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ABSTRACT 

With the critical role of aberrantly active Signal Transducer and Activator of Transcription 

(Stat) 3 protein in many human cancers, selective small-molecule inhibitors targeting the 

dimerization event which is required for stat3 activation, would be valuable as 

therapeutic agents. And the inhibitors will be useful chemical probes to clarify the 

complex biological functions of Stat3. By computational and structural analyses of the 

interaction between Stat3 and the lead dimerization disruptor, S3I-201, we have 

designed a diverse set of analogs.   

 

One of the most active analogs, S3I-201.1066 is derived to contain a cyclo-hexyl benzyl 

moiety on the amide nitrogen, which increases the binding to the Stat3 SH2 domain. 

Evidence is presented from in vitro biochemical and biophysical studies that 

S3I-201.1066 directly interacts with Stat3 or the SH2 domain, with an affinity (KD) of 2.74 

µM, and disrupts the binding of Stat3 to the cognate pTyr-peptide, GpYLPQTV–NH2, 

with an IC50 of 23 µM. Moreover, S3I-201.1066 selectively blocks the association of 

Stat3 with the epidermal growth factor receptor (EGFR), and inhibits Stat3 tyrosine 

phosphorylation and nuclear translocation in EGF-stimulated mouse fibroblasts. In 

cancer cells that harbor aberrant Stat3 activity, S3I-201.1066 inhibits constitutive Stat3 

DNA-binding and transcriptional activities. By contrast, S3I-201.1066 has no effect on 
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Src activation or the EGFR-mediated activation of the Erk1/2MAPK pathway. 

S3I-201.1066 selectively suppresses the viability, survival, and malignant transformation 

of the human breast and pancreatic cancer lines and the v-Src-transformed mouse 

fibroblasts harboring persistently active Stat3. Treatment with S3I-201.1066 on 

malignant cells harboring aberrantly active Stat3 down regulated the expression of c-Myc, 

Bcl-xL, Survivin, matrix metalloproteinase 9, and VEGF, which are known 

Stat3-regulated genes important in diverse tumor processes. The in vivo administration 

of S3I-201.1066 induced significant anti-tumor response in mouse models of human 

breast cancer, which correlates with the inhibition of constitutively active Stat3 and the 

suppression of known Stat3-regulated genes. 

 

Further computer-aided lead optimization derives higher-affinity (KD, 504 nM), orally 

bioavailable Stat3 SH2 domain-binding ligand, BP-1-102 as a structural analog of 

S3I-201.1066. The most significant modification is the pentafluorobenzene sulfonamide 

component of BP-1-102, which permits accessibility of a third sub-pocket of the Stat3 

SH2 domain surface. BP-1-102-mediated inhibition of aberrantly-active Stat3 in human 

pancreatic cancer, Panc-1, breast cancer, MDA-MB-231, and prostate (DU145) cancer 

cells and in the mouse transformed fibroblasts harboring aberrantly-active Stat3. It also 

disrupts Stat3-NFκB cross-talk and suppresses the release of granulocyte 
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colony-stimulating factor, soluble intercellular adhesion molecule-1, 

macrophage-migration-inhibitory factor/glycosylation-inhibiting factor, interleukin-1 

receptor antagonist and the serine protease inhibitor (serpin) protein 1, and the 

expression of c-Myc, Cyclin D1, Bcl-xL, Survivin, and vascular endothelial growth factor 

expression in vitro and in vivo. Inhibition of tumor cell-associated constitutively-active 

Stat3 further suppresses focal adhesion kinase and paxillin induction, enhances 

E-cadherin expression, and down-regulates Krüppel-like factor 8 expression. 

Consequently, BP-1-102 selectively suppresses anchorage-dependent and independent 

growth, survival, migration and invasion of Stat3-dependent tumor cells in vitro. 

Intravenous or oral gavage delivery of BP-1-102 furnishes micromolar or microgram 

levels in tumor tissues and inhibits growth of mouse xenografts of human breast and lung 

tumors. 

 

Computer-aided lead optimization has therefore derived a more suitable small-molecule 

inhibitor as a drug candidate. Our studies of the Stat3 SH2 protein surface and of the 

interactions between lead agents and the SH2 domain provided significant data to 

facilitate the structural optimization. From S2I-201 to S3I-201.1066 and to BP-1-102, we 

note the substantial gain in potency and efficacy, and the pharmacokinetic improvements. 

The oral bioavailability of BP-1-102 represents a substantial advancement in the 
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discovery of small-molecule Stat3 inhibitors as novel anticancer agents. 
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INTRODUCTION 

The signal transducer and activator of transcription (Stat) family of proteins was originally 

discovered as latent cytoplasmic transcription factors that mediate growth and 

differentiation, survival, development, and inflammation [1,2]. Normal Stat signaling in 

response to cytokines and growth factors are rapid and transient [2]. However, many 

human solid and hematological tumors harbor aberrant Stat3 activity which is 

persistently activated [3]. Evidence shows constitutively active Stat3 is a critical 

molecular mediator of carcinogenesis and tumor progression [4-6]. Several studies 

testing the proof-of-concept show that the inhibition of Stat3 activation or disruption of 

dimerization induces cancer cell death and tumor regression [7-12]. 

 

For the activation of Stats, upon the binding of cytokines or growth factors to their 

receptors, Stats are recruited to the receptor via their SH2 domains and are 

phosphorylated on a key tyrosine residue (Tyr705 for Stat3) by receptor-associated 

tyrosine kinases [2]. Two phosphorylated Stat monomers dimerize through reciprocal 

pTyr-SH2 domain interactions, and the dimers translocate to the nucleus, where they 

bind to specific DNA-response elements of target genes and regulate gene expression [1]. 

All steps towards the activation of functional Stat3 [1, 2] offer opportunities to inhibit 

aberrant Stat3 activity. Since the SH2 domain is required for both the binding to 
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phospho-Tyr peptide motifs of receptors and the dimerization of Stats, inhibiting the 

function of the SH2 domain would represent an effective approach to inhibit Stat3 

function [4-6]. This should not only inhibit Stat activation, but also prevent dimerization of 

single Stat molecules. Fig. 1 shows the classical approaches to inhibit Stat activity [13]. 

 

In this project, I focused on disrupting the dimerization of Stat molecules for the reasons 

provided above. Molecular modeling was used to identify candidate compounds as leads 

that bind to the Stat3 SH2 domain and to study in silico the interactions with the SH2 

domain for the purposes of structural optimization, potency and efficacy enhancement, 

and pharmacological improvements. Computational modeling together with integrative 

biochemical experiments were employed to identify specific Stat3 inhibitors that block the 

dimerization of Stat3. Compounds were subsequently tested in biological assays in vitro, 

and in in vivo tumor models, and in vivo pharmacokinetic experiments in order to identify 

suitable molecules that can be used for therapeutic purposes and also as tools for 

investigating the regulation of Stat3 protein in cancer cells. 

 

The emergence of computational modeling has paved the way to study the molecular 

events of which structural information is available and develop approaches to rationally 

design compounds that can interfere with biochemical and biological systems. 
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Computational modeling was applied together with in silico screening and 

structure-based approach to design novel compounds that can disrupt the dimerization 

of Stat3. The biochemical activity and anti-tumor cell effects, and the in vivo antitumor 

efficacy and pharmacokinetic properties of select compounds were investigated to 

assess their suitability as potential novel anticancer agents. 

 

Figure 1.  Approaches to inhibit Stat3 pathway 

A: inhibition of tyrosine phosphorylation 

B: inhibition of Stat3 dimerization.  

C: inhibition of Stat3 DNA binding 

Inhibition is indicated by the symbol “|—”. This dissertation is focusing on approach B. 
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DISCOVERY OF S3I-201.1066, A NOVEL SMALL MOLECULE DISRUPTS 
STAT3 SH2 DOMAIN-PHOSPHOTYROSINE INTERACTIONS AND STAT3 

-DEPENDENT TUMOR PROCESSES 

The targeting of aberrant Stat3 signaling provides a novel strategy for treating the wide 

variety of human tumors that harbor abnormal Stat3 activity. The critical step of 

dimerization between two monomers within the context of STAT activation presents an 

attractive strategy to interfere with Stat3 signaling and functions and this approach has 

been exploited in prior work. In the present study, key structural information from the 

computational modeling of S3I-201 bound to the Stat3 SH2 domain facilitated the design 

of novel analogs of which S3I-201.1066 shows an improved Stat3-inhibitory activity. 
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Introduction 

Signal transduction proteins have increased importance in carcinogenesis and tumor 

formation and represent attractive targets for the development of novel anticancer 

therapeutics. The signal transducer and activator of transcription (Stat) family of proteins 

are cytoplasmic transcription factors with important roles in the responses to cytokines 

and growth factors, including promoting cell growth and differentiation, and inflammation 

and immune responses [14,15]. Normal Stat’s activation is initiated by the phosphorylation 

of a critical tyrosine residue upon the binding of cytokines or growth factors to cognate 

receptors. Stat’s phosphorylation is induced by growth factor receptor tyrosine kinases, 

or cytoplasmic tyrosine kinases, such as Janus kinases (Jaks) and Src family kinases. 

While pre-existing Stat dimers have been detected [16, 17], studies show that 

phosphorylation induces dimerization between two Stat monomers through a 

phosphotyrosine interaction with the SH2 domain. In the nucleus, active Stat dimers bind 

to specific DNA-response elements in the promoters of target genes and regulate gene 

expression. Normal Stat activation is transient in accordance with physiological 

responses. However, the persistent activation of certain Stat family members, including 

Stat3 is frequently observed in many human tumors. It is now well established that 

aberrant activation of Stat3 contributes to malignant transformation and tumorigenesis. 

Evidence shows that persistently active Stat3 mediates oncogenesis and tumor 
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formation in part by the upregulation of the expression of critical genes, the dysregulation 

of cell growth and survival, the promotion of angiogenesis [15,18–24], and the induction of 

tumor immune-tolerance [25,26]. Thus, the targeting of aberrant Stat3 signaling provides a 

novel strategy for treating the wide variety of human tumors that harbor abnormal Stat3 

activity. 

 

The critical step of dimerization [27] between two monomers within the context of Stat3 

activation presents an attractive strategy to interfere with Stat3 signaling and functions 

and this approach has been exploited in prior work [7, 12, 13, 28-35]. Leading agents from 

those earlier studies have been explored in the rational design of optimized molecules, in 

conjunction with molecular modeling of their binding to the Stat3 SH2 domain [12, 30], per 

the X-ray crystal structure of the Stat3b homodimer [36]. One of those leads, S3I-201 [12] 

had previously been shown to exert antitumor effects against human breast cancer 

xenografts via mechanisms that involve the inhibition of aberrant Stat3 activity.  

 

In the present study, key structural information from the computational modeling of 

S3I-201 bound to the Stat3 SH2 domain facilitated the design of novel analogs of which 

S3I-201.1066 shows an improved Stat3-inhibitory activity. S3I-210.1066 inhibits Stat3 

DNA-binding activity with an IC50 value of 35 µM in vitro, and shows the similar effect in 
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cell model. In this project, we provided evidence that S3I-201.1066 directly interacts with 

the Stat3 protein SH2 domain in vitro, thereby disrupting Stat3 binding to cognate pTyr 

peptide motifs of receptors and inhibiting Stat3 phosphorylation and activation, and Stat3 

nuclear localization. Furthermore, evidence is provided that S3I-201.1066 selectively 

induces antitumor cell effects in human breast and pancreatic cancer cells, and mouse 

transformed fibroblasts harboring aberrant Stat3 activity, and inhibits growth of human 

breast tumors in xenografts. 

 

Materials and Methods 

Cells and reagents 

Normal mouse fibroblasts (NIH3T3) and counterparts transformed by v-Src 

(NIH3T3/v-Src), v-Ras (NIH3T3/v-Ras) or overexpressing the human epidermal growth 

factor (EGF) receptor (NIH3T3/hEGFR), and the human breast cancer (MDA-MB-231) 

and pancreatic cancer (Panc-1) cells have all been previously reported [28, 37–39]. The 

normal human pancreatic duct epithelial cells (HPDEC) were a kind gift from Dr. Tsao 

(OCI, UHN-PMH, Toronto) [40], the Stat3 knockout mouse embryonic fibroblasts line was 

generously provided by Dr. Valerie Poli (University of Turin) [41], and the ovarian cancer 

line, A2780S was a kind gift from Dr. Jin Q. Cheng (Moffitt Cancer Center and Research 

Institute). The Stat3-dependent reporter, pLucTKS3 and the Stat3-independent reporter, 
 7



pLucSRE, and the v-Src transformed mouse fibroblasts that stably express pLucTKS3 

(NIH3T3/v-Src/ pLucTKS3) have all been previously reported [38, 42, 43]. Cells were grown 

in Dulbecco’s modified Eagle’s medium (DMEM) containing 10% heat-inactivated fetal 

bovine serum, or in the case of HPDEC, they were grown in keratinocyte-SFM (GIBCO, 

Invitrogen Corp., Carlsbad, CA) supplemented with 0.2 ng EGF and 30 mg/ml bovine 

pituitary extract, and containing antimycol. Antibodies used are against Stat3, 

pY705Stat3, Src, pY416Src, Jak1, pJak1, Shc, pShc, Erk1/2, pErk1/2, and Survivin from 

Cell Signaling Technology (Danvers, MA), and anti-EGFR and anti-VEGF from Santa 

Cruz Biotech (Santa Cruz, CA). 

 

Cloning and protein expression 

The coding regions for the murine Stat3 protein and the Stat3 SH2 domain were 

amplified by PCR and cloned into vectors pET-44 Ek/LIC (Novagen, EMD Chemicals, 

Gibbstown, NJ) and pET SUMO (Invitrogen), respectively. The primers used for 

amplification were: Stat3 Forward: GACGACGACAAGATGGCTCAGTGGAACC 

AGCTGC; Stat3 Reverse: GAGGAGAAGCCCGGTTATCACATGGGGGAGGTAG 

CACACT; Stat3 SH2 Forward: ATGGGTTT CATCAGCAAGGA; Stat3 SH2 Reverse: 

TCACCTACAGTACTTTCCAAATGC. Clones were sequenced to verify the correct 

sequences and orientation. His-tagged recombinant proteins were expressed in BL21 
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(DE3) cells and purified on Ni-ion sepharose column. 

Nuclear extract preparation, gel shift assays, and densitometric analysis 

Nuclear extract preparations and electrophoretic mobility shift assay (EMSA) were 

carried out as previously described [38, 43]. The 32P-labeled oligo-nucleotide probes used 

were hSIE (high affinity sis-inducible element from the c-fos gene, m67 variant, 

5’-AGCTTCATTTCCCGTAAATCCCTA) that binds Stat1 and Stat3 [44] and MGFe 

(mammary gland factor element from the bovine β-casein gene promoter, 

5’-AGATTTCTAGGAATTCAA) for Stat1 and Stat5 binding [45,46]. Except where indicated, 

nuclear extracts were pre-incubated with compound for 30 min at room temperature prior 

to incubation with the radiolabeled probe for 30 min at 30°C before subjecting to EMSA 

analysis. Bands corresponding to DNA-binding activities were scanned and quantified 

for each concentration of compound using ImageQuant and plotted as percent of control 

(vehicle) against concentration of compound, from which the IC50 values were derived, 

as previously reported [47]. 

 

Immunoprecipitation, immunoblotting and densitometric analyses 

Immunoprecipitation from whole-cell lysates, and tumor tissue lysate preparation, and 

immunoblotting analysis were performed as previously described [7, 12, 43, 48]. Primary 

antibodies used were anti-Stat3, pY705Stat3, pY416Src, Src, pErk1/2, Erk1/2, pJak1, 
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Jak1, pShc, Shc, Grb 2, c-Myc, Bcl-xL, Survivin, MMP-9, and β-actin (Cell Signaling), 

and VEGF (Santa Cruz Biotech.). 

 

Cell viability and proliferation assay 

Cells in culture in 96-well plates were treated with or without S3I-201.1066 for 24h and 

subjected to CyQuant cell vaibility assay (Invitrogen Corp./Life Technologies Corp.). Or 

cells in culture in 6-well plates were treated with or without S3I-201.1066 for 96h, and 

harvested, and the viable cells counted by trypan blue exclusion with phase-contrast 

microscopy. 

 

Immunofluorescence imaging/confocal microscopy 

NIH3T3/hEGFR cells were grown in multi-cell plates, serum starved for 8 h and treated 

with or without S3I-201.1066 for 30 min prior to stimulation by rhEGF (1 µg/mL) for 10 

min. Cells were fixed with ice-cold methanol for 15 min, washed 3 times in phosphate 

buffered saline (PBS), permeabilized with 0.2% Triton X-100 for 10 min, and further 

washed 3–4 times with PBS. Specimens were then blocked in 1% bovine serum albumin 

(BSA) for 30 min and incubated with anti-EGFR (Santa Cruz) or anti-Stat3 (Cell 

Signaling) antibody at 1:50 dilution at 4°C overnight. Subsequently, cells were rinsed 4–5 

times in PBS, incubated with Alexa fluor 546 rat antibody for EGFR detection and Alexa 
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fluor 488 rabbit antibody for Stat3 detection (Invitrogen) for 1 h at room temperature in 

the dark. Specimens were then washed 5 times with PBS, covered with cover slides with 

VECTASHIELD mounting medium containing DAPI (Vector Lab, Inc., Burlingame, CA), 

and examined immediately under a Leica TCS SP5 confocal microscope (Germany) at 

the appropriate wavelengths. Images were captured and processed using the Leica TCS 

SP 5 software. 

 

Soft-agar colony formation assay 

Colony formation assays were carried out in 6-well dishes, as described previously [29, 47]. 

Briefly, each well contained 1.5 ml of 1% agarose in Dulbeco’s modified Eagle’s medium 

as the bottom layer and 1.5 ml of 0.5% agarose in Dulbeco’s modified Eagle’s medium 

containing 4–6 X103 NIH3T3/v-Src, NIH3T3/v-Ras, A2780S, MDA-MB-231 or Panc-1 

cells, as the top layer. Treatment with S3I-201.1066 was initiated 1 day after seeding 

cells by adding 80 µl of medium with or without S3I-201.1066, and repeating every 2 or 3 

days, until large colonies were evident. Colonies were quantified by staining with 20 µl of 

1 mg/ml crystal violet (Thermo- Fisher, Waltham, MA), incubating at 37°C overnight, and 

counting the next day under phase-contrast microscope. 
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Fluorescence polarization assay 

Fluorescence polarization (FP) assay was conducted as previously reported [33], with 

some modification using the phosphopeptide, 5-carboxyfluorescein -GpYLPQTV– NH2 

(where pY represents phospho-Tyr) as probe and Stat3. A fixed concentration of the 

fluorescently labeled peptide probe (10 nM) was incubated with an increasing 

concentration of the Stat3 protein for 30 min at room temperature in the buffer, 50mM 

NaCl, 10mM HEPES, 1 mM EDTA, 0.1% Nonidet P-40, and the fluorescent polarization 

measurements were determined using the POLARstar Omega (BMG LABTECH, 

Durham, NC), with the set gain adjustment at 35 mP. The Z’ value was derived per the 

equation Z’ = 1-(3SDbound + 3SDfree)/ (mPbound - mPfree), where SD is the standard 

deviation and mP is the average of fluorescence polarization. In the ‘‘bound’’ state, 10 

nM 5-carboxyfluorescein- GpYLPQTV–NH2 was incubated with 150 nM purified Stat3 

protein, while the ‘‘free’’ (unbound) state represents the same mixture, but incubated with 

an additional 10 µM unlabeled Ac-GpYLPQTV–NH2. For evaluating agents, Stat3 

protein (150 nM) was incubated with serial concentrations of S3I-201.1066 at 30 ℃ for 

60 min in the indicated assay buffer conditions. Prior to the addition of the fluorescent 

probe, the protein:S3I-201.1066 mixtures were allowed to equilibrate at room 

temperature for 15 min. Probe was added at a final concentration of 10 nM and 

incubated for 30 min at room temperature. And then the FP measurements were taken 
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using the POLARstar Omega, with the set gain adjustment at 35 mP. 

 

Surface plasmon resonance analysis 

SensiQ and its analysis software Qdat (ICX Technologies, Oklahoma City, OK) were 

used to analyze the interaction between the agent and the Stat3 protein and to 

determine the binding affinity. Purified Stat3 was immobilized on a HisCap Sensor Chip 

by injecting 50 mg/ml of Stat3 onto the chip. Various concentrations of S3I-201.1066 in 

running buffer (1×PBS, 0.5% DMSO) were passed over the sensor chip to produce 

response signals. The association and dissociation rate constants were calculated using 

the Qdat software. The ratio of the association and dissociation rate constants was 

determined as the affinity (KD). 

 

Colony survival assay 

This was performed as previously reported [49]. Briefly, cells were seeded as single-cell in 

6-cm dishes (500 cells per well), treated once the next day with S3I-201.1066 for 48 h, 

and allowed to culture until large colonies were visible. Colonies were stained with 

crystal violet (ThermoFisher) for 4 h and counted under a phase-contrast microscope. 
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Wound healing assay for migration 

Wounds were made using pipette tips in monolayer cultures of cells in 6-well plates. 

Cells were treated with or without increasing concentrations of S3I-201.1066 and 

allowed to migrate into the denuded area for 12–24 h. The migration of cells was 

visualized at a 10× magnification using an Axiovert 200 Inverted Fluorescence 

Microscope (Zeiss, Göttingen, Germany), with pictures taken using a mounted Canon 

Powershot A640 digital camera (Canon USA, Lake Success, NY). Cells that migrated 

into the denuded area were quantified. 

 

Mice and in vivo tumor studies 

Six-week-old female athymic nude mice were purchased from Harlan and maintained in 

the institutional animal facilities approved by the American Association for Accreditation 

of Laboratory Animal Care. Athymic nude mice were injected subcutaneously in the left 

flank area with 5 ×106 human breast cancer MDA-MB-231 cells in 100 µL of PBS. After 

5–10 days, tumors of a diameter of 3 mm were established. Animals were grouped so 

that the mean tumor sizes in all groups were nearly identical, then given S3I-201.1066, 

i.v. at 3 mg kg-1 every 2 or every 3 days for 17 days and monitored every 2 or 3 days, and 

tumor sizes were measured with calipers. Tumor volume, V, was calculated according to 

the formula V = 0.52 ×a2 ×b, where a, smallest superficial diameter, b, largest superficial 
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diameter. For each treatment group, the tumor volumes for each set of measurements 

were statistically analyzed in comparison to the control (non-treated) group. Upon 

completion of the study, tumors were extracted and tumor tissue lysates were prepared 

for immunoblotting and gel shift analyses. 

 

Statistical analysis 

Statistical analysis was performed on mean values using Prism GraphPad Software, Inc. 

(La Jolla, CA). The significance of differences between groups was determined by the 

paired t-test at *p < 0.05, **p < 0.01, and ***p < 0.001. 

 

Results 

Computer-aided design of S3I-201 analogs as Stat3 inhibitors 

Structural analysis of the lowest genetic optimization for ligand docking (GOLD) [50] 

conformation of the lead Stat3 inhibitor, S3I-201 (green) (IC50 = 86 µM for inhibition of 

Stat3:Stat3 [12]) (Fig. 2A and C) bound within the Stat3 SH2 domain (Fig. 2C), per the 

X-ray crystal structure of DNA-bound Stat3b homodimer [36] showed significant 

complementary interactions between the protein surface and the compound and 

identified key structural requirements for tight binding. Docking studies permitted in silico 
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structural design of analogs of differing Stat3 SH2 domain-binding characteristics in 

order to derive Stat3 inhibitors of improved potency and selectivity. GOLD studies 

showed limited structural occupation of the Stat3 SH2 domain, identifying a potential 

means for improving inhibitor potency. The SH2 domain is broadly composed of three 

sub-pockets, only two of which are accessed by S3I-201 (Fig. 2C). Lead agent, S3I-201 

(Fig. 2A) has a glycolic acid scaffold with its carboxylic acid condensed with a 

4-amino-salicylic acid to furnish an amide bond, and its hydroxyl moiety O-tosylated. The 

ortho- hydroxybenzoic acid component is a known pTyr mimetic, and low energy GOLD 

studies consistently placed this unit in the pTyr-binding site, making hydrogen bonds and 

electrostatic interactions with Lys591, Ser611, Ser613 and Arg609. Due to the strength 

of such ionic interactions between oppositely charged ions, it is likely that a considerable 

portion of the binding between the SH2 domain and S3I-201 arises from the pTyr 

mimetic. The O-tosyl group binds in the mostly hydrophobic pocket that is derived from 

the tetramethylene portion of the side chain of Lys592 and the trimethylene portion of the 

side chain of Arg595, along with Ile597 and Ile634. Given the potency of S3I-201 towards 

Stat3 inhibition, a rational synthetic program was undertaken to modify and optimize the 

core scaffold to furnish more potent analogs. We additionally exploited key hydrophobic 

interactions with Phe716, Ile659, Val637 and Trp623 (Fig. 2C, see the yellow arrow) in 

generating compounds made of N-substituted (para-cyclohexyl)benzyl analogs [51], 
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including S3I- 201.1066 (Fig. 2B). The present study of the analog S3I-201.1066 (Fig. 2B 

and D) was undertaken to derive biochemical and biophysical evidence of binding to 

Stat3 and to define the mechanisms of inhibition of Stat3 and its functions in the context 

of Stat3-dependent malignant transformation and tumorigenesis. 

 

Fig. 2 

 

 

Figure 2. Structure and computer modeling of S3I-201 and S3I-201.1066 to Stat3 SH2 
domain 
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(A and B) Structures of (A) S3I-201, (B) S3I-201.1066; (C and D) GOLD of (C) S3I-201 (green), 

and (D) S3I-201 (green) and S3I-201.1066 (yellow) to the SH2 domain of Stat3; arrow denotes 

potential binding sub-pocket accessed by S3I-201.1066, but not S3I-201. 

 

Inhibition of Stat3 DNA-binding activity 

S3I-201 analogs derived per in silico structural optimization and molecular modeling of 

the binding to the Stat3 SH2 domain were synthesized and evaluated in Stat3 

DNA-binding assay in vitro, as previously done [12]. Nuclear extracts containing activated 

Stat3 prepared from v-Src-transformed mouse fibroblasts (NIH3T3/v-Src) that harbor 

aberrantly active Stat3 were incubated for 30 minutes at room temperature with or 

without increasing concentrations of the analog, S3I-201.1066, prior to incubation with 

the radiolabeled hSIE probe that binds to Stat3 and Stat1 and subjected to 

electrophoretic mobility shift assay (EMSA) analysis [12]. Stat3 DNA-binding activity was 

inhibited in a dose-dependent manner by S3I- 201.1066 (Fig. 3A(i)), with average IC50 

value of 35 ±9 µM. This value represents 3 fold improvement over the activity of the lead 

agent, S3I-201 (IC50 of 86 µM) [12]. For selectivity, nuclear extracts containing activated 

Stat1, Stat3 and Stat5 prepared from EGF stimulated NIH3T3/hEGFR (mouse 

fibroblasts over-expressing the human epidermal growth factor receptor) were 

pre-incubated at room temperature with or without increasing concentrations of 
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S3I-201.1066 for 30 min, prior to incubation with the radiolabeled oligonucleotide probes 

and subjecting to EMSA analyses, as previously done [12]. EMSA results of the binding 

studies using the hSIE probe show the strongest complex of Stat3:Stat3 with the probe 

(Fig. 3A (ii) upper band, lanes 1 and 2), which is significantly disrupted at 50 µM 

S3I-201.1066 and completely disrupted at 100 µM S3I-201.1066 (Fig. 3A (ii), upper band, 

lanes 2 and 3). EMSA analysis further shows a less intense Stat1:Stat3 complex 

(intermediate band), which is similarly repressed at 50 µM and completely disrupted at 

100 µM S3I- 201.1066 (Fig. 3A (ii), lanes 2 and 3). By contrast, we observe no significant 

inhibition of the Stat1:Stat1 complex that is of the lowest intensity (lower band) at 50 µM 

S3I-201.1066 a moderate inhibition at 100 µM S3I-201.1066, but a complete inhibition at 

200 µM S3I- 201.1066 (Fig. 3A (ii), lower band). Of importance, at the 100 µM S3I- 

201.1066 concentration at which only a moderate inhibition of Stat1:Stat1 complex 

occurred, the larger Stat3:Stat3 complex is completely dissociated (Fig. 3A (ii), lane 3). 

Moreover, EMSA analysis showed no effect on Stat5:Stat5 complex with the MGFe 

probe, up to 300 µM S3I-201.1066 (Fig. 3A (iii)). Thus, S3I-201.1066 preferentially 

inhibits DNA-binding activity of Stat3 over that of Stat1 or Stat5. 
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Fig. 3 
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 (D) 

 

 

Figure 3. Effects of S3I-201.1066 on the activities of STATs, Src, Shc, and Erks.  

(A) Nuclear extracts of equal total protein containing activated Stat1, Stat3, and/or Stat5 were 

pre-incubated with or without S3I-201.1066 for 30 min at room temperature prior to the 

incubation with the radiolabeled (i) and (ii) hSIE probe that binds Stat1 and Stat3 or the (iii) MGFe 

probe that binds Stat5 and subjected to EMSA analysis;  

(B) nuclear extracts of equal total protein prepared from the designated malignant cells following 

24h treatment with or without S3I-201.1066 were subjected to in vitro DNA-binding assay using 

the radiolabeled hSIE probe and analyzed by EMSA;  
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(C) cytosolic extracts of equal total protein were prepared from 24 h, S3I-201.1066- treated or 

untreated NIH3T3/v-Src fibroblasts that stably express the Stat3- dependent luciferase reporter 

(pLucTKS3) or from treated or untreated NIH3T3/v-Src fibroblasts, the human pancreatic 

(Panc-1) and breast (MDA-MB-231) carcinoma lines that are transiently transfected with 

pLucSRE or pLucTKS3 and analyzed for luciferase activity using a luminometer;  

(D) SDS-PAGE and Western blotting analysis of whole-cell lysates of equal total protein prepared 

from S3I-201.1066- treated or untreated NIH3T3/v-Src, Panc-1 and MDA-MB-231 cells probing 

for pY705Stat3, Stat3, pY416Src, Src, pShc, Shc, pErk1/2 and Erk1/2. Positions of STATs:DNA 

complexes or proteins in gel are labeled; control lanes (0) represent nuclear extracts treated with 

0.05% DMSO, or nuclear extracts or whole-cell lysates prepared from 0.05% DMSO-treated cells; 

luciferase activities were normalized to β-galactosidase activity. Data are representative of 3–4 

independent determinations: **p < 0.05. 

 

Inhibition of intracellular Stat3 activation 

Stat3 is constitutively activated in a variety of malignant cells, including human breast 

and pancreatic cancer cells [13, 22, 23,]. Given the effect against Stat3 DNA-binding activity 

in vitro, we evaluated S3I-201.1066 in v-Src transformed mouse fibroblasts 

(NIH3T3/v-Src), human breast cancer (MDA-MB-231) and human pancreatic cancer 

(Panc-1) lines that harbor aberrant Stat3 activity. Twenty-four hours after treatment, 
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nuclear extracts were prepared from cells and subjected to Stat3 DNA-binding assay in 

vitro using the radio-labeled hSIE probe and analyzed by EMSA. Compared to the 

control (0.05% DMSO-treated cells, lane 1), nuclear extracts from S3I-201.1066-treated 

NIH3T3/v-Src, Panc-1 and MDA-MB- 231 cells showed dose-dependent decreases of 

constitutive Stat3 activation, with significant inhibition at 50 µM S3I-201.1066. (Fig. 3B, 

compare lanes 2–5, 8–10, and 12–15 to their respective controls (0)). Luciferase reporter 

studies were performed to further determine the effect of S3I-201.1066 on Stat3 

transcriptional activity. Results show that the treatment with S3I-201.1066 of the v-Src 

transformed mouse fibroblasts (NIH3T3/v-Src) that stably express the Stat3-dependent 

luciferase reporter (NIH3T3/v-Src/pLucTKS3) [28,42,43] significantly (**p < 0.01) repressed 

the induction of the Stat3-dependent reporter (Fig. 3C, left panel, NIH3T3/v-Src 

/pLucTKS3). Similar results were obtained when the human pancreatic cancer, Panc-1 

and breast cancer, MDA-MB-231 cells harboring aberrant Stat3 activity were transiently 

transfected with the Stat3-dependent reporter, pLucTKS3 and treated with S3I-201.1066 

(Fig. 3C, middle and right panels, pLucTKS3). By contrast, a similar treatment of 

malignant cells that are transiently transfected with the Stat3-independent luciferase 

reporter, pLucSRE, which is driven by the serum response element (SRE) of the c-fos 

promoter, had no observable effect on the reporter induction (Fig. 3C, pLucSRE). 

Moreover, immunoblotting analysis showed a concentration dependent reduction of 
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pTyr705Stat3 levels in NIH3T3/v-Src (Fig. 3D (i), top panel), Panc-1 cells (Fig. 3D (ii), 

top panel), and MDA-MB-231 (Fig. 3D (iii), top panel). Cells upon treatment with 

S3I-201.1066 for 24 h, presumably through the blockade of Stat3 binding to pTyr motifs 

of receptors and the prevention of de novo phosphorylation by tyrosine kinases. By 

contrast, immunoblotting analysis showed no significant effects of S3I-201.1066 on the 

phosphorylation of Src (pY416Src), Shc (pShc), and Erk1/2 (pErk1/2) under the same 

treatment conditions (Fig. 3D(i)–(iii), panels 2–4 from the top). In spite of the inhibition of 

aberrant Stat3 activity, no observable change in total Stat3 protein was made, consistent 

with previous reports [12, 30]. Also, total Src, Shc and Erk1/2 protein levels remained 

unchanged. We infer that at the concentrations that inhibit Stat3 activity, S3I-201.1066 

has minimal effect on Src, Shc and Erk1/2 activation. 

 

In vitro evidence that S3I-201.1066 interacts with Stat3 (or SH2 domain) and 
selectively disrupts Stat3 binding to cognate pTyr peptide motif of receptor 

Given the computational modeling prediction that S3I-201.1066 interacts with the Stat3 

SH2 domain, we deduce that S3I-201.1066 blocks Stat3 DNA-binding activity by binding 

to the Stat3 SH2 domain, thereby disrupting Stat3:Stat3 dimerization. To determine 

therefore if the Stat3 SH2 domain could interact with S3I-201.1066, we tested whether 

the addition of purified recombinant Stat3 SH2 domain into the DNA-binding assay 

mixture could intercept the inhibitory effect of the agent on Stat3 activity, as observed in 
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Fig. 3A(i). The purified histidine-tagged Stat3 SH2 domain was added at increasing 

concentrations (1–500 ng) to the nuclear extracts containing activated Stat3 and the 

mixed extracts were pre-incubated with 100 µM S3I-201.1066 for 30 min at room 

temperature and subjected to DNA-binding assay in vitro for the study of the effect of 

S3I-201.1066, as was done in Fig. 3A(i). EMSA analysis shows a strong inhibition by 

S3I-201.1066 of Stat3 DNA-binding activity, as shown in Fig. 3A (i), when no purified 

Stat3 SH2 domain was added to the nuclear extracts (Fig. 4A, lanes 2, 7, and 9, 

compared to lane 1). By contrast, the observed S3I-201.0166- mediated inhibition of 

Stat3 DNA-binding activity was progressively eliminated by the presence of an 

increasing concentration of the purified Stat3 SH2 domain (Stat3SH2), leading to the full 

recovery of Stat3 activity when the recombinant SH2 domain protein was present at 

125–500 ng (Fig. 4A, lanes 3–6, 8 and 10). The preceding studies suggest that 

S3I-201.1066 interacts with the Stat3 SH2 domain. However, the studies do not 

demonstrate a direct binding to the Stat3 SH2 domain. To provide definitive evidence of 

direct binding to Stat3, biophysical studies were performed. His-tagged Stat3 protein (or 

SH2 domain; 50 ng) was immobilized on a Ni-NTA sensor chip surface for surface 

plasmon resonance (SPR) analysis of the binding of S3I-201.1066 as the analyte. 
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 Fig. 4 

 

 

 

 

Figure 4. Studies of the interaction of S3I-201.1066 with Stat3 or the Stat3 SH2 domain. 
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(A) EMSA analysis of in vitro binding activity of Stat3 to the radiolabeled hSIE probe using 

nuclear extracts containing activated Stat3 pre-incubated with 0 or 100 µM S3I-201.1066 in the 

presence or absence of 0–500 ng of purified His-tagged Stat3 SH2 domain;  

(B) surface plasmon resonance analysis of the binding of (i) 0–5 mM GYLPQTV–NH2 

(unphosphorylated, gp-130 peptide), (ii) 0–5 mM GpYLTQTV–NH2 (phosphorylated, high affinity 

gp-130 peptide), or (iii) 0–50 mM S3I-201.1066 (or 50 mM S3I-201.1066, inset) as the analyte to 

the purified His-tagged Stat3 protein immobilized on HisCap sensor chip; and (C) fluorescence 

polarization assay of the binding to the 5-carboxy- fluorescein-GpYLPQTV–NH2 probe of (i) an 

increasing concentration of purified His-Stat3, or (ii)–(iv) a fixed amount of purified His-Stat3 (150 

nM) in the presence of increasing concentrations of (ii) GpYLPQTV–NH2, (iii) GYLPQTV–NH2 or 

(iv) S3I-201.1066. Stat3: DNA complexes in gel are shown, control (-) lane or zero (0) represent 

0.05% DMSO. Data are representative of 2–4 independent determinations. 

 

Association and dissociation measurements were taken and the binding affinity of 

S3I-201.1066 for Stat3 was determined using Qdat software. Results showed gradual 

increase and decrease with time in the signals (response unit, RU) for the association 

and dissociation, respectively, of the agent upon its addition to the immobilized His-Stat3 

(Fig. 4B(iii)), indicative of the binding of S3I-201.1066 to and dissociation from the Stat3 

protein, with a binding affinity, KD of 2.74 µM. These data provide the first definitive 
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evidence of the direct binding of Stat3 to derivatives of S3I-201. This SPR analysis of the 

conformational changes in His-Stat3 was validated by using the high affinity Stat3 

binding phosphoTyr (pY) peptide, GpYLPQTV–NH2, derived from the interleukin-6 

receptor (IL-6R) subunit, gp-130 [32,33] (with a KD of 24 nM) (Fig. 4B(ii)), and its 

non-phosphorylated counterpart, GYLPQTV–NH2, which showed no significant binding 

to Stat3 (Fig. 4B(i)). Interestingly, the dissociation curve for S3I-201.1066 showed a 

large residual binding of S3I-201.1066 to Stat3 at 500–1000 s (Fig. 4B(iii), 10–50 µM, 

500–1000 s), which gradually dissipated over a period longer than 6000 s (Fig. 4B(iii), 

inset). The natural dissociation time of S3I-201.1066 from Stat3 was determined to be 

103 min. This contrasts with the rapid dissociation of the high affinity phosphopeptide, 

GpYLPQTV–NH2 from Stat3 (Fig. 4B(ii)). The slower “off” rate for S3I-201.1066 could 

impact its overall functional effects, with implications for its in vivo therapeutic application. 

Differences in the physicochemical properties would account for the different behaviors 

of the interactions with the Stat3 protein. 

 

The studies so far demonstrate that S3I-201.1066 interacts with Stat3 or the Stat3 SH2 

domain (data not shown). The interaction with the Stat3 SH2 domain could block the 

binding of Stat3 to cognate pTyr peptide motifs of receptors. To verify that S3I-201.1066 

disrupts pTyr–Stat3 SH2 domain interactions, hence Stat3:Stat3 dimerization, we set up 
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a fluorescence polarization (FP) study based on the binding of Stat3 to the high affinity 

phosphopeptide, GpYLPQTV–NH2 [32, 33]. It has previously been reported that Stat3 

binds to GpYLPQTV–NH2 with a higher affinity than to the Stat3-derived pTyr peptide, 

PpYLKTK. It is also reported that this high affinity peptide disrupted Stat3 DNA-binding 

activity in vitro with an IC50 value of 0.15 µM [32]. The FP assay utilizing the 

5-carboxyfluorescein-GpYLPQTV–NH2 as a probe showed increasing fluorescence 

polarization signal (mP) with increasing concentration (in µM) of purified His-Stat3 for a 

robust Z’ value of 0.84 (Fig. 4C(i)), which closely matches the previously reported value 

of 0.87 [33]. The test of the non-phosphorylated, unlabeled GYLPQTV–NH2 in the FP 

assay showed no evidence of inhibition (Fig. 4C(iii)), while as expected, the 

phosphorylated, unlabeled counterpart, GpYLPQTV– NH2 induced a complete inhibition 

with an IC50 value of 0.3 µM(Fig. 4C(iii)), consistent with the previously reported value of 

0.25 ± 0.03 µM [33]. The FP assay was used to further test the ability of S3I-201.1066 to 

disrupt the Stat3 interaction with cognate pTyr peptide (GpYLPQTV–NH2), which 

showed a concentration -dependent inhibition of the fluorescent polarization signal (Fig. 

4C(iv)). Inhibitory constant (IC50 value) was derived to be 20 ± 7.3 µM, which is within the 

range for the IC50 value (35 ± 9 µM) determined for the inhibition of Stat3 DNA-binding 

activity (Fig. 3A(i)). These findings together demonstrate that S3I-201.1066 binds to 

Stat3 or the Stat3 SH2 domain and disrupts the interaction of Stat3 with cognate pTyr 
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peptide motifs. This mode of action underlies the blocking Stat3 DNA-binding activity by 

S3I-201.1066. 

 

To extend the studies to verify that S3I-201.1066 could disrupt the binding of Stat3 to 

receptors, mouse fibroblasts over-expressing the EGF receptor (NIH3T3/hEGFR) were 

treated with or without the compound prior to stimulation with EGF for 10 min. Cells were 

then subjected to immuno-fluorescence staining for EGFR (red) and Stat3 (green) and 

confocal microscopy for the EGF induced colocalization of Stat3 and EGFR and the 

Stat3 nuclear translocation. In the resting NIH3T3/hEGFR fibroblasts, EGFR (red) is 

widely localized at the plasma membrane, Stat3 (green) is localized at both the plasma 

membrane and in the cytoplasm, with no visible presence in the nucleus (stained blue for 

DAPI), while the colocalization of Stat3 with EGFR is minimal at the plasma membrane 

(Fig. 5A, upper panels). The stimulation by EGF of untreated cells induced a strong 

nuclear presence of Stat3 (cyan for merged Stat3 (green) and DAPI (blue)), as well as 

the colocalizations of EGFR and Stat3 (yellow for merged EGFR (red) and Stat3 (green)) 

at the plasma membrane, cytoplasm, and peri-nuclear space, and in the nucleus (Fig. 5A, 

bottom left). 
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Fig. 5 

 

 
Figure 5. Effect of S3I-201.1066 on the colocalization or association of Stat3 with EGF 
receptor and on Stat3 nuclear translocation. 
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(A) Immunofluorescence imaging/confocal microscopy of Stat3 colocalization with EGFR and 

Stat3 nuclear localization in EGF-stimulated (100ng/ml; 10 min) NIH3T3/hEGFR pre-treated with 

or without 50 mM S3I- 201.1066 for 30 min;  

(B) (i) immunoblotting analysis of EGFR immunecomplex (upper panel) or whole-cell lysates 

(lower panel) from S3I-201.1066-treated Panc-1 and MDA-MB-231 cells, or (ii) 

immunecomplexes of EGFR (upper panel) or Stat3 (lower panel) were treated with the indicated 

concentrations of S3I-201.1066, and subsequent immunecomplexes of EGFR or Stat3 were 

probed for EGFR, Stat3, Shc, Grb 2, or Erk1/2MAPK. Data are representative of 3 independent 

studies. 

 

Both of the EGF stimulated colocalization between EGFR and Stat3 and the Stat3 

nuclear localization events were strongly blocked when cells were pre-treated with 

S3I-201.1066 before stimulating with EGF (Fig. 5A, bottom right compared to 

non-treated, bottom left), indicating that the compound disrupts Stat3 binding to EGFR. 

We infer that by blocking Stat3 binding to the receptor, S3I-201.1066 attenuates Stat3 

phosphorylation/activation and thereby prevents Stat3 nuclear translocation. To 

investigate further the Stat3 interaction with the EGFR receptor and the effect of 

S3I-201.1066, co-immunoprecipitation with immunoblotting studies were performed in 

which EGFR immune-complex prepared from whole-cell lysates of treated and untreated 
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cancer cells were blotted for Stat3, and for Shc and Grb 2 as negative control. Results 

showed that the EGFR immune-complex from the untreated Panc-1 and MDA-MB-231 

cells contained Stat3, Shc and Grb 2 (Fig. 5B(i), lanes 1 and 3, i.p. EGFR, blot Stat3, Shc, 

and Grb 2). By contrast, treatment of both cell lines with S3I-201.1066 significantly 

diminished the level of Stat3 that associated with EGFR immune-complex of equal total 

protein, without affecting the levels of Shc or Grb 2 (Fig. 5B (i), lanes 2 and 4, i.p. EGFR, 

blot Stat3, Shc and Grb 2). Western blotting of whole-cell lysates of equal total protein 

shows that the activated and total Erk1/2 levels are unaffected by the treatment of cells 

with S3I-201.1066 (Fig. 5B (i), input, blot pErk and Erk), and that the levels of Stat3 

protein were the same (Fig. 5B (i), input, blot Stat3). To further analyze the effect of 

S3I-201.1066 on Stat3 binding to EGFR, a sequential immune-complex precipitation 

study was performed in which EGFR and Stat3 immune-complexes were independently 

prepared from whole-cell lysates of untreated Panc-1 cells. Immune-complexes of equal 

total protein were directly treated with 0, 30, 50, and 100 µM S3I-201.1066 for 3 h, and 

then subjected to a second EGFR or Stat3 immune- complex precipitation and 

immunoblotting analysis. Compared to untreated samples (Fig. 5B (ii), lane 1),results 

show that the direct treatment with S3I-201.1066 of the EGFR immune-complex 

dramatically diminished the level of Stat3 protein that remained associated with EGFR in 

the complex (Fig. 5B(ii), i.p. EGFR, blot Stat3, lanes 2–4), but had no visible effect on the 
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levels of Shc or Grb 2 (Fig. 5B(ii), i.p. EGFR, blot Shc or Grb 2). The EGFR levels in the 

immune-complexes are the same (Fig. 5B(ii), upper band). Similarly, the Stat3 

immune-complex that is directly treated with S3I-201.1066 and blotted for EGFR showed 

strongly reduced EGFR levels, compared to the untreated Stat3 immune-complex of 

equal total protein (Fig. 5B(ii), i.p. Stat3, blot EGFR, compare lanes 2–4 to lanes 1). The 

Stat3 levels in the immunocomplexes are the same (Fig. 5B(ii), i.p. Stat3, blot Stat3). 

Altogether, these findings strongly demonstrate that S3I-201.1066 selectively disrupts 

the binding of Stat3 to cognate receptor motifs. By this mode of activity, it could block 

Stat3 phosphorylation and nuclear translocation. 

 

S3I-201.1066 blocks growth, viability, malignant transformation, and the migration 
of malignant cells harboring constitutively active Stat3 

Constitutively active Stat3 promotes malignant cell proliferation, survival and malignant 

transformation [13, 23, and 52]. We asked the question whether S3I-201.1066 is able to 

selectively decrease the viability and growth of malignant cells that harbor aberrant Stat3 

activity. The human breast (MDA-MB-231) and pancreatic (Panc-1) cancer lines and the 

v-Src- transformed mouse fibroblasts (NIH3T3/v-Src) that harbor constitutively active 

Stat3, and cells that do not harbor aberrant Stat3 activity (Stat3 knockout mouse 

embryonic fibroblasts (MEFs) (Stat3-/-) [41], normal human pancreatic duct epithelial cells 

(HPDEC) [40], and the ovarian cancer line, A2780S) in culture were treated with or 
 34



without an increasing concentration of S3I-201.1066 for up to 6 days and analyzed for 

viable cell numbers by CyQuant cell proliferation/viability kit or trypan blue 

exclusion/phase-contrast microscopy. Compared to the control (DMSO-treated) cells, 

the mouse fibroblasts transformed by v-Src (NIH3T3/v-Src), and the human breast 

cancer, MDA-MB-231 and pancreatic cancer, Panc-1 lines showed significantly reduced 

viable cell numbers (Fig. 6A) and were growth inhibited (data not shown) following 

treatment with increasing concentrations of S3I-201.1066 for 24–48 h. 

 

By contrast, the viability and growth of the Stat3-null MEFs (Stat3-/-), the ovarian cancer 

line, A2780S and the normal human pancreatic duct epithelial cells (HPDEC) that do not 

harbor aberrant Stat3 activity were not significantly altered by S3I-201.1066 treatment 

(Fig. 6A, and data not shown), with derived IC50 values that are beyond 100 µM, 

compared to values of 35, 48, and 37 µM for the inhibition of NIH3T3/v-Src, Panc-1, and 

MDA-MB-231, respectively (Fig. 6A, lower panel). These findings indicate that 

S3I-201.1066 exerts preferential biological effects on malignant cells that harbor 

constitutively active Stat3, with little effects on non-target cells at concentrations that 

inhibit Stat3 activity. 

 

We extended these studies to examine the effect of S3I-201.1066 in colony survival 
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assay performed as previously reported [49]. Cultured single-cells were untreated or 

treated once with S3I-201.1066 and allowed to grow until large colonies were visible, 

which were stained and enumerated.  

 

Results showed a dose-dependent suppression of the number of colonies for the v-Src 

transformed mouse fibroblasts (NIH3T3/v-Src), and the human pancreatic cancer, 

Panc-1 and breast cancer, MDA-MB-231 cells (Fig. 6B(iii)–(v)) (paired t-test was used to 

compare treated samples to their respective untreated controls). By contrast, minimal 

effect was observed on the colony numbers for mouse fibroblasts transformed by v-Ras 

(NIH3T3/v-Ras) and the ovarian cancer line, A2780S that do not harbor constitutively 

active Stat3 (Fig. 6B(i) and (ii)). 

 

Furthermore, growth in soft-agar suspension of NIH3T3/v-Src, MDA-MB-231 and Panc-1 

cells treated with S3I-201.1066 was significantly inhibited (Fig. 6C(iii)–(v)), compared to 

the minimal effect on the soft-agar growth of NIH3T3/v-Ras and the ovarian cancer line, 

A2780S at concentrations that inhibit Stat3 activity (Fig. 6C(i) and (ii)). Thus, it selectively 

blocks Stat3-dependent malignant transformation. 
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Figure 6. S3I-201.1066 suppresses viability, survival, malignant transformation and 

 38



migration of malignant cells that harbor persistently active Stat3. 

(A and B) Human breast (MDA-MB-231), pancreatic (Panc-1), and ovarian (A2780S) cancer 

cells, the v-Src transformed mouse fibroblasts (NIH3T3/v-Src) and their v-Ras-transformed 

counterparts (NIH3T3/v-Ras), the Stat3-null mouse embryonic fibroblasts (Stat3-/-), and the 

normal human pancreatic duct epithelial cells (HPDEC) were treated once or untreated with 

30–100 µM S3I-201.1066 for 24–48 h.  

(A and B) cells were (A) assayed for viability using CyQuant cell proliferation kit; IC50 values 

(bottom panel) were derived from graphical representation, or (B) allowed to culture until large 

colonies were visible, which were stained with crystal violet and enumerated;  

(C) cells (NIH3T3/v-Src, NIH3T3/v-Ras, A2780S, MDA-MB-231, and Panc-1) growing in 

soft-agar suspension were treated with or without 30–100 mM S3I-201.1066 every 2–3 days until 

large colonies were visible, which were stained with crystal violet and enumerated; and 

(D) cells (MDA-MB-231, Panc-1, NIH3T3/v-Src and NIH3T3/v-Ras) in culture were wounded and 

treated with or without 50mM S3I-201.1066 for 12 or 24 h and allowed to migrate into the 

denuded area in a wound healing assay. Cultures were visualized at 10 × magnification by light 

microscopy and (i) cells that migrated into the denuded area counted and plotted against the 

concentration of S3I-201.1066 or (ii) cultures were photographed. Values are the mean and SD 

of 3–4 independent determinations, data are representative of 4 independent studies. p-Values: 

*p < 0.05, and **p < 0.01. 
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Studies also demonstrate that Stat3 is important for tumor progression [53, 54]. To further 

investigate the biological effects of S3I-201.1066 and to assess the ability to block 

Stat3-dependent tumor progression processes, a wound healing study was performed 

as a measure of the migration of malignant cells. Significantly reduced numbers of 

MDA-MB-231, Panc-1 and NIH3T3/v-Src cells migrating into the denuded area were 

observed following 12–24 h treatment with S3I-201.1066 (Fig. 6D and data not shown), 

with statistically significant lower numbers observed at 30 µM S3I-201.1066 treatment 

(data not shown). By contrast, the migration of NIH3T3/v-Ras fibroblasts was minimally 

affected by the same treatment conditions (Fig. 6D). In the 12–24 h treatment duration, 

there was no evidence of apoptosis of the treated cells (data not shown). These findings 

demonstrate that S3I-201.1066 selectively suppresses the migration of malignant cells 

that harbor aberrant Stat3 activity. 

 

S3I-201.1066 represses the expression of c-Myc, Bcl-xL, VEGF, Survivin, and 
MMP-9 

Known Stat3 target genes are critical to the dysregulated biological processes promoted 

by aberrantly active Stat3 [13, 22, 52]. We sought to validate the inhibitory effect of 

S3I-201.1066 on aberrant Stat3 signaling and to define the underlying molecular 

mechanisms for the anti-tumor cell effects of the agent by investigating the changes in 

the induction of known Stat3-regulated genes. In the human breast carcinoma, 
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MDA-MB-231 and pancreatic cancer, Panc-1 lines, and the mouse fibroblasts 

transformed by v-Src, which harbor constitutively active Stat3, immunoblotting analysis 

of whole-cell lysates shows that treatment with 50 µM S3I-201.1066 for 24 h 

down-regulated the expression of c-Myc, Bcl-xL, VEGF, Survivin, and MMP-9 proteins 

(Fig. 7A). Bands were quantified, normalized to β-actin, and the values corresponding to 

the band intensities for the samples from treated cells relative to the respective control 

(set at 1) are reported in parenthesis. These data indicate that S3I-201.1066 sufficiently 

represses the constitutive induction of Stat3-regulated genes. We infer that in doing so, 

S3I-201.1066 is able to thwart the ability of aberrant Stat3 to promote the dysregulation 

of growth and survival of malignant cells. These findings are in agreement with the 

results in Fig. 2C and together support the ability of S3I-201.1066 to block Stat3 

transcriptional activity. 

 

S3I-201.1066 inhibits growth of human breast tumor xenografts 

Given Stat3’s importance in tumor growth and tumor progression, we evaluated 

S3I-201.1066 in xenograft models of the human breast cancer (MDA-MB-231) cells that 

harbor aberrant Stat3 activity. Compared to control (vehicle-treated) tumor-bearing mice, 

treatment (i.v. injection) with S3I-201.1066 at 3 mg/kg every 2 or 3 days for 17 days 

induced significant decrease in tumor growth (Fig. 7B). At the dosing schedule used, the 
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drug was well tolerated and the animals showed no obvious signs of toxicity. The 

underlying premise of the antitumor effects is the ability of S3I-201.1066 to inhibit 

aberrant Stat3 activity.  

 

To determine whether the treatment with S3I-201.1066 modulated the in vivo activity and 

function of aberrant Stat3 in the human breast tumor xenografts, we evaluated the status 

of Stat3 activity and the expression of known Stat3-regulated genes in vivo. Upon the 

completion of the study, control tumors and residual tumors from treated mice were 

harvested and tissue lysates were prepared and analyzed by electrophoretic mobility 

shift assay using the radiolabeled hSIE probe that binds Stat3 (Fig. 7C(i)) or 

immunoblotting (Fig. 7C(ii)). Representative data for one control, untreated tumor and 

three treated tumor tissues showed both decreased phosphorylation (pY705Stat3) (Fig. 

7C(ii), upper band) and DNAbinding activity (Fig. 7C(i)) of Stat3 in tumors from treated 

mice(T1–T3, versus C). Furthermore, immunoblotting analysis showed diminished 

expression of c-Myc, Bcl-xL, VEGF, and Survivin in the tumor tissues from treated mice 

compared to control (Fig. 7C(ii)). These data indicate that the i.v. administration of 

S3I-201.1066 at the dosing schedule used achieved sufficient intra-tumoral levels of 

S3I-201.1066, which led to the suppression of Stat3 tyrosine phosphorylation, 

DNA-binding and transcriptional activities. These findings together demonstrate that 
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S3I-201.1066 inhibits constitutive Stat3 activation, leading to decreased expression of 

known Stat3-regulated genes, and hence inducing antitumor cell effects and tumor 

regression. 

 

Fig. 7 
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Figure 7. S3I-201.1066 suppresses c-Myc, Bcl-xL, Survivin, MMP-9 and VEGF 

expression in vitro and in vivo and inhibits growth of human breast tumor xenografts. 

 

(A) SDS-PAGE and Western blotting analysis of whole-cell lysates prepared from the human 

breast cancer, MDA-MB-231 and pancreatic cancer, Panc-1 cells, and the v-Src-transformed 

mouse fibroblasts (NIH3T3/v-Src) untreated (DMSO, control) or treated with 50 mM 
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S3I-201.1066 for 24 h and probing with anti-Myc, Bcl-xL, MMP-9, Survivin, VEGF or β-actin 

antibodies;  

(B) Human breast (MDA-MB-231) tumor-bearing mice were given S3I-201.1066 (3 mg/ kg) or 

vehicle (0.1% DMSO in PBS) i.v. every 2 or 3 days. Tumor sizes, measured every 2 or 3 days, 

were converted to tumor volumes and plotted against treatment days; (C) tumor tissue lysates 

prepared from extracted tumor tissues from one control; 

(C) Three treated (T1–T3) mice were subjected to (i) Stat3 DNA-binding activity and EMSA 

analysis or (ii) immunoblotting analysis for pY705Stat3, Stat3, c-Myc, Bcl-xL, VEGF, Survivin, 

and b-actin. Positions of proteins in gel are shown. Data are representative of 2–3 independent 

determinations, values in parenthesis represent the band intensities for the samples from treated 

cells relative to the respective control (set at 1), data are the mean and SD from replicates of 12 

tumor-bearing mice in each group. p-Values: *p < 0.05. 

 

Discussion 

Computational modeling of the interactions of the Stat3 SH2 domain with the previously 

reported Stat3 inhibitor lead, S3I-201 [12], derived key structural information for lead 

optimization and a rational synthetic program that furnished exciting new analogs. 

Analog, S3I-201.1066 shows improved Stat3-inhibitory potency and selectivity in vitro, 

with intracellular Stat3-inhibitory activity that is enhanced 2–3-fold. Moreover, 
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S3I-201.1066 exhibited improved target selectivity, with minimal inhibitory effect on the 

phosphorylation of Src, Erk1/2MAPK and Shc proteins at concentrations (30–50 µM) that 

inhibit intracellular Stat3 activation, despite there being SH2 domains involved in the 

mechanisms leading to the activation of these other proteins. Per molecular modeling, 

the improved activity could in part be due to the enhanced interactions with the Stat3 

protein, possibly by the (para-cyclohexyl) benzyl moiety that extends from the scaffold 

amide nitrogen and makes important contacts with the hydrophobic residues Trp623, 

Ile659, Val637 and Phe716 within the unexplored pocket.  

 

The native Stat3 peptide inhibitor, PpYLKTK and its peptidomimetic analogs [28, 29] and 

several other Stat3 SH2 domain binding and dimerization disrupting peptides and 

derivatives have been reported [31, 32, and 35]. Previous studies have utilized the 

fluorescence polarization analysis to characterize the binding of the native, high affinity 

phosphopeptide, GpYLPQTV–NH2 (as 5-carboxyfluorescein-GpYLPQTV– NH2) to the 

Stat3 protein [32, 33]. Using this assay platform and SPR analysis, we provide definitive 

evidence for the physical interaction of S3I-201.1066 with Stat3 or the Stat3 SH2 domain, 

with an affinity (KD) of 2.74 µM. The analysis of the interaction reveals a slower kinetics 

of the association and dissociation events, which contrasts the more rapid binding and 

dissociation of the native, high affinity peptide, GpYLPQTV–NH2 to and from Stat3, with 
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a corresponding affinity (KD) of 24 nM. The second supporting evidence for the 

interaction of S3I-201.1066 with Stat3 comes by way of the disruption by S3I-201.1066 

of the Stat3 binding to the pTyr peptide in a fluorescent polarization assay, with a derived 

IC50 of 20 µM. By comparison, the unlabeled, native phosphopeptide disrupts the Stat3 

binding to the pTyr peptide probe, with an IC50 value of 0.3 µM, which is in line with the 

reported affinity of 0.15 ± 0.01 µM [33] or the IC50 value of 0.290 ± 0.063 µM [31]. The 

higher affinity of the native peptide for the protein should be expected, given the more 

favorable physicochemical properties that will facilitate a stronger binding to the Stat3 

protein. Nonetheless, data showing a slower dissociation of S3I-201.1066 from Stat3 

suggests this drug is likely to show a more prolonged effect on the target and its function 

per a given dose. 

 

Current study provides support for the binding of S3I-201.1066 to Stat3 and for the 

disruption of the interaction between Stat3 and pTyr peptide. Given the disruption of the 

Stat3 binding to the cognate peptide, GpYLPQTV–NH2, we infer that inside cells, 

S3I-201.1066 could interfere with the ability of Stat3 (via SH2 domain) to bind to cognate 

pTyr motifs on receptors and thereby block de novo phosphorylation by tyrosine kinases, 

as well as disrupt preexisting Stat3:Stat3 dimers, particularly in malignant cells that 

harbor aberrantly active Stat3. Accordingly, we present evidence that both of the 
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association of Stat3 with EGFR and the Stat3 nuclear localization in ligand-stimulated 

cells are strongly blocked by the treatment of cells with S3I-201.1066. Although other 

Stat3 dimerization disruptors have been previously identified through molecular 

modeling [30, 55], the present study is the first to provide biophysical evidence for a direct 

interaction of a small-molecule, dimerization disruptor with the Stat3 protein. 

 

Substantive evidence demonstrates that aberrant Stat3 activity promotes cancer cell 

growth and survival [28, 29, 39, 56, 57], and induces tumor angiogenesis [58, 59] and metastasis 

[53, 59]. Accordingly, inhibitors of Stat3 activation and signaling have been shown to induce 

antitumor cell effects consistent with the abrogation of Stat3 function [7, 12, 28-30, 47, 60–62]. 

The present study parallels those published reports in showing that a newly derived 

agent, S3I-201.1066 induces the growth inhibition and the loss of viability and survival of 

the human pancreatic cancer, Panc-1 and breast cancer, MDA-MB-231 cells, and 

transformed mouse fibroblasts (NIH3T3/v-Src) that harbor aberrant Stat3 activity, while 

having minimal effects on normal human pancreatic duct epithelial cells, the Stat3-null 

mouse embryonic fibroblasts [41], the ovarian cancer line, A2780S, and the viral 

Ras-transformed mouse fibroblasts that do not harbor aberrant Stat3 activity. Moreover, 

the S3I-201.1066-induced anti-tumor cell effects on malignant cells harboring aberrant 

Stat3 activity occurred at significantly lower concentrations, 30–50 µM than the 100 µM 
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cellular activity previously reported for the lead agent [12]. Mechanistic insight into the 

biological effects of S3I-201.1066 reveals the suppression of the constitutive expression 

of known Stat3-regulated genes, including c-Myc, Bcl-xL, VEGF, Survivin, and MMP-9, 

which control cell growth and apoptosis, promote tumor angiogenesis, or modulate tumor 

cell invasion [30, 53, 56, 59, 63, and 64]. Furthermore, the effect of S3I-201.1066 on Stat3 

oncogenic function is shown by the significant antitumor response induced in human 

breast tumor xenografts following the in vivo administration of this agent. Data also 

suggest that at the dosing schedule used, the i.v. administration of S3I-201.1066 

achieved intra-tumoral levels sufficient to modulate activated Stat3 and its function. 

 

We report the application of computational modeling in conjunction with rational, 

structure-based virtual design approach for the optimization of S3I-201. The new agent, 

S3I-201.1066 binds to Stat3, disrupts Stat3 SH2 domain:pTyr interactions, and hence 

Stat3:Stat3 dimerization and Stat3 binding to receptor, thereby inhibiting Stat3 

phosphorylation, nuclear translocation and oncogenic functions, and inducing antitumor 

cell effects in vitro and antitumor effects in vivo. 
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BP-1-102, AN ORALLY-BIOAVAILABLE SMALL-MOLECULE STAT3 
INHIBITOR REGRESSES HUMAN BREAST AND LUNG CANCER 

XENOGRAFTS AND REVEALS NOVEL STAT3 FUNCTIONS 

 

By computational and structural analyses of the interaction between Stat3 and the lead 

dimerization disruptor, S3I-201.1066, we have designed a diverse set of analogs. We 

found that BP-1-102, a structural analog of S3I-201.1066, directly interacts with Stat3, 

with an affinity (KD) of 504 nM, and inhibits in vitro Stat3 DNA-binding activity, with IC50 of 

6.8 μM, and selectively inhibits Stat3 activity in human and mouse tumor cell lines that 

harbor consecutively-active Stat3. The result together strongly suggest the anti-tumor 

cell effects of BP-1-102 is largely dependent on the inhibition of aberrant Stat3 activity. 

Significantly, BP-1-102 induced strong antitumor response in mouse xenografts of 

human breast cancer when administered via intravenous or oral gavage. 
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Introduction 

The Signal Transducer and Activator of Transcription (STAT) family of proteins are 

cytoplasmic transcription factors that mediate responses to cytokines and growth factors, 

including promoting cell growth and differentiation, development, inflammation, and 

immune responses [65, 66]. Classically, during activation, STATs are recruited via the SH2 

domain to the receptor phosphotyrosine (pTyr) peptide motifs, which facilitates STATs 

phosphorylation on a key tyrosyl residue by tyrosine kinases of growth factor receptors 

and cytoplasmic, non-receptor tyrosine kinases, such as Janus kinases (Jaks) and the 

Src family. Although pre-existing STAT dimers have been detected [17], phosphorylation 

induces STAT:STAT dimerization through a reciprocal pTyr-SH2 domain interaction. The 

active STAT:STAT proteins are predominantly in the nucleus where they induce gene 

transcription by binding to specific DNA-response elements in the promoters of target 

genes. Recent evidence has also revealed the transcriptional function for 

unphosphorylated STAT monomers [67]. 

 

The STAT proteins have importance in carcinogenesis and tumorigenesis. This is due to 

their aberrant activation, as is the case for the family member, Stat3, which occurs in 

many human cancers [13, 22] and promotes tumor progression. While the mechanisms of 

Stat3-mediated tumorigenesis continue to be elucidated, evidence strongly supports 
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de-regulation of gene expression leading to uncontrolled growth and survival of tumor 

cells, enhanced tumor angiogenesis and metastasis, and the development of resistance 

[4, 6, 20, 22, and 68]. More recent studies have also identified a non-traditional role of Stat3 as 

a regulator of mitochondrial function that potentially promotes malignant transformation 

[69]. Aberrant Stat3 signaling further regulates the tumor microenvironment to support the 

malignant phenotype [26]. Consecutively-active Stat3 in tumor cells controls the type and 

levels of inflammatory cytokines and chemokines that are released in the tumor 

microenvironment, thereby modulating the functioning of tumor-associated inflammatory 

and immune cells. While tumor cell-associated constitutively-active Stat3 suppresses the 

expression of pro-inflammatory cytokines, such as inteluekin-6 (IL-6), RANTES, and 

IP-10, it promotes the induction of vascular endothelial growth factor (VEGF), 

interleukin-10 (IL-10), and other soluble factors that activate Stat3 in dendritic cells and 

consequently inhibit dendritic cell maturation [70]. Stat3 further engages in signaling 

cross-talk with proteins important in inflammation, such as NFκB in a manner that 

supports the malignant phenotype [71]. Thus, Stat3 functions in many diverse contexts in 

directing cellular processes towards tumorigenesis.  

 

Given its critical importance to cancer, there is increased focus on discovering and 

developing novel Stat3 inhibitors as anticancer drugs. The Stat3 SH2 domain:pTyr 
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peptide interaction has gained increased attention in these drug discovery efforts [7, 8, 9, 12, 

13, 30, 34, 35, 72, 73] , due to its importance in Stat3:Stat3 dimerization. Although several 

dimerization-disrupting small-molecule Stat3 inhibitors have been reported, in some 

cases with cellular activities and evidence of in vivo efficacy [7, 12, 30, 72, 74], thus far none 

has reached the clinic for several reasons, including the suitability of the scaffolds and 

pharmacokinetic issues. The leading dimerization-disrupting agent, S3I-201.1066 [75] was 

subjected to computer-aided lead optimization. We describe the derivation and the 

characterization of the analog, BP-1-102, an orally-bioavailable, high-affinity Stat3 SH2 

domain ligand that inhibits Stat3 activation, Stat3-mediated interactions, and known and 

novel Stat3-depedent functions in vitro and in vivo, and thereby inhibits growth of mouse 

xenografts of human breast and non-small cell lung cancers. 

 

Materials and Methods 

 

Cells and reagents 

Normal mouse fibroblasts (NIH3T3) and counterparts transformed by v-Src 

(NIH3T3/v-Src) or v-Ras (NIH3T3/v-Ras), the human breast cancer line (MDA-MB-231) 

and counterpart expressing inducible KLF8 shRNA (231-K8ikd), and the human prostate 
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(DU145), non-small cell lung (A549), and pancreatic (Panc-1) cancer cells have all been 

previously reported [8, 43, 83, 100]. The Stat3-dependent (pLucTKS3) and Stat3-independent 

(pLucSRE), and the pLucKLF8 luciferase reporters, and the vectors expressing v-Src 

(pMv-Src) and β-galactosidase (β-gal) have been previously reported [42, 43, and 88]. The 

Human Cytokine Array Kit, ARY005 was purchased from R&D Systems (Minneapolis, 

MN). G-CSF was purchased from Sigma-Aldrich (St. Louis, MO) and was used at 100 

ng/ml. Cells were grown in Dulbecco's modified Eagle's medium (DMEM) containing 

10% heat-inactivated fetal bovine serum. 

 

Cloning and protein expression 

The molecular cloning, expression, and the purification of His-tagged Stat3 have 

previously been reported [75, 100]. 

 

Nuclear extract preparation, gel shift assays, and densitometric analysis 

Nuclear extract preparations and electrophoretic mobility shift assay (EMSA) were 

carried out as previously described [43]. The 32P-labeled oligonucleotide probe used was 

hSIE (high affinity sisinducible element from the c-fos gene, m67 variant, 

5’-AGCTTCATTTCCCGTAAATCCCTA) that binds Stat3 [100]. For direct effect of 

BP-1-102 on Stat3 DNA-binding activity, nuclear extracts were pre-incubated with the 
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agent for 30 min at room temperature prior to incubation with the radiolabeled probe for 

30 min at 30 oC before subjecting to EMSA analysis. Bands corresponding to 

DNA-binding activities were scanned, quantified for each concentration of BP-1-102 

using ImageQuant and plotted as percent of control (vehicle) against concentration of 

compound, from which the IC50 values were derived, as previously reported [11]. 

 

SDS-PAGE/Western blotting analysis 

Immunoblotting analysis of whole-cell lysates were performed as previously described [75, 

100]. Primary antibodies used were anti- Stat3, pY705Stat3, pY416Src, Src, pErk1/2, 

Erk1/2, pJak1, Jak1, pShc, Shc, Cyclin D1, c-Myc, Bcl-xL, Survivin, FAK, paxillin, 

E-cadherin, HDAC1, and β-Actin (Cell Signaling Technology, Danvers, MA), KLF8 [82], 

and VEGF (Santa Cruz Biotechnolgy, Santa Cruz, CA), and EPSTI1 (Sigma Aldrich, St. 

Louis, MO). 

 

Immunoprecipitation (IP) studies 

These studies were performed as previously reported [7] using whole-cell lysates or 

nuclear extracts (500 μg total protein) and 2 μg of anti-Stat3, anti-NFκB/p65RelA, or 

anti-IκBpolyclonal antibody (Santa Cruz) or 5 μl of the monoclonal anti-Stat3 antibody 

(Cell SignalingTechnology). 
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Fluorescence polarization (FP) assay 

Fluorescence polarization (FP) assay was conducted as previously reported [74] using the 

labeled phospho-peptide, 5-carboxyfluorescein-GpYLPQTV-NH2 (where pY represents 

phospho-Tyr) as probe and purified His-tagged Stat3, and the FP measurements were 

taken using POLARstar Omega (BMG LABTECH, Durham, NC) with the set gain 

adjustment at 35 mP. 

 

Small-interfering RNA (siRNA) transfection 

The Stat3 siRNA smart pool Stat3 (cat # M-003544) and the control, SiGENOME 

non-targeting siRNA pool were purchased from Dharmacon RNAi Technologies, Thermo 

Scientific (Lafayette, CO). Transfection into cells was performed following 

manufacturer’s protocol and using 200 pmol siRNA with 10 μL of Lipofectamine 

RNAiMAX (Invitrogen Corporation, Carlsbad, CA) in serum-free OPTI-MEM culture 

medium (5 ml) (Invitrogen). 

 

Cell viability and proliferation assay 

Cells in culture in 6-well or 96-well plates were treated with or without increasing 
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concentrations of BP-1-102 for 24-96 h and subjected to CyQuant cell proliferation assay 

(Invitrogen), or harvested, and the viable cells counted by trypan blue exclusion with 

phase contrast microscopy. 

 

Soft-agar colony formation assay 

This was performed in 6-well plates, as previously reported [12]. BP-1-102 treatments 

were initiated 24 h following the seeding of cells and repeated every 2 days until large 

colonies were observed. 

 

Transient transfection of cells 

Eighteen hours following seeding, cells in 12-well plates were transiently co-transfected 

with 100 ng β-galactosidase (for normalizing), and 900 ng of pLucTKS3, pLucSRE, or 

pLucKLF8, and with or without 500 ng pMv-Src, where appropriate, for 3 h using 

Lipofectamine plus (Invitrogen) and following the manufacturer’s protocol. Twelve hours 

after transfection, cells were treated or untreated with BP-1-102 (0-60 μM) for 16-24 h, 

after which they were harvested and cytosolic extracts prepared for luciferase assay, as 

previously reported [42,43]. 

 

 57



Cytosolic extracts and cell lysates preparation and luciferase assay 

Cytosolic extract preparation from mammalian cells and luciferase assay are as 

described previously [42, 43, and 75]. Luciferase activities were measured using a 

luminometer (Lumat LB 9507, EG&G Berthold, Germany) and normalized to 

β-galactosidase activity. 

 

Immunostaining with laser-scanning confocal imaging 

Cells were grown on glass cover slips in multi-well plates, fixed with ice-cold methanol 

for 15 min, washed 3 times with 1X phosphate buffered saline (PBS), permeabilized with 

0.2% Triton X-100 for 10 min, and further washed 3-4 times with PBS. Specimens were 

then blocked in 1% bovine serum albumin (BSA) for 30 min and incubated with 

anti-pY705Stat3 (Cell Signaling) or anti-pS536 NFκB (Cell Signaling) antibody at 1:50 

dilution (in 0.1% BSA) at 4 °C overnight. Subsequently, cells were rinsed 3 times with 

PBS and incubated with two AlexFluor secondary antibodies, AlexaFLuor546 (goat 

anti-mouse) and AlexaFluor488 (donkey anti-rabbit) (Molecular Probes, Invitrogen) for 

pY705Stat3 and pS536NFκB/p65 detection, respectively, for 1 h at room temperature in 

the dark. Specimens were then washed 3 times with PBS, mounted on slides with 

VECTASHIELD mounting medium containing DAPI (Vector Lab, Inc., Burlingame, CA), 

and examined immediately under a Leica TCS SP5 confocal microscope (Germany). 
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Images were captured and processed using the Leica TCS SP 5 software. 

 

Surface plasmon resonance analysis (SPR) 

SensiQ and its analysis software Qdat (ICX Technologies, Oklahoma City, OK) were 

used to analyze the interaction between agents and the purified His-tagged Stat3 protein 

and to determine the binding affinity, KD, as previously reported [75, 100]. 

 

Colony survival assay 

This was performed as previously reported [100]. Briefly, cells were seeded as single-cell 

in 6-cm dishes (500 cells per well), treated once the next day with different 

concentrations of BP-1-102 for 24 h, and allowed to culture until large colonies were 

visible., which were stained with crystal violet for 4 h and counted under phase-contrast 

microscope. 

 

Wound-healing assay 

Wounds were made using pipette tips in monolayer cultures of cells in six-well plates. 

Cells were treated with or without increasing concentrations of BP-1-102 and allowed to 

migrate into the denuded area for 16 h. Cells was visualized at a 10X magnification using 
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an Axiovert 200 Inverted Fluorescence Microscope (Zeiss, Göttingen, Germany) and 

pictures of cells were taken using a mounted Canon Powershot A640 digital camera 

(Canon USA, Lake Success, NY). Cells that migrated into the denuded area were 

quantified. 

 

Cell migration/invasion assays 

Cell migration/invasion experiments were carried out and quantified as previously 

reported [7, 12, 82] using Bio-Coat migration/invasion chambers (BD Biosciences, Bedford, 

MA) of 24-well companion plates with cell culture inserts containing 8 μm pore size filters 

and following the manufacturer’s protocol, with some modifications. Briefly, for 

doxycycline (Dox) induction, cells were maintained un-induced, U (in the absence of Dox) 

or induced, I (in the presence of Dox) for three days. Cells were then resuspended in 

serum-free medium minus or plus Dox, transferred to the top chambers of the 24-well 

trans-well plates, and incubated for 16 h to allow the migration or invasion towards the 

serum-containing medium in the bottom chamber, and cells on the lower side were then 

counted. For treatment with BP-1-102 (15 μM), the drug was added to both the top and 

bottom chambers during the 16-h incubation. Where appropriate, the migration or 

invasion rates were normalized to the control, U cells in the absence of serum and in the 

bottom chambers. 
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Cytokine analysis 

Cytokine analysis was performed using the human cytokine array kit and following the 

manufacturer’s (R&D Systems, Minneapolis, MN) instructions. Briefly, following 

treatment of cells with 10 μM BP-1-102 for 48 h, 1 ml samples of conditioned culture 

medium or in the case of tumors, 500 μg of tumor tissues lysates in RIPA buffer (50 mM 

Tris-HCl, pH7.4, 1% NP-40, 150 mM NaCl, 2 mM EDTA, 0.1% SDS) were mixed with a 

cocktail of biotinylated detection antibodies. The mixture was incubated with the array 

membrane for antibody binding on the membrane. Membrane was processed for signal 

development using Streptavidin-HRP and chemiluminescent detection reagents, 

exposed to X-ray films, and then processed. The relative changes in cytokine levels 

between samples were analyzed by quantitation of pixel density in each spot of the array 

with ImageJ (National Institute of Health, Bethesda, MD). 

 

Mice and in vivo tumor studies 

Six-week-old female athymic nude mice were purchased from Harlan (Indianapolis, IN) 

and maintained in the institutional animal facilities approved by the American Association 

for Accreditation of Laboratory Animal Care. All mice studies were performed under an 

Institutional Animal Care and Use Committee (IACUC)-approved protocol. Athymic nude 
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mice were injected subcutaneously in the left flank area with 1 x 106 human breast 

cancer MDA-MB-231 or non-small cell lung cancer A549 cells in 100 μL of PBS. After 5 

to 10 days, tumors of a 30-100 mm3 volume were established. Animals with established 

tumors were grouped so that the mean tumor sizes in all groups were nearly identical 

and then given BP-1-102 (in 0.05% DMSO in water) at 1 or 3 mg/kg (i.v.) every 2 or 

every 3 days or 3 mg/kg (oral gavage, 100 μL) every day for 15 or 20 days. Animals were 

monitored every day, and tumor sizes were measured with calipers and body weights 

taken every 2 or 3 days. Tumor volumes were calculated according to the formula 

V=0.52 x a2 x b, where a, smallest superficial diameter, b, largest superficial diameter. 

For each treatment group, the tumor volumes for each set of measurements were 

statistically analyzed in comparison to the control (non-treated) group using paired t-test. 

 

Plasma and tumor tissue analysis 

BP-1-102 concentrations in mouse plasma and tumor tissue lysates were assayed using 

validated analytical procedure via high-performance liquid chromatography (Shimadzu 

Prominence UHPLC,Shimadzu Scientific Instruments, Columbia, MD) and LC/MS/MS 

(API4000 Liner Ion Trap Mass Spectrometer, MDS Sciex, Ontario, Canada). The mass 

spectrometer was operated in a product ion scanning mode. BP-1-102 solution diluted in 

methanol was infused directly into the MS source at a flow of 10 μL/min. Tuning was 
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evaluated in both positive and negative MS modes using both turbo ion spray and 

atmospheric pressure chemical ionization sources. The chromatography used a 

Phenomenx Kinetex C18 2.1x50 mm, 1.7μ UHPLC column (Phenomenex, Torrance, CA) 

with a flow rate of 0.300 ml/min using a 5 mM ammonium acetate (in water) and 5 mM 

ammonium acetate (in acetonitrile) as mobile phase A and B, respectively. 

 

Statistical analysis 

Statistical analysis was performed on mean values using Prism GraphPad Software, Inc. 

(La Jolla, CA). The significance of differences between groups was determined by the 

paired t-test at p <0.05*, <0.01**, and < 0.005***. 

 

Results 

Computer-aided design of BP-1-102 as an analog of S3I-201.1066 

The lead agent, S3I-201.1066 [75] is a moderately potent SH2 domain binding ligand [75]. 

Analysis of the structural composition and the topology of the Stat3 SH2 domain binding 

‘hotspot’ show three solvent-accessible sub-pockets on the protein surface, including the 

key pTyr705-binding region, of which only two are accessed by S3I-201.1066 and all of 

the reported Stat3 inhibitors. We hypothesized that accessibility to the third pocket would 
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enhance Stat3-inhibitory activity. By extensive structure-activity relationship (SAR) 

analysis of the S3I-201.1066 and analogs structurally designed with appendages that 

promote interactions with all of the three sub-pockets, BP-1-102 (Fig. 8a) was identified. 

BP-1-102 retains the 4-aminosalicylic acid group as an effective pTyr mimetic [76, 77], 

which binds to the pTyr-binding portion of the SH2 domain, making interactions with 

Lys591, Glu594 and Arg609 (Fig. 8b), and contains the hydrophobic cyclohexyl-benzyl 

substituent, which forms van der Waals interactions with a series of predominantly 

hydrophobic residues, including, Val637, Ile659 and Trp623 (Fig. 8b) that comprise the 

pY+1 (Leu)- binding pocket. The most significant modification is the pentafluorobenzene 

sulfonamide component of the molecule, linked via a glycine unit to the salicylic acid. 

This interacts with the previously unexplored third sub-pocket composed of Lys591, 

Glu594, Ile634, and Arg595 (Fig. 8b). Critically, the pentafluorobenzene may better 

interact with the Stat3-SH2 domain surface by participating in more hydrogen bonds and 

also better interacting with the charged Lys side chain, as previously noted in a different 

context [78]. The more polar pentafluorobenzene unit also confers enhanced solubility. 

 

Inhibition of Stat3 signaling and function 

BP-1-102 (Fig. 8a) binds Stat3 with a higher affinity, KD, 504 nM, as determined by 

Surface Plasmon Resonance (SPR) analysis (Fig. 9a), disrupts Stat3:pTyr peptide 
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interactions, with IC50 value of 4.1 μM, as assayed by Fluorescence Polarization (FP) 

(Fig. 9b), and inhibits Stat3 DNA-binding activity in vitro, with average IC50 value of 6.8 ± 

0.8 μM (Fig. 10a), as measured by electrophoretic mobility shift assay (EMSA) [8, 12, 75]. 

These are substantial improvement over the lead, S3I-201.1066 (SPR, KD of 2.7 μM, FP, 

IC50 of 23 μM, EMSA IC50 of 36 μM). [75] 

Fig. 8 

 

(a) Structure BP-1-102 

 

(b) Computational modeling of the binding of BP-1-102 to Stat3 SH2 domain 

Figure 8. Structure of BP-1-102 and computational modeling 
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(a), Structure of BP-1-102. IC50 (EMSA), concentration of agent at which Stat3 DNA-binding 

activity in vitro is inhibited by 50%; KD, binding affinity, as determined by surface plasmon 

resonance analysis; IC50 (FP assay), concentration of agent that inhibits by 50% the Stat3 

binding to pTyr peptide motif in a fluorescent polarization assay; and  

(b), Computational modeling of the binding of BP-1-102 to the Stat3 SH2 domain. Left, monomer 

Stat3 protein with the solvent-accessible surface of the SH2 domain (shown in off-white), 

color-coded, with hydrophilic residues (blue) and hydrophobic residues (pink) and overlaid with 

BP-1-102 (cyan). Right, the three solvent-accessible sub-pockets of the SH2 domain surface 

accessed by BP-1- 102, with the pentafluorobenzene sulfonamide component projecting into the 

third sub-pocket composed of Lys591, Gly594, Ile634, and Arg595. 

 

Stat3 is consecutively-activated in many tumor cells [6, 13, and 22]. Twenty-four hours after 

treatment, BP-1-102 dose-dependently inhibited consecutively-active Stat3 in v-Src 

transformed mouse fibroblasts (NIH3T3/v-Src), and in the human cancer lines, 

MDA-MB-231 (breast), DU145 (prostate), Panc-1 (pancreatic), and A549 (non-small cell 

lung cancer), as evaluated by DNA-binding activity/EMSA analysis (Fig. 10b) or by 

pTyr705Stat3 immunoblots in whole-cell lysates (Fig. 10d and e). 
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Fig. 9 

 
Figure 9. Surface Plasmon Resonance (SPR) Analysis and Fluorescence Polarization 
(FP) assay. 

(a) SPR analysis of the binding of increasing concentration of BP-1-102 to the full-lengthStat3;  

(b) FP assay of the binding to the 5-carboxyfluorescein-GpYLPQTV-NH2 probe of afixed amount 

of purified His-Stat3 (200 nM) in the presence of increasing concentrations of BP-1-102. Data are 

representative of 3 independent determinations. 
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Fig. 10 
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(e) 

 
 

 

Figure 10. Effects of BP-1-102 on Stat3 activation and intracellular distribution and on the 

induction of Stat3 target genes. 
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(a) Nuclear extracts of equal total protein from NIH3T3/v-Src fibroblasts containing activated 

Stat3 were pre-incubated with 0-20 μM BP-1-102 for 30 min at room temperature prior to 

incubation with the radiolabeled hSIE probe that binds Stat3 and subjecting to EMSA analysis; (b) 

nuclear extracts of equal total protein prepared from the designated tumor cell lines 

(MDA-MB-231, DU145, NIH3T3/v-Src, Panc-1, and A549) treated with 0-20 μM BP-1-102 for 24 

h were subjected to in vitro DNA-binding assay/EMSA analysis using the radiolabeled hSIE 

probe;  

(c, d and e) immunoblotting analysis of cytosolic (Cyto), nuclear (Nuc) or mitochondrial (Mito) 

fractions of equal total protein prepared from the designated tumor cells untreated (c) or treated 

(d and e) with 0, 10 or 15 μM BP-1-102 for the 32 indicated times and probing for pY705Stat3, 

Stat3, pS727Stat3, histone deacetylase 1 (HDAC1) or β-actin; and 

(f) immunoblotting analysis of whole-cell lysates prepared from tumor cell lines treated or 

untreated with BP-1-102 for 24 h and probing for c-Myc, Cyclin D1, Bcl-xL, Survivin, VEGF, and 

β-actin. Positions of Stat3: DNA complexes or proteins in gel are labeled; control lanes (0) 

represent nuclear extracts treated with 0.05% DMSO, or nuclear extracts, whole-cell lysates, or 

nuclear, cytosolic or membrane fractions prepared from 0.05% DMSO-treated cells. Data are 

representative of 4 independent determinations. 
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Fig. 11 

(a) 

 

(1)   (0.49)  (0.12)              (1)   (0.55)  (0.33)          (1) ( 0.84) (0.45)

(1)   (0.98)  (0.12)              (1)   (1.05)  (1.06)          (1)   ( 0.98) (0.96)

(1)   (1.11)  (1.04)              (1)   (1.05)  (1.03)          (1)   ( 1.04) (1.15)

(1)   (1.05)  (0.97)              (1)   (1.06)  (1.08)          (1)   ( 0.94) (0.99)

(1)   (1.01)  (0.98)              (1)   (1.09)  (0.87)          (1)   ( 0.95) (1.02)

(1)   (1.04)  (0.91)              (1)   (1.11)  (0.97)          (1)   ( 0.85) (0.90)

(1)   (1.10)  (1.12)              (1)   (1.11)  (1.04)          (1)   ( 0.88) (0.91)

(1)   (1.04)  (0.93)              (1)   (0.92)  (0.90)          (1)   ( 0.85) (0.90)

(1)   (1.01)  (0.96)              (1)   (1.07)  (0.96)          (1)   ( 1.05) (1.10)

(1)   (1.07)  (1.02)              (1)   (1.01)  (0.95)          (1)   ( 1.02) (0.82)

(1)   (0.98)  (0.95)               (1)   (0.94)  (0.88)         (1)   ( 0.96) (0.92)

 

 71



0

20

40

60

80

100

-BP-1-102 
(15 μM, 24 h) + - + - + - + - + - +

MDA-MB-231 Panc-1 DU145

SRE TKS3 SRE TKS3 SRETKS3

N
or

m
al

iz
ed

 lu
ci

fe
ra

se
ac

tiv
ity

 (%
 o

f c
on

tro
l)

(b)

** ** **

 

Figure 11. Effects of BP-1-102 on Stat3 activation and transcriptional activity and 

non-specific effects on other signaling proteins. 

 

 (a) Immunoblotting analysis of whole-cell lysates of equal total protein prepared from the 

designated tumor cells treated with 0, 10 or 15 μM BP-1-102 for 24 h and probing for pY705Stat3, 

Stat3, pS727Stat3, pShc, Shc, pJaks, Jak, pSrc, Src, pErk1/2, Erk1/2, or β-actin; (b) Cytosolic 

extracts of equal total protein were prepared from 24-h BP-1-102-treated or untreated 

MDA-MB-231, Panc-1, or DU145 cells transiently transfected with the Stat3-dependent 

(pLucTKS3, TKS3) or the Stat3-independent (pLucSRE, SRE) luciferase reporter and analyzed 

for luciferase activity using a luminometer. Positions of proteins in the gel are labeled; control (0) 

or (-) represents cytosolic or whole-cell lysates prepared from 0.05% DMSO-treated cells. Data 
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are representative of 3-4 independent determinations or mean and S.D of 3 independent 

determinations each performed in triplicate. *p - <0.05, **p -<0.01, and ***p - <0.005. 

 

The inhibitory activities at 5-15 μM (Fig. 10a-f) compare more favorably to those of the 

lead, which were greater than 50 μM [25]. In malignant cells, Stat3 is distributed to the 

cytoplasm (cyto) and nucleus (nuc) (Fig. 10c and d), and to the mitochondria (mito) (Fig. 

10d). Phospho-Y705Stat3 is higher in the nucleus than the cytoplasm (Fig. 10c and d), 

except in DU145 cells (Fig. 10c), and undetectable in the mitochondria (Fig. 10d), while 

pS727Stat3 is higher in the mitochondria and the nucleus, but low in the cytoplasm in 

MDA-MB-231 cells (Fig. 10d). Immunoblotting analysis of whole-cell lysates shows 

BP-1-102 treatment attenuated pY705Stat3 levels in a dose-dependent manner (Fig. 

11a, pStat3), which was evident in both the nucleus and cytoplasm (Fig. 10d, 

pY705Stat3), and decreased nuclear Stat3 levels (Fig. 10d, Stat3), all in a 

time-dependent manner (Fig. 10e), with a corresponding down-regulation of 

Stat3-dependent luciferase reporter (pLucTKS3) [42, 43] induction (Fig. 11b, TKS3). By 

contrast, similar treatments had little effects on mitochondrial Stat3 levels (Fig. 10d), or 

on phospho- and total Shc, Src, Jak-1, and Erk1/2 levels (Fig. 11a), or on the induction of 

the Stat3-independent, serum response element (SRE)/c-fos promoter-driven luciferase 

reporter (pLucSRE) [42, 43] induction (Fig. 10B, SRE). Furthermore, BP-1-102 treatment of 
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malignant cells harboring aberrantly-active Stat3 suppressed c-Myc, Cyclin D1, Bcl-xL, 

Survivin, and VEGF expression (Fig. 10f), which occurred subsequent to the inhibition of 

persistently-active Stat3 (Fig. 10e). Therefore, BP-1-102-mediated inhibition of 

aberrantly-active Stat3 in tumor cells leads to re-localization of Stat3 outside of the 

nucleus, and hence the inhibition of Stat3-dependent gene regulation.  

 

BP-1-102 suppresses growth, viability, malignant transformation, migration and 
invasion of malignant cells harboring constitutively-active Stat3 

Consistent with the functions of aberrantly-active Stat3 [6, 13], BP-1-102 dose-dependently 

suppressed viability (Fig. 12a) and anchorage- dependent and independent growth (Fig. 

13a and data not shown), decreased colony survival and numbers (Fig. 12b and l Fig. 

13b), and decreased migration (Fig. 12c and Fig. 13c) and invasiveness (Fig.3d) of 

MDA-MB-231, Panc-1, DU145, and NIH3T3/v-Src that harbor aberrantly-active Stat3. At 

the 16-h treatment duration when migration and invasiveness were suppressed, no 

inhibitory effect on cell viability or growth is observed (data not shown). The antitumor 

cell effects are consistent with the downregulation of the known Stat3-inducible genes 

(Fig. 10f) [4, 6, 20, 22, 66, and 68]. By contrast, similar treatment of cells that do not harbor 

constitutively-active Stat3 (TE-71, NIH3T3, NIH3T3/v-Ras, A2780S, and Stat3-/-MEFs) 

had minimal biological effects (Fig. 12a-c, and Fig. 13a and b). 
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Fig. 12 

 

Figure 12. BP-1-102-mediated suppression of viability, survival, migration, and invasion 

in vitro of malignant and non-malignant cells. 

  

(a and b) Tumor cells harboring aberrantly-activeStat3 (MDA-MB-231, DU145, Panc-1, 
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NIH3T3/v-Src, and A549) or cells that do not (normal NIH3T3, NIH3T3/v-Ras, mouse thymus 

stromal epithelial cells, TE-71, Cisplatin-sensitive ovarian cancer cells, A2780s, or the Stat3-null 

mouse embryonic fibroblasts, Stat3-/-MEFs) and 

(a) growing in culture were treated once with 0-30 μM BP-1-102 for 24 h and subjected to 

CyQuant cell viability assay, or  

(b) seeded as a single-cell culture were treated once with 15μM BP-1-102 for 24 h and allowed to 

culture until large colonies were visible, which were stained with crystal violet, enumerated and 

plotted;  

(c) cultures of malignant cells harboringaberrant Stat3 activity (Panc-1, MDA-MB-231, 

NIH3T3/v-Src, DU145) or not (NIH3T3/v-Src) were wounded and treated once with 0-15 μM 

BP-1-102 for 16 h and allowed to migrate, and thecells in the denuded area were enumerated 

and plotted; and  

(d) Bio-Coat migration/invasion chamber assay and the effects of 16-h-treatment with 0-15 μM 

BP-1-102 on the invasion of MDA-MB-231 cells represented as (i) photomicrographs or (ii) plots 

of number of cells invaded through membrane. Visualization was done at 10X magnification by 

light microscopy. Data are representative of 3-4 independent determinations. Values are the 

mean and S.D. of 3-4independent determinations each performed in triplicates of 3. *p - <0.05, 

**p - <0.01, and ***p- <0.005. 
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Fig. 13 

 

Figure 13. BP-1-102-mediated suppression of proliferation, colony survival, and wound 

healing of malignant cells harboring persistently-active Stat3. 

 77



(a and b) Tumor cells harboring aberrantly-active Stat3 (MDA-MB-231, DU145, Panc-1, and 

NIH3T3/v-Src) or cells that do not (NIH3T3/v-Ras and the mouse thymus stromal epithelial cells, 

TE-71) and (a) growing in culture were treated once with 0 or 15 μM BP-1-102 for 24-96 h cell 

viability assessed each day by trypan blue exclusion/phase contrast microscopy and plotted or (b) 

seeded as a single-cell culture were treated once with 0-15 μM BP-1-102 for 24 h and allowed to 

culture until large colonies were visible, which were stained with crystal violet and photographed, 

(c) photomicrographs of cultures of malignant cells harboring aberrant Stat3 activity 

(MDA-MB-221, DU145, Panc-1, NIH3T3/v-Src) or not (NIHT3T/v-Ras) wounded and treated 

once with 0-15 μM BP-1-102 for 16 h and allowed to migrate into the denuded area. Visualization 

was done at 10X magnification by light microscopy. Data are representative of 3-4 independent 

determinations. Values are the mean and S.D. of 4 independent determinations each performed 

in replicates of 3. *p - <0.05, **p - <0.01, and ***p - <0.005. 

 

BP-1-102 modulates the induction or expression of focal adhesion kinase (FAK), 
paxillin, Ecadherin,Kruppel-like factor 8 (KLF8), and epithelial–stromal interaction 
1 (EPSTI1) proteins 

Although Stat3 promotes tumor cell metastasis, little is known about the Stat3-dependent 

molecular events that contribute to tumor progression. Reports show Stat3 associates 

with phospho-paxillin, FAK and Src in ovarian cancer cells, which is required for its 

localization to focal adhesions [79], and the induction of pS727Stat3 promoted FAK 
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expression [80]. Given the breadth of BP-1-102-induced antitumor cell effects, we were 

interested to probe further the underlying molecular changes relative to the functions of 

aberrantly-active Stat3 that contribute to its block of motility, migration, and invasion. In 

breast cancer cells harboring aberrantly-active Stat3 and treated with BP-1-102 for 16-24 

h, immunoblotting analysis shows dose-dependent decreases in phospho-paxillin and 

pFAK levels, with little change in paxillin or FAK levels (Fig.14a), increased E-cadherin 

expression (Fig. 14a), and no change in pSrc or Src levels (data not shown). Thus 

aberrantly-active Stat3 may induce paxillin and FAK and repress E-cadherin expression. 

Reports further indicate that FAK promotes the induction of KLF8 transcription factor 33. 

KLF8 further induces the tumor-stroma interaction factor, EPSTI1 (Tianshu and Zhao, 

unpublished data), and both proteins promote tumor cell spread and invasiveness [82-84]. 

We were interested to explore further the action of BP-1-102 relative to Stat3 function. 

Treatment of breast cancer cells with BP-1-102 suppressed the expression of KLF8 and 

its downstream target, EPSTI1 in immunoblots (Fig 14b(i)). These changes were 

validated by the siRNA-knockdown of Stat3 (Fig. 14b (ii)). To determine whether Stat3 

directly regulates KLF8 promoter, luciferase reporter studies were performed. In normal 

NIH3T3 fibroblasts transiently co-transfected with the KLF8 promoter-driven luciferase 

reporter and the vector expressing the viral Src oncoprotein, the activation of Stat3 by 

v-Src [43] led to the induction of KLF8 promoter-driven luciferase by 2-fold (Fig. 14b(iii)), 
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which was repressed by the treatment with BP-1-102 (Fig.14b(iii)). Therefore, aberrant 

Stat3 activity directly induces the KLF8 promoter. 

 

To further test whether the expression of KLF8 in the MDA-MB-231 human invasive 

breast cancer cells plays a role in Stat3-mediated cell migration and invasion, we 

evaluated the ability of the Stat3 inhibitor to reduce the cell motility and invasiveness in a 

KLF8 knockdown background. The migration/matrigel invasion assays of the wild-type 

and our MDA-MB-231- K8ikd cell line that expresses the tetracycline- inducible KLF8 

shRNA [83] show that the strong BP-1-102-induced inhibition of migration/motility of the 

wild-type (Fig. 12c) or un-induced (U) cells (Fig. 14c(i), compare bars 2 and 3) and 

invasiveness (Fig. 12 d and Fig. 13 c(ii), compare bars 2 and 3) are averted in the 

MDA-MB-231-k8id cells when KLF8 is knockdown by the induction (I) with doxycycline 

(Dox) (Fig. 14c(i) and d(i), compare bars 5 and 6). Accordingly, the BP-1- 102-mediated 

inhibition was substantially higher in the wild-type KLF8 background (U), compared to 

the knockdown cells (I) (Fig. 14c(ii) and d(ii)). Therefore, KLF8 has a critical role 

downstream from Stat3 in cell migration and invasion. We deduce that the induction of 

paxillin and FAK, together with the expression of KLF8 and EPSTI1 and the 

down-regulation of Ecadherin by Stat3 would facilitate enhanced tumor cell motility, 

migration, and invasive behaviors. 
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BP-1-102 represses Stat3 and Nuclear factor kappa B (NFκB) cross-talk and the 
extracellular production of cytokines and other soluble factors 

Aberrantly-active Stat3 influences the tumor microenvironment to promote the malignant 

phenotype [26, 70, and 85]. Involved in this process is signaling cross-talks with factors, such 

as NFκB [71, 85] that redirects inflammation signal for oncogenic functions. We determined 

whether BP-1-102 treatment impacts pNFκB/p65RelA. In the breast cancer line, 

MDA-MB-231, immunoblotting analysis detect pY705Stat3, RelA, and their total proteins 

in whole-cell (WC), nuclear (nuc) and cytoplasmic (cyto) lysates (Fig. 14e, control, 0). 

The BP-1-102-mediated attenuation of pY705Stat3 (in nucleus and cytoplasm) and 

nuclear total Stat3 occurred in parallel with dramatically- decreased nuclear pRelA and 

total RelA levels, and moderately-decreased pRelA levels in whole-cell lysates (Fig. 14e, 

15 μM BP-1-102), while cytoplasmic RelA levels, including pRelA appeared unchanged. 

Stat3 physically interacts with pRelA, and Stat3 knockdown suppressed nuclear pRelA 

[86]. To investigate the concurrent diminishing effect of BP-1-102 on nuclear RelA, we 

focused on the pStat3:pRelA complex. Interaction of Stat3 with RelA is detected in the 

nucleus (nuc), as determined by co-immunoprecipitation analysis (Fig. 14f, lane 1) and 

by nuclear colocalization in immunofluorescence/confocal microscopy (Fig. 15, control, 

merged). This interaction is disrupted in dose- and time-dependent manner by treatment 

of cells with increasing concentrations of BP-1-102 (Fig. 14f, lane 2, and Figure 15, 

compare bottom 16 h to control). These results were validated using siRNA knockdown 
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of Stat3, which attenuated nuclear pRel and moderately suppressed nuclear total RelA 

levels (Fig. 14g). By contrast, BP-1-102 treatment had no effect on IκB/RelA interactions 

(Fig. 14h). As previously reported [38], the nuclear Stat3:NFκB complex promotes 

nuclear NFκB retention. We propose that BP-1-102-mediated inhibition of Stat3 

activation promotes Stat3 nuclear exit, which in turn down-regulates nuclear pNFκB 

levels. 

 

In the tumor microenvironment, constitutively-active Stat3 also directly or indirectly 

suppresses the production of pro-inflammatory cytokines/ chemokines, while 

up-regulating other factors to not only support the tumor phenotype but also promote 

tumor immune tolerance [70]. To explore further the antitumor cell effects of BP-1-102, we 

examined the production of soluble factors by tumor cells. Culture medium from 

BP-1-102-treated MDA-MB-231 cells analyzed using a cytokine array kit showed 

decreased production of granulocyte colony-stimulating factor (GCSF), soluble 

intercellular adhesion molecule (sICAM)-1, and macrophage-migration-inhibitory factor 

(MIF)/ glycosylation-inhibiting factor (GIF) (Fig. 14i). We were interested to examine 

further the relevance of the soluble factors to tumor-cell associated Stat3 activation. 

Immunoblotting analysis showed the addition of exogenous G-CSF further induces Stat3 

and RelA phosphorylation above the constitutive levels (Fig. 14j, compare lanes 1 and 3). 
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Consequently, the BP-1-102-mediated downregulation of pStat3 and pRelA in the 

nucleus was substantially impaired by G-CSF activity (Fig. 14j, compare lanes 2 and 4). 

Thus, the inhibition of Stat3-mediated induction of soluble factors contributes to 

BP-1-102’s anti-tumor cell effects. 

 

Fig. 14 
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Figure 14. Effect of BP-1-102 or Stat3 siRNA on the induction or expression of FAK, 
paxillin, E-Cadherin, KLF8, EPSTI1, and NFκB and the production of sICAM, G-CSF and 
MIF/GIF by human tumor cells.  

(a) Immunoblotting analysis of whole-cell lysates prepared from the human breast cancer 

(MDA-MB-231) cells treated with 0-15 μM BP-1-102 for 24 h and probing for FAK, phospho-FAK, 
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paxillin, phospho-paxillin, E-cadherin, and β-actin;  

(b) (i) and (ii) immunoblotting analysis of whole-cell lysates prepared from the human breast 

cancer (MDA-MB-231) cells (i) untreated or treated with 15 μM BP-1-102 for 24 h or (ii) 

transfected with control (-) or Stat3 siRNA (+) and probing for KLF8, EPSTI1, and β-actin, or (iii) 

normalized luciferase reporter activity in cytosolic extracts of equal total protein prepared from 

normal NIH3T3 fibroblasts transiently co-transfected with the KLF8 promoter-driven luciferase 

reporter, pLucKLF8 and v-Src expression vector and untreated or treated with 10 μM BP-1-102 

for 16 h;  

(c and d) Boyden Chamber (c) migration and (d) invasion assays of doxycycline-induced (I) or 

un-induced (U) MDA-MB-231-K8ikd cells and the effects of 10 μM BP-1-102- treatment for 16 h 

on the (i) migration/invasion rates, (ii) represented as relative inhibition derived from bars 2 

versus 3 or 5 versus 6 in (i) and normalized to the U condition;  

(e-h), immunoblotting analysis of (e) whole-cell (WC), nuclear (Nuc), or cytosolic (Cyto) lysates of 

MDA-MB-231 cells treated or untreated with BP-1-102 and probing for pY705Stat3, Stat3, pRelA, 

RelA, β-actin or HDAC1, or (f) immune-complexes of Stat3 (upper panel) and RelA (lower panel) 

prepared from MDA-MB-231 cells treated or untreated with BP-1-102 and probing for RelA and 

Stat3, or (g) whole-cell lysates of MDA-MB-231 cells transfected with control (-) or Stat3 siRNA (+) 

and probing for Stat3, pRelA, RelA, or β-actin, or (h) IκB immune-complex prepared from 

MDA-MB-231 cells treated with or without BP-1-102 and probing for RelA or IκB; (i) cytokine 
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analysis of conditioned medium from cultures of MDA-MB-231 cells untreated or treated with 10 

μM BP-1-102 for 48 h for the levels of G-CSF, sICAM, and MIF/GIF represented as plots; and 

(j) immunoblotting analysis of whole-cell lysates of MDA-MB-231 cells stimulated with G-CSF in 

the presence or absence of BP-1-102 and probing for pY705Stat3, Stat3, pRelA, RelA, and 

β-actin. Positions of proteins in gel are shown. Data are representative of 3-4 independent 

determinations. Values are the mean and S.D. of 2-3 independent determinations each 

performed in triplicates. MDA-MB-231-K8ikd, the human breast cancer cells expressing inducible 

KLF8 shRNA. *p - <0.05, **p - <0.01, and ***p - <0.005. 

Fig. 15 
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Figure 15. Effect of BP-1-102 on the colocalization of Stat3 with NFκB/p65RelA and on 
Stat3 nuclear localization. 

 

Immunofluorescence imaging/confocal microscopy of Stat3 colocalization with p65RelA in 

MDA-MB-231 cells growing in culture and treated with or without 5-25 μM BP-1-102 for 2 or 16 h, 

fixed and stained with (i) anti-Stat3 antibody and secondary AlexaFluor546 antibody (red) or (ii) 

anti-p65RelA and secondary AlexaFluor488 antibody (green), or DAPI nuclear staining (blue). 

Images were captured using Leica TCS SP5 laser-scanning confocal microscope. Data are 

representative of 3 independent studies. 

 

BP-1-102 inhibits growth of human breast and non-small cell lung tumor 
xenografts and modulates Stat3 activity, Stat3 target genes, and soluble factors in 
vivo  

Consistent with Stat3’s importance in tumor growth and progression and the antitumor 

cell effects of BP-1-102 in vitro, BP-1-102 inhibited growth of mouse xenografts of 

human breast (MDA-MB-231) and non-small cell lung (A549) tumors that harbor 

aberrantly-active Stat3 when administered via intravenous (tail vein injection, 1 or 3 

mg/kg, every 2 or 3 days for 15 days) (Fig. 16a and c) or oral gavage (3 mg/kg, 100 μL, 

every day) (Fig. 16b). No significant changes in body weights (Fig. 17) or obvious signs 

of toxicity, such as loss of appetite and decreased activity or lethargy were observed. 
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These findings indicate that BP-1-102 is orally bioavailable. The apparent stronger 

anti-tumor response to oral gavage is likely due to the daily dosing. Analysis of tumor 

tissue lysates for Stat3 activation by EMSA shows strongly decreased Stat3 activity in 

BP-1-102-treated tumors (T1, and T2) compared to non-treated control (Con) (Fig. 16d, 

upper panel). Furthermore, consistent with the in vitro data, immunoblotting analysis of 

lysates from residual tumor tissues showed strong suppression of pY705Stat3, together 

with suppression of c-Myc, Cyclin D1, Bcl-xL, Survivin, and VEGF expression that 

occurred in a dose-dependent manner (Fig. 16, lower panel), and the reduction in pFAK, 

pPaxillin, KLF8, and EPSTI1 levels, with the up-regulation of E-cadherin, compared to 

control (Con) tumors (Fig. 16e). To further explore the molecular basis of the 

BP-1-102-induced antitumor effects and the role of aberrantly-active Stat3 in the tumor 

microenvironment, we probed RelA induction and cytokine levels in tumor tissue lysates. 

Consistent with the in vitro data (Fig. 14e-g and i), immunoblotting analysis showed 

substantially diminished pRelA induction (Fig. 16f), while cytokine analysis showed 

suppressed sICAM-1, MIF/GIF, serpin peptidase inhibitor, clade E (nexin, plasminogen 

activator inhibitor type 1), member 1 (Serpine1), and the interleukin 1 receptor antagonist 

(IL- 1RA) levels (Fig. 16g) in residual tumor tissues in response to treatment with 

BP-1-102, and undetectable G-CSF. Therefore, BP-1-102 induces a strong antitumor 

effect that is largely due to the effect on aberrantly-active Stat3 and its functions. 
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BP-1-102 is detectable at micromolar concentrations in plasma and in micro-gram 
amounts in tumor tissues 

Among the limiting factors in the development of any of the reported Stat3 inhibitors are 

pharmacokinetic issues. In vivo pharmacokinetic profiling of plasma samples from a 

cohort of three mice collected at 15, 30, 60, 90, 180, and 360 min post i.v. treatment (3 

mg/kg) with a single dose showed BP-1-102 levels in upwards of 35 μM at 15 min post 

dosing, which rapidly declines by 30 min to a steady 5-10 μM level for up to 6 h (Fig. 

18(a)), while plasma samples post oral dosing at 3 mg/kg showed peak BP-1-102 levels 

of about 30 μM at 30 min, which steadily declined to 5-10 μM over a 6-h period (Fig. 

18(b)). These data show blood levels of BP- 1-102 can exceed the IC50 values intended 

to inhibit Stat3 activation for a prolonged time period and that orally-delivered BP-1-102 

is absorbed reasonably well. Furthermore, BP-1-102 was detectable at 55 or 32 μg/g 

tumor tissue, respectively, for i.v. or oral delivery of 3 mg/kg, fifteen minutes after the last 

dosing, and at 25 or 15 μg/g tumor tissue, respectively, for i.v. or oral delivery of 3 mg/kg, 

twenty-four hours after the last dosing (Fig. 18). Data together suggest that BP-1-102 

accumulates in tumor tissues at levels sufficient to inhibit aberrantly-active Stat3 and its 

functions and inhibit tumor growth. 

 

 
 90



Fig. 16  
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Figure 16. Growth of human breast and non-small cell lung tumor xenografts and the 
antitumor effects and the in vivo pharmacokinetic properties of BP-1-102. 

a, b, and c: Mice bearing human breast (MDA-MB-231) (a, b) or non-small cell lung (c) tumors 

were administered BP-1-102 via i.v., 1 or 3 mg/kg or vehicle (0.05% DMSO in PBS) (a and c) or 

oral gavage, 3mg/kg or vehicle (0.05% DMSO) (b) every 2 or 3 days. Tumor sizes, measured 

every 2 or 3 days were converted to tumor volumes and plotted against days of treatment; 

d, e, and f:  tumor lysates prepared from control (Con) human breast tumor xenografts or from 

residual tumor (T1-T4) tissues from mice treated with BP-1-102 via i.v. (i) or oral gavage (ii) were 

subjected to (d) Stat3 DNA-binding activity/EMSA analysis (upper panel) or immunoblotting 

analysis probing for pY705Stat3, Stat3, c-Myc, Cyclin D1, Bcl-xL, Survivin, VEGF or β-actin 

(lower panel), or (e and f) immunoblotting analysis probing for (e) pFAK, FAK, pPaxillin, Paxillin, 
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E-cadherin KLF8, EPSTI1, and β-actin or (f) pRelA, RelA, and β-actin; (g) cytokine profiling of 

tumor tissue lysates from control (0) or BP-1-102-treated mice (3 mg/kg, i.v.) and represented as 

the plots shown in this figure; 

Fig. 17 
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Figure 17. Graphical representation of the weights of tumor-bearing mice and the effect 
of treatments with BP-1-102. 

Mice bearing human breast (MDA-MB-231) and treated with BP-1-102 via (a) i.v., 1 or 3 mg/kg or 

vehicle (0.1% DMSO in PBS) or (b) oral gavage 1 or 3 mg/kg or vehicle (0.1% DMSO) every 2 or 

3 days. Mice were weighed every day or every 2 days and weights plotted against days of 

treatment. Values are the mean and S.D. from replicates of 7-10 tumor-bearing mice in each 

group. 
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Fig. 18 

 

 

Figure 18. The in vivo pharmacokinetic properties of BP-1-102. 

Graphical representations of the pharmacokinetic analysis of BP-1-102 in  plasma samples 
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collected from mice 15 -360 min post single dosing of 3 mg/kg via (a) i.v. or (b) oral gavage; or (a) 

tumor tissues extracted 15 min or 24 hours after the last dosing with 3 mg/kg, i.v. or oral gavage. 

Data are representative of 7-10 independent determinations. Values are the mean and S.D. from 

replicates of 7-10 tumor-bearing mice in each group or of 3-5 independent determinations. *p - 

<0.05, **p - <0.01, and ***p - <0.005. 

 

Discussion 

Several of the inhibitors of Stat3 activity reported [7, 12, 30, 72, 73, 87] have efficacy and other 

pharmacological liabilities that have limited their clinical development. BP-1-102 is a 

Stat3:Stat3 dimerization disruptor with optimized structural features that promote 

enhanced inhibitory activity and an improved solubility. Conferred by the more polar 

pentafluorobenzene unit, the enhanced solubility facilitates oral bio-availability that in 

turn ensures higher anti-tumor efficacy against Stat3-dependent human tumors. 

 

The Stat3:Stat3 dimerization is promoted by the pTyr: SH2 domain interaction [35], and 

the dimer presents an interface broadly composed of three, solvent-accessible 

sub-pockets. By contrast to the existing Stat3 dimerization inhibitors that access only two, 

BP-1-102 binds to all three subpockets (Fig. 2b). The unique 

pentafluorobenzene-dependent hydrogen bonds in the third sub-pocked and the 
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additional interactions with the charged Lys side chain are key factors in the increased 

activity. The binding to the Stat3 SH2 domain disrupts the SH2 domain interactions with 

pTyr peptide motifs and hence, disrupts pre-existing Stat3:Stat3 dimers, and blocks de 

novo Stat3 phosphorylation at the level of the receptor and dimer formation (Fig. 19A). 

The reduced nuclear phospho-Stat3 is due to the impact on nuclear translocation of the 

inhibitory effect on Stat3 activation (Fig. 19A) and the Stat3 nuclear exit that follows 

dimer disruption in the nucleus [7]. 

 

The antitumor cell effects on several human tumor lines and the in vivo antitumor 

efficacy in response to BP-1-102-mediated inhibition of constitutively-active Stat3 are 

consistent with Stat3’s key role in promoting tumorigenesis [8, 9, 56], in part via 

dysregulation of gene expression [53, 56, 64] that leads to uncontrolled growth, survival and 

angiogenesis. While Stat3 also promotes tumor metastasis, except for the induction of 

matrix metalloproteinases [13, 22], the molecular basis of Stat3-induced tumor cell motility, 

migration and invasiveness has remained largely undefined. The BP-1-102-mediated 

suppression of FAK and paxillin induction and the downregulation of the expression of 

KLF8 and the epithelial-stromal interaction protein, EPSTI1, concomitant with its 

mediated up-regulation of the epithelial marker, E-cadherin altogether suggests 

aberrantly-active Stat3 regulates these proteins. In addition to its regulation by FAK [81, 88], 
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our data suggests KLF8 is directly induced by activated Stat3. It is also noteworthy that 

both KLF8 and EPSTI1 promote epithelial-mesenchymal transition and tumor 

invasiveness and the two proteins are upregulated in invasive and metastatic tumors, as 

is aberrantly-active Stat3 [82, 83, 89, and 90]. By modulating these events, Stat3 would repress 

epithelial cell assembly and cadherin-based cell-cell adhesions, while promoting a 

dynamic regulation of cell-matrix adhesions, and hence drive tumor migration and 

invasiveness. By inhibiting aberrantly-active Stat3, BP-1-102 attenuates these 

processes (Fig. 19B). 

 

The tumor maintains a strong interplay with the microenvironment for malignant 

progression. A significant factor in this is the aberrantly-active Stat3’s regulation of key 

inflammatory cytokines/chemokines in a manner that suppresses the functions of 

immune and inflammatory cells and thereby promotes tumor immune tolerance [70, 84]. 

The outcome of Stat3 regulation on soluble factors and the biological effects appear to 

be context and cell-type dependent. In melanoma and other tumor models, 

constitutively-active Stat3 suppressed IL-6, RANTES and IP-10, but induced VEGF and 

IL-10 production that inhibit dendritic cell maturation [70]. Moreover, in supporting the 

tumor phenotype, a number of these factors, including IL-6, VEGF and NFκB provide a 

positive feedback response by further promoting Stat3 activation or engaging in 
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cross-talk that perpetuates Stat3’s pro-tumorigenic functions [71, 85], and vice-versa, such 

as aberrantly-active Stat3 in turn upregulating NFκB signaling, in part through protein 

complex formation that promotes NFκB nuclear retention [86]. Our study supports earlier 

reports showing that aberrantly-active Stat3 promotes sICAM expression in progressive 

tumors, including breast [91] and implicating sICAM expression in tumor angiogenesis 

and immune suppression [92]. The present data further identifies a novel mechanism by 

which constitutively-active Stat3 regulates the tumor microenvironment through the 

induction of G-CSF, MIF/GIF, Serpine1 and IL-1RA production by breast cancer cells, 

and that G-CSF in turn potentiates Stat3 and NFκB activation (Fig. 19B). The 

upregulation of these factors have significance to the tumor phenotype, as MIF is 

overexpressed in breast cancer [93] and potentially contributes to breast cancer 

progression [94], while Serpine1 expression correlated with advanced clear cell renal cell 

carcinoma and promoted tumor angiogenesis and aggressiveness [95]. Furthermore, 

IL-1RA antagonized the antitumor cell effects of IL-1 in prostate cancer cells in vitro [96], 

and enhanced the proliferation [97] and growth of hepatic and glioblastoma cells [98], while 

sIL-1RA mRNA expression correlated with lymph node and hepatic metastases in gastric 

carcinoma patients [99]. Constitutively-active Stat3 regulation of these events is 

susceptible to the BP-1-102 activities. 
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Herein is presented a novel high-affinity Stat3 inhibitor, BP-1-102, which induces 

antitumor responses in xenografts of human breast and lung tumors that harbor 

aberrantly-active Stat3. The oral bioavailability of BP-1-102 represents a substantial 

advancement in the discovery of small-molecule Stat3 inhibitors as novel anticancer 

agents. 

 

Fig. 19 

a) 
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b) 

pNFκB

 
Figure 19. Model for BP-1-102-mediated inhibition of Stat3 activation and transcriptional 
activity and the consequent effects on Stat3-dependent events, tumor processes, and 
tumor growth. 

 

(a) BP-1-102 interacts with the Stat3 SH2 domain, thereby disrupts pre-existing Stat3:Stat3 

dimers, prevents de novo activation of Stat3 by blocking the association with phospho (P)- Tyr 

peptide motifs of receptor (R), and blocks Stat3 nuclear translocation and transcriptional 

function;  

(b) BP-1-102 attenuates aberrant Stat3 activation, and consequently suppresses nuclear 
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Stat3-NFκB crosstalk and nuclear pNFκB levels, and blocks Stat3-mediated phospho-paxillin 

and phospho-FAK induction, E-cadherin repression, and KLF8, EPSTI1, sICAM, G-CSF, 

MIF/GIF, Serpine1, and IL-1RA expression, and the Stat3-dependent induction of c-Myc, Cyclin 

D1, Survivin, VEGF, Bcl-xL genes. The modulation of these events by BP-1- 102 through effect 

on Stat3 activity leads to inhibition of tumor cell growth, survival, motility, migration, invasion, and 

tumor angiogenesis, and block of tumor growth and metastasis in vivo. 
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SUMMARY AND GENERAL CONCLUSION 

Several lines of evidence have established a critical role for abnormal Stat3 activity in 

malignant transformation and tumor progression. In that context, the targeting of 

aberrant Stat3 signaling provides a novel strategy for treating the wide variety of human 

tumors that harbor abnormal Stat3 activity. The knowledge of the Stat3 structure and the 

mode of activation of Stats gained in recent years have allowed the initiation of 

small-molecule discovery programs aimed at identifying potent and specific inhibitors of 

Stat functions. These discovery programs have benefited from computational modeling, 

which has paved the way to study in silico molecular events of which structural 

information is available and to facilitate the rational design of compounds.  

 

In the present context, several studies testing the proof-of-concept show that the 

inhibition of Stat3 activation or disruption of dimerization induces cancer cell death and 

tumor regression [7-12]. Leading agents from those earlier studies have been explored in 

the rational design of optimized molecules, in conjunction with molecular modeling of 

their binding to the Stat3 SH2 domain [12, 30]. One of those leads, S3I-201 [12] had 

previously been shown to exert antitumor effects against human breast cancer 

xenografts via mechanisms that involve the inhibition of aberrant Stat3 activity. By 

computational and structural analyses of the interaction between Stat3 and the lead 
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dimerization disruptor, S3I-201, we derived key structural information for lead 

optimization and a rational synthetic program that furnished exciting new analogs and 

designed a diverse set of analogs. Computational analysis shows the lead agent can be 

structurally modified to enhance binding to the Stat3 SH2 domain surface, and this 

became the basis for the derivation of analogs with additional structural appendages.  

 

The first generation analog, S3I-201.1066 harbors a cyclohexyl benzyl moiety, which 

facilitate additional hydrophobic interactions with the Stat3 SH2 domain. Our data shows 

that S3I-201.1066 possesses improved potency and selectivity compared to the lead 

agent, S3I-201; it directly interacts with Stat3 or the SH2 domain, with an affinity (KD) of 

2.74 µM, disrupts Stat3:pTyr-peptide interactions, with an IC50 of 23 µM, and shows 

improved Stat3-inhibitory potency and selectivity in vitro, with intracellular 

Stat3-inhibitory activity that is enhanced 2–3-fold compared to the lead, S3I-201. From 

computational modeling, we surmise that the improved activity could in part be due to the 

enhanced interactions with the Stat3 protein, possibly by the (para-cyclohexyl) benzyl 

moiety that extends from the scaffold amide nitrogen and makes important contacts with 

the hydrophobic residues Trp623, Ile659, Val637 and Phe716 within the unexplored 

pocket. Furthermore, the effect of S3I-201.1066 on Stat3 oncogenic function is shown by 

the significant antitumor in mouse models of human breast cancer following in vivo 
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administration, which correlates with the inhibition of constitutively active Stat3 and the 

suppression of known Stat3-regulated genes.  

 

Although these studies identified a more potent Stat3 inhibitor, a novel small-molecule, 

pharmacokinetic properties were not optimum. Indeed, although several 

dimerization-disrupting small-molecule Stat3 inhibitors have been reported, in some 

cases with cellular activities and evidence of in vivo efficacy [7, 12, 30, 72, 74], thus far none 

has reached the clinic for several reasons, including the suitability of the scaffolds and 

pharmacokinetic issues. The leading dimerization-disrupting agent, S3I-201.1066 [75] was 

subjected to computer-aided lead optimization. The Stat3:Stat3 dimerization is promoted 

by the pTyr: SH2 domain interaction [35], and the dimer presents an interface broadly 

composed of three, solvent-accessible sub-pockets. Computational modeling revealed 

all the reported Stat3 dimerization inhibitors, including S3I-201 and S3I-201.1066 only 

accessed two out of the three sub-pockets. Furthermore, S3I-201.1066, while more 

active due to the cyclohexyl benzyl group, and this group also introduced additional 

hydrophobicity that made the molecule less soluble. Our studies show that BP-1-102, 

with the pentafluorobenzene moiety can access all three sub-pockets. Also, the unique 

pentafluorebenzene-dependent hydrogen bonds in the third sub-pocket and the 

additional interactions with the charged Lys side chain are key factors in the increased 
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activity. The more polar pentafluorobenzene unit also confers enhanced solubility that in 

turn facilitates oral bio-availability and hence, ensures higher anti-tumor efficacy against 

Stat3-dependent human tumors. 

 

Significantly, our studies also identify novel mechanisms, beyond the well-described 

de-regulation of gene expression, by which aberrantly-active Stat3 promotes tumor 

progression. Although Stat3 is reported to induce tumor cell motility, migration, invasion, 

and tumor metastasis, except for the induction of matrix metalloproteinases, the 

molecular mechanisms are unknown. We present the first evidence that aberrantly-active 

Stat3 mediates the repression of E-cadherin, the induction of focal adhesion kinase and 

paxillin, the transcriptional up-regulation of Krüppel-like factor 8, the expression of stromal 

interaction protein, EPSTI1, and the production of the soluble factors, GCSF, sICAM, 

MIF/GIF, and Serpine1, and IL-1RA  in vitro and in vivo. These key events would alter 

cell-cell interaction and promote matrix dynamics essential to tumor metastasis. We then 

show that BP-1-102 suppresses these Stat3-dependent events and blocks nuclear 

Stat3-NFκB crosstalk. 

 

Finally, the oral bioavailability of BP-1-102 represents a substantial advancement in the 

discovery of small-molecule Stat3 inhibitors as novel anticancer agents.  
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