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ABSTRACT 
 

Retrocyclin-101 (RC101) and Protegrin-1 (PG1) are two important antimicrobial peptides 

that can be used as therapeutic agents against bacterial and/or viral infections, especially those 

caused by the HIV-1 or sexually-transmitted bacteria. Because of their antimicrobial activity and 

complex secondary structures, they have not yet been produced in microbial systems and their 

chemical synthesis is prohibitively expensive. Therefore, we created chloroplast transformation 

vectors with the RC101 or PG1 coding sequence, fused with GFP to confer stability, furin or 

Factor Xa cleavage site to liberate the mature peptide from their fusion proteins and a His-tag to 

aid in their purification. Stable integration of RC-101 into the tobacco chloroplast genome and 

homoplasmy were confirmed by Southern blots. RC-101 and PG1 accumulated up to 32-38% 

and 17~26% of the total soluble protein. Both RC-101 and PG1 were cleaved from GFP by 

corresponding proteases in vitro and Factor Xa like protease activity was observed within 

chloroplasts. Confocal microscopy studies showed location of GFP fluorescence within 

chloroplasts. Organic extraction resulted in 10.6 fold higher yield of RC 101 than purification by 

affinity chromatography using His-tag. In planta bioassays with Erwinia carotovora confirmed 

the antibacterial activity of RC101 and PG1 expressed in chloroplasts. RC101 transplastomic 

plants were resistant to TMV infections, confirming antiviral activity. Because RC101 and PG1 

have not yet been produced in other cell culture or microbial systems, chloroplasts can be used as 

bioreactors for producing these proteins. Adequate yield of purified antimicrobial peptides from 

transplastomic plants should facilitate further pre-clinical studies. 
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INTRODUCTION 
 

Antimicrobial peptides are evolutionarily conserved components of the innate immune 

response and are found in different organisms, including bacteria, vertebrates, invertebrates and 

plants (Boman, 1995; Broekaert et al., 1997; Hancock and Chapple, 1999; Nicolas and Mor, 

1995). Antimicrobial peptides are also called peptide antibiotics. When compared with 

conventional antibiotics, development of resistance is less likely with antimicrobial peptides. 

Many bacteria species remain sensitive to antimicrobial peptides after a long time of evolution 

(Nizet, 2006; Yeaman and Yount, 2003). Adaptive immune systems can remember the pathogen 

and elicit a much faster and stronger immune response against that pathogen at subsequent 

encounters (Boman, 1995). Without such specificity and memory, antimicrobial peptides 

evolved a different mechanism against pathogen infections. Most antimicrobial peptides are 

efficient against a broad-spectrum of pathogens rather than specific against one pathogen, which 

makes them especially suitable for use against local and systematic infections (Bals, 2000; 

Schaller-Bals et al., 2002). Other than the antimicrobial activities, some antimicrobial peptides 

are shown to have immunomodulatory activities. Some studies show that antimicrobial peptides 

like defensins are likely to play a role in recruiting effector T cells to inflammatory sites, thereby 

contributing to the effector phase of adaptive immunity (Yang et al., 2001). These intriguing 

characteristics of antimicrobial peptides facilitate development of novel antibiotics. However, the 

high cost of production of antimicrobial peptides and lack of suitable expression systems could 

be potential barriers for their development and clinical studies.  
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The chloroplast, as a bioreactor, is able to express foreign proteins at high levels because 

of their high copy numbers. When a transgene is integrated into the inverted repeat region of the 

chloroplast genome, up to 20,000 copies of the transgene per cell could be expressed. Several 

therapeutic proteins have been expressed in chloroplasts, including human blood proteins 

somatotropin (Staub et al., 2000), insulin like growth factor (Daniell et al., 2009), proinsulin 

(Ruhlman et al., 2007), IFN-α2b (Arlen et al., 2007), serum albumin (Fernandez-San et al., 

2003), IFN-γ (Leelavathi and Reddy, 2003), cardiotrophin-1 (Farran et al., 2008), alpha1-

antitrypsin (Nadai et al., 2009) and glutamic acid decarboxylase (Wang et al., 2008). In addition, 

several vaccine antigens have been expressed in chloroplasts against several bacterial pathogens 

including cholera toxin B subunit (Daniell et al., 2001), tetanus toxin (Tregoning et al., 2003), 

anthrax protective antigen (Koya et al., 2005; Watson et al., 2004), plague F1-V fusion antigen 

(Arlen et al., 2008), outer surface lipoprotein A (OspA) for Lyme disease (Glenz et al., 2006) 

and their functionality have been evaluated in cell culture systems or animal models after 

pathogen or toxin challenges. Antigens produced against protozoan pathogens were 

immunogenic against amoeba (Chebolu and Daniell, 2007) or effective against the malarial 

parasite (Davoodi-Semiromi et al., 2009). Although several viral antigens have been expressed 

in chloroplasts, neutralizing antibodies were shown only against human papillomavirus 

(Fernandez-San et al., 2008) and canine parvovirus  2L21 peptide (Molina et al., 2004). Other 

proteins expressed in chloroplasts include bovine mammary-associated serum amyloid (Manuell 

et al., 2007), aprotinin (Tissot et al., 2008) and monoclonal large single-chain (lsc) antibody 

against glycoprotein D of the herpes simplex virus (Mayfield et al., 2003). The expression levels 

of these proteins are mostly 2~20% of TSP, but could be even higher than RuBisCo (Oey et al., 
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2009; Ruhlman et al., 2010). Other advantages of chloroplast transformation include multigene 

engineering, transgene containment, lack of position effect, gene silencing and maternal 

inheritance (Daniell et al., 2005; 2009).  

Retrocyclin is a cyclic octadecapeptide, which is artificially synthesized based on a 

human pseudogene that is homologous to rhesus monkey circular minidefensins. Retrocyclin 

contains six cysteines, and has largely β-sheet structure that is stabilized by three intramolecular 

disulfide bonds. Structure-function studies indicate that the cyclic backbone, intramolecular tri-

disulfide ladder, and arginine residues of retrocyclin contributed substantially to its protective 

effects (Jenssen et al., 2006; Trabi et al., 2001). Retrocyclin peptides are small antimicrobial 

agents with potent activity against bacteria and viruses, especially against HIV retrovirus or 

sexually-transmitted bacteria. Previous studies have shown that RC-101 and other retrocyclins 

can protect human CD4+ cells from infection by T- and M-tropic strains of HIV-1 in vitro (Cole 

et al., 2002) and prevent HIV-1 infection in an organ-like construct of human cervicovaginal 

tissue (Cole et al., 2007). The ability of RC-101 to prevent HIV-1 infection and retain full 

activity in the presence of vaginal fluid makes it a good candidate for topical microbicide to 

prevent sexual transmission of HIV-1.  

Protegrin-1 (PG1) belongs to the protegrin family, which is discovered in porcine 

leukocytes (Kokryakov et al., 1993). PG1 is a cysteine-rich, 18-residue β-sheet peptide. It has a 

high content of arginine, an amidated C-terminus, and four conserved cysteines at positions 6, 8, 

13, and 15 which would form two disulfide bonds. The antimicrobial activity of PG1 is strongly 

related to the stability of β-hairpin conformation and the β-hairpin conformation of PG1 is 
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stabilized by the two disulfide bonds. Removal of both disulfide bonds would result in 

substantial reduction of PG1’s activity (Chen et al., 2000; Harwig et al., 1996). Therefore, the 

disulfide bridges are very important to the activity of PG1. It was shown that PG1 had potent 

antimicrobial activity against a broad spectrum of microorganisms, including bacteria, fungi and 

yeasts (Kokryakov et al., 1993; Steinberg et al., 1997). Chlamydia trachomatis and Neisseria 

gonorrhoeae are two kinds of pathogenic bacteria which can cause sexually transmitted diseases 

(STDs) in humans. Two previous studies that compare the efficiency of PG1 with human 

neutrophil defensins demonstrated that PG1 is more potent than human neutrophil defensins in 

inactivating Chlamydia trachomatis and Neisseria gonorrhoeae (Qu et al., 1996; Yasin et al., 

1996). Therefore, a combination of RC-101 and PG1 should be able to inactivate most bacterial 

and viral pathogens and they will be especially effective against bacteria and viruses that cause 

STDs. 

In a previous study, our lab expressed the antimicrobial peptide MSI-99, an analog of 

magainin 2, via the chloroplast genome to obtain high levels of protection against bacterial and 

fungal pathogens (DeGray et al., 2001). Recently, a proteinaceous antibiotic, PlyGBS lysin was 

also expressed in the chloroplast and it was shown that the protein synthesis capacity of the 

chloroplast was exhausted by the massive production of the foreign protein (Oey et al., 2009). 

However, antimicrobial peptides containing multiple intramolecular disulfide bonds have not yet 

been expressed in chloroplasts. In this study we investigated expression of functional disulfide-

bonded antimicrobial peptides in chloroplasts. The rationale is that chloroplasts have already 

been shown in previous studies to be fully functional in expressing biologically active, disulfide-
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bonded therapeutic proteins, such as human somatotropin (Staub et al., 2000), cholera toxin B 

(Daniell et al., 2001), human interferon-α2b (Arlen et al., 2007) and alkaline phosphatases 

(Bally et al., 2008). Because of the high cost associated with chemical synthesis and inability of 

cell culture or microbial systems to produce these proteins, expression of RC101 or PG1 

antimicrobial peptides in chloroplasts would be an ideal solution for their large scale economic 

production. 

 

 

EXPERIMENTAL PROCEDURES 
 

PCR Analysis to Confirm Transplastomic Plants 
 

Total plant DNA was isolated from transplastomic tobacco leaves using the DNeasy Plant 

Mini Kit from Qiagen Company. PCR was set up with two pairs of primers, 3P-3M and 5P-2M 

(Verma et al., 2008) to confirm the successful transformation of tobacco chloroplasts. The 3P 

primer (AAAACCCGTCCTCAGTTCGGATTGC) anneals with the native chloroplast genome 

while 3M primer (CCGCGTTGTTTCATCAAGCCTTACG) anneals with the aadA gene. 

Therefore this pair of primers was used to check site-specific integration of selectable marker 

genes into the chloroplast genome. The 5P primer (CTGTAGAAGTCACCATTGTTGTGC) 

anneals with the aadA gene while 2M primer (TGACTGCCCACCTGAGAGCGGACA) anneals 

with the trnA gene, which was used to check integration of the transgene expression cassette.  
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Southern Blot to Confirm Homoplasmy 
 

Total plant DNA was digested with ApaI enzyme and then separated on a 0.8% agarose 

gel. After electrophoresis, the gel was soaked in 0.25N HCl depurination solution for 15 minutes, 

and then rinsed 2 times in water, 5 minutes each. After that, the gel was soaked in transfer buffer 

(0.4N NaOH, 1M NaCl) for 20 minutes, and then the dry transfer was set up. After transfer, the 

membrane was rinsed with 2×SSC 2 times for 5 minutes each. After the membrane was dry, it 

was cross-linked using GS GeneLinker UV Chamber at C3 setting. The 0.81 kbp flanking 

sequence probe was prepared by digesting pUC-CT vector with BamHI and BglII (Figure 1c). 

After the probe was labeled with 32P, hybridization of the membrane was done by using 

Stratagene QUICK-HYB hybridization solution and protocol (Stratagene, La Jolla, CA). 

 

Factor Xa and Furin Cleavage Assays 
 

RC-101 tobacco transplastomic leaves (100 mg) were ground in liquid nitrogen and  

homogenized in 200 μl of plant extraction buffer (0.1 N NaOH, 1 M Tris-HCl, pH4.5) using a 

mechanical mixer. The homogenized plant extract was then centrifuged for 5 minutes at 

14,000rpm at 4 °C. The extract (10 μg) was then incubated with 1 μg of Factor Xa protease in 

20mM Tris-HCl (pH 8.0 @ 25 °C) with 100 mM NaCl and 2 mM CaCl2 overnight at 23 °C. The 

cleaved products were loaded with uncleaved RC-101 protein extracts on the same gel to 
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investigate cleavage of RC101-GFP fusion protein. Western blot analysis was performed as 

described below. 

Total protein from the PG1-GFP transplastomic tobacco leaves were extracted the same 

way as RC101-GFP described above. The extract (10 μg) from PG1-GFP transplastomic tobacco 

leaves was incubated with 1 unit of furin in a total reaction volume of 25 μl containing 100 mM 

Hepes (pH7.5, 25 °C), 0.5% Triton X-100, 1 mM CaCl2, 1 mM 2-mercaptoethanol at 25 °C. 

 

Native Polyacrylamide Gel Electrophoresis and Densitometric Analysis 
 

Total protein from the RC101-GFP and PG1-GFP transplastomic plants were extracted as 

described above. The TSP concentration was determined by the Bradford assay and then 

different amount of TSP was loaded with native gel loading buffer (60 mM pH 6.8 Tris-HCl, 

25% glycerol and 0.01% Bromophenol blue) into the 12% native polyacrylamide gel. After 

electrophoresis, the gel was scanned and analyzed for the presence of GFP fusion proteins using 

AlphaImager® and AlphaEase® FC software (Alpha Innotech, San Leandro, CA, USA). The 

integrated density values (IDVs) of the GFP standards and samples were recorded and analyzed 

further.  

 

Western Blot Analysis 
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Frozen leaf materials (100 mg) were ground in liquid nitrogen and then resuspended in 

200 μl of plant extraction buffer. The supernatant was collected after centrifuging the sample for 

5 minutes at 14,000rpm. The plant extract was mixed with 2x sample loading buffer and then 

boiled for 5 minutes before loading. The transformed, untransformed plant extracts and 

recombinant GFP standard (Vector Labs) were loaded onto the 12% SDS-PAGE gel. The 

proteins in the gel were then transferred to the nitrocellulose membrane at 100V for 1 hour. After 

transfer, the membrane was first blocked in PTM (1X PBS, 0.1% Tween-20, 3% milk) for 2 

hours at room temperature and then incubated with chick anti-GFP primary antibody (Chemicon) 

at 1:3000 dilution in PTM for 2 hours at room temperature. After the membrane was washed 3 

times with PBS-T (1X PBS, 0.1% Tween-20), 5 minutes each time, rabbit anti-chick secondary 

antibody conjugated with HRP was added at 1:3000 dilution in PTM and then incubated for 1 

hour at room temperature.  

 

PG-1 Furin Cleavage Assay and Silver Staining 
 

After furin digestion, PG1 was cleaved off from GFP. Because of non-availability of PG1 

antibody, we used silver staining to investigate the presence of the 2.1 kDa PG1 protein after 

furin cleavage. The cleaved products of PG1-GFP fusion protein were separated in a 16.8% tris-

tricine gel to get the maximum resolution in the ≤10 kDa range. Untransformed plant extracts, 

Marker 12 unstained standard (Invitrogen), PG1-GFP plant protein extracts before and after furin 

digestion were mixed with sample loading buffer and loaded on the 16.8% gel. After 

electrophoresis, the gel was stained by silver staining. 
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Confocal Microscopy 
 

Untransformed, RC101-GFP and PG1-GFP transplastomic tobacco leaves were harvested 

fresh before microscopic analysis. They were cut into 5 mm× 5 mm small pieces and fixed on 

slides. Confocal microscope (Olympus FluoView) with adjustable bandwidths of the detected 

fluorescence wavelength was used. The filter used was 505-525nm. GFP fluorescence from the 

samples was detected and saved as digital format files.  

 

ELISA Quantification of RC101-GFP and PG1-GFP Fusion Proteins 
 

All the untransformed, transplastomic plant protein extracts (all the extracts used here 

were the same as used in Bradford assay) and recombinant GFP standard (Vector Laboratories, 

MB-0752) were diluted using the ELISA coating buffer (15mM Na2CO3, 35mM NaHCO3, pH 

9.6). The recombinant GFP standard was serially diluted from 100 ng/ml to 3.125 ng/ml. 

Different dilutions of test samples were prepared ranging from 1:1000 to 1:9000. The wells of a 

96-well microtiter EIA plate were coated with 100 μl of diluted test samples and standards. The 

plate was covered with an adhesive plastic and incubated for 2 hours at room temperature. After 

incubation, the coating solution was removed and the plate was washed twice by filling the wells 

with 200 μl PBS and once by water. The coated wells were blocked by adding 200 μl of blocking 

buffer (3% dry milk in PBS). Then the plate was covered and incubated for 2 hours at room 

temperature. After removing the blocking buffer, the plate was washed again as described before. 



10 

 

Mouse anti-GFP IgG monoclonal antibody (Chemicon, MAB3836) at 1:2000 dilution was added 

and incubated for 2 hours at room temperature. After washing twice with PBS and once with 

water, HRP conjugated goat anti-mouse IgG antibody (American Qualex) at 1:2000 dilution was 

added and incubated for 2 hours at room temperature. After washing, the plate was developed 

with TMB (3, 3’, 5, 5’-Tetramethylbenzidine). The absorbance of each well was read with a 

microplate reader (Biorad, model 680).  

 

RESULTS 
 

Construction of Chloroplast Transformation Vectors 
 

Two chloroplast transformation vectors were designed for expressing RC-101 and PG1 in 

chloroplasts. They were constructed by Dr. Seung Bum Lee using the basic pLD vector, which 

was developed in our laboratory for chloroplast transformation (Daniell et al., 1998; Verma et al., 

2008). Both PG1 and RC-101 genes were fused with GFP because of their small size (18 amino 

acids). Besides, GFP was used as a reporter and in quantification of the fusion proteins. A 6-

histidine tag was also engineered upstream of RC-101/PG1 to facilitate purification of these 

fusion proteins. A furin protease cleavage site was engineered between PG1 and GFP while a 

Factor Xa protease cleavage site was engineered between RC-101 and the 6-histidine tag to 

facilitate release of PG1/RC-101 from these fusion proteins. The promoter and 5’-untranslated 

region (UTR) of the tobacco psbA gene was placed upstream of the His6-GFP-Furin-PG1/GFP-



His6-Xa-RC101 transgene cassette to enhance expression of these fusion proteins. The aadA 

gene, which conferred resistance to spectinomycin, was driven by the constitutive Prrn promoter. 

The flanking sequences of trnI and trnA facilitated recombination with the native chloroplast 

genome (Figure 1b-c).  The transgene fragment sequences and the disulfide bonds of RC101 and 

PG1 are shown in Figure 1d-e. 

 

Figure 1: Schematic representation of the chloroplast vectors. 
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(a) The native chloroplast genome showing both homologous recombination sites (trnI and trnA) and the 
restriction enzyme sites used for Southern blot analysis. (b) The pLD-His6-GFP-Furin-PG1 vector map 
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with the primer annealing sites. (c) The pLD-GFP-His6-Factor Xa-RC101 vector map; primer annealing 
sites are the same as shown on the PG1 vector map. (d) The nucleotide sequence of GFP-6xHis-Factor 
Xa-RC101 and the schematic representation of disulfide bonds in RC101. (e) The nucleotide sequence of 
6xHis-GFP-Furin-PG1 and the schematic representation of disulfide bonds in PG1. 

 

 

Confirmation of Transgene Cassette Integration and Homoplasmy 
 

The bombardments of RC101 and PG1 tobacco plants were performed by Dr. Seung-

Bum Lee. Several primary shoots appeared from the RC101 and PG1 bombarded tobacco leaves 

and they were developed through three rounds of selection. To confirm integration of transgene 

cassettes into the chloroplast genome, the putative transformed shoots were screened by PCR. 

Two pairs of primers were used for screening. The 3P and 3M primers were used to check site-

specific integration of the selectable marker gene (aadA) into the chloroplast genome. The 5P 

and 2M primers were used to check integration of the transgene expression cassette (Figure 1b-c). 

DNA template from the RC101-GFP and PG1-GFP transplastomic shoots yielded PCR products 

with both primers (Figure 2a-b). The 3P-3M PCR products for both the RC101 and PG1 

transformants were 1.65 kbp and 5P-2M PCR products were 2.6 kbp. Because the sizes of the 

RC101 and PG1 transgene expression cassette (including GFP) were of similar size, PCR 

product sizes were also similar. These PCR products could be generated only from transformed 

chloroplasts and not nuclear transformants or spontaneous mutants.  

Because there are thousands of copies of chloroplast genomes in each plant cell, some of 

them may not be transformed. Therefore, Southern blot was performed to investigate whether 



RC101 and PG1 transplastomic plants achieved homoplasmy. The probe used was made by 

digesting the flanking sequences trnI and trnA with BamHI and BglII (Figure 1a). Flanking 

sequence probe identified a single 4.0 kbp fragment in the untransformed tobacco, as expected. 

In the RC-101 and PG1 transplastomic lines, only one 6.4 kbp fragment was observed (Figure 

2c). Absence of the 4.0 kbp fragment confirmed that all the chloroplast genomes were 

transformed (to the detection limit of Southern blots) and therefore they are considered to be 

homoplasmic. 

 

Figure 2. PCR and Southern blot analysis to confirm trangene integration and homoplasmy.  
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(a) PCR analysis of the untransformed and transplastomic lines using the primer pair 3P/3M. Lanes 1-3: 
RC-101 transplastomic lines; 4-6: PG1 transplastomic lines. (b) PCR analysis of the untransformed and 
transplastomic lines using the primer pair 5P/2M. Lanes 1-3: RC-101 transplastomic lines; 4-6: PG1 
transplastomic lines. (c) Southern blot hybridized with the flanking sequence trnI-trnA probe to 
investigate the homoplasmy of RC101 and PG1 transplastomic lines. Lanes 1-2, DNA samples from 
RC101 transplastomic plants; lanes 3-4, PG1 transplastomic plants. M, 1 kbp DNA plus ladder; WT, 
untransformed tobacco. 

 

Evaluation of RC101 or PG1 Expression in Transgenic Chloroplasts 
 

To evaluate expression of foreign genes in chloroplasts of RC101-GFP and PG1-GFP 

transplastomic lines, immunoblots using GFP antibodies were performed. Based on the TSP 

concentration, same amount of protein extracts from RC-101 and PG1 transplastomic lines 

(before and after protease digestion) were resolved on 12% SDS-PAGE gels. The size of RC-101 

is 1.9 kDa while the size of PG1 is 2.1 kDa. Therefore, the sizes of RC101-GFP and PG1-GFP 

are both ~29 kDa. After cleavage of RC101 and PG1 from GFP, we should observe only the 27 

kDa GFP polypeptide. The immunoblot result is shown in Figure 3a. Clearly, the fusion proteins 

were cleaved after protease digestion.  

An alternative approach to confirm the expression of RC101-GFP and PG1-GFP proteins 

is to observe the green fluorescence emitted by GFP. After crude protein extracts were resolved 

on the native polyacrylamide gel, the green fluorescence emitted by GFP fusion proteins was 

observed under the UV light. The green peptides shown correspond to the GFP fusion proteins. 

The strong green fluorescence observed indicated that GFP fusion proteins were expressed at 

high levels (Figure 3b). The expression of RC101 and PG1 transplastomic plants were quantified 

using the GFP fluorescence by densitometric analysis. The integrated density values (IDVs) of 
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GFP fluorescence were measured by spot densitometry. The linear GFP standard curve was 

established using 150 - 600 ng of GFP standard protein (Figure 3c). Based on this GFP standard 

curve, the expression levels of RC101 and PG1 transplastomic plants were estimated to be 

approximately 35% and 25% of TSP (Figure 3d). To confirm the expression levels of the 

transplastomic plants, ELISA was also performed to determine the quantities of RC101-GFP and 

PG1-GFP fusion proteins in transplastomic tobacco plants. Because the antimicrobial peptides 

RC-101 and PG1 were fused with GFP proteins, ELISA was performed using the GFP antibodies 

to quantify the RC101-GFP and PG1-GFP fusion proteins. RC101-GFP accumulated to 32~38% 

of TSP and PG1-GFP accumulated to 17~26% of TSP. This variation of expression levels could 

be due to leaf samples harvested from plants under different periods of illumination. 



 

Figure 3. Protease cleavage of the fusion proteins by immunoblot and quantification of expression 
by densitometric analysis. 

(a) Immunoblot analysis of RC101-GFP and PG1-GFP expression and cleavage. 1: Untransformed 
protein extract, 10 μg; 2: Precision Plus protein marker, 5 μg; 3: RC101-GFP transplastomic line protein 
extract, 3 μg; 4: RC101-GFP protein extract digested by Factor Xa protease, 3 μg; 5: PG1-GFP protein 
extract, 6 μg; 6: PG1-GFP protein extract digested by furin protease, 6 μg; 7: GFP standard, 100 ng. (b) 
Native polyacrylamide gel electrophoresis of RC101-GFP and PG1-GFP protein extracts. Lanes 1-3, GFP 
standard (150, 300, 600 ng); lane 4, untransformed plant extract, 10 μg; lanes 5-6, RC101 transplastomic 
extracts (6, 8 μg); lanes 7-8, PG1 transplastomic extracts (6, 8 μg). (c) GFP standard curve based on the 
IDVs of 150, 300 and 600 ng of GFP standard. (d) Estimation of RC101-GFP and PG1-GFP expression 
levels in transplastomic plants.  
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Dot blot analysis was performed by Dr. Cole’s lab to evaluate the expression of RC-101 

in transgenic chloroplasts. Factor Xa cleaved samples and uncleaved samples from RC-101 

transplastomic plants were tested by dot blots. It is shown that both uncut and cut samples of 

RC101-GFP appeared positive (Figure 4a). As shown in previous experiments (Figure 3a), 

RC101-GFP fusion proteins were already partially cleaved by Factor Xa within chloroplasts. 

Because PG1 was not immunogenic, dot blot analysis could not be done with PG1 

transplastomic plants. Instead, PG1 protein expression was examined by silver staining. By 

comparison of cut and uncut samples from PG1 transplastomic plants, it is clear that there is a 2 

kDa polypeptide present in the furin digested sample but absent in the uncut sample and 

untransformed tobacco protein extract (Figure 4b). The size of PG1 is 2.16 kDa and therefore 

this polypeptide should correspond to the PG1 protein.  



 

Figure 4. Dot blot analysis and silver staining to investigate expression of RC101 and PG1.  

(a) Dot blot analysis of RC101 before and after cleavage. Indicated amount of RC101 was used as 
standards. Uncut, RC101-GFP without Factor Xa cleavage; Cut, RC101-GFP after Factor Xa cleavage. (b) 
Silver stained gel of plant extracts before or after furin cleavage of PG1-GFP protein. 1: Marker 12 
(Invitrogen); 2: Untransformed plant protein extract, 40 μg; 3: PG1-GFP protein extract without furin 
digestion, 40 μg; 4: PG1-GFP protein extract digested by furin protease, 40 μg. 

 

RC101 and PG1 were Expressed and Contained within Chloroplasts 
 

In order to investigate whether the chloroplasts remained intact when RC101 or PG1 

antimicrobial peptides were highly expressed in chloroplasts, fresh leaves were examined under 

the confocal microscope. Strong green fluorescence was emitted from the RC-101 and PG1 
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transplastomic lines (Figure 5a-b). We observed that chloroplasts emitting green fluorescence 

formed circles around each cell. There was no GFP fluorescence outside chloroplasts. This 

observation confirmed that chloroplasts remained intact because GFP fused antimicrobial 

proteins were not released into the cytoplasm in any detectable quantity. 

 

 

Figure 5. Confocal microscopy of RC101-GFP and PG1-GFP transplastomic plants. 

The left panels shows chloroplasts from RC101-GFP (a) or PG1-GFP (b) transplastomic lines (bars = 20 
μm). The right panels showed four times higher magnification of the boxed regions (bars = 5 μm).  
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Comparison of Proteins Containing Different Number of Disulfide Bonds 
 

RC-101 is a cyclic antimicrobial peptide with three disulfide bonds and PG1 is a β-sheet 

peptide with two disulfide bonds. In both RC101 and PG1, the intramolecular disulfide bonds are 

important for their antimicrobial activity. To investigate formation of disulfide bonds in proteins 

expressed within chloroplasts, we compared proteins expressed in chloroplasts with different 

number of disulfide bonds by immunoblot of native PAGE, including PTD-GFP (0), PG1-GFP 

(2), RC101-GFP (3), and CTB-GFP (1). CTB is known to form pentamers and that would be 5 

disulfide bonds in total. The numbers denote the number of disulfide bonds in each protein. 

Because the expression levels of these transplastomic plants were different, different amount of 

plant extracts were loaded (Figure 6). There are no multimers present in the PTD-GFP lane while 

there are multimers in the CTB-GFP, RC101-GFP and PG1-GFP lanes. 

 

Figure 6. Native gel western blot to compare proteins with different numbers of disulfide bonds 
expressed in chloroplasts. 
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Lane 1: Recombinant GFP standard protein, 40 ng; 2: protein extract from CTB-GFP transplastomic plant, 
3 μg; 3: PTD-GFP extract, 1 μg; 4: PG1-GFP extract, 3.5 μg; 5: RC101-GFP extract, 2 μg; WT, 
untransformed tobacco; M, Marker. Mouse anti-GFP primary antibody and goat anti-mouse secondary 
antibody was used. 

 

Purification of RC101-GFP and PG1-GFP Fusion Proteins 
 

Purification of the RC101-GFP and PG1-GFP fusion proteins was performed by Dr. Lee. 

The engineered His-tag and GFP protein facilitated purification of RC101-GFP and PG1-GFP 

fusion proteins. We tried to purify the fusion proteins by affinity chromatography using His-tag 

or organic extraction through GFP. Results of purification using both methods are shown in 

Figure 7. Approximately 8 μg of purified PG1-GFP and 5 μg of purified RC101-GFP were 

obtained from one gram of fresh tobacco leaf by using the affinity chromatography method. In 

contrast, purification of RC101-GFP using the organic extraction method resulted in a yield of 

53 μg purified RC101-GFP per gram of fresh tobacco leaf. The organic extraction method 

resulted in much higher yield than the affinity chromatography method. It is evident that 

monomers, dimers and multimers of the RC101-GFP were recovered by organic extraction 

method, resulting in 10.6 fold higher yield whereas only the monomer was recovered using the 

affinity chromatography. The highly enriched fraction was the RC101-GFP monomer, ~29 kDa 

in size. The upper bands should be dimers and multimers formed by RC101-GFP proteins. This 

same pattern was observed in the native gel electrophoresis of RC101-GFP transplastomic plant 

protein extracts (Figure 3b). PG1-GFP protein was purified only by affinity chromatography, and 

we could observe a single band, which should be the monomer form of PG1-GFP. 



 

 

Figure 7. Purified RC101-GFP and PG1-GFP fusion proteins were separated on native PAGE and 
observed by Coomassie staining or fluorescence under UV light. 

PG1-GFP was purified by affinity chromatography and RC101-GFP was purified by both affinity 
chromatography and organic extraction method. Samples were loaded in duplicate. M, Precision Plus 
protein marker, 5 μg; St, GFP standard, 500 ng. The same gel was observed under UV light (bottom) or 
stained by Coomassie staining (top). The yield of RC101-GFP was 5 μg/g leaf by affinity 
chromatography and 53 μg/g leaf by organic extraction; PG1-GFP yield was 8 μg/g leaf by affinity 
chromatography purification. 
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RC101 and PG1 Retained Their Antimicrobial Activity when Expressed in Chloroplasts 
 

Retrocyclin-101, as a member of the θ-defensin family, possesses antibacterial activity as 

well as antiviral activity (Tang et al., 1999). To investigate the functionality of RC101 and PG1 

expressed in the tobacco chloroplasts, both antibacteria and antivirus assays using plant 

pathogens were performed (these studies were performed by Dr. Jin in our lab) because use of 

HIV and other human bacterial pathogens require higher levels of containment than our current 

facilities. The antibacterial activity of RC101 and PG-1 was studied by investigating enhanced 

resistance to Erwinia soft rot either by using the syringe or sand paper method. One day after 

inoculation with Erwinia, the first signs of damage were observed on leaves of untransformed 

plants in the regions of inoculation. On the 3rd day, virtually all inoculated untransformed leaf 

surfaces underwent necrosis whereas in leaves of RC101 or PG1 transplastomic plants, no or 

minimally damaged zones were observed depending on the number of bacteria inoculated. 

Inoculation of potted plants with E. carotovora using a syringe method resulted in areas of 

necrosis surrounding the point of inoculation in untransformed control for all cell densities 

(Figure 8b, f), whereas transplastomic RC101 and PG-1 mature leaves showed no areas of 

necrosis (Figure 8a, e). Even inoculation of 108 cells resulted in no or minimal necrosis in mature 

transplastomic leaves. In contrast, untransformed plants inoculated with 102 cells displayed 

obvious necrosis. Similar results were obtained with E. carotovora inoculated by the sand paper 

method. Transplastomic mature leaves inoculated with E. carotovora showed no necrosis (Figure 

8c) or a mild discoloration at the site of inoculation of 108 cells (Figure 8g) and untransformed 

plants inoculated with 102 cells or higher density displayed obvious necrosis (Figure 8d, h).  



 

 

Figure 8. In planta antimicrobial bioassays to investigate functionality of RC101 and PG1 
expressed in chloroplasts. 

Twenty μl of the 108, 106, 104 and 102 cells from an overnight culture of E. carotovora were injected into 
leaves of (a) RC101, (e) PG-1 transplastomic, and (b, f) untransformed (UT) plants using a syringe with a 
precision glide needle. Five- to 7-mm areas of (c) RC101, (g) PG-1 and (d, h) untransformed leaves were 
scraped with fine-grain sandpaper. Twenty μl 108, 106, 104 and 102 cells of Erwinia were inoculated to 
each prepared area. Photos were taken 5 days after inoculation.  
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The bacteria count in inoculated plants was also estimated. Bacterial suspensions 

(1.0×105 cfu/ml) of E. carotovora were inoculated into transplastomic and untransformed leaves 

by a syringe. Following inoculation, the density of E. carotovora in untransformed, RC101 and 

PG-1 transplastomic leaves was less than 1 × 105 cfu/cm2 at 0 day post-inoculation. Three days 

after inoculation, the population of E. carotovora in untransformed tobacco leaves reached 2.0 × 

108 cfu/cm2 (Figure 9a, b). In comparison, the density of E. carotovora was less than 1 × 104 

cfu/cm2 in both RC101 (Figure 9a) and PG1 (Figure 9b) transplastomic leaves three days after 

inoculation, a 10,000 fold reduction in bacterial burden. In addition, no apparent symptoms of 

necrosis were observed in any of the RC101 or PG1 plants. These results demonstrated that the 

RC101 and PG1 transplastomic plants are resistant to E. carotovora. Therefore, RC101 and PG1 

maintained their antibacterial activity when expressed in chloroplasts. 



 

Figure 9. Bacteria density in the PG1, RC101 and untransformed (UT) plants inoculated with E. 
carotovora. 

(a) Bacteria density in RC101 and untransformed leaves. (b) Bacteria density in PG1 and untransformed 
leaves. The bacteria density in plants on 0, 1 and 3 days after inoculation. All values represent means of 6 
replications with standard deviations shown as error bars. 

 

To determine the antiviral activity of PG1 and RC101 when expressed in tobacco 

chloroplasts, transplastomic and untransformed control plants were tested for tobacco mosaic 

virus (TMV) infection for 20 days. In susceptible untransformed control and PG1 plants, TMV 

multiplied and spread throughout the plants, causing typical mosaic, necrosis and wrinkle 

symptoms within 20 days after inoculation (Figure 10a, b). However, the RC101 transplastomic 
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plants didn’t show obvious symptoms of TMV infection, and the plants grew well (Figure 10c). 

These results confirmed the antiviral activity of RC101 by conferring resistance to TMV when 

expressed in chloroplasts. 

 

Figure 10. Response of untransformed and RC101/ PG1 transplastomic plants to TMV. 

(a) TMV inoculated leaf from untransformed plant; (b) TMV inoculated leaf from transplastomic PG1 
plant. (c) TMV inoculated leaf from transplastomic RC101 plant. Pictures were taken on 20 days after 
inoculation. 
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DISCUSSION 
 

RC101 and PG1 are antimicrobial peptides that have potent antimicrobial activities 

against a broad spectrum of microorganisms. Both RC101 and PG1 are disulfide-bonded proteins. 

RC101 contains three and PG1 contains two intramolecular disulfides bonds that are important 

for their antimicrobial activities (Chen et al., 2000; Harwig et al., 1996; Jenssen et al., 2006; 

Trabi et al., 2001). Because RC101 and PG1 are microbicidal and contain multiple disulfide 

bonds, they have not yet been produced in microbial or cell culture systems. The goal of our 

study is to produce low cost and functional RC101 and PG1 antimicrobial peptides in transgenic 

tobacco chloroplasts.  

Our lab has previously expressed antimicrobial peptide MSI-99 in transgenic tobacco 

chloroplasts without harmful effects to transplastomic plants. MSI-99 is an analog of a naturally 

occurring peptide (magainin 2) found in the skin of the African frog (Jacob and Zasloff, 1994). 

In another study, a proteinaceous antibiotic called PlyGBS lysine was expressed in tobacco 

chloroplasts to high levels (>70% TSP, (Oey et al., 2009). The PlyGBS transplastomic plants 

showed delayed growth and a slightly pale-green phenotype when compared to the 

untransformed plants. The authors suggested that it was due to the exhaustion of protein 

synthesis capacity of transgenic chloroplasts by the massive over-expression of PlyGBS although 

expression of >70% TSP of CTB-proinsulin yielded healthy transplastomic plants (Ruhlman et 

al., 2010). Previously expressed antimicrobial peptides did not contain disulfide bonds whereas 

the RC101 and PG1 antimicrobial peptides have β-sheet structures and contain multiple 
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intramolecular disulfide bonds. Therefore, efforts to express RC101 and PG1 in transgenic 

chloroplasts should further expand the applications of the chloroplast transformation system. 

To facilitate expression of small antimicrobial peptides RC101 and PG1 in tobacco 

chloroplasts, each peptide was translationally fused with the GFP. This also facilitated detection 

and quantification of RC101-GFP and PG1-GFP in chloroplasts. The expression of GFP fusion 

proteins was visualized by examination under UV light or in immunoblots using the anti-GFP 

antibody. ELISA was also performed using anti-GFP antibody to quantify the expression of 

fusion proteins. Factor Xa protease cleavage site was inserted between RC101 and GFP and the 

furin cleavage site was inserted between PG1 and GFP so that they could be cleaved from their 

fusion proteins by appropriate proteases. It is interesting to note that RC101-GFP protein was 

already partially cleaved within chloroplasts, suggesting the presence of Factor Xa like protease 

activity within chloroplasts.  

The smaller green fluorescent peptides observed in RC101 and PG1 lanes in figure 3b 

should be the monomer forms of RC101-GFP or PG1-GFP. The monomers ran faster than the 

GFP standard, probably because GFP when fused with RC-101 or PG1, has higher 

electrophoretic mobility in native gels. Different sizes correspond to the multimers formed by the 

GFP fusion proteins. GFP protein did not form multimers. Therefore, the formation of multimers 

by RC101-GFP or PG1-GFP fusion proteins is probably because of folded antimicrobial peptides 

RC-101 or PG1, which are both disulfide-bonded proteins. Similar folding pattern has also been 

observed before, when proteins containing multiple disulfide bonds were expressed in 

chloroplasts, including CTB-proinsulin (Ruhlman et al., 2007) and interferon-α2b (Arlen et al., 

2007). 
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The toxicity of antimicrobial peptides is specific against microbial membranes and 

therefore can be safely applied to mammals, including human beings. The composition of the 

membranes is likely to be the determining factor for their selectivity. Biomembranes of 

prokaryotic or eukaryotic cells differ significantly. Mammalian cytoplasmic membranes are 

mainly composed of phosphatidylcholine (PC), phosphatidylethanolamine (PE), sphingomyelin 

(Sph) and cholesterol, which are all generally neutrally charged. In contrast, in many bacterial 

pathogens, the membranes are composed predominantly of phosphatidylglycerol (PG), 

cardiolipin (CL) and phosphatidylserine (PS), which are highly electronegative (Yeaman and 

Yount, 2003). Most antimicrobial peptides, including RC101 and PG1, are positively charged 

under physiological pH because they are rich in Arginine. Therefore, the net negative charge of 

the biomembranes makes them the preferred target sites of antimicrobial peptides. The 

chloroplast envelope and thylakoid membranes predominantly possess three glycolipids: 

monogalactosyl diacylglycerol (MGDG), digalactosyl diacylglycerol (DGDG) and 

sulfoquinovosyl diacylglycerol (SQDG), and a sole phospholipid: phosphatidylglycerol (PG). 

SQDG and PG, distinct from the non-charged MGDG and DGDG, are negatively charged. 

However, MGDG makes up 50% of chloroplast membrane lipid and DGDG makes up 30%, 

suggesting that the major components of chloroplast membranes are neutral. In this study, we 

examined fresh leaves of RC101 and PG1 transplastomic plants under confocal microscope. 

Confocal images showed that GFP fusion proteins were contained within chloroplasts and were 

not released into the cytoplasm. Cationic antimicrobial peptides including RC101 and PG1 kill 

bacteria by disrupting their membranes. Although the chloroplast membrane structure cannot be 
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resolved from the confocal images shown in Figure 5, no GFP fluorescence was detected outside 

the chloroplasts, suggesting that chloroplasts are not disrupted.  

We compared RC101 and PG1 with other proteins we have expressed before in 

chloroplasts. We compared proteins expressed in chloroplasts with different number of disulfide 

bonds by immunoblot of native PAGE, including PTD-GFP (0), PG1-GFP (2), RC101-GFP (3), 

and CTB-GFP (1). CTB is known to form pentamers and that would be 5 disulfide bonds in total. 

As can be seen from Figure 6, proteins with more disulfide bonds tend to form more multimers 

when expressed in chloroplasts. PTD-GFP, which doesn’t have any disulfide bonds, didn’t form 

multimers. In contrast, the other disulfide-bonded proteins form multimers. Although this is not 

direct evidence that disulfide bonds were properly formed in chloroplasts, it indicated us that 

disulfide-bonded proteins can form more complex quaternary structures in chloroplasts. These 

complex structures may be important for the functionality of these proteins. Combining with the 

fact that RC101 and PG1 were proved to be fully functional when expressed in chloroplasts, we 

believe that disulfide bonds can be properly formed when disulfide-bonded proteins are 

expressed in chloroplasts. 

RC101-GFP and PG1-GFP accumulated up to 32~38% and 17~26% of TSP and they 

were purified by affinity chromatography or organic extraction method. The results showed that 

organic extraction resulted in nearly ten-fold higher yield than the affinity chromatography 

method (53 μg/g vs 5μg/g fresh leaf). PG1 was only purified by affinity chromatography and the 

yield was 8 μg/g fresh leaf. We did not observe dimers or multimers in RC101-GFP or PG1-GFP 

samples purified by affinity chromatography, which indicated that they were lost during the 

purification process. The His-tag was not accessible in the dimer or multimer forms of RC101-
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GFP and PG1-GFP. Therefore, most of the fusion proteins were not bound to the affinity column 

and lost during purification. 

Previous study reported that the minimum inhibitory concentrations of PG-1 against 

gram-positive or gram-negative bacteria ranged from 0.12 to 2 μg/ml (Steinberg et al., 1997). 

Retrocyclin (10-20 μg/ml) can inhibit proviral DNA formation and protect human CD4+ 

lymphocytes from in vitro infection by both T-tropic and M-tropic strains of HIV-1 (Cole et al., 

2002). RC-101, as low as 2 μg, can prevent HIV-1 infection in an organ-like construct of human 

cervicovaginal tissue (Cole et al., 2007). In another study, it was reported that Retrocyclin-1, an 

analogue of RC101, can kill vegetative B. anthracis cells with an minimum effective 

concentration < 1 μg/ml (Wang et al., 2006). As can be seen from these published data, 

antimicrobial peptides are highly potent and their effective dosage is only few μg/ml. Although 

our purification yield is relatively low, tobacco can be scaled up to yield up to 40 metric tons of 

biomass/acre/year. One acre of RC101 transplastomic tobacco plants could potentially yield up 

to 2 kg purified RC101 by organic extraction. Therefore, adequate quantities of RC101 or PG1 

could be purified from transplastomic plants for preclinical or clinical studies. 

RC101 and PG1 are shown to be functional when expressed in chloroplasts. Both RC101 

and PG1 protected the transgenic tobacco plants from bacterial infection caused by Erwinia 

carotovora. In the antiviral assays, RC101 transgenic plants were resistant to TMV infection, but 

PG1 transgenic plants showed the symptoms of mosaic, necrosis and wrinkle as untransformed 

plants. Although PG1 has a broad-spectrum antimicrobial activity against bacteria, virus and 

fungus, it is most effective against bacterial infections, especially antibiotic-resistant bacteria 

(Kokryakov et al., 1993; Qu et al., 1996; Steinberg et al., 1997; Yasin et al., 1996). In our study, 
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PG1 is not effective in protecting plants from TMV infection. RC101 is an analog of retrocyclin 

and it is especially effective in protecting against viral infections. Several previous studies have 

shown that RC101 can be used to prevent HIV-1 infection (Cole et al., 2002; Cole et al., 2007). 

Our study shows that RC101 is active against the retrovirus TMV when expressed in chloroplasts. 

The antimicrobial activities of RC101 and PG1 can protect plants from phytopathogen infections, 

which make them good candidates to engineer disease resistant plants. Because the use of HIV 

and other human bacterial or viral pathogens require higher levels of containment than our 

current facilities, these studies were not performed. Future studies will include testing RC101 

and PG1 in suitable animal models against bacterial or viral pathogens. 
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