitin-

Protein Conjugation Kit, (Cat. # K-960, Boston Biochem, MA, USA) to yield 

ubiquitinated-HIF-1 substrate.Ub-HIF-1 was incubated with purified MCPIP enzyme 

with or without ubiquitin aldehyde, a deubiquitinase inhibitor or MCPIP mutant, D141N. 

Hydrolysis of the Ub-HIF-1 substrate was observed by immunoblotting with ubiquitin 

antibody. 
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Deubiquitinase Assay: 

 

Experiments to determine ubiquitin hydrolysis were performed by a) Ub-AFC 

assay: Purified MCPIP or D141N protein (1μg) was incubated with 1μM Ub-AFC (Cat# 

U-551, Boston Biochem) in buffer containing 50 mM Tris-HCl, pH 7.0, 10 mM DTT and 

150mM NaCl in a final volume of 200μl. Assays were performed at 37oC for 4 hours. 

The fluorescence signals were detected at Ex400nm and Em505nm in a time-

dependent manner. b) High Molecular Weight K-63 linked PolyUbiquitin (Cat# UC 316, 

Boston Biochem) (1μg) was incubated in buffer containing 50 mM Tris-HCl, pH 7.0, 10 

mM DTT and 150mM NaCl in a final volume of 200μl with purified MCPIP or D141N 

protein (1μg) at 37oC for an hour. The reaction mixture was used for immunoblot 

analysis with anti-ubiquitin antibodies. 

p38 MAPK activity assay:  

 

Assay to determine activity was performed by p38 MAPK Activity Assay Kit (Cat# 

CS0250, Sigma, Missouri, USA) as per manufacturer’s recommendations. Briefly 

HUVECs were transfected with MCPIP expression vector with or without prior treatment 

of p38 inhibitor SB203580. The whole cell lysate was immune precipitated with p38 

antibody and elute was incubated with ATF2 substrate at 30C. After 30 min the 

reaction mixture was run on SDS-PAGE and immunoblotted against phospho –ATF2 

antibody. 
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Immunoblot analysis 

 

HUVECs from different experimental conditions were lysed with Cell Lytic lysis 

Buffer (Sigma). Protein samples (50g) were subjected to SDS-PAGE using 10% 

polyacrylamide or 4–20% (NB10-420, NuSep, GA, USA) Tris-HCl gels and transferred 

using standard protocols. Immunoblot analysis was performed using the primary 

antibodies from SantaCruz Biotechnology, USA, anti-mouse GAPDH (1:1000; Cat. No 

47724,); anti-rabbit HIF-1α (1:500; Cat. No 10790); anti-mouse SIRT-1 (1:500; Cat. No 

74504), anti-mouse TSP-1(1:500; Cat. No 74538) and HRP-conjugated Mouse (1:5000; 

Cat. No 2005), and rabbit antibodies (1:5000; Cat. No 2317) and ubiquitin (1:1000; Cat. 

No VU 101; Life sensors). Immunoreactive proteins were analysed using enhanced 

chemiluminescence (ECL) kit. 

Statistical analysis 

 

All experiments were repeated three times. The error bars are represented as ± 

S.E.M. An asterisk (*) indicates a significant difference when compared to the control as 

indicated in each experiment. P value of < 0.05 was considered significant and was 

determined by student’s t-test. 

Results 

 

Hypoxia-induced angiogenesis is mediated via MCPIP: 

 

Hypoxia-induced angiogenesis is augmented by cytokine production [150]. 

MCPIP was reported to mediate angiogenesis induced by inflammatory cytokines [133]. 
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To determine if MCPIP mediates hypoxia-induced angiogenesis, HUVECs were 

transfected with siRNA specific for MCPIP or non-specific scrambled control before 

hypoxic (1% oxygen) or normoxic (21% oxygen) incubation for 6 hours. siRNA specific 

for MCPIP, but not scrambled siRNA, significantly inhibited hypoxia-induced production 

of HIF-1 and angiogenesis thus strongly suggesting that hypoxia-induced 

angiogenesis is mediated via MCPIP (Figure 15 A-D).  

MCPIP expression results in the HIF-1 localization in the nucleus and induction 

of its target genes, COX2 and VEGF:  

 

To determine whether MCPIP expression resulted in HIF-1 localization in the 

nuclei, HUVECs were transfected with MCPIP expression vector or empty vector for 24 

hours. Immunocytochemistry using antibody against HIF-1 was performed. DAPI was 

used for counterstaining the nuclei. Fluorescence microscopic images showed that 

MCPIP expression resulted in nuclear localization of HIF-1 when compared to the 

empty vector control (Figure 16A). Expression levels of HIF-target genes, COX2 and 

VEGF, were also higher in cells expressing MCPIP. Furthermore, specific knockdown of 

HIF-1 inhibited MCPIP-induction of VEGF and COX2 (Figure 16B). These results 

suggest that MCPIP expression promotes entry of HIF-1 into the nucleus resulting in 

induction of VEGF and COX2 production. Since p38MAPK activation was reported to 

mediate VEGF-induced angiogenesis [151, 152], we sought to determine if MCPIP 

induces the activation of p38 MAPK by transfecting HUVECs with MCPIP expression 

vector. After immunoprecipitation of total p38 from the whole cell lysates, the kinase 

activity of p38 was checked on its model substrate, ATF2. The reaction mixture was 

immunoblotted with phospho-ATF2 antibody. Results showed that cells expressing 
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MCPIP had increased ATF2 phosphorylation as compared to the cells transfected with 

empty vector. SB 203580, a p38 MAPK inhibitor blocked phosphorylation of ATF2 

(Figure 17A). Our results suggest that MCPIP expression induces p38 MAPK activation. 

Furthermore, to determine if MCPIP- induced angiogenic differentiation involves the 

induction of p38 MAPK, HUVECs were treated with p38 MAPK inhibitor, SB 203580 

prior to transfection with MCPIP expression vector. Our results indicate that MCPIP-

induced tube formation was drastically reduced by p38 MAPK inhibition (Figure 17B). 

Our data thus suggest that angiogenesis MCPIP-induced angiogenesis is mediated via 

induction of p38 MAPK activation. 

SIRT-1 mediates MCPIP-induced angiogenic differentiation: 

 

Studies have shown that loss of SIRT-1 function blocks angiogenesis [143] thus 

suggesting its pro-angiogenic role. To determine if SIRT-1 is induced by expression of 

MCPIP, real time PCR and immunoblot analysis were performed to examine the effect 

of MCPIP expression on the levels of   SIRT-1 (Figure 18A and B). Our results show 

that SIRT-1 levels were significantly elevated in cells expressing MCPIP thus 

suggesting that MCPIP induces SIRT-1.To determine if MCPIP-induced endothelial 

differentiation is mediated via SIRT-1, HUVECs were transfected with siRNA specific for 

SIRT-1 or siScramble before transfection with MCPIP expression vector. Knockdown of 

SIRT-1 inhibited MCPIP-induced tube formation (Figure 18C and D). Our results 

suggest that angiogenesis induced by MCPIP is mediated via SIRT-1 induction. 
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MCPIP expression reduces the levels of anti-angiogenic factors, TSP-1 and VEGI:  

 

TSP-1 is a well-known inhibitor of angiogenesis [153]. To determine if MCPIP 

expression has an effect on TSP-1 levels, transcript and protein analysis were 

performed. Expression of MCPIP resulted in lower levels of angiogenesis inhibitor, TSP-

1 as compared to the empty vector (Figure 19A and B). Furthermore, knockdown of 

SIRT-1 gene resulted in higher levels of TSP-1 in cells expressing MCPIP (Figure 19C 

and D). This result suggests that reduction in TSP-1 level caused by MCPIP expression 

is mediated via SIRT-1. Furthermore, since it was reported that MCPIP negatively 

regulated NF-B activation [136], we sought to determine if this mechanism would be of 

importance in promoting MCPIP-induced angiogenesis. Our data show that expression 

of MCPIP resulted in a reduction in nuclear levels of p65 as compared to cells 

transfected with empty vector (Figure 19E). Our results also show that MCPIP 

expression caused significant decrease in the levels of anti-angiogenic VEGI (Figure 

19F) whose production is known to require NF-B activation[154]. Thus, our data 

suggest that inhibition of NF-B activation by MCPIP would contribute to the angiogenic 

activity of MCPIP by reducing the level of anti-angiogenic VEGI. 

 

Enzymatic activities of MCPIP involved in its induction of angiogenesis: 

 

To explore the potential involvement of the enzymatic activities of MCPIP in its 

promotion of angiogenesis, a MCPIP mutant, D141N, that is known to have lost the 

RNase activity [17, 22, 23], was used for the in vitro matrigel assay. Results suggest 

that cells expressing D141N mutant showed significantly reduced tube formation when 
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compared to the cells expressing wild-type MCPIP (Figure 20A) suggesting the 

importance of RNase activity of MCPIP in angiogenic differentiation. 

MCPIP and its RNase-dead mutant, D141N, deubiquitinates ubiquitinated HIF-1 :        

To promote the transcription of angiogenesis-related genes, HIF-1 has to be stable 

and thus non-ubiquitinated. We tested whether MCPIP can deubiquitinate ubiquitinated 

HIF-1 in vitro, HEK cells were transfected with HA-HIF-1 expression vector under 

conditions described in Methods section. HA-HIF-1 isolated by immunoprecipitation 

was ubiquitinated in vitro. After incubation of the ubiquitinated HIF-1 substrate with 

purified MCPIP in the presence or absence of ubiquitin aldehyde, a deubiquitinase 

inhibitor, or purified MCPIP mutant, D141N that was found to have lost the ability to 

induce angiogenesis. The mixture was immunoblotted with ubiquitin antibody. Results 

demonstrate that MCPIP deubiquitinates the ubiquitinated HIF-1 substrate and the 

deubiquitinase inhibitor, ubiquitin aldehyde, prevented the hydrolysis. Immunoblot 

analysis also showed that MCPIP mutant, D141N, that was reported to have no 

deubiquitinase activity against octa-ubiquitin [136] hydrolysed the ubiquitinated HIF-1 

substrate (Figure 20B). Purified D141N also showed deubiquitinase activity similar to 

the wild type MCPIP when assayed with a model substrate, Ub-AFC (Figure 20C). Since 

D141N was reported to be incapable of hydrolyzing octa-ubiquitin [136], we tested 

whether the mutant could hydrolyze high molecular weight polyubiquitin (Poly Ub). Our 

results showed that both MCPIP and its mutant D141N were able to hydrolyze poly Ub 

(Figure 20D) suggesting that MCPIP mutant, D141N has deubiquitinase activity on 

substrates relevant to the biological functions of MCPIP. 
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Anti-dicer RNase activity of MCPIP suppresses the levels of miRs modulating HIF-

1 and SIRT-1 expression:  

Since angiogenic activity of MCPIP was severely compromised by D141N 

mutation, inspite of having intact deubiquitinase activity, we suspected that its anti-dicer 

RNase activity might be involved in promoting angiogenesis. To test this possibility, 

HUVECs were transfected with expression vector for MCPIP or its D141N mutant, that 

has been reported to have lost RNase activities by three different laboratories [17, 22, 

23], and production of miRNA that could be involved in the regulation of angiogenesis 

was examined. MiR-20b has been reported to reduce HIF-1 protein levels. To 

determine if the RNase activity of MCPIP suppresses the levels of miR-20b, thus 

resulting in induction of HIF-1, RT-PCR of the miRNAs isolated from cells transfected 

with expression vectors for MCPIP or D141N mutant or empty vector was performed. 

Expression of MCPIP resulted in reduced levels of miR-20b. This reduction was 

however not seen with the RNase-dead mutant D141N (Figure 21A). Furthermore, 

transcript level of miR-34a, a microRNA known to suppress SIRT-1 levels [155], was 

measured. Results showed that expression of MCPIP significantly reduced the levels of 

miR-34a but the RNase-dead mutant, D141N, failed to inhibit miR-34a production 

(Figure 21B). If MCPIP-induced angiogenesis involves inhibition of biogenesis of these 

anti-angiogenic microRNAs, mimetics of their miRs should inhibit MCPIP-induced 

angiogenesis. To test this possibility HUVECs were transfected with mimetics of mir-20b 

or mir-34a or negative control prior to transfection with MCPIP expression construct. 

Our results showed (Figure 21C) that mimetics for miR-20b or miR-34a inhibited 

MCPIP-induced tube formation. These results strongly suggest that anti-dicer RNase 
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activity of MCPIP represses the levels of anti-angiogenic miRs and thus promotes 

angiogenesis. The lack of anti-dicer RNase activity of MCPIP mutant, D141N, is 

probably the reason for its inability to induce angiogenesis. 

Discussion  

Chronic inflammation plays a major role in several diseases such as cancer, 

cardiovascular diseases, obesity and is marked by elevated levels of proinflammatory 

cytokines, including TNFα, IL-1β, IL-8 and MCP-1. Inflammatory cytokines are known to 

induce a novel zinc-finger protein, MCPIP encoded by the ZC3H12A gene [13, 17, 147]. 

A recent study has shown that MCPIP mediates angiogenesis induced by inflammatory 

cytokines [133]. Results from the present study provide new insights into the possible 

underlying mechanisms that mediate MCPIP-induced angiogenesis. We show that 

MCPIP promotes the expression of pro-angiogenic molecules and inhibits the synthesis 

of anti-angiogenic molecules, thus tilting the balance towards promotion of 

angiogenesis. Deubiquitination of ubiquitinated HIF-1 by MCPIP demonstrated here 

indicates that MCPIP would stabilize HIF-1 thus allowing HIF-1 to enter the nucleus 

and promote the transcription of its angiogenic target genes, COX2 and VEGF. 

Induction of VEGF levels would result in p38 MAPK activation thus mediating MCPIP-

induced angiogenesis. Experimental data also suggest that inhibition of NF-B 

activation contributes to the angiogenic activity of MCPIP by reducing the levels of anti-

angiogenic VEGI. Furthermore, the anti-dicer RNase activity of MCPIP inhibits the 

synthesis of miR-20b that is known to reduce the levels of HIF-1. MCPIP expression 

also induces SIRT-1 expression, which results in the inhibition of anti-angiogenic TSP-1 

production. Furthermore, our results also show that the anti-dicer RNase activity of 
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MCPIP results in the inhibition of synthesis of miR-34a that is known to suppress SIRT-

1 levels. Moreover, mir-34a production is also known to be suppressed by inhibition of 

NF-B activation. Thus experimental results presented here reveal how the 

deubiquitinase and anti-dicer RNase activities of MCPIP would mediate MCPIP-induced 

angiogenesis.  

An imbalance between the levels of oxygen supply and its demand is critical in 

the development of inflammatory diseases such as diabetic retinopathy, psoriasis and 

tumorigenesis[156]. Cellular adaptations under hypoxia are modulated by the induction 

of pro-inflammatory cytokines and HIF-1[157]. HIF-1 is a key regulator and a 

transcription factor that mediates an array of cellular pathways such as angiogenesis by 

promoting the transcription of several target genes including COX2 and VEGF [29, 158, 

159]. Under normoxia, HIF-1α is tightly regulated by O2-dependent prolyl hydroxylation 

that aids in polyubiquitination by E3 ubiquitin ligase, pVHL, leading to the degradation of 

HIF-1α by the proteosomal pathway [160]. Under hypoxic conditions, however, the 

hydroxylation of prolyl is inhibited thus resulting in accumulation and increased activity 

of HIF-1α. State of ubiquitination is an important biochemical modification, which 

regulate a wide range of cell biological processes[73]. Deubiquitination, a mechanism of 

reversing ubiquitination adds another important modulatory modification in regulating 

cellular functions. VDU2, a pVHL-interacting deubiquitinating enzyme 2, has been 

known to deubiquitinate and stabilize HIF-1α, thus preventing HIF-1α from proteosomal 

degradation [28]. MCPIP is known to have deubiquitinase activity[136]. Furthermore, 

angiogenic differentiation induced by MCPIP was reported to be mediated via HIF-1α 

induction [134]. However, the mechanism/s underlying HIF-1α induction by MCPIP was 
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unknown. Our demonstration that MCPIP can deubiquitinate ubiquitinated HIF-1α 

suggests that MCPIP would stabilize HIF-1α via its deubiquitinase activity. The 

stabilized HIF-1α would enter the nuclei and promote the transcription of its target 

genes VEGF and COX2, important players in angiogenesis. Thus MCPIP-induced 

deubiquitination of ubiquitinated HIF-1α is a probable mechanism by which MCPIP 

promotes angiogenesis. Moreover, it was reported that the deubiquitinase activity of 

MCPIP negatively regulates NF-B activation [136]. Our results showing reduced 

nuclear levels of p65 subunit of NF-B support that finding and also suggest a probable 

mechanism by which MCPIP may promote angiogenesis. 

Sirtuins (SIRTs) are a family of nicotinamide adenine dinucleotide (NAD+)-

dependent histone deacetylases (HDAC) that regulate gene expression [161, 162]. 

SIRT1 plays a vital role in regulating cellular differentiation by transcriptional repression 

of several transcriptional regulators including, forkhead box type O transcription factors 

(FOXO), and tumor suppressor protein, p53 [142, 143]. It was reported that inhibition or 

knockdown of SIRT-1 expression in both zebrafish and mice resulted in impairment of 

vasculature development suggesting that SIRT1 mediates angiogenic signaling [163]. 

Studies have shown that hyperacetylation of p53 results in its stabilization and results in 

onset of apoptosis. Conversely, p53 deacetylation by induction or overexpression of 

SIRT1 would reduce p53 activity and promote cell survival [164].SIRT-1 down-regulates 

the stability of p53 [165]. p53 promotes the transcription of TSP-1, an inhibitor of 

angiogenesis [64]. Our findings suggest that SIRT1 mediates MCPIP-induced 

angiogenic differentiation. This induction of SIRT1 resulted in the repression of the 

inhibitor of angiogenesis, TSP-1. Furthermore, it was reported that SIRT-1 deacetylates 
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lysine 310 on RelA/p65 protein in the NF-B complex thus inhibiting the transactivation 

capacity of the NF-B complex [166] and thus preventing NF-B activation in HUVEC 

as demonstrated by our data. Also, since there are multiple NF-B binding sites on the 

promoter of TSP-1, inhibiton of NF-B activation may also reduce TSP-1 levels thus 

adding a new dimension to the mechanism by which SIRT1 regulates MCPIP-induced 

angiogenesis.  

We found that D141N mutant of MCPIP could not induce angiogenesis even 

though we demonstrate that it has deubiquitinase activity. Therefore, the anti-dicer 

RNase activity, that had been shown to be lost in this mutant [24], appeared likely to be 

involved in promoting angiogenesis. A recent study suggested that MCPIP cleaves the 

terminal loops of precursor microRNAs thus antagonizing dicer activity to inhibit miRNA 

biogenesis [24]. Since miRNAs are known to regulate many aspects of angiogenesis, it 

was essential to determine if the RNase activity of MCPIP would modulate MCPIP-

induced angiogenic differentiation. The present findings suggest that MCPIP expression 

results in the suppression of the levels of miRNAs, miR-20b and miR-34a that are 

known to bind to the 3UTR of HIF-1 [80]and SIRT-1[81, 167], respectively. 

Interestingly, mir-34a transcription was reported to be induced by NF-B activation as 

the promoter of mir-34a has NF-B binding sites [82]. Thus, the reduction in mir-34a 

levels caused by MCPIP expression could be due to inhibition of NF-B activation 

possibly by induction of SIRT1 and/or via its own deubiquitinase activity or by the anti-

dicer RNase activity of MCPIP repressing the microRNA levels. That the anti-dicer 

RNase activity of MCPIP is involved in the induction of angiogenesis by its ability to 

inhibit biogenesis of miR-20b and miR-34a was supported by the finding that MCPIP 
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expression inhibited the production of the miRNAs and their mimetics inhibited MCPIP-

induced angiogenesis. This conclusion is further strengthened by our finding that 

transfection with expression vector for RNase-dead mutant D141N [24], caused 

increased levels of miR-20b and miR-34a and also showed reduced angiogenic 

differentiation as compared to the cells expressing MCPIP. 

Taken together, the findings of the present study delineate the molecular 

mechanisms by which MCPIP mediates inflammatory angiogenesis (Figure 22). In 

summary, MCPIP mediates angiogenic differentiation by promoting the synthesis of pro-

angiogenic VEGF and COX2, and by suppressing the production of anti-angiogenic 

microRNAs, mir-20b and mir-34a, TSP-1 and VEGI, thus tilting the balance towards 

angiogenesis. Both the deubiquitinase and the anti-dicer RNase activities are involved 

in the mediation of inflammatory angiogenesis by MCPIP. This is the first demonstration 

of the involvement of the two enzymatic activities of MCPIP in any of its biological 

functions. Deubiquitination [76] and microRNA biogenesis[168] have been shown to be 

involved in regulating several human pathologies such as impaired wound healing, 

cancer and heart disease[77]. Findings from our study thus reveal potential targets that 

may contribute to the development of novel therapeutic strategies.  
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 Figure 15: Hypoxia-induced angiogenic differentiation is mediated via 

MCPIP 

 HUVECs were transfected with siRNA specific for MCPIP or non-specific 

scramble siRNA for 4 hours and then incubated under 1% oxygen (hypoxia) 
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for 6 hours. The controls were kept at 21% oxygen (normoxia) after 

transfection. After 6 hours, (A) transcript levels and (B) protein levels were 

evaluated for HIF-1 ; =p<0.05. Under normoxia, HIF-1 protein levels were 

undetectable (data not shown). After 4 hours of transfection as in (a and b) 

cells were trypsinized and placed on matrigel before induction with 1% 

oxygen (hypoxia) or 21% oxygen (normoxia) for 6 hours. (C) Phase-contrast 

photomicrographs of the tube formation is represented (D) Quantification 

of phase-contrast photomicrographs of the tube formation; =p <0.005. 
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 Figure 16: Forced expression of MCPIP resulted in the nuclear entry of HIF-

1 and induction of COX2 and VEGF 

 HUVECs were transfected with MCPIP expression vector or empty vector 

for 24 hours. (A) Cells were fixed and immunocytochemistry was performed 

using antibody against HIF-1. Nuclei were counterstained with DAPI. The 

images were merged. Inset (40X) shows the nuclei. (B and C) HUVECs were 

treated with siRNA specific for HIF-1 or scrambled siRNA as a control 3 

hours before being transfected with MCPIP. After 24 h, RNA was isolated 
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for transcript analysis by real time PCR to detect COX2 and VEGF 

expression, =p<0.05. 

 

 Figure 17: MCPIP induced angiogenesis via p38 MAPK activation 

 HUVECs were treated with or without SB203580 (20 M) before transfection 

with MCPIP expression vector. After 24 hours of transfection, cells were 

trypsinized and (A) the whole cell lysate was immunoprecipitated with 

beads coated with p38 antibody. After elution, p38 MAPK was incubated 

with substrate, ATF2. Phosphorylation of ATF2 was used as a measure to 

determine p38MAPK activity, (B) placed on matrigel for 24 hours. Phase-

contrast photomicrographs of the tube formation are represented. 

Quantification of phase-contrast photomicrographs of the tube formation; 

=p <0.002. 
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 Figure 18: MCPIP-induced angiogenesis is mediated via SIRT-1 induction 

 HUVECs were transfected with empty vector (MAT) or MCPIP (MAT-MCPIP). 

After 24 h, (A) transcript levels and (B) protein levels were evaluated for 

SIRT-1;=p <0.05.(C) cells were trypsinized and placed on matrigel. (d) 

Quantification of phase-contrast photomicrographs of the tube formation is 

represented; =p <0.005.  
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 Figure 19: MCPIP overexpression reduced levels of anti-angiogenic factors, 

TSP-1 and VEGI 

 HUVECs were transfected with MCPIP expression vector or empty vector 

for 24 hours (A) After 24 h, transcript levels were evaluated for TSP-1; 

=p<0.02 (B) protein levels were assayed by immunoblot analysis with 

antibody against TSP-1 with GAPDH as a control. HUVECs were transfected 

with siRNA specific for SIRT-1 or scrambled (Scr) siRNA for 3 hours before 

transfecting with MCPIP expression vector After 24 h, (C) transcript levels 

were evaluated for TSP-1; =p<0.02 (D) protein levels were assayed by 

immunoblot analysis with antibody against TSP-1 with GAPDH as a 

control=p<0.05. (E) HUVECs were transfected with for MCPIP expression 

vector or empty vector was used as a control. p65 nuclear protein levels 

were measured by immunoblot analysis. Histone was used to check for 

purity of the nuclear extract and as a control for densitometric analysis, (F) 

Transcript levels of VEG-inhibitor were analysed by RT-PCR, =p <0.05.  
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 Figure 20: Deubiquitinase activity of MCPIP critical for angiogenic 

differentiation 

 HUVECs were transfected with MCPIP-wild type and MCPIP-mutant-D141N 

expression vectors. (A) After 24 hours cells were trypsinized and placed on 

matrigel. Quantification of phase-contrast photomicrographs of the tube 

formation is represented; =p <0.005. (B) Ubiquitinated HIF-1 substrate of 

MCPIP was incubated with purified MCPIP (1g) or purified D141N mutant 

(1g) at 37C. After 1 hour the mixture was immunoblotted against ubiquitin 

antibody. (C) Ub-AFC (1μM) was incubated with MCPIP1 or its mutant, 

D141N (1μg) at 37oC.  Ub-AFC without any protein was used as a negative 

control. Fluorescence was measured at Ex400nm and Em505nm in a time-

dependent manner. (D) High Molecular weight polyubiquitin (1g) was 
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incubated with purified MCPIP (1g) or MCPIP mutant D141N (1g) at 37oC 

for 1 hour. The reaction mixture was immunoblotted with ubiquitin 

antibody. 
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 Figure 21: MCPIP inhibits the production of anti-angiogenic miR-20b and 

miR-34a and their mimetics inhibit MCPIP-induced angiogenesis 

 HUVECs were transfected with empty vector or MCPIP or RNase dead 

mutant, D141N. After 24 h, levels of (A) miR-20b or (B) miR-34a were 

measured by RT-PCR. (C) HUVECs were transfected with miR-negative 

control (NC) miR-20b mimic or miR-34a mimic for 3 hours before 

transfecting with MCPIP expression vectors. After 24 hours cells were 

trypsinized and placed on matrigel. Quantification of phase-contrast 

photomicrographs of the tube formation is represented; =p <0.005.  



79 
 

 

 Figure 22: Schematic representation of the mechanisms involved in MCPIP-

induced differentiation 

 MCPIP mediates angiogenic differentiation by inducing HIF-1 and SIRT-1 

levels and by inhibiting NF-B activation via dual mechanisms: (A) 

deubiquitination of ubiquitinated HIF-1 thus stabilizing HIF-1  and (B) 

suppressing the levels of mir-20b and mir-34a thus augmenting the levels 

of HIF-1 and SIRT-1. Stabilized HIF-1 enters the nucleus for promoting 

the transcription of VEGF and COX2. Increased levels of SIRT-1 repress 

levels of the angiogenesis inhibitor, TSP-1, thus promoting MCPIP-induced 

angiogenesis. SIRT-1 is also reported to inhibit NF-B that in turn results in 

reduced levels of TSP-1 and mir-34a levels. 
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