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ABSTRACT 

Acetazolamide (AZA), the only drug approved for treatment of hydrocephalus, is effective in 

only 25-30% of patients while its effect on fluid flow in the choroid plexus (CP) is unknown. 

The drug reversibly inhibits Aquaporin 4 (AQP4), the most highly expressed „water pore‟ in the 

brain, and it is postulated that it reduces cerebrospinal fluid (CSF) production by modulating 

AQP1 (mostly found in the apical membrane of the CP). In this study, we sought to elucidate the 

effect of AZA on AQP1 and fluid flow in CP. Primary CP culture from p10 Sprague-Dawley rats 

and TRCSF-B cell line were grown on Transwell permeable supports, treated with 100µM AZA 

or 100µM Vinpocetine (previously shown to increase AQP1 levels), and tested by: a) Fluid 

assays using TRITC-labeled Dextran to assay direction and extent of fluid flow; b) Immunoblot, 

Immunocytochemistry (ICC), and RT-PCR for AQP1 expression. Immnoblots and ICC analyses 

showed that AQP1 protein levels decrease in a delayed manner (lowest at 12 hours) with AZA 

treatment. The reduction in AQP1 protein was transient and preceded by a reduction in mRNA 

levels (lowest at 6 hours). Transwell fluid assays indicate a shift in fluid flow at 2 hours, prior to 

the changes in AQP1 mRNA or protein. Alteration of fluid flow by AZA (in both primary 

culture and TR-CSFB) is similar to Vinpocetine‟s effect in primary culture. Together with drug-

induced alterations in AQP1 levels, these data suggest independent mechanisms behind fluid 

flow and AQP1 expression.  
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INTRODUCTION AND LITERATURE REVIEW 

What is Hydrocephalus? 

Hydrocephalus is a neurological disorder characterized by an excessive accumulation of fluid in 

the skull cavity. This phenomenon may be caused by disturbances in both the production and 

absorption of cerebrospinal Fluid (CSF). A ventricular system that is continuous with the central 

spinal canal is responsible for the flow of CSF throughout the cranium, which serves many 

functions: (i) Shielding of buoyant brain tissue from potential damage by acting as a shock 

absorber, (ii) transport of nutrients and waste in the brain, and (iii) compensation for changes in 

intracranial blood volume by flowing between the brain and the spinal cord. In normal 

individuals, CSF is constantly produced to circulate through the brain, serve the above functions, 

and subsequently reabsorbed into the blood stream with any waste it may have collected. This 

critical balance is altered in hydrocephalus patients, leading to a buildup of CSF [1]. 

 

Figure 1  Cerebral Ventricles.  

Images depict ventricles as well as connecting aqueducts through which CSF flows throughout the brain. Sources: 

http://scienceblogs.com/corpuscallosum/2007/07/small_brain_normal_life.php 

http://sites.google.com/site/kidsjudge2009ventricularsystem/project-synopsis 

 

http://scienceblogs.com/corpuscallosum/2007/07/small_brain_normal_life.php
http://sites.google.com/site/kidsjudge2009ventricularsystem/project-synopsis
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The accumulation of fluid leads to dilation of the ventricles in the brain. Genetic background, 

age, and tolerance to excess CSF all contribute to the symptoms experienced by affected 

individuals. In infants, the ventricular dilation can often be seen in the form of a visibly rapid 

increase in the size of an affected individual‟s head (head circumstance). In older individuals, the 

size of the skull changes minimally if at all and hence the accumulation of pressure on the brain 

can more quickly lead to a multitude of symptoms. In adults and children, symptoms may 

include:  Headache, nausea, papilledema (swelling of optic disk), sunsetting of the eyes, poor 

coordination/balance, urinary incontinence, developmental retardation (in children), lethargy, 

drowsiness, irritability, memory loss, in addition to other changes in personality and memory [1]. 

 

Forms of Hydrocephalus 

There are four general classifications for hydrocephalus: congenital, acquired, ex-vacuo, and 

normal pressure hydrocephalus. Congenital hydrocephalus is present at birth and is normally 

caused by genetic malfunction and/or early developmental influences. Acquired hydrocephalus is 

developed after birth and is generally the result of injury or disease. The two remaining types of 

hydrocephalus are classified separately as they do not clearly fit into either of the above 

categories. Ex-vacuo hydrocephalus is often an effect of stroke or traumatic injury and may 

actually lead to shrinking of brain tissue. Normal pressure hydrocephalus has been seen in 

patients of all ages but most frequently occurs in the elderly. It may result from a subarachnoid 

hemorrhage, head trauma, infection, tumor, or complications of surgery, but there are those who 

have developed this form of hydrocephalus in the absence of all these factors [2]. 

 



3 

 

Hydrocephalus can also be classified as “Communicating” or “Non-communicating.” The 

difference in these classifications relies on whether or not the CSF is able to flow between the 

ventricles within the brain itself. “Non-communicating” is defined as hydrocephalus involving a 

obstruction of flow within the brain. A single obstruction is required for this classification. A 

common form of non-communicating hydrocephalus, and a common cause of hydrocephalus 

overall, is “aqueductal stenosis” – which refers to the blockage of the aqueduct of Sylvius (also: 

mesencephalic duct, cerebral aqueduct), a passageway between the third and forth ventricles in 

the center of the brain. “Communicating” Hydrocephalus is as result of insufficient CSF 

reabsorption without any blockage in fluid flow between portions of the brain. Many causes for 

this pathology include:  Injuries to the intravenous and subarachnoid areas, meningitis, 

genetic/developmental disorders, and infections/inflammation of the subarachnoid space [1, 2]. 

 

Prevalence and Cost 

It is difficult to estimate the number of individuals suffering from hydrocephalus in the United 

States or globally because there are currently no registries or databases to track such statistics. 

However, by some estimates, roughly 1 in 500 children are suffering from this debilitating 

disease. “In 2003, hydrocephalus accounted for 

0.6% of all pediatric admissions, 1.8% of all 

pediatric hospital days, and 3.1% of all pediatric 

hospital charges; in contrast, cystic fibrosis 

accounted for 0.3%, 0.6%, and 0.9%, respectively” 

[2]. This cure-less disease is the leading cause for 

Figure 2  Photograph of an infant with severe untreated 

hydrocephalus  

Source: http://www.pathguy.com/lectures/hydrocephalus.jpg 

 

http://www.pathguy.com/lectures/hydrocephalus.jpg
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brain surgery in American children [1].  In the same year, children with hydrocephalus were 

documented to account for $2 billion in healthcare costs. Increasing both the efficacy and cost-

efficiency of hydrocephalus management is of prime concern [2]. 

  

 Choroid Plexus and CSF Flow 

In order to improve treatment of hydrocephalus, we must first gain better understanding of it as a 

disease. This involves the identification of the relevant anatomical structures on which we should 

focus our molecular investigations. Being a disorder of fluid accumulation, many would agree 

that one should focus hydrocephalus research on understanding the mechanisms of CSF 

production, absorption, and flow in the brain [3-5]. 

 
Figure 3 Images of the Choroid Plexus   

Sources:  http://www.daviddarling.info/encyclopedia/C/choroid_plexus.html 

http://www.sci.uidaho.edu/med532/choroid.htm 

 

The choroid plexus (CP) is comprised of modified ependymal cells that serve as the barrier 

between the blood and the CSF [6]. The CP can most commonly be identified via the presence of 

transthyretin (TTR), a transporter of thyroxine and retinol, or Kir 7.1, an inward-rectifying 

potassium ion channel [7, 8]. CP cells are thought to play an essential role in CSF formation [9]. 

http://www.daviddarling.info/encyclopedia/C/choroid_plexus.html
http://www.sci.uidaho.edu/med532/choroid.htm
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The flow of CSF in the brain begins in the lateral and third ventricles. The CP in these areas 

produces CSF that flows into the fourth ventricle through the cerebral aqueduct. The CP in the 

fourth ventricle contributes to CSF volume and the fluid flows through the foramina outward into 

the cisterna magna and other large cisterns. From the cisterns, the CSF flows posteriorly to the 

subarachnoid space around the spinal cord as well as upward into the cerebral hemispheres. 

Later, the fluid flows outward to the arachnoid villi and into the venous blood of the superior 

sagittal sinus [10]. Most commonly, hydrocephalus is caused by blockage of the cerebral 

aqueduct (“aqueductal stenosis”). Hence, the CSF produced by the lateral and third ventricles is 

of particular importance as this fluid would be upstream of the blockage, leading to the build-up 

of pressure. The CP of these ventricles is thought to produce CSF via the expression of 

aquaporin proteins, namely in the form of Aquaporin 1 [9]. 

 

Aquaporin Proteins 

In the late 1990‟s, Peter Agre came across an unknown protein in immunoblots of the Rh blood 

antigen. After repeated contamination of his samples by this protein, he eventually identified it as 

the long-sought cellular water pore. In 2003, he shared the Nobel Prize in Chemistry with Robert 

MacKinnon for the discovery and initial characterization of aquaporin (AQP) proteins [11]. 

 

AQP proteins are widely considered “the plumbing system for cells” [12]. These integral 

membrane proteins form pores in cell membranes that are capable of mediating the transport of 

water, ions, and small non-polar molecules [13]. AQPs are expressed in many cell types, 

especially those with an essential function involving the transport of water [14]. The brain is 
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known to differentially express 6 isoforms of AQPs: AQP1, AQP3, AQP4, AQP5, AQP8, AQP9 

[15-19]. In the brain, three AQPs have been extensively characterized (AQP1, 4, 9). While 

AQP4 is predominant brain aquaporin, AQP1 is of particular interest for its exceptional 

abundance in CP cells [20, 21]. The high degree of AQP1 expression in the CP apical border 

may indicate an essential role in CSF production (and perhaps absorption) [22].  

 

AQP proteins, although thought to account for the bulk of fluid flow in many tissues, are 

typically driven by a shift in osmotic balance resulting from parallel transport of ions via pumps 

and channels [23]. It is also of note that current scientific interest is shifting away from a purely 

osmotic model of cellular water flow. Recent data implicates cotransporters and uniports, such as 

the Glucose Transporter 1 (GLUT1), as significant players in the transport of water independent 

of osmotic gradients [24]. 

 

As discussed above, aquaporin proteins have been shown to be linked with many disorders and 

disease states. Hence, understanding the physiological function of aquaporin proteins is 

imperative to the treatment of many neurological disorders [3, 4, 25, 26]. The CSF-producing CP 

is of particular interest in Hydrocephalus and other fluid disorders. The apical membrane of CP 

cells contain the majority of the brain‟s AQP1 protein [27, 28]. This localization of AQP1 was 

confirmed in our model via confocal microscopy (Fig 8C). Due to the high density of AQP1 

specific to the CP, these channel proteins are likely involved fluid formation. One study showed 

that CSF production in AQP1-null mice is reduced by approximately 25% [3, 4]. In low-gravity 
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situations, decreased AQP1 expression levels in rat CP correlated with reduced CSF production 

[29].  

 

Beyond Hydrocephalus, the study of aquaporin proteins is critical to the future scientific 

understanding of many bodily processes and disease states. Despite their seemingly simple 

cellular role of passive water transport, AQP proteins have proven to be involved in countless 

aspects of molecular physiology. Among other functions, AQP proteins are essential to the 

production of aqueous humor in the eyes, blood filtration in the kidneys, and differentiation of 

neuroblasts and epidermoblasts in Drosophila via interaction with BIB [23, 30]. 

 

AQPs have also been implicated in numerous pathologies. Upregulation of aquaporins has been 

documented to enhance brain edema and protect against seizures and epilepsy [26, 31, 32]. 

Increases in AQP4 are seen in astrocytic brain tumors and have been shown to decrease with 

radiation and chemotherapy [33-35]. AQP 1 is upregulated in the early stages of Alzheimer‟s 

disease and has also been correlated with malformations in cortical development [36-38]. 
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Modulating Cerebral Fluid Flow, with Focus on Hydrocephalus: Shunt, Acetazolamide, 

and Vinpocetine 

The most common treatment for hydrocephalus involves neurosurgical implantation of a cerebral 

shunt in the patient‟s brain. Based upon location of the blockage and other patient-specific 

factors, the neurosurgeon determines the best ventricle of the brain in which to insert the shunt 

and also the best location for transport of the excess fluid (most commonly the abdomen, but 

sometimes the heart or lungs). This dangerous procedure may cause brain damage itself and is 

not guaranteed to work [39]. 

 

Roughly one half of all shunts fail within 2 years, leading to repeated surgery to replace the 

device [40]. Depending on many factors ranging from the surgeon‟s experience and the duration 

of surgery to the patient‟s state of health, implanted shunts may become infected at rates as high 

Figure 4 Images of Shunts in Hydrocephalic Children   
Images depict a child with a shunt placed into the cranium as well as possible locations to which excess CSF could be 

shunted. Sources: http://www.rarenyheter.com/?p=1392  http://www.doctors.ly/forums/showthread.php?t=25340&page=8 

http://www.rarenyheter.com/?p=1392
http://www.doctors.ly/forums/showthread.php?t=25340&page=8


9 

 

as 12.9% or 27% (estimates vary), with all infections being considered life-threatening [41, 42]. 

The shunt is attached to a valve that may or may not be programmable. Valves often become 

obstructed and need to be watched carefully to avoid overdrainage, which can complicate 

treatment by leading to other disorders [41]. Although the risk of complications from these 

procedures has improved significantly, the shunt treatment has remained largely unchanged since 

its development in the late 1950‟s [39, 40]. In 2010, 50 years after the shunt was first developed, 

the major advancements offered to hydrocephalus patients are improved construction materials 

for shunts and programmable valves [43]. 

 

Notably, Acetazolamide (AZA, Diamox) is a carbonic anhydrase inhibitor that has considerable 

therapeutic effects in many, but not all hydrocephalus patients [3, 4]. It is used as a diuretic and 

in the treatment of glaucoma, idiopathic intracranial hypertension and seizures [5, 43, 44]. AZA 

has also been shown to reduce CSF production by as much as 50% in some cases of 

hydrocephalus [45]. In these cases, AZA is proposed to reduce CSF production by inhibiting 

AQP1 [46, 47]. However, AZA is ineffective on purified AQP1 protein reconstituted into 

liposomes, although inhibition of AQP4 was observed [48]. Nonetheless, AZA also decreases 

CSF production in AQP1-null mice [3].The goal of this study was to further elucidate the 

relationship between AZA treatment and AQP1 in the CP of Sprague Dawley rats. Little is 

known regarding the mechanism of this drug in hydrocephalus patients. Identifying the proteins 

affected by AZA in the CP could provide new targets for future treatments of brain fluid 

disorders and answer questions regarding the inefficacy of this drug in the majority of 

hydrocephalus patients [49]. 
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Figure 5 Acetazolamide Structure  

Source: http://commons.wikimedia.org/wiki/File:Acetazolamide_skeletal.svg 

 

Vinpocetine 

 

Figure 6 Vinpocetine Structure  
Source: http://en.wikipedia.org/wiki/File:Vinpocetine.svg 

 

 

http://commons.wikimedia.org/wiki/File:Acetazolamide_skeletal.svg
http://en.wikipedia.org/wiki/File:Vinpocetine.svg
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Vinpocetine is a nootropic semisynthetic derivative of Vincamine, a peripheral vasodilator 

produced by the periwinkle plant thought to augment the flow of blood to the brain [50]. 

Vinpocetine is available by prescription in Japan and Europe, but is sold primarily as a dietary 

supplement in the United States. Although it has been reported to exhibit neuroprotective effects, 

improve memory, and enhance blood flow to the brain, properly designed studies of Vinpocetine 

remain lacking [51-53]. Our lab has previously shown that Vinpocetine gradually increases the 

expression of AQP1 at the apical surface of rat choroid plexus cells [22]. Previous data from our 

lab showed a decrease in AQP1 in hydrocephalic rats and it was postulated that the effect of 

vinpocetine on AQP1 could lead to therapeutic effects for hydrocephalus patients. Hence this 

drug was included in our study as a comparison for Acetazolamide, a pharmaceutical with 

known therapeutic effects in the treatment of hydrocephalus. 

 

My contributions to this project consisted of assisting Leena Paul in completing experiments, 

while simultaneously learning the above techniques. This experience served as impetus for my 

studies of Acetazolamide and AQP1 in the Choroid Plexus and provided valuable data in 

analysis of the subsequent results. This drug was included in our studies as a control against 

which we could compare our results, for both the expression of AQP1 and the apical fluid flow. 

 

Hypothesis 

Because AQP1 is also highly expressed in tissues known to regulate water transport such as the 

eyes, it has been shown to be essential to the production of aqueous humor in AQP null mice 

(exhibiting hindered production of ocular fluid) [54].  We propose that the high concentration of 
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AQP1 in the CP implicate it as an essential player in CP function – namely, the production (and 

perhaps absorption) of CSF.  AQP1 protein expression has also been shown to be upregulated in 

injured astrocytes, which have a tendency to retain water – showing a correlation between AQP1 

expression and fluid retention [55].  

 

The main objective of this study was whether AZA may impact AQP1 CP expression in apical 

fluid flow. We hypothesized that AZA operates in the treatment of brain edema by decreasing 

the levels of functional AQP1 protein in CP cells, a phenomenon related but unessential to the 

change in fluid flow. 
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METHODS 

Animals  

All protocols were approved by the Institutional Animal Care Committee. Sprague Dawley (SD) 

rats were purchased from Charles River Laboratories (Cary, North Carolina). Ten-day old (p10) 

pups were used for this experiment. In most instances, pregnant mothers were purchased and 

birthed pups were maintained at our institution under 12-hour day-night cycles with free access 

to food, water, and maternal feedings. In a few instances, young pups were purchased and 

maintained under the same conditions described above. Roughly one fourth of the animals were 

purchased and delivered as litters of 7-day or 8-day old (p7 or p8) pups – these animals were 

maintained under the same conditions as those above. 

 

Tissue Culture  

Dissection/Primary Culture  

Sprague Dawley rats were between p8 and p11 upon dissection, with nearly all pups at p10 

(n=120). They were anesthetized using isoflurane-soaked cotton balls in a closed container for 

roughly 3-5 minutes and then quickly decapitated to minimize suffering. All steps of culture 

from the decapitation onward were done under sterile conditions in the tissue culture hood. 

While holding the head at the nose with a large pair of tweezers, a small scissor was used to cut 

the skin from the base of the skull to the forehead. The skin of the head was then pulled back and 

the scissors were used to severe any connective tissue preventing full exposure of the skull. 

Starting with a puncture at the base of the skull, the scissors were then used to cut the skull to the 

forehead creating two flaps of bone on either side of the head. While still grasping the head with 
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the large tweezers, a pair of small tweezers was used to pull the skull flaps laterally away from 

the midline until they detached from the head in order to fully expose the brain. The small 

tweezers were then used to pry and lift the brain out of the skull and into a dish of sterile 1X 

PBS. This was done carefully to ensure the brain remained intact and that the cerebellum was not 

severed in any way. 

 

Using a set of 2 extra-fine tweezers, the brain was dissected under the hood in the sterile PBS. It 

was folded open from the longitudinal fissure to expose the inner ventricles. The extra-fine 

tweezers were then used to reach under the lateral ventricles, just inside the arching line of the 

hippocampus, to obtain the choroid plexus. The Y-shaped thread-like tissue was pulled from this 

area – most often, in one swift motion that removed nearly the entire structure. This was done for 

both lateral ventricles. It is of importance to note that the choroid plexus is not attached to the 

brain by any fastidious means and should be quite readily removed if grasped properly and not 

torn by aggressive handling. After removal of the lateral choroid plexus, the cerebellum and 

associated portion of the brain stem were detached from the brain. This detached piece was then 

turned so that the dorsal portion was facing upward. The cerebellum and brain stem were 

separated enough for a pair of tweezers to reach in and pull out the choroid plexus of the fourth 

ventricle. This was done with care as with the lateral ventricles in an attempt to remove the entire 

structure. Again, if done properly, the choroid plexus of the fourth ventricle should also be 

removed with significant ease. The choroid plexus of the fourth ventricle has a feathery 

appearance, with many protrusions along a thin thread-like structure and is fairly easy to identify, 

even with the naked eye, when the brain stem and cerebellum are pulled apart. Upon removal, all 
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tissues to be used for culture were maintained in 10% Fetal Bovine Serum (FBS) Culture 

Medium (DMEM:F12 with 10 % FBS, 4mM glutamine, 5µg/ml insulin, 10U/ml Penicillin, 

0.1mg/ml streptomycin, 10ng/ml EGF, 5µg/ml Insulin, 5µg/ml Transferrin, 5ng/ml Sodium 

selenite) supplemented with 4µM Arabinoside Cytosine. 

 

Transwells and 24-well dishes were both coated with Laminin for primary culture. The stock 

solution of laminin was diluted 1:25 (40µg/µl) in sterile 1X PBS (Sterilized by autoclave). This 

dilution was used for coating. Volumes of 50-100µl were used to coat transwell membranes and 

100-150µl used to coat each well of 24-well dishes. TRCSF-B cell line was grown on 

commercially coated collagen plates or transwell membranes coated with 25µg/µl collagen by 

the researcher (1:50 dilution of stock). 

 

All dishes were exposed to UV light in a tissue culture hood for 5-10 minutes prior to addition of 

substrate. Coating took place for at least 3 hours at room temperature, but most often occurred 

overnight at room temperature. Dishes were wrapped with aluminum foil sterilized with 70% 

ethanol and kept in the tissue culture hood under UV light during coating. Solutions of substrate 

dilutions were often reused 3-5 times with storage at -20° Celsius in between usage. 

 

When dissection was complete, the extracted tissue was transferred in the media to a 15ml 

conical tube and allowed to settle to the bottom of the container. The excess media was removed 

and 4-6 ml of 0.25% Trypsin solution with phenol red was added at room temperature (roughly 

2-3 times the volume of the tissue). The amount of trypsin was estimated with reference to the 
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amount of tissue obtained – usually, 10-12 animals were dissected in a single sitting. The tube 

was then incubated at 37° C 15-20 minutes with occasional agitation by flicking and swirling. A 

Pasteur pipet was utilized and the tissue was titrated in order to break up the clumps – this was 

done carefully to homogenize the tissue as much as possible, while also avoiding damage to the 

cells as they were released into solution. Pasteur pipetting was done repeatedly in alternation 

with 5-minute periods of additional incubation at 37° C until the tissue was significantly digested 

as evidenced by minimal or nonexistent clumps of tissue. At this point, the media took on a 

cloudy look from the cells released into the solution. Importantly, the addition of phenol red 

causes the trypsin to go from a reddish color to more of an orange as the reaction continues. The 

tissue should be sufficiently digested to move forward before this orange color is reached, which 

may require significant time Pasteur pipetting. However, best results are obtained via gentle 

Pasteur pipetting as opposed to prolonged chemical digestion of tissue. 

 

Once the solution of tissue and media achieved sufficient homogeneity, the solution was passed 

through a 100µm cell strainer. An additional 3-5ml of 10% FBS culture medium was also passed 

through the strainer to obtain any loose cells that remained stuck on the strainer as well as to stop 

the trypsin reaction. The strained solution was then centrifuged at 1200 rpm (285 rcf) for 5 

minutes [56, 57]. The entire media/trypsin solution was aspirated off to leave only a clump of 

cells at the bottom of the tube. Although it varied depending on the pellet size, the cells were 

usually resuspended in 1-2 ml of 10% FBS culture medium supplemented with arabinoside 

cytosine. The cells were most often resuspended with a Pasteur pipet until homogeneity was 

achieved. This solution was used for cell counting. 
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To count the cells, 10µl of the freshly agitated cell resuspension was added to 10µl of 0.4% 

Trypan Blue and mixed by gentle pipetting. A 15µl portion of this solution was used to count the 

cells with a standard haemocytometer and a hand-held cell counter. The following formula was 

used to calculate the cell density of the resuspension: 

 

(Average cells counted) (Dilution of resuspension) (ml of resuspension medium) (10,000) 

 

This gave the total number of cells obtained, which ranged from roughly 0.4-1.0 million 

cells/pup dissected depending on the efficacy of the dissection. The cells were then diluted to a 

density of 1000 cells/µl using 10% FBS culture medium supplemented with arabinoside 

cytosine. The cells were then seeded at a density of 300,000 cells/well (300µl) for transwell 

dishes and 600,000 cells/well (600µl) in 24-well dishes. For transwell dishes, the 300µl of cell-

containing medium was placed in the apical chamber while 600µl of the same medium without 

cells was placed in the basolateral chamber.  

 

Dishes of cells were placed in a tissue culture incubator set to 37° Celsius and 5% CO2. Media 

was changed every 1-2 days and medium older than 10 days was not used for culture. The 

dissection was done entirely under aseptic conditions and all tools were freshly washed and 

autoclaved for each day of dissection. 
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Cells were maintained at 37° C and 5% CO2 on laminin-coated tissue cultureware, and medium 

was changed every 24-48 hours. Primary culture was mostly grown in 10% FBS (DMEM:F12 

with 10 % FBS, 4mM glutamine, 5µg/ml insulin, 10U/ml Penicillin, 0.1mg/ml streptomycin, 

10ng/ml EGF, 5µg/ml Insulin, 5µg/ml Transferrin, 5ng/ml Sodium selenite). For the first 4 days 

of culture only, the medium was also supplemented with 4µM Arabinoside Cytosine to reduce 

fibroblast contamination.  

 

Arabinoside Cytosine (Cytarabadine, Ara-C) is an antimetabolic agent that damages the viability 

of actively dividing cells. Its rapid conversion into cytosine arabinoside triphosphate allows for 

its integration into cellular DNA during S-phase of the cell cycle and subsequent inhibition of the 

actions of both DNA and RNA polymerases. Due to the nature of its mechanism, Ara-C is 

especially effective against rapidly dividing cells that undergo mitosis often. Because Choroid 

Plexus cells are slowly dividing cells, the addition of Ara-C to our culture medium for the initial 

period of culture allows for reduction in the population of fast-growing cells such as fibroblasts 

that commonly contaminate CP cultures. Arabinoside cytosine was included in the 10% FBS 

primary culture medium for the first 4 days in culture. After this point, 10% FBS primary culture 

medium as described above was utilized. 

 

TRCSF-B Cell Line Culture  

The TRCSF-B, Choroid Plexus stable cell line established from transgenic rats infected with 

temperature sensitive simian virus 40 large T-antigen gene, was kindly provided by Dr. Terasaki 

[58].  These cells were maintained at 34° C and 5% CO2 on collagen-coated tissue 
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cultureware according to guidelines published by Terasaki [58]. Media was changed every 24-48 

hours as needed.  

  

RT-PCR  

Choroid Plexus primary culture was grown in laminin-coated 24-well dishes according to the 

culturing methods described above. Cells were treated with either 1x Fluid Assay Buffer (FAB) 

alone or with 100µM AZA (Sigma, A6011) supplemented. RNA was harvested with 200µl of 

RLT buffer (Qiagen) with 2-mercaptoethanol at 1, 3, 6, 12 and 24 hours. Baseline wells were 

treated with an equal volume of vehicle and harvested at 24 hours.  

 

Following the RNAeasy kit (Qiagen, Maryland) instructions RNA was isolated involving “On-

Column DNase Digestion with the RNase-Free DNase Set”. RNA was quantified via nanodrop 

and cDNA were prepared with iScript cDNA synthesis kit (Bio-Rad). The resulting cDNA was 

utilized for qRT-PCR expression analysis of Aquaporin 1 mRNA with primers described below. 

18S was employed as an internal control.  

   

AQP1 Forward   5‟- CCCTCTTCGTCTTCATCAGC -3‟ 

AQP1 Reverse  5‟- GTTGAGGTGAGCACCACTGA -3‟ 

  

18S Forward  5‟- GTAACCCGTTGAACCCCATT -3‟ 

18S Reverse  5‟- CCATCCAATCGGTAGTAGCG -3‟ 
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Immunoblot  

Harvest of Protein: 

Cells were treated with FBS media Control, 1x FAB (baseline sample) or 100 µM AZA 

(dissolved in water – Sigma, A6011) in 1x Fluid Assay Buffer for 6, 12, and 24 hours. Cells were 

washed with sterile 1x PBS and lysed on the plate with appropriate volume of 1x Lamelli Buffer 

and a cell scraper, followed by scraping with the tip of the pipet used to transfer harvested 

protein to a microcentrifuge tube. However, cells grown on transwell membranes were harvested 

by trypsinization. The trypsin cell suspension was then pipetted off and transferred to a 

microcentrifuge tube.  

 

For trypsinized cells, the microcentrifuge tube was then spun at 10,000 rpm for 5 minutes at 

room temperature. The fluid was carefully aspirated such that the pellet was undisturbed and an 

appropriate volume of 1x lamelli buffer was added (usually between 20-100µl depending on the 

size of the pellet). The pellet was resuspended and lysed by brief vortex followed by 3-5 quick 

pulses of a sonicator at half power. Samples obtained via scraping were also briefly sonicated. 

 

Protein Quantification: 

Bicinchoninic Acid Assay (BCA, Pierce; Rockford, Illinois) was used to quantify protein 

concentration during SDS-PAGE. Samples were brought to room temperature (from the -20° C if 

stored, or from 37° C if freshly digested) and passed through a 20-guage syringe 5-10 times to 

loosen and minimize any clumps that may have formed during storage. 200µl of BCA reagent 

was incubated with 5 µl of each sample in a clear 96-well plate for 30 minutes at 37° C. Samples 
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were diluted prior to incubation if necessary for readings to fall into sensitivity range of BCA 

assay. 

 

SDS-PAGE Analysis: 

Equal amounts of protein (10-20µg) were separated on an SDS-PAGE gel at 100 volts. The gel 

was then transferred onto a nitrocellulose membrane by wet transfer at 90 volts for 70 minutes in 

cold transfer buffer with constant stirring for equal dissipation of heat. Transfer of molecular 

weight ladder was used as confirmation of successful procedure. When standardizing the 

procedure, Coomassie staining of the remaining acrylamide gel was performed to ensure most of 

the protein was transferred onto the membrane. 

 

Protein Blotting: 

Membranes were blocked for 1 hour in 5% non-fat milk in PBS-T (0.05% Tween-20) at room 

temperature. Blots were then incubated in 1:5000 dilution of Aquaporin 1 primary antibody 

(Alpha Diagnostics, Rabbit anti-Rat) in blocking solution overnight at 4 Celsius. Blots were then 

washed 3 times for 5-7 minutes (15-20 minutes total) in PBS-T. Blots were then incubated in a 

1:5000 dilution of Goat anti-Rabbit HRP secondary antibody (Santa Cruz Biotechnology , sc-

2004) in blocking solution for 1 hour at room temperature. Membranes were then washed 4 times 

in PBS-T totaling 20-30 minutes. After washing, blots were developed using the Supersignal 

West Pico Chemiluminescent Substrate (Thermo Scientific). Blots were incubated in the dark 

with substrate for 5 minutes and then developed in a dark room with a standard developing 

machine. 

 



22 

 

β-Actin blots followed the same general protocol as the Aquaporin 1 blots. Primary β-Actin 

antibody (Sigma, A1978; Saint Louis, Missouri) was mouse anti-rat 1:10,000 in blocking 

solution for 1 hour at room temperature and secondary antibody was goat anti-mouse (Santa 

Cruz Biotechnology, sc-2020) 1:10,000 in blocking solution for 1 hour at room temperature. All 

washing and developing steps were similar. 

 

Lentivirus shRNA Knockdown of AQP1 

Lentivirus containing AQP1 shRNA (sc-156108-V) and Cop-GFP control lentivirus (sc-108084) 

was obtained from Santa Cruz Biotechnology. CP rat primary culture cells were plated at a 

concentration of 2 million cells/well in 1-2 ml of complete culture medium in 6-well dishes and 

allowed to grow to near confluence over a 24-hour period. On the following day, the media was 

replaced with a fresh stock of complete medium (DMEM/F12) supplemented with 5µg/ml 

Polybrene (Santa Cruz Biotechnology, sc-134220). The Lentivirus particles (stored at -80°C) 

were thawed at room temperature and gently mixed before use. Lentivirus was then pipetted in 

10µl or 20µl aliquots into the appropriate wells. The plates were gently swirled and placed into 

an incubator (37°C, 5% CO2) for infection. Infected cells were harvested at 24, 48, and 72 hours 

and assayed by AQP1 knockdown via immunoblot analysis. Fluorescent microscopy was used to 

image the sister cultures infected with Cop-GFP lentivirus. Results show significant portion of 

cells were infected (Cop-GFP), but no visible knockdown of AQP1 (immunoblot). 
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Assessment of Confluency 

Cells were seeded onto pre-coated transwell membranes and allowed to grow to confluence. 

Primary culture was seeded at 300,000 cells/transwell and TRCSF-B cells were seeded at 

100,000 cells/transwell. Confluence of monolayers was assessed by a combination of the Lucifer 

Yellow passage assay as well as 

Trans-Epithelial Electrical 

Resistance (TEER) measurements 

made with an EVOm2 machine 

(World Precision Instruments). 

The threshold TEER resistance 

measurement for transwell 

membranes to be considered 

confluent was determined first by 

obtaining TEER values and then by 

comparing those values with the results of Lucifer Yellow Assay of the same membranes. 

 

Once confluency was determined, the cultures were given complete culture medium 

(DMEM/F12) supplemented with 0.5% FBS to allow AQP proteins to obtain polarity (as 

previously described) and the fluid assay was performed the following day [56, 57].  

 

Lucifer Yellow Assay 

Lucifer yellow (LY) is a fluorescent dye that is transported across cell layers by passive 

paracellular transport. Transport of this dye can be assessed via spectrofluorometric analysis. 

Figure 7 TEER Measurement  

Source: http://www.itqb.unl.pt/labs/nutraceuticals-and-delivery/facilities-and-

services-1 

 

http://www.itqb.unl.pt/labs/nutraceuticals-and-delivery/facilities-and-services-1
http://www.itqb.unl.pt/labs/nutraceuticals-and-delivery/facilities-and-services-1
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Cells are grown on a transwell membrane in appropriate medium to what is suspected to be a 

confluent monolayer. A 100ug/ml working solution of LY in HBSS is made. The medium is 

aspirated and the cells and well are washed twice with sterile 1x PBS or HBSS, and 600ul of 

HBSS is added to the basolateral chamber while 100ul of the LY working solution is added to 

the apical chamber. 

 

The cells are then stored under normal conditions in a tissue culture incubator for 1 hour. The 

fluid in the basolateral chambers are each removed and measured in triplicates (485nm 

excitation, 530nm emission). An average of the fluorescent readings is plugged into the 

following equation to calculate the percent passage of the LY dye: 

 

   % LY Passage =     RFU (test) – RFU (blank)     X 100 

                                  RFU (donor)-RFU (blank)        

  

  

RFU blank = Fluorescence of Blank (HBSS) 

RFU test =   Fluorescence of LY in experimental basolateral fluid (as a result of passage) 

RFU donor = Fluorescence of original LY working solution. 

 

 

A percent passage below 3% is considered sufficiently confluent while values greater than 4% 

are indicative of leaky monolayers. 

 

Fluid Assay  

Fluid assay was done following procedure by Hakvoort, et al. [56]. Fluid assay was performed in 

1x Fluid Assay Buffer (15mM NaHCO3, 15mM HEPES, 0.5mM Na2HPO4, 0.5mM NaH2PO4, 
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17.5mM Glucose, 122mM NaCl, 4mM KCl, 1mM CaCl2, 1mM MgCl2, 5µg/ml Insulin, pH 7.3). 

Baseline wells were vehicle-treated cells used to define the baseline fluid flow. For baseline 

wells, Fluid Assay Buffer was supplemented with only 100µM TRITC-Dextran (Sigma, T1287) 

while experimental wells also contained 100µM AZA (Sigma, A6011) or 100µM Vinpocetine 

(Sigma, V6383). Both the apical and basolateral chambers of the transwell membranes received 

350µl of the appropriate Fluid Assay Buffer solution.  

 

After treatment, both the apical and basolateral fluids were harvested at 2 hours, 6 hours, 12 

hours, and 24 hours and read in a spectrofluorometer (Cary Eclipse with corresponding software) 

for TRITC content (excitation: 542nm, emission: 572nm). Baseline wells were harvested at 2 

hours.  The 2 hour timepoint was chosen for harvest in baseline wells because this was the 

timepoint at which the cells were most significantly affected in the experimental wells and thus 

the timepoint as which a baseline was of greatest interest. All fluids were measured in triplicate 

and averaged. These averages were used to calculate fluid flow according to the equation:  

   

Vsec = ((CFDi - CFDa) ÷ CFDi) × V0 

 

Where:  

Vsec = Volume of fluid secreted in ul/hr  

CFDi= Initial fluorescent reading of TRITC-dextran solution  

CFDa = Final fluorescent reading of TRITC-dextran in the apical solution  

V0 = Initial volume of fluid applied to both sides of transwell membrane (350µl)  
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Immunocytochemistry  

After fluid assay and TRITC measurements, transwell membranes were washed with excess 1x 

PBS and fixed for 10 minutes at room temperature (RT) with 4% paraformaldehyde. After 

subsequent washing, membranes were blocked with 10% goat serum with 0.1% Triton X-100 in 

1X PBS for 45 minutes at RT. Membranes were then incubated with a 1:200 dilution of primary 

antibody (Aquaporin 1, Alpha Diagnostics, AQP11-A; Kir 7.1, Santa Cruz Biotechnology, sc-

22440) in 5% goat serum in 1x PBS for overnight at 4º C. Membranes were washed three times 

before incubation with a 1:200 dilution of secondary antibody (Goat Anti-Rabbit Alexa Fluor 

488 or Goat Anti-Mouse Alexa Fluor 568). Nuclear staining was done with Hoescht 33362 for 

10  minutes at RT. After a final washing, transwell membranes were mounted onto coverslips for 

subsequent imaging using fluorsave (Calbiochem, 345789).  

 

Immunofluorescent staining
 
was observed with a Nikon 80i fluorescent and IP Labs (BD 

Biosciences) imaging software. For quantification, digitized immunofluorescent images were 

acquired using Qimaging Retiga 2000 SVGA FAST 1394 cooled digital camera system 

with1600 x 1200 pixel array with 12-bit, 20 MHz digitization camera mounted on a NIKON 80i 

Research Upright Microscope and then analyzed with IP lab software (BD Biosciences- Bio-

imaging).  For each culture, 1 transwell membrane was probed for each time point, and 4 random 

fields were analyzed from each transwell membrane. Total area of pixel intensity was quantified 

with the automated measurement tools in IP lab software. The total density was averaged and 

expressed as normalized, corrected values. 
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Confocal microscopy was performed by Leena Paul and Srinu Chigurupati. These data were 

included as a complement to the Vinpocetine immunoblot data, which I assisted in obtaining. 

Confocal microscopy was utilized to confirm AQP1 localization to apical brush border in 

cultured CP (Fig 8C). 
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RESULTS 

Vinpocetine Treatment increases apical AQP1 expression 

Experiments probing the effect of Vinpocetine on Choroid Plexus (CP) cells were performed to 

confirm the proper performance of experimental methods (as compared to previous 

experiments). CP cells harvested from tissue from the brains of p8-p11 SD rats were cultured and 

grown to confluence. They were then treated with 100µM Vinpocetine. Immunoblots of 

Vinpocetine-treated cells harvested at 1, 3, 6, 12, and 24 hours were compared to immunoblot of 

vehicle-treated control. Results were normalized to β-Actin protein (Fig 8A). Densitometric 

analysis revealed a gradual increase in AQP1 levels with significant and sustained increases from 

6 to 24 hour (Fig 8B). Immunocytochemistry of treated CP cells also revealed an increase in 

AQP1 levels which appears to be highly localized to the apical membrane of choroid plexus cells 

(Fig 8C). 
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Figure 8 AQP1 and Vinpocetine  
(A) Immunoblots revealed a gradual increase in AQP1 protein levels as a result of Vinpocetine treatment of CP 

primary culture. (B) Densinometric quantification of AQP1 and Vinpocetine immunoblots determined that increases 

in AQP1 were significant beginning at 6 hours. (C) Immunocytochemistry in Vinpocetine-treated CP primary 

culture revealed an increase in AQP1 immunnofluorescence over time. Additionally, confocal microscopy illustrated 

AQP1 to be located to the apical membrane of CP primary culture cells, as expected. 
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AZA-treated CP Culture Displays a Decrease in Both AQP1 protein and mRNA levels 

Immunoblot and RT-PCR were utilized to determine the effect of AZA treatment on AQP1 

expression. Choroid Plexus cells harvested from tissue extracted from the brains of p10 SD rats 

were cultured to confluence and treated with 100µM AZA. Immunoblots of treated cells 

harvested at 2, 6, 12, and 24 hours displayed a decrease and subsequent return of AQP1 protein 

expression, as compared to baseline and normalized to β-Actin (Figs 9A, 9B). This trend implies 

an effect of AZA treatment on the expression of AQP1. RT-PCR using AQP1 primers, with 18S 

as a loading control, were performed on AZA-treated primary culture and illustrated a trend in 

mRNA expression similar to that seen in both the immunoblot, with the changes in mRNA 

expression being temporally consistent with the changes in AQP1 protein levels (mRNA 

minimum at 6 hours and protein minimum at 12 hours). These results suggest that the previously 

observed changes in protein expression were mediated by changes in the levels of AQP1 mRNA. 

This implies that AZA affects the expression of AQP1 through a mechanism that leads to a 

decrease in AQP1 mRNA, as detected by our primers (Fig 9C).  

 

Interestingly, a rebound phenomenon was seen at 24 hours in both immunoblots and RT-PCR, 

with a notable increase in mRNA levels and a modest increase in protein. This rebound 

expression pattern in AQP mRNA is similar to that seen in rodent studies involving a decrease in 

AQP1 in low-gravity situations before subjects are returned to normal gravity and AQP1 levels 

normalize [29]. It may be reasonably suggested that re-expression of AQP1 after knockdown 

commonly follows this pattern. 
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Figure 9 AQP1 protein and mRNA expression levels in AZA-treated CP primary culture   
(A) Immunoblot of AQP1 expression, normalized to β-Actin. (B) Densinometric Analysis of AQP1 immunoblot. 

Decrease of AQP1 protein at 12 hours is significant. (C) RT-PCR of AQP1 mRNA levels, normalized to 18S (Veh = 

Vehicle; NT = Nontreated). 

 

 

 

Immunocytochemistry of AZA-treated CP Culture Corroborated RT-PCR and 

Immunoblot trends of AQP1 expression   

Immunoblots and ICC of AQP1 in AZA-treated CP cells revealed a continual decrease in protein 

level over 12 hours, after which it returns to baseline levels by 24 hours (Figs 9A-9B, 10A-10B). 

Digital densitometric quantification of AQP1 pixel intensity corroborated previous observed 

trends, which indicated significant changes at 6 and 12 hours (Fig 10B). Images also revealed 
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that the resurgence of AQP1 immunoreactivity as evidenced by an increase of AQP1 punctate 

staining in the cytoplasm, further suggesting that this was likely due to increased mRNA 

expression as observed previously. Interestingly, a distinct change in the AQP1 expression 

pattern was also clear upon AZA treatment. The cells appear to lose a continuous network of 

AQP1 protein spanning over many cells. Instead, the protein localizes to the plasma membranes 

in a manner that outlines the individual cell borders (Fig 10A). This change may merely be an 

intermediate step in the re-expression of AQP1 after knockdown, but further experiments are 

needed to determine the significance of this change in expression pattern. 

 

At 24 hours, ICC images of AZA-treated primary culture showed an increase in punctate AQP1 

immunoreactivity within the cell. Earlier timepoints (0, 2 hrs) demonstrate AQP1 

immunoreactivity with little or no puncta, while later images clearly show AQP1 puncta as 

protein levels return (6, 12, 24 hrs). In combination with immunoblot and RT-PCR results, the 

ICC data suggest the presence of immature or newly translated AQP1 as protein levels climb 

after reduction (Fig 10A). RT-PCR and immunoblots were used to determine if the effect of 

AZA on AQP1 is mediated at the level of transcription and translation. Results demonstrated a 

maximum decrease in AQP1 mRNA levels at 6 hours that corresponded temporally to the 

illustrated decreases in AQP1 protein levels at 12 hours (Fig 9C). It has previously been shown 

that AZA, while able to inhibit AQP4, does not affect AQP1 protein [48]. Our results are 

consistent with previous data, suggesting the effect of AZA on AQP1 does not involve direct 

interaction of drug with protein.  
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Figure 10 Immunocytochemistry of AQP1 in AZA-treated CP Primary Cultures  

(A) AQP1 levels shown (green) along with Hoescht nuclear stain (blue). Gradual decrease and return of AQP1 

protein is observed. Insert of 24h timepoint displays punctate of resurging AQP1 and strong localization to cell 

membranes. (B) Quantfication of AQP1 fluorescent intensity in ICC. Decrease in AQP1 at 6 and 12 hours are 

significant. Scale bar=20μm. 

 

 

 

Development of an AQP1-Deficient Negative Control: Unsuccessful Implementation of 

Lentivirus Containg AQP1 shRNA 

Preceding functional assays of drug effect on fluid flow in the choroid plexus, an AQP1-deficient 

negative control was obtained. After unsuccessful knockdown of AQP1 in the CP primary 

culture via lentivirus shRNA (Fig 11A) despite successful transduction of virus (Fig 11B), efforts 

were shifted toward the TR-CSFB CP cell line (Fig 12). Immunoblots and immunocytochemistry 
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of AQP1 levels in TR-CSFB cells revealed minimal or undetectable levels of protein and hence 

this cell line was used as our negative control for the AQP1 rich CP primary culture (Figs 12A, 

12B). 

 

In order to determine the effect of the altered AQP1 expression on the fluid flow, it was 

necessary to develop control cells deficient in AQP1 for comparison. Prior to functional assays 

of fluid flow, focus was on acquisition of an AQP1-deficient negative control for the AQP1-rich 

CP primary culture cells. Initial focus was on the use of Lentivirus loaded with AQP1 shRNA 

(Santa Cruz Biotechnology). Cells were grown in a 6-well dish and treated with high (20µl/well) 

or low (10µl/well) titrations of lentivirus and efficiency of AQP1 knockdown was observed via 

immunoblot at 24, 48, and 72 hours.  Control cells were transduced using the lower titration of 

10µl of Cop-GFP lentivirus control vector and harvested at 72 hours. A lower titration of control 

lentivirus was utilized to show the level of transduction in the wells with less lentivirus. The 

CoP-GFP control transduction efficient, determined via fluorescent microscopy, was shown to be 

sufficient and hence it was determined that, even at the lower concentrations, the number of cells 

transduced with lentivirus was significant enough to produce an effect in the population (Fig 

11B).  Results indicate nearly non-existent knockdown of AQP1 protein (Fig 11A). 
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Figure 11 Lentivirus shRNA knockdown of AQP1 in CP Primary Culture   
(A) Immunoblots of AQP1 in CP primary culture infected with titrations of lentivirus loaded with AQP1 shRNA. 

Results show no desirable change in AQP1 expression. (B) Image of cells infected with lentivirus loaded with Cop-

GFP nucleic acid. A significant number of cells expressed GFP and were hence successfully infected by the 

lentivirus. 

 

 

 

TR-CSFB CP Cell Line was Shown to be and Sufficient AQP1-deficient Control 

As a substitute for the failed AQP1 lentivirus knockdown in primary culture, the TR-CSFB CP 

cell line was considered as an AQP1-deficient negative control. Experimentation went forward 

with this cell line after immunoblots of TR-CSFB extract (up to 500µg protein loaded) revealed 

naturally undetectable levels of AQP1 (Fig 12A). Immunocytochemistry of TR-CSFB 

corroborated the immunoblot results, showing nearly undetectable expression of AQP1 protein 

(Fig 12B).  
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Figure 12 AQP1 levels in TR-CSFB CP cell line   

(A) Immunoblot of AQP1 in TR-CSFB lysate, with positive control. Results reveal that AQP1 is expressed at 

undetectable levels, even with 500µg of protein loaded. (B) Immunocytochemistry of AQP1 in the TR-CSFB with 

AQP1 in green and DAPI nuclear stain in blue. Images show little AQP1 expression as settings were brightened to 

visualize AQP1. 

 

 

Extracted Cells for Primary Culture were Confirmed to be CP Cells via Kir 7.1 Staining 

Immunocytochemistry was performed to ensure that dissection for primary culture yielded 

sufficient CP enrichment and also to make certain that the TR-CSFB cell line had not been 

contaminated with other cells. The potassium channel Kir 7.1 is a known CP cell marker and was 

hence used in this analysis [8]. Results indicate that primary culture is sufficiently enriched with 

CP cells, as prescribed by CP culture guidelines (80% or greater enrichment is acceptable) (Per 

Raymond Franklin, M.D./Ph.D., Head of the ORMC Pathology Department) (Fig 13A). The TR-

CSFB cell line also expressed sufficient levels of Kir 7.1 (Fig 13B). 
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Figure 13 Kir 7.1 staining   

(A) Kir 7.1 immunocytochemistry in primary culture showed significant reactivity and thus sufficient enrichment 

with CP cells. (B) Kir 7.1 staining in TR-CSFB cell line also showed sufficient enrichment with CP and hence no 

significant contamination of our cell line culture. 

 

 

The TEER Measurement was Established as an Effective Method to Measure Confluency 

of Cell Cultures 

Prior to functional characterization by fluid flow assay, it is critical to establish the confluency of 

monolayers; leaky membranes may be a result of insufficient confluence and would lead to 

unwanted fluid flow. Hence, it was essential to establish a methodology to achieve this goal. It is 

widely accepted that the best method to establish confluency without harming the cells or the 

monolayer is the use of TEER measurements. Prior to employing the EVOM TEER machine, 

one must establish a minimum resistance reading to consider sufficiently confluent in ones 

experimental system. To establish this value, the Lucifer Yellow Assay was performed and 

results were compared with TEER values. TEER values were obtained for both primary culture 

cells and TR-CSFB cells grown in transwell permeable supports when cells appeared confluent 

via light microscopy. These values were compared to results of the subsequent Lucifer Yellow 
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Assay on the same membranes. Those TEER values consistently corresponding with confluence 

as determined by the Lucifer Yellow Assay were established as minimum resistances for 

determination of confluence. A sample of the obtained data is shown (Fig 14B). 

 

It was suggested that the change in AQP1 expression patterns observed in the ICC images of 

AZA-treated CP cells could be manifestations of a morphological change in the cells that could 

compromise the monolayer such that it could lead to leakage of in the membrane (Fig 10A). 

Thus, we also investigated the effect of this potential morphological change on the integrity of 

the monolayer. To assay this, monolayers were determined to be confluent via TEER 

measurement and subsequently treated with AZA. TEER measurements were repeated at 1, 3, 6, 

and 12 hours after drug treatment to determine if any significant change in confluence occurred. 

It was determined that the observed morphological changes did not compromise the integrity of 

the monolayers in a significant manner – a sample of this data is provided (Fig 14C). 
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Figure 14 Preparation for Fluid Assays   

(A) Chorid plexus cultures were grown in monolayer on transwell membranes to emulate the layer of ependymal 

cells that form the Blood-CSF Barrier. (B) Transepithelial Electrical Resistance values were standardize by 

systematic comparison with the Lucifer Yellow Assay. Monolayers with TEER values greater than 220 ohms were 

considered to be confluent. (C) The change in cell morphology observed in ICC data (Figure 10) created concern 

that AZA treatment may disturb the integrity of the monolayer. TEER values were continually taken after AZA-

treatment began and compared with original TEER values prior to treatment. Although some fluctuation was 

observed, results show no significant variation in the obtained TEER values, indicated that AZA treatment does not 

harm the integrity of the CP monolayers. 
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Fluid Flow Shifts in AZA-treated CP cultures Precede and Mirror Expression Patterns 

Observed in AQP1  

Fluid assay with AZA was performed on confluent transwells (as determined by TEER 

measurements). Both primary CP culture and TRCSF-B cell line demonstrated an immediate 

functional change as evidenced by fluid transport away from the apical chamber at 2 hours 

followed by a normalization of fluid flow as it again neared baseline levels (Figs 15A). Although 

the shift in fluid flow preceded the decrease in AQP1 protein, the effects are of a similar trend 

and, at this point, it was suggested the fluid flow may be a delayed effect of the trend in AQP1 

expression. 

 

Fluid assay was also performed in primary culture with Vinpocetine as well to confirm 

implementation of methodology consistent with experiments performed by pervious lab 

members. Interestingly, the results of this fluid assay again follow the same trend as those seen in 

both of the AZA fluid assays – primary culture and TR-CSFB (Fig 15C).  A similar trend in fluid 

flow was observed with Vinpocetine despite the drug‟s opposite effect on AQP1 expression – 

AZA leads to decrease in AQP1, while Vinpocetine leads to an increase in AQP1. 

 

Primary CP cells grown in our transwell model of CSF production yielded an AZA-induced 

functional change in fluid flow at 2 hours (Fig 15A). This decrease in apical flow represents a 

decrease in CSF production, but occurs at earlier timepoints than the decreases in both AQP1 

mRNA and protein. Notably, the apical fluid flow was always decreased at 2 hours and the 

corresponding basolateral fluid flow was not necessarily equal or opposite in nature, suggesting 

retention of fluid by CP cells during AZA treatment, which is in accordance with the changes in 
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cellular appearance seen in ICC data. Notably, AZA has previously been shown to increase cell 

volume and water retention [59]. AQP1 protein expression has also been shown to be 

upregulated in injured astrocytes, which have a tendency to retain water – suggesting a possible 

role of AQP1 in this retention [55]. 

 

The TRCSF-B cell line expressed very low levels of AQP1 protein, and was therefore used as a 

negative control for AQP1-rich CP primary culture cells (Fig 12). Transwell studies of confluent 

TRCSF-B cells demonstrated similar fluid flow characteristics (as seen in primary culture) 

despite the lack of AQP1 protein, suggesting that the observed effects of AZA are independent of 

AQP1 expression (Fig 15B). 

 

Furthermore, the fluid assay done with Vinpocetine actually also showed a similar trend in fluid 

flow as the fluid assay done with AZA (Fig 15C). This is despite the increase in AQP1 illustrated 

by our earlier data (Fig 1). Both AZA and Vinpocetine have been suggested as pharmaceuticals 

of interest in the treatment of hydrocephalus and such thought appears to be justified by the 

similar decrease in fluid flow observed via treatment with both drugs. However, when these fluid 

flow similarities are juxtaposed with the distinct differences in the effect of these drugs on AQP1 

expression, the data implies that the alteration of fluid flow and change in AQP1 protein levels 

are independent of each other. 
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Figure 15 TRITC-Dextran Fluid Assay of drug-treated Confluent Monolayers.   

(A) Fluid assay of CP Primary culture shows an AZA-induced decrease in apical fluid flow at 2 hours. (B) Fluid 

assay of AZA-treated TRCSF-B cell line culture displays a similar trend to that seen in primary culture. (C) Fluid 

assay of Vinpocetine-treated CP primary culture cells also show a similar trend to the above fluid assays, despite the 

increase in AQP1 we have shown to be induced by Vinpocetine and the decrease in AQP1 we have shown to result 

from AZA treatment. These results appear to indicate that the change in fluid flow observed from both Vinpocetine 

and AZA treatment are independent of AQP1, despite the effects these drugs have on the expression of this protein. 
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DISCUSSION 

 

Controversy exists in the literature regarding the effect of AZA on AQP1 expression, as well as 

the relationship between the expression of AQP1 and the apical fluid flow in choroid plexus 

cells. Some researchers claim AQP1 plays a vital role in the CP fluid flow mechanism, while 

others insist it is unrelated [3, 46, 47]. These seemingly contradictory findings may be reconciled 

with our findings of early fluid flow changes and delayed AQP1 alterations upon treatment with 

AZA. Our data suggests that changes in AQP1 expression is affected by AZA treatment, but is 

also not directly responsible for CP apical fluid flow alterations as previously suggested [3, 4, 

49].  To our knowledge, we are the first to show that AZA treatment leads to changes in AQP1 

expression and alters apical fluid flow, while also determining that these occurrences are 

independent of each other. 

 

A recent study by Tresguerres et al. (2009) demonstrates soluble adenylyl cyclase (sAC) is 

activated by the presence of bicarbonate ion [60]. Adenylyl cyclase forms cyclic AMP (cAMP), 

which causes significant increases in the levels of AQP1, presumably through activation of PKA 

[61-63]. In studies of sAC and the localization of renal vacuolar H+-ATPase, treatment using 

AZA and the sAC-inhibitor KH7 were shown to have similar effects, implying that the action of 

AZA is similar to the action of KH7. Moreover, in H+-ATPase experiments, the addition of 6-

MB-cAMP negated the effects of both treatments, suggesting sAC deactivation as an effect of 

AZA treatment [64]. Furthermore, Thyroid Transcription Factor-1 (TTF-1) is known to be co-
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expressed with AQP1 in rat CP and also known to enhance the transcription of the AQP1 gene 

[65]. In lung, cAMP activates TTF-1 via phosphorylation mediated by PKA [66].  

 

When combining all these findings with our data, it may be reasonable to hypothesize that AZA 

acts through adenylyl cyclase, and subsequently PKA and TTF-1, to affect the expression of 

AQP1 in a manner independent of fluid flow. Because Acetazolamide is a known inhibitor of 

carbonic anhydrase (CA), the enzyme responsible for conversion of carbonic acid to bicarbonate 

[5], it is likely that the AZA-mediated inhibition of CA leads to a decrease in the levels of 

bicarbonate which leads to a reduction in adenylyl cyclase activation, followed by an decrease in 

AQP1 protein levels mediated by PKA and TTF-1 (Fig 16) [60, 65, 66].   

 

Although literature would suggest that AZA most likely acts through the adenylyl cyclase 

pathway discussed above, it is important to recognize that other mechanisms may also be 

involved in the observed changes in AQP1 expression and fluid flow. The variations in fluid 

flow could be related to the altered activation of adenylyl cyclase by a second pathway that is 

also initiated by adenylyl cyclase activation.  

 

Alternatively, the fluid flow changes may result from some other effect of AZA treatment on CP 

cells, such as shifting of ion concentrations – it has previously been shown that shifts in the 

concentrations of sodium and hydrogen ions alter fluid flow [59, 67].  Such a phenomenon 

would be consistent with the characterization of AQP proteins as passive diffusers of water in the 

presence of changes in osmotic balance since, in such cases, the ion gradient would be the 
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driving force behind the flow of fluid [23], although this depiction of AQP proteins is not 

unanimously accepted.  

 

Interestingly, there is controversy regarding the ability of AQP proteins to channel ions in 

addition to water. In one study, cGMP was shown to affect the ion-channeling abilities of AQP1 

[68-71]. Although this effect of cGMP could not be replicated by other groups [72-77], such an 

effect could significantly affect the fluid flow dynamics of CP cells, and hence may be worthy of 

study.  

 

In our ICC data, later time points show the re-expression of AQP1 protein to correspond to the 

appearance of AQP1 immunoreactive puncta. The presence of puncta implies that newly 

synthesized AQP1 protein is present in endosomes after the initial decrease in AQP1 protein. 

Because PKC has been shown to mediate AQP1 trafficking in a manner dependent upon tonicity 

and microtubule dynamics [78], future studies may investigate the relation of PKC activation 

levels on expression of newly synthesized AQP1 in the context of AZA-treatment of CP cells. 

 

Future studies should focus on precise elucidation of the effects of AZA treatment on adenylyl 

cyclase activation, cAMP/PKA, cGMP/PKC, and fluid flow, with minor focus on AQP proteins 

and their relationship to these mechanisms. Understanding the exact mechanisms of AZA 

treatment on choroid plexus cells may lead to new therapeutic targets and development of 

improved drugs development to treat cerebral edema and other fluid disorders, such as 

hydrocephalus.  
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To further study the effect of AZA on AQP1 in more detail, immunocytochemistry should be 

performed on drug-treated CP cells in the absence of permeabilizing agents. This will allow for 

assessment of the effect of drug treatment on the surface expression of AQP1. In conjunction, 

studies could be done to determine if decreases in visualized AQP1 are mediated by proteolytic 

of endocytic pathways. This could be done by ICC evaluating the colocalization of AQP1 protein 

with endosome markers such as Rab5 to determine the extent of endosome-mediated decreases 

in AQP1 surface expression. 

 

In the future, it may also be advantageous to establish an effective method of AQP1 knockdown 

as a more appropriate negative control to AQP1-rich CP cell (in place of TR-CSFB cell line). 

Toward this goal, lentivirus transduction with higher virus titers, smaller wells, or a different 

target sequence may be implemented before conclusions regarding the efficacy of lentivirus-

mediated AQP1 knockdown are made. 

 

Conclusions  

AZA treatment of choroid plexus monolayers decreases the apical fluid flow and leads to an 

associated fall and subsequent resurgence in AQP1 expression at both the protein and RNA 

levels. This drug-induced change in AQP1 expression may be mediated by adenylyl cyclase, 

cAMP, PKA, and TTF-1 (Fig 16); while the shift in fluid flow may result from shifts in ion 

concentrations (perhaps mediated by cGMP).  
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Future studies should focus on further solidifying the relationship between AZA, AQP1, and 

apical fluid flow. Successful elucidation of these mechanisms behind the AZA-induced 

functional change in CP fluid flow could provide new drug targets in the treatment of fluid 

disorders in the brain (including hydrocephalus) as well as other organs.   

 

 
Figure 16 Proposed mechanism of AZA effect on AQP1 expression based upon current literature 
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