
University of Central Florida

Electronic Theses and Dissertations Masters Thesis (Open Access)

Design of a JMLdoclet for JMLdoc in OpenJML
2016

Arjun Mitra Reddy Donthala
University of Central Florida

Find similar works at: https://stars.library.ucf.edu/etd

University of Central Florida Libraries http://library.ucf.edu

Part of the Computer Sciences Commons

This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Electronic Theses and
Dissertations by an authorized administrator of STARS. For more information, please contact lee.dotson@ucf.edu.

STARS Citation

Donthala, Arjun Mitra Reddy, "Design of a JMLdoclet for JMLdoc in OpenJML" (2016). Electronic Theses and Dissertations. 5132.
https://stars.library.ucf.edu/etd/5132

https://stars.library.ucf.edu?utm_source=stars.library.ucf.edu%2Fetd%2F5132&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu?utm_source=stars.library.ucf.edu%2Fetd%2F5132&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd?utm_source=stars.library.ucf.edu%2Fetd%2F5132&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd
http://library.ucf.edu
http://network.bepress.com/hgg/discipline/142?utm_source=stars.library.ucf.edu%2Fetd%2F5132&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd/5132?utm_source=stars.library.ucf.edu%2Fetd%2F5132&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:lee.dotson@ucf.edu
https://stars.library.ucf.edu?utm_source=stars.library.ucf.edu%2Fetd%2F5132&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu?utm_source=stars.library.ucf.edu%2Fetd%2F5132&utm_medium=PDF&utm_campaign=PDFCoverPages

DESIGN OF A JMLDOCLET FOR JMLDOC IN OPENJML

by

ARJUN MITRA REDDY DONTHALA

B.S. GITAM University, 2014

A thesis submitted in partial fulfillment of the requirements

for the degree of Master of Science

in the Department of Computer Science

in the College of Engineering and Computer Science

at the University of Central Florida

Orlando, Florida

Summer Term

2016

ii

© 2016 ARJUN MITRA REDDY DONTHALA

iii

ABSTRACT

The Java Modeling Language (JML) is a behavioral interface specification language

designed for specifying Java classes and interfaces. OpenJML is a tool for processing JML

specifications of Java programs. To facilitate viewing of these specifications in a user-friendly

manner, a tool JMLdoc was created. The JMLdoc tool adds JML specifications to the usual

Javadoc documentation. JMLdoc is an enhancement of Javadoc that adds to the Javadoc

documentation the JML specifications that are present in the source code. The JMLdoc tool is a

drop-in replacement for Javadoc, with additional functionality and additional options. The current

design of JMLdoc uses the standard Javadoc’s doclet. The current design lacks the provision for

doclet extensions, unlike Javadoc. This thesis proposes a new design which is more aligned with

the design of Javadoc and its provision for doclet extensions by implementing a JMLdoclet: a new

doclet for OpenJML with support for JML elements. The new design makes JMLdoc independent

of Javadoc’s internals. This way maintenance is reduced as Javadoc evolves. The new design also

combines specifications from inheritance and refinements and presents the complete JML

specification to the user. This new doclet based design will be more maintainable and easier to

extend.

iv

I dedicate this thesis to my parents Dr. Raghunath Reddy and Sridevi. I hope that this

achievement will complete the dream that you had for me for all those many years ago when you

chose to give me the best education you could.

v

ACKNOWLEDGMENTS

I would like to take this opportunity to express my sincere thanks to those who helped me

with my work during the course of my Master’s program. First and foremost, Dr. Gary T. Leavens

for giving me this opportunity to pursue research under him and for his guidance, patience and

support throughout this research and my course of study at University of Central Florida. His words

of support and encouragement have always motivated me. I would also like to thank my committee

members: Dr. Sumit Kumar Jha, for his guidance, patience, support and understanding towards

me and also Dr. Damla Turgut for her guidance and support. I would additionally like to thank Dr.

Mostafa Bassiouni for his guidance, support and his excellent way of teaching, and Dr. Rochelle

Elva for her encouragement to pursue research, for her guidance and support throughout my course

of study. Finally, I would also like to thank my family for showing me support throughout the

Master’s course of study.

vi

TABLE OF CONTENTS

LIST OF FIGURES ... ix

LIST OF TABLES ... xi

LIST OF ACRONYMS .. xii

CHAPTER ONE: INTRODUCTION ... 1

Introduction ... 1

The Need for JMLdoc ... 5

Overview of the Current JMLdoc Implementation ... 7

Classes used & Extended to Implement the Current JMLdoc ... 8

Overview of Doclets in Java ... 9

The Problem with the Current Design ... 12

A JMLdoclet Based Design ... 13

Overview of the Thesis ... 14

CHAPTER TWO: REQUIRMENTS FOR A DOCUMENTATION GENERATOR 16

Introduction ... 16

Compatibility with Javadoc Style Comments ... 16

Cross-Referenced Documentation ... 16

Desugaring the Specifications ... 17

User Interface (Output) Design ... 18

vii

User Options .. 19

CHAPTER THREE: IMPLEMENTATION OF THE JMLDOCLET .. 23

Introduction ... 23

Overview of Javadoc Implementation ... 23

Approach for the New Design ... 27

Extending the Doclet.xml .. 27

Creating a JMLdoclet .. 28

Extending the Builders .. 28

CHAPTER FOUR: RELATED WORK ... 29

iDoclet from iContract Project .. 29

DocGen .. 30

XJavadoc from JTest/JContract Project .. 30

Literate Programming ... 31

Tools Similar to Javadoc ... 32

Other DBC Implementations for Java ... 33

CHAPTER FIVE: DISCUSSIONS .. 34

Alternate Design .. 34

Future Work .. 35

CHAPTER SIX: CONCLUSIONS ... 36

viii

Contributions ... 36

Conclusion ... 36

APPENDIX A: IMAGES ... 37

APPENDIX B: SOURCE CODE ... 43

LIST OF REFERENCES .. 52

ix

LIST OF FIGURES

Figure 1. Source file Queue.java annotated with JML Specification (adapted from [1] changed

implementation to Queue and extended) .. 4

Figure 2. Refined Specifications for file QueueRefine.java ... 5

Figure 3. An example of a simple doclet. Source file SimpleDoclet.java 10

Figure 4. Code used to demonstrate the SimpleDoclet. Source file: SimpleOrder.java 11

Figure 5. Output of the Javadoc tool using SimpleDoclet. ... 11

Figure 6. The current JMLdoc Implementation Structure .. 13

Figure 7. JMLdoclet based JMLdoc Implementation Structure ... 14

Figure 8. Class child which inherits from class Parent, Parent inherits from class GrandParent . 17

Figure 9. Combined Specifications for class Child in the output of JMLdoc using JMLdoclet... 18

Figure 10. Screenshot of a generated HTML file using the new JMLdoclet Design 21

Figure 11. Screenshot of a JMLdoc generated HTML file showing Method Specifications 22

Figure 12. LayoutParser’s parseXML method ... 24

Figure 13. AbstractBuilder’s build and buildChildren methods to handle reflection. . 25

Figure 14. Example of ClassBuilder calling the corresponding buildClassDoc method by

reflection for the XML element <ClassDoc> ... 26

Figure 15. Extended doclet.xml Part a. ... 38

Figure 16. Extended doclet.xml Part b. ... 39

Figure 17. Extended doclet.xml Part c. ... 40

Figure 18. Extended doclet.xml Part d. ... 41

Figure 19. Extended doclet.xml Part e. ... 42

x

Figure 20. Source Code BuilderFactoryJml.Java ... 44

Figure 21. Source Code ClassBuilderJml.Java ... 45

Figure 22. Changes in Source Code of ConfigurationJml.java .. 46

Figure 23. Source Code FieldBuilderJml.Java ... 47

Figure 24. Source Code MethodBuilderJml.java .. 48

Figure 25. Source Code MemberSummaryBuilderJml.java Part a. .. 49

Figure 26. Source Code MemberSummaryBuilderJml.java Part b. .. 50

Figure 27. Source Code ConstructorBuilderJml.java ... 51

xi

LIST OF TABLES

Table 1. Some of the options available for JMLdoc ... 20

Table 2. Original builder classes and corresponding extended JML builder classes 28

xii

LIST OF ACRONYMS

AOP Aspect Oriented Programming

BISL Behavioral Interface Specification Language

COFOJA Contracts for Java

DBC Design by Contract

IDL Interactive Data Language

JDK Java Development Kit

JML

SMT-LIB

Java Modeling Language

Satisfiability Modulo Theories Library

1

CHAPTER ONE: INTRODUCTION

The Java Modeling Language (JML) is a behavioral interface specification language

(BISL) [11] which was designed in order to specify Java modules. It is based on the Design by

Contracts (DBC) approach proposed by Bertrand Meyer and also based on the model-based

specification approach of the Larch family of interface specification languages [3].

Introduction

JML specifications are written for Java compilation units containing classes and interfaces.

The behavioral features of classes and interfaces can be specified using JML specifications. These

classes and interfaces will be referred as Java modules. The behavioral features of Java modules

are bidirectional to the client and module. JML specifications can be designed as annotations as

well as non-annotations. The specifications are like contracts between the application and the client

(end-user).

Java classes contain elements which can represent an object’s state and define the

interaction of the object with outside world. These elements can be fields, methods or constituents

of nested classes or interface declarations. The Queue interface shown in Figure 1 has JML

specifications. C-language style comments, beginning with /*@, or C++ style comments

immediately followed by at-sign, //@, are JML annotations. These annotations are just left out as

comments when the Java Compiler starts the process compilation, where as in JML the text

following the //@ marker and the text between the /*@ and @*/ annotation markers is meaningful

to the JML compiler.

2

A model field such as the Queue in Figure 1, acts as an abstraction and requires no

implementation. Model fields are only used for specification purposes; they do not make any sense

to the Java compiler. A model field’s value is derived from the concrete fields it abstracts from. In

Figure 1 model variable theQueue is declared using the keyword instance to be treated as a

Java instance field. The keyword instance is used to indicate that each instance of a class that

implements the Stack interface has its own copy of the variable theQueue. The implementing

classes of Queue interface or other interfaces which inherit from Queue interface will have these

model instance fields inherited in the specifications. JMLObjectSequence is a type of

JMLCollection, and it is provided in the org.jmlspecs.models package. The Queue in Figure 1

has a type of JMLObjectSequence. To specify the initial value of the a model field, the

initially clause is used, which is followed by the corresponding model field. The specifications

also has another model instance field declared called size. Other clauses declared after the

declaration of field size are some of the features presented in JML which provide a mechanism to

relate model fields with other concrete fields of objects. The depends clause indicates the size

can change whenever theQueue changes i.e. size depends on theQueue. The represents

clause indicates the relation between size and theQueue. Next an invariant condition is specified

using the invariant clause. Invariants are used to indicate what must be true in each visible

state. The invariant clause for the Queue interface indicates that theQueue should be non-null

before and after any method invocations on a Queue type.

Lines 16-24 specify the behavioral specifications of the method dequeue. The keyword

public normal_behavior is used for describing the normal behavior of a method. It implicitly

states that the specification is intended for the clients and when the preconditions are satisfied it

3

must return in a normal way without throwing any exceptions. These specifications implicitly use

a false signals clause. The requires clause specifies the precondition, and the modifiable

clauses indicates which data can be modified by the method and the ensures clause indicates the

post condition. According to the contract requirement is the DBC design pattern, the caller i.e.

client is required to satisfy the preconditions and the developer is required to make the post

conditions hold when the preconditions are met. Any additional behavior of a method can be

specified using the keyword also. Any exceptional behavior of a method can be described using

the keyword exceptional_behavior. It is used for indicating any error conditions at which the

methods should throw an exception using an explicit signals clause.

OpenJML is a preprocessor tool for JML specifications of Java programs. OpenJML is

used for parsing and type-checking the specifications in Java programs. It is also used for statically

(Compile-Time) or dynamically (Run-Time) checking the validity of specifications. OpenJML is

based on the OpenJDK (the open source Java compiler) and makes use of specifications in a

program written in JML. OpenJML does not handle the task of proving theorems and checking

models by itself. It uses external SMT solvers to handle these tasks. In order to, make SMT solvers

parse the JML specifications, they need to be first converted into SMT-LIB format. Once they are

converted into the SMT-LIB format, the JML programs are passed to the backend SMT solvers to

verify the implied proof problems in the programs. Major SMT solvers such as CVC4, Yices and

Z3 are supported by OpenJML. The success of the proofs depends on the following factors-

capability of the SMT solver, the particular logical encoding of the code and specifications, and

the complexity and style in which the code and specifications are written.

4

Figure 1. Source file Queue.java annotated with JML Specification (adapted from [1] changed

implementation to Queue and extended)

5

The Need for JMLdoc

JML specifications for a Java module can be refined using the JML specifications for the

same module. The specifications shown in Figure 1 could actually be divided into two parts. Figure

1 shows how the specifications of Figure 1 could be divided into two parts. The exceptional

behavior specifications can be refined separately as show in Figure 2. JML specifications also

support inheritance so they can also be inherited from a super class or an interface. As a result of

the inheritance property of the specifications, it is not possible to obtain the complete specifications

by just viewing a single file or even specification of a single module. The complete specifications

can only be obtained by combining both the refined and inherited specifications.

Figure 2. Refined Specifications for file QueueRefine.java

6

It is not very efficient for a user of a Java module to look into the related files for inheritance

and refinement, to get the complete specification of a specific module. This is highly inefficient in

a huge application with several specification files.

A Java module provider might need to make specifications of those modules available to

the clients. An efficient and convenient distribution medium of thesis specifications is the internet.

The standard Java Development Kit (JDK) documents and publishes the built-in classes and

interfaces using Javadoc, which is a tool for generating documentation for Java. Javadoc requires

documentation to be written in a certain way which will be explained in later chapters.

JML specifications cannot be interpreted by existing documentation generators like

Javadoc. Also Javadoc does not provide a mechanism to combine refined specifications with

inherited specifications. So, a new documentation generation like Javadoc is needed for JML in

order to parse the specifications. A new documentation generation should be able to work with the

existing distribution mechanism like internet, so it should be able to work on web browsers. Also,

the new documentation generator should also be able to perform the tasks of Javadoc

documentation generator. This was the main motivation for JMLdoc and hence it was invented [2]

[12]. JMLdoc was introduced with the goal of generating browsable HTML from JML

specifications keeping in mind the following goals:

 Produce HTML documents from JML annotations in a source file, which can be viewed

and be compatible with existing browsers.

 For the purpose of integrating inherited and refined specifications from different files into

a complete specification.

 To aid in referencing and browsing by utilizing hyperlinks

7

 To be able to perform the tasks of Java’s documentation generator, Javadoc, as well.

Overview of the Current JMLdoc Implementation

The current implementation of JMLdoc, the JML type checker creates an environment for

the current file under compilation which can be thought of as a compilation unit. The tool then

creates a HTML document for each class, interface and inner classes in the compilation unit. The

information of class is stored in its type attributes. Using these type attributes of inherited members

of a class or interface, the JML specifications that are inherited are obtained. The current

specifications of a class are combined with its inherited specifications and then they are converted

into HTML format. Javadoc style comments are also converted to HTML. The output of the tool

contains HTML files containing documentation regarding each class or interface in the

compilation unit used as input. The amount if details in the output is user selectable; by default,

public and protected class members are documented.

The current JMLdoc tool is an extension of the OpenJDK source code. The JMLdoc tool

has to combine functionality from two sources: the OpenJML tool to parse the specifications

associated with Java program elements and the Javadoc tool to output the desired HTML pages.

These two tools enter program elements into symbol tables differently (OpenJML uses the

techniques supplied by the OpenJDK Java compiler). It would require a maintenance-intensive

merging of the two implementations into a third one to use these tools directly. Instead, the current

JMLdoc uses the OpenJDK facility of independent, co-existing compilation contexts. The Java

code is parsed and represented using Javadoc, then parsed and separately represented using

OpenJML, and then, information from the OpenJML specifications is added into the Javadoc

8

HTML pages as those HTML pages are generated. This approach has a few drawbacks: the code

is parsed twice, symbol table entries from one compilation context have to be translated into the

other context and the Javadoc structure does not actually contain JML elements such as model

fields, methods, and classes.

Classes used & Extended to Implement the Current JMLdoc

The Main class that contains the entry points for the JMLdoc tool could, derive from either

the Main class of OpenJML or the Main class of Javadoc. Since OpenJML requires more tool

initialization, it was more convenient to derive JMLdoc’s Main from OpenJML’s. Command-line

options that JMLdoc adds to Javadoc are processed in Main and help information is provided by

the JmlStart class.

In order to generate JML information in the HTML output, the current JMLdoc

implementation extends the Javadoc source code as follows. Javadoc operates by executing a set

of Writers for various program elements. These have interfaces (e.g. ClassWriter) and specific

implementations (e.g. ClassWriterImpl). The JMLdoc tool implemented its own set of writers

(e.g. ClassWriterJml) that extend the corresponding Javadoc writers. Thus the classes

ClassWriterJml, FieldWriterJml, MethodWriterJml, ConstructorWriterJml, and

NestedClassWriterJml were created.

Javadoc instantiates these writers using a writer factory, WriterFactoryImpl, which is

an implementation of the interface WriterFactory. In order to have the various JML writers

instantiated at the correct time, JMLdoc has its own implementation of WriterFactory, namely,

WriterFactoryJml. The WriterFactoryImpl class is not written to be extended, so

9

WriterFactoryJml is a direct implementation of WriterFactory, at the cost of duplicating

code from WriterFactoryImpl.

Javadoc instantiates the WriterFactory in a Configuration object. Javadoc's

implementation of Configuration (an abstract class) is ConfigurationImpl. JMLdoc

extends ConfigurationImpl as ConfigurationJml in order to instantiate a

WriterFactoryJml instead of a WriterFactoryImpl. This class also supplies a version string

giving the date of the build represented by the tool.

The Configuration object used to generate the WriterFactory is instantiated as a

singleton object. Consequently, in order that the tool use a ConfigurationJml object instead of

Javadoc's ConfigurationImpl, the singleton is instantiated and initialized in Main, before other

initialization code has a chance to create the ConfigurationImpl alternative. In this design, the

standard Javadoc doclet is still used.

Overview of Doclets in Java

Doclets are the programs which are used as input to the Javadoc tool in order to specify the

content and output produced by the Javadoc tool. These doclets are written in Java programming

language as well, they are written using the doclet API. The default doclet utilized by Javadoc to

create API documentation in HTML format, is, the standard doclet provided by Sun. However,

custom doclets can also be supplied to customize the output of Javadoc as desired. An example of

a doclet is shown in Figure 3. In lines 4 and 5, all the classes are being collected and are being

iterated, lines 6-10 iterate over the methods of each class and print them out. The remaining part

10

of the code iterates of the fields of each class and prints them out and also the corresponding tags

of each fields are printed.

Figure 3. An example of a simple doclet. Source file SimpleDoclet.java

The code in Figure 3 shows that the Doclet API is contained in the package

com.sun.javadoc. Since the code is plugging in to the Javadoc tool and not creating a standalone

application, Javadoc calls the doclet from the method public static Boolean start (RootDoc root).

The above doclet is run for the following code below shown in Figure 4

11

Figure 4. Code used to demonstrate the SimpleDoclet. Source file: SimpleOrder.java

The Javadoc tool is now invoked using the SimpleDoclet on SimpleOrder. The output generated

by the Javadoc tool can be seen below in Figure 5

Figure 5. Output of the Javadoc tool using SimpleDoclet.

12

Once the start method starts executing, all the information parsed by Javadoc is stored

in RootDoc. The RootDoc has a method classes(), which can be used to iterate over all the parsed

classes. The classes() method returns an array of type ClassDoc, describing all the parsed classes

and interfaces. Methods such as fields() and methods() are present in ClassDoc, which return

arrays of type FieldDoc and MethodDoc respectively. These can be used for describing all the

parsed methods and fields. A tag() method is present in all the Doc classes, which returns an array

of type Tag, which can be used for describing both standard and custom tags. The standard tag

used in this example is @see. To format the output according to a fixed templated, the

MessageFormat class is used.

The Problem with the Current Design

The problem with current design of JMLdoc is that it depends on the standard doclet of

Javadoc making it very inflexible. It lacks the support for doclet provisions. Figure 6 shows the

structure of the current JMLdoc implementation. The output of the Javadoc tools is controlled by

a XML resource file. The standard doclet in Javadoc reads the XML file and calls various builders

corresponding to the XML elements. These builders thereby call the corresponding writers. The

current JMLdoc implementation extends these writers in order to add the JML specifications in

the output files generated by Javadoc. The problem with this approach is that any changes to the

standard doclet would need to be reflected into the JML writers in order for them to function

properly. Also changing the doclet would require re-implementing all the JML writers again.

13

Figure 6. The current JMLdoc Implementation Structure

A JMLdoclet Based Design

Using Javadoc with custom doclets makes Javadoc really flexible and customizable.

Doclets can be used to generate any kind of text file output, such as HTML, SGML, XML, RTF,

and MIF. In this thesis, a doclet based design for JMLdoc in OpenJML is proposed and a

JMLdoclet is presented [10].

This approach is more aligned with the design of Javadoc and its provision for doclet

extensions, and meaning more minimization of maintenance as Javadoc evolves. This takes

advantage of the expected and supported extension capability of Javadoc.

The organization of Javadoc’s HTML output is controlled by a XML resource file. This

file is parsed and for each XML element in the document a corresponding build method is called

by reflection. For example, the doclet.xml file specifies that one part of the description of a

ClassDoc is a ClassHeader. To generate the corresponding HTML, the buildClassHeader

14

method of ClassBuilder is called by reflection. So one means of adding additional information

into the HTML is to provide a different XML description file. In order to do that, a new doclet

(JMLdoclet) is created that references the new XML file. This design is a good solution for the

current drawbacks in the current design as it makes JMLdoc architecturally strong. This design

would make maintenance of JMLdoc easier as Javadoc evolves to newer versions. Also, if any

changes are required in the structure of JMLdoc’s HTML documents, then making appropriate

changes in the JMLdoclet would be enough. Any changes to Java Modeling Language can also be

easily reflected in JMLdoc by modifying the JMLdoclet correspondingly.

Figure 7. JMLdoclet based JMLdoc Implementation Structure

Overview of the Thesis

Chapter Two explains in details about the requirements of a documentation generator. All

the different functions a documentation generator needs to perform as explained in detail in this

chapter. Chapter Three discusses the implementation details of the JMLdoclet proposed in this

15

thesis. Related work is discussed in Chapter Four and it is compared with the current proposed

JMLdoclet. Discussion about future work, alternate designs proposals and contributions are

presented in Chapter Five.

16

CHAPTER TWO:

REQUIRMENTS FOR A DOCUMENTATION GENERATOR

Introduction

The previous chapter has introduced JML specifications and what it means to combine

these specifications. A documentation generator for JML should generate browsable specifications

which can be viewed using a web browser. This chapter discusses the requirements for generating

browsable specifications.

Compatibility with Javadoc Style Comments

Javadoc is a documentation generator for Java. It is the accepted standard for documenting

API's in java. The documentation tool for JML should also interprets Javadoc style comments, so

that a provider of a java module can write JML specifications and Javadoc documentation and be

able to see both at once.

Cross-Referenced Documentation

A Java class can contain members that are instances of classes. In order for a user of a Java

module to browse the specifications in an easy way the documentation should be cross referenced.

This would allow a user of a class to see the specifications of classes that are referenced by the

current class with the click of a button. HTML allows cross-referencing through hyperlinks. The

documentation generator for JML should make use of hyperlinks to create a cross-referenced

document.

17

Desugaring the Specifications

The main requirement is to combine the specifications from refinement and inheritance i.e.

desugaring the specifications [8]. The documentation generator should combine the specifications

from the separate files in which the refinements and classes are written in to a single HTML

document. An example of this is shown in Figures 8 and 9.

Figure 8. Class child which inherits from class Parent, Parent inherits from class GrandParent

18

Figure 9. Combined Specifications for class Child in the output of JMLdoc using JMLdoclet.

User Interface (Output) Design

The user interface or output design has been modeled on that produced by Javadoc. The

HTML file for a class has the class hierarchy at the very top of the page. This allows the user to

see the inheritance tree.

19

The inheritance tree is followed by a series of tables. Each series of tables consists of a

table showing the members of the current class followed by tables showing the members inherited

from classes in the inheritance hierarchy. The members in the tables are hyperlinked to provide

easy access to the full documentation for those members. The tables naming the inner classes and

interfaces (if any) are displayed first followed by the tables for fields, constructors and finally

methods.

The tables are linked to the documentation for each member of the class/interface. The

documentation for the methods is the most interesting. It consists of the Javadoc style

documentation followed by the complete JML specification for that method if it exists. Figures 10

and 11 show a sample HTML file generated from HTML specifications.

User Options

The tool is used to generate browsable documentation. This means creating a HTML file

for each reference type. Sometimes more than one reference type can appear in a single file. The

tool creates HTML files for each reference type. A reference type has public, private, protected

and package protected members. A JML specification can also be tagged as public, private,

protected or package protected. The documentation tool produces documentation for the public

and protected members by default. It also generates the complete specification for public and

protected parts of the JML specifications. A provider of a package might want to document the

private members and private specifications. To allow the user increased flexibility in generating

documentation various options are provided by the tool. An option is given to the user to allow

documentation for inherited members (members that are not overridden) to be generated. By

20

default the detailed documentation for these members is not printed. A table below the description

table in the output indicates which members are inherited from which superclass and/or super

interfaces. The user can choose to suppress the documentation for the private and protected

members and specifications. The following gives the options available and the result of using each

option.

Table 1. Some of the options available for JMLdoc

Command-line Option Action

private This tells JMLdoc to generate

browsable documentation for the private

members of a class or interface.

noprot This option prevents the browsable

documentation for protected members from

being generated.

nopkgprot This option prevents the browsable

documentation for package protected members

from being generated.

Inherited This causes JMLdoc to generate

browsable documentation.

21

Figure 10. Screenshot of a generated HTML file using the new JMLdoclet Design

22

Figure 11. Screenshot of a JMLdoc generated HTML file showing Method Specifications

23

CHAPTER THREE:

 IMPLEMENTATION OF THE JMLDOCLET

Introduction

This Chapter discusses the key implementation details and the process of implementation

about the JMLdoclet presented in this thesis. The key change being made to the existing

implementation of the JMLdoc is that the specifications for all the JML elements are going to be

generated using Java’s Reflection API. Utilizing Java Reflection, it is conceivable to get data about

classes, interfaces, fields and methods at runtime, without having information about the names of

classes, methods, etc. during compile time. It is additionally conceivable to instantiate new objects,

invoke methods and get/set field values utilizing reflection. Using Java Reflection and the resource

file doclet.xml used by Javadoc, an alternate implementation of JMLdoc is presented which

supports doclet provision capability for JMLdoc in OpenJML

Overview of Javadoc Implementation

In order to get a better understanding of the implementation of the JMLdoclet, first a brief

overview of the current implementation of Javadoc’s implementation of the default doclet is

presented. The JMLdoclet will be presented in a similar mechanism of the Javadoc’s default doclet.

The default doclet of Javadoc is a HtmlDoclet which is an extension of AbstractDoclet.

The HtmlDoclet has a Configuration Object in which the WriterFactory is instantiated.

The WriterFactory instantiates various other writers like ClassWriter,

PackageSummaryWriter, MethodWriter, etc. as needed. The HtmlDoclet calls

24

generateOtherFiles, generateClassFiles, and generatePackageFiles methods in

order to generate the documentation files.

When these above methods are called the process of parsing the doclet.xml file takes place.

An example of the parsing process in the code is explained in Figure 8 when

generateClassFiles is called. When the generateClassFiles method is called the

current element is analyzed and if it is a type of Class, then a BuilderFactory is instantiated

in the Configuration and using the BuilderFactory a ClassBuilder is instantiated.

Finally, the build method of the ClassBuilder is called. This is where the XML parsing starts

and the current XMLNode is analyzed and depending on the text, a corresponding method in the

ClassBuilder is called by Reflection. The parent abstract class AbstractBuilder handles

the reflection mechanism and the process for the reflection is explained and shown in Figure 9.

Figure 12. LayoutParser’s parseXML method

The AbstractBuilder handles the reflection mechanism based on the XMLNode passed

to it. The invokeMethod shown in Figure 9 takes in three arguments- a string build appended

with the current XMLNode value, the class objects of the XMLNode and Content and the objects

25

themselves. The invokeMethod then grabs the corresponding method using the string value

passed into the first argument and then invokes that particular method. An example of this is

demonstrated in Figure 10, it can also be seen in the figure, how the corresponding child XMLNodes

are processed for each parent XMLNode using the buildChildren method of

AbstractBuilder. The buildChildren just iterates through all the children of XMLNode and

calls build for each of them

Figure 13. AbstractBuilder’s build and buildChildren methods to handle reflection.

The parsing process begins instantiating a LayoutParser using the Configuration

object and then LayoutParser’s parseXML method is called, which will be passed a String

corresponding to the specific root node in the XML file, for example Classdoc is root node for

all the class files in the XML file. The LayoutParser maintains a HashMap called

xmlElementsMap. Whenever the parseXML method is called, the xmlElementsMap is

26

populated with the XMLNodes. The parseXML method uses SAXParser library in order to parse

the XML, once a node is parsed it will be placed into xmlElementsMap. Once the parseXML

methods returns the build method of ClassBuilder checks the return value and calls the

corresponding method by reflection which is demonstrated clearly in Figure 10. An example for

the case when the XMLNode has the text <Classdoc> is shown in Figure 10 LayoutParser

extends DefaultHandler and overrides the startElement and endElement methods, in

which the process on insertion into xmlElementsMap takes place.

Figure 14. Example of ClassBuilder calling the corresponding buildClassDoc method by

reflection for the XML element <ClassDoc>

27

Approach for the New Design

The idea for JMLdoclet is to extend the doclet.xml file by adding XML elements

corresponding to the JML elements and to create a JMLdoclet which extends the

BuilderFactory and various builders like ClassBuilder, FieldBuilder, etc. by adding

methods which can be called reflection when a XML element corresponding to a JML element is

encountered. This is the main idea behind the implementation.

Extending the Doclet.xml

The doclet.xml is the resource file which controls the HTML output of Javadoc. Each XML

element in this resource file will be parsed and corresponding builders and writers will be called

by reflection. This is how Javadoc’s doclet provision capability was implemented. A similar

approach will be used to implement JMLdoc’s doclet provision capability. The resource file is

extended with some JML nodes in order to create the JMLdoclet. The newly added fields contain

the text JML. This resource file will be passed as the DEFAULT_BUILDER_XML in the

Configuration object. In order to swap to a different doclet, replacing this resource with a

different one would suffice.

Refer to Appendix A for the extended doclet.xml structure. The XML resource file has

been converted into JSON format for clear understanding of the structure. This new doclet.xml file

will be set in ConfigurationJml class as DEFAULT_BUILDER_XML.

28

Creating a JMLdoclet

A JMLdoclet class is created which extends AbstractDoclet. The JMLdoclet class

has methods from the standard HtmlDoclet as well as additional methods corresponding to JML

specifications. The new methods are generateClassSpecifications which internally uses

other methods in order to instantiate the newly extended builders and writers. This new JMLdoclet

references the newly created doclet.xml resource file. The same code of generateClassFiles

has been except that generateClassSpecifications uses a classSpecsBuilder instead

of a classBuilder.

Extending the Builders

The builders extended in the thesis are shown below in Table 2. All the previous builders

and the BuilderFactory have been extended. The builderXMLPath in the

ConfigurationJml has been set to the new doclet resource file jmldoclet.xml. A new method

getBuilderFactory has been added to ConfigurationJml in order to process the new

extended BuilderFactoryJml. The source code for all the extended builders can be referenced

from Appendix B. The corresponding writers associated with the builders are also modified.

Table 2. Original builder classes and corresponding extended JML builder classes

BuilderFactory BuilderFactoryJml

ClassBuilder ClassBuilderJml

ConstructorBuilder ConstructorBuilderJml

FieldBuilder FieldBuilderJml

MethodBuilder MethodBuilderJml

MemeberSummaryBuilder MemberSummaryBuilderJml

29

CHAPTER FOUR: RELATED WORK

This chapter discusses the related work in the area of documentation generators with and

without support for doclet extension capabilities. The current proposed design is compared with

other documentation generators and also possible alternate designs are suggested. The

documentation generators which are capable of parsing annotations (which are either in the form

of pusedo-code or decryptions written as comments) and produce a readable output either in

HTML or other formats are only compared.

iDoclet from iContract Project

iContract [6] is a preprocessor for Java. iContract first processes the Java file and produces

a set of decorated Java files. Once these files are generated, they can be compiled with the standard

Java Compiler.

iContract directives in Java code, just like Javadoc directives, reside in the class and

method comments. This enables iContract to have backwards-compatibility with existing Java

code. So, without iContract assertions, Java code can always be directly compiled with the Java

compiler.

Typically, a program would start in a development phase and transition into a testing phase

and then transition into a production phase. This process can be made efficient by instrumenting

the code with iContract assertions in the development phase. This enables detection of newly

introduced bugs, early on, in the development process itself. In the test environment the bulk of

the assertions can still be kept enabled, but usually are taken out for performance-critical classes.

In iContract it possible to select explicitly, the classes that require instrumentation with assertions.

30

The documentation generator used in iContract is Javadoc with the use of a special doclet

named iDoclet. iDoclet is an extension of Sun's standard doclet from JDK 1.2 that includes

assertion information in the generated API docs. It supports three new tags: @pre, @post and

@inv. The iDoclet extends implementations for various writers like ClassWriter,

PackageWriter, TreeWriter, etc. However, this doclet does not recognize JML specifications

and cannot combine JML specifications from refinements and inheritance into a complete

specification. This doclet only works with JDK version 1.2. It fails to work with later versions of

JDK as the packages this doclet uses have been removed from JDK 1.4 and later. This project is

seems to be not well maintained.

DocGen

DocGen is a Java doclet developed on the basis of the standard doclet. As long as a specific

format is trailed by the documentation, DocGen can extract and show any contract, even the

inherited contracts which are documented in a formal comment unit. DocGen is built upon the

standard doclet of Java, but it cannot parse the JML specifications. So, it fails to combine JML

specifications from refinements and inheritance into a complete specification.

XJavadoc from JTest/JContract Tools

JTest [7], is an automated unit testing tool for Java, which utilizes the Design by Contract

format specification information present in the classes and automates unit level functionality.

JContract is a tool which can be used as an add-on for JTest or it can be used as a standalone tool.

31

It checks DBC contracts during runtime and identifies any misuse of a class/component. It can

also verify system-level functionality.

Using JContract, functionality testing at the system level using DBC can be done by Java

programmers. In the wake of utilizing JTest to thoroughly test a class or component at the unit

level, JContract will instrument and compile the DBC-commented code. In an instrumented

class/component, JContract automatically tries to identify any contracts which are violated during

runtime. For the task of identifying any misuse of a class or component, JContract would be

particularly useful. When used in conjunction with JTest, JContract helps automate functionality

testing of Java applications, and improves the overall testing of components, such as EJBs.

The documentation generator used in the JContract project is Javadoc with a specialized

doclet called XDoclet. The standard Javadoc in Java has been renamed to XJavadoc (Extended

Javadoc) in this project. XJavadoc replaces the standard doclet provide by Sun, for use with

Javadoc, by a new doclet called XDoclet. XJavadoc adds support for Design by Contract tags and

generates API documentation in either HTML or XML format. However, XJavadoc is not

compatible with JML. It cannot provide documentation for JML elements cannot recognize JML

specifications from Java programs.

Literate Programming

Literate programming [3] is an effort to produce better and easily understandable

documentation for programs. Just like annotations, the documentations in a literate programming

style would require the documentation be written along with the source code. This documentation

can be similarly parsed by literate programming tools into desired output formats like RTF, etc.

32

Literate programming usually requires a typesetting language like TeX for formatting source code.

Literate programming also supports cross referencing while browsing the documentations.

Javadoc and JMLdoc also support cross referencing as well. However, Literate Programming tools

like DOC++, CWEB do not support JML specifications in the source code. Hence, they cannot

combine the JML specifications from inheritance and refinement.

Tools Similar to Javadoc

A popular tool used for producing documentation from annotations in C++ programs is

Doxygen [4]. Doxygen additionally supports other prevalent programming languages, for

example, C, Objective-C, C#, PHP, Java, Python, IDL (Corba, Microsoft, and UNO/OpenOffice

flavors), Fortran, VHDL, Tcl, and D. It can be utilized to either create on-line documentation in

HTML design and/or offline documentation in TeX format. The tool also supports many other

formats as well. Some of them are-RTF, hyperlinked PDF, PostScript, UNIX man pages and

compressed HTML. Since the documentation is extracted directly from the sources, it makes it

easier to maintain consistency of the documentation with source code.

Another tool used for automated technical documentation production is Document! X [5].

It supports C#, VB.NET, C++, CLI and other .NET language assemblies, databases, Java projects,

COM components, XSD schemas, type libraries, ASP.NET, JavaScript and Ajax. The tool also

consists of a Visual comment editor add-ins for Visual Studio along with a authoring and

documentation build environment.

Both Doxygen and Document! X, do not recognize JML specifications and cannot combine

or generate JML specifications like JMLdoc does.

33

Other DBC Implementations for Java

Other DBC implementations projects for Java include:

 Contracts for Java (Cofoja) by Google

 Modern Jass

 Spring Contracts (Based on Java’s Spring Framework)

 C4J

However, all these projects do not support JML elements or JML specifications and hence

cannot produce documentation for JML specifications.

34

CHAPTER FIVE: DISCUSSIONS

Alternate Design

Aspect Oriented Programming (AOP) is a useful technique that enables adding executable

blocks to the source code without explicitly changing it. AOP can also be used in Design by

Contract style programming. Property-based crosscutting can be used to characterize more

complex contract enforcement utilizing AOP. Since AOP provides modularity for tasks like tracing

and logging, we could use AOP for logging the information of the JML and Java files. One could

log and trace the information of JML and Java methods by using join points, pointcuts and advices.

Join point is a point amid the execution of a program, such as the execution of a method or the

handling of an exception. Advice is a move made by an aspect at a specific join point. Diverse

sorts of advice include "around," "before" and "after" advice. Pointcut is a predicate that matches

join points. Advice is connected with a pointcut expression and keeps running at any join point

coordinated by the pointcut (for instance, the execution of a method with a specific name).

The documentation generator used in AspectJ is ajdoc. Ajdoc is also similar to Javadoc, it

can render HTML documentation for pointcuts, advices and inter-type declarations, as well as Java

constructs that Javadoc renders. Tools like ajdoc can be used to produce the HTML documentation

in AspectJ. However, doing things dynamically doesn’t help with static documentation of the

structure of the program. AOP could be used to edit the way the standard Java doclet works to

modify it for JML, but the problem with this is that Javadoc relies on the code of the standard

doclet, so, it is hard to maintain.

35

Future Work

JMLdoclet is by far the best suitable way to modify JMLdoc in order to make its design

architecturally stronger, making it much easier to maintain as Javadoc or JML evolves. This

section discusses some ideas to enhance the JMLdoc tool further. The tool currently generates

documentation only in HTML format as it is works on the basis of Javadoc. New JMLdoclets can

be developed in order to modify the tool to generate output in a various formats like TeX, XML.

Also development of a single JMLdoclet with support for multiple output formats would be nice.

Class diagrams can be created from Javadoc comments in the source files. This would

provide a better understanding of the structure of the inheritance and refinements of the

specifications. Also, implementing dynamic views for the specifications would be useful, for

example the ability to view normal behavioral specification and the ability to view exceptional

behavioral specifications individually could be useful for better understanding.

36

CHAPTER SIX: CONCLUSIONS

Contributions

The primary contribution of this thesis is the provision for pluggable JMLdoclets for

JMLdoc in OpenJML making it more aligned to the design of Javadoc and its provision for doclets.

This kind of design makes JMLdoc very flexible and adaptable to different documentation

requirements and it makes JMLdoc architecturally strong by eliminating the need to rely on

Javadoc as well OpenJML. It also makes JMLdoc easier to maintain. This implementation still

supports all the functions available in the previous implementation.

Conclusion

Using the JMLdoclet approach makes JMLdoc architecturally strong making it easier to

adapt to various doclets designs and also more aligned with Javadoc’s provision for doclet

extension. Keeping JMLdoc aligned Javadoc ensures consistency as Javadoc evolves. JMLdoclet

is by far the best suitable way to modify JMLdoc.

37

APPENDIX A: IMAGES

38

Figure 15. Extended doclet.xml Part a.

39

Figure 16. Extended doclet.xml Part b.

40

Figure 17. Extended doclet.xml Part c.

41

Figure 18. Extended doclet.xml Part d.

42

Figure 19. Extended doclet.xml Part e.

43

APPENDIX B: SOURCE CODE

44

Figure 20. Source Code BuilderFactoryJml.Java

45

Figure 21. Source Code ClassBuilderJml.Java

46

Figure 22. Changes in Source Code of ConfigurationJml.java

47

Figure 23. Source Code FieldBuilderJml.Java

48

Figure 24. Source Code MethodBuilderJml.java

49

Figure 25. Source Code MemberSummaryBuilderJml.java Part a.

50

Figure 26. Source Code MemberSummaryBuilderJml.java Part b.

51

Figure 27. Source Code ConstructorBuilderJml.java

52

LIST OF REFERENCES

[1] Gary T. Leavens, Albert L. Baker, and Clyde Ruby. Preliminary design of JML: A

behavioral interface specification language for Java. Technical Report 98-06i, Iowa State

University, Department of Computer Science, February 2000. See

www.cs.iastate.edu/~leavens/J ML.html.

[2] Arun David Raghavan. Design of a JML Documentation Generator. Master’s Thesis, Iowa

State University, 2000.2

[3] Donald E. Knuth. Literate Programming, Volume 27 of CSLI Lecture Notes. Center for

the Study of Language and Information, Stanford University, 1992.

[4] Doxygen documentation generator. http://www.stack.nl/~dimitri/doxygen/.

[5] Document! X documentation generator. http://www.innovasys.com/product/dx/overview.

[6] iContract DBC implementation for Java. https://sourceforge.net/projects/icplus/.

[7] JTest/JContract DBC Implementation for Java. https://www.parasoft.com/press/major-

development-in-java-testing-achieved-with-the-introduction-of-parasoft-jcontract-and-

jtest/.

[8] Arun D. Raghavan and Gary T. Leavens. Desugaring JML method specifications.

Technical Report TR #00-03, Department of Computer Science, Iowa State University,

March 2000.

[9] David R. Cok. The OpenJML User Guide. http://openjml.org/.

[10] David R. Cok. The JMLdoc tool – Javadoc with JML specifications. http://openjml.org/.

http://www.cs.iastate.edu/~leavens/J%20ML.html
http://openjml.org/

53

[11] Gary T. Leavens, Albert L. Baker, and Clyde Ruby. Preliminary Design of JML: A

Behavioral Interface Specification Language for Java. ACM SIGSOFT Software

Engineering Notes, 31(3):1-38, May, 2006

[12] Lilian Burdy, Yoonsik Cheon, David Cok, Michael Ernst, Joe Kiniry, Gary T. Leavens, K.

Rustan M. Leino, and Erik Poll. An overview of JML tools and applications. International

Journal on Software Tools for Technology Transfer, 7(3):212-232, June 2005.

	University of Central Florida
	
	Design of a JMLdoclet for JMLdoc in OpenJML
	2016
	Arjun Mitra Reddy Donthala
	STARS Citation

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ACRONYMS
	CHAPTER ONE: INTRODUCTION
	Introduction
	The Need for JMLdoc
	Overview of the Current JMLdoc Implementation
	Classes used & Extended to Implement the Current JMLdoc

	Overview of Doclets in Java
	The Problem with the Current Design
	A JMLdoclet Based Design
	Overview of the Thesis

	CHAPTER TWO: REQUIRMENTS FOR A DOCUMENTATION GENERATOR
	Introduction
	Compatibility with Javadoc Style Comments
	Cross-Referenced Documentation
	Desugaring the Specifications
	User Interface (Output) Design
	User Options

	CHAPTER THREE: IMPLEMENTATION OF THE JMLDOCLET
	Introduction
	Overview of Javadoc Implementation
	Approach for the New Design
	Extending the Doclet.xml
	Creating a JMLdoclet
	Extending the Builders

	CHAPTER FOUR: RELATED WORK
	iDoclet from iContract Project
	DocGen
	XJavadoc from JTest/JContract Tools
	Literate Programming
	Tools Similar to Javadoc
	Other DBC Implementations for Java

	CHAPTER FIVE: DISCUSSIONS
	Alternate Design
	Future Work

	CHAPTER SIX: CONCLUSIONS
	Contributions
	Conclusion

	APPENDIX A: IMAGES
	APPENDIX B: SOURCE CODE
	LIST OF REFERENCES

