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ABSTRACT 

The Java Modeling Language (JML) is a behavioral interface specification language 

designed for specifying Java classes and interfaces. OpenJML is a tool for processing JML 

specifications of Java programs. To facilitate viewing of these specifications in a user-friendly 

manner, a tool JMLdoc was created. The JMLdoc tool adds JML specifications to the usual 

Javadoc documentation. JMLdoc is an enhancement of Javadoc that adds to the Javadoc 

documentation the JML specifications that are present in the source code. The JMLdoc tool is a 

drop-in replacement for Javadoc, with additional functionality and additional options. The current 

design of JMLdoc uses the standard Javadoc’s doclet. The current design lacks the provision for 

doclet extensions, unlike Javadoc. This thesis proposes a new design which is more aligned with 

the design of Javadoc and its provision for doclet extensions by implementing a JMLdoclet: a new 

doclet for OpenJML with support for JML elements. The new design makes JMLdoc independent 

of Javadoc’s internals. This way maintenance is reduced as Javadoc evolves. The new design also 

combines specifications from inheritance and refinements and presents the complete JML 

specification to the user. This new doclet based design will be more maintainable and easier to 

extend. 
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CHAPTER ONE: INTRODUCTION 

The Java Modeling Language (JML) is a behavioral interface specification language 

(BISL) [11] which was designed in order to specify Java modules. It is based on the Design by 

Contracts (DBC) approach proposed by Bertrand Meyer and also based on the model-based 

specification approach of the Larch family of interface specification languages [3].  

Introduction 

JML specifications are written for Java compilation units containing classes and interfaces. 

The behavioral features of classes and interfaces can be specified using JML specifications. These 

classes and interfaces will be referred as Java modules. The behavioral features of Java modules 

are bidirectional to the client and module. JML specifications can be designed as annotations as 

well as non-annotations. The specifications are like contracts between the application and the client 

(end-user).  

Java classes contain elements which can represent an object’s state and define the 

interaction of the object with outside world. These elements can be fields, methods or constituents 

of nested classes or interface declarations. The Queue interface shown in Figure 1 has JML 

specifications. C-language style comments, beginning with /*@, or C++ style comments 

immediately followed by at-sign, //@, are JML annotations. These annotations are just left out as 

comments when the Java Compiler starts the process compilation, where as in JML the text 

following the //@ marker and the text between the /*@ and @*/ annotation markers is meaningful 

to the JML compiler. 
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A model field such as the Queue in Figure 1, acts as an abstraction and requires no 

implementation. Model fields are only used for specification purposes; they do not make any sense 

to the Java compiler. A model field’s value is derived from the concrete fields it abstracts from. In 

Figure 1 model variable theQueue is declared using the keyword instance to be treated as a 

Java instance field. The keyword instance is used to indicate that each instance of a class that 

implements the Stack interface has its own copy of the variable theQueue. The implementing 

classes of Queue interface or other interfaces which inherit from Queue interface will have these 

model instance fields inherited in the specifications. JMLObjectSequence is a type of 

JMLCollection, and it is provided in the org.jmlspecs.models package. The Queue in Figure 1 

has a type of JMLObjectSequence. To specify the initial value of the a model field, the 

initially clause is used, which is followed by the corresponding model field. The specifications 

also has another model instance field declared called size. Other clauses declared after the 

declaration of field size are some of the features presented in JML which provide a mechanism to 

relate model fields with other concrete fields of objects. The depends clause indicates the size 

can change whenever theQueue changes i.e. size depends on theQueue. The represents 

clause indicates the relation between size and theQueue. Next an invariant condition is specified 

using the invariant clause. Invariants are used to indicate what must be true in each visible 

state. The invariant clause for the Queue interface indicates that theQueue should be non-null 

before and after any method invocations on a Queue type.  

Lines 16-24 specify the behavioral specifications of the method dequeue. The keyword 

public normal_behavior is used for describing the normal behavior of a method. It implicitly 

states that the specification is intended for the clients and when the preconditions are satisfied it 
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must return in a normal way without throwing any exceptions. These specifications implicitly use 

a false signals clause. The requires clause specifies the precondition, and the modifiable 

clauses indicates which data can be modified by the method and the ensures clause indicates the 

post condition. According to the contract requirement is the DBC design pattern, the caller i.e. 

client is required to satisfy the preconditions and the developer is required to make the post 

conditions hold when the preconditions are met. Any additional behavior of a method can be 

specified using the keyword also. Any exceptional behavior of a method can be described using 

the keyword exceptional_behavior. It is used for indicating any error conditions at which the 

methods should throw an exception using an explicit signals clause. 

OpenJML is a preprocessor tool for JML specifications of Java programs. OpenJML is 

used for parsing and type-checking the specifications in Java programs. It is also used for statically 

(Compile-Time) or dynamically (Run-Time) checking the validity of specifications. OpenJML is 

based on the OpenJDK (the open source Java compiler) and makes use of specifications in a 

program written in JML. OpenJML does not handle the task of proving theorems and checking 

models by itself. It uses external SMT solvers to handle these tasks. In order to, make SMT solvers 

parse the JML specifications, they need to be first converted into SMT-LIB format. Once they are 

converted into the SMT-LIB format, the JML programs are passed to the backend SMT solvers to 

verify the implied proof problems in the programs. Major SMT solvers such as CVC4, Yices and 

Z3 are supported by OpenJML. The success of the proofs depends on the following factors- 

capability of the SMT solver, the particular logical encoding of the code and specifications, and 

the complexity and style in which the code and specifications are written. 
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Figure 1. Source file Queue.java annotated with JML Specification (adapted from [1] changed 

implementation to Queue and extended) 
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The Need for JMLdoc 

JML specifications for a Java module can be refined using the JML specifications for the 

same module. The specifications shown in Figure 1 could actually be divided into two parts. Figure 

1 shows how the specifications of Figure 1 could be divided into two parts. The exceptional 

behavior specifications can be refined separately as show in Figure 2. JML specifications also 

support inheritance so they can also be inherited from a super class or an interface. As a result of 

the inheritance property of the specifications, it is not possible to obtain the complete specifications 

by just viewing a single file or even specification of a single module. The complete specifications 

can only be obtained by combining both the refined and inherited specifications.  

 

Figure 2. Refined Specifications for file QueueRefine.java 
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It is not very efficient for a user of a Java module to look into the related files for inheritance 

and refinement, to get the complete specification of a specific module. This is highly inefficient in 

a huge application with several specification files.  

A Java module provider might need to make specifications of those modules available to 

the clients. An efficient and convenient distribution medium of thesis specifications is the internet. 

The standard Java Development Kit (JDK) documents and publishes the built-in classes and 

interfaces using Javadoc, which is a tool for generating documentation for Java. Javadoc requires 

documentation to be written in a certain way which will be explained in later chapters. 

JML specifications cannot be interpreted by existing documentation generators like 

Javadoc. Also Javadoc does not provide a mechanism to combine refined specifications with 

inherited specifications. So, a new documentation generation like Javadoc is needed for JML in 

order to parse the specifications. A new documentation generation should be able to work with the 

existing distribution mechanism like internet, so it should be able to work on web browsers. Also, 

the new documentation generator should also be able to perform the tasks of Javadoc 

documentation generator. This was the main motivation for JMLdoc and hence it was invented [2] 

[12]. JMLdoc was introduced with the goal of generating browsable HTML from JML 

specifications keeping in mind the following goals: 

 Produce HTML documents from JML annotations in a source file, which can be viewed 

and be compatible with existing browsers. 

 For the purpose of integrating inherited and refined specifications from different files into 

a complete specification. 

 To aid in referencing and browsing by utilizing hyperlinks 
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 To be able to perform the tasks of Java’s documentation generator, Javadoc, as well.  

Overview of the Current JMLdoc Implementation 

The current implementation of JMLdoc, the JML type checker creates an environment for 

the current file under compilation which can be thought of as a compilation unit. The tool then 

creates a HTML document for each class, interface and inner classes in the compilation unit. The 

information of class is stored in its type attributes. Using these type attributes of inherited members 

of a class or interface, the JML specifications that are inherited are obtained. The current 

specifications of a class are combined with its inherited specifications and then they are converted 

into HTML format. Javadoc style comments are also converted to HTML. The output of the tool 

contains HTML files containing documentation regarding each class or interface in the 

compilation unit used as input. The amount if details in the output is user selectable; by default, 

public and protected class members are documented. 

The current JMLdoc tool is an extension of the OpenJDK source code. The JMLdoc tool 

has to combine functionality from two sources: the OpenJML tool to parse the specifications 

associated with Java program elements and the Javadoc tool to output the desired HTML pages. 

These two tools enter program elements into symbol tables differently (OpenJML uses the 

techniques supplied by the OpenJDK Java compiler). It would require a maintenance-intensive 

merging of the two implementations into a third one to use these tools directly. Instead, the current 

JMLdoc uses the OpenJDK facility of independent, co-existing compilation contexts. The Java 

code is parsed and represented using Javadoc, then parsed and separately represented using 

OpenJML, and then, information from the OpenJML specifications is added into the Javadoc 
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HTML pages as those HTML pages are generated. This approach has a few drawbacks: the code 

is parsed twice, symbol table entries from one compilation context have to be translated into the 

other context and the Javadoc structure does not actually contain JML elements such as model 

fields, methods, and classes.  

Classes used & Extended to Implement the Current JMLdoc 

The Main class that contains the entry points for the JMLdoc tool could, derive from either 

the Main class of OpenJML or the Main class of Javadoc. Since OpenJML requires more tool 

initialization, it was more convenient to derive JMLdoc’s Main from OpenJML’s. Command-line 

options that JMLdoc adds to Javadoc are processed in Main and help information is provided by 

the JmlStart class. 

In order to generate JML information in the HTML output, the current JMLdoc 

implementation extends the Javadoc source code as follows. Javadoc operates by executing a set 

of Writers for various program elements. These have interfaces (e.g. ClassWriter) and specific 

implementations (e.g. ClassWriterImpl). The JMLdoc tool implemented its own set of writers 

(e.g. ClassWriterJml) that extend the corresponding Javadoc writers. Thus the classes 

ClassWriterJml, FieldWriterJml, MethodWriterJml, ConstructorWriterJml, and 

NestedClassWriterJml were created. 

Javadoc instantiates these writers using a writer factory, WriterFactoryImpl, which is 

an implementation of the interface WriterFactory. In order to have the various JML writers 

instantiated at the correct time, JMLdoc has its own implementation of WriterFactory, namely, 

WriterFactoryJml. The WriterFactoryImpl class is not written to be extended, so 
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WriterFactoryJml is a direct implementation of WriterFactory, at the cost of duplicating 

code from WriterFactoryImpl. 

Javadoc instantiates the WriterFactory in a Configuration object. Javadoc's 

implementation of Configuration (an abstract class) is ConfigurationImpl. JMLdoc 

extends ConfigurationImpl as ConfigurationJml in order to instantiate a 

WriterFactoryJml instead of a WriterFactoryImpl. This class also supplies a version string 

giving the date of the build represented by the tool. 

The Configuration object used to generate the WriterFactory is instantiated as a 

singleton object. Consequently, in order that the tool use a ConfigurationJml object instead of 

Javadoc's ConfigurationImpl, the singleton is instantiated and initialized in Main, before other 

initialization code has a chance to create the ConfigurationImpl alternative. In this design, the 

standard Javadoc doclet is still used. 

Overview of Doclets in Java 

Doclets are the programs which are used as input to the Javadoc tool in order to specify the 

content and output produced by the Javadoc tool. These doclets are written in Java programming 

language as well, they are written using the doclet API. The default doclet utilized by Javadoc to 

create API documentation in HTML format, is, the standard doclet provided by Sun. However, 

custom doclets can also be supplied to customize the output of Javadoc as desired. An example of 

a doclet is shown in Figure 3. In lines 4 and 5, all the classes are being collected and are being 

iterated, lines 6-10 iterate over the methods of each class and print them out. The remaining part 
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of the code iterates of the fields of each class and prints them out and also the corresponding tags 

of each fields are printed. 

 

Figure 3. An example of a simple doclet. Source file SimpleDoclet.java 

The code in Figure 3 shows that the Doclet API is contained in the package 

com.sun.javadoc. Since the code is plugging in to the Javadoc tool and not creating a standalone 

application, Javadoc calls the doclet from the method public static Boolean start (RootDoc root).  

The above doclet is run for the following code below shown in Figure 4 
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Figure 4. Code used to demonstrate the SimpleDoclet. Source file: SimpleOrder.java 

The Javadoc tool is now invoked using the SimpleDoclet on SimpleOrder. The output generated 

by the Javadoc tool can be seen below in Figure 5 

 

Figure 5. Output of the Javadoc tool using SimpleDoclet. 
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Once the start method starts executing, all the information parsed by Javadoc is stored 

in RootDoc. The RootDoc has a method classes(), which can be used to iterate over all the parsed 

classes. The classes() method returns an array of type ClassDoc, describing all the parsed classes 

and interfaces. Methods such as fields() and methods() are present in ClassDoc, which return 

arrays of type FieldDoc and MethodDoc respectively. These can be used for describing all the 

parsed methods and fields. A tag() method is present in all the Doc classes, which returns an array 

of type Tag, which can be used for describing both standard and custom tags. The standard tag 

used in this example is @see. To format the output according to a fixed templated, the 

MessageFormat class is used. 

The Problem with the Current Design 

The problem with current design of JMLdoc is that it depends on the standard doclet of 

Javadoc making it very inflexible. It lacks the support for doclet provisions. Figure 6 shows the 

structure of the current JMLdoc implementation. The output of the Javadoc tools is controlled by 

a XML resource file. The standard doclet in Javadoc reads the XML file and calls various builders 

corresponding to the XML elements. These builders thereby call the corresponding writers. The 

current JMLdoc implementation extends these writers in order to add the JML specifications in 

the output files generated by Javadoc. The problem with this approach is that any changes to the 

standard doclet would need to be reflected into the JML writers in order for them to function 

properly. Also changing the doclet would require re-implementing all the JML writers again. 
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Figure 6. The current JMLdoc Implementation Structure 

A JMLdoclet Based Design 

Using Javadoc with custom doclets makes Javadoc really flexible and customizable. 

Doclets can be used to generate any kind of text file output, such as HTML, SGML, XML, RTF, 

and MIF. In this thesis, a doclet based design for JMLdoc in OpenJML is proposed and a 

JMLdoclet is presented [10]. 

This approach is more aligned with the design of Javadoc and its provision for doclet 

extensions, and meaning more minimization of maintenance as Javadoc evolves. This takes 

advantage of the expected and supported extension capability of Javadoc. 

The organization of Javadoc’s HTML output is controlled by a XML resource file. This 

file is parsed and for each XML element in the document a corresponding build method is called 

by reflection. For example, the doclet.xml file specifies that one part of the description of a 

ClassDoc is a ClassHeader. To generate the corresponding HTML, the buildClassHeader 
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method of ClassBuilder is called by reflection. So one means of adding additional information 

into the HTML is to provide a different XML description file. In order to do that, a new doclet 

(JMLdoclet) is created that references the new XML file. This design is a good solution for the 

current drawbacks in the current design as it makes JMLdoc architecturally strong. This design 

would make maintenance of JMLdoc easier as Javadoc evolves to newer versions. Also, if any 

changes are required in the structure of JMLdoc’s HTML documents, then making appropriate 

changes in the JMLdoclet would be enough. Any changes to Java Modeling Language can also be 

easily reflected in JMLdoc by modifying the JMLdoclet correspondingly.  

 

Figure 7. JMLdoclet based JMLdoc Implementation Structure 

Overview of the Thesis 

Chapter Two explains in details about the requirements of a documentation generator. All 

the different functions a documentation generator needs to perform as explained in detail in this 

chapter. Chapter Three discusses the implementation details of the JMLdoclet proposed in this 
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thesis. Related work is discussed in Chapter Four and it is compared with the current proposed 

JMLdoclet. Discussion about future work, alternate designs proposals and contributions are 

presented in Chapter Five. 
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CHAPTER TWO:  

REQUIRMENTS FOR A DOCUMENTATION GENERATOR 

Introduction 

The previous chapter has introduced JML specifications and what it means to combine 

these specifications. A documentation generator for JML should generate browsable specifications 

which can be viewed using a web browser. This chapter discusses the requirements for generating 

browsable specifications. 

Compatibility with Javadoc Style Comments 

Javadoc is a documentation generator for Java. It is the accepted standard for documenting 

API's in java. The documentation tool for JML should also interprets Javadoc style comments, so 

that a provider of a java module can write JML specifications and Javadoc documentation and be 

able to see both at once. 

Cross-Referenced Documentation 

A Java class can contain members that are instances of classes. In order for a user of a Java 

module to browse the specifications in an easy way the documentation should be cross referenced. 

This would allow a user of a class to see the specifications of classes that are referenced by the 

current class with the click of a button. HTML allows cross-referencing through hyperlinks. The 

documentation generator for JML should make use of hyperlinks to create a cross-referenced 

document. 
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Desugaring the Specifications 

The main requirement is to combine the specifications from refinement and inheritance i.e. 

desugaring the specifications [8]. The documentation generator should combine the specifications 

from the separate files in which the refinements and classes are written in to a single HTML 

document. An example of this is shown in Figures 8 and 9. 

 

Figure 8. Class child which inherits from class Parent, Parent inherits from class GrandParent 
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Figure 9. Combined Specifications for class Child in the output of JMLdoc using JMLdoclet. 

User Interface (Output) Design 

The user interface or output design has been modeled on that produced by Javadoc. The 

HTML file for a class has the class hierarchy at the very top of the page. This allows the user to 

see the inheritance tree. 
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The inheritance tree is followed by a series of tables. Each series of tables consists of a 

table showing the members of the current class followed by tables showing the members inherited 

from classes in the inheritance hierarchy. The members in the tables are hyperlinked to provide 

easy access to the full documentation for those members. The tables naming the inner classes and 

interfaces (if any) are displayed first followed by the tables for fields, constructors and finally 

methods. 

The tables are linked to the documentation for each member of the class/interface. The 

documentation for the methods is the most interesting. It consists of the Javadoc style 

documentation followed by the complete JML specification for that method if it exists. Figures 10 

and 11 show a sample HTML file generated from HTML specifications. 

User Options 

The tool is used to generate browsable documentation. This means creating a HTML file 

for each reference type. Sometimes more than one reference type can appear in a single file. The 

tool creates HTML files for each reference type. A reference type has public, private, protected 

and package protected members. A JML specification can also be tagged as public, private, 

protected or package protected. The documentation tool produces documentation for the public 

and protected members by default. It also generates the complete specification for public and 

protected parts of the JML specifications. A provider of a package might want to document the 

private members and private specifications. To allow the user increased flexibility in generating 

documentation various options are provided by the tool. An option is given to the user to allow 

documentation for inherited members (members that are not overridden) to be generated. By 
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default the detailed documentation for these members is not printed. A table below the description 

table in the output indicates which members are inherited from which superclass and/or super 

interfaces. The user can choose to suppress the documentation for the private and protected 

members and specifications. The following gives the options available and the result of using each 

option. 

Table 1. Some of the options available for JMLdoc 

Command-line Option Action 

private This tells JMLdoc to generate 

browsable documentation for the private 

members of a class or interface. 

noprot This option prevents the browsable 

documentation for protected members from 

being generated. 

nopkgprot This option prevents the browsable 

documentation for package protected members 

from being generated. 

Inherited This causes JMLdoc to generate 

browsable documentation. 
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Figure 10. Screenshot of a generated HTML file using the new JMLdoclet Design 
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Figure 11. Screenshot of a JMLdoc generated HTML file showing Method Specifications 
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CHAPTER THREE: 

 IMPLEMENTATION OF THE JMLDOCLET 

Introduction 

This Chapter discusses the key implementation details and the process of implementation 

about the JMLdoclet presented in this thesis. The key change being made to the existing 

implementation of the JMLdoc is that the specifications for all the JML elements are going to be 

generated using Java’s Reflection API. Utilizing Java Reflection, it is conceivable to get data about 

classes, interfaces, fields and methods at runtime, without having information about the names of 

classes, methods, etc. during compile time. It is additionally conceivable to instantiate new objects, 

invoke methods and get/set field values utilizing reflection. Using Java Reflection and the resource 

file doclet.xml used by Javadoc, an alternate implementation of JMLdoc is presented which 

supports doclet provision capability for JMLdoc in OpenJML 

Overview of Javadoc Implementation 

In order to get a better understanding of the implementation of the JMLdoclet, first a brief 

overview of the current implementation of Javadoc’s implementation of the default doclet is 

presented. The JMLdoclet will be presented in a similar mechanism of the Javadoc’s default doclet. 

The default doclet of Javadoc is a HtmlDoclet which is an extension of AbstractDoclet. 

The HtmlDoclet has a Configuration Object in which the WriterFactory is instantiated. 

The WriterFactory instantiates various other writers like ClassWriter, 

PackageSummaryWriter, MethodWriter, etc. as needed. The HtmlDoclet calls 
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generateOtherFiles, generateClassFiles, and generatePackageFiles methods in 

order to generate the documentation files.  

When these above methods are called the process of parsing the doclet.xml file takes place. 

An example of the parsing process in the code is explained in Figure 8 when 

generateClassFiles is called. When the generateClassFiles method is called the 

current element is analyzed and if it is a type of Class, then a BuilderFactory is instantiated 

in the Configuration and using the BuilderFactory a ClassBuilder is instantiated. 

Finally, the build method of the ClassBuilder is called. This is where the XML parsing starts 

and the current XMLNode is analyzed and depending on the text, a corresponding method in the 

ClassBuilder is called by Reflection. The parent abstract class AbstractBuilder handles 

the reflection mechanism and the process for the reflection is explained and shown in Figure 9. 

 

Figure 12. LayoutParser’s parseXML method  

The AbstractBuilder handles the reflection mechanism based on the XMLNode passed 

to it. The invokeMethod shown in Figure 9 takes in three arguments- a string build appended 

with the current XMLNode value, the class objects of the XMLNode and Content and the objects 
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themselves. The invokeMethod then grabs the corresponding method using the string value 

passed into the first argument and then invokes that particular method. An example of this is 

demonstrated in Figure 10, it can also be seen in the figure, how the corresponding child XMLNodes 

are processed for each parent XMLNode using the buildChildren method of 

AbstractBuilder. The buildChildren just iterates through all the children of XMLNode and 

calls build for each of them 

 

Figure 13. AbstractBuilder’s build and buildChildren methods to handle reflection. 

The parsing process begins instantiating a LayoutParser using the Configuration 

object and then LayoutParser’s parseXML method is called, which will be passed a String 

corresponding to the specific root node in the XML file, for example Classdoc is root node for 

all the class files in the XML file. The LayoutParser maintains a HashMap called 

xmlElementsMap. Whenever the       parseXML method is called, the xmlElementsMap is 
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populated with the XMLNodes. The parseXML method uses SAXParser library in order to parse 

the XML, once a node is parsed it will be placed into xmlElementsMap. Once the parseXML 

methods returns the build method of ClassBuilder checks the return value and calls the 

corresponding method by reflection which is demonstrated clearly in Figure 10. An example for 

the case when the XMLNode has the text <Classdoc> is shown in Figure 10 LayoutParser 

extends DefaultHandler and overrides the startElement and endElement methods, in 

which the process on insertion into xmlElementsMap takes place. 

 

Figure 14. Example of ClassBuilder calling the corresponding buildClassDoc method by 

reflection for the XML element <ClassDoc> 
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Approach for the New Design 

The idea for JMLdoclet is to extend the doclet.xml file by adding XML elements 

corresponding to the JML elements and to create a JMLdoclet which extends the 

BuilderFactory and various builders like ClassBuilder, FieldBuilder, etc. by adding 

methods which can be called reflection when a XML element corresponding to a JML element is 

encountered. This is the main idea behind the implementation. 

Extending the Doclet.xml 

The doclet.xml is the resource file which controls the HTML output of Javadoc. Each XML 

element in this resource file will be parsed and corresponding builders and writers will be called 

by reflection. This is how Javadoc’s doclet provision capability was implemented. A similar 

approach will be used to implement JMLdoc’s doclet provision capability. The resource file is 

extended with some JML nodes in order to create the JMLdoclet. The newly added fields contain 

the text JML. This resource file will be passed as the DEFAULT_BUILDER_XML in the 

Configuration object. In order to swap to a different doclet, replacing this resource with a 

different one would suffice.  

Refer to Appendix A for the extended doclet.xml structure. The XML resource file has 

been converted into JSON format for clear understanding of the structure. This new doclet.xml file 

will be set in ConfigurationJml class as DEFAULT_BUILDER_XML.  
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Creating a JMLdoclet 

A JMLdoclet class is created which extends AbstractDoclet. The JMLdoclet class 

has methods from the standard HtmlDoclet as well as additional methods corresponding to JML 

specifications. The new methods are generateClassSpecifications which internally uses 

other methods in order to instantiate the newly extended builders and writers. This new JMLdoclet 

references the newly created doclet.xml resource file. The same code of generateClassFiles 

has been except that generateClassSpecifications uses a classSpecsBuilder instead 

of a classBuilder.  

Extending the Builders 

The builders extended in the thesis are shown below in Table 2. All the previous builders 

and the BuilderFactory have been extended. The builderXMLPath in the 

ConfigurationJml has been set to the new doclet resource file jmldoclet.xml. A new method 

getBuilderFactory has been added to ConfigurationJml in order to process the new 

extended BuilderFactoryJml. The source code for all the extended builders can be referenced 

from Appendix B. The corresponding writers associated with the builders are also modified. 

Table 2. Original builder classes and corresponding extended JML builder classes 

BuilderFactory BuilderFactoryJml 

ClassBuilder ClassBuilderJml 

ConstructorBuilder ConstructorBuilderJml 

FieldBuilder FieldBuilderJml 

MethodBuilder MethodBuilderJml 

MemeberSummaryBuilder MemberSummaryBuilderJml 

  



29 

 

CHAPTER FOUR: RELATED WORK 

This chapter discusses the related work in the area of documentation generators with and 

without support for doclet extension capabilities. The current proposed design is compared with 

other documentation generators and also possible alternate designs are suggested. The 

documentation generators which are capable of parsing annotations (which are either in the form 

of pusedo-code or decryptions written as comments) and produce a readable output either in 

HTML or other formats are only compared.  

iDoclet from iContract Project 

iContract [6] is a preprocessor for Java. iContract first processes the Java file and produces 

a set of decorated Java files. Once these files are generated, they can be compiled with the standard 

Java Compiler.  

iContract directives in Java code, just like Javadoc directives, reside in the class and 

method comments. This enables iContract to have backwards-compatibility with existing Java 

code. So, without iContract assertions, Java code can always be directly compiled with the Java 

compiler. 

Typically, a program would start in a development phase and transition into a testing phase 

and then transition into a production phase. This process can be made efficient by instrumenting 

the code with iContract assertions in the development phase. This enables detection of newly 

introduced bugs, early on, in the development process itself. In the test environment the bulk of 

the assertions can still be kept enabled, but usually are taken out for performance-critical classes. 

In iContract it possible to select explicitly, the classes that require instrumentation with assertions. 
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The documentation generator used in iContract is Javadoc with the use of a special doclet 

named iDoclet. iDoclet is an extension of Sun's standard doclet from JDK 1.2 that includes 

assertion information in the generated API docs. It supports three new tags: @pre, @post and 

@inv. The iDoclet extends implementations for various writers like ClassWriter, 

PackageWriter, TreeWriter, etc. However, this doclet does not recognize JML specifications 

and cannot combine JML specifications from refinements and inheritance into a complete 

specification. This doclet only works with JDK version 1.2. It fails to work with later versions of 

JDK as the packages this doclet uses have been removed from JDK 1.4 and later. This project is 

seems to be not well maintained.  

DocGen 

DocGen is a Java doclet developed on the basis of the standard doclet. As long as a specific 

format is trailed by the documentation, DocGen can extract and show any contract, even the 

inherited contracts which are documented in a formal comment unit. DocGen is built upon the 

standard doclet of Java, but it cannot parse the JML specifications. So, it fails to combine JML 

specifications from refinements and inheritance into a complete specification. 

XJavadoc from JTest/JContract Tools 

JTest [7], is an automated unit testing tool for Java, which utilizes the Design by Contract 

format specification information present in the classes and automates unit level functionality. 

JContract is a tool which can be used as an add-on for JTest or it can be used as a standalone tool. 
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It checks DBC contracts during runtime and identifies any misuse of a class/component. It can 

also verify system-level functionality. 

Using JContract, functionality testing at the system level using DBC can be done by Java 

programmers. In the wake of utilizing JTest to thoroughly test a class or component at the unit 

level, JContract will instrument and compile the DBC-commented code. In an instrumented 

class/component, JContract automatically tries to identify any contracts which are violated during 

runtime. For the task of identifying any misuse of a class or component, JContract would be 

particularly useful. When used in conjunction with JTest, JContract helps automate functionality 

testing of Java applications, and improves the overall testing of components, such as EJBs.  

The documentation generator used in the JContract project is Javadoc with a specialized 

doclet called XDoclet. The standard Javadoc in Java has been renamed to XJavadoc (Extended 

Javadoc) in this project. XJavadoc replaces the standard doclet provide by Sun, for use with 

Javadoc, by a new doclet called XDoclet. XJavadoc adds support for Design by Contract tags and 

generates API documentation in either HTML or XML format. However, XJavadoc is not 

compatible with JML. It cannot provide documentation for JML elements cannot recognize JML 

specifications from Java programs.  

Literate Programming 

Literate programming [3] is an effort to produce better and easily understandable 

documentation for programs. Just like annotations, the documentations in a literate programming 

style would require the documentation be written along with the source code. This documentation 

can be similarly parsed by literate programming tools into desired output formats like RTF, etc. 
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Literate programming usually requires a typesetting language like TeX for formatting source code. 

Literate programming also supports cross referencing while browsing the documentations. 

Javadoc and JMLdoc also support cross referencing as well. However, Literate Programming tools 

like DOC++, CWEB do not support JML specifications in the source code. Hence, they cannot 

combine the JML specifications from inheritance and refinement. 

Tools Similar to Javadoc 

A popular tool used for producing documentation from annotations in C++ programs is 

Doxygen [4]. Doxygen additionally supports other prevalent programming languages, for 

example, C, Objective-C, C#, PHP, Java, Python, IDL (Corba, Microsoft, and UNO/OpenOffice 

flavors), Fortran, VHDL, Tcl, and D. It can be utilized to either create on-line documentation in 

HTML design and/or offline documentation in TeX format. The tool also supports many other 

formats as well. Some of them are-RTF, hyperlinked PDF, PostScript, UNIX man pages and 

compressed HTML. Since the documentation is extracted directly from the sources, it makes it 

easier to maintain consistency of the documentation with source code. 

Another tool used for automated technical documentation production is Document! X [5]. 

It supports C#, VB.NET, C++, CLI and other .NET language assemblies, databases, Java projects, 

COM components, XSD schemas, type libraries, ASP.NET, JavaScript and Ajax. The tool also 

consists of a Visual comment editor add-ins for Visual Studio along with a authoring and 

documentation build environment. 

Both Doxygen and Document! X, do not recognize JML specifications and cannot combine 

or generate JML specifications like JMLdoc does. 
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Other DBC Implementations for Java 

Other DBC implementations projects for Java include: 

 Contracts for Java (Cofoja) by Google 

 Modern Jass  

 Spring Contracts (Based on Java’s Spring Framework) 

 C4J 

However, all these projects do not support JML elements or JML specifications and hence 

cannot produce documentation for JML specifications. 
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CHAPTER FIVE: DISCUSSIONS 

Alternate Design 

Aspect Oriented Programming (AOP) is a useful technique that enables adding executable 

blocks to the source code without explicitly changing it. AOP can also be used in Design by 

Contract style programming. Property-based crosscutting can be used to characterize more 

complex contract enforcement utilizing AOP. Since AOP provides modularity for tasks like tracing 

and logging, we could use AOP for logging the information of the JML and Java files. One could 

log and trace the information of JML and Java methods by using join points, pointcuts and advices. 

Join point is a point amid the execution of a program, such as the execution of a method or the 

handling of an exception. Advice is a move made by an aspect at a specific join point. Diverse 

sorts of advice include "around," "before" and "after" advice. Pointcut is a predicate that matches 

join points. Advice is connected with a pointcut expression and keeps running at any join point 

coordinated by the pointcut (for instance, the execution of a method with a specific name). 

The documentation generator used in AspectJ is ajdoc. Ajdoc is also similar to Javadoc, it 

can render HTML documentation for pointcuts, advices and inter-type declarations, as well as Java 

constructs that Javadoc renders. Tools like ajdoc can be used to produce the HTML documentation 

in AspectJ. However, doing things dynamically doesn’t help with static documentation of the 

structure of the program. AOP could be used to edit the way the standard Java doclet works to 

modify it for JML, but the problem with this is that Javadoc relies on the code of the standard 

doclet, so, it is hard to maintain. 
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Future Work 

JMLdoclet is by far the best suitable way to modify JMLdoc in order to make its design 

architecturally stronger, making it much easier to maintain as Javadoc or JML evolves. This 

section discusses some ideas to enhance the JMLdoc tool further. The tool currently generates 

documentation only in HTML format as it is works on the basis of Javadoc. New JMLdoclets can 

be developed in order to modify the tool to generate output in a various formats like TeX, XML. 

Also development of a single JMLdoclet with support for multiple output formats would be nice. 

Class diagrams can be created from Javadoc comments in the source files. This would 

provide a better understanding of the structure of the inheritance and refinements of the 

specifications. Also, implementing dynamic views for the specifications would be useful, for 

example the ability to view normal behavioral specification and the ability to view exceptional 

behavioral specifications individually could be useful for better understanding.  
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CHAPTER SIX: CONCLUSIONS 

Contributions 

The primary contribution of this thesis is the provision for pluggable JMLdoclets for 

JMLdoc in OpenJML making it more aligned to the design of Javadoc and its provision for doclets. 

This kind of design makes JMLdoc very flexible and adaptable to different documentation 

requirements and it makes JMLdoc architecturally strong by eliminating the need to rely on 

Javadoc as well OpenJML. It also makes JMLdoc easier to maintain. This implementation still 

supports all the functions available in the previous implementation. 

Conclusion 

Using the JMLdoclet approach makes JMLdoc architecturally strong making it easier to 

adapt to various doclets designs and also more aligned with Javadoc’s provision for doclet 

extension. Keeping JMLdoc aligned Javadoc ensures consistency as Javadoc evolves. JMLdoclet 

is by far the best suitable way to modify JMLdoc. 
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APPENDIX A: IMAGES 
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Figure 15. Extended doclet.xml Part a. 
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Figure 16. Extended doclet.xml Part b. 
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Figure 17. Extended doclet.xml Part c. 
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Figure 18. Extended doclet.xml Part d. 
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Figure 19. Extended doclet.xml Part e. 
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APPENDIX B: SOURCE CODE 
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Figure 20. Source Code BuilderFactoryJml.Java 
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Figure 21. Source Code ClassBuilderJml.Java 
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Figure 22. Changes in Source Code of ConfigurationJml.java 
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Figure 23. Source Code FieldBuilderJml.Java 
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Figure 24. Source Code MethodBuilderJml.java 
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Figure 25. Source Code MemberSummaryBuilderJml.java Part a. 
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Figure 26. Source Code MemberSummaryBuilderJml.java Part b. 
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Figure 27. Source Code ConstructorBuilderJml.java  
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