
University of Central Florida

Electronic Theses and Dissertations Doctoral Dissertation (Open Access)

The WOZ Recognizer: A Tool For Understanding
User Perceptions of Sketch-Based Interfaces
2016

Jared Bott
University of Central Florida

Find similar works at: https://stars.library.ucf.edu/etd

University of Central Florida Libraries http://library.ucf.edu

Part of the Computer Sciences Commons, and the Engineering Commons

This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Electronic Theses
and Dissertations by an authorized administrator of STARS. For more information, please contact lee.dotson@ucf.edu.

STARS Citation

Bott, Jared, "The WOZ Recognizer: A Tool For Understanding User Perceptions of Sketch-Based Interfaces" (2016). Electronic Theses
and Dissertations. 4884.
https://stars.library.ucf.edu/etd/4884

https://stars.library.ucf.edu?utm_source=stars.library.ucf.edu%2Fetd%2F4884&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu?utm_source=stars.library.ucf.edu%2Fetd%2F4884&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd?utm_source=stars.library.ucf.edu%2Fetd%2F4884&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd
http://library.ucf.edu
http://network.bepress.com/hgg/discipline/142?utm_source=stars.library.ucf.edu%2Fetd%2F4884&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=stars.library.ucf.edu%2Fetd%2F4884&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd/4884?utm_source=stars.library.ucf.edu%2Fetd%2F4884&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:lee.dotson@ucf.edu
https://stars.library.ucf.edu?utm_source=stars.library.ucf.edu%2Fetd%2F4884&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu?utm_source=stars.library.ucf.edu%2Fetd%2F4884&utm_medium=PDF&utm_campaign=PDFCoverPages

THE WOZ RECOGNIZER: A TOOL FOR UNDERSTANDING USER
PERCEPTIONS OF SKETCH-BASED INTERFACES

by

JARED BOTT

M.S., Computer Science, University of Central Florida, 2009

A dissertation submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy
in the Department of Computer Science

in the College of Engineering and Computer Science
at the University of Central Florida

Orlando, Florida

Spring Term
2016

Major Professor: Joseph J. LaViola Jr.

c© Copyright 2016 by Jared Bott

ii

ABSTRACT

Sketch recognition has the potential to be an important input method for computers in the

coming years; however, designing and building an accurate and sophisticated sketch recog-

nition system is a time consuming and daunting task. Since sketch recognition is still at

a level where mistakes are common, it is important to understand how users perceive and

tolerate recognition errors and other user interface elements with these imperfect systems.

A problem in performing this type of research is that we cannot easily control aspects of

recognition in order to rigorously study the systems. We performed a study examining

user perceptions of three pen-based systems for creating logic gate diagrams: a sketch-

based interface, a WIMP-based interface, and a hybrid interface that combined elements

of sketching and WIMP. We found that users preferred the sketch-based interface and we

identified important criteria for pen-based application design. This work exposed the issue

of studying recognition systems without fine-grained control over accuracy, recognition

mode, and other recognizer properties. In order to solve this problem, we developed a Wiz-

ard of Oz sketch recognition tool, the WOZ Recognizer, that supports controlled symbol

and position accuracy and batch and streaming recognition modes for a variety of sketching

domains. We present the design of the WOZ Recognizer, modeling recognition domains

using graphs, symbol alphabets, and grammars; and discuss the types of recognition errors

we included in its design. Further, we discuss how the WOZ Recognizer simulates sketch

recognition, controlling the WOZ Recognizer, and how users interact with it. In addition,

we present an evaluative user study of the WOZ Recognizer and the lessons we learned.

iii

We have used the WOZ Recognizer to perform two user studies examining user per-

ceptions of sketch recognition; both studies focused on mathematical sketching. In the

first study, we examined whether users prefer recognition feedback now (real-time recog-

nition) or later (batch recognition) in relation to different recognition accuracies and sketch

complexities. We found that participants displayed a preference for real-time recognition in

some situations (multiple expressions, low accuracy), but no statistical preference in others.

In our second study, we examined whether users displayed a greater tolerance for recog-

nition errors when they used mathematical sketching applications they found interesting

or useful compared to applications they found less interesting. Participants felt they had

a greater tolerance for the applications they preferred, although our statistical analysis did

not positively support this.

In addition to the research already performed, we propose several avenues for future

research into user perceptions of sketch recognition that we believe will be of value to

sketch recognizer researchers and application designers.

iv

ACKNOWLEDGMENTS

I would like to thank my wife, Maria, for her kindness, patience, and love as I slowly made

progress on my dissertation. I would also like to thank my father Kevin and my mother

Barbara for helping me throughout college. Thank you Dad for supporting us during my

graduate work. Thanks also go out to my brothers and to my friends. Special thanks to my

daughter Lilly.

Furthermore, I would like to thank my faculty advisor, Dr. Joseph LaViola, for his

guidance and support. I would like to thank the members of my committee, Dr. Charles

Hughes, Dr. Hassan Foroosh, and Dr. Ed Lank for their direction and guidance. Finally,

I would like to thank the past and present members of the Interactive Systems and User

Experience Lab for their help.

v

TABLE OF CONTENTS

LIST OF FIGURES x

LIST OF TABLES xviii

CHAPTER 1 INTRODUCTION 1

Section 1.1 Statement Of Research Question 2

Section 1.2 Contributions . 5

Section 1.3 Organization . 6

CHAPTER 2 RELATED WORK 7

Section 2.1 Wizard of Oz . 7

Section 2.2 Sketching . 10

Section 2.3 Diagrams . 11

Section 2.4 Handwriting Recognition . 12

CHAPTER 3 LOGICPAD 15

Section 3.1 Introduction . 15

Section 3.2 User Interfaces . 18

vi

Section 3.2.1 Sketch Interface . 18

Section 3.2.2 Drag-and-Drop Interface 19

Section 3.2.3 Hybrid Interface . 19

Section 3.3 Experimental Study . 21

Section 3.3.1 Subjects and Apparatus 22

Section 3.3.2 Experimental Task . 22

Section 3.3.3 Experimental Design and Procedure 25

Section 3.3.4 Results . 30

Section 3.4 Discussion . 40

Section 3.4.1 Naturalness . 40

Section 3.4.2 Speed and User Perceptions 41

Section 3.4.3 Ease Of Use . 42

Section 3.4.4 Overall Ranking . 46

Section 3.4.5 Sketch Recognition Accuracy 48

CHAPTER 4 WOZ RECOGNIZER 50

Section 4.1 Introduction . 50

Section 4.2 Preliminaries . 54

Section 4.2.1 Sketch Terminology and Background 54

Section 4.2.2 Recognition Error Types 56

Section 4.2.3 Accuracy . 58

Section 4.3 The Recognition Process . 63

vii

Section 4.3.1 Pre-processing . 63

Section 4.3.2 Simulating Recognition 64

Section 4.3.3 Output Generator and UI 71

Section 4.3.4 Streaming and Batch Recognition 72

Section 4.4 User Interfaces . 77

Section 4.4.1 Participant’s Interface 79

Section 4.4.2 Wizard Interface . 80

Section 4.5 Simulated Accuracy Evaluation 92

Section 4.6 Expert User Case Study . 93

Section 4.6.1 Results . 95

Section 4.7 Discussion . 100

CHAPTER 5 NOW OR LATER 102

Section 5.1 Introduction . 102

Section 5.2 Experimental Study . 103

Section 5.2.1 Subjects and Apparatus 104

Section 5.2.2 Experimental Task . 105

Section 5.2.3 Experimental Design and Procedure 106

Section 5.2.4 Results . 109

Section 5.3 Discussion . 120

CHAPTER 6 APPLICATIONS AND ACCURACY 122

viii

Section 6.1 Introduction . 122

Section 6.2 Experimental Study . 123

Section 6.2.1 Subjects and Apparatus 124

Section 6.2.2 Experimental Task . 125

Section 6.2.3 Experimental Design and Procedure 132

Section 6.2.4 Results . 135

CHAPTER 7 DISCUSSION AND FUTURE WORK 141

Section 7.1 Discussion . 141

Section 7.1.1 Feedback Drives Perceptions 157

Section 7.1.2 Mathematics and Diagrams 160

Section 7.2 Future Work . 160

CHAPTER 8 CONCLUSION 166

APPENDIX A: MATHEMATICS EXPRESSIONS 168

APPENDIX B: DIAGRAMS 171

APPENDIX C: PRE-QUESTIONNAIRE 176

APPENDIX D: POST-TASK QUESTIONNAIRE 178

APPENDIX E: POST-STUDY QUESTIONNAIRE 180

LIST OF REFERENCES 183

ix

LIST OF FIGURES

FIGURE 3.1 An ideal natural 100% recognition accuracy sketch interface as

if using pen and paper. 16

FIGURE 3.2 A drag-and-drop interface with a static logic gate toolbar on the

left side to drag and drop gates. 17

FIGURE 3.3 A hybrid interface, combining features from sketch and drag-

and-drop, with a radial menu for creating gates. 17

FIGURE 3.4 An example homework assignment problem participants were

asked to grade. For each homework problem, participants were

asked to copy the given diagram using the specified interface,

and compare the Boolean equation given by the interface with

the equation provided in the homework problem. 23

FIGURE 3.5 Example logic diagrams used in our study. (a) A low complex-

ity diagram with 6 gates and 5 wires. (b) A high complexity

diagram with 15 gates and 18 wires. 26

FIGURE 3.6 Participant rankings of the interfaces on overall preference. A

ranking of first indicates greatest agreement with that criteria. . . 31

x

FIGURE 3.7 Participant rankings of the interfaces on naturalness. A ranking

of first indicates greatest agreement with that criteria. 33

FIGURE 3.8 Participant rankings of the interfaces on speed of entry. A rank-

ing of first indicates greatest agreement with that criteria. 33

FIGURE 3.9 Participant rankings of the interfaces on ease of use. A ranking

of first indicates greatest agreement with that criteria. 37

FIGURE 4.1 The Wizard Interface with mathematics-based sketches. A type-

set version of the WOZ Recognizer’s sketch is displayed below

typeset version of the participant’s sketch, and the user’s ink is

displayed in the lined section at the bottom. 52

FIGURE 4.2 Examples of symbols composed of geometric shapes. A finite

state machine’s Accept State symbol, a bond diagram’s Triple

Bond symbol, and a flowchart’s Decision symbol. 55

FIGURE 4.3 Examples of the symbol error categories. 61

FIGURE 4.4 Examples of some types of mathematics errors. (4.1) subscript

error, (4.2) superscript error, (4.3) not subscript error, (4.4) not

superscript error, two enclosure errors, (4.5) division error, and

(4.6) root error, and (4.7) wrong position error. Divisions can

also have errors like (4.8) and (4.9). 61

xi

FIGURE 4.5 With geometric diagram symbols, symbol errors can occur in

the defined symbols or in the component shapes that make up

the symbol. With shape-based errors, one geometric shape is

substituted for another, as in the circle in this accept state is re-

placed by a square. This type of errors can produce symbols that

are undefined for the sketch domain. The symbol accuracy for

this example is 50%, as one shape was changed out of two shapes. 62

FIGURE 4.6 Data flow throughout the WOZ Recognizer. The rectangles indi-

cate components in the WOZ Recognizer, while the rhomboids

indicate data. The short dashed purple lines show where the

model of the Participant’s sketch is passed. The solid red lines

show the flow of the model of the WOZ Recognizer’s sketch,

and the green lines with dashes and dots show the passing of the

typeset sketches. The long dashed blue lines show the flow of

the modified sketch model during streaming recognition to the

various components of the WOZ Recognizer. 74

FIGURE 4.7 Distribution of symbol errors (Figure 4.3) from our preliminary

data collection. The default error alphabet in the WOZ Recog-

nizer is based upon this distribution. 74

xii

FIGURE 4.8 Distribution of position errors from our preliminary data collec-

tion. The categories are sorted in order of most prevalent to least

prevalent. The default error grammar in the WOZ Recognizer is

based upon this distribution. 75

FIGURE 4.9 Primary data flow between the Wizard Interface and the Par-

ticipant’s Interface. The rectangles indicate components in the

WOZ Recognizer, while the rhomboids indicate data. The Wiz-

ard Interface sends sketch models to the Participant’s Interface,

where they are given to the Output Generator and converted into

a visual representation. The visualization is then displayed in

the UI. Ink strokes are sent from the Participant’s Interface to

the Wizard Interface where they are displayed in the UI. In addi-

tion, various control information, such as recognition mode and

UI events are sent between the two interfaces. 75

FIGURE 4.10 Tree-view of a WOZ Recognizer’s sketch. Symbol errors are

shown in blue and position errors in red. When both types of

errors are rooted at the same symbol, the symbol is shown in

purple. Some special symbols are used to represent extra in-

formation for the Error Creator and Output Generator, such as

the # symbol, which signals an operator that normally has two

operands, but only has one. 76

xiii

FIGURE 4.11 Symbol and position accuracy UI elements. For each type of

accuracy (symbol, position, label), each UI widget shows the

per-sketch and completed sketch accuracies. The per-sketch ac-

curacy is shown first followed by the completed sketch accuracy. 76

FIGURE 4.12 The wizard station uses two monitors, one to run the Wizard In-

terface, the other to show the Participant’s Interface to the wiz-

ard. The Wizard Interface is shown on the large gray central

monitor. 78

FIGURE 4.13 The recognition station is a tablet PC. 78

FIGURE 4.14 Participant’s Interface with a mathematics single expression set.

The recognized expression is shown below the user’s writing.

There is a symbol error in this sketch; the second x has been

recognized as a χ . There is also a position error on the 1; the 1

is not in a superscript position. 80

FIGURE 4.15 The extended user interface used in a study with the WOZ Rec-

ognizer. The Participant’s Interface allowed the user to animate

an illustration, copy a mathematics expression, graph an equa-

tion, or solve a series of equations. 81

xiv

FIGURE 4.16 Examples of the built-in diagram domains with the Wizard In-

terface. In the Wizard Interface, the participant’s and the WOZ

Recognizer’s diagrams are displayed near the top. The user’s

ink is displayed below. 90

FIGURE 4.17 Example of how the WOZ Recognizer might cycle through pos-

sible position recognition errors targeted at the symbol 1. 91

FIGURE 4.18 New diagram-based sketch domains can be defined by the wiz-

ard using the Domain Interface. Symbols are defined using a

variety of shapes (left side). On the right side, symbol substi-

tutes are defined, as are shape substitutes. 91

FIGURE 4.19 Examples of mathematics handwriting recognition from Microsoft’s

Math Input Panel [48] and StarPad [69], and similar results from

the WOZ Recognizer. This shows that the WOZ Recognizer can

produce realistic WOZ Recognizer’s sketches. 101

FIGURE 4.20 Example of a WOZ Recognizer’s sketch using a stoichiomet-

ric equation. Two errors are present in the recognition, a 6 is

changed to a b and a 2 is no longer a superscript. 101

FIGURE 5.1 Example expressions used in our experiment. 110

xv

FIGURE 6.1 The user interface for the participants was kept simple. Buttons

are used to invoke the different applications. The writing area

is lined to give the look of paper and recognized expressions are

displayed just below the participant’s writing. In this expression,

the recognizer has made an error in recognizing the ‘x’ as a χ . . . 127

FIGURE 6.2 An example animate task; the ball is being animated. Most par-

ticipants drew simple shapes rather than complex ones as illus-

trated here. The writing area is divided into two sections, the

top blue lined section for the first expression and the bottom

pink lined section for the second expression. 128

FIGURE 6.3 An example copy task. An expression is shown in the recogni-

tion application on the left and pasted into Microsoft Word on

the right. 128

FIGURE 6.4 An example graph task with a trigonometric equation. Partici-

pants were able to move around the graph and zoom in and out.

Unlike the animate and solve applications, the graph application

opens in a separate window. 129

FIGURE 6.5 An example solve task. Handwriting recognition is shown in

black below the handwriting. Solutions to the expression are

shown in green below. 129

xvi

FIGURE 6.6 An example expression recognized at the 100% accuracy range

(1), the 95-92% accuracy range (2), and the 91-88% accuracy

range (3). 131

FIGURE 6.7 Example expressions used in our experiment. 4.) An expression

pair for the animate task. 5.) An expression for the copy task.

6.) An expression for the graph task. 7.) An expression for the

solve task. 132

FIGURE B.1 . 172

FIGURE B.2 . 172

FIGURE B.3 . 172

FIGURE B.4 . 173

FIGURE B.5 . 173

FIGURE B.6 . 173

FIGURE B.7 . 174

FIGURE B.8 . 174

FIGURE B.9 . 174

FIGURE B.10 . 175

FIGURE B.11 . 175

FIGURE B.12 . 175

xvii

LIST OF TABLES

TABLE 3.1 Mean completion time in seconds 34

TABLE 3.2 T-tests showing whether each interface pair was significantly

different (DD = Drag-and-Drop, S = Sketch, H = Hybrid). A

negative t-value indicates the first listed interface is faster than

the second. 34

TABLE 3.3 Mean responses for Likert statements. Bold results indicate state-

ments that had significant differences in responses. 37

TABLE 3.4 Results from the Friedman test on each Likert statement. Three

statements had significance (shown in bold), Easy Label, Easy

Arrange, and Easy Diagram. 38

TABLE 3.5 Wilcoxon Signed Rank Tests showing whether each interface

pair was significantly different (DD = Drag-and-Drop, S = Sketch,

H = Hybrid) on the indicated statement. A negative Z-value in-

dicates the first listed interface was rated higher than the second. 38

TABLE 3.6 Correlations between overall ranking and other rankings, rat-

ings, and completion time. 39

xviii

TABLE 4.1 Mean accuracies for the WOZ Recognizer. The experiment shows

that the WOZ Recognizer is sufficiently accurate in achieving its

target accuracy. 92

TABLE 5.1 Position and symbol totals for single and multiple equation sets.

We balanced the sets so that they had similar position and sym-

bol counts. 110

TABLE 5.2 User preference statistics for batch and streaming recognition

for each accuracy level and task set size. In most cases, there

was a statistical preference for streaming recognition. 110

TABLE 5.3 Mean perceived recognition accuracies. Participants showed a

clear underestimation of accuracies and had a greater underesti-

mation for the multiple expression set tasks. 111

TABLE 5.4 Mean ease in writing expressions. Participants generally found

it easy to write expressions regardless of recognition mode. . . . 114

TABLE 5.5 Mean ease in correcting expressions. As with writing expres-

sions, participants generally found correcting expressions easy

regardless of recognition mode. 116

TABLE 5.6 Mean frustration levels. Lower recognition accuracies lead to

higher levels of frustration. 119

TABLE 5.7 Mean distraction levels. Distraction levels did not exhibit much

variance. 119

xix

TABLE 6.1 Total number of rankings of interest for each position for each

application. The copy application was found to be least interesting.137

TABLE 6.2 Total number of rankings of usefulness for each position for each

application. The copy application was also found to be least useful.137

TABLE 6.3 Responses to the Likert statements. A larger number represents

greater agreement with the statements about the application. . . . 137

TABLE 6.4 Average lowest tolerable accuracy for each application in per-

centiles. 139

TABLE 6.5 The mean number of ranges each participant was willing to tol-

erate. Each participant’s accuracy tolerance is grouped together

according to the rankings of their interest in the applications

from most to least interesting. 139

TABLE 6.6 The mean number of ranges each participant was willing to tol-

erate. Each participant’s accuracy tolerance is grouped together

according to the rankings of how useful they found the applica-

tions from most to least useful. 139

TABLE 6.7 Mean time in seconds to write an expression, correct any recog-

nition mistakes, and invoke the application. Times are shown for

each accuracy range and application. 140

xx

CHAPTER 1: INTRODUCTION

While touchscreen computers have been popular for several years now, stylus-based input

has started to make significant strides into mainstream. Tablets and smartphones often

have styluses available for them. Not only are styluses gaining in popularity, but touch-

based handwriting input is also common. Recent operating systems from Microsoft, Apple,

and Google contain handwriting recognition applications and services, putting handwriting

recognition within easy reach of users worldwide.

Within this context, sketch recognition systems have the potential to be useful in STEM

education for example, because they provide an easy to understand, natural input method

for complex structures. Drawing and writing are familiar acts for human beings, because

we learn to draw from an early age. Using a stylus with a computer can be very similar

to using pen and paper, which makes sketching a natural input mechanism for free body

diagrams, chemistry bond diagrams, and algebraic equations. In addition, handwritten

expressions and drawings can be a powerful component of intelligent tutoring systems and

computational engines [11, 14, 31, 35, 41, 62]. The ability to take written expressions and

perform complicated actions on them, such as graphing or solving them, can be enticing

1

and exciting for users [37].

However, a major challenge with sketch recognizers is that they are error prone [25].

Thus, understanding how people perceive and tolerate these recognition errors is an impor-

tant research question because the answers to this question can provide insight into how

to design better interfaces for dealing with and mitigating recognizer error. For example,

people view errors quite differently in terms of accuracy, and have many different reasons

for liking one recognition mode or another [9].

Section 1.1 Statement Of Research Question

A major challenge in sketch recognition is understanding how people perceive recognition,

in particular, because it is hard to understand what “good enough” recognition really is.

How close to perfect does recognition need to be? Is a recognizer that consistently makes

one or two errors as good as a recognizer that is mostly perfect, but bungles an entire sketch

on occasion? How are accuracy constraints related to other recognizer properties when it

comes to “good enough” recognition? In order to explore how recognition parameters

affects user preferences, we need a recognizer in which these parameters can be controlled.

Recognizers are not designed in this way; we cannot just take a recognizer and make it

75% or 80% accurate for all users so that we can study it. Input is often ambiguous to a

recognizer in some way; the output for one user may be completely correct, but another user

may received output riddled with recognition errors. As recognition accuracy changes, we

2

expect that user perceptions of the recognition system will change, but we need to control

accuracy if we want to rigorously study how they change. We cannot control recognition

accuracy, and if we want to study users working with these systems, we need a way to

control the various recognition and user interface parameters. Thus, it has been difficult to

explore user perceptions and preferences for sketch recognition, since we cannot control

how well a recognizer will perform with a given person’s writing. Solving this problem is

not easy and many researchers focus on achieving greater accuracy, without consideration

for “good enough”; consequently, there has been little research in this area.

To this end, we designed and implemented a Wizard of Oz sketch recognition system,

the WOZ Recognizer. The WOZ Recognizer allows a user to simulate realistic recognition

of different types of sketches in order to perform studies on sketch recognition that would

otherwise not be possible with traditional sketch recognizers. In addition to building the

WOZ Recognizer, we set out to ascertain whether it was possible to build a Wizard of Oz

recognition system that produced believable results and was usable for performing studies

on sketch recognition.

In this work, we seek to explore and understand how people perceive sketch recognition.

We believe that sketching is a useful input method for computers; drawing and writing are

natural acts for human beings. We learn to draw in real and abstract ways from an early

age. By harnessing a quick and easy input method, we can transform the way we interact

with computers.

3

The field of sketch recognition is vast; we cannot hope to explore perceptions of all

kinds of sketches in this work. We began our work with a study on logic diagrams, where

we examined interfaces for creating logic gate diagrams. Each interface used a different

form of interaction and we examined how users perceived their qualities (such as speed

and ease of use). Working with logic gate diagrams led us to create the WOZ Recognizer

to support studying sketch-based interfaces, when we realized that we needed to create a

tool that let us control recognition accuracy and realistically simulate recognition. Once we

created the WOZ Recognizer, we focused on mathematical sketching and later broadened

the WOZ Recognizer to include diagram sketching.

In the world of recognition, accuracy is an important area to study, because it is im-

perfect and because it seems to be intrinsically linked to the usability of a recognizer or

interface. Therefore, much of our work has focused on producing a controlled accuracy

recognizer and examining how accuracy affects users.

We have performed two studies on mathematical sketching with the WOZ Recognizer.

In the first study of mathematics-based sketching, we sought to answer whether people pre-

fer real-time or batch recognition for mathematical sketches, and whether that preference

was related to recognition accuracy or the number of mathematical expressions written.

In the second study, we wanted to know whether user interest in an application affects

their tolerance for recognition errors. To do this, we examined how users tolerate recog-

nition errors for a set of four mathematical sketching applications and analyzed the data

4

to determine whether the participants tolerated more errors for the applications they found

more interesting. In these studies, we wanted to examine recognition in a controlled man-

ner, where we can examine how users feel about very specific levels of accuracy. In this

context, the WOZ Recognizer was necessary for our research, as it allowed us to control

recognition accuracy. Finally, we performed an evaluative study of the WOZ Recognizer

in order to examine its usability and improve it for future use.

Section 1.2 Contributions

In this dissertation we:

• Developed a tool for studying user perceptions of sketch recognizers

• Studied mathematics sketch recognition with controlled accuracy.

In order to realize these contributions, we:

• Performed a study exploring user perceptions of different input modalities with ap-

plications for creating logic gate diagrams. Most relevantly, we found that users’

perceived a sketch-based application to be faster than the hybrid interface, when the

hybrid interface was statistically faster.

• Performed an evaluative study of the WOZ Recognizer, where experts in sketch-

based interfaces learned to use the WOZ Recognizer and evaluated it.

5

• In our two user studies on mathematics-based sketches, we have examined user per-

ceptions, feelings, and preferences with regards to mathematics sketch recognition.

– In the first study, we have found that people have a preference for real-time

recognition in many situations, but not all.

– In the second study, we found that users perceived a greater tolerance for recog-

nition errors with mathematical sketching applications that they found more

interesting or useful.

Section 1.3 Organization

In Chapter 2, we discuss work related to user perceptions of handwriting and sketch recog-

nition, and Wizard of Oz studies. Next, we present our work on evaluating user perceptions

of interfaces for logic gate diagram creation in Chapter 3, which led to the creation of the

WOZ Recognizer. Following that, in Chapter 4, we discuss the WOZ Recognizer in detail,

including our evaluative study. Chapter 5 presents the first study we performed using the

WOZ Recognizer, which examines user preference for recognition mode and how it relates

to recognition accuracy and sketch size. Our second study using the WOZ Recognizer,

which examines mathematical sketching applications and user tolerance for recognition er-

rors, is presented in Chapter 6. Next, we present a discussion of our findings and future

work avenues in Chapter 7. Finally, we summarize our findings in Chapter 8 and present

questionnaires, etc. in the Appendices.

6

CHAPTER 2: RELATED WORK

Section 2.1 Wizard of Oz

A Wizard of Oz system is one where a human performs some of the actions that a computer

would normally perform, such as recognition of speech or handwriting. In a Wizard of Oz

system, the presence and actions of the human (the wizard) are hidden from the general

public, such that the wizard’s involvement is known only to the researchers. Wizard of Oz

systems in structured handwriting recognition have not been widely used due to the com-

plexity in simulating recognition. For example, mathematics expressions have complicated

interactions between symbols; small changes in parsing can create vastly different recog-

nized expressions. Consequently, realistically simulating math handwriting recognizers has

rarely been attempted.

However, Wizard of Oz systems have been developed for handwriting recognition in

other domains. LaLomia performed a Wizard of Oz study to examine user acceptance of

handwriting recognizers [36]. Different accuracy rates, modes of presentation, and types of

input form were tested; only accuracy rates were found to have an effect on user acceptance.

7

Errors were randomly inserted into the output to achieve the different accuracy rates. Our

work differs in its focus, as we are looking at general sketch recognition for mathematics

and diagrams, and are inserting errors in a controlled manner based upon real mathematics

handwriting recognizers [10]. Read et al. performed a similar experiment with children

using batch recognition [53]. Neither study focused on mathematics. We think that these

results are not applicable to the math domain because math has a complex structure not

found in normal writing.

Oviatt et al. use a Wizard of Oz scenario to examine how students adapt their com-

puter input while using a dual input (speech and pen) system to solve mathematical prob-

lems [51]. Specifically, they looked at how the students changed their vocal levels and pen

pressure when the computer system did not recognize the students were talking to it. An-

thony’s work on mathematics input for intelligent tutoring explores how different modes of

input affect user learning, input speed, and cognitive load among other things, and included

the use of Wizard of Oz studies in some cases [4]. Anthony et al. also performed an ex-

periment to examine how input modality affects student learning [5]. They examined two

input modalities, handwriting and typing, and used a Wizard of Oz methodology to provide

feedback to the participants. They found that students learned as much using handwriting

as typing, but took less time to solve all of the problems using writing compared to typing.

These studies focus more on the Wizard of Oz experiments, while our work focuses on a

tool to help people perform Wizard of Oz experiments.

8

Wizard of Oz systems for simulating user interfaces have also been created. WOZ Pro

is a pen-based system for prototyping user interfaces [28]. WOZ Pro uses pen input to

create user interfaces, but is not focused on simulating pen-based interfaces. In contrast

to WOZ Pro, SketchWizard is a Wizard of Oz tool for designing and testing pen-based

prototypes [17]. It provides tools for user interface design and simulating those designs us-

ing a Wizard of Oz approach, but supports different domains and does not have controlled

recognition accuracy. SketchWizard is focused on user interfaces for sketching systems,

while we are focused on sketch recognition itself. UISKEI is another pen-based tool for

prototyping user interfaces, with the ability to define complex UI interactions [56]. Inter-

face elements are created through sketching in UISKEI, and behaviors are defined through

the use of traditional WIMP input and gestures. In contrast to the WOZ Recognizer, these

tools are largely focused on simulating user interfaces, while we are focused on simulating

sketch recognition.

Wizard of Oz tools for speech recognition have also been developed. SUEDE is a

speech interface prototyping tool that uses Wizard of Oz recognition [32]. ARTUR is a

Wizard of Oz system for helping children with language disorders through speech train-

ing [7]. In both systems, a wizard performs the act of recognition. Jeanie is a prototype

calendar using a multimodal speech and pen recognition system [23]. A series of Wizard

of Oz experiments were performed in order to gauge how the system would be used.

9

Section 2.2 Sketching

Researchers have examined the interactions users have with pen-based interfaces. One area

of pen-based interfaces that is especially interesting is sketching, where users leverage their

existing notions of pens and drawing to create complex, natural 2D drawings. Structured

2D languages are well-suited for sketching as they are often complex; sketch-based in-

terfaces have been created for many kinds of structured 2D languages. CircuitBoard is a

sketch-based system for creating and working with logic circuit diagrams [68]. Gennari

et al. present a system for electrical circuit diagrams, AC-SPARC [22]. SketchRead is a

sketch recognition system for diagram-based sketches, such as family tree and electrical

circuit diagrams, and can be extended to new domains [3]. MathPad2 combines mathemat-

ics expressions and physics drawings in a system for mathematics problem solving [39].

Sketching is also used for other domains that are less structured. InkAnchor is a finger-

based sketching system for mobile phone note-taking [55]. Taele and Hammond created

two sketch-based “intelligent language workbook” interfaces for learning Japanese and

Chinese, Hashigo and LAMPS [60]. These interfaces use a 2D grammar specification lan-

guage to provide symbol recognition, which is also used to help evaluate the user’s writing

correctness. SketchIT is a gestural and sketch-based system for structural analysis [21].

Some researchers have created new pen-based interaction techniques exploring the nat-

ural interactions users have with pens. Crossing is a technique in which strokes replace

10

mouse movements and clicks [1]. CrossY uses the crossing technique to create a system

where single strokes can be used to perform complex UI interactions [6]. Other researchers

have tried to fuse different interaction techniques to create more task-oriented pen-based

tools, such as DENIM [43]. DENIM is an informal pen-based sketch system created to

rapidly design websites by sketching pages and interacting with them using gestures and

visible controls.

Section 2.3 Diagrams

Reid et al. describe techniques for beautifying handwritten graphs [54]. While we use

graph-based diagrams in the WOZ Recognizer, graph layout is performed a priori to recog-

nition. SmartVisio is a Microsoft Visio-based system for diagram sketching that provides

batch and streaming recognition and easy correction facilities [67]. DiaWoZ II is a Wiz-

ard of Oz tool for performing mathematics and engineering experiments [8]. It allows a

user to input mathematics by typing using LATEXand a set notation. A wizard evaluates the

input, acting as a tutoring mathematics engine. In contrast to DiaWoZ II, we are focused

on mathematics and diagram recognition, and use the Wizard of Oz paradigm to simu-

late recognition, not mathematical and natural language understanding. Our work differs

from others that focus on user interface design by examining how recognition affects users.

SketchInsight is a Wizard of Oz application for exploring pen and touch interactions for

information visualization [65]. The SketchInsight work has been more exploratory in how

11

users interacted with the application, rather than a controlled examination of how system

parameters affect users. This work provided insights into the types of gestures and interac-

tions used by participants in their study. With regards to pen input, they found that certain

actions (such as rearranging) were done with touch interactions, while others like erasing

were mixed between pen and touch. Our work with the WOZ Recognizer greatly differs

from SketchInsight, as their Wizard of Oz system has no notion of recognition accuracy.

Forsberg et. al. investigated the applicability of pen computing in desktop environments

with a diagramming task using mouse-and-keyboard and pen-based techniques [19]. This

work is closely related to ours, but we are solely investigating user perceptions of pen-based

interfaces without examining mouse and keyboard interfaces.

Section 2.4 Handwriting Recognition

While mathematical handwriting recognition has been explored in detail, most research

focuses upon recognition algorithms. How to measure the accuracy of a recognized hand-

written equation is the subject of much debate [13, 50, 58]. For instance, Anthony used

Levenshtein word distance as the measurement for symbol accuracy [4]. LaViola used two

metrics, a symbol accuracy metric and a position accuracy metric in [37]. We have taken a

similar approach, using both a symbol and a position accuracy metric.

The effects of different accuracy rates on users are rarely explored; this is not surprising

as handwriting recognizers are not designed to have controlled accuracy, making it hard to

12

perform such studies. Field et al. examined the effect of task on recognition accuracy and

looked at how gathering training data using three different tasks (isolated shape copying,

diagram copying, and diagram synthesis) affected classification [18]. They found that train-

ing from different tasks’ data had little effect on accuracy when using a “factory-trained”

recognizer, one which has not been specifically trained for the person using it.

Some work on user acceptance of handwriting recognition has been performed, though

to the best of our knowledge none has been done on mathematics. We believe that the highly

structured format of mathematics may change how users feel about recognition accuracy.

Frankish et al. examined how user acceptance of pen interfaces was affected by different

tasks [20]. They found that some tasks, such as a database application, were accepted by

users in spite of poor recognition accuracy.

Recognition feedback is another area that has been less thoroughly explored. In [38],

LaViola et al. explore different methods for displaying recognized mathematical expres-

sions and conclude that small, typeset expressions displayed below the user’s writing was

most preferred. However, they did not control for recognition accuracy or explore recog-

nition feedback modes. Math Boxes presents a system for presenting recognition feedback

for mathematics expressions [61]. The system displays nested, color-coded bounding boxes

around the user’s input, which are used to show the user how symbols are grouped together.

The system was compared to offset typeset feedback and compared favorably, surpassing

the effectiveness of the offset results for complex expressions. Wais et al. explored a variety

13

of methods for triggering recognition, indicating strokes to recognize, displaying recogni-

tion feedback, and the effects of common recognition errors on user experience [64]. Their

focus was upon sketch recognition and did not explore recognition accuracy, nor mathe-

matical handwriting recognition.

Other aspects of handwriting recognition interfaces have been explored. Perteneder et

al. present cLuster, a tool that assists in user selection of sketch strokes [52]. Mankoff et

al. describe interface techniques to help deal with recognition errors. They also describe a

toolkit they have modified that implements the techniques [46]. CorrectionPanels describes

an interface component that provides various techniques that aid in error recognition, in-

cluding font manipulation, text-to-speed readings of the recognized output, tooltips, and

spellchecking [59].

One area we are interested in examining is differences in user perceptions of recognition

when working with different types of sketch input device, such as a finger versus a stylus.

In [45], the viability of an Apple iPad tablet device for sketch recognition was examined.

They determined that the iPad was a viable device for sketch input by comparing it with a

tablet PC. Vatavu et al. performed studies to examine user perceptions of making gestures

with a stylus [63]. They found that gesture difficulty was most closely correlated with

completion time.

14

CHAPTER 3: LOGICPAD

Section 3.1 Introduction

Our initial exploration into user perceptions of sketch-based interfaces started with a study

of pen-based interfaces for creating logic gate diagrams. In previous work with sketch-

based interfaces, we sought to create interfaces that closely mimicked pen and paper. This

similarity to pen and paper often leads to people saying that sketch-based interfaces are

the best method for structured 2D languages, such as mathematics, chemical bond dia-

grams, music notation, and circuit diagrams [25]. Using a pen to draw and write gives us

a high degree of expressiveness, which makes writing as an input mechanism for a com-

puter a powerful tool. Researchers investigate new pen-based interfaces and methods for

new domains [29], and work is performed on making recognizers better [22,26,66]. While

similarity to pen and paper give us familiarity and expressiveness, it does not show that

pen-based interfaces are ideal. Are they ideal, and if so, what makes them ideal? While

naturalism (similarity to pen and paper) is important, is it more essential than other fac-

tors like speed and ease of use? How should be we continue our research into pen-based

15

interfaces for structured 2D languages?

To try to explore these questions, we devised a study to determine if people would prefer

a sketch interface with 100% recognition accuracy over other computer interfaces that were

faster and more traditional. We performed a study where we asked participants to use and

compare three interfaces for creating logic diagrams. We used three interfaces, a sketch

interface (see Figure 3.1), a drag-and-drop interface (see Figure 3.2), and a hybrid interface

that combined handwritten wires and labels from the sketch interface with the spatial UI

from the drag-and-drop interface and a pie menu for creating gates (see Figure 3.3).

Figure 3.1: An ideal natural 100% recognition accuracy sketch interface as if using
pen and paper.

16

Figure 3.2: A drag-and-drop interface with a static logic gate toolbar on the left side
to drag and drop gates.

Figure 3.3: A hybrid interface, combining features from sketch and drag-and-drop,
with a radial menu for creating gates.

17

Section 3.2 User Interfaces

Section 3.2.1 Sketch Interface

While we hypothesized that recognition accuracy plays an important role in user percep-

tions of sketch recognition, we chose to provide complete recognition for our study, so

that accuracy would not be a factor when comparing interfaces. We are more interested

in experimental validity for ideal recognition rates, than examining current state-of-the-art

recognition rates. We chose to take a Wizard of Oz approach in our logic diagram sketch

interface, which takes recognition accuracy out of the equation (see Figure 3.1). In order

to let the sketch interface be as natural as possible, we simulate batch recognition (recogni-

tion after the completion of writing, invoked by performing an action) and delay feedback

to users until they invoke recognition. With streaming latency, we have a greater risk of

introducing feedback delays for each symbol that we are displaying to the user. Batch

recognition allows us to remove the issue. A Wizard of Oz approach means that the sketch

interface did not perform any recognition to transform the input strokes into gates, wires,

or labels. Instead, the correct feedback is provided to the user once recognition has been

invoked. In other words, participants sketched an entire diagram and then had the experi-

menter invoke recognition. Participants were free to sketch logic gates, wires, and labels as

they saw fit without constraints. We implemented a scribble-erase gesture for participants

to erase ink strokes. Feedback came in the form of a Boolean equation for the sketched

18

diagram, which was part of the Wizard of Oz approach. We chose to forgo other more

direct forms of recognition feedback because we wanted to eliminate distractions and to be

as close to pen and paper as possible.

Section 3.2.2 Drag-and-Drop Interface

We implemented an interaction model that would be familiar to most users, a traditional

WIMP-based interface [12]. We based this interface on [33] (see Figure 3.2). A static

toolbar on one side of the interface provides gates that can be dragged onto the workspace.

Wires are created by tapping on one terminal in a gate, and dragging the stylus to another

gates’s terminal. Labeling a gate was performed using the stylus and the keyboard. Wires

and gates can be deleted by selecting the item(s) and using the delete key on the keyboard.

Wires can also be deleted by tapping on them.

Section 3.2.3 Hybrid Interface

We developed a hybrid drag-and-drop and sketch interface (see Figure 3.3) similar to part of

LogicPad [30]. We wanted to take the strengths of the sketch and drag-and-drop interfaces

and combine them to create a fast, easy to use interface. With the complex symbols in a

logic diagram, we thought that users would find it quicker and easier to drag a gate from a

toolbar than sketch it. However, with wires and labels, we thought that it would be quicker

and easier to draw them with a stylus, so we combined these two methods in our hybrid

19

interface.

While dragging and dropping gates from a toolbar can be easy, it is not particularly

efficient to drag from a static menu on one section of the screen. In order to make our

hybrid interface faster and more usable for stylus input, we adopted a gesture-based method

to trigger the logic gate toolbar, a radial menu [34]. The radial menu appears in-place where

the tap-and-hold gesture has been performed, keeping the user from having to move across

the screen to create a gate. From our pilot studies, we determined a hold time of 0.5 seconds

worked best for triggering the radial menu, as it was long enough that users rarely triggered

the menu by accident, and short enough that they did not have to wait long.

We used the same gate visualization in the drag-and-drop and hybrid interfaces. Most

gates have two input terminals and an output terminal, and terminals are used to start and

finish wires. Wires are made in much the same way as in the drag-and-drop interface: the

user draws from one gates terminal to another gates terminal. In contrast to LogicPad, we

developed a visualization to help users to create wires more efficiently. While creating a

wire, when the stylus is near a terminal, the terminal is highlighted yellow, indicating that

the user is close enough for a wire to be created by raising the stylus from the screen. Also,

in contrast to LogicPad, we thought that users might want to branch wires, so they can do

so by making a dot on an existing wire and drawing toward a gate. This will create a wire

from the starting terminal of the branched wire.

Handwriting recognition is used to provide gate labels; after recognition, we display

20

a typeset label in place of the ink strokes. As with the sketch interface, wires, gates, and

labels can be erased with a scribble-erase gesture.

Section 3.3 Experimental Study

We conducted an experiment designed to explore the usability of our three interfaces.

Based on our initial observations, we hypothesized that:

• Primary: Overall, participants will prefer the sketch interface over the hybrid and

drag-and-drop interfaces.

• Secondary: The hybrid interface will be faster than the sketch and drag-and-drop

interfaces.

• Secondary: The sketch interface will be rated more natural than the hybrid and drag-

and-drop interfaces.

While we thought participants would spend less time copying diagrams with the hy-

brid interface, they would prefer the sketch interface over the hybrid and drag-and-drop

interfaces because of the sketch interfaces naturalness.

21

Section 3.3.1 Subjects and Apparatus

We recruited 18 participants (15 male, 3 female) to participate in our study. The mean par-

ticipant age was 24, with the youngest 19 and the oldest 30. All participants were college

students enrolled in electrical engineering, computer engineering, and computer science

programs, and they all had taken a discrete mathematics course that covered Boolean alge-

bra. We chose this population because they had knowledge of Boolean algebra and logic

diagrams.

Participants worked on an HP Compaq tc4400, 12.1 inch tablet PC running Windows 7.

The participants computer was remotely monitored by the researchers using screen-sharing

software.

Section 3.3.2 Experimental Task

We asked participants to complete three copy-and-verify tasks, one for each interface. Each

task was framed as a homework assignment participants were asked to grade. Each ques-

tion on the assignment gave a Boolean equation and asked the “student” to draw a logic

diagram for the equation (see Figure 3.4). Participants were asked to input the diagram us-

ing the specified interface and verify whether the student had drawn the diagram correctly.

Therefore, each participant graded three homework assignments. Each homework assign-

ment consisted of six questions divided into two sections, where each section was based on

22

diagram complexity.

Figure 3.4: An example homework assignment problem participants were asked to
grade. For each homework problem, participants were asked to copy the given dia-
gram using the specified interface, and compare the Boolean equation given by the
interface with the equation provided in the homework problem.

While copying a diagram, participants were free to input the diagrams components

(wires, gates, labels) in any order they pleased. Once the participant finished inputting

the diagram, and was satisfied that they had done so correctly, the researcher used the

application to obtain the diagrams equivalent Boolean equation. This was done in a Wizard

of Oz manner, where we did not perform recognition on the diagrams, but programmed

the interfaces to provide the appropriate equation when prompted. Once the participant

received the equation from the interface, they compared it with the equation given in the

homework problem, and marked on the homework sheet if the diagram was correct.

23

We chose to use this task as it gave participants a clear motivation for why they were

copying diagrams (grading a homework assignment), motivation to make sure that they had

copied them correctly (not wanting to incorrectly mark a problem as incorrect), and motiva-

tion for why they would care about effort and completion time (grading many assignments

takes time).

We designed eighteen pairs of Boolean equations. Each pair of equations was associ-

ated with a logic diagram, so we designed eighteen logic diagrams. For each pair of equa-

tions, one equation was equivalent to the associated diagram, and one was inequivalent.

Each homework problem presented one of the two equations and the associated diagram.

This simulated the student getting the homework correct (when the equation and diagram

were equivalent) and incorrect (when equation and diagram were inequivalent). The dia-

grams were divided into two sets based upon the diagram complexity, low and high (see

Figure 3.5a for a low complexity diagram and Figure 3.5b for a high complexity diagram).

We decided upon these complexity level divisions by using diagrams similar to those found

in introductory problems in textbooks [47] as our low complexity diagrams, and building

from there for high complexity diagrams.

All low complexity diagrams were designed to have three input gates. The nine low

complexity diagrams were further subdivided into three subsets, where all diagrams in a

subset had the same number of gates and wires. One subset had 6 gates and 5 wires; the

second subset had 8 gates and 8 wires, and the third subset had 10 gates and 11 wires. The

24

nine high complexity diagrams had four input gates and were also divided into three sub-

sets. The first subset had diagrams with 12 gates and 15 wires; the second subset diagrams

had 15 gates with 18 wires, and the third subset had diagrams with 17 gates and 22 wires.

The diagrams made use of input, output, AND, OR, XOR, and NOT gates. Diagrams on the

homework assignment were presented to participants in a typeset form in order to provide a

clear visualization. We randomly divided the diagrams from each complexity set such that

each interface had three low complexity diagrams (one from each subset) and three high

complexity diagrams (one from each subset). Each homework assignment was randomly

assigned to have one to three (at most half) of the equation-diagram pairs inequivalent.

Section 3.3.3 Experimental Design and Procedure

We used a 3 by 2 within-subjects factorial design where the independent variables were

user interface and diagram complexity, and the dependent variable was completion time.

The completion time is defined as the time interval from when the researcher pressed a start

button until participants finished inputting the logic diagram and pressed a stop button.

The experiment began with participants completing a pre-questionnaire to collect de-

mographic information, as well as their experience using a Tablet PC and their capability

to solve Boolean equations.

1. How familiar are you with tablet PCs?

25

(a) Low Complexity

(b) High Complexity

Figure 3.5: Example logic diagrams used in our study. (a) A low complexity diagram
with 6 gates and 5 wires. (b) A high complexity diagram with 15 gates and 18 wires.

26

2. How familiar are you with Boolean algebra? I can solve any type of Boolean algebra

problems, such as Boolean minimization problems.

These last two questions were assessed using 7-point Likert scales. For the question

about experience using Tablet PCs, 1 equaled unfamiliar and 7 equaled familiar. For the

question about capability to solve Boolean equations, 1 equaled none and 7 equaled any.

The median for both questions was approximately 5 out of 7. We asked participants to

assess their own Boolean algebra capabilities because we were interested in their own per-

ceptions of their knowledge. One limitation of our approach is that participants may have

over- or underestimated their Boolean algebra abilities. For each interface, participants

were shown a short video explaining how to use the interface. They were then asked to fa-

miliarize themselves with using a Tablet PC and stylus by inputting the same sample logic

diagram using the three user interfaces. During the practice session, participants were en-

couraged to ask the researcher questions about using the interfaces. We also informed par-

ticipants that their sketches would be recognized by the sketch interface without mistakes.

We did so in order to build participant confidence that the sketch interface would work.

This is a limitation of our work exploring proof of concepts, as this may have influenced

participants to be looser in their sketches and draw faster. The researcher also monitored

participants remotely to remind them about each interfaces features.

Once they had familiarized themselves with the three interfaces, each participant was

given a series of tasks to perform. When ready to copy the diagram, they informed the

27

researcher so that timing could begin. During diagram input, the researcher monitored

the participants in order to make sure that they correctly copied the diagram. When they

finished entering the logic diagram, the participant informed the researcher who stopped

timing, and clicked the recognition button on each interface. Only after the researcher

invokes recognition does the system display any feedback, which is in the form of a Boolean

equation. The participant then compared the system-generated equation to the equation on

the homework assignment and marked the correctness of the homework problem.

The order in which participants worked through the different interfaces was randomized

and balanced such that one-third of the participants worked with each interface first, sec-

ond, and last. The order of diagram complexity was also randomized and balanced across

interfaces. After completing the task for an interface, participants were asked to fill out a

questionnaire where they rated their agreement with seven statements on a 7-point Likert

scale (for consistency, we based our statements on [37]).

1. I found it easy to use this interface to make the logic gate I want to use.

2. I found it easy to use this interface to make the wire I want.

3. I found it easy to use this interface to make the label I want.

4. I found it easy to use this interface to spatially arrange the logic gates.

5. I found this interface easy to use for creating logic gate diagrams.

6. It was quick to create the logic gate diagram.

28

7. It was frustrating to use this interface.

After completing all three tasks, a final interview was conducted to allow participants

to summarize their perceptions and feelings on the three interfaces. Participants were also

asked to rank the three user interfaces based on ease of use, speed of entry, naturalness, and

overall preference and gives reasons for each ranking. Participants were verbally informed

that naturalness was defined as similarity to pen-and-paper.

1. Please rank the user interfaces in order from most easy to use (1) to least easy to use

(3).

2. Please rank the user interfaces in order from fastest (1) to slowest (3) on speed of

entry.

3. Please rank the user interfaces in order of most (1) to least natural (3).

4. Please rank the user interfaces in order from most (1) to least (3) on overall prefer-

ence.

29

Section 3.3.4 Results

Section 3.3.4.1 Primary Hypothesis

Did participants prefer the sketch interface over the hybrid and drag-and-drop interfaces?

To analyze the overall rankings (and the three other rankings) of the interfaces, we per-

formed a Chi-Square test on each ranking, which tells us whether there is variance in how

the interfaces were ranked. In other words, these tests tell us whether participants thought

the interfaces were equally easy to use, speedy, etc. (see Figures 3.9 - 3.6)). In overall

ranking, we had a close race between the sketch and hybrid interfaces. The hybrid inter-

face had nine first place rankings, while the sketch interface had seven. In second place

rankings, both had eight. The drag-and-drop interface was preferred the least with four-

teen third place rankings. We saw significance in the Chi-Square test on overall preference

(χ2
4 = 24.667, p < 0.001). Our central hypothesis, that the sketch interface would be pre-

ferred was not confirmed by these rankings, as there was no clear winner in overall ranking.

30

0

2

4

6

8

10

12

14

16

18

Drag-and-Drop Hybrid Sketch

N
u

m
b

er
 o

f
R

an
ki

n
gs

1st

2nd

3rd

Figure 3.6: Participant rankings of the interfaces on overall preference. A ranking of
first indicates greatest agreement with that criteria.

Section 3.3.4.2 Secondary Hypothesis: Naturalness

We also saw significance in the Chi-Square test on naturalness (χ2
4 = 52.667, p < 0.001).

Fourteen out of eighteen participants ranked the sketch interface as the most natural, as it is

similar to pen and paper. This confirms our second hypothesis, that participants would find

the sketch interface most natural. Fourteen participants ranked the hybrid interface second

in naturalness, and fifteen participants ranked the drag-and-drop interface third.

31

Section 3.3.4.3 Secondary Hypothesis: Speed

In terms of speed of entry, we saw significance in the Chi-Square test (χ2
4 = 24.000,

p < 0.001). Ten participants ranked the sketch interface first and seven ranked the hy-

brid interface first. Ten participants ranked the hybrid interface second, and thirteen ranked

the drag-and-drop interface third fastest. The participants perceptions of speed ran con-

trary to our first hypothesis that participants would complete the diagrams faster with the

hybrid interface than the sketch and drag-and-drop interfaces. While participants thought

the sketch interface was fastest, was it?

We analyzed the timing data (see Table 3.1) using a Repeated Measures ANOVA and

used the average completion time for the three diagrams per complexity level. The ANOVA

showed that interface (F1.350,22.946 = 28.580, p < 0.001, η2
p = 0.627), complexity (F1,17 =

353.499, p < 0.001, η2
p = 0.954), and their interaction (F2,34 = 12.576, p < 0.001, η2

p =

0.425) were all significant factors. In order to see which interface was quicker, we per-

formed paired t-tests where we looked at the times across all accuracy levels (see Table 3.2).

To correct for Type I errors, we applied Holms Sequential Bonferroni Correction [27]. Con-

trary to the participant rankings, the hybrid interface took less time than the sketch interface

and the drag-and-drop interface, which matched our first hypothesis.

32

0

2

4

6

8

10

12

14

16

18

Drag-and-Drop Hybrid Sketch

N
u

m
b

er
 o

f
R

an
ki

n
gs

1st

2nd

3rd

Figure 3.7: Participant rankings of the interfaces on naturalness. A ranking of first
indicates greatest agreement with that criteria.

0

2

4

6

8

10

12

14

16

18

Drag-and-Drop Hybrid Sketch

N
u

m
b

er
 o

f
R

an
ki

n
gs

1st

2nd

3rd

Figure 3.8: Participant rankings of the interfaces on speed of entry. A ranking of first
indicates greatest agreement with that criteria.

33

Table 3.1: Mean completion time in seconds

Interface Drag-and-Drop Hybrid Sketch
Complexity Mean σ Mean σ Mean σ

Low 92.9 19.5 70.8 12.1 70.0 14.8
High 226.4 38.7 186.6 33.3 202.4 34.6

Overall 159.7 74.1 128.7 63.7 136.2 72.1

Table 3.2: T-tests showing whether each interface pair was significantly different (DD
= Drag-and-Drop, S = Sketch, H = Hybrid). A negative t-value indicates the first listed
interface is faster than the second.

Interface DD-H DD-S H-S

Low
t17 = 5.478 t17 = 4.745 t17 = 0.310
p < 0.017 p < 0.025 p = ns

High
t17 = 6.542 t17 = 3.913 t17 = 4.721
p < 0.017 p < 0.05 p < 0.025

Overall
t35 = 7.938 t35 = 6.094 t35 = 2.922
p < 0.017 p < 0.025 p < 0.05

34

Section 3.3.4.4 Other Results

With the Chi-Square test on the ease of use rankings, we saw significance (χ2
4 = 17.667,

p < 0.005). Many participants ranked the sketch interface as the easiest to use (10 partici-

pants), with the hybrid interface second (11 participants), and the drag-and-drop interface

third, where 11 participants ranked drag-and-drop last.

After analyzing the Likert-item data using Friedman tests (see Table 3.3 for mean re-

sponses and Table 3.4 for the Friedman results), we found significance for three statements:

3, 4, and 5. All three statements related to ease of use: “I found it easy to use this interface

to make the label I want”, “I found it easy to use this interface to spatially arrange the

logic gates,” and “I found this interface easy to use for creating logic gate diagrams.” We

then performed Wilcoxon Signed Rank Tests for each statement and corrected using Holms

Sequential Bonferroni Correction (see Table 3.5). For making labels, the sketch interface

was easiest to use, followed by the hybrid interface, and finally the drag-and-drop interface.

Participants found the sketch interface harder to arrange gates in than in the drag-and-drop

interface. This is easy to understand, as the only way to perform spatial arrangement in

the sketch interface is to erase and redraw. For the statement on ease of use in making

diagrams, we saw a single significant result in the Wilcoxon Signed Rank test. The hybrid

interface was easier to create diagrams with compared to the drag-and-drop interface. This

matches with the participant rankings of the interfaces on ease of use, where drag-and-drop

was ranked last 11 times. In contrast, the hybrid interface was primarily ranked second,

35

though it was rated highly.

We hypothesized that participants would prefer the sketch interface over the other inter-

faces, and speculated that they would do so because of the sketch interfaces naturalness and

inspite of the hybrid interfaces speed. Our analysis of the rankings shows that the sketch

interface was indeed natural and that the hybrid interface was fast, even if participants did

not notice that speed. In order to provide some insight into participant reasonings on why

they preferred one interface over another, we calculated Spearmans rank correlations be-

tween overall ranking and the other measurements we took (completion time, the seven

ratings, and the other three rankings) (see Table 3.6 for the correlation coefficients). The

correlation with the greatest coefficient was between overall ranking and the ease of use

ranking. Overall ranking with naturalness was next, followed by speed. This implies that

ease of use was actually more important than naturalness or speed. However, it does not

tell us how much ease of use was impacted by naturalness or speed.

36

0

2

4

6

8

10

12

14

16

18

Drag-and-Drop Hybrid Sketch

N
u

m
b

er
 o

f
R

an
ki

n
gs

1st

2nd

3rd

Figure 3.9: Participant rankings of the interfaces on ease of use. A ranking of first
indicates greatest agreement with that criteria.

Table 3.3: Mean responses for Likert statements. Bold results indicate statements that
had significant differences in responses.

Interface Drag-and-Drop Hybrid Sketch
Statement Mean σ Mean σ Mean σ

Easy Gate 5.72 1.447 6.17 0.924 6.39 0.698
Easy Wire 5.00 1.680 5.89 1.231 5.94 1.305
Easy Label 4.67 1.815 6.89 0.323 6.33 1.085

Easy Arrange 6.22 0.878 4.56 1.854 5.78 1.263
Easy Diagram 5.39 1.243 5.67 1.138 6.28 0.752

Quick 5.61 1.335 5.83 1.249 6.11 1.023
Frustrating 3.06 1.731 2.50 1.249 2.11 1.023

37

Table 3.4: Results from the Friedman test on each Likert statement. Three statements
had significance (shown in bold), Easy Label, Easy Arrange, and Easy Diagram.

Statement Chi-Square p

Easy Gate χ2
2 = 1.9224 p = ns

Easy Wire χ2
2 = 3.250 p = ns

Easy Label χ2
2 = 21.382 p < 0.001

Easy Arrange χ2
2 = 9.480 p < 0.01

Easy Diagram χ2
2 = 7.000 p < 0.05

Quick χ2
2 = 1.161 p = ns

Frustrating χ2
2 = 1.846 p = ns

Table 3.5: Wilcoxon Signed Rank Tests showing whether each interface pair was sig-
nificantly different (DD = Drag-and-Drop, S = Sketch, H = Hybrid) on the indicated
statement. A negative Z-value indicates the first listed interface was rated higher than
the second.

Interface DD-H DD-S H-S

Easy Label
Z = 2.610 Z = 3.542 Z = 2.264
p < 0.025 p < 0.017 p < 0.05
r = 0.435 r = 0.590 r = 0.377

Easy Arrange
Z = 1.867 Z = 2.925 Z = 2.057

p = ns p < 0.017 p = ns
r = 0.311 r = 0.488 r = 0.343

Easy Diagram
Z = 2.676 Z = 0.819 Z = 1.895
p < 0.017 p = ns p = ns
r = 0.446 r = 0.137 r = 0.316

38

Table 3.6: Correlations between overall ranking and other rankings, ratings, and
completion time.

Correlation with Overall Ranking ρ p

Ease of Use 0.778 0.000
Naturalness 0.694 0.000

Speed 0.639 0.000
Frustration 0.411 0.002

Easy Diagram -0.409 0.002
Easy Label -0.397 0.003

Completion Time 0.397 0.003
Quick -0.342 0.011

Easy Gate -0.314 0.021
Easy Wire -0.281 0.039

Easy Arrange 0.056 0.690

39

Section 3.4 Discussion

Section 3.4.1 Naturalness

Our second hypothesis that participants would find the sketch interface most natural was

supported by the participant rankings on naturalness, where fourteen participants found the

sketch interface most natural. As one participant wrote for why they selected the sketch

interface as most natural, “sketch allows you to write as if you are drawing on paper.” In

contrast to the similarity of the sketch interface to pen and paper, one participant, who se-

lected hybrid as the most natural interface, commented that “after getting used to hybrid,

it was more natural to select [a] gate at [the stylus’s] location, and connect inputs to gates.

Sketch could arguably be more natural but took more time to make [sure] wires were cor-

rect.” Another participant who also ranked the hybrid interface as most natural commented

that “naturalness should be redefined in pen-based user interface for drawing logic dia-

gram as the combination of gesture-based drag-and-drop visual controls and sketching of

wires and labels.” Two users who thought the drag-and-drop interface was most natural,

did not like to draw too much, and felt that the drag-and-drop interface was best because it

resembled their previous experience using desktop environments.

40

Section 3.4.2 Speed and User Perceptions

Participants worked fastest with sketch and hybrid for low complexity diagrams, and with

hybrid for high complexity diagrams and overall. This matches our first hypothesis that the

hybrid interface would allow participants to create diagrams most rapidly. Examining the

Likert statement on quickness, the Friedman test did not show significance, meaning that

we cannot reject the possibility that participants did not find a difference in speed between

the interfaces (see Table 3.4). The mean response for the hybrid interface was high, so

participants thought it was quick, but the other interfaces were rated fairly high as well.

Quite interestingly, participants ranked the sketch interface fastest over half the time (10

participants) and the drag-and-drop interface fastest only once. We can see a disconnect

between user perception of speed and actual speed. We think this can be explained by

several factors.

First, when using the sketch interface, participants did not have to switch tasks; that is

they only drew. In contrast, the drag-and-drop and hybrid interfaces required participants

to move to or open a menu, drag and drop gates, arrange gates, and draw wires and labels.

Participants likely felt that they were doing more, and doing more made them feel like they

were taking more time.

Second is the issue of error blame; when sketching, we think there was a lessened

perception of computer interaction (except for the erasing gesture), so participants felt as

41

though nothing was impeding them from completing the task. Mistakes would be attributed

to themselves, since they didn’t feel as though they were using a computer. When using

the drag-and-drop and hybrid interfaces, more complex interactions are required, and par-

ticipants likely had a sense of using a computer application. When a mistake was made,

participants could shift blame to the computer application, and these “external” mistakes

would cause participants to feel as though they were working slower.

Finally, we think that participants may have slowed themselves down with the sketch

interface by making dense drawings. This is especially true for participants who did not

draw well. They had to recheck their drawings repeatedly because of their unclear draw-

ings. When a mistake was made, a scribble-erase gesture might unintentionally overlap

with several strokes, causing the participant to have to redraw various items. This dis-

connect in perceived speed and measured speed is also interesting because we provided a

sketch interface that was always correct in its ability to recognize and understand the logic

diagram. Even with 100% recognition accuracy, the sketch interface was slower than the

hybrid interface for many situations.

Section 3.4.3 Ease Of Use

Section 3.4.3.1 Making Diagrams

For the statement on ease of use in making gates, the analysis did not show significance

between the interfaces, which is interesting, since all three interfaces had quite different

42

methods for creating gates (see Table 3.4). The drag-and-drop interface had a traditional

method for creating gates that can be found in diagram-creation applications like Visio. A

small number of participants had a few issues with dragging the gates from the toolbar,

“dropping” the gate while it was still on the toolbar. Perhaps this was a result of using a

stylus. Both the sketch and hybrid interfaces had a mean response of over 6, indicating that

the interfaces were quite easy to create gates with. This leads us to pose the question of

whether and how they can be improved upon.

Analysis of the statement on ease of use in making wires did not show significance ei-

ther. Both the drag-and-drop and hybrid interfaces used a UI visualization for the wires and

required participants to start and end their wires at a specific location (the gate terminals).

The drag-and-drop interface required the participant to be more accurate in starting the wire

at the terminal compared to the hybrid interface. The UI visualization also constrained the

shape of wires to simple curves and straight lines. In contrast to the drag-and-drop and hy-

brid interfaces, the sketch interface allowed the participants to begin their wires anywhere

and to make them look any way they wished. Finally, the hybrid interface provided a visu-

alization (a yellow highlight) when a wire was being created and the stylus was sufficiently

close to a terminal, which allowed participants to know when they had successfully created

a wire. We thought the user interface differences made to the hybrid interface would cause

it to be easier to use, particularly over the drag-and-drop interface. However, we cannot say

whether the sketch interfaces freeform wire drawing compares favorably with the hybrid’s

easy wire creation.

43

As previously discussed, we did see significant differences in how easy it was for par-

ticipants to make labels in the three interfaces. While the sketch and hybrid interfaces both

allowed the participants to write their labels with the stylus, there were minor user inter-

face differences between the two. Using the hybrid interface, participants had to write their

labels a bit away from input and output gates in order to not move the gates. This acciden-

tal movement likely led to the difference in perceived ease of use between the sketch and

hybrid interfaces. In contrast to those interfaces, the drag-and-drop interface required the

participant to switch input modes to use the keyboard for typing the labels. Having to make

a modal switch slowed down users (as did having to use the barrel button on the stylus to

select the rename function from a context menu) and made it harder to use.

Section 3.4.3.2 Arranging Diagrams

While the hybrid interface provides similar mechanisms for spatial rearrangement to the

drag-and-drop interface, it has a flaw in erasing gates. When scribble-erasing, if the par-

ticipant starts too close to a gate, the gate will be moved instead of triggering a gesture.

While participants practiced the scribble-erase gesture during the training session, they

still made more mistakes in deleting gates and wires in the hybrid interface compared to

the drag-and-drop interface. This might be improved through the use of mode inferencing

techniques such as those described in [49].

Some participants also expressed that they preferred the sketch interface because of

44

their own drawing abilities. In contrast, some participants drew cluttered diagrams and

worried about their drawings. These participants might have benefited from recognition

feedback to show them that their drawings were neat and formal enough. One participant

commented that he does not like to draw, so he did not like using the sketch interface as

much as the others.

Making neatly aligned diagrams can be beneficial, as it can make it easier to copy the

diagram. Therefore, some participants moved the gates in order to align them. Another

participant commented out that he wanted to spatially move and align the gates for ev-

ery interface, and the sketch interface did not provide a way for participants to move their

strokes without erasing them. Thus, aligning gates was harder than with the other inter-

faces, and he did not like the sketch interface.

Finally, for the hybrid interface, some participants triggered the radial menu without in-

tending to do so, holding the stylus to the screen without moving while thinking about their

next actions. Sometimes participants even generated gates when this happened. Though

they had practiced bringing up the pie menu during the practice session, a few participants

still had this issue. This issue should be alleviated with more practice.

Section 3.4.3.3 Frustration

Our analysis did not show significance between the interfaces for the statement about frus-

tration (see Table 3.4). The mean responses for frustration were low for all three interfaces,

45

indicating that there was little that was frustrating about using the interfaces, as agreement

with the statement indicates higher levels of frustration. Hybrid had the lowest mean frus-

tration rating (though, again, there were not statistically significant differences between the

interfaces in our test). We think this is because it allowed participants to label gates in a

natural way, spatially arrange the gates, and create gates with little work.

Section 3.4.4 Overall Ranking

Looking at the rankings, we can see that there was no overall “winner,” which is contrary

to our hypothesis. The hybrid interface was ranked first nine times and second eight times,

and the sketch interface was ranked first seven times and second eight times. The drag-and-

drop interface had fourteen third place rankings. While the hybrid interface was fastest in

our timings, as previously discussed, participants felt otherwise. Instead, they found it to

have speed similar to the sketch interface. The sketch interface was strongly perceived to

be most natural, but the sketch interface was not significantly chosen as best overall. It

is, however, clear that drag-and-drop was ranked last. Participants clearly took a number

of factors into consideration when deciding on an overall winner. Participants thought the

sketch interface was easy to use, quick, and natural, but did not overwhelmingly rank it

best overall.

Is the naturalness of a sketch interface more important than the other factors we ex-

amined? It does not appear to be more important to several of the participants, as seven

46

ranked the sketch interface as first in naturalness, but chose another interface as first in

overall preference (all chose hybrid). Our correlations also show that ease of use was more

closely correlated with overall preference than naturalness or speed, but because the sketch

and hybrid interfaces did not have equivalent ease of use, we cannot say for certain.

The perceptual gaps on speed (and to some degree, ease of use) make things quite

interesting. Participants who ranked sketch first overall (seven participants) also ranked

sketch first for all three other criteria, except for one participant who did not rank sketch

first for speed. For the drag-and-drop interface, two people ranked it first overall. One

participant ranked it first for the other three criteria, and the other participant ranked it

first on ease and naturalness. The hybrid interface exhibits the most interesting ranking

behavior. Nine participants ranked the hybrid interface as best overall, of those, only one

participant ranked hybrid first in all three other categories. Two participants who ranked

hybrid first overall did not rank hybrid as first in any other category. We think this further

indicates a strong gap in user perception on the various criteria.

Participants had a hard time deciding how to rank the interfaces according to participant

comments. Some participants felt that the differences in overall experience between sketch

and hybrid was so tiny that they could not distinguish easily between the two. Therefore,

they tried to rank based on their previous rankings on other criteria. One participant who

ranked hybrid as the best overall commented that “sketch was easy to use, but drawing

everything out took much time, lack of ways to fix mistakes.” Another who rated hybrid

47

as the best overall commented that “hybrid combined the way the diagram looked, how to

input it, correct errors, easier than the others. Sketch was nice because it was fast for small

diagrams.”

Section 3.4.5 Sketch Recognition Accuracy

Finally, after asking the participants for their rankings, we explained to each participant

our motive for the experiment, and asked whether they would change their rankings if the

sketch interface did not have 100% accuracy. Except for three people who rated sketch as

the worst overall interface even with 100% accuracy, all other participants expressed that

decreased accuracy would cause them to change their rankings. Some participants wanted

to change all four rankings and place sketch as the lowest interface. Other participants

wanted to change their rankings only for ease of use and overall preference, and rank sketch

as the lowest, but make no change on naturalness and speed of entry. Clearly, participants

thought that 100% sketch recognition accuracy was important, though it remains to be seen

how dramatically it affects user perceptions. In order to provide a natural sketch interface,

we need to make further improvements to recognition accuracy, as a perfectly accurate pure

sketch interface was not overwhelmingly better than the hybrid interface.

As it turns out, this type of difference between user perception and measurement would

be found in our follow-up works. After working with a simple Wizard of Oz system for this

48

study, we decided to develop a system that would allow us to realistically simulate imper-

fect recognition accuracy. Even though sketching performed well, we presented a system

that didn’t make recognition mistakes. To better understanding sketch-based interfaces, we

felt that we needed to include accuracy, but control it so that we can see exactly how it

affects user perceptions and acceptance of sketch-based interfaces. We set out to design a

Wizard of Oz system, as we felt it was the easiest way to control accuracy with realistic

results.

While we worked with diagrams for this study, we pivoted and changed to a similar

domain for our future work, mathematics. We chose mathematics for the initial develop-

ment of the WOZ Recognizer because mathematics is structured and typically requires less

writing for a meaningful expression than a diagram. With mathematics, the positional rela-

tionships hold lots of meaning in comparison to many diagram domains. This constrained,

rigid spacing led us to work with mathematics, as we believe that its complexity makes its

results applicable to similar domains like diagrams.

49

CHAPTER 4: WOZ RECOGNIZER

Section 4.1 Introduction

In our work with pen-based interfaces for creating logic diagrams, we saw that the sketch-

based interface provided good ease of use, speed, and naturalness. However, we simulated

perfect recognition, which is atypical in real-world usage. Recognition accuracy is an

important aspect of using sketch-based recognition. To explore how recognition parame-

ters affect user preferences and experience, we need a recognizer where these parameters

can be controlled. Unfortunately, recognizers are not designed in this way; we cannot

control recognition accuracy for instance. To this end, we designed and implemented a

Wizard of Oz sketch recognition system, the WOZ Recognizer, which generates realistic

recognized sketches without performing any recognition on ink strokes. A Wizard of Oz

system [12] is one where a human performs some of the actions that a computer would

normally perform, such as recognition of speech or handwriting. We used this approach to

build a system where a human (wizard) controls a computer system to realistically simu-

late a sketch recognition system. In the WOZ Recognizer, a set of pre-determined sketches

50

are modeled and input into the system; a handwritten mathematical expression or diagram

is then transformed into a recognized sketch according to an established error distribution

and accuracy targets. No recognition takes place in the WOZ Recognizer. The wizard sup-

plants an accuracy-controlled recognizer, telling the system what sketch is being simulated,

choosing good recognized sketches, discarding bad ones, and working to meet an accuracy

target.

Creating a Wizard of Oz system for realistic and accuracy-controlled sketch recogni-

tion is a challenging problem. The system needs to realistically simulate recognition, being

able to produce results similar to real-world recognizers. Each recognition domain (math-

ematics, diagrams, etc.) has its own set of rules for constructing a valid sketch. These rules

need to be encoded in some way into the Wizard of Oz recognition system; even though

recognizers do not always produce valid output, the rules still affect the recognition errors.

Recognition feedback needs to be provided to the wizard in a timely manner, and again to

the user with minimal latency. Many recognition systems provide streaming recognition

where feedback is provided as the user writes; simulating this type of feedback has strong

latency constraints. Determine sketch recognition accuracy is a problem in itself; how does

the system measure accuracy so that it can reach accuracy goals? Finally, the wizard in the

system needs to receive a large amount of information and process it in a timely manner

(for instance, the user’s ink, the system accuracy, and the recognition output).

51

Figure 4.1: The Wizard Interface with mathematics-based sketches. A typeset version
of the WOZ Recognizer’s sketch is displayed below typeset version of the participant’s
sketch, and the user’s ink is displayed in the lined section at the bottom.

The WOZ Recognizer takes a pre-defined computer representation of a sketch and sim-

ulates recognition by applying recognition errors to the representation according to er-

ror distributions. The output is shown to a wizard, who decides whether the accuracy

and realism are sufficient (i.e. whether the output matches the user’s writing and the er-

rors are representative of real recognizers). The wizard also determines when to have the

WOZ Recognizer display the output to the user. We are interested in sketches that have

structure and complexity; therefore we started with sketches that can be modeled with

52

graphs [24], specifically mathematics-based expressions and diagrams. While mathemat-

ics and diagrams are not especially similar, they both have an underlying structure that is

two-dimensional in nature.

The WOZ Recognizer has a variety of features to make simulation of sketch recognition

easy and realistic and its main features include:

1. Mathematics-based and diagram-based sketches, such as algebra, finite state ma-

chines, and flowcharts.

2. Support for a variety of diagram-based sketching domains.

3. A user interface for creating new domains.

4. Simulates batch (recognition of the whole sketch at once) and streaming recognition

(recognition in pieces as it is written).

5. Supports writing multiple mathematics expressions simultaneously.

6. Gives the wizard control over recognition accuracy.

7. Allows the wizard to change many aspects of recognition errors, including the types

of errors used, what symbols can have recognition errors and what those recognition

errors are, and the relative prevalence of the different categories of errors.

In this chapter, we discuss how we model sketches and sketch recognition, the types of

sketch recognition the WOZ Recognizer can simulate, how the WOZ Recognizer controls

53

accuracy while producing realistic recognized sketches, how the wizard controls the WOZ

Recognizer, how users interact with it, a case study examining how expert users used the

WOZ Recognizer, and finally a discussion of the case study.

Section 4.2 Preliminaries

It is important that we have a clear understanding of the terminology and concepts used

throughout the remaining sections of this dissertation.

Section 4.2.1 Sketch Terminology and Background

A symbol is a collection of ink strokes, a visual glyph that is used to represent different

things other than itself, like characters, numbers, and other geometric entities (e.g. a finite

state machine accept symbol, see Figure 4.2) that have meaning. A sketch is made up of

a collection of symbols that relate to each other in some way. The sketch the end user

is drawing is known as the participant’s sketch. After simulation of recognition, the user

is shown the WOZ Recognizer’s sketch, the participant’s sketch with recognition errors

inserted into it.

For a given type of sketch (a sketch domain), the grammar sets a set of structural rules

for combining symbols into valid strings, while the alphabet defines the symbols that can

be combined using the structural rules. This notion of grammars and alphabets is fairly

54

common in sketch recognition and is used frequently in handwriting and sketch recognition

domains [3, 16, 26, 57]. Alphabets and grammars are used by the WOZ Recognizer to

produce sketches. As an example, mathematics-based sketch domains, like stoichiometric

equations, have a defined alphabet of symbols that need to be recognized and parsed into

meaningful structures. For diagrams, a symbol alphabet is composed of node and edge

symbols, which are typically shapes, and label symbols which are characters. These two

pieces, the alphabet and the grammar, are key to error simulation in the WOZ Recognizer.

Figure 4.2: Examples of symbols composed of geometric shapes. A finite state ma-
chine’s Accept State symbol, a bond diagram’s Triple Bond symbol, and a flowchart’s
Decision symbol.

For error simulation we need to define an error alphabet and an error grammar. To

create an error alphabet, for each symbol, we define a set of symbols for which a recognizer

might mistakenly recognize the correct symbol (e.g. a for 9, l for 1, or v for u). We

also define a probability that each “substitute” symbol might replace the correct symbol.

Finally, we define a probability for each symbol that it might not be recognized, because

we saw such errors in real mathematics recognizers. We also take the same concept of

incorrect recognition substitutions and use it to create an error grammar. For example,

in mathematics, a symbol that should be a superscript might reasonably be recognized as

being in a regular position, or a number might not be included under a root symbol. With

55

some types of diagrams, moving a symbol higher in the diagram can change the meaning,

such as in a family tree, where ancestors appear above descendants. Thus, for each rule

in the grammar, we have a set of substitution rules that might be applied, and, for each

rule, the probability that it will be applied. These collections of substitutions are important,

because they allow us to realistically simulate handwriting recognition for sketches.

Section 4.2.2 Recognition Error Types

For a given sketch, a correct symbol is the symbol found at a specific node in the model

of the participant’s sketch. The recognized symbol is the symbol in the analogous node

in the model of the WOZ Recognizer’s sketch. The recognized symbol can be correct

or incorrect, depending on whether an error was introduced. We define four categories of

symbol errors: segmentation errors, similarity errors, wild errors, and no-recognition errors

(see Figure 4.3). Segmentation errors are those for which the recognizer has incorrectly

segmented a set of strokes. We then have two subcategories, over-segmentation and under-

segmentation. In over-segmentation, there are more recognized symbols than there are

correct symbols. Under-segmentation is the converse, with less recognized symbols than

correct symbols. With similarity errors and wild errors, segmentation is correct, but there is

still an error in recognition. Similarity errors have a correct symbol and a substitute symbol

that are visually similar or written similarly. Case errors, where an upper-case and lower-

case symbol have similarity, are a common type of similarity error. With wild errors, there

56

does not appear to be a relationship between the correct and substitute symbol. Finally, no-

recognition errors occur when a symbol is missed by a recognizer and no output is given

for the input strokes.

Errors in grammar result in symbols changing position in relation to other symbols. For

instance, a label can be associated with the wrong edge, or a symbol can be a superscript

when it should not be. While symbol errors are similar across different sketch domains,

grammatical errors generally have little similarity across domains. Only when there are

similar grammatical rules in two domains would we expect to see similar recognition errors.

The WOZ Recognizer supports an extensive set of position errors for mathematics-based

sketches; with diagram-based sketches, only label association errors are supported (where

a label is associated with the wrong node or edge). The grammar for mathematics covers a

wide range of expressions, so we have an extensive error grammar in the WOZ Recognizer.

Diagram-based sketches have great variety in their grammars, so a single error grammar

does not cover many diagram domains. Thus, we could not include a single error grammar

that covered many sketch grammars. Instead, we have a simple grammar for diagrams; the

primary rule is that labels can be disassociated from the correct location in the diagram.

Additionally, the relative positions of symbols in mathematics-based sketches are highly

important; a small change in position can cause a great change in meaning in the sketch,

while rearranging the nodes in a finite state machine diagram makes no change in mean-

ing. Even without extensive grammar errors, we felt that we could support a wide variety

57

of diagram-based sketches since many types of diagrams do not have spatial rules in their

grammars.

Mathematics-based sketch grammar error categories include: enclosure errors, script

errors, division errors, and wrong position errors (see Figure 4.4). Enclosure errors deal

with a symbol that should be enclosed in some structure (like parentheses), but are not;

there are several sub-types of enclosure errors that are associated with specific structures,

like parentheses or roots. Superscript errors involve a symbol that appears as a superscript

when it should not. Not-super- and not-subscript errors are the converse, a symbol should

be a super- or subscript, but is not. Two error categories deal with division structures,

numerator and denominator errors; each category describes an error where a symbol is

not placed in its the appropriate position around a division symbol. In some cases, these

division errors can be simple with one or two symbols coming out of the division structure;

in other cases, the entire division structure is lost. Another category, wrong positions, is for

errors where some symbol is not in the correct position, for example, e−x becoming −ex.

Section 4.2.3 Accuracy

In order to control recognition accuracy, we had to first decide what exactly a recogni-

tion error was and how “wrong” a sketch was when there were recognition errors; in other

words, how to measure accuracy. Measuring the recognition accuracy of a sketch has been

done in several ways [4,13,37,50,58]. After considering several accuracy analysis methods,

58

two separate metrics were chosen, position accuracy and symbol accuracy. These metrics

tell us how close the WOZ Recognizer’s sketch is to the participant’s sketch. The most im-

portant factor in our accuracy metric choices was that measurements had to be performed

by the WOZ Recognizer, as it needed to know a potential WOZ Recognizer’s sketch’s accu-

racy in order to meet its accuracy targets. Another important factor in choosing our metrics

is that they had been used in other sketch-related research [4,37]. Additionally, some of the

other metrics we considered gave accuracies that were confusing and unintuitive to users.

It is also important to note that a recognizer’s accuracy is not defined by a single sketch.

Sketches vary in size, complexity, and structure; having one error in a small sketch pro-

duces a different accuracy rate than in a sketch with twice as many components. Thus, the

WOZ Recognizer measures the accuracy of the current sketch (per-sketch accuracy) and

the accuracy across a set of sketches (completed sketch accuracy).

Section 4.2.3.1 Position Accuracy

To measure position accuracy, for each correct-recognized symbol pair in the models of

the participant’s and WOZ Recognizer’s sketches, we find all the positions for the correct

symbol and all the positions for the recognized symbol and compare these positions. When

a position is missing for the recognized symbol, it counts as an error. The WOZ Recognizer

also counts extra positions as recognition errors (extra positions typically occur due to a

failure by a recognizer to align multiple symbols to the same baseline, resulting in one or

more symbols gaining extra position, such as super- or subscript position). The sum of all

59

positions for all of the correct symbols gives the total number of positions in a sketch. The

number of correct positions in the model of the WOZ Recognizer’s sketch is summed and

divided by the total number of positions to give us the position accuracy.

For example, the sketch 2x becomes 2x. In the original sketch, each symbol is in a

single position, for two total positions. In the WOZ Recognizer’s sketch, the 2 is still in the

correct position, but the x has an extra position, so the sketch is 50% accurate.

Section 4.2.3.2 Symbol Accuracy

We chose two approaches to measure symbol accuracy because symbols are arranged in

different ways between diagrams and mathematics. Diagrams have Latin alphabet symbols

for labels, which are generally longer one-dimensional strings of symbols, while mathe-

matics symbols are arranged in two-dimensional strings. We decided to measure symbol

accuracy using Levenshtein word distance [42] for diagram labels, since it is a good fit for

one-dimensional strings. However, mathematical sketches’ two-dimensional layout is not

a good fit for Levenshtein word distance. Instead, for mathematics-based sketches, symbol

accuracy is measured by the number of correct symbols divided by the total number of

symbols. With the shape-based symbols in diagram-based sketches, we devised two accu-

racy metrics depending upon the type of errors used. With errors in the component shapes,

we count the number of changes in shapes (see Figure 4.5); with symbol-only errors, we

used the same process as mathematics-based sketches.

60

• Segmentation Errors

– Over-segmentation: Substitute |o for p

– Under-segmentation: Substitute w for vv

• Similarity Errors: Substitute 5 for s

– Case Errors

∗ Lower-for-Upper (LfU): Substitute u for U
∗ Upper-for-Lower (UfL): Substitute O for o

• Wild Errors: Substitute f for 7

Figure 4.3: Examples of the symbol error categories.

2x→ 2x (4.1)
3y→ 3y (4.2)
xi→ xi (4.3)

ab→ ab (4.4)
1

x2 + x
→ 1

x2 + x (4.5)√
a2 +b2−1→

√
a2 +b2−1 (4.6)
x−a→−xa (4.7)

a+2h
d
→ a+2

d
h (4.8)

a+b
c
→ a+b− c (4.9)

Figure 4.4: Examples of some types of mathematics errors. (4.1) subscript error,
(4.2) superscript error, (4.3) not subscript error, (4.4) not superscript error, two en-
closure errors, (4.5) division error, and (4.6) root error, and (4.7) wrong position error.
Divisions can also have errors like (4.8) and (4.9).

61

Figure 4.5: With geometric diagram symbols, symbol errors can occur in the defined
symbols or in the component shapes that make up the symbol. With shape-based er-
rors, one geometric shape is substituted for another, as in the circle in this accept state
is replaced by a square. This type of errors can produce symbols that are undefined
for the sketch domain. The symbol accuracy for this example is 50%, as one shape
was changed out of two shapes.

62

Section 4.3 The Recognition Process

Using the WOZ Recognizer to simulate recognition can be divided into four phases: pre-

processing, simulation, output generation, and simulating streaming and batch recognition.

Section 4.3.1 Pre-processing

In order to build the WOZ Recognizer, we performed a one-time pre-processing process

that examined real recognizers. We examined the output of real mathematics-based and

diagram-based recognizers and based the errors created by the WOZ Recognizer on our

observations. We observed the errors we saw in two mathematical handwriting recogniz-

ers [48, 69], categorized them, and extrapolated to obtain some broader categories. We

based our substitute symbols and rules on the data we collected. We collected recognized

sketches from three people who each used both recognizers. We felt that we could col-

lect this data from only a small number of people, as only a small sample was needed to

see what error types working recognizers made. Each participant wrote a set of 43 equa-

tions [37] using each recognizer. The recognized expressions were then categorized and

tallied in order to create an error distribution (see Figures 4.7 and 4.8). The total number of

symbol and position errors per user was rather close (298 versus 281 versus 264). We based

the WOZ Recognizer’s default error distribution on this data. We obtained the probabilities

of the rules by looking at the data we obtained from the real recognizers. However, these

probabilities were tweaked for our preliminary testing, because we wanted some rules to

63

be more or less frequent, since some categories had very high probabilities. For instance,

the subscript/superscript rules were highly probable in our previous studies, but they were

even more probable in the collected data.

We implemented script positioning errors, enclosure errors, division errors, and gen-

eral “wrong position” errors for the WOZ Recognizer. The wizard is able to define the

probability for these kinds of errors through the Wizard Interface (see Section 4.4.2 for

details).

Section 4.3.2 Simulating Recognition

In order to simulate recognition, we need to have a sketch domain (an alphabet, a gram-

mar, an error alphabet, and an error grammar), and set a number of simulation parameters,

including recognition mode (batch or streaming) and recognition accuracies. Once these

inputs are set, recognition can occur. Recognition occurs through a combination of the wiz-

ard’s input and the modules shown in Figure 4.6. The data flow between the Participant’s

Interface and the Wizard Interface is shown in Figure 4.9.

Section 4.3.2.1 Accuracy Regulator

The process of recognition begins with the Accuracy Regulator, which measures sketch

accuracy and determines the number of recognition errors needed to meet the target recog-

nition accuracy. Graphs are used to represent sketches; the two-dimensional structure of

64

the sketch is encoded in the graph structure. Each node in the graph represents a symbol

in the sketch, such as an x, a circle, or a division symbol. We use the traditional approach

for mathematics expressions, parse trees, where mathematics operators are internal nodes

in the tree and other symbols are leaf-nodes [2]. In other words, parse trees are a tree struc-

ture that represents the syntactic structure of a mathematical expression. We use regular

graphs for diagrams, where different symbols are stored in the nodes and edges.

After receiving the target accuracies and the model of the participant’s sketch, the Ac-

curacy Regulator counts the number of symbols and positions in the sketch. These numbers

are multiplied by the target accuracies to obtain the number of symbols and positions that

must be correct to meet the accuracy (and the number of recognition errors of each type to

create). When multiple sketches are involved, the Accuracy Regulator looks at accuracy

rates, the current sketch’s numbers, and the completed sketches’ numbers to determine the

number of symbols and positions that need to be correct to meet the target accuracy rates.

The number of errors is then given to another component of the WOZ Recognizer, the Error

Creator.

Section 4.3.2.2 Error Creator

The Error Creator is responsible for determining the types of errors to create and inserting

the errors by altering the sketch. Once the Accuracy Regulator has given the number of

symbol and position errors to the Error Creator, the Error Creator determines what errors

65

to insert and where to insert them. The Error Creator first chooses and applies all position

errors before moving on to symbol errors. This is done because position errors might be

removed symbols from the sketch. When n position errors are needed, an error category is

sampled from the error grammar’s error distribution with respect to the positions available

in the sketch. Should a category not be possible for a sketch, another category is sampled

from the distribution until an acceptable category is found. All of the nodes in the sketch

that could be affected by this category are collected and randomly ordered. A node is then

chosen and the Error Creator tries to apply the error at that node. If some error application

rules are broken (as described in Section 4.3.2.2.1), another node is selected until either the

category is applied or the possible nodes are exhausted. Should the nodes be exhausted,

another error category is sampled from the distribution and the process continues.

While substitution rules (position errors) are only applied in appropriate situations (e.g.

a symbol can change from a superscript position to a normal position, but not to a subscript

position), they are chosen based upon the position error distribution. With diagram-based

sketches, the distribution is simply the position error rate, since there is a single type of

position error, label association errors. The position error distribution for mathematics-

based sketches defines the relative prevalence of the various kinds of substitution rules

(subscript errors, not-superscript errors, etc.).

Symbol errors are applied in much the same way; the nodes with visible symbols are

randomly ordered and the first node is selected. The Error Creator checks if there are any

66

substitute symbols in the error alphabet for the chosen symbol. If an error can be applied

to a symbol in the node, an error is randomly chosen according to the substitute symbols

defined in the error alphabet. Once n symbol errors have been placed, the Error Creator has

finished working on the sketch.

Diagram-based sketches can have a special type of symbol error. Since shape-based

symbols are composed of geometric shapes, symbol errors can be configured to act upon

the component shapes instead of the entire symbol. This allows for potentially nonsensical

symbols to appear in the sketches, or sets of shapes that have no defined meaning.

Section 4.3.2.2.1 Restrictions on Errors In order to simplify some of the errors that

users receive, and to maintain a level of realism in the errors the recognizer generates, we

chose to restrict or not implement a few error categories in our recognizer. Some errors

are hard to predict; from a users point of view, it is not always obvious what went wrong.

For our studies with the WOZ Recognizer, we wanted to simulate a recognizer that would

seem sensical to the participants, where they might be able to understand why an error

occurred. Additionally, with errors that seem random, it is harder to determine where the

errors should be created. We chose not to implement under-segmentation errors, because of

the difficulty in implementing such errors in a realistic manner. Under-segmentation errors

are harder to simulate because they require more complex examinations of the parse tree to

identify potential locations for the errors. The wizard also has increased cognitive burden

to determine if the ink strokes provide an acceptable basis for the under-segmentation.

67

We enacted several restrictions based upon domain knowledge on the kinds of errors the

WOZ Recognizer creates for mathematics-based sketches and the conditions under which

these errors can be created. In most cases, the wizard is able to disable these restrictions

if needed. We restricted super- and subscript errors to one or two symbols; not-super- and

not-subscript errors have the same restriction. We enacted this restriction as we wanted

the WOZ Recognizer to produce errors that affected only a small number of symbols and

to help the recognizer to meet its accuracy targets; placing many symbols in a superscript

position in a superscript error would result in a large decrease in position accuracy. Simi-

larly, errors of enclosure are restricted to a few symbols; we enacted this rule for the same

reasons as with script errors, accuracy and small errors. Super- and subscript errors can

only be created on non-operator symbols and operators with two or less operands (two or

less children nodes in the tree).

Symbol errors also have a few restrictions; an error where a symbol is over-segmented

into multiple symbols can only occur if that symbol is marked as being written in multiple

strokes by the wizard. We included case errors in our error alphabet, but we also allow

these errors to be enabled or disabled since the problem of case recognition is challenging.

Section 4.3.2.3 Recognition Accuracy Monitoring

Once the sketch has been created by the Error Creator, it is given to the Accuracy Regulator

to tally the recognition accuracy. Simply put, the Accuracy Regulator counts the number of

68

symbols and positions in the model of the WOZ Recognizer’s sketch that are the same as

in the model of the participant’s sketch. In addition to per-sketch accuracies, the completed

sketch accuracies are also calculated. The symbol and position accuracies are calculated

by the Accuracy Regulator and passed along to the UI to be displayed to the wizard.

While the WOZ Recognizer tries to reach each accuracy target for every sketch, hitting

an exact percentage is not always possible since sketches have great variability in size and

complexity. Thus, the target accuracy is reached across multiple sketches, not necessarily

on an individual sketch basis. A single symbol error in one sketch may reach 75% symbol

accuracy and 95% accuracy in another sketch.

Since some errors affect more than one symbol or position, the target accuracy is not

always met by the Error Creator. There is an element of randomness involved in these

cases, thus, the wizard must manipulate the system by regenerating the WOZ Recognizer’s

sketch until they receive satisfactory accuracy. Symbol accuracy rates rarely miss the target

by any great amount since there are many items in the error alphabet. However, position

errors can need more manipulation when dealing with certain structures like division, where

large errors can be introduced.

Diagram-based sketches have two symbol accuracy targets, one for label symbols (the

label accuracy target) and one for graph symbols (the symbol accuracy target). We used

two targets for these sketches, as these different kinds of symbols might be handled by

different recognition systems in a real recognizer, and we wanted to give wizards the option

69

to simulate such a thing.

Section 4.3.2.4 Error Alteration

A recognition error might not always be a great fit for the user’s writing, so the WOZ Rec-

ognizer can alter specific errors. When an alteration is made, the specified error is given to

the Error Creator by the Wizard Interface. The error is examined and viable alternate cat-

egories/substitutes for the error are determined (e.g. subscript error becomes a superscript

error, or a different substitute symbol is chosen). For position errors, the error categories

were chosen so that the recognition rate would not change. An alternate error is chosen at

random according to the error distributions and the new recognition error is substituted for

the old one in the list of recognition errors. The Error Creator then takes the original sketch

and re-applies the previously generated recognition errors in order as described in Section

4.3.2.2. Finally, the revised sketch is given to the Output Generator to be displayed and to

the Accuracy Regulator for recognition accuracies to be updated.

Section 4.3.2.5 Error Correction

Users can correct recognition errors with the Participant’s Interface. As discussed in Sec-

tion 4.4.2, the user can erase their writing and rewrite it. The wizard is able to select the

part of the sketch that was rewritten and remove the recognition errors contained therein.

When an error is selected to be removed, the Error Creator is given the selected error. It

70

then removes the error from its list of errors for the sketch. As with error alteration, the Er-

ror Creator takes the original sketch and re-applies the previously determined recognition

errors in order. This recreates the sketch without the recognition error that was removed.

The sketch is then given to the Output Generator to update the UI. The sketch is not given

to the Accuracy Regulator unless the sketch has not been transmitted to the Participant’s

Interface, as previously discussed.

Section 4.3.3 Output Generator and UI

After the Accuracy Regulator examines the sketch, it is passed to the Output Generator for

a typeset version to be created. The Output Generator takes the graph-based sketch repre-

sentation and creates a well-formatted visual representation of the sketch. Both the model

of the Participant’s sketch and the model of the WOZ Recognizer’s sketch are taken by the

Output Generator and parsed into their visual representations. The positional relationships

between symbols in a mathematics-based sketch are automatically inferred based upon the

mathematics. The layout algorithm used is based upon LATEX formatting rules [69]. Since

the WOZ Recognizer is focused on copy tasks, where the user copies a sketch from a hand-

out, each diagram-based sketch must have its visual layout (the positional relationships

between nodes) defined by the wizard in order for the WOZ Recognizer to display it. This

makes it easy to have the same diagram on screen as on paper without the wizard having to

manipulate the diagram’s layout. While this does not allow for the user to create their own

diagrams, it does allow for easy batch and streaming recognition simulation.

71

For mathematics-based sketches, a tree-view of the graph structure is also used to facil-

itate various wizard interactions with the sketch. The Output Generator converts both the

model of the participant’s sketch tree and the model of the WOZ Recognizer’s sketch into

visual representations of the trees (see Figure 4.10).

Finally, the UI is given the accuracies calculated by the Accuracy Regulator to be dis-

played (see Figure 4.11).

Section 4.3.4 Streaming and Batch Recognition

When the command to send a sketch to the Participant’s Interface is received, several things

happen. First, the Accuracy Regulator commits the current sketch’s accuracies to the com-

pleted sketch accuracies (the Accuracy Regulator keeps count of the number of correct

symbols/positions and the total number of symbols/positions). While the Accuracy Regu-

lator has previously calculated the per-sketch/completed sketch accuracies, the per-sketch

accuracies are malleable until transmission, as simulation might be performed on the sketch

again. Transmission is considered the cutoff point for re-simulating recognition. The sketch

is then given to the Network Component which creates and sends a message containing the

sketch to the Participant’s Interface. The Participant’s Interface uses the Output Genera-

tor to convert the sketch into the visual representation (as in Section 4.3.3). Depending

on the recognition mode, the structures are immediately parsed by the display system and

shown to the user (streaming recognition), or are held until the recognition process has

72

been invoked by the participant (batch recognition).

In streaming recognition mode, the wizard selects a subset of the sketch to send to

the Participant’s Interface that corresponds to what the user has drawn. This process is

described in Section 4.4.2. Once the subset has been selected, the Streaming Selector create

a subgraph of the sketch’s graph. The subgraph is then given to the Output Generator to

be shown to the wizard. When the transmission command is received, the subgraph is sent

to the Participant’s Interface, where the Output Generator converts it to be displayed to the

user.

With mathematics-based sketches, the Streaming Selector is given a parse tree and a

number n (the number of symbols to include) as input. The Streaming Selector traverses

the parse tree in a manner according to how the expression was typically written in our

preliminary data collection and selects the first n symbols. The traversal algorithm is a

combination of pre-order and in-order traversal. For example, for the expression −n, the -

is the parent node of the n, and is selected before the n. In m−n, the - is the parent of the

m and the n, but is selected after the m, but before the n. The Streaming Selector selects the

nodes from the tree and constructs a new tree from the subtree.

73

Accuracy
Regulator

Number of
position, symbol,

label errors

Participant’s
Sketch Model

Error Creator
WOZ Recognizer’s

Sketch Model
Streaming Selector

WOZ Recognizer’s
Sketch Sub-Model

Output Generator

Typeset
Sketch

Wizard Interface
UI

Per-Sketch and
Completed Sketch

Accuracy

Figure 4.6: Data flow throughout the WOZ Recognizer. The rectangles indicate com-
ponents in the WOZ Recognizer, while the rhomboids indicate data. The short dashed
purple lines show where the model of the Participant’s sketch is passed. The solid red
lines show the flow of the model of the WOZ Recognizer’s sketch, and the green lines
with dashes and dots show the passing of the typeset sketches. The long dashed blue
lines show the flow of the modified sketch model during streaming recognition to the
various components of the WOZ Recognizer.

43%

22%
19%

7% 7%

2%

Similarity LFU Wild Oversegment Undersegment UFL

P
e

rc
e

n
ta

ge
 o

f
To

ta
l

Figure 4.7: Distribution of symbol errors (Figure 4.3) from our preliminary data col-
lection. The default error alphabet in the WOZ Recognizer is based upon this distri-
bution.

74

37%

34%

9%

6% 6%
5%

3%

Subscript Superscript Not
superscript

Not
subscript

Wrong
position

Division Enclosure

P
e

rc
e

n
ta

ge
 o

f
To

ta
l

Figure 4.8: Distribution of position errors from our preliminary data collection. The
categories are sorted in order of most prevalent to least prevalent. The default error
grammar in the WOZ Recognizer is based upon this distribution.

Network

Sketch
Model

Output Generator
Typeset
Sketch

Sketch
Model

Participant’s
Interface UI

Ink
Wizard Interface

UI

Figure 4.9: Primary data flow between the Wizard Interface and the Participant’s
Interface. The rectangles indicate components in the WOZ Recognizer, while the
rhomboids indicate data. The Wizard Interface sends sketch models to the Partici-
pant’s Interface, where they are given to the Output Generator and converted into a
visual representation. The visualization is then displayed in the UI. Ink strokes are
sent from the Participant’s Interface to the Wizard Interface where they are displayed
in the UI. In addition, various control information, such as recognition mode and UI
events are sent between the two interfaces.

75

Figure 4.10: Tree-view of a WOZ Recognizer’s sketch. Symbol errors are shown in
blue and position errors in red. When both types of errors are rooted at the same
symbol, the symbol is shown in purple. Some special symbols are used to represent
extra information for the Error Creator and Output Generator, such as the # symbol,
which signals an operator that normally has two operands, but only has one.

Figure 4.11: Symbol and position accuracy UI elements. For each type of accuracy
(symbol, position, label), each UI widget shows the per-sketch and completed sketch
accuracies. The per-sketch accuracy is shown first followed by the completed sketch
accuracy.

76

Section 4.4 User Interfaces

Two applications compose the WOZ Recognizer, the Wizard Interface for the wizard and

the Participant’s Interface for the user. Using the Participant’s Interface, a user sketches

using a stylus; these ink strokes are transmitted to the Wizard Interface so that the wizard

can monitor what is being written. The Wizard Interface uses the model of the participant’s

sketch to generate a model of the WOZ Recognizer’s sketch which is sent to the Partici-

pant’s Interface where it is displayed to the user in a typeset form. The WOZ Recognizer

requires two workstations, the wizard station and the recognition station (see Figure 4.12

for the wizard station and Figure 4.13 for the recognition station). In contrast to the recog-

nition station, the wizard station does not require any stylus input, because there are times

when both hands are needed for keyboard interactions and we found it harder to pick up

and put down a stylus compared to grabbing a mouse.

77

Figure 4.12: The wizard station uses two monitors, one to run the Wizard Interface,
the other to show the Participant’s Interface to the wizard. The Wizard Interface is
shown on the large gray central monitor.

Figure 4.13: The recognition station is a tablet PC.

78

Section 4.4.1 Participant’s Interface

The user interface for the Participant’s Interface was designed to be simple to use. For the

user, the WOZ Recognizer acts similarly to traditional recognizers like [48, 69]. There is a

writing area with a horizontally lined background to help guide the user’s writing (see Fig-

ure 4.14). The background is divided into multiple sections when the user will be working

with multiple sketches at once, each section marked with a thick horizontal line at its top.

The user can erase ink with a scribble erase gesture [69], or clear the whole writing area

with a button press. The typeset visualization of the WOZ Recognizer’s sketches appear

vertically below the ink (based on results from [38]); as the user writes, the visualizations

are repositioned so that they are clear and legible.

The Participant’s Interface contains a minimal set of user interface elements, but was

designed so that elements could be easily changed. The primary component of the interface

is a canvas that allows the user to write (and communicates with a network layer to send the

ink to the Wizard Interface) and displays the sketch visualizations (which are given to it by

the network layer). In our previous work with the WOZ Recognizer, we extended the Par-

ticipant’s Interface to include controls for performing some functions with the recognized

mathematics (such as copying, graphing, and solving, see Figure 4.15 for the extended UI).

79

Figure 4.14: Participant’s Interface with a mathematics single expression set. The
recognized expression is shown below the user’s writing. There is a symbol error in
this sketch; the second x has been recognized as a χ . There is also a position error on
the 1; the 1 is not in a superscript position.

Section 4.4.2 Wizard Interface

The wizard plays a very important role in simulating recognition, rejecting and choosing

WOZ Recognizer’s sketches, controlling when to send a sketch in batch recognition mode,

and controlling the streaming recognition flow. Not all WOZ Recognizer’s sketches are

appropriate for every situation; perhaps a symbol error is inappropriate for the way the user

wrote the symbol, or the wizard wants to avoid certain error types for the current sketch.

The wizard can reject a sketch by generating a new one. Choosing an appropriate WOZ

Recognizer’s sketch is done by sending it to the Participant’s Interface.

Compared to the Participant’s Interface, the Wizard Interface has many sophisticated

features. The wizard is presented with a visualization of the graph-structures of the model

80

of the participant’s sketch and the model of the WOZ Recognizer’s sketch (see Figures 4.10

and 4.16). For mathematics-based sketches, parse trees are used; for diagram-based sketches,

a typeset visualization of the diagram is used. Below the sketches, the user’s ink is dis-

played. The wizard generates WOZ Recognizer’s sketches by pressing a button or using

keyboard shortcuts.

Sliders are used the control the different target accuracies; as previously described in

Section 4.3.2, the target accuracies are used to determine the number of recognition errors.

(a) Extended User Interface

(b) Animate (c) Graph

Figure 4.15: The extended user interface used in a study with the WOZ Recognizer.
The Participant’s Interface allowed the user to animate an illustration, copy a math-
ematics expression, graph an equation, or solve a series of equations.

81

By changing a slider and re-simulating recognition, the wizard can increase or decrease the

symbol or position accuracy of a sketch. Accuracies are displayed for each type of accuracy

(symbol, label, position), with the current sketch’s accuracy followed by the completed

sketch accuracy (see Figure 4.11 for an illustration of the accuracy for the first sketch in a

set).

Once the WOZ Recognizer has created the sketch, it is displayed for the wizard to

examine. If the wizard is unhappy with the sketch and how closely it meets the target accu-

racies, they can re-simulate recognition right away. Re-simulating recognition is performed

in the same way as simulating recognition; the wizard uses a keyboard shortcut or a GUI

button. As the user writes using the Participant’s Interface, their ink strokes are displayed

for the wizard on the Wizard Interface. If the errors in the WOZ Recognizer’s sketch do not

seem reasonable for the user’s writing, the wizard can also choose to re-simulate recogni-

tion (although this is difficult to do during streaming simulation). With batch recognition,

the wizard is able to transmit the WOZ Recognizer’s sketch to the Participant’s Interface

prior to the user invoking recognition. The WOZ Recognizer’s sketch will be held until

recognition is invoked. This helps to minimize latency.

We included controls to allow for re-simulation of specific recognition errors to give the

wizard some control during streaming. The wizard can select a recognition error from the

parse tree (for mathematics) and select to re-simulate it (using keyboard, mouse, or GUI

controls). This has the effect of cycling through recognition errors for that location in the

82

tree. For example, where a superscript error has been introduced, re-simulating that error

might swap it to a subscript error, as in Figure 4.17.

Streaming recognition is a more complicated process for the wizard than batch recog-

nition. The wizard must tell the WOZ Recognizer which symbols have been written. As

previously discussed, the system can traverse the parse tree for mathematics-based sketches

to construct a parse tree for the first n symbols. The wizard tells the system the number

of symbols to include using a keyboard shortcut (to increment or decrement the number of

symbols) or using GUI buttons. The UI reflects this by showing the wizard what the output

of the subtree would look like (i.e. for the parse tree for x2 + 1, traversing two symbols

would display x2 in typeset format). Essentially, streaming recognition is performed by

the wizard generating the nth subtree for the nth symbol the user writes. This subtree is

then displayed to the wizard and can be sent to the Participant’s Interface for display to the

participant too.

There are many different possibilities for how someone can write a mathematics-based

sketch. However, we found that most people tend to write in a few specific ways, so we

implemented a few variations in traversing the parse tree. For instance, with division,

people usually write the numerator, then the division symbol, and finally the denomina-

tor. Sometimes people will write the division symbol followed by the numerator and the

denominator.

In addition, the wizard determines when to send the streaming output to the user. The

83

wizard must balance latency (the desire to send input immediately, but not to send it too

early), and realism (respond to how the user writes). In contrast to streaming recognition,

batch recognition mode allows the wizard to largely eliminate latency (by preemptively

sending the output to the user, where it is then held until the user invokes recognition), and

affords the wizard more time to find realistic recognition errors.

When multiple mathematics-based sketches are to be simulated simultaneously, the

wizard must select which parse tree to work with, for both batch and streaming recognition.

This is as simple as selecting the correct root node in the Wizard Interface.

Transmitting the output of batch recognition to the Participant’s Interface is performed

with a keyboard shortcut or GUI button that sends the entire output. For streaming recog-

nition, a separate shortcut and button are provided that only send what has been selected

using the previously described streaming controls. These two controls provide the wizard

with increased flexibility over what they send. For instance, if the wizard is a bit behind

in streaming mode and the participant has finished writing the sketch, the wizard can use

the keyboard shortcut for batch sending to send the entire output at once, catching them

up to the user. With batch recognition, if the participant writes the first three symbols and

invokes recognition, the wizard can respond by using the streaming controls to select the

first three symbols and send with the keyboard shortcut to send the streaming output. The

WOZ Recognizer takes care of immediate or buffered display output on the Participant’s

Interface based upon the selected recognition mode (batch or streaming).

84

Since the wizard may re-recognize a sketch several times in order to get a “good”

sketch, a sketch is not permanently added to the set measurements until the WOZ Rec-

ognizer’s sketch is sent to the Participant’s Interface. This gives the wizard some ability

and discretion to generate WOZ Recognizer’s sketches that meet their criteria for “good-

ness” or recognition accuracy. When the wizard is generating and choosing sketches, they

may not immediately get a sketch they find appropriate; in such a case, tweaking the error

rates may be required. With certain types of expressions, like divisions and roots, this is

a greater problem, which is generally due to position errors being larger than one or two

positions and the great variations in the ways symbols are written.

With diagram-based sketches, it is easier for the wizard to send specific symbols be-

cause the spatial relationships between symbols are fixed. The wizard selects symbols to

send during streaming recognition by clicking on the diagram visualization. As the symbols

are selected, the graph structure builds up.

Users correct the recognizer’s “mistakes” by erasing the “bad” symbols and rewriting

new ones. We decided that error corrections would at best correct the error, and at worst

replace the error with another error; the wizard has no way to introduce new errors to a

WOZ Recognizer’s sketch without generating a completely new sketch. This behavior is a

limitation of our framework, which we may address in the future. However, we think that

this behavior is also reflective of how an accurate and “good” recognizer would behave,

as it would likely have the correct symbol in its n-best list [40] and update accordingly.

85

Error corrections can be tied to the recognition error rate; when the target accuracy is n%,

and wizard tries to correct an error, n% of the time the error will correct, while the rest

of the time it will not. Since some symbols can be written different ways (for instance,

there are two common variants for the number 2), the wizard can choose to regenerate a

specific symbol error, which will cycle through the substitute symbol list (still based upon

the relative probability of each substitute defined in the error alphabet). As well, the wizard

can choose to regenerate specific position errors, such as a superscript error changing to a

subscript error.

For mathematics-based sketches, the wizard removes errors from the WOZ Recog-

nizer’s sketch by selecting a node from the parse tree and pressing a button; this removes

any errors rooted at the selected node. With diagram-based sketches, the wizard can click

on parts of the visualization of the WOZ Recognizer’s sketch to remove errors. A list of the

various errors is also presented so that the wizard can easily and quickly remove a specific

error. When a label becomes dissociated, the wizard can move it around the graph to make

its position more realistic in relation to the user’s handwriting.

The wizard has control over the distribution of position and symbol errors through the

Wizard Interface. The wizard can create error alphabets through a GUI and save them to

XML files. Diagram-based sketches can be saved as XML documents; a separate docu-

ment is used for the diagram layout, which allows for multiple layouts to be made for each

graph structure. Mathematics-based sketches are saved as MathML documents. The WOZ

86

Recognizer has built-in support for three diagram domains, finite state machines, chem-

istry bond diagrams, and flowcharts (see Figure 4.16 for examples). To load mathematics

expressions into the system, the wizard can specify a configuration XML file containing a

list of MathML files. The files are loaded into the WOZ Recognizer, parsed, and converted

into the WOZ Recognizer’s internal format. The sketches are available through a dropdown

box of loaded sketches. Diagrams are loaded individually by selecting the two appropriate

XML files using a file chooser dialog. If the diagram’s domain is not currently loaded into

the WOZ Recognizer, the wizard will need to select the domain definition XML file so that

the diagram can be visualized and recognition errors defined.

The wizard interface provides several notifications to the wizard in the form of colored

shapes that change color when an event occurs (the shapes can be seen in Figure 4.1). A

notifier is setup for when the participant invokes recognition, presses the “next” button to

go to the next sketch, simulation errors, and for recognition accuracy. The simulation error

notifier blinks red when the wizard tries to remove a recognition error and then error is

not removed as previously described. The accuracy notifiers give the wizard an at-a-glance

view of the per-sketch and completed sketch accuracies, with four to six notifiers depending

on the sketch type (two for symbol accuracy, two for position accuracy, and two for label

accuracy). Each accuracy notifier shows red, yellow, or green depending on how close the

accuracy is to the target.

87

Section 4.4.2.1 Domain Interface

The wizard is able to define new diagram-based sketch domains through the Domain In-

terface. A domain is composed of a symbol alphabet, a shape alphabet, a label alphabet,

and the error alphabet for symbols and shapes. Latin alphabet symbol errors (for labels)

are defined in a separate GUI. The Domain Interface allows wizards to create symbol al-

phabets and error alphabets, and to define the distribution of errors in the grammar. For

example, the finite state machine domain has a symbol alphabet of three symbols, state,

accept-state, and transition. The state symbol is a circle, the accept-state symbols are a

pair of concentric circles, and the transition symbol is an arrow. The shape alphabet is then

only the circle and arrow shapes. We have defined one symbol error, where the accept-state

symbol is recognized as the state symbol. The WOZ Recognizer provides various interface

elements for defining new domains (see Figure 4.18). A separate interface component is

used to position the component shapes relative to each other.

For traditional symbols, the wizard can type in a symbol and add it to the alphabet.

They can also define substitute symbols for the correct symbol and the relative frequencies

of the substitute symbols. For shape-based symbols, the wizard is able to combine the base

geometric shapes supported by the WOZ Recognizer into new symbols. The WOZ Rec-

ognizer supports node symbols composed of rectangles, ellipses, triangles, and diamonds.

Edge symbols can be composed of lines and arrows. For each shape, they can define its

height and width and then arrange the shapes into the symbol by moving the shapes on a

88

canvas. The shapes can be snapped to each other, if desired. Finally, the wizard affects the

error grammar by entering the relative frequencies of the substitution rules.

Once the wizard has set the alphabet, error alphabet, and error grammar rule frequen-

cies, the domain can be saved to an XML file and loaded into the WOZ Recognizer. The

alphabet is also used with sketches to create the typeset version of a sketch. Each symbol

in a diagram-based sketch is referred to by name; the alphabet is used to translate that name

into shapes and their layout.

We used the Domain Interface to create the finite state machine, chemistry bond dia-

gram, and flowchart domains included with the WOZ Recognizer. Part of the flowchart

domain can be seen in Figure 4.18.

As discussed previously, the finite state machine alphabet has three symbols, state,

accept-state, and transition. State and accept-state are node symbols, while transition is an

edge symbol. Transition symbols are presented as labels on the edges. Chemistry bond

diagrams show the bond structure of molecules and compounds. There are four symbols

in the chemistry bond alphabet. There is a single symbol for nodes, molecule, which rep-

resents a molecule or compound. The molecule symbol has no shape representation, only

a label, such as C, N, or OH. Three symbols are given for edges, singlebond, doublebond,

and triplebond. Each symbol has one line per bond.

89

(a) Chemistry Bond Diagram

(b) Finite State Machine

(c) Flowchart

Figure 4.16: Examples of the built-in diagram domains with the Wizard Interface.
In the Wizard Interface, the participant’s and the WOZ Recognizer’s diagrams are
displayed near the top. The user’s ink is displayed below.

90

2x
x2−1

→ 2x
x2−1

2x
x2−1

→ 2x
x2−1

2x
x2−1

→ 2x
x2−1

Figure 4.17: Example of how the WOZ Recognizer might cycle through possible po-
sition recognition errors targeted at the symbol 1.

Figure 4.18: New diagram-based sketch domains can be defined by the wizard using
the Domain Interface. Symbols are defined using a variety of shapes (left side). On
the right side, symbol substitutes are defined, as are shape substitutes.

91

Section 4.5 Simulated Accuracy Evaluation

Table 4.1: Mean accuracies for the WOZ Recognizer. The experiment shows that the
WOZ Recognizer is sufficiently accurate in achieving its target accuracy.

90% 95% 99%

Single
Position

89.0 95.0 99.1
σ = 2.39 σ = 0.815 σ = 0.303

Symbol
90.0 94.9 99.0

σ = 0.723 σ = 0.605 σ = 0.366

Multiple
Position

90.0 94.8 99.1
σ = 1.94 σ = 1.13 σ = 0.218

Symbol
90.4 95.1 99.0

σ = 1.43 σ = 0.550 σ = 0.550

We tested the WOZ Recognizer’s accuracy in reaching its target accuracies for mathe-

matics sketches by running it 24 times at three different recognition accuracies (90%, 95%,

99%) on both single and multiple expression sets (the expression sets used in [9], primar-

ily composed of algebraic, geometric, and calculus expressions). Depending upon the set

size, five expressions or five groups of three expressions composed each run. The test re-

sults show that the WOZ Recognizer is very close to achieving the target accuracies (see

Table 4.1).

92

Section 4.6 Expert User Case Study

To better understand the effectiveness of the WOZ Recognizer’s user interface and the

processes used to simulate both math and diagrammatic recognizers with the tool, we con-

ducted a small case study using two sketch recognition experts. These two experts have

expertise in both building recognition systems and in studying the effects of recognition

accuracy on user performance and acceptance of sketch-recognition technologies. They

used the WOZ Recognizer to simulate recognition for mathematics and diagram-based

sketches. For each type of sketch, two fifteen minute tasks were performed, one for batch

recognition and one for streaming recognition. Each expert started with the mathematics

task. For each task, the expert user acted as the wizard, controlling the WOZ Recognizer,

while a member of our research lab copied sketches from a handout using the WOZ Rec-

ognizer’s Participant’s Interface. During each 15 minute task period, as many sketches as

possible were simulated. For mathematics-based sketches, the target recognition accura-

cies were changed every five sketches. With diagram-based sketches, the target recognition

accuracies were changed every three sketches. The sketches used in the study can be seen

in Appendices A and B. Target accuracies were randomized for each participant; the accu-

racies targeted were 99%, 97%, 95%, 92%, 90%, and 87%.

Each expert user participated in four sessions, simulating mathematics recognition

twice and diagram recognition twice with each session lasting between 1.5 to 2.5 hours.

Upon arrival for the first two sessions, each expert user learned to use the various features

93

of the WOZ Recognizer and practiced using the features, which typically took a mini-

mum of one hour to complete. Once the tutorial portion had been completed and they

felt comfortable with the WOZ Recognizer, the expert users performed the two testing

tasks for a given session (i.e., streaming and batch for mathematics, streaming and batch

for diagrams). After each session we asked each expert user to comment on the WOZ

Recognizer’s user interface, the processes used for simulating both mathematics and di-

agrammatic recognizers, any problems they encountered and how they solved them, and

their overall reaction to how the tool can be used for both recognition perception research

and recognizer development (see Appendices C, D, and E for the questionnaires we used).

In addition to their comments, we measured streaming simulation latency, the number of

mistakes they made in sending recognition feedback for streaming recognition, and how

closely they were able to match the recognition target accuracies, all important measures

in studying the WOZ Recognizer’s simulation capabilities.

Our experimental setup consisted of two workstations, the recognition station and the

wizard station. The recognition station was an HP Compaq tc4400, 12.1 inch tablet PC run-

ning Windows XP Tablet Edition. For the wizard station, a 21 inch monitor displayed the

Wizard Interface for the WOZ Math Recognizer and a secondary 17 inch monitor showed

the participant’s screen. A desktop PC with two Intel Core i7 920 processors at 2.67 GHz

and 9 GB memory running Windows 7 powered the wizard station.

94

Section 4.6.1 Results

We asked both experts whether they thought the WOZ Recognizer would be useful for

doing sketch-related studies. Both thought it would be useful for mathematics. Expert A

felt that it would be useful for studies on user perceptions and how they are affected by

changing accuracy. Expert B was a bit apprehensive about diagrams, but thought that it

was “okay for math recognition.” With regards to diagrams, Expert A thought that they

could create the diagrams that they work on using the domain interface.

Section 4.6.1.1 Ease of Use

Expert A thought that the mathematics part of the WOZ Recognizer was “surprisingly

easy to use.” They also felt that identifying errors and correcting them was easy. The

details of recognition were also “easy to customize.” They considered the recognition to

be realistic “depending on the given accuracy.” With diagrams, it was ”easy to create

realistic recognition errors at a specified accuracy.” Expert B also felt recognition errors

were realistic. Their largest issue with realism was that the WOZ Recognizer introduces

no-recognition errors, as they felt that a recognizer should always produce some output for

an ink stroke. Interestingly, the real recognizers we examined for mathematics sometimes

produced no-recognition errors. In addition, the WOZ Recognizer gives the wizard the

ability to tune the frequency of no-recognition errors, so they can be disabled in order to

emulate such a recognizer. Being able to correct recognition errors “on the fly” was also

95

a positive aspect of the WOZ Recognizer. Controlling accuracy was easy as well as fixing

recognition errors for diagrams.

Some issues the experts had were alleviated through continued use and learning that the

different control methods (keyboard versus mouse, etc.) made things easier. For instance,

after the second mathematics session, when asked if they found it easier than the first

session, Expert B said “Yes, because last time, for making corrections I was right-clicking

and then clicking the menu. This time I was alt-clicking.” When Expert B moved on to

diagrams, they thought that removing recognition errors with diagrams was easy “thanks

to the keyboard shortcut.”

Overall, diagrams required more effort, as there were large sketches at times, and the

point-and-click interface for selecting symbols for streaming recognition could be cumber-

some. Expert B felt it was “not terribly difficult,” but “not terribly easy” either, and that it

required a lot of clicking.

Section 4.6.1.2 Problem Areas

We asked the participants to provide feedback on what they considered the most negative

aspects of the user interface. Streaming mode for mathematics was a particular area of

frustration. One expert (Expert B) found it difficult to keep track of the subset of the sketch

that had been sent to the user. “While I’m sending I’m looking at first the progression of

this thing [typeset sketch] and simultaneously [the user’s writing]. Sometimes I go ahead

96

and the user hasn’t gotten that far and I need to wait or go back.” While the wizard is

presented with the selected subset of the sketch, we do not show the wizard whether it has

been sent already. “It may be that I’ve sent some of it and then I moved to something else

and I was looking at it and I forgot about it.” We can address this issue either by providing

a visual notification when the selected subset has not yet been sent, or by highlighting the

part that has been sent.

Identifying what the user had erased and rewritten was problematic for both experts for

mathematics and diagrams for batch and streaming modes. With streaming mode, it was

considered a greater issue, since the wizard has to look at the user’s writing and the tree or

diagram to select and remove the recognition errors. For example, Expert A commented

“In [streaming], when you correct your error, sometimes I can’t see it, so I feel rushed.”

The wizard has to switch their focus between the user’s ink and the sketch in order to

see what has been erased and rewritten and then find the errors and remove them. It was

suggested that after something was erased, new ink strokes should be colored a different

color to make them easy to identify.

Similarly, both experts thought it was harder to identify the regions of the parse tree that

needed to be edited for error correction. The error list in the diagram UI largely eliminated

this issue, as it provided a simple list of recognition errors and selecting one highlighted

the symbols in the diagram, which helped to differentiate between identical errors on two

different nodes, labels, or edges.

97

Expert B found the user interface to have a learning curve and not be very approachable,

as it is “complicated.” However, they said that “after you use it for a little while, it is okay.”

For instance, after the second mathematics session, they felt that “Removing errors is easier

today.” They exhibited frustration at times in keeping track of what was happening. They

felt that once they started lagging behind, it was hard to keep up. Expert B thought that the

notifications for events (such as recognition being invoked) should be improved, as they

were too small. Expert A also had an issue with the notifications, as they commented “I

forgot to look at [the notifications].” By improving the existing notifications and providing

visual feedback for what has been sent, we think that we can sufficiently improve the issues

the experts had with keeping track of the inputs and outputs of the WOZ Recognizer.

Streaming recognition of diagram labels was confusing for Expert B, as the selected

symbols were indicated by increasing the weight of the font. Selection of the symbols

in the label also caused issues for Expert B, as they would sometimes select too many

symbols, cycle through the entire label, or forget to select the last symbol in the label.

However, Expert B did think that the control scheme provided enough fine-grained control.

Expert B also wanted to be able to use a typeset mathematics sketch (similar to the

diagram interface) instead of using the tree-view. However, once the expert had used the

diagram part of the WOZ Recognizer, they commented that selecting parts of a diagram

sketch was “harder than math,” due to the dexterity required in selecting symbols. Expert

98

A also found some of the diagrams symbols hard to select. Both experts had a particu-

lar issue with bond diagrams because they have bond symbols composed of parallel lines

that requires dexterity to select the individual lines. In addition, bugs they encountered in

streaming recognition and error correction. For instance, when there was a label error and

a shape error at the same node in a finite state machine diagram, removing the label error

corrects the shape error.

One area we expected to have some problems was the display for the user’s ink, as

the screen resolution of the Wizard Interface was insufficient to show the entirety of the

Participant’s Interface. This causes the wizard to have to scroll to view the lower region of

the ink area. We asked the experts for their feedback on the ink area and confirmed that it

was an issue for larger diagrams. One resolution would be to scale the ink so that it fits in

the available area; another is to scroll the ink area when the writing is displayed off-screen

or the user scrolls down themselves.

One of our experts thought that the user interface for showing the recognition accu-

racy should have been larger; the controls for viewing and changing accuracy were also

not always visible to the wizard with mathematics, as they are on a different tab than the

tree view. This caused the participants to spend less time looking at the completed sketch

accuracies and adjusting the target accuracies. The participants were also careless about

selecting the WOZ Recognizer’s sketches with accuracy in mind; instead they focused on

99

quickly selecting a sketch and to some degree realism. We plan to change the user inter-

face to emphasize the accuracy controls and improve notifications related to the completed

sketch accuracies.

Section 4.7 Discussion

The WOZ Recognizer can produce sketches similar to real mathematics recognizers as

demonstrated in Figure 4.19. An example of a mathematics-based sketch of a stoichio-

metric equation which was simulated with high position and symbol accuracy is shown in

Figure 4.20.

100

(a) Math Input Panel (b) WOZ Recognizer

(c) StarPad (d) WOZ Recognizer

Figure 4.19: Examples of mathematics handwriting recognition from Microsoft’s
Math Input Panel [48] and StarPad [69], and similar results from the WOZ Recog-
nizer. This shows that the WOZ Recognizer can produce realistic WOZ Recognizer’s
sketches.

Figure 4.20: Example of a WOZ Recognizer’s sketch using a stoichiometric equation.
Two errors are present in the recognition, a 6 is changed to a b and a 2 is no longer a
superscript.

101

CHAPTER 5: NOW OR LATER

Section 5.1 Introduction

When we developed the WOZ Recognizer, we started by developing its mathematics-

based sketching capabilities. Mathematical handwriting recognizers are complicated, near-

inscrutable black boxes from a user’s point of view. A small change in the way one writes

a symbol can have a large effect on recognized expressions. While mathematical handwrit-

ing recognizers are mostly generalized in terms of the mathematics they support, they can

also show a narrow focus in their preference for one result over another. We cannot expect

that mathematical handwriting recognition will achieve perfect accuracy in the short term,

perhaps not even in the long term. Not only is there great variation in handwriting, but

mathematics add a 2D layout component to the problem. Consequently, we need to exam-

ine how best to allow users to focus on entering mathematics and not on the recognizer’s

inaccuracies.

Invoking handwriting recognition comes in two flavors, now (streaming recognition)

and later (batch recognition). Streaming recognition provides rapid feedback, which allows

102

a user to examine the computer’s understanding of their input early in the process. However,

streaming handwriting recognition can be a distraction for some users, causing them to

slow down to fix mistakes; conversely, it can provide valuable feedback by allowing a user

to see what went wrong and when. Batch recognition, where the user writes an entire

expression (or group of them) and then manually invokes recognition, can allow a user

to write without distraction, but provides no recognition feedback during writing, often

requiring the user to perform some action to invoke recognition. Batch recognition also

requires visual processing and subsequent correction of a potentially large amount of errors

at once. The parameters in mathematics recognizers greatly affect their usability and their

users’ feelings.

To explore these issues, we performed a study to see how users felt about these recogni-

tion modes. In order to perform the study we used the WOZ Recognizer (see Figures 4.12

and 4.13). Twenty-four users participated in our experiment with both recognition modes,

three recognition accuracy levels, and different expression set sizes.

Section 5.2 Experimental Study

Our primary concern in performing this study was determining participant preference for

recognition mode. Prior to the experiment, we formulated several hypotheses:

• As recognition accuracy increases, user preference for streaming recognition will

103

increase. Participants will prefer immediate feedback when it is mostly correct.

• Accuracy will affect user feelings. Participants will report less frustration and dis-

traction, and more ease in writing and correcting when working with more accurate

recognizers.

• Equation set size will affect user feelings. Participants will report increased distrac-

tion and frustration with the larger set size. The increased number of errors will be

more to find and fix at a time, making it more frustrating and distracting.

Section 5.2.1 Subjects and Apparatus

We recruited 24 college students from the general university population (18 male, 6 female)

to participate in our study. The participants ages ranged from 18 to 31. Twelve participants

had previous experience using tablet PCs, while eight had used some form of handwriting

recognition software, and three had used mathematical handwriting recognition software.

We had one left-handed participant. The experiment took approximately 1.5 to 2 hours to

complete and each participant was paid 10 dollars for their time.

Our experimental setup consisted of two workstations, the participant station and the

wizard station. The participant station was an HP Compaq tc4400, 12.1 inch tablet PC run-

ning Windows XP Tablet Edition (see Figure 4.13). The participant station was cordoned

off from the wizard station in order to remove distractions for the participant and minimize

any noises from the wizard. The sound of a fan was also played during the experiment

104

to further minimize the sounds. For the wizard station, a 21 inch monitor displayed the

Wizard Interface for the WOZ Recognizer and a secondary 17 inch monitor showed the

participant’s screen (see Figure 4.12). A desktop PC with two Intel Core i7 920 proces-

sors at 2.67 GHz and 9 GB memory running Windows 7 powered the wizard station. Two

people were required to administer the experiment, a proctor and a wizard.

Section 5.2.2 Experimental Task

Participants were asked to complete six writing tasks; each consisted of writing expressions

varied in size, at one of three recognition accuracy levels, which apply to both symbol and

position accuracy, and in one of two recognition modes. Expression accuracy is measured

in two ways, symbol accuracy and position accuracy. Symbol accuracy is measured as the

number of correct symbols divided by the total number of symbols, and position accuracy

is measured by dividing the correct number of parsing decisions by the total number of

parsing decisions (see Section 4.2.3 for details). For each accuracy level, we used the same

accuracy targets for each measure, symbol and position. The three accuracy levels (90%,

95%, and 99%) were chosen because we felt they were reasonable accuracy levels; any

lower and users would likely find them too hard to use. That is to say that 90% accuracy

is the minimum accuracy that we believe that users might find tolerable. We based our

initial accuracy levels on established accuracy thresholds [20,36]. We then performed pilot

studies to determine our minimum accuracy for the experiment. Two tasks were performed

105

at each accuracy level; one task used a set of single expressions (single equation set) con-

sisting of five expressions written individually, and the other task had a set of multiple

expressions (multiple equation set) consisting of five groups of three expressions. For each

task, participants performed two subtasks, each time writing the same expression set, once

in batch recognition mode, once in streaming recognition mode. Overall, each participant

performed six tasks, writing 120 expressions in total (60 unique expressions, each written

twice).

Each task has its own set of expressions, so we constructed six equation sets. Single

equation set tasks had five separate expressions and multiple equation set tasks had five

groups of three equations. For the experimental tasks, we designed our expression sets

to be in all lowercase; capitalization errors were also disabled. In real recognizers we

examined [48, 69], changing case through erasing and rewriting was problematic at best;

recognizers tend to solve this problem by providing functionality to allow the user to choose

from a list of alternate recognized expressions. Consequently, we chose to avoid this issue

altogether.

Section 5.2.3 Experimental Design and Procedure

We used a 3 by 2 by 2 within-subjects factorial design, where the independent variables

were recognition accuracy, recognition mode, and set size. Two recognition modes, batch

106

recognition and streaming recognition, were included; two set sizes were used, one equa-

tion by itself and three equations together. We felt that three equations as a group were a

good compromise in terms of time spent writing and group size. The dependent variables

were user preference for recognition mode and distraction level, which were determined

through a questionnaire given after each recognition task.

A proctor guided the participants throughout the experiment, giving them question-

naires, finding mistakes in what they wrote, and performing interviews. First, the partici-

pants were given a pre-questionnaire. The pre-questionnaire asked the participants for their

age, gender, which hand they write with, as well as whether they had ever used a tablet

PC, handwriting recognition, or a mathematics recognizer. They then practiced using the

different recognition modes. Participants were then given a preliminary task to familiarize

themselves with the recognizer interface. During the explanation of the study and the in-

terface, participants were told that they would experience different recognition accuracies

during the experiment. While working with batch recognition mode, participants wrote

and corrected two expressions, and then proceeded to write and correct a multiple equation

group of three expressions in streaming recognition mode. Participants were then given a

series of tasks to perform. The order in which participants worked through the different

tasks was randomized and counterbalance such that one-third of the participants received

the 90% accuracy tasks first, one-third received the 95% accuracy tasks first, and one-third

received the 99% accuracy tasks first. The presentation of the multiple equation set task

107

or the single equation set task first was also counterbalanced. As each task has two sub-

tasks, one in streaming recognition mode and one in batch recognition mode, three of the

tasks were performed with the streaming recognition subtask first, and three of the tasks

were performed with batch recognition first. The participants were instructed to find their

mistakes and correct them before moving on to the next expression; the proctor pointed out

errors that they missed when necessary.

The post-task questionnaire asked subjects to rate their agreement with four statements

on a seven point Likert scale, where 1 was Strongly Disagree, 4 was Neutral, and 7 was

Strongly Agree:

• Easy to write: It was easy to write the expressions.

• Easy to correct: It was easy to correct the expressions when necessary.

• Frustration: It was frustrating writing and correcting the expressions when necessary.

• Distraction: I was distracted from writing expressions by the recognition system.

An interview after each task pair was also given, which asked which recognition mode

the participant preferred for the previous task pair. In a final interview after all tasks were

completed, we asked participants a few brief questions about the two recognition modes,

such as whether they changed the way they wrote during the experiment, whether they

watched the streaming recognized expressions as they wrote, and what they thought about

how the recognized expressions were displayed.

108

We designed our expression sets so that they had similar numbers of symbols and po-

sitions (see Table 5.1). Most expressions were basic polynomial equations. Within the

multiple equation sets, there were trigonometric equations in each set. The single equation

sets all had at least one trigonometric equation and one integral. Example expressions can

be seen in Figure 5.1.

Section 5.2.4 Results

We examined user’s preferences for batch or streaming recognition for each expression set

size at each accuracy level using chi-square tests (see Table 5.2). Most participants did not

exclusively prefer one recognition mode to the exclusion of the other. Eighteen participants

preferred batch for at least one of the six tasks and twenty-three participants preferred

streaming for at least one of the six tasks. For multiple equation sets, there was a clear

preference for streaming recognition at all three accuracy levels (χ2
1 = 10.67, p< 0.05). For

single equation sets, at 90% accuracy there was also a preference for streaming recognition

(χ2
1 = 5, p < 0.05), but there was no clear preference at higher accuracy levels. Using

contingency tables, we examined participant preference for recognition mode. Looking at

accuracy, there was no significance in preference across the three accuracy levels (χ2
1 =

1.48, p = 0.48). When we looked at equation set sizes, there was statistical significance

(χ2
1 = 7.91, p < 0.005), meaning that there was a difference in preference for recognition

mode between the single and multiple equation set tasks.

109

Table 5.1: Position and symbol totals for single and multiple equation sets. We bal-
anced the sets so that they had similar position and symbol counts.

Multiple Expressions Set 1 Set 2 Set 3

Positions 310 321 317

Symbols 223 205 204

Single Expression Set 1 Set 2 Set 3

Positions 220 213 214

Symbols 98 102 99

3x3 + x2 +1 = 8 (5.1)∫ ∫
xy2 + x2y dydx (5.2)

p(t) = cos(t− e)+ sin(t + k) (5.3)

Figure 5.1: Example expressions used in our experiment.

Table 5.2: User preference statistics for batch and streaming recognition for each
accuracy level and task set size. In most cases, there was a statistical preference for
streaming recognition.

Batch Streaming χ2 p

90%
Single 6 18 6 p < 0.05

Multiple 4 20 10.67 p < 0.01

95%
Single 11 13 0.167 p = 0.683

Multiple 4 20 10.67 p < 0.01

99%
Single 10 14 0.667 p = 0.414

Multiple 4 20 10.67 p < 0.01

110

For each subtask, we asked participants to evaluate the recognizer’s symbol and position

accuracy for the expression set they had just written. The mean accuracies are displayed in

Table 5.3. Participants perceived the recognition accuracy to be no less than 5% below the

actual recognition accuracy. Additionally, for lower accuracy levels, participants thought

the multiple equation set tasks had lower accuracy than the single equation set tasks.

Table 5.3: Mean perceived recognition accuracies. Participants showed a clear under-
estimation of accuracies and had a greater underestimation for the multiple expres-
sion set tasks.

Single 90% 95% 99%

Batch

Symbol
84.3 88.6 94.0

σ = 8.12 σ = 7.98 σ = 4.59

Position
79.5 86.6 91.4

σ = 10.8 σ = 7.23 σ = 5.37

Streaming

Symbol
85.6 88.9 93.8

σ = 7.64 σ = 6.84 σ = 4.59

Position
79.0 84.6 91.6

σ = 11.5 σ = 7.87 σ = 4.82

Multiple 90% 95% 99%

Batch

Symbol
77.3 84.7 94.2

σ = 16.8 σ = 11.8 σ = 3.91

Position
76.0 80.8 92.6

σ = 17.1 σ = 12.4 σ = 4.95

Streaming

Symbol
80.0 89.1 93.8

σ = 12.9 σ = 7.04 σ = 4.38

Position
73.2 85.2 91.8

σ = 13.8 σ = 7.72 σ = 6.63

111

From the interviews we performed with each participant at the experiment’s end, twenty-

two participants (91%) reported that they had changed the way they wrote during the exper-

iment. Mostly, people commented that they changed certain aspects of their writing in order

to correct perceived errors in the way they wrote (based upon the recognized expressions).

Several people reported that they changed the way they wrote super- and subscripts in order

to correct those errors; this is not surprising as superscript and subscripts were common in

our expressions (see Section 4.3.1 for more information on the distribution of errors in the

WOZ Recognizer). We also asked participants whether they watched the streaming results

as they wrote; twenty-one participants reported they had (87%). Of those who did, twelve

reported they watched the results, but not all the time during the streaming tasks.

To analyze the data collected for each task, we performed an analysis using Friedman

and Wilcoxon Signed Rank tests on the Likert item data [15]; we also performed a post-hoc

correction using the Holm’s Sequential Bonferroni adjustment [27]. For these statements,

we compared the data across recognition mode at each accuracy level and set size, across

accuracy levels for each recognition mode and set size, and across set size at each recogni-

tion mode paired with the two higher accuracy levels (95% and 99%). Average responses

can be found in Tables 5.4 through 5.6 (recall 1 = strongly disagree, 7 = strongly agree).

112

Section 5.2.4.1 Easy To Write

As we expected, there were some significant differences in how easy participants found it to

write the expressions at different accuracy levels. The Friedman test for the ease of writing

expressions showed significance (χ2
11 = 63.613, p < 0.001). Increased accuracy made it

easier to write the expressions. For the single equation set and batch recognition, increasing

accuracy always led to a mean increase in participants’ reported ease in writing; the 99%

accuracy tasks were easier than the 90% (Z = −3.358, p < 0.0167) and 95% accuracy

tasks (Z = −2.271, p < 0.025), as were the 95% accuracy tasks compared to the 90%

accuracy tasks (Z =−2.000, p< 0.05). The multiple equation set also had some significant

differences in ease of writing based upon accuracy; with the batch recognition mode, the

99% accuracy tasks were easier than the 95% accuracy (Z = −3.307, p < 0.0167) and

90% accuracy tasks (Z =−2.274, p < 0.025). Streaming recognition mode produced two

significant results; 99% accuracy had greater reported ease in writing than 90% accuracy

(Z = −3.402, p < 0.0167) and 95% accuracy tasks had greater reported ease than 90%

accuracy tasks (Z = −3.080, p < 0.025). Comparing across set size, participants found

it easier to write single expressions than multiple expressions using streaming recognition

and 90% accuracy (Z = −2.862, p < 0.0167). No other comparisons for accuracy, nor

for set size nor recognition mode were significant after applying the post-hoc Bonferroni

correction.

113

Table 5.4: Mean ease in writing expressions. Participants generally found it easy to
write expressions regardless of recognition mode.

Set Size Mode Accuracy Mean σ

Single

Batch
90% 5.875 0.900

95% 6.208 0.932

99% 6.542 0.721

Streaming
90% 6.000 1.216

95% 6.083 0.929

99% 6.375 0.711

Multiple

Batch
90% 5.875 1.262

95% 5.667 1.204

99% 6.458 0.779

Streaming
90% 5.375 1.279

95% 6.125 1.076

99% 6.292 0.908

Section 5.2.4.2 Easy To Correct

The Friedman test on ease of correction also showed significance (χ2
11 = 50.656, p <

0.001). As with ease in writing expressions, significant differences in the ease in correct-

ing expressions were found when comparing higher accuracy tasks with lower accuracy

tasks. With both the single equation sets and multiple equation sets, participants found it

easier to correct higher accuracy tasks than lower accuracy tasks. With batch recognition

mode and the single equation sets, participants found it easier to correct expressions at 99%

accuracy than at 90% accuracy (Z = −2.561, p < 0.0167). Using streaming recognition

and the single equation sets, participants reported greater ease in correcting expressions

114

at 99% accuracy than at 90% accuracy (Z = −2.967, p < 0.0167) and at 95% accuracy

(Z =−2.240, p < 0.025). When working with the multiple equation sets and batch recog-

nition mode, 99% recognition accuracy made it easier to correct expressions than 90%

accuracy (Z = −2.662, p < 0.0167). The final significant differences in ease of correc-

tion were found with the multiple equation sets and streaming recognition mode; partici-

pants found increased ease in correction with 99% accuracy than with 90% (Z = −2.818,

p < 0.0167) and 95% accuracy (Z = −2.303, p < 0.025). No other comparisons were

significant after the Bonferroni correction.

115

Table 5.5: Mean ease in correcting expressions. As with writing expressions, partici-
pants generally found correcting expressions easy regardless of recognition mode.

Set Size Mode Accuracy Mean σ

Single

Batch
90% 5.708 1.122

95% 6.167 0.917

99% 6.417 0.776

Streaming
90% 5.792 1.141

95% 5.833 1.090

99% 6.375 0.875

Multiple

Batch
90% 5.375 1.377

95% 5.625 1.408

99% 6.250 1.152

Streaming
90% 5.708 1.367

95% 5.833 1.308

99% 6.375 0.770

116

Section 5.2.4.3 Frustration

For participant reported frustration levels, the Friedman test showed significance (χ2
11 =

88.66, p < 0.0001). Comparing frustration levels across different accuracies again pro-

duced significant differences. Increasing accuracy decreased frustration. When writing

in batch recognition mode and the single equation sets, 99% accuracy was less frustrating

than 90% accuracy (Z =−4.122, p < 0.0167) and 95% accuracy (Z =−2.358, p < 0.025);

95% accuracy was also less frustrating than 90% accuracy (Z = −2.263, p < 0.05). One

significant difference in frustration levels was found when participants used the single equa-

tion set and streaming recognition, 99% accuracy was less frustrating than 90% accuracy

(Z = −3.102, p < 0.0167). There were also significant differences across accuracy levels

when participants used the multiple equation sets. When working with batch mode, partic-

ipants reported less frustration when 99% accuracy was used than when 90% (Z =−3.206,

p < 0.0167) or 95% accuracy was used (Z =−2.428, p < 0.025). Working with streaming

recognition, participants reported being less frustrated at 99% accuracy than at 90% accu-

racy (Z =−3.868, p < 0.0167) and at 95% accuracy (Z =−3.216, p < 0.025). They also

reported less frustration at 95% accuracy than at 90% accuracy (Z = −2.829, p < 0.05).

No other comparisons across accuracies were significant after post-hoc correction.

Comparing frustration levels across set sizes produced a single significant result. Writ-

ing expression groups was more frustrating than writing a single equation; this proved

117

significant with streaming recognition and 90% (Z =−2.904, p < 0.0167). All other com-

parisons were not found to be significant.

Section 5.2.4.4 Distraction

We found significant differences in distraction levels using the Friedman test (χ2
11 = 32.74,

p < 0.001). Comparing across recognition mode, for the single equation set at 95% ac-

curacy, participants found batch recognition less distracting than streaming recognition

(Z = −2.326, p < 0.025). For the multiple equation set at 90% accuracy, participants

reported being less distracted using batch recognition than using streaming recognition

(Z = −2.809, p < 0.0167). Comparing across expression set size showed one significant

result; when using streaming recognition at 90% accuracy, participants reported being less

distracted using the single equation set than with the multiple equation set (Z = −2.309,

p = 0.0167). Comparing distraction levels across accuracies did not reveal any significant

results.

118

Table 5.6: Mean frustration levels. Lower recognition accuracies lead to higher levels
of frustration.

Set Size Mode Accuracy Mean σ

Single

Batch
90% 3.083 1.349

95% 2.417 1.742

99% 1.708 0.859

Streaming
90% 2.958 1.517

95% 2.291 1.517

99% 1.917 0.974

Multiple

Batch
90% 3.375 1.837

95% 3.042 1.601

99% 2.333 1.523

Streaming
90% 3.833 1.685

95% 2.917 1.530

99% 1.958 1.042

Table 5.7: Mean distraction levels. Distraction levels did not exhibit much variance.

Set Size Mode Accuracy Mean σ

Single

Batch
90% 1.833 1.129

95% 1.417 0.776

99% 1.458 0.833

Streaming
90% 2.083 1.283

95% 1.875 1.076

99% 2.250 1.359

Multiple

Batch
90% 1.625 0.875

95% 1.750 1.113

99% 1.458 0.833

Streaming
90% 2.417 1.586

95% 2.250 1.622

99% 1.833 1.274

119

Section 5.3 Discussion

Contrary to our hypothesis, it is clear that recognition accuracy had little impact on user

preference for recognition mode, as preference did not generally vary with accuracy. In

other words, at different accuracies, participants did not prefer batch or recognition more.

Instead, the expression set’s size influenced recognition mode preference. As mentioned

earlier, we hypothesized that at low accuracies, participants would prefer batch recognition,

and as recognition accuracy increased, participants would increasingly prefer streaming

recognition over batch recognition. Our experiment’s results do not support this hypoth-

esis. We think that participants preferred streaming recognition for the multiple equation

set tasks and the 90% accuracy single equation set task, because there were more errors to

correct and streaming recognition provided immediate feedback on errors, allowing partic-

ipants to immediately and easily find and correct recognition errors. As accuracy increased

in the single equation set tasks, finding all the errors became easier since there were fewer

to find.

In contrast to participant preference for recognition mode, study participants found it

easier to write and correct and were less frustrated at higher recognition accuracies, as can

be seen in Tables 5.4 through 5.6. Interestingly, distraction levels presented an anomaly;

in two cases, the mean distraction levels increase from 95% accuracy to 99% accuracy.

Only when participants used streaming recognition and the multiple equation set did we

see a downward trend in distraction across all three accuracy levels as we expected. In

120

the case of streaming recognition with the single equation set, participants reported greater

distraction levels at 99% accuracy than at 90% and 95% accuracy. This trend runs contrary

to our expectations that increased accuracy would lead to decreased distraction, as fewer

errors would distract participants from copying the expressions.

One other anomaly presented itself in the Likert scale responses. When writing the

multiple equation set and using batch recognition mode, the mean reported ease in writing

the expression decreased from 90% recognition to 95% recognition (but went back up for

99% recognition accuracy). Perhaps this is attributable to some aspect of the expression

sets, such as a larger number of exponents or subscripts. It is unclear the exact nature of

these anomalies; we will have to experiment further to determine the cause.

As with our previous work, we designed our study with a focus on experimental validity

rather than ecological validity. To this end, we chose recognition rates that spanned a range

that we determined might be acceptably accurate and controlled accuracy between users,

rather than examining real recognizers and measuring their accuracy post-hoc. With real

recognizers, we would expect to see accuracy variance between users, which we want to

factor out, so that we can see the effect of specific accuracy levels on user perceptions.

121

CHAPTER 6: APPLICATIONS AND ACCURACY

Section 6.1 Introduction

Following our first study, where we examined user preference for “now or later” recog-

nition, we thought that we might explore how recognition accuracy intermingled with the

application being used for recognition. That is, if the purpose of an application is really

interesting, does that affect how tolerant the user is of recognition errors? With traditional

handwriting recognition, one paper examined this idea [20], while another paper examined

a similar idea [36]. As with our previous work using the WOZ Recognizer, we focused

upon mathematics sketching with the hypothesis that mathematics sketches would produce

similar results as diagram sketches.

Handwritten mathematical expressions are a powerful component of intelligent tutoring

systems and computational engines [14, 35]. The ability to take a written expression and

perform complicated actions on them can be extremely enticing and exciting for users. User

interest in the application they are performing can affect how they use software and what

122

they are willing to tolerate from it. In this experiment, we explore the impact of recog-

nition inaccuracy during mathematics handwriting recognition with various mathematics

applications.

Twenty college students took part in our study, where they wrote mathematics equations

and experienced four applications using the recognized mathematics, including, copying,

making a graph, animating, and solving.

Section 6.2 Experimental Study

In order to explore how people were willing to tolerate (explicitly or implicitly) errors

in mathematics handwriting recognition, we performed a user study where participants

were presented with four applications relating to mathematics recognition. Recognition

accuracy was decreased over the course of each application. Participants were asked to

write various equations for each application and evaluate whether the recognizer’s accuracy

was acceptable to them for the application. We hypothesized that participants would be

more tolerant of recognition errors with applications they considered more interesting or

useful as shown with other handwriting domains [20, 36].

123

Section 6.2.1 Subjects and Apparatus

We recruited twenty college students (11 female, 9 male), ages 18 to 19, to participate in

the study. All the students were part of a program designed to help students succeed in

STEM disciplines and were taking an applications of calculus class offered by the pro-

gram. In order to be placed in the calculus course, the students had to show interest in the

program and were evaluated by the program to ensure they had a sufficient background in

the mathematics needed for the course. The students selected for our study were chosen

specifically for their interest in mathematics. We selected this population because we felt

the applications we chose would appeal more strongly to them. Additionally, we needed to

use algebra equations for some of the applications, so we chose a population who would

have a reasonable understanding of algebra. We could have chosen another population,

such as mathematicians. However, they already have a tool set (computer algebra systems,

etc.) that allows them to solve challenging and complex mathematical problems. As a

result, mathematicians or engineers are arguably a less useful sample because they have a

special skill set already. However, students need good tools to support problem solving and

assignment completion. We think this is where mathematical expression recognition can

have the most benefit.

Nineteen participants self-identified as freshmen, while one participant self-identified

as a sophomore. One participant had previously used handwriting recognition software,

124

though no participants had used mathematics handwriting recognition software. The exper-

iment took approximately one hour to complete and each participant was paid ten dollars

for their time.

Two people administered the study, a proctor and a wizard. The proctor interacted

with the participants, while the wizard sat across the room, controlling the recognition

application. Participants were not informed that the wizard was involved in the study.

Participants wrote on an HP Compaq tc4400, a 12.1 inch tablet PC running Windows 7

(see Figure 4.13). The recognition application had the look of paper with horizontal lines to

help participants write. The wizard controlled the experiment using a Dell Precision T3500

desktop PC with Windows 7 and a pair of monitors. The primary monitor was used for

the WOZ Recognizer software which allowed the wizard to control recognition, accuracy,

and other parts of the experiment. The wizard also had a live view of the participant’s

screen through the second monitor. In addition, the proctor had a monitor showing the

participant’s screen, in order to easily check that the correct expressions were being written

by the participant and that all mistakes were corrected before an application was invoked.

A video camera recorded their comments and reactions during the experiment.

Section 6.2.2 Experimental Task

Participants performed four separate tasks involving mathematics handwriting recognition:

animate, copy, graph, and solve. We chose the four applications because we felt they were

125

representative of the tasks that are performed by students in classrooms and can be exe-

cuted in mathematics recognition systems such as MathPad2 [39] and MathBrush [35].

The applications represent base and common actions performed on mathematics in edu-

cation settings. Students graph equations using pen and paper or graphing calculators in

classrooms around the world; manipulating and solving an equation for a variable is also

an integral part of mathematics. Complicated computer animations and rudimentary hand-

drawn animations are shown in physics courses to illustrate problems. When writing papers

or turning in homework, students often have to type mathematics expressions using com-

plicated equation editors or inline input languages. These applications are all examples of

tasks that students would do in math and physics classes at various levels in learning and

in doing homework. By choosing applications that would be familiar and meaningful to

students, we hoped to elicit strong feelings about the tasks.

For each task, participants wrote one or two math expressions on the tablet PC at a time.

Correction of mistakes (both in recognition and writing) was performed by scribble erasing

and rewriting the erased symbols; we decided not to include n-best lists for correction in

order to simplify the recognition interface (see Figure 6.1). After correcting all mistakes

in recognition and writing, they invoked the application being tested. For the animate task,

participants also drew a shape using a single stroke before invoking recognition (see Fig-

ure 6.2). The stroke was then animated according to the equations written. With the copy

task, the recognized expression was converted to MathML so that it could be pasted as

an equation in Microsoft Word 2007 (see Figure 6.3). Participants had a choice between

126

using a real or a virtual keyboard to paste the expression into Word. Most participants

used the virtual keyboard. The graph task evaluated and plotted the expression on a 2D

Cartesian coordinate system (see Figure 6.4). We chose to plot the expressions on a graph

with bounds of positive and negative fifty in each direction because the graphs were hard to

differentiate when we varied the bounds to fit the expressions. Lastly, the solve task numer-

ically solved the expression for the primary variable and displayed the answers below the

expression (see Figure 6.5 for an example). Only solutions in the real numbers were dis-

played to participants. Streaming recognition was simulated by the wizard, so participants

received feedback as they wrote.

Figure 6.1: The user interface for the participants was kept simple. Buttons are used
to invoke the different applications. The writing area is lined to give the look of paper
and recognized expressions are displayed just below the participant’s writing. In this
expression, the recognizer has made an error in recognizing the ‘x’ as a χ .

127

Figure 6.2: An example animate task; the ball is being animated. Most participants
drew simple shapes rather than complex ones as illustrated here. The writing area
is divided into two sections, the top blue lined section for the first expression and the
bottom pink lined section for the second expression.

Figure 6.3: An example copy task. An expression is shown in the recognition applica-
tion on the left and pasted into Microsoft Word on the right.

128

Figure 6.4: An example graph task with a trigonometric equation. Participants were
able to move around the graph and zoom in and out. Unlike the animate and solve
applications, the graph application opens in a separate window.

Figure 6.5: An example solve task. Handwriting recognition is shown in black below
the handwriting. Solutions to the expression are shown in green below.

129

We divided the accuracy space into ranges of four percent and a group of expressions

was associated with each range for each task, (i.e. all participants experienced the same

expressions for the animate task at 99-96% accuracy). The accuracy ranges in order were

100%, 99-96%, 95-92%, 91-88%, 87-84%, and 83-80%. For each range, the midpoint was

targeted, calculated as the minimum accuracy plus one-half the range, i.e. 98% for the

99-96% range (96%+2%). We decided to use accuracy ranges in order to limit the length

and number of mathematical expressions participants had to write. We chose to use 4%

ranges because it gave a good balance of similarity between accuracies in the range, ease

of attaining the accuracy, and quickness of exploring the accuracy space.

Similar to [9], we are using two accuracy metrics, symbol and position accuracy; they

both target the same accuracy, but are independently controlled. Symbol accuracy is simply

measured by the number of correct symbols divided by the total number of symbols. As

with symbol accuracy, position accuracy uses two expressions, the original expression (the

intended expression) and the recognized expression. For each intended-recognized symbol

pair in the intended and recognized expressions, we find all the positions for the intended

symbol and all the positions for the recognized symbol and compare these positions. When

a position is missing for the recognized symbol, it counts as an error. The sum of all

positions for all of the intended symbols gives the total number of positions in a sketch.

The number of correct positions in the recognized expressions is summed and divided by

the total number of positions to give us the position accuracy. A group of expressions could

have symbol accuracy within the target range, but position accuracy outside the range.

130

To give a better understanding of what percentage accuracy means, for a set of two

expressions used for the animate task, there are 60 symbols and 61 positions. At 98%

accuracy, we would expect one symbol error and one position error; changing to the next

accuracy range, which targets 94% accuracy, we would expect to see four symbol errors

and four position errors. Decreasing to the next accuracy range, which is centered at 90%

accuracy, there would be about six symbol errors and six position errors. An expression is

shown for three accuracy ranges in Figure 6.6. Equation 1 shows the expression without

any errors. Equation 2 has one symbol error and one position error, and Equation 3 has

three symbol and three position errors.

For the copy, graph, and solve tasks, recognition accuracy was decreased after every

three expressions written. The animate task presented expressions in pairs, one controlling

the animation’s x-axis component, the other the y-axis; after two pairs of expressions (two

animations), recognition accuracy was decreased. Each task has its own set of relevant ex-

pressions (see Figure 6.7 for example expressions). At the beginning of each task, accuracy

was reset to 100%.

8x3

11
− 2

x4 +2x2 +
1
x

(6.1)

8x3

1)
− 2

x4+2x2 +
1
x

(6.2)

8x3
11
− 2

x4+2χ2
+

1
χ

(6.3)

Figure 6.6: An example expression recognized at the 100% accuracy range (1), the
95-92% accuracy range (2), and the 91-88% accuracy range (3).

131

During the error correction phase, when a participant erased a symbol and rewrote it

to correct a recognition error, n% of the time it corrected, where n is the current accuracy

range’s midpoint. This had the effect of error correction not working for the participant

every time, which simulated the same error occurring again after the participant tried to

make a correction.

x(t) = 38cos(
π

4
)t (6.4)

y(t) = 122sin(
π

4
)t−5t2

8x3

11
− 2

x4 +2x2 +
1
x

(6.5)

y =−4x2 + x (6.6)
4x−2x+1 = 8 (6.7)

Figure 6.7: Example expressions used in our experiment. 4.) An expression pair for
the animate task. 5.) An expression for the copy task. 6.) An expression for the graph
task. 7.) An expression for the solve task.

Section 6.2.3 Experimental Design and Procedure

A proctor guided participants throughout the experiment, showing them how to use the rec-

ognizer and the applications, giving them questionnaires, and asking questions. Through-

out the experiment, participants were videotaped and were asked to think aloud. First, the

participants were given a questionnaire in order to collect demographic information, such

as their age, gender, and math experience. The proctor then explained and demonstrated

the four tasks, starting with the copy task, moving to the graph task, the solve task, and

finally the animate task. While explaining the tasks, the proctor gave an example of how

132

each application might be used during the participant’s school career. For example, ani-

mate might be useful in a physics class and copy might be useful for a math class where

homework must be typed. After the demonstrations, the participants were given a question-

naire asking them to rank the applications in order of most (1) to least interesting (4) and

in order of most to least useful. The questionnaire also asked the participants to rank their

agreement with two statements for each task, “I find the ... task interesting,” and “I find the

... task useful” on a seven point Likert scale, where 1 represented Strongly Disagree, 4 was

Neutral, and 7 represented Strongly Agree.

After completing the questionnaire, participants were asked to write and correct two

mathematical expressions. Once they completed the expressions, the first task was started.

The proctor informed participants that recognition accuracy would change throughout the

course of each task. Task orderings were randomized and counterbalanced throughout the

study. For the animate task, since users had to write two expressions, the screen was divide

into two sections, marked by different colored lines. The participants were required to write

the first equation in the top section and the second in the bottom section (see Figure 6.2).

Participants were instructed to copy the expression(s) from a sheet of paper, correct any

mistakes in recognition (or what they wrote), and then invoke the application being tested.

The proctor pointed out mistakes to correct when necessary. When a participant did invoke

an application with errors and the recognized expression did not make sense for the appli-

cation, an error message was displayed telling the participant to look for and correct any

remaining recognition mistakes.

133

When it was time to change the accuracy, the proctor asked the participant whether the

accuracy for the most recent expressions had been acceptable for using the application in

a real-world setting like the one described during the proctor’s demonstration of the appli-

cations. The proctor also discussed the participants answers with them in order to gauge

why they did or did not find the accuracy acceptable. Once the number of recognition mis-

takes was found to be unacceptable, testing for the task was stopped and the next task was

started. Finally, when all tasks were completed, the proctor performed a semi-structured

interview where they asked the participants whether they felt that how interesting or use-

ful they found each application affected their willingness to tolerate errors while using the

applications.

The wizard plays an important role in the experimental task, using the WOZ Recog-

nizer to generate and select recognized expressions and simulate streaming recognition.

Just prior to the participant writing an expression, the wizard generates and selects a rec-

ognized expression that meets the accuracy requirements and handwriting characteristics

of the participant. For instance, when a participant writes “+” symbols such that they re-

semble “t” symbols, the wizard may choose to generate recognized expressions until one

is generated that has a “t” substituted for a “+”. In this way, the wizard tries to generate

expressions that match the participant’s handwriting characteristics. Once the wizard has

selected a recognized expression, streaming recognition is simulated by the wizard select-

ing and sending subparts of the expression as they are written by the participant. When the

134

participant scribble-erases a symbol, the wizard “backs up” and sends an expression with-

out the erased symbols if possible. Details on using the WOZ Recognizer can be found

in 4.

Section 6.2.4 Results

It is important for our experiment that participants had different feelings about the four

applications. If all four applications have the same interest to a participant, then we could

not expect to see any differences in accuracy thresholds. Thus, participants were asked

to rank the applications in order of how interesting they found the application and how

useful they found the application (see Table 6.1 for rankings on interest and Table 6.2 for

rankings on usefulness). We performed a Chi Square test on each set of rankings; for the

rankings on usefulness, there was a statistical difference in usefulness among the applica-

tions (χ2
3 = 34.80, p < 0.0001). There was also a statistical difference in interest among

the applications (χ2
3 = 41.60, p < 0.0001). This implies that there were some applications

that participants found more interesting and more useful than others.

Participants were also asked to rate their agreement with statements about each ap-

plication using Likert scales. We analyzed this data using the Friedman and Wilcoxon

Signed Rank tests [15] and performed a post-hoc correction using Holm’s Bonferroni ad-

justment [27]. For the statements about interest in the applications, the Friedman test

showed significance (χ2
3 = 12.48, p < 0.01); for the statements about the usefulness of

135

the applications, the Friedman test also showed significance (χ2
3 = 15.34, p < 0.005). A

summary of the Likert data is shown in Table 6.3. Nineteen of the participants had at least

some variation in both their perceptions among the applications; one participant rated all

four applications the same on the Likert scales for interest, but had variations among their

ratings of usefulness. When we examined if there were applications that participants found

more useful than others, two applications stood out, the solve and graph applications. The

solve application was significantly more useful than the animate application (Z =−2.968,

p < 0.008), as was the graph application (Z = −2.809, p < 0.008). On the contrary, no

applications were found to be significantly more interesting than any other.

When a participant finished all four tasks, we asked them whether they thought how

interesting or useful they found an application affected their tolerance for recognition errors

for that task. Ninety percent (eighteen of twenty) of the participants answered affirmatively.

Many participants thought there had been an effect on their tolerance, while a few were not

sure whether there had been, but thought that there should have been an effect. One of the

two participants who did not think that there had been an effect felt that the application

being used was irrelevant to recognition errors, while the other participant replied that they

felt the same way about all four applications, so there was no difference in tolerance due to

interest in an application.

136

Table 6.1: Total number of rankings of interest for each position for each application.
The copy application was found to be least interesting.

Ranking Animate Copy Graph Solve

1st 9 0 5 6

2nd 2 4 12 2

3rd 2 6 2 10

4th 7 10 1 2

Median 2 3.5 2 3

Table 6.2: Total number of rankings of usefulness for each position for each applica-
tion. The copy application was also found to be least useful.

Ranking Animate Copy Graph Solve

1st 4 1 6 9

2nd 3 1 11 5

3rd 5 8 2 5

4th 8 10 1 1

Median 3 3.5 2 2

Table 6.3: Responses to the Likert statements. A larger number represents greater
agreement with the statements about the application.

Interest Usefulness

Application Mean Std. Dev. Mean Std. Dev.

Animate 6.15 1.531 4.85 1.725

Copy 4.75 1.713 5.65 1.565

Graph 5.70 1.342 6.45 0.887

Solve 5.80 0.951 6.55 0.686

137

To analyze participants’ tolerance for recognition mistakes, we looked at the number of

accuracy ranges a participant experienced before they stated that the accuracy was unac-

ceptable. With this data, we performed the Friedman test twice (see Tables 6.5 and 6.6 for

summaries). We sorted the data by the participant’s ranking of interest in the applications

(sorted from most to least interesting) and by the ranking of usefulness for the applica-

tions (also from most to least useful) and did the Friedman test for each sorting. The tests

showed no statistical differences amongst the four applications; that is, participants did not

tolerate more recognition errors for applications they thought were more useful (χ2
3 = 2.21,

p = .530) or interesting (χ2
3 = 4.62, p = .202).

We also recorded the amount of time it took a participant to write an equation, correct

it, and press the button to invoke the appropriate application. The timing data is a mea-

surement of the time to write and correct an expression, and other than the variations in

the expressions used for the different tasks, the task itself plays no part in the timing data.

The timing data shows that there was a real effect of recognition errors in terms of the time

it took participants to obtain a correct recognized expression. As accuracy decreased, the

time to obtain a correct recognition increased, as we would expect. The mean time per

accuracy range for each application is shown in Table 6.7.

138

Table 6.4: Average lowest tolerable accuracy for each application in percentiles.

Animate Copy Graph Solve

Mean 92.78 90.89 92.28 89.51

Std. Dev. 5.56 4.62 4.32 4.91

Table 6.5: The mean number of ranges each participant was willing to tolerate. Each
participant’s accuracy tolerance is grouped together according to the rankings of
their interest in the applications from most to least interesting.

Ranking Mean Std. Dev.

1st 3.55 1.099

2nd 3.25 1.020

3rd 3.65 1.137

4th 3.60 1.142

Table 6.6: The mean number of ranges each participant was willing to tolerate. Each
participant’s accuracy tolerance is grouped together according to the rankings of how
useful they found the applications from most to least useful.

Ranking Mean Std. Dev.

1st 3.30 1.031

2nd 3.55 1.317

3rd 3.70 1.129

4th 3.50 0.946

139

Ta
bl

e
6.

7:
M

ea
n

tim
e

in
se

co
nd

s
to

w
ri

te
an

ex
pr

es
si

on
,c

or
re

ct
an

y
re

co
gn

iti
on

m
is

ta
ke

s,
an

d
in

vo
ke

th
e

ap
pl

ic
at

io
n.

Ti
m

es
ar

e
sh

ow
n

fo
r

ea
ch

ac
cu

ra
cy

ra
ng

e
an

d
ap

pl
ic

at
io

n.

A
ni

m
at

e
C

op
y

G
ra

ph
So

lv
e

O
ve

ra
ll

R
an

ge
M

ea
n

St
d.

D
ev

.
M

ea
n

St
d.

D
ev

M
ea

n
St

d.
D

ev
M

ea
n

St
d.

D
ev

.
M

ea
n

St
d.

D
ev

.

1
(1

00
%

)
22

.0
8

7.
08

20
.2

7
11

.0
2

20
.7

5
10

.4
7

21
.6

0
9.

61
21

.0
9

9.
82

2
(9

9%
-9

6%
)

19
.8

8
8.

34
32

.1
3

21
.4

5
20

.9
5

7.
62

18
.9

3
8.

10
23

.2
6

14
.1

8

3
(9

5%
-9

2%
)

23
.5

8
7.

49
31

.8
1

14
.0

8
28

.2
4

13
.0

5
22

.4
2

9.
82

26
.8

4
12

.2
6

4
(9

1%
-8

8%
)

32
.7

7
12

.4
2

33
.4

1
13

.2
1

38
.7

1
12

.9
1

34
.5

2
12

.9
2

35
.0

3
13

.0
2

5
(8

7%
-8

4%
)

42
.5

2
18

.2
7

39
.5

5
22

.9
0

30
.1

2
11

.3
1

30
.2

4
12

.4
6

35
.6

0
18

.0
0

6
(8

3%
-8

0%
)

33
.0

2
14

.2
1

33
.7

4
11

.7
4

53
.0

3
26

.4
3

31
.7

5
8.

99
48

.9
3

16
.8

3

140

CHAPTER 7: DISCUSSION AND FUTURE WORK

Section 7.1 Discussion

In the study described in Chapter 3, despite the absence of recognition errors, participants

did not rate/rank the Wizard of Oz sketch interface as the best interface for all criteria. This

shows that there are areas where pure sketch interfaces can be improved. For instance,

some symbols are hard to write or take a long time to write. Other interfaces (such as

menus, toolbars, or gestures) can provide better ease of use for such situations, because

the task complexity is reduced. Some tasks, like organization and layout are problematic

for sketch-based interfaces the closer they are to pen and paper. Providing a form of trans-

formative feedback might improve sketch-based interfaces, such as cleaning up strokes,

aligning structures, spacing symbols (such as in [61]), or providing widgets that can be

moved around.

Perhaps from a performance point of view, pure sketch-based interfaces are not always

the best interface for a structured 2D language. However, from a preference point of view,

there is still a powerful aesthetic that makes them useful even when they are not the most

141

efficient.

Since many of the problems participants had with the sketch interface dealt with spatial

arrangement, sketch interfaces will have to provide tools to help users in this regard. For

instance, when sketching logic diagrams, drawing many intersecting wires can be tricky,

particularly when you are going back to make sure you drew correctly. Visualizations of

wire intersections could make complex diagram creation easier for users. In addition, by

utilizing domain knowledge, sketch interfaces could help spatial arrangement by inferring

how wires should be connected. One way in which we might further explore these in-

terfaces is examining how often users make errors with the different types of interfaces;

perhaps naturalness will lead to fewer errors and a greater feeling of satisfaction. Another

research avenue to explore is looking at another type of diagram creation task (i.e. syn-

thesis), where the interfaces might perform differently in terms of ease of use, speed, and

naturalness.

Another question raised by the LogicPad study in Chapter 3 relates to the drag-and-drop

interface. A stylus is not necessarily the best device for pointing tasks, like those used in

the drag-and-drop interface [44]. How then, do the sketch and hybrid interfaces compared

to the drag-and-drop interface when it is used in a desktop setting?

After performing this study, we saw that further research into understanding user per-

ceptions of pen-based interfaces was needed; we were intrigued by the differences we saw

142

between our participants’ perceptions and our measurements. Our work with LogicPad in-

spired us to develop a Wizard of Oz system for studying user perceptions of sketch-based

interfaces, which would eventually become the WOZ Recognizer described in Chapter 4.

Initially, we decided to tackle a similar problem domain to diagrams, mathematics, and

focus on simulating recognition with controlled accuracy so that we could study the effects

of accuracy on user perceptions.

The systematic study of mathematics-based sketches and recognition required to create

and design the WOZ Recognizer allowed us to model sketches and the recognition pro-

cess. From our work with the WOZ Recognizer, we feel that all recognition errors are not

equivalent to a user; the greater the difference from the expected result, the more we expect

that an error will bother a user. An interesting line of investigation would be to examine

whether certain types of errors are linked together.

As discussed in Chapters 5 and 6, two studies have used the WOZ Recognizer to ex-

plore user perceptions of mathematics handwriting recognition. In these studies, controlled

mathematics accuracy was simulated for a series of copying tasks. Feedback from these

studies has helped us to refine the WOZ Recognizer, particularly in streamlining the Wiz-

ard Interface and designing user interface components that enable the wizard to quickly

generate WOZ Recognizer’s sketches and respond to variations in user input. When we

began to use the WOZ Recognizer for our first study, we quickly realized that there was

variation in the order people wrote mathematics structures as discussed in Section 4.4.2. In

143

order to accommodate these variations, we implemented a user interface component where

the wizard can choose the order in which the Streaming Selector traverses the parse tree.

The WOZ Recognizer had a simpler UI during the first study, so viewing the accuracy in-

formation was easy. As we expanded its capabilities for the second study, we realized that

the wizard would often have a different tab open, so they would not be able to quickly see

the accuracy information. We addressed this problem with the introduction of our notifica-

tion system, where we have UI components that act like lights that turn on when something

important happens. After each study, we expanded the configurability of the recognition

simulation of the WOZ Recognizer, so that we can better control where and when errors

are placed. While the first study showed us that always re-simulating recognition of the

entire mathematics expression made streaming recognition difficult when the user’s hand-

writing didn’t match the WOZ Recognizer’s sketch, the second study forced us to solve the

problem, since it was exclusively streaming recognition. We introduced the ability to alter

specific errors to address the issue.

As described in Chapter 4, we performed an evaluative study of the WOZ Recognizer

using experts on sketch-based recognition and interfaces, which happened after refining the

WOZ Recognizer through the two studies described in Chapters 5 and 6. We feel that the

users were receptive to the WOZ Recognizer and were able to successfully learn to use it in

a short time. We think the WOZ Recognizer is useful for studying how people interact with

sketch-based systems including exploring their perceptions of how recognizers behave.

It allows us to study and understand pen-based interfaces for sketching, by controlling

144

recognition aspects and giving a developer the ability to create interfaces where recognition

is controlled. By using the WOZ Recognizer in such a way, a researcher or developer can

examine or study sketch-based interface with regards to recognition accuracy, which we

think is important. The WOZ Recognizer helps to explore complex sketch domains where

the pen-based input is the primary focus of interaction, which is most similar to pen and

paper interaction. We think that these kinds of interfaces are useful and should be explored

rigorously. The WOZ Recognizer is also useful in designing recognizers, because it can

help to provide lower bounds on accuracy which can be important when thinking about

trade-offs between real time interactivity compared to the amount of computation.

In addition to applications of the WOZ Recognizer to academic research, we believe

that the WOZ Recognizer would be useful for recognizer and application designers. One

important question that we believe the WOZ Recognizer would be useful in answering is

what “good enough” recognition is. Researchers can use the WOZ Recognizer to examine

user acceptance of recognition at various accuracy rates and conditions, and see how this is

affected by other recognition properties.

When a designer is thinking about supporting a particular task for some recognition

domain, they can use the WOZ Recognizer to see how users respond to the task and the

kinds of recognition errors they experience, without having to implement an entire recog-

nizer. We think that the WOZ Recognizer could be useful in the early prototyping stages

of the UI design process to get a feel for how the interface is working in connection with

145

recognition. It can be done iteratively as a way of testing out different design decisions in

terms of the various recognition strategies the designers want to use.

In the preliminary work for our studies using the WOZ Recognizer, we noticed that

when working with mathematics-based sketches, while users may write out of the expected

order, we found that this problem could generally be solved by delaying sending the WOZ

Recognizer’s sketch to the user until they have reached a point in which the nth parse tree

matches what has actually been written. This is not truly real-time, but still gives streaming

recognition. This delayed streaming recognition also can occur when a user is writing too

fast for the wizard to keep up, when multiple symbols are written in a single stroke, and

when users frequently change the order in which they write structures.

Latency in simulating recognition is important and directly related to the wizard, as they

control when feedback is sent to the Participant’s Interface. We believe that we can reduce

the latency in the Participant’s Interface receiving feedback through some user interface

changes. When streaming, a button press (or key press) is required for each symbol, in-

cluding implied symbols like multiplication or superscripts. The experts in our case study

did not like this and had a hard time adjusting to it. We could skip over these implied

symbols to reduce latency from user confusion and from having to perform two actions.

Sometimes the wizard will fall behind the user’s writing and batch multiple symbols into a

single send. While this isn’t necessarily noticeable for a copy task, it does have the effect

of increasing latency. Subjectively, we think that the participants in our case study were

146

close to achieving sufficient latency for a copy task, as users will typically be focusing on

a piece of paper or their own writing. Users will notice when latency is extremely large,

i.e. nothing was been recognized, or once they have finished copying, as their attention

is no longer split between three things (reading the sketch, writing the sketch, reading the

recognizer’s output). However, when they are copying, splitting their attention between

multiple things, they will be more tolerant of latency.

In the study presented in Chapter 5, it was clear that recognition accuracy had little

impact on user preference for recognition mode, as preference did not generally vary with

accuracy. Often, participants expressed that batch recognition was better for single expres-

sions, but that streaming was preferable for multiple expressions. One streaming recog-

nition aspect that participants liked was its immediacy; it gave them immediate feedback

and they were able to immediately correct and adapt their writing styles. For tasks at 90%

recognition accuracy, some participants felt that batch mode was tedious, as there were

many errors and it was hard to remember which errors they had corrected before hitting

the recognize button. This was especially true with the multiple equation set, since there

were more errors to correct, which forced participants to spend a long period performing

error correction. Additionally, participants stated that correcting all their mistakes at once

was time consuming. Unfortunately, we did not time how long it took each participant to

write and correct the expressions, so we cannot verify or refute this perception. This brings

us back to an inherent issue with batch recognition; it requires a period of intense visual

identification of errors. We think that this explains why there was a stronger preference for

147

streaming recognition for the low-accuracy multiple equation task compared to the higher

accuracy tasks.

Participants often stated that they wanted to spend time writing expressions; interest-

ingly, this was often used as a reason for preferring both batch and streaming recognition.

We think that differences in what distracted participants explains this contradiction. Par-

ticipants who were distracted by recognition errors as they wrote would find it easier and

faster to write and then recognize; participants who were not distracted would not have to sit

through an error correction cycle of finding and rewriting incorrectly recognized symbols.

Since participants reported lower distraction levels using batch recognition over streaming

recognition, we can speculate that distraction played little part in user preference for recog-

nition mode. Additionally, there may have been differences in writing cycle perceptions;

some participants may have included error correction as part of writing, while others did

not. Those who viewed error correction as separate would likely view any period of solely

correcting errors as “not writing.”

In general, participants expressed a desire for faster recognition and correction; that

is, they wanted to see recognized expressions immediately and fix mistakes immediately.

During the final interview with the participants, we asked them whether they would pre-

fer a version of batch recognition where they could press the recognize button after each

expression or correction, over the batch recognition performed in the study. This alternate

batch recognition would give more immediate recognized expressions and the ability for

148

users to see error correction results almost immediately. Thirteen participants expressed

that they would like that version of batch, ten participants stated that they preferred the

implemented version, and one stated that it was situation dependent. We think that this is

related to the change in preferences with expression set size. Batch delayed feedback until

all expressions had been written. We believe that the delay between writing and feedback

was too long. Having the participants recognition each expression after writing might see

similar results to single expression tasks.

Participants consistently underestimated the position and symbol recognition accuracy

for each task. The perceived accuracies were fairly consistently 5% or greater in error.

What is most interesting is that participants had a greater underestimation of accuracies

for the multiple equation tasks at low recognition accuracies. Additionally, participants

exhibited a greater variation in perceived recognition accuracy for the multiple equation

set than the single equation set (and variation decreased as the real accuracy increased).

One explanation might be that participants saw several expressions with errors and viewed

all the errors as effecting one expression; participants may have also had a harder time

evaluating the number of symbols and positions for multiple expressions at once.

Although it is not the primary task that most users will perform while using mathemati-

cal handwriting recognition software, we chose to have participants perform a copying task

during the study, as we felt that it was a representative of one type of task that users perform

in real-world situations (such as in educational settings). For instance, students will copy

149

down equations while doing their homework and teachers might copy them down while

creating a test. Additionally, using a copying task allowed us to control the experiment and

what participants wrote.

We feel that knowing user perceptions about the two recognition modes are more im-

portant for user interface design than an objective quantitative measurement of the modes,

such as user speed. Consequently, a subjective quantitative experiment was performed; ob-

jectively measuring those perceptions would have greatly increased the setup’s complexity

and the time required of each participant.

In Chapter 6, we saw that participants in the study thought that they tolerated more

recognition errors for applications for which they had a preference. However, most par-

ticipants did not tolerate more recognition errors for their most useful or most interesting

applications. Along with a yes or no answer, participants were asked to give reasons why

they were or were not willing to tolerate the level of errors they had just experienced. One

of the most common explanations for a negative response was that there were too many

errors to correct. Participants did not want to spend the time to correct so many errors.

Some participants also stated that using another method for performing the task, such as a

calculator for graphing, would be quicker, so there was no reason for using the handwrit-

ing recognition application. Another common reason for no longer tolerating the number

of recognition errors was frustration. Common stated sources of frustration were repeated

problems recognizing certain symbols, a large number of errors, and the amount of time it

150

took to find and correct all the errors. Working on the copy task, one participant stated “I

think that would be about my tolerance because it just kept making more errors. Every time

I drew a two, it would make a ‘d’ or some sort of symbol,” and that they would “probably

just write it down instead of using this to copy it.” In this case, the participant was unfamil-

iar with the symbol the recognizer was giving, which caused some confusion and increased

frustration. A common positive response was that it was easy to use the handwriting recog-

nition, and there were few and easy to correct errors; for instance one participant stated

“you can change it pretty quickly if it’s just one [error].” A common response from partic-

ipants was that they were becoming increasingly frustrated with the recognition errors, but

that they were not a large enough problem yet.

Why did participants think they tolerated more recognition errors for the “quality” ap-

plications? It is possible that time to completion played a role in how long participants

tolerated low accuracy results. Perhaps participants ascribed good attributes to the appli-

cations that they considered to be good? We theorize that participants had intolerance for

recognition errors mitigated by the continuous feedback provided by the system in the form

of ink strokes and the typeset recognition.

For some participants, time was a factor in their decision to tolerate recognition errors.

For instance, one participant felt they needed to write slower in order to write neat enough

for the recognizer to understand their handwriting, which caused them some annoyance.

For other participants, the time to find and correct errors was important. A large number of

151

errors, and having to make repeated attempts to correct errors meant it took a long time to

be able to invoke the application, and participants were often frustrated by how long they

felt it took. For instance, one participant stated “it’s kind of starting to get more tedious

with writing them, because [the recognizer] keeps doing things wrong.” In their decisions

to tolerate a level of recognition accuracy, some participants explicitly compared the time

to perform the task using another method to the time to the handwriting recognition appli-

cation. They were willing to tolerate errors so long as the task time was in the handwriting

recognition application’s favor.

In speaking with the participants after they completed all four tasks, many participants

compared using a handwriting recognition application to another application for the same

purpose as a factor in deciding to tolerate recognition errors. When performing a task

with another application or tool was easy (graphing with a calculator), participants were

less willing to tolerate recognition errors. In cases like solving, most participants were not

familiar with other tools beyond pen and paper, and felt that the solve task was thus highly

useful and easy to use. Since solving an expression using pen and paper also involves

writing the expression, usually multiple times and through several steps, going through

error correction was viewed as easier and quicker to many participants. The time to correct

errors was often mentioned; rather than talking about the overall time to write and correct,

participants tended to talk about the time to correct. The time to correct was important

to them; having easy correction would greatly help participants feel using mathematics

handwriting recognition was viable.

152

Examining the quantitative data from the two participants who did not feel as though

their interest in a task affected their willingness to tolerate recognition errors, we found

that they tolerated less errors from the tasks they were interested in. One participant ranked

the animate task their most interesting and most useful task. The participant tolerated one

less range for the animate task than for the other tasks. The other participant tolerated one

less range for their two most useful tasks, but did not have the same effect for their most

interesting tasks.

One participant regularly had to type expressions for entry into a web-based homework

system and found the experience of typing expressions very frustrating, because the system

required a very specific entry format. For expressions with multiple parsings in the entry

language, the participant might enter the “wrong” parsing and be marked incorrect. The

participant thought that mathematics handwriting recognition would be useful for such

systems since it was so tedious typing the expressions and recognition errors were relatively

obvious and easy to correct.

What role did feedback play in the study? An application’s quality is a function of its

feedback. Better feedback, whether that be faster, more easy to understand, more useful,

or nicer looking, decides how we view an application. In that sense, the usefulness or

interestingness of each application was a measurement of the extra feedback provided by

the application.

We wonder how interactivity plays in a role in how participants tolerated recognition

153

errors. Were the more interactive applications better tolerated? The visual applications,

animate and graph, provided a level of entertainment to the participants that made them

feel as though they tolerated more errors. One participant said that it was worth putting

in the extra time correcting mistakes to see what happens with animation and graphing.

Another participant commented that even though the animate task had several errors in

recognition, it was still interesting to watch the shape “fly around,” and that the application

would keep people wanting to use it just to watch the animations.

We think that our results inform the debate on the speed versus accuracy tradeoff in

recognizer design. Our experiment shows recognizer designers just how important people

find error correction. People want easy and quick error correction; in some ways, correction

is a replacement for accuracy. Participants were fairly tolerant to recognition errors, as the

average accuracy for the last range that participants found acceptable was 91.36% (σ =

4.99). As previously discussed, some participants commented during the experiment that

the accuracy was no longer tolerable because of the long time to correct. The time to correct

is directly related to recognition accuracy in two ways, a greater number of errors and the

failure of an error to be corrected. That is, lower accuracy led to an increase in errors and

a greater number of corrections per error; having to correct the same mistakes repeatedly

would likely cause a lot of frustration for the participants in addition to the time sink. The

additional time to correct errors was fairly significant; changing from the first (where no

correction was necessary) to the sixth accuracy range caused a greater than 50% increase

in the time to write and correct the expression, and invoke the application (see Table 6.7).

154

In [20] and [36], a low tolerance for recognition errors in normal handwriting recogni-

tion was found. In [36], 97% accuracy was the minimum accuracy deemed acceptable. In

contrast, we found a significantly higher tolerance for recognition errors with mathemat-

ics handwriting recognition. We think this is at least partially attributable to the amount

of writing involved; mathematics expressions are relatively short in comparison to writing

a paragraph. We expect that similar tolerance for recognition errors would be found for

regular writing with short entries, such as names or dates.

Frankish et al. [20] also suggest that recognizer performance plays a role in how well-

liked handwriting recognition applications are and that the interest level in an application

also affects its success. Prior to executing our experiment, we hypothesized that mathe-

matics recognition would follow along these lines, that participants would tolerate more

recognition mistakes for applications they found more interesting or useful; while partici-

pants felt that they did tolerate more recognition mistakes for the applications they liked,

the quantitative data does not support this finding.

We propose several factors that might contribute to this disconnect. For one, partic-

ipants were not made explicitly aware of how many accuracy ranges they experienced.

While participants were asked how they felt about the accuracy after each range, they were

not directly told how much accuracy had changed or what the recognition accuracy was for

the previous expressions. So while participants might have done the same number of ranges

155

for two tasks, they might not have realized that they were experiencing very similar accu-

racies. Also, they were not likely to be keeping track of how many ranges they experienced

for each task, so when they thought about how the applications affected their tolerance for

recognition mistakes, it is unlikely they correctly estimated how many ranges they expe-

rienced for each task. In [9], participants consistently misjudged recognition accuracy for

positions and symbols. As recognition accuracy decreased, the amount they misestimated

increased, so a 1% change in recognition accuracy might contribute to a greater perception

of mistakes. This disconnect between perception of accuracy and the computed accuracy

might cause participants to think that they experienced quite different accuracies between

tasks. In addition, different error types are likely to give different feelings; a change from a

superscript to a regular position is likely less frustrating and annoying than a change from

outside a root to under a root. People may feel that the “more annoying” errors have a

greater effect in terms of accuracy.

Finally, although we found significance in differences between applications using the

participants’ responses to the Likert statements (usefulness and interest), we think that the

differences between the means are still somewhat small. We think that if there was a larger

contrast between some of the applications (for instance an average of six for animate and

two for copy), we might potentially see a starker contrast in accuracy tolerance between the

applications.

156

Section 7.1.1 Feedback Drives Perceptions

One powerful insight we gleaned from our studies is how application feedback drives user

perceptions of the application. Applications communicate to us through feedback; we in-

terpret the feedback in various ways and form an understanding of what the application

is communicating. While most applications provide some visual feedback when we pro-

vide them input, we think that seeing a computer display our handwriting gives us a form

of feedback that we relate to more closely. Compared to a keyboard, we are directly and

dextrously manipulating an object when we write. The act of writing takes us closer to

our application and makes us feel that the application understands us in a more human

way. The constant communication that we get simply from writing lessens the important

of the other forms of feedback we receive (although it does not eliminate the need for it).

We hypothesize that the feedback provided by writing lessens the importance of accuracy

compared to other input methodologies. By the time we receive the forms of feedback that

differentiate the applications, we have already dealt with the communication issues. When

the feedback cycle is more tightly integrated between input and application purpose, we

might expect to see a greater effect on error tolerance.

The feedback cycle from writing and seeing our strokes displayed by the application

allows us to delay other forms of recognition feedback. We expect that this will be most

powerful when we have high input frequency (low delays between inputting sketch pieces)

as we will naturally stay focused on a single cognitive task. Once the user has completed

157

a cognitive task, they will want to receive feedback before continuing on to another task.

With the study presented in Chapter 5, the user had to switch cognitive tasks between

each expression in the multiple expression sketches; the form of batch recognition we used

causes the user to have a context switch where they receive no feedback from the applica-

tion. A lack of timely feedback can make us feel as if the application isn’t listening, even

if we haven’t asked the application for a response. When this happens, we cannot tell if the

application understands what we are telling it. So long as the application’s response that it

understands us (sketch recognition) comes in a reasonable timeframe, our applications can

provide delayed feedback.

Earlier, we hypothesized that writing gives users different feelings about communicat-

ing than other forms of computer input such as typing. With our study presented in Chap-

ter 3, all three interfaces provided participants with constant visual feedback. Yet, many

participants felt like they completed logic gate diagrams faster with the Sketch interface.

We hypothesize that this is due to the difference in how we receive feedback from writ-

ing in comparison to other input methods. Another hypothesis is that the Hybrid interface

introduces delays in feedback that weren’t present in the Sketch interface. For instance,

the Hybrid interface used a marking menu where the participant had to hold the stylus in

a single location for a bit of time before the menu opened. This introduces a delay in the

feedback received by the user, where they have no indication that their communication with

the computer is understood. The user has communicated with the computer, but are forced

to wait for acknowledgement and a response before they can continue communication. In

158

contrast, the Sketch interface only provided immediate feedback until recognition was in-

voked. Finally, we hypothesize that the context switching required by the user to provide

different forms of input when using the Hybrid interface contributes to the perceptions of

speed.

The harder it is for a user to find a recognition error, the more important recognition

accuracy becomes. When the user is primed to look for recognition errors, the presence

of errors becomes less important. When the burden of finding and correcting errors be-

comes large compared to the task of inputting, the user is unlikely to accept the recognition

accuracy. If a recognizer has an estimation of recognition confidence, instances of low

confidence should be expressed to the user through visual feedback. This visual feedback

will help the user to more easily check the recognition and also feel more confident about

the recognition process.

Our hands are highly responsive, able to nimbly manipulate, and have many nerves.

Do we receive more sensory input from writing than typing? Does writing take more brain

power than typing? If so, do these nervous system traits cause us to treat actions done

with greater dexterity and control differently than simpler actions? We also receive large

amounts of haptic feedback from our hands. Do we get more or getter feedback from

writing than typing?

159

Section 7.1.2 Mathematics and Diagrams

We believe that our results are not only applicable to mathematics, but to other structured

input languages like sketches and diagrams. Our belief is that the complexity in these dif-

ferent domains will provide similar reactions to errors in recognition. The two-dimensional

relationships between symbols in sketches and diagrams provide a structure that is similar

to the structure in mathematics; while the structure in mathematics is quite complex, we

think that the general complexity of the domains is enough for our study’s results to ap-

ply. We think that people would find the same tediousness in correcting sketch recognition

errors as in correcting mathematics errors, as the errors often involve some mental process-

ing of just what went wrong during recognition. We think that people may also be more

cognizant of errors in writing than in shapes or other symbols, as we deal with letters and

words on a daily basis. In that respect, mathematics handwriting recognition represents the

extreme end of sketch and handwriting recognition, being both familiar and complex.

Section 7.2 Future Work

Although we have been able to successfully use the WOZ Recognizer to explore user per-

ceptions of sketch recognition, there still remains work to do to improve the software. It

supports simulation of copying tasks, where the user is writing sketches that are displayed

in front of them. In order to support a thinking task, where the wizard would not know

160

the sketches the user writes beforehand, we would like to develop the WOZ Recognizer

to be able to generate realistic WOZ Recognizer’s sketches on a piece-by-piece basis. As

the user writes, the wizard would input the sketch into the system, which would generate

recognition errors that persist as more symbols are added. Also, we are interested in ap-

plying graph layout algorithms to graph-based diagrams to support non-copying tasks. We

plan to include a mechanism for wizard-defined error grammars in the future. We are also

exploring the possibility of expanding the WOZ Recognizer to support other domains and

areas besides mathematics and diagram-based diagrams. One avenue for future works is

expanding the graph backend to construct diagrams and sketches that do not have explicit

edges. One aspect of probabilistic errors that we have not implemented in the WOZ Rec-

ognizer is that some symbols are more likely to generate errors than others. In the WOZ

Recognizer, all symbols in the error alphabet are equally like to generate symbol errors.

Currently, should a user draw something unexpected (like a doodle), the wizard has no

way to respond with anything but the pre-determined output. We are considering giving

the wizard an interface for choosing their own output so that something can be sent in such

circumstances.

We have considered expanding the WOZ Recognizer to other types of input, like ges-

tures. We could take a simplified approach to recognition with gestures, since multiple

gestures do not typically have spatial relationships between them, and only focus on the

error alphabet part of simulating recognition errors. Perhaps multi-touch gestures would

161

provide additional complexities to simulate.

Previous work [45], has examined the viability of touch-based tablets for sketch recog-

nition. We wish to take this further and examine whether, for instance, users are more

tolerant of recognition errors when using a touch-based device, rather than a stylus-based

device.

Based on feedback from our case study evaluating the WOZ Recognizer, we plan to

make several changes to the WOZ Recognizer. First, the user interface for mathematics-

based sketches places the controls for accuracy (and the widgets that display the per-sketch

and completed sketch accuracies) and the controls for streaming recognition on separate

tabs. We will consolidate the user interface to place the accuracy controls where they will

always be usable without changing tabs. Second, we plan to introduce a mechanic where

the system knows how many sketches are in a set and can determine the total number of

errors allowable for the set. This will help the wizard to monitor and control accuracy

and prevent early sketches from having too many recognition errors. Third, we plan to

improve the notifications in the WOZ Recognizer to help the wizard to monitor recognition

accuracy at a glance. Fourth, we plan to move the various aspects of the UI so that the

wizard does not have to change their focus as much, including moving the typeset version

of the WOZ Recognizer’s sketch under the user’s ink and swapping the tree view locations

of the Participant’s sketch and the WOZ Recognizer’s sketch. Fifth, we plan to improve the

area that displays the user’s ink so that the wizard does not have to manually scroll to see

162

if the user wrote off the screen. Sixth, we would like to improve streaming simulation by

skipping invisible symbols (like implied multiplication) so that the wizard has an easier and

quicker time selecting the correct piece of the sketch. Seventh, with regard to diagrams,

we plan to improve the mechanisms for selecting symbols in the sketch since it can be hard

to select small, thin lines using the mouse. Finally, we plan to implement some changes

to improve the wizard’s ability to tell when strokes have been erased and rewritten, and to

improve their ability to identify what parts of the sketch have been sent during streaming

recognition.

In addition to the structure domains we currently support, we think that gestures, in

particular multi-touch gestures would be a good fit for a Wizard of Oz toolkit like the

WOZ Recognizer. Multi-touch gestures present their own interesting challenges in terms

of complexity; multiple strokes occur simultaneously and multiple gestures may be occur-

ring at once. While gestures and sketch recognition can use batch recognition, and sketch

recognition may occur in a streaming manner, processing multi-touch input can be contin-

uous, requiring constant processing, classification, and feedback. By providing a Wizard

of Oz system for multi-touch gesture recognition, we can better explore the limitations and

preferences in gestural interfaces.

In Chapter 5, participants engaged in a copying task, which is not the most common

mathematics task, but still an important one. A thinking task where the participants are

163

doing something with the mathematics is an important area that we need to explore, espe-

cially in intelligent tutoring applications; people’s preferences may change when the task

changes. One way in which we might simulate a thinking task is by combining a copying

task and a distraction task.

For our study in Chapter 6, we tried to keep position and symbol accuracy in the same

range for a group of equations. We want to explore how users react to low accuracy of one

type and not the other; intuitively, we think that users will be more bothered by position

errors than by symbol errors and we wish to see if our hypothesis proves true. Relatedly,

we think that some categories errors may cause greater amounts of frustration and a greater

perception of errors than others. Thus, we want to be able to perform an experiment on

how a category of error affects accuracy tolerance (for instance, capitalization errors). An-

other area of interest is exploring how participants respond to an application that has very

low interest to them; we think that they might have significantly decreased tolerance for

an application that they find uninteresting and useless. Finally, we want to see whether

participants’ feelings about the applications changed as they used them over the course of

the experiment.

With regards to recognition feedback, we wonder how assembly-line type tasks will

work with sketch recognition. From our work with recognition feedback, it seems as though

users aren’t comfortable with writing everything and then going back for an error correction

phase. Do we need to take task breaks so often that such an assembly-line style of input is

164

unsuitable?

165

CHAPTER 8: CONCLUSION

In this dissertation, we first presented our work with pen-based logic gate diagram inter-

faces, which led to the creation of our Wizard of Oz system for studying user perceptions of

sketch-based interfaces. Next, we presented the WOZ Recognizer, a Wizard of Oz system

for simulating sketch recognition and an evaluative user study of the system. Through two

user studies, we have explored user perceptions of sketch recognition. While we have ini-

tially explored mathematics-based sketching, we plan to expand into other types of sketches

in our future work. In our first study, we examined whether there is a link between recog-

nition mode, recognition accuracy, and number of sketches. We found that users preferred

real-time recognition for a number of situations, but had no clear preference for others. In

our second study, we examined whether there is a link between recognition accuracy and

application; we posited that users would be more tolerant of recognition mistakes when

they used a more interesting or useful mathematical sketching application. Our results

show that users felt they were more tolerant for the applications they liked the most. Fi-

nally, we presented a discussion of our findings while working with the WOZ Recognizers

and ideas for future research into user perceptions of sketch recognition systems. Our goal

166

in creating the WOZ Recognizer was to develop a tool that would facilitate research into

sketch recognition systems, where recognition parameters are controlled and the research is

methodical. We believe the WOZ Recognizer and the research we performed provide valu-

able contributions to our knowledge of sketch systems and provide an avenue for future

research.

167

APPENDIX A: MATHEMATICS EXPRESSIONS

168

[t!]xα =
√

β +137.2 (A.1)

Pb(OH)4 +2H2SO4→ Pb(SO4)2 +2H2O (A.2)

2x
x2−1

=
1

x−1
+

1
x+1

(A.3)

Fe+2H+→ H2 +Fe+2 (A.4)

y = 4
√

7+
x
2

(A.5)

y3 +3py+q = 0 (A.6)

a4 +b4 = (a2 +
√

2ab+b2)(a2−
√

2ab+b2) (A.7)

S8 +24F2→ 8SF6 (A.8)

d
dx

logb x =
1

x lnb
(A.9)

2Na+Cl2 = 2NaCl (A.10)

d
dx

secx =
cos(x)0−1(−sin(x))

(cos(x))2 (A.11)∫ 4

2
y2− x2 dx (A.12)

v′(t) =−ω
2Acos(ωt) (A.13)

(A.14)

169

[t]!TiO2 +2Cl2 +C→ TiCl4 +CO2 (A.15)∫
(cos(θ))2 dθ =

1
2

θ +
1
2

sin(θ)cos(θ)
∂y
∂x

= mn2√p (A.16)∫
−3e3x+12 dθ =−e3x+12 +C (A.17)

g′(x) =
4x−2
x2 +1

(A.18)

cos
(

a
2

)
=

√
s(s−a)

bc
(A.19)

d
dx

cos(x) =−sin(x) (A.20)

(NH4)2PtCl6 = N2 +NH3 +HCl+Pt (A.21)∫
e−x dx =−e−x (A.22)

AgNO3 +H2SO4→ Ag2SO4 +HNO3 (A.23)

C2H5OH+3O2 = 2CO2 +3H2O (A.24)

P4(s)+6Cl2(g)→ 4PCl2(l) (A.25)

m5 +mp +md−m5 +md +mg (A.26)∫ eax

b+ ceax
dx =

1
ac

log(b+ ceax) (A.27)

tan(3a) =
−(tan(a))3 +3tan(a)
−3(tan(a))2 +1

(A.28)

C3H8 +5O2→ 4H2O+3CO2 (A.29)

y =
√

x3 +9x (A.30)

170

APPENDIX B: DIAGRAMS

171

Figure B.1

Figure B.2

Figure B.3

172

Figure B.4

Figure B.5

Figure B.6

173

Figure B.7

Figure B.8

Figure B.9

174

Figure B.10

Figure B.11

Figure B.12

175

APPENDIX C: PRE-QUESTIONNAIRE

176

1. What is your age?

2. What is your class rank (freshman, sophomore, etc.)?

3. What is your major?

4. What is your gender?

5. What hand do you write with?

6. Rate your experience with mathematical handwriting recognition software (1 through

7).

7. Rate your experience with sketch recognition software (1 through 7).

8. Rate your interest in sketch recognition (1 through 7).

177

APPENDIX D: POST-TASK QUESTIONNAIRE

178

1. I found it easy to recognize a sketch (1 through 7).

2. I found it easy to remove an error from the WOZ Recognizer’s sketch.

3. I found it easy to watch the users writing.

4. I was distracted by the users writing.

5. I found it easy to set the recognition accuracy.

6. I found it easy to perform batch recognition.

7. I found it easy to perform streaming recognition.

8. I found it challenging to keep up with the users writing with streaming recognition.

9. I found it difficult keeping track of recognition accuracy.

10. I was able to quickly generate a WOZ Recognizer’s sketch that matched the users

writing.

11. I found the WOZ Recognizer’s sketches to be realistic.

12. I was able to quickly adapt to changes in the users handwriting.

13. I was able to easily tell what I was sending during streaming recognition.

14. I found it difficult to find recognition errors to correct them.

179

APPENDIX E: POST-STUDY QUESTIONNAIRE

180

1. Overall Reaction to the WOZ Recognizer (1 through 7)

(a) Terrible through Wonderful

(b) Difficult through Easy

(c) Frustrating through Satisfying

1. Mathematics (overall) (1, Hard through 7, Easy)

2. Recognizing Sketches

3. Batch Recognition

4. Streaming Recognition

5. Selecting part of sketch to send

6. Identifying Recognition Errors

7. Removing Recognition Errors

1. Diagrams (overall) (1, Hard through 7, Easy)

2. Recognizing Sketches

3. Batch Recognition

4. Streaming Recognition

5. Selecting part of sketch to send

181

6. Identifying Recognition Errors

7. Removing Recognition Errors

1. Using the WOZ Recognizer would make it easy to perform studies on mathematical

sketch recognition (1, Strongly Disagree through 7, Strongly Agree).

2. Using the WOZ Recognizer would make it easy to perform studies on sketch recog-

nition.

1. List the most positive aspects of the user interface.

2. List the most negative aspects of the user interface.

1. Overall, please rate the WOZ Recognizers ease of use (1, Hard through 7, Easy).

2. Is there anything you would like to see the WOZ Recognizer do that it currently does

not support?

182

LIST OF REFERENCES

[1] Johnny Accot and Shumin Zhai. Beyond fitts’ law: Models for trajectory-based hci

tasks. In Proceedings of the ACM SIGCHI Conference on Human Factors in Comput-

ing Systems, CHI ’97, pages 295–302, New York, NY, USA, 1997. ACM.

[2] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Techniques,

and Tools. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1986.

[3] Christine Alvarado and Randall Davis. Sketchread: a multi-domain sketch recogni-

tion engine. In Proceedings of the 17th annual ACM symposium on User interface

software and technology, UIST ’04, pages 23–32, New York, NY, USA, 2004. ACM.

[4] Lisa Anthony. Developing Handwriting-based Intelligent Tutors to Enhance Mathe-

matics Learning. PhD thesis, Carnegie Mellon University, Pittsburgh, Pennsylvania,

2008.

[5] Lisa Anthony, Jie Yang, and Kenneth R. Koedinger. Benefits of handwritten input for

students learning algebra equation solving. In Proceedings of the 2007 conference

on Artificial Intelligence in Education: Building Technology Rich Learning Contexts

183

That Work, pages 521–523, Amsterdam, The Netherlands, The Netherlands, 2007.

IOS Press.

[6] Georg Apitz and François Guimbretière. Crossy: A crossing-based drawing applica-

tion. In Proceedings of the 17th Annual ACM Symposium on User Interface Software

and Technology, UIST ’04, pages 3–12, New York, NY, USA, 2004. ACM.

[7] Olle Bälter, Olov Engwall, Anne-Marie Öster, and Hedvig Kjellström. Wizard-of-oz

test of artur: a computer-based speech training system with articulation correction.

In Proceedings of the 7th international ACM SIGACCESS conference on Computers

and accessibility, Assets ’05, pages 36–43, New York, NY, USA, 2005. ACM.

[8] Christoph Benzmüller, Helmut Horacek, Ivana Kruijff-Korbayová, Henri Lesourd,

Marvin Schiller, and Magdalena Wolska. Diawoz-ii: a tool for wizard-of-oz experi-

ments in mathematics. In Proceedings of the 29th annual German conference on Arti-

ficial intelligence, KI’06, pages 159–173, Berlin, Heidelberg, 2007. Springer-Verlag.

[9] Jared N. Bott, Daniel Gabriele, and Joseph J. LaViola, Jr. Now or later: An initial

exploration into user perception of mathematical expression recognition feedback.

In Proceedings of the 8th Eurographics Symposium on Sketch-Based Interfaces and

Modeling, SBIM ’11, pages 125–132. ACM, August 2011.

[10] Jared N. Bott and Joseph J. Laviola, Jr. The woz math recognizer: A mathematics

handwriting recognition wizard of oz tool. Technical Report CS-TR-11-03, Univer-

sity of Central Florida, 2011.

184

[11] Sarah Buchanan, Brandon Ochs, and Joseph J. LaViola Jr. Cstutor: a pen-based tutor

for data structure visualization. In Proceedings of the 43rd ACM technical symposium

on Computer Science Education, SIGCSE ’12, pages 565–570, New York, NY, USA,

2012. ACM.

[12] Bill Buxton. Sketching User Experiences: Getting the Design Right and the Right

Design. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2007.

[13] Kam-Fai Chan and Dit-Yan Yeung. Error detection, error correction and perfor-

mance evaluation in on-line mathematical expression recognition. Pattern Recog-

nition, 34(8):1671 – 1684, 2001.

[14] Salman Cheema and Joseph J. LaViola, Jr. Applying mathematical sketching to

sketch-based physics tutoring software. In Proceedings of the 10th international con-

ference on Smart graphics, SG’10, pages 13–24, Berlin, Heidelberg, 2010. Springer-

Verlag.

[15] W. J. Conover. Practical Nonparametric Statistics. John Wiley & Sons, December

1998.

[16] G. Costagliola, V. Deufemia, and M. Risi. Sketch grammars: a formalism for de-

scribing and recognizing diagrammatic sketch languages. In Document Analysis and

Recognition, 2005. Proceedings. Eighth International Conference on, pages 1226 –

1230 Vol. 2, aug.-1 sept. 2005.

185

[17] Richard C. Davis, T. Scott Saponas, Michael Shilman, and James A. Landay. Sketch-

wizard: Wizard of oz prototyping of pen-based user interfaces. In Proceedings of the

20th annual ACM symposium on User interface software and technology, UIST ’07,

pages 119–128, New York, NY, USA, 2007. ACM.

[18] Martin Field, Sam Gordon, Eric Peterson, Raquel Robinson, Thomas Stahovich, and

Christine Alvarado. The effect of task on classification accuracy: using gesture recog-

nition techniques in free-sketch recognition. In Proceedings of the 6th Eurographics

Symposium on Sketch-Based Interfaces and Modeling, SBIM ’09, pages 109–116,

New York, NY, USA, 2009. ACM.

[19] Andrew S. Forsberg, Andrew Bragdon, Joseph J. LaViola, Sashi Raghupathy, and

Robert C. Zeleznik. An empirical study in pen-centric user interfaces: Diagramming.

In Proceedings of the Fifth Eurographics Conference on Sketch-Based Interfaces and

Modeling, SBM’08, pages 135–142, Aire-la-Ville, Switzerland, Switzerland, 2008.

Eurographics Association.

[20] Clive Frankish, Richard Hull, and Pam Morgan. Recognition accuracy and user ac-

ceptance of pen interfaces. In Proceedings of the SIGCHI conference on Human

factors in computing systems, CHI ’95, pages 503–510, New York, NY, USA, 1995.

ACM Press/Addison-Wesley Publishing Co.

[21] Li Ge and Falko Kuester. SketchIT: A Sketch-Based Modeling Environment for Struc-

tural Analysis, chapter 104, pages 833–840. American Society of Civil Engineers,

186

2013.

[22] Leslie Gennari, Levent Burak Kara, Thomas F. Stahovich, and Kenji Shimada. Com-

bining geometry and domain knowledge to interpret hand-drawn diagrams. Comput-

ers & Graphics, 29(4):547–562, August 2005.

[23] R. A. Goubran and C. Wood. Building an application framework for speech and pen

input integration in multimodal learning interfaces. In Proceedings of the Acoustics,

Speech, and Signal Processing, 1996. on Conference Proceedings., 1996 IEEE Inter-

national Conference - Volume 06, ICASSP ’96, pages 3545–3548, Washington, DC,

USA, 1996. IEEE Computer Society.

[24] A. Grbavec and D. Blostein. Mathematics recognition using graph rewriting. In Pro-

ceedings of the Third International Conference on Document Analysis and Recogni-

tion (Volume 1) - Volume 1, ICDAR ’95, pages 417–, Washington, DC, USA, 1995.

IEEE Computer Society.

[25] William I. Grosky, Robert Zeleznik, Timothy Miller, Andries van Dam, Chuanjun Li,

Dana Tenneson, Christopher Maloney, and Joseph J. LaViola. Applications and issues

in pen-centric computing. IEEE MultiMedia, 15(4):14–21, October 2008.

[26] Tracy Hammond and Randall Davis. Ladder, a sketching language for user interface

developers. Computers & Graphics, 29(4):518 – 532, 2005.

[27] Sture Holm. A simple sequentially rejective multiple test procedure. Scandinavian

Journal of Statistics, 6(2):pp. 65–70, 1979.

187

[28] Christopher D. Hundhausen, Anzor Balkar, Mohamed Nuur, and Stephen Trent. Woz

pro: a pen-based low fidelity prototyping environment to support wizard of oz studies.

In CHI ’07 Extended Abstracts on Human Factors in Computing Systems, CHI EA

’07, pages 2453–2458, New York, NY, USA, 2007. ACM.

[29] Joaquim Jorge and Faramarz Samavati. Sketch-based Interfaces and Modeling.

Springer Publishing Company, Incorporated, 1st edition, 2010.

[30] Bo Kang and Joseph LaViola. Logicpad: A pen-based application for visualization

and verification of boolean algebra. In Proceedings of the 2012 ACM International

Conference on Intelligent User Interfaces, IUI ’12, pages 265–268, New York, NY,

USA, 2012. ACM.

[31] Kourtney Kebodeaux, Martin Field, and Tracy Hammond. Defining precise measure-

ments with sketched annotations. In Proceedings of the Eighth Eurographics Sympo-

sium on Sketch-Based Interfaces and Modeling, SBIM ’11, pages 79–86, New York,

NY, USA, 2011. ACM.

[32] Scott R. Klemmer, Anoop K. Sinha, Jack Chen, James A. Landay, Nadeem

Aboobaker, and Annie Wang. Suede: a wizard of oz prototyping tool for speech

user interfaces. In Proceedings of the 13th annual ACM symposium on User interface

software and technology, UIST ’00, pages 1–10, New York, NY, USA, 2000. ACM.

[33] S. Kollmansberger. Logic gate simulator. Computer program, June 2011.

188

[34] Gordon Kurtenbach and William Buxton. User learning and performance with mark-

ing menus. In Proceedings of the SIGCHI Conference on Human Factors in Comput-

ing Systems, CHI ’94, pages 258–264, New York, NY, USA, 1994. ACM.

[35] George Labahn, Edward Lank, Scott MacLean, Mirette Marzouk, and David Tausky.

Mathbrush: A system for doing math on pen-based devices. In Proceedings of the

2008 The Eighth IAPR International Workshop on Document Analysis Systems, pages

599–606, Washington, DC, USA, 2008. IEEE Computer Society.

[36] Mary LaLomia. User acceptance of handwritten recognition accuracy. In Conference

companion on Human factors in computing systems, CHI ’94, pages 107–108, New

York, NY, USA, 1994. ACM.

[37] Joseph J. LaViola, Jr. An initial evaluation of mathpad2: A tool for creating dynamic

mathematical illustrations. Computers & Graphics, 31:540–553, August 2007.

[38] Joseph J. LaViola, Jr., Anamary Leal, Timothy S. Miller, and Robert C. Zeleznik.

Evaluation of techniques for visualizing mathematical expression recognition results.

In Proceedings of graphics interface 2008, GI ’08, pages 131–138, Toronto, Ont.,

Canada, 2008. Canadian Information Processing Society.

[39] Joseph J. LaViola, Jr. and Robert C. Zeleznik. Mathpad2: a system for the creation

and exploration of mathematical sketches. In SIGGRAPH ’04: ACM SIGGRAPH

2004 Papers, pages 432–440, New York, NY, USA, 2004. ACM.

189

[40] Joseph J. LaViola Jr. and Robert C. Zeleznik. A practical approach for writer-

dependent symbol recognition using a writer-independent symbol recognizer. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 29(11):1917–1926,

November 2007.

[41] WeeSan Lee, Ruwanee de Silva, Eric J. Peterson, Robert C. Calfee, and Thomas F.

Stahovich. Newton’s pen: A pen-based tutoring system for statics. Computers &

Graphics, 32(5):511 – 524, 2008.

[42] V I Levenshtein. Binary codes capable of correcting deletions, insertions, and rever-

sals. Soviet Physics Doklady, 10(8):707–710, 1966.

[43] James Lin, Mark W. Newman, Jason I. Hong, and James A. Landay. Denim: Finding

a tighter fit between tools and practice for web site design. In Proceedings of the

SIGCHI Conference on Human Factors in Computing Systems, CHI ’00, pages 510–

517, New York, NY, USA, 2000. ACM.

[44] I. Scott MacKenzie, Abigail Sellen, and William A. S. Buxton. A comparison of

input devices in element pointing and dragging tasks. In Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems, CHI ’91, pages 161–166, New

York, NY, USA, 1991. ACM.

[45] S. MacLean, D. Tausky, G. Labahn, E. Lank, and M. Marzouk. Is the ipad useful

for sketch input?: a comparison with the tablet pc. In Proceedings of the Eighth

190

Eurographics Symposium on Sketch-Based Interfaces and Modeling, SBIM ’11, pages

7–14, New York, NY, USA, 2011. ACM.

[46] Jennifer Mankoff, Scott E. Hudson, and Gregory D. Abowd. Providing integrated

toolkit-level support for ambiguity in recognition-based interfaces. In Proceedings

of the SIGCHI conference on Human factors in computing systems, CHI ’00, pages

368–375, New York, NY, USA, 2000. ACM.

[47] Morris Mano and Charles Kime. Logic and computer design fundamentals. Prentice

Hall, Inc., Upper Saddle River, New Jersey, USA, 1997.

[48] Microsoft. Math input panel. Computer program, 2009.

[49] M. Negulescu, J. Ruiz, and E. Lank. Exploring usability and learnability of mode in-

ferencing in pen/tablet interfaces. In Proceedings of the Seventh Sketch-Based Inter-

faces and Modeling Symposium, SBIM ’10, pages 87–94, Aire-la-Ville, Switzerland,

Switzerland, 2010. Eurographics Association.

[50] Fathallah Nouboud and Réjean Plamondon. Document image analysis. chapter On-

line recognition of handprinted characters: survey and beta tests, pages 342–355.

IEEE Computer Society Press, Los Alamitos, CA, USA, 1995.

[51] Sharon Oviatt, Colin Swindells, and Alex Arthur. Implicit user-adaptive system en-

gagement in speech and pen interfaces. In Proceeding of the twenty-sixth annual

SIGCHI conference on Human factors in computing systems, CHI ’08, pages 969–

978, New York, NY, USA, 2008. ACM.

191

[52] Florian Perteneder, Martin Bresler, Eva-Maria Grossauer, Joanne Leong, and Michael

Haller. cluster: Smart clustering of free-hand sketches on large interactive surfaces. In

Proceedings of the 28th Annual ACM Symposium on User Interface Software &

Technology, UIST ’15, pages 37–46, New York, NY, USA, 2015. ACM.

[53] Janet C. Read, Stuart MacFarlane, and Chris Casey. ’good enough for what?’: accep-

tance of handwriting recognition errors by child users. In Proceedings of the 2003

conference on Interaction design and children, IDC ’03, pages 155–155, New York,

NY, USA, 2003. ACM.

[54] Peter Reid, Fred Hallett-Hook, Beryl Plimmer, and Helen Purchase. Applying layout

algorithms to hand-drawn graphs. In Proceedings of the 19th Australasian conference

on Computer-Human Interaction: Entertaining User Interfaces, OZCHI ’07, pages

203–206, New York, NY, USA, 2007. ACM.

[55] Yi Ren, Yang Li, and Edward Lank. Inkanchor: Enhancing informal ink-based note

taking on touchscreen mobile phones. In Proceedings of the SIGCHI Conference on

Human Factors in Computing Systems, CHI ’14, pages 1123–1132, New York, NY,

USA, 2014. ACM.

[56] Vinı́cius C. V. B. Segura, Simone D. J. Barbosa, and Fabiana Pedreira Simões. Uiskei:

a sketch-based prototyping tool for defining and evaluating user interface behavior. In

Proceedings of the International Working Conference on Advanced Visual Interfaces,

AVI ’12, pages 18–25, New York, NY, USA, 2012. ACM.

192

[57] M. Shilman, H. Pasula, and S. Russel R. Newton. Statistical visual language models

for ink parsing. In Proceedings of the AAAI Spring Symposium on Sketch Understand-

ing, pages 126–32, 2002.

[58] Steve Smithies, Kevin Novins, and James Arvo. A handwriting-based equation editor.

In Proceedings of the 1999 conference on Graphics interface ’99, pages 84–91, San

Francisco, CA, USA, 1999. Morgan Kaufmann Publishers Inc.

[59] Ryan Stedman, Michael Terry, and Edward Lank. Aiding human discovery of hand-

writing recognition errors. In Proceedings of the 15th ACM on International Con-

ference on Multimodal Interaction, ICMI ’13, pages 295–302, New York, NY, USA,

2013. ACM.

[60] Paul Taele and Tracy Hammond. The Impact of Pen and Touch Technology on

Education, chapter Enhancing Instruction of Written East Asian Languages with

Sketch Recognition-Based “Intelligent Language Workbook” Interfaces, pages 119–

126. Springer International Publishing, Cham, 2015.

[61] Eugene M. Taranta and Joseph J. LaViola, Jr. Math boxes: A pen-based user interface

for writing difficult mathematical expressions. In Proceedings of the 20th Interna-

tional Conference on Intelligent User Interfaces, IUI ’15, pages 87–96, New York,

NY, USA, 2015. ACM.

[62] Stephanie Valentine, Francisco Vides, George Lucchese, David Turner, Honghoe

Kim, Wenzhe Li, Julie Linsey, and Tracy Hammond. Mechanix: A sketch-based

193

tutoring system for statics courses. In The Twenty-Fourth Conference on Innovative

Applications of Artificial Intelligence, 2012.

[63] Radu-Daniel Vatavu, Daniel Vogel, Gry Casiez, and Laurent Grisoni. Estimat-

ing the perceived difficulty of pen gestures. In Pedro Campos, Nicholas Gra-

ham, Joaquim Jorge, Nuno Nunes, Philippe Palanque, and Marco Winckler, editors,

Human-Computer Interaction INTERACT 2011, volume 6947 of Lecture Notes in

Computer Science, pages 89–106. Springer Berlin Heidelberg, 2011.

[64] Paul Wais, Aaron Wolin, and Christine Alvarado. Designing a sketch recognition

front-end: user perception of interface elements. In Proceedings of the 4th Euro-

graphics workshop on Sketch-based interfaces and modeling, SBIM ’07, pages 99–

106, New York, NY, USA, 2007. ACM.

[65] Jagoda Walny, Bongshin Lee, Paul Johns, Nathalie Henry Riche, and Sheelagh

Carpendale. Understanding pen and touch interaction for data exploration on in-

teractive whiteboards. IEEE Transactions on Visualization and Computer Graphics,

18(12):2779–2788, December 2012.

[66] Jacob O. Wobbrock, Andrew D. Wilson, and Yang Li. Gestures without libraries,

toolkits or training: A $1 recognizer for user interface prototypes. In Proceedings of

the 20th Annual ACM Symposium on User Interface Software and Technology, UIST

’07, pages 159–168, New York, NY, USA, 2007. ACM.

194

[67] Jie Wu, Changhu Wang, Liqing Zhang, and Yong Rui. Smartvisio: Interactive sketch

recognition with natural correction and editing. In Proceedings of the 22nd ACM

International Conference on Multimedia, MM ’14, pages 735–736, New York, NY,

USA, 2014. ACM.

[68] Shane W Zamora and Eyrún A Eyjólfsdóttir. Circuitboard: Sketch-based circuit de-

sign and analysis. In IUI Workshop on Sketch Recognition, 2009.

[69] Robert Zeleznik, Timothy Miller, Chuanjun Li, and Joseph J. Laviola, Jr. Mathpaper:

Mathematical sketching with fluid support for interactive computation. In SG ’08:

Proceedings of the 9th international symposium on Smart Graphics, pages 20–32,

Berlin, Heidelberg, 2008. Springer-Verlag.

195

