
University of Central Florida

Electronic Theses and Dissertations Doctoral Dissertation (Open Access)

Practical Dynamic Transactional Data Structures
2018

Pierre LaBorde
University of Central Florida

Find similar works at: https://stars.library.ucf.edu/etd

University of Central Florida Libraries http://library.ucf.edu

Part of the Computer Sciences Commons

This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Electronic Theses
and Dissertations by an authorized administrator of STARS. For more information, please contact lee.dotson@ucf.edu.

STARS Citation

LaBorde, Pierre, "Practical Dynamic Transactional Data Structures" (2018). Electronic Theses and Dissertations. 5963.
https://stars.library.ucf.edu/etd/5963

https://stars.library.ucf.edu?utm_source=stars.library.ucf.edu%2Fetd%2F5963&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu?utm_source=stars.library.ucf.edu%2Fetd%2F5963&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd?utm_source=stars.library.ucf.edu%2Fetd%2F5963&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd
http://library.ucf.edu
http://network.bepress.com/hgg/discipline/142?utm_source=stars.library.ucf.edu%2Fetd%2F5963&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd/5963?utm_source=stars.library.ucf.edu%2Fetd%2F5963&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:lee.dotson@ucf.edu
https://stars.library.ucf.edu?utm_source=stars.library.ucf.edu%2Fetd%2F5963&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu?utm_source=stars.library.ucf.edu%2Fetd%2F5963&utm_medium=PDF&utm_campaign=PDFCoverPages

PRACTICAL DYNAMIC TRANSACTIONAL DATA STRUCTURES

by

PIERRE LABORDE
M.S. University of Central Florida, 2013
B.S. University of Central Florida, 2011

A dissertation submitted in partial fulfilment of the requirements
for the degree of Doctor of Philosophy
in the Department of Computer Science

in the College of Engineering and Computer Science
at the University of Central Florida

Orlando, FL

Summer Term
2018

Major Professor: Damian Dechev

c© 2018 Pierre LaBorde

ii

ABSTRACT

Multicore programming presents the challenge of synchronizing multiple threads. Traditionally,

mutual exclusion locks are used to limit access to a shared resource to a single thread at a time.

Whether this lock is applied to an entire data structure, or only a single element, the pitfalls of

lock-based programming persist. Deadlock, livelock, starvation, and priority inversion are some

of the hazards of lock-based programming that can be avoided by using non-blocking techniques.

Non-blocking data structures allow scalable and thread-safe access to shared data by guaranteeing,

at least, system-wide progress. In this work, we present the first wait-free hash map which allows a

large number of threads to concurrently insert, get, and remove information. Wait-freedom means

that all threads make progress in a finite amount of time — an attribute that can be critical in real-

time environments. We only use atomic operations that are provided by the hardware; therefore,

our hash map can be utilized by a variety of data-intensive applications including those within the

domains of embedded systems and supercomputers.

The challenges of providing this guarantee make the design and implementation of wait-free ob-

jects difficult. As such, there are few wait-free data structures described in the literature; in partic-

ular, there are no wait-free hash maps. It often becomes necessary to sacrifice performance in order

to achieve wait-freedom. However, our experimental evaluation shows that our hash map design

is, on average, 7 times faster than a traditional blocking design. Our solution outperforms the best

available alternative non-blocking designs in a large majority of cases, typically by a factor of 15

or higher.

The main drawback of non-blocking data structures is that only one linearizable operation can be

executed by each thread, at any one time. To overcome this limitation we present a framework for

developing dynamic transactional data containers. Transactional containers are those that execute

iii

a sequence of operations atomically and in such a way that concurrent transactions appear to take

effect in some sequential order. We take an existing algorithm that transforms non-blocking sets

into static transactional versions (LFTT), and we modify it to support maps. We implement a

non-blocking transactional hash map using this new approach. We continue to build on LFTT

by implementing a lock-free vector using a methodology to allow LFTT to be compatible with

non-linked data structures.

A static transaction requires all operands and operations to be specified at compile-time, and no

code may be executed between transactions. These limitations render static transactions impracti-

cal for most use cases. We modify LFTT to support dynamic transactions, and we enhance it with

additional features.

Dynamic transactions allow operands to be specified at runtime rather than compile-time, and

threads can execute code between the data structure operations of a transaction. We build a frame-

work for transforming non-blocking containers into dynamic transactional data structures, called

Dynamic Transactional Transformation (DTT), and provide a library of novel transactional con-

tainers. Our library provides the wait-free progress guarantee and supports transactions among

multiple data structures, whereas previous work on data structure transactions has been limited to

operating on a single container. Our approach is 3 times faster than software transactional memory,

and its performance matches its lock-free transactional counterpart.

iv

To my parents, Bobby and Sandy, for their loving support and forbearance.

v

ACKNOWLEDGMENTS

I thank my committee members Dr. Gary Leavens, Dr. Damla Turgut, and Dr. Eduardo Mucciolo

for their time and effort.

I am thankful to all of the current and former lab members for fruitful discussions and enlight-

ening presentations, some of their names follow in alphabetical order: Andrew Tyler Barrington,

Victor Cook, Amruth Dakshinamurthy, Dr. Steven Feldman, Daniel Gabriele, Ramin Izadpanah,

Kenneth Lamar, Lance Lebanoff, Carlos Valera-Leon, Brendan Lynch, Zachary Painter, Christina

Peterson, Dr. Deli Zhang, et al. In particular, I would like to thank Steven and Lance for being ex-

cellent collaborators, and Amruth and Steven for being with me from the beginning. I would also

like to thank Steven, Brendan, and Amruth for the adventures we had traveling to conferences. I

thank Christopher Giles, Dr. Jonathan Cazalas, and Dr. Sean Szumlanski for good conversations,

including some good advice.

I thank all of my friends and family for supporting me throughout this process. I would not have

been able to do any of this without the sacrifices that my parents made, and for that I am eternally

grateful. I am particularly grateful to my siblings Swain Tiwari and Petal LaBorde, for listening

when I needed to talk.

Most of all, I thank my advisor and mentor Dr. Damian Dechev, for providing me with the free-

dom to explore several different research areas, and for believing in me, even when I could not.

Throughout my thesis work, Dr. Dechev has provided guidance that led me to become not just a

better researcher, but a better person. I cannot adequately express how thankful I am.

vi

TABLE OF CONTENTS

LIST OF FIGURES . xii

CHAPTER 1: INTRODUCTION . 1

CHAPTER 2: BACKGROUND . 9

Related Work . 13

Overview of Work Related to Non-blocking Data Structures 13

Hash Map . 14

Vector . 14

Overview of Work Related to Transactional Data Structures 15

Transactional Memory . 15

Transactional Boosting . 17

LFTT . 18

CHAPTER 3: WAIT-FREE HASH MAP . 19

Algorithms . 19

Structure and Definition . 19

vii

Traversal . 21

Main Functions . 23

Algorithm 1 - insert (key, value) . 23

Algorithm 2 - Update (key, expectedValue, newValue) 25

Algorithm 3 - get (key) . 27

Algorithm 4 - remove (key, expectedValue) 29

Algorithm 5 - expandMap (local, pos, right) 31

Memory Management . 32

Algorithm 6 - watch (value) . 33

Algorithm 7 - safeFreeNode (nodeToFree) 34

Algorithm 8 - allocateNode (value, hash) 34

Supporting Functions . 35

CHAPTER 4: DYNAMIC TRANSACTIONAL TRANSFORMATION 37

Overview . 37

Using DTT . 39

Implementation Details . 39

Transactions Among Multiple Data Structures . 44

viii

Wait-free Transactions . 45

Wait-free Transactions - Pseudocode . 45

A Transactional Transformation Template . 46

CHAPTER 5: NON-BLOCKING TRANSACTIONAL HASH MAP 53

CHAPTER 6: NON-BLOCKING TRANSACTIONAL VECTOR 58

CHAPTER 7: PERFORMANCE EVALUATION . 63

Wait-free Hash Map . 63

Dynamic Transactions . 69

Experimental Setup . 70

Overall Results . 72

Transactional List . 74

Transactional Skip List . 75

Transactional MDList . 76

Transactional Dictionary . 77

Transactional Binary Search Tree . 79

Wait-free Transactions . 81

ix

Transactions Among Multiple Data Structures . 83

Transactional Hash Map . 84

Transactional Map . 85

CHAPTER 8: CONCLUSION . 88

Future Work . 89

APPENDIX A: CORRECTNESS OF THE WAIT-FREE HASH MAP 90

Safety . 91

Linearizability . 93

Wait-Freedom . 95

APPENDIX B: CORRECTNESS OF DYNAMIC TRANSACTIONS 97

Correctness . 98

Definitions . 98

Serializability and Recoverability . 100

Progress Guarantees . 105

APPENDIX C: CORRECTNESS OF THE TRANSACTIONAL HASH MAP 107

APPENDIX D: CORRECTNESS OF THE TRANSACTIONAL VECTOR 109

x

LIST OF REFERENCES . 111

xi

LIST OF FIGURES

3.1 An illustration of the structure of the hash map. 21

3.2 An example of data stored in the hash map (values not shown). 22

7.1 Key for Performance Graphs . 72

7.2 Transactional List Performance . 73

7.3 Transactional Skip List Performance . 74

7.4 Transactional MDList Performance . 78

7.5 Transactional Binary Search Tree Performance 79

7.6 Wait-free Multi-Container Performance . 80

7.7 Wait-free Progress Assurance Scheme Overhead 82

7.7 Throughput for the Lock-free Transactional Hash Map (1M Key Range) . . . 87

A.1 A state transition diagram for the hash map. 93

xii

CHAPTER 1: INTRODUCTION

In this dissertation, we present dynamic transactional data structures that provide the wait-free

progress guarantee. First, we present a wait-free hash map that is not transactional, as an in-

troduction to non-blocking programming techniques, and to demonstrate the drawbacks of non-

transactional data structures. Then, we discuss an extension of a lock-free transactional transfor-

mation methodology (LFTT), that has been applied to the wait-free hash map. Finally, we design

and implement a new approach to transactional transformation that allows dynamic wait-free trans-

actions to be executed on multiple containers within a single transaction. Our experimental results

demonstrate that our performance is at least on par with state of the art approaches, and in all but

one case surpasses them.

Our design is motivated by the need for applications and algorithms to change and adapt as modern

architectures evolve. These adaptations have become increasingly difficult for developers as they

are required to effectively manage an ever-growing variety of resources such as a high degree of

parallelism, single-chip multi-processors, and the deep hierarchies of shared and distributed mem-

ories. Developers writing concurrent code face challenges not known in sequential programming,

most importantly, the correct manipulation of shared data.

Currently, the most common synchronization technique is the use of mutual exclusion locks.

Blocking synchronization can seriously affect the performance of an application by diminishing

its parallelism [30]. The behavior of mutual exclusion locks can sometimes be optimized by using

a fine-grained locking scheme [34], [51] or context-switching. However, the interdependence of

processes implied by the use of locks, even efficient locks, introduces the dangers of deadlock,

livelock, starvation, and priority inversion — our design avoids these drawbacks.

The rise of multi-core systems has led to the development of highly concurrent non-blocking data

1

structures [40, 43, 11, 58]. Traditionally, non-blocking data structures provide operations which

meet the linearizability correctness condition. Linearizable operations appear to execute instanta-

neously, and respect the real-time ordering of operations. Lock-freedom and wait-freedom are two

different kinds of non-blocking algorithms that guarantee at least one or all threads make progress

in a finite amount of time, respectively. These algorithms are free from common pitfalls associated

with locking such as deadlock, livelock, and priority inversion, by definition. Wait-free algorithms

are also starvation-free, by definition.

We deliver a hash map that provides both safety and high performance for multi-processor appli-

cations.

The hardest problem encountered while developing a parallel hash map is how to perform a global

resize, the process of redistributing the elements in a hash map that occurs when adding new

buckets. The negative impact of blocking synchronization is multiplied during a global resize,

because all threads will be forced to wait on the thread that is performing the involved process of

resizing the hash map and redistributing the elements. Our wait-free implementation avoids global

resizes through new array allocation. By allowing concurrent expansion this structure is free from

the overhead of an explicit resize, which facilitates concurrent operations.

The presented design includes dynamic hashing, the use of sub-arrays within the hash map data

structure [42]; which, in combination with perfect hashing, means that each element has a unique

final, as well as current, position. It is important to note that the perfect hash function required by

our hash map is trivial to realize as any hash function that permutes the bits of the key is suitable.

This is possible because of our approach to the hash function; we require that it produces hash

values that are equal in size to that of the key. We know that if we expand the hash map a fixed

number of times there can be no collision as duplicate keys are not provided for in the standard

semantics of a hash map. The aforementioned properties are used to achieve the following design

2

goals:

(a) Wait-free: a progress guarantee, provided by our data structure, that requires all threads to

complete their operations in a finite number of steps [30].

(b) Linearizable: a correctness property that requires seemingly instantaneous execution of every

method call; the point in time that this appears to occur is called a linearization point, which

implies that the real-time ordering of calls is retained [30].

(c) High performance: our wait-free hash map design outperforms, by a factor of 15 or more,

state of the art non-blocking designs. Our design performs a factor of 7 or greater faster than a

standard blocking approach.

(d) Safety: our design goals help us achieve a high degree of safety; our design avoids the hazards

of lock-based designs.

A limitation of non-blocking containers is a lack of support for composite operations, which pre-

cludes modular design and software reuse. For example, inserting an element into a lock-free

linked list, and incrementing a separate variable that stores the length of the linked list is not

possible without breaking linearizability, as most non-blocking data structures can only guarantee

atomic updates to a single memory word.The aforementioned composite operation could fail if two

threads concurrently insert elements at non-adjacent positions in the linked list, concurrently read

the size variable as ten, and then write the new value which they will both compute as eleven. The

trade-off between correctness and support for composite operations in non-blocking data structures

does not need to be made if the data structures are made transactional.

Implementing transactional containers has been the subject of several recent papers [17, 2, 26, 19,

18, 23, 39]. Transactional execution is essential for applications that require atomicity and isolation

for a series of operations such as databases and data analysis applications.In this paper, we discuss

3

data structure transactions, which are sequences of operations that are executed atomically on a

concurrent shared memory data structure. We require a transactional data structure to execute

transactions atomically, and in isolation. In this context, isolation means concurrent transaction

executions appear to take effect in some sequential order.

The straightforward way to implement a transactional data structure from a sequential container is

to use software transactional memory (STM) [53, 28]. An STM instruments memory accesses by

recording the locations a thread reads in a read set, and the locations it writes in a write set. If the

read/write sets of different transactions overlap, only one transaction is allowed to commit while

the other concurrent transactions are aborted and restarted. A drawback of STM is that the runtime

system that keeps track of read/write sets and detects conflicts can have a detrimental impact on

performance [3].

The inherent disadvantage of STM concurrency control is that low-level memory access conflicts

do not necessarily correspond to high-level semantic conflicts. For example, two insert operations

executed on a linked list would conflict even if they were different keys that were not in the list.

There would be a low-level conflict on the head node. Since these two operations commute, it is

feasible to execute them concurrently [4]. Commutative data structure operations are those which

have no dependencies on each other; reordering them yields the same abstract state of the container.

Existing concurrent linked lists employing lock-free or fine-grained locking synchronizations al-

low concurrent execution of the two operations. Nevertheless, these operations have a read/write

conflict and the STM has to abort one of them.

An alternative approach called lock-free transactional transformation (LFTT) [61] includes se-

mantic conflict detection that uses information about the data structures and which operations are

being executed, to prevent conflicting operations from unnecessarily causing transactions to abort.

The greatest advantage of using data structure transactions is that this semantic information is

4

available to be used to increase throughput. The biggest drawback of using LFTT is that it only

supports static transactions—it requires all operations to declare their operands at compile-time,

and a thread cannot execute any code between the operations of a transaction. LFTT needs a static

list of operations and operands at compile-time, because it has threads help each other complete

pending operations before starting new ones; this is how LFTT guarantees system-wide progress.

This limitation restricts the applicability of LFTT to small applications whose inputs are known

at compile-time. For example, the following code snippet could not be executed by LFTT. LFTT

would need to transform this code into a list of operands and operations, but result is unknown,

and operations cannot be executed conditionally.

i f (! l i s t . f i n d (key)) {

r e s u l t = . . . / / some c o m p u t a t i o n

l i s t . i n s e r t (r e s u l t) ; }

We present Dynamic Transactional Transformation (DTT), a framework for transforming non-

blocking data structures into containers that support dynamic transactions, which allow operands

to be generated at runtime rather than compile-time, and threads can execute code between the

operations of a transaction. Our approach is applicable to the large class of linked data structures

that implement the set and dictionary abstract data types. We apply DTT to create a library of data

structures from five existing lock-free data structures. After transformation we obtain dynamic

transactional versions of a linked list [20], a skip list [14], an MDList [60], a dictionary [59], and

a binary search tree [33]. Lock-free transactional versions of the linked list and skip list were

presented as a proof of concept in [61].

Our library leverages traditional non-blocking data structure designs so that developers can write

transactional programs without knowledge of the underlying algorithms for wait-free progress or

transaction synchronization. The library is linearizable, because the linearizability correctness con-

5

dition is composable, and each of the containers is linearizable. In addition to providing multiple

transactional data structures, our library enables the composition of transactional data structures

within a single transaction.

Using the software design patterns (which we call templates) in Section 30, developers can imple-

ment their own dynamic transactional containers and extend the library with them. Our evaluation

shows that our approach performs on par with its static transactional counterpart, while providing

the benefits of dynamic transaction support, a stronger progress guarantee, and transactions among

multiple containers. There is less than a one percent difference when averaged over all tested

scenarios, and our approach is 3 times faster than STM.

Another drawback of LFTT is that its applicability is limited to linked data structures. To address

this limitation, we implement a transactional vector that stores elements contiguously in a two-level

array. We add a global descriptor to synchronize operations that modify the size of the vector.

This work makes the following contributions:

• We present the first wait-free hash map. Our design outperforms, by a factor of 15 or more,

state of the art non-blocking designs. Our design performs a factor of 7 or greater faster than

a standard blocking approach.

• We adapt LFTT to support map data structures. We implement a transactional hash map.

• We introduce the first methodology that provides dynamic lock-free data structure transac-

tions, which we call Dynamic Transactional Transformation. Our approach allows devel-

opers to transform existing lock-free data structures into containers that support dynamic

transactions, which allow code to be run between operations, and operations do not need

to be known in advance. We provide templates for this approach which guide a software

engineer through the transformation process.

6

• We add support for wait-freedom to DTT, so lock-free containers can be transformed into

wait-free transactional versions.

• We propose an extension to DTT that allows any transaction to perform operations on multi-

ple data structures. Users of our library can develop non-blocking programs without having

to write a specialized transactional operation for every combination of atomic updates to

every container.

• We apply our extended version of DTT to create a library of five wait-free transactional

data structures, three of which have no prior transactional counterparts. With this library, a

developer can write transactional programs without knowledge of the underlying algorithms

for wait-free progress or transaction synchronization.

• We extend LFTT by adapting it to support contiguous data structures. We implement a

transactional vector.

All of the above has been or will be released as open source software.

The pseudocode convention used in this document is XX.Y Y.ZZ, where XX is the chapter num-

ber, Y Y is the algorithm number within the chapter, and ZZ is the line number. All figures are

also numbered within their chapter.

The rest of the dissertation is organized as follows. Chapter 2 describes background information

and related work. Chapter 3 discusses the design and implementation of the wait-free hash map.

Chapter 4 presents the dynamic transactional transformation methodology. Chapter 5 provides

details on the non-blocking transactional hash map. Chapter 7 explains our experimental setup

and shows our results. Chapter 8 is the conclusion, and future work. Finally, the Appendices

contain correctness proofs for the wait-free hash map (Appendix A), DTT (Appendix B), and the

transactional hash map (Appendix C).

7

This dissertation interpolates content from three papers by the author [40], [41], [62]. Chapter 3

includes content from [40], coauthored with Steven Feldman and Damian Dechev. Chapter 4

is based on [41], coauthored with Lance Lebanoff, Christina Peterson, Deli Zhang, and Damian

Dechev. Finally, Chapter 5 uses material from [62], coauthored with Deli Zhang, Lance Lebanoff,

and Damian Dechev. Some material from each of these papers has been used in this introductory

chapter, and the following chapter.

8

CHAPTER 2: BACKGROUND

As defined by Herlihy et al. [30] [31], a concurrent object is lock-free if it guarantees that some

process in the system makes progress in a finite number of steps. An object that guarantees that

each process makes progress in a finite number of steps is defined as wait-free [30]. By applying

atomic primitives such as CAS, non-blocking algorithms, including those that are lock-free and

wait-free, implement a number of techniques such as optimistic speculation and thread collabora-

tion to provide for their strict progress guarantees. As a result of these requirements, the practical

implementation of non-blocking containers is known to be difficult.

DTT is built on lock-free transactional transformation (LFTT) [61]. LFTT provides a framework

that allows a developer to transform a non-blocking container into a lock-free transactional con-

tainer. LFTT adds a new code path to the data structure that synchronizes transactions. In [1],

the cooperative technique is presented, which is essential to LFTT’s transactional synchronization.

This technique is based on the observation that multiple threads can work together if they all “write

down exactly what they are doing,” in a descriptor. The descriptor contains the information nec-

essary for other threads waiting on a transaction to help it finish before attempting to begin their

own transactions. By ensuring all threads work together to finish pending operations before begin-

ning new ones, system-wide progress is guaranteed, as specified by the definition of lock-freedom.

Note, throughout the paper we refer to line number X of algorithm Y as Y.X .

We list the data type definitions for LFTT in Algorithm 2.1. LFTT adds a new field to the nodes

stored by the base lock-free data structure, info, as seen in NODE. NODEINFO stores desc, a

reference to the shared transaction descriptor, and an index opid, which provides a record of the

last access. The LFTT transaction descriptor, DESC, contains three variables. LFTT keeps track of

the status of a transaction in status. The type of operation that is being executed and its operands

9

are kept in an array called ops, and its length, size, is also stored. Given a node n, we can

identify the most recent operation that accessed the node as n.info.desc.ops[n.desc.opid]. A node

is considered active when the last transaction that accessed the node had an active status, this is

expressed as n.info.desc.status = Active. Our transaction descriptor stores all of the necessary

context for helping finish a delayed transaction, and it shares the transaction status among all nodes

participating in the same transaction.

In LFTT, descriptors need to store the keys of every operation in a transaction so that conflicts

can be detected if concurrent transactions attempt to operate on the same node. Since descriptors

must contain all operands before a transaction begins execution, the user cannot execute any code

in between the operations of a single transaction. Dynamic transactions lift this restriction, which

allows developers to write applications that use transactional data structures in a way similar to

STM programs, but without the drawbacks, such as, high overhead and excessive aborts due to

false conflicts. Our approach preserves LFTT’s semantic conflict detection.

The EXECUTEOPS function, detailed in Algorithm 4.3, is the entry point for transactional exe-

cution in LFTT. Since a transaction may be helped at any point during the execution, the opid

parameter indicates the operation to start at in the transaction. If at any point in the transaction

one of the operations fails, the transactional execution will halt and the descriptor status will be

updated by CAS to ABORTED. If all operations in the transaction successfully complete, then the

descriptor status will be updated by CAS to COMMITTED.

The ISNODEPRESENT function, shown in Algorithm 2.2, determines if a node with a specific

key exists in the container. This function is called prior to starting an operation. If the node

exists, then the thread checks the status of the transaction descriptor at that node. If there is an

active transaction, operating on that node, then the thread that identified the conflict must follow

the procedure to update the node’s information, detailed in Algorithm 2.3. Prior to updating the

10

node information, the calling thread will help complete the transaction associated with the node in

conflict on line 2.3.7. Upon completing the transaction, the existence of the desired key is logically

interpreted by the ISKEYPRESENT function of Algorithm 2.2. If the last transaction that accessed

a node was a committed INSERT, then the key is present. If the last access was by an aborted

transaction that attempted an INSERT, then it should appear as though the key was not inserted.

For example, if the key is searched for, false is returned. Even though the key is present physically,

there is a node linked in the data structure that contains the key, it is not logically present. This

logical interpretation allows the effects of an aborted transaction to appear to have been undone,

thus preventing the need for a physical rollback.

Nodes are logically deleted, until a transaction commits at which point they may be physically

deleted. We employ the pointer marking technique described by Harris [21] to designate logically

deleted nodes using a flag called Mark. The Mark flag is set to true by setting the least significant

bit of the info pointer.

Conflicts occur when separate transactions contain non-commutative method calls. LFTT’s help-

ing scheme requires threads to help other transactions complete, if the threads need to operate on

the same key. This helping mechanism is vulnerable to livelock if two threads access two of the

same nodes in the opposite order. In order to detect and recover from livelock, each thread main-

tains a local help stack that contains pointers to transaction descriptors. Each thread must push

the descriptor onto the help stack prior to starting a transaction, and will pop the descriptor from

the help stack upon completing the transaction. A duplicate descriptor in the help stack indicates

a cyclic dependency, in which the thread that detects the dependency will abort the transaction

associated with the duplicate descriptor. In addition to preventing livelock, the helping mechanism

reduces the number of aborts due to node access conflict to near zero. It is possible that a helping

thread could be suspended just after it helps another transaction complete, and then be forced to

help another transaction when it resumes. This situation could occur infinitely often, and cause the

11

thread to starve, which limits the progress guarantee of LFTT data structures to lock-free at best.

We discuss how we support wait-freedom, which implies starvation-freedom, in Section 19.

Algorithm 2.1: Type Definitions

1 enum TxStatus
2 Active;
3 Commited;
4 Aborted;

5 enum OpType
6 Insert;
7 Delete;
8 Find;

9 struct Operation
10 OpType type;
11 int key;

12 struct Desc
13 int size;
14 TxStatus status;
15 Operation ops[];

16 struct NodeInfo
17 Desc* desc;
18 int opid;

19 struct Node
20 NodeInfo* info;
21 int key;
22 ...

Algorithm 2.2: Logical Status
1 Function IsNodePresent(Node* n, int key)
2 return n.key = key

3 ;
4 Function IsKeyPresent(NodeInfo* info, Desc*desc)
5 OpType op← info.desc.ops[info.opid];
6 TxStatus status← info.desc.status ;
7 switch status do
8 case Active do
9 if info.desc = desc then

10 return op = Find or op = Insert ;

11 else
12 return op = Find or op = Delete ;

13 case Committed do
14 return op = Find or op = Insert ;
15 case Aborted do
16 return op = Find or op = Delete ;

12

Algorithm 2.3: Update NodeInfo
1 Function UpdateInfo(Node* n, NodeInfo* info, bool wantkey)
2 NodeInfo* oldinfo← n.info;
3 if ISMARKED(oldinfo) then
4 DO DELETE(n);
5 return retry

6 if oldinfo.desc 6= info.desc then
7 HELPTRANSACTION(oldinfo.desc)

8 else if oldinfo.desc, oldinfo.opid+ 1 then
9 return success

10 bool haskey ← ISKEYPRESENT(oldinfo) ;
11 if (!haskey and wantkey) or (haskey and !wantkey) then
12 return fail

13 if info.desc.status 6= Active then
14 return fail

15 if CAS(&n.info, oldinfo, info) then
16 return success

17 else
18 return retry

Related Work

Overview of Work Related to Non-blocking Data Structures

Research into the design of non-blocking data structures includes: linked-lists [22], [46];

queues [49], [56], [50]; stacks [25], [50]; hash maps [46], [50], [16]; hash tables [52]; binary search

trees [15], and vectors [8].

13

Hash Map

There are no pre-existing wait-free hash maps in the literature; as such, the related work that we

discuss consists entirely of lock-free designs. In [46], Michael presents a lock-free hash map that

uses linked-lists to resolve collisions; this design differs from ours in that it does not guarantee

constant-time for operations after a resize is performed [52] [46]. In [16], Gao et al. present an

openly-addressed hash map that is almost wait-free; it degrades in performance to lock-free during

a resize.

In [52], Shalev and Shavit present a linked-list structure that uses pointers as shortcuts to logical

buckets that allow the structure to function as a hash table. In contrast to our design, the work

by Shalev and Shavit does not present a hash map and it is lock-free. There was a single claim

of a wait-free hash map that appeared as a presentation by Cliff Click [5]; the author now claims

lock-freedom. Moreover, the work by Click was not published. A popular concurrent hash map

that is part of Intel’s Threading Building Blocks (TBB) [34] library is claimed to be lock-free, but

is also unpublished.

Vector

The design of our transactional vector is based on the two-level arrays used in [8]. Dechev et al.

present the first lock-free vector in the literature. Their design uses descriptor objects to synchro-

nize updates to the vector in a linearizable manner. The design in [8] does not support transactions

or bounds-checking.

In [57], the authors modify the vector in [8], by adding a lock-free version of flat combining. Flat

combining [24], batches operations together, which allows for performance gains. These batches

are similar to transactions, except they are only executed by a single thread. The batches are also

14

dissimilar from transactions, because the user cannot decide which operations are included in a

batch, the batches are created by the flat combining algorithm.

In [13], the authors discuss an implementation of a wait-free vector that uses a software multi-word

compare-and-swap operation to provide a vector with an API that is more similar to that of the C++

STL vector. Feldman et al. provide another benefit over [8], bounds-checking; we also support

bounds-checking in our vector.

Overview of Work Related to Transactional Data Structures

Significant research has been devoted to non-blocking linked data structures [21, 43, 58, 47] be-

cause their distributed memory layout provides data access parallelism and scalability under high

levels of contention. Both STM and hardware transactional memory (HTM) are considered as po-

tential candidates for achieving the atomicity required for non-blocking data structure operations.

Transactions on a data structure by traditional methods involve executing all shared memory ac-

cesses in coarse-grained atomic sections. High-level conflict detection approaches [26, 39, 2] avoid

false conflicts due to low-level accesses, but the performance degrades to coarse-grained locking

in the presence of non-commutative operations. DTT overcomes these challenges by performing

high-level conflict detection while providing the strongest progress guarantee of wait-freedom, in

addition to supporting multi-container transactions and dynamic transactions.

Transactional Memory

Transactional memory, initially proposed as a set of hardware extensions by Herlihy and Moss [29],

was intended to facilitate the development of lock-free data structures. The potential for advancing

concurrent programming led to the development of Intel’s Haswell microarchitecture, which offers

15

support for HTM. However, HTM’s cache-coherency based conflict detection causes transactions

to be vulnerable to spurious failures during page faults and context switches [9]. Under Intel’s pro-

posed solution, the performance of applications that frequently encounter data access conflicts will

degrade to coarse-grained locking. These shortcomings make HTM undesirable for data structure

implementations.

The first STM, proposed by Shavit et al. [53], is lock-free but only supports a static set of data

items. Herlihy et al., later presented DSTM [28] that supports transactions for dynamic-sized data

structures and guaranteed the weaker progress guarantee of obstruction-freedom [27]. Since STM

detects conflicts at the granularity of read and write accesses, excessive aborts due to frequent

accesses on a data structure such as the head node substantially limit concurrency. In order to

deliver high-performance large-scale transactional applications, DTT enables transactions com-

prising multiple data structures that do not suffer from performance degradation due to low-level

conflicts. We leverage knowledge of each data structure in our presented library to detect con-

flicts only on non-commutative operations and enact a cooperative transaction execution, which

eliminates false conflicts and significantly reduces aborts.

Spiegelman, et al. [54] propose an approach called Transactional Data Structure Libraries (TDSL)

that collects a read-set and write-set for a transaction in a way similar to STM. For every write

operation, TDSL creates a write element that has a next field, a value and a boolean deleted field.

The write element is inserted into the write set at the time an operation is performed. When a

transaction is ready to commit, it locks the nodes in the write-set, and then it validates that all

nodes in the read-set are unchanged by checking their version numbers. It then proceeds to update

the nodes in the write set by changing their next field, value, and deleted field according to the

write element that is mapped to the node in the write set. While this approach eliminates rollbacks,

any data structure that it is applied to cannot guarantee lock-freedom or wait-freedom due to the

locks used for synchronization, unlike DTT. Also, as multiple operations occur in a transaction,

16

the information stored in the next field of the write element may no longer be valid. This problem

surfaces when operations are performed on adjacent nodes. TDSL currently does not update write

elements when operations in the transaction may cause the write element information to change.

This causes some nodes to be linked to logically deleted nodes at commit time. An operation must

re-traverse the list if it encounters a logically deleted node, leading to a continuous re-traversal if

the deleted node is never physically removed from the list. We do not compare to their approach

due to the deadlock situation resulting from this continuous re-traversal.

Transactional Boosting

The penalty of aborted transactions due to conflicts has motivated semantic-based approaches that

propose to identify conflicts at a high-level [26, 39, 2, 23, 19, 18] which enables greater parallelism.

Since transactions that are semantically independent may have low-level memory access conflicts,

the transactions can proceed concurrently while using some other concurrency control protocol

to protect accesses to the underlying data structure. Transactional boosting [26] is a semantic-

based methodology for transforming linearizable concurrent data structures into transactional data

structures. If two operations commute, they are allowed to proceed concurrently using thread-

level synchronization within the operations; otherwise, their enclosing transactions need to be

synchronized.The base data structure is treated as a black box and the use of abstract locking

ensures that non-commutative method calls do not occur concurrently. For each operation in a

transaction that does not commute with an operation in a concurrent transaction, the boosted data

structure must acquire the abstract lock associated with the method. A transaction aborts if it

fails to acquire an abstract lock, and it performs a physical rollback by invoking the inverses of

operations which have already been executed. Our approach overcomes performance penalties

of invoking the inverse operations for aborted transactions by observing that the operations of

an aborted transaction need only appear to be undone. We instead perform a logical rollback by

17

inversely interpreting the status of a node, thus avoiding the overhead of a physical rollback.

Transactional boosting transforms non-blocking data structures into locking transactional data

structures. Boosting fails to preserve the non-blocking property, because locks are used for trans-

action-level synchronization. DTT provides the strongest progress guarantee of wait-freedom for

transaction-level synchronization. In contrast to transactional boosting, we provide a library of

containers for developers, so that they can start writing programs that use transactional data struc-

tures without being required to transform some first.

LFTT

Zhang et al. [61] present LFTT, a methodology for transforming high-performance lock-free linked

data structures into lock-free transactional containers. LFTT eliminates the overhead of physical

rollbacks by using logical rollbacks, which allow the effects of an aborted transaction to appear

to be undone through an inverse interpretation of the status of a node. Semantic knowledge of

the data structure is used to allow commutative operations to proceed concurrently in a lock-free

manner. Conflicts for non-commutative method calls are identified through the node-based conflict

detection. In order to reduce aborts due to conflicts, the thread that identifies a conflict will help

complete the transaction associated with the node of interest.

The key advantage of using DTT over LFTT is that dynamic transactions allow the user to Our

approach also provides wait-free progress which is essential for applications that operate under

strict deadlines, including hard real-time systems. Further, our approach allows the composition of

operations on multiple data structures within a single transaction. These capabilities are desirable

for large-scale database and data analysis applications.

18

CHAPTER 3: WAIT-FREE HASH MAP

Algorithms

In this section we define a semantic model of the hash map’s operations, address concerns related

to memory management, and provide a description of the design and the applied implementation

techniques. The presented algorithms have been implemented, in both ISO C and ISO C++, and

designed for execution on an ordinary, multi-threaded, shared-memory system; we require only

that it supports atomic single-word read, write, and CAS instructions.

Structure and Definition

Our hash map is a multi-level array which has a structure similar to a tree; this is shown in Fig-

ure 3.1. Our multi-level array differs from a tree in that each position on the tree could hold an

array of nodes or a single node. A position that holds a single node is a dataNode which holds

the hash value of a key and the value that is associated with that key; it is a simple struct holding

two variables. Since a dataNode is at least two memory words we cannot read it atomically, so

we must have a way to prevent interference with nodes that are being read or are otherwise in use;

we call our method of doing this, ”watching” (see Section 3). A dataNode in our multi-level array

could be marked. A markedDataNode refers to a pointer to a dataNode that has been bitmarked

at the least significant bit (LSB) of the pointer to the node. This signifies that this dataNode is

contended. An expansion must occur at this node; any thread that sees this markedDataNode

will try to replace it with an arrayNode; which is a position that holds an array of nodes. The

pointer to an arrayNode is differentiated from that of a pointer to a dataNode by a bitmark on the

second-least significant bit.

19

Our multi-level array is similar to a tree in that we keep a pointer to the root, which is a memory

array that we call head. The length of the head memory array is unique, whereas every other ar-

rayNode has a uniform length; a normal arrayNode has a fixed power-of-two length equal to the

binary logarithm of a variable called arrayLength. The maximum depth of the tree, maxDepth,

is the maximum number of pointers that must be followed to reach any node. We define current-

Depth as the number of memory arrays that we need to traverse to reach the arrayNode on which

we need to operate; this is initially one, because of head.

Our approach to the structure of the hash map uses an extensible hashing scheme; we treat the

hash value as a bit string and rehash incrementally [12]. We use arrayLength to determine how

many bits are necessary to ascertain the location at which a dataNode should be placed within

the arrayNode. The hashed key is expressed as a continuous list of arrayPow-bit sequences,

where arrayPow is the binary logarithm of the arrayLength; e.g. A − B − C − D, where A is

the first arrayPow-bit sequence, B is the next arrayPow-bit sequence, and so on; these represent

positions on different arrayNodes. These bit sequences are isolated using logical shifts. We use R

to designate the number of bits to shift right, in order to isolate the position in the arrayNode that

is of interest. R is equal to log2 arrayLength ∗ currentDepth. For example, in a memory array

of length 64 = 26, we would take R= 6 bits for each successive arrayNode.

The total number of arrays is bounded by the number of bits in the key (which is stored in a

variable called keySize) divided by the number of bits needed to represent the length of each array.

For example, with a 32-bit key and an arrayLength of 64, we have a maxDepth of 6, because

d32/ log2 64e = 6. This places no limit on the total number of elements that can be stored in the

data structure; the hash map expands to hold all unique keys that can be represented by the number

of bits in the key (even beyond the machine’s word size). We have tested with multiword keys,

such as the 20 bytes needed for SHA1. Neither an arrayNode nor a markedDataNode can be

present in an arrayNode whose currentDepth is equal to maxDepth, because no hash collisions

20

can occur there.

Figure 3.1: An illustration of the structure of the hash map.

Traversal

Traversing the hash map is done by performing a right logical shift on the hashed key to preserve

R bits, and examining the pointer at that position on the current memory array. If the pointer stores

the address of an arrayNode, then the currentDepth increases by one, and that position on the

new memory array is examined.

21

0 0-0-0

1

63 1-3-63

0
2-0-1

3

1 3-1-1

2 3-2-1
0
1-3-0

1 null

3 null

2 2-3-1

...

Figure 3.2: An example of data stored in the hash map (values not shown).

We discuss the traversal of the hash map using Figure 3.2 as an illustration of this process. In our

example, the arrayNodes have a length of four, which means that exactly two bits are needed to

determine where to store our dataNode on any particular arrayNode, except for head which has

a larger size than every other arrayNode (see Section 3). The hashed key is expressed as a finite

list of two-bit sequences e.g. A− B − C, where C is the first three-bit sequence, and so on; these

sequences represent positions at various depths.

For example, if we need to find the key 0-4-2, in the hash map shown in Figure 3.2, then we first

need to hash the key. We assume that this operation yields 2-3-1. To find 2-3-1 we first take the

right-most set of bits, and go to that position on head. We see that this is an arrayNode, so we

take the next set of bits which leads us to examine position 3 on this arrayNode. This position is

also an arrayNode, so we take the next set of bits which equal 2, and examine that position on this

arrayNode. That position is a dataNode, so we compare its hashed key to the hashed key that we

are searching for. The comparison reveals that the hash values are both equal to 2-3-1, so we return

22

the value associated with this dataNode.

Main Functions

In this section we provide a brief overview of the main operations implemented by our hash map.

Unless otherwise noted, all line numbers refer to the current algorithm being discussed. In other

sections of the paper, the main functions are referred to by the first letter of the function name

followed by the line number of interest; supporting functions are referred to by their full name.

In all algorithms, local is the name of the arrayNode that an operation is working on and pos is

the position on local that is of interest. The variable failCount is a thread-local counter that is

incremented whenever a CAS fails and the thread must retry its attempt to update the hash map.

Instances of this variable are compared to the maxFailCount which is a user-defined constant used

to bound the maximum number of times that a thread retries an operation after a CAS operation

fails. If this bound is reached, then an expansion is forced at the position that the failing operation

is attempting to modify.

The CAS operation that we use is part of C++11; the function that we use returns the value that

the memory address held before the execution of the operation. If our functions are implemented

in a system that does not have a sequentially consistent memory model, then memory fences are

needed to preserve the relative order of critical memory accesses [46].

Algorithm 1 - insert (key, value)

The insert function is used to insert a key-value pair into the hash map. The function returns true

if the key is not in the hash map, and false if the key is already there; this allows us to prevent the

user from performing unintended overwrites of elements in the hash map. We provide an update

23

operation for the case wherein a user would like to change the value that is associated with a key

that is already in the hash map (see Section 3).

An insert operation traverses the hash map as described in Section 3 until it finds a position that is

null or that contains a dataNode. If the position is null, then a CAS is performed; this is shown on

line 13. If the CAS is successful, then the function returns true. If a dataNode whose key matches

the key that is being inserted, is encountered during the traversal, then the function returns false. If

it is a dataNode whose key is different, then the thread calls expandMap at the position (resolving

the hash collision); if the expansion is successful, then the thread continues its traversal from the

new arrayNode that was added.

If the CAS at line 13 failed, then the CAS operation has returned either a dataNode or an arrayN-

ode. If an arrayNode was returned, then the thread continues traversal from the arrayNode. If the

result is a dataNode whose key matches the key that is being inserted, then the function returns

false; if it does not match, then it calls expandMap at the position.

If a call to expandMap fails, then the failCount is incremented and the return value is examined.

If failCount equals maxFailCount, then an atomic bitmark is placed on the contents of local at

pos, and expandMap is called. When expandMap returns, the thread continues traversal from the

arrayNode that is guaranteed to be returned (see Section 3). For this situation to arise, the position

that this thread wants to insert into must be highly-contended, so new arrayNodes are added until

the thread can insert without interference from another thread.

The linearization point of this operation, when it returns true, is the CAS on line 13. The same

CAS is one of the linearization points when the function returns false, the other two are the atomic

reads on lines 8 and 23.

24

Algorithm 3.1 insert key, value
1: hash=hashKey(key);
2: local=head;
3: for int r=0; r <keySize−arrayPow;r+=arrayPow do
4: pos=hash&(arrayLength−1);
5: hash=hash>>arrayPow;
6: failCount=0;
7: node=getNode(local,pos);
8: while true do
9: if failCount>maxFailCount then

10: node=markDataNode(local,pos);
11: if node==null then
12: insertThis=allocateNode(value,hash);
13: if (node=CAS(local[pos],null, insertThis))==null then
14: watch(null);
15: return true;
16: else
17: free(insertThis);
18: if isMarked(node) then
19: node=expandMap(local,pos,r);
20: if isArrayNode(node) then
21: local=node;
22: break;
23: else
24: watch(node);
25: node2=getNode(local,pos)
26: if node != node2 then
27: failCount++;
28: node=node2;
29: continue;
30: else if node−>hash == hash then
31: watch(null);
32: return false;
33: else
34: node=expandMap(local,pos,r);
35: if isArrayNode(node) then
36: local=node;
37: break;
38: else
39: failCount++;
40: free(insertThis);
41: watch(null);
42: pos=hash&(arrayLength−1);
43: currValue=local[pos];
44: if currValue == null then
45: return (CAS(local[pos],null, value)==null);
46: else
47: return false;

Algorithm 2 - Update (key, expectedValue, newValue)

The update function is used to update the value associated with a key that is present in the hash

map. This function takes three arguments: the first is the key whose value we would like to

update, called key; the second is the value that we expect to be associated with this key, called

expectedValue; and the third is the value that we would like to associate with this key, called

25

newValue. The update function returns true, if it successfully replaces a dataNode whose key

and value matches the key and expectedValue of this operation. If the key is not present in the

hash map, or if the key’s associated value does not match expectedValue, then the function returns

false. In order to reason about the results of a failed CAS operation we require expectedValue to

be different from newValue.

The update operation traverses the hash map as described in Section 3, until it finds a position

that is null, or that contains a dataNode. If a markedDataNode is found during the traversal, then

expandMap is called and the thread continues its traversal. If it is a dataNode whose key matches

the one being updated, and the value in the dataNode matches expectedValue, then a CAS is

performed which replaces the current dataNode with one containing newValue.

If the CAS fails, then the return value is examined. If it is a marked version of the node that the

CAS attempted to replace, then the thread calls expandMap and continues its traversal. If the value

returned is an arrayNode, then the thread continues its traversal. An arbitrary dataNode, null, or

a dataNode whose key and value matches could have been returned as well; the first two indicate

that the operation should return false. The return of a dataNode whose key and value matches may

seem like a successful result; however, it is actually an indication that we may be experiencing the

ABA problem. The reasoning is that because we placed the constraint that expectedValue may

not be equal to newValue, then there must have been a state where the key was not present, or the

value associated with the key did not match expectedValue in order for the CAS to have failed,

so we return false in this case. If the traversal is completed without finding a dataNode with a

key-value pair that matches key and expectedValue, then the function returns false.

There are several linearization points. Two of these are the atomic reads in the calls to getNode

at lines 7 and 19; another two of these are the CAS operations at lines 37 and 54. If update

returns true, then it linearizes upon the return of the appropriate CAS operation. If any of the four

26

lines returns null or a pointer to a dataNode whose key and value does not match the key and

expectedValue of this operation, causing update to return false, then it is at that point that the

operation linearizes. The third point occurs when a failed CAS operation returns a pointer to a

dataNode whose key and value matches the expected, then the linearization point is between the

atomic read in getNode and the the completion of the CAS operation. There must have been a

state when either the key was not in the map, or the value associated with the key did not match

expectedValue, and it is at this state that the operation linearizes.

In the worst case, this operation requires expandMap to be called until maxDepth is reached, at

which point it is not possible for there to be any more expansions, by definition of maxDepth and

the constraints on the hash function. Therefore, at this point, the thread will be able to finish its

operation with a single CAS or atomic read.

Algorithm 3 - get (key)

The get operation traverses the hash map as described in Section 3, until it finds a position that is

null, or that contains a dataNode. If it is a dataNode whose key matches, then the value associated

with the key is returned; otherwise, null is returned.

The point at which this operation linearizes is the atomic read in the call to getNode (see lines 7

and 17). If a dataNode is read, then this thread must announce that it is about to read the node, by

calling the watch function. If the value changed between the read and the call to watch, then the

thread retries. If it retries more than maxFailCount times, then the thread will mark the address

as highly-contended and force an expansion; the number of times that this can occur is equal to

maxDepth. If maxDepth is reached, then the thread can no longer read dataNodes, only null or

values, as such the thread simply returns the value that it reads at this level (see Section 3).

27

Algorithm 3.2 Update key, expectedV alue, newV alue

1: hash=hashKey(key);
2: local=head;
3: result=false;
4: for int r=0; r<keySize−arrayPow;r+=arrayPow do
5: pos=hash&(arrayLength−1);
6: hash=hash>>arrayPow;
7: node=getNode(local,pos);
8: if isArrayNode(node) then
9: local=node;

10: else if isMarked(node) then
11: local=expandMap(local,pos,r);
12: else if node==null then
13: break;
14: else
15: watch(node);
16: if node != getNode(local,pos) then
17: failCount=0;
18: while node != getNode(local,pos) do
19: node=getNode(local,pos);
20: watch(node);
21: failCount++;
22: if failCount>maxFailCount then
23: markDataNode(local,pos);
24: local=expandMap(local,pos,r);
25: break;
26: if isArrayNode(node) then
27: local=node;
28: continue;
29: else if isMarked(node) then
30: local=expandMap(local,pos,r);
31: continue;
32: else if node==null then
33: break;
34: if node−>hash == hash then
35: if node−>value != expectedValue then
36: break;

insertThis=allocateNode(newValue,hash);
37: if (node2=CAS(local[pos],node,insertThis))==node then
38: result= true;
39: break;
40: else
41: free(insertThis);
42: if isArrayNode(node2) then
43: local=node2;
44: else if isMarked(node2)∧unmark(node2)==node then
45: local=expandMap(local,pos,r);
46: else
47: break;
48: else
49: break;
50: if r ¿= keySize−arrayPow then
51: pos=hash&(arrayLength−1);
52: currValue=local[pos];
53: if currValue == expectedValue then
54: result= (CAS(local[pos], expectedValue, newValue) == expectedValue);
55: else
56: result=false;
57: else if result then
58: safeFreeNode(node);
59: watch(null);
60: return result;

28

Algorithm 3.3 get key
1: hash=currHash=hashKey(key);
2: local=head;
3: result=null;
4: for int right=0;right<keySize−arrayPow;right+=arrayPow do
5: pos=hash&(arrayLength−1);
6: hash=hash>>arrayPow;
7: node= getNode(local,pos);
8: if isArrayNode(node) then
9: local=node;

10: else if node==null then
11: break;
12: else
13: watch(node);
14: if node != getNode(local,pos) then
15: failCount=0;
16: while node != getNode(local,pos) do
17: node=getNode(local,pos);
18: watch(node);
19: failCount++;
20: if failCount>maxFailCount then
21: markDataNode(local,pos);
22: local=expandMap(local,pos,r);
23: break;
24: if isArrayNode(node) then
25: local=node;
26: continue;
27: else if isMarked(node) then
28: local=expandMap(local,pos,r);
29: continue;
30: else if node==null then
31: break;
32: if node−>hash == currHash then
33: result=node−>value;
34: break;
35: if r ¿= keySize−arrayPow then
36: pos=hash&(arrayLength−1);
37: result=local[pos];
38: watch(null);
39: return result;

Algorithm 4 - remove (key, expectedValue)

The remove operation is nearly identical to the update operation, it can be treated as a specialized

version of update where the only difference is that instead of replacing a dataNode with another

dataNode, it replaces it with null. It has the same logic for determining when an operation returns

true or false, the same bound on the number of loop iterations, and the same linearization points.

29

Algorithm 3.4 remove key, expectedV alue

1: currHash=hash=hashKey(key);
2: local=head;
3: result=false;
4: for int r=0; r<keySize−arrayPow;r+=arrayPow do
5: pos=hash&(arrayLength−1);
6: hash=hash>>arrayPow;
7: node=getNode(local,pos);
8: if isArrayNode(node) then
9: local=node;

10: else if isMarked(node) then
11: local=expandMap(local,pos,r);
12: else if node==null then
13: break;
14: else
15: watch(node);
16: if node != getNode(local,pos) then
17: failCount=0;
18: while node != getNode(local,pos) do
19: node=getNode(local,pos);
20: watch(node);
21: failCount++;
22: if failCount>maxFailCount then
23: markDataNode(local,pos);
24: node=expandMap(local,pos,r);
25: break;
26: if isArrayNode(node) then
27: local=node;
28: continue;
29: else if isMarked(node) then
30: local=expandMap(local,pos,r);
31: continue;
32: else if node==null then
33: break;
34: if node−>hash == currHash then
35: if node−>value != expectedValue then
36: break;
37: if (node2=CAS(local[pos],node,null))==node then
38: safeFreeNode(node);
39: result= true;
40: break;
41: else
42: if isArrayNode(node2) then
43: local=node2;
44: else if isMarked(node2)∧unmark(node2)==node then
45: local=expandMap(local,pos,r);
46: else
47: break;
48: else
49: break;
50: if r ¿= keySize−arrayPow then
51: free(insertThis);
52: pos=hash&(arrayLength−1);
53: currValue=local[pos];
54: if currValue ==expectedValue then
55: result = (CAS(local[pos], expectedValue, null) == expectedValue);
56: else
57: result=false;
58: watch(null);
59: return result;

30

Algorithm 5 - expandMap (local, pos, right)

This function is used to expand the map when there is a hash collision. If the current value at pos

in local is marked, then it is guaranteed that when the function returns, the contents of pos in local

are an arrayNode that holds an unmarked version of the node that was there before.

First, expandMap reads the current value at pos. If it is not an arrayNode, then it allocates a new

one, calculates the position where the node that was there previously belongs on thearrayNode,

and sets the pointer at that position equal to the location of the node. Next, it uses a CAS to

attempt to replace that node with the arrayNode (see line 10). This function returns the allocated

arrayNode, if the CAS is successful; otherwise, it returns false.

The atomic read in the call to getNode on line 1 is the linearization point, if this operation returns

false; the CAS on line 10 is the linearization point, if this operation returns true.

An optimization that we use in the implementation is that if an operation is attempting to insert a

node that collides with a node that is currently in the map, then the expandMap algorithm creates

an arrayNode or a series of them, that contains both nodes, and then performs the CAS.

Algorithm 3.5 expandMap local, pos, right

1: node= getNode(local,pos);
2: watch(node);
3: if isArrayNode(node) then
4: return node;
5: if node !=(node2=getNode(local,pos)) then
6: return node2;
7: aNode=alloc(sizeof(arrayNode));
8: newPos=(node−>hash>>(right+arrayPow))& (arrayLength−1);
9: aNode[newPos]=node;

10: if (node2=CAS(local[pos]), node, aNode)) == node then
11: return aNode;
12: else
13: aNode[newPos]=null;
14: free(aNode);
15: return node2;

31

Memory Management

This section discusses the allocation and reuse of memory. When designing concurrent applica-

tions, choosing an appropriate memory management scheme is important, and the one chosen must

be thread-safe. As the standard memory allocator is blocking, special provisions must be made for

lock-free and wait-free programs. In order for the hash map to behave in a wait-free manner, the

user must choose a memory allocator that can manage memory in a wait-free manner [55].

Furthermore, this memory manager must be able to handle the ABA problem [7] correctly, because

this problem is fundamental to all CAS-based systems [48]. To prevent the ABA problem we

ensure that the values stored in the dataNode remain unchanged while any thread is using that

dataNode. Any update to the value associated with a key is done by replacing the dataNode that

is associated with that key with a new one with the same key. To achieve this we used Michael’s

ABA-free approach to safe memory-reclamation, called hazard pointers [48].

Hazard pointers work by having each thread announce the address of the memory it is about to

access [48]. In our algorithm each thread performs an atomic read at a position on an arrayNode

and if it is a dataNode, the thread writes the address of the dataNode to a global array. The thread

then checks to ensure that, between reading the dataNode and writing to the global array, the node

was not removed from that location. If it was removed, then the thread retries; this retrying is

what makes some other algorithms that use hazard pointers lock-free. In our algorithm we using

the atomic bitmark and expansion to bound the number of times a retry is attempted. In practice

retrying rarely occurs. Additionally, since values and not dataNodes are stored on the arrayNodes

located at max depth, there is no need to perform a hazard pointer read at max depth, and the value

read can be operated on without concern.

Michael’s hazard pointer implementation is wait-free if you can place a reference into the watched

32

address list in a wait-free manner. This consists of reading the contents of an address, storing the

value read into the global list, re-reading the contents, and comparing the two values to ensure that

they are the same. If they are different it must retry until they are the same. In most algorithms

this process is lock-free, because the number of times the algorithm must retry is not bounded.

That is not the case in our algorithm, because of how we use atomic bitmarks and the fact that an

arrayNode cannot be removed. The wait-free property of hazard pointers and the minor adjust-

ments made to implement this algorithm in our code mean that watch and safeFreeNode are both

wait-free (see [48]).

There are several existing approaches to wait-free memory management. An approach that in-

cludes wait-free memory allocation and reclamation is found in [55]. For testing purposes we use

the Lockless library [44] for lock-free memory allocation, and hazard pointers for wait-free mem-

ory reclamation as presented in [48]. To make the entire system wait-free, the user would have

to supply their own wait-free memory allocator as the system calls involved in the allocation of

memory are beyond the scope of this paper.

Algorithm 6 - watch (value)

This function uses a thread-local variable, threadID, and a global array, watchedNodes, to alert

other threads of the node a particular thread is using. Watching is done before any read or write

operations on the hash map. Each thread has a unique value form 0 to Threads as their threadID,

this corresponds to the position on the watchedNodes array where it stores the node that it is about

to use. For more information please review Section 3.

Algorithm 3.6 watch value

1: watchedNodes[threadID]=value;

33

Algorithm 7 - safeFreeNode (nodeToFree)

This function is used to ensure that memory is not freed while another thread is using it. It checks

the watchedNodes array for the address of nodeToFree, and if it is not present, then the node is

freed. If it is present, then the nodePool (a thread-local linked list that holds pointers to nodes that

we want to remove from the map, but cannot because they are in watchedNodes) is checked for

nodes that are no longer being used, if one is found then that node is freed and this node takes its

place in the nodePool. Otherwise, additional space is added for this node.

Algorithm 3.7 safeFreeNode nodeToFree

1: freeable=true;
2: for int i=0; i<Threads; i++ do
3: if i==threadID then
4: continue;
5: else if nodeToFree == watchedNodes[i] then
6: freeable=false;
7: break;
8: if freeable then
9: free(nodeToFree);

10: else
11: list=nodePool[threadID];
12: while list != null do
13: node=list−¿value;
14: freeable=true;
15: for int i=0; i<Threads; i++ do
16: if i==threadID then
17: continue;
18: else if node == watchedNodes[i] then
19: freeable=false;
20: break;
21: if freeable then
22: free(list−¿value);
23: list−¿value=nodeToFree;
24: return ;
25: else
26: list=list−¿next;
27: pNode=allocate();
28: pNode−¿next = list;
29: pNode−¿value=nodeToFree;
30: nodePool[threadID]=pNode;

Algorithm 8 - allocateNode (value, hash)

This function reuses nodes that have been stored in the nodePool; if no node is available, then a

new node is allocated. The thread first checks its thread-local nodePool for a node that is no longer

34

being referenced; if a node is found, then the thread returns a pointer to that node; otherwise, the

thread allocates a new node.

Algorithm 3.8 allocateNode value, hash

1: ppNode=pNode=nodePool[threadID];
2: node = null;
3: while pNode != null do
4: freeable=true;
5: for int i=0; i<Threads; i++ do
6: if i==threadID then
7: continue;
8: else if pNode−¿value == watchedNodes[i] then
9: freeable=false;

10: break;
11: if freeable then
12: if ppNode==pNode then
13: nodePool[threadID]=pNode−¿next;
14: else
15: ppNode−¿next=pNode−¿next;
16: node=pNode−¿value;
17: free(pNode);
18: break;
19: else
20: ppNode=pNode;
21: pNode=pNode−¿next;
22: if node == null then
23: node=allocate();
24: node−¿value=value;
25: node−¿hash = hash;
26: return node;

Supporting Functions

This section briefly describes the supporting functions referenced in the pseudocode of the preced-

ing algorithms.

Algorithm 3.9 getNode local, pos

1: res=&local[pos];
2: return res;

Algorithm 3.10 isMarked node

1: res=(node&0x1);
2: return res;

35

Algorithm 3.11 isArrayNode node

1: res=(node&0x2);
2: return res;

Algorithm 3.12 markDataNode local, pos

1: address=&local[pos];
2: res= atomic OR and fetch(address,0x1)
3: return res;

Algorithm 3.13 unmark node

1: res=(node — 0x1);
2: return res;

36

CHAPTER 4: DYNAMIC TRANSACTIONAL TRANSFORMATION

In this chapter, we provide a broad overview of our approach. Then, we provide an example of how

to use DTT. Finally, we describe the details of the implementation, and extensions for wait-freedom

and multi-container transactions.

Overview

Our goal is to design an algorithm that executes arbitrary side-effect free code within a trans-

action, while retaining the ability to undo any and all operations and code in between. We call

arbitrary side-effect free code, that is executed within a transaction, intra-transactional code. We

require intra-transactional code to be side-effect free so that conflicts can be avoided outside of data

structure operations, and the entire transaction can be rolled back without our approach requiring

semantic information about the code added to the dynamic transaction. In STM, all code within

a transaction is delineated using annotations that mark the beginning and end of the transactional

block of code. Since we already require users to treat their data structures as white boxes, we do not

place additional burdens on the user that are inherent in annotation languages, such as additional

compilation time to perform static analysis. We do not consider the use of a run-time system, as in

STM, because we aim to produce performance that is comparable to LFTT while supporting more

features. Instead we encapsulate calls to data structure operations of transactional containers, and

intra-transactional code, within a transactional function. A pointer to the transactional function is

stored in the transaction descriptor, since threads need to access each others transactional functions

in order to help complete their transactions.

Now that we have added transactional functions to our descriptor, we need to add support for them

37

to rest of the algorithm. This means that we need to synchronize the additional code that exists

between operations within a transaction. To synchronize this code, we must find a way to integrate

our new transactional functions to the helping scheme. In LFTT, a helping thread is allowed

to help a transaction starting from any of the transaction’s operations. Since the transactional

function may contain intra-transactional code that affects which operations are executed later in

the transaction, we must always start transactions from the beginning, even if the helped thread has

already performed some work on the transaction. This causes helping threads to perform duplicate

work. To reduce the amount of work that is duplicated, we maintain a list of return values in the

transaction descriptor. When a thread completes a data structure operation in a transaction, it stores

the return value in the list. This allows helping threads to avoid duplicate work by checking the

return values list before executing an operation, to possibly skip the operation and simply return

the previously calculated return value.

Since we now support transactional functions, we also need a way to get data into and out of these

functions. In LFTT, the user cannot specify variables other than the static list of operands for the

data structure operations, and the user cannot obtain the return values of data structure operations.

LFTT only returns true or false, to indicate the success of a specific data structure operation.These

return values are meant for internal use so that transactions can abort if any operations failed.

In DTT, the user creates an input map, which is a hash map containing variables that have been

defined outside of the transactional function that the user wants to use inside the transaction. Any

data structure could be used, but we choose a map because it allows the programmer to retrieve

values by name, within the transactional function. We store this input map into the transaction

descriptor so that helping threads can read these variables. Once we begin executing a transaction,

we copy the input map into a local map so that a thread can keep track of the values of these

variables throughout the execution of the transaction. We create the local map so that the variables

can be modified without interference from helping threads. To allow the user to access these

38

variables after the transaction has completed, we copy the final values of the variables from the

local map into an output map, which is stored in the transaction descriptor.

Using DTT

We now explain how a developer uses DTT to perform dynamic transactions.

In our library, transactional functions are restricted to those in which all shared memory accesses

occur through data structure calls, and all other instructions in the transaction must occur locally.

A user of DTT begins with a block of code and wants it to be executed atomically. The user then

transforms the block of code into two parts: a transactional function, and a library call.

Algorithm 4.1 shows an example of a block of code written for STM, where the transaction’s

start and end are marked by TX BEGIN and TX END, respectively. The transformed code using

our library is shown in Algorithm 4.2, including the corresponding library call and transactional

function. First, the user creates an input map and populates it with the variables that are needed

in the transaction (lines 4.2.2-4.2.3) Then the user calls the EXECUTETRANSACTION method to

run the transactional function (line 4.2.5). After the transaction completes execution, the user can

access variables from the output map (line 4.2.6). In the transactional function, data structure

calls are replaced with invocations of the CALLOP method, so that the library can handle these

operations behind the scenes (lines 4.2.9, 4.2.11, and 4.2.13). Accesses to variables that were

added to the input map are handled by accessing the local hash map (lines 4.2.8 and 4.2.10).

Implementation Details

We now explain the details of the library’s underlying methods that allow it to execute the user’s

transactional function.

39

Algorithm 4.1: Example of Original Code
1 Function OriginalCode()
2 int x← 3;
3 TX BEGIN();
4 T val← skiplist.FIND(x);
5 bool success← skiplist.INSERT(4, val);
6 if success = true then
7 skiplist.DELETE(5)

8 TX END();
9 PRINT(val);

Algorithm 4.2: Example of Transformed Code
1 Function Main()
2 HashMap* inputMap← new HashMap();
3 inputMap.PUT(”x”, 3);
4 HashMap* outputMap← Null;
5 EXECUTETRANSACTION(TxFunction, inputMap, outputMap);
6 PRINT(outputMap.GET(”val”));

7 Function TxFunction(Desc* desc, HashMap* localMap)
8 int x← localMap.GET(”x”);
9 T val← CALLOP(desc, skiplist, F ind, x);

10 localMap.PUT(”val”, val);
11 bool success← CALLOP(desc, skiplist, Insert, 4, val);
12 if success = true then
13 CALLOP(desc, skiplist, Delete, 5)

14 return success;

The EXECUTETRANSACTION function, shown in Algorithm 4.3, is a wrapper function. We modify

the corresponding method from LFTT by storing the transactional function, input map, and output

map into the transaction descriptor (lines 4.3.4-4.3.6). Then we call the HELPTRANSACTION

method, also shown in Algorithm 4.3.

The HELPTRANSACTION function is the entry point for transactional execution. Since threads

in DTT can recursively help multiple transactions, we maintain a thread-local help stack. In

line 4.3.13, we check for a cyclic dependency in the help stack. If so, we abort the transaction

40

(line 4.3.14). Otherwise, we can proceed by adding the current transaction to the thread’s help stack

(line 4.3.16). This procedure is inherited from LFTT to prevent the livelock situation described in

Section 2. Then we copy the data contained from the input map into the local map (line 4.3.17).

Copying to a local hash map allows threads to modify and maintain local values of variables in

the transactional function without interfering with the corresponding variables in other threads.

Then we invoke the transactional function (line 4.3.18). The transactional function contains data

structure operations encapsulated in CALLOP library method calls, along with intra-transactional

code. An example transactional function is shown in Algorithm 4.2. The use of a transactional

function in this way contrasts with LFTT, in which the thread would execute the transaction based

on a simple list of OPERATION objects, which would not support dynamic code paths. The transac-

tional function’s return value indicates whether or not it successfully executed all of its operations.

If so, we perform a COMPAREANDSWAP operation to change the transaction descriptor’s status

to Committed; otherwise we change the descriptor’s status to Aborted (lines 4.3.20-lines 4.3.20).

After the transaction has completed (whether by committing or aborting), we copy the data from

the local map into the output map if no other thread has done so yet (line 4.3.26). This allows the

user to extract values of local variables from the output map after the transaction has executed.

The CALLOP method, shown in Algorithm 4.4, calls a data structure operation. Before perform-

ing the operation, we check if the transaction has already been aborted in the case of a cyclic

dependency or failed operation, and if so, it can be skipped (line 4.4.3). In DTT, the help stack

is implemented such that it keeps track of the transactions that the thread is currently helping, as

well as the index of the current operation within each transaction. In the first step of CALLOP,

we obtain the index of the current operation from the help stack (line 4.4.4). In the next step,

we handle the problem of duplicate work, which is unique to DTT. LFTT avoids the problem of

duplicate work by allowing a helper thread to start the transaction from any operation, including

an operation in the middle of the transaction. However, DTT cannot employ this technique be-

41

Algorithm 4.3: Transaction Execution
1 thread local Stack helpstack;
2 Function ExecuteTransaction(Function* func, HashMap* inputMap, HashMap*

outputMap)
3 helpstack.INIT() ;
4 desc.func = func;
5 desc.inputMap = inputMap;
6 desc.outputMap = outputMap;
7 HELPTRANSACTION(desc) ;
8 return desc.status = Committed

9 ;
10 Function HelpTransaction(Desc* desc)
11 bool ret← true;
12 set delnodes;
13 if helpstack.CONTAINS(desc) then
14 CAS(&desc.f lag, Active, Aborted) ;
15 return
16 helpstack.PUSH(desc) ;
17 HashMap* localMap← COPY(desc.inputMap);
18 ret← desc.FUNC(desc, localMap);
19 helpstack.POP() ;
20 if ret = true then
21 if CAS(&desc.f lag, Active, Committed) then
22 MARKDELETE(delnodes, desc)

23 else
24 CAS(&desc.f lag, Active, Aborted)

25 if desc.outputMap does not exist then
26 desc.outputMap← COPY(localMap)

cause helper threads not only need to execute the data structure operations, but they also need to

execute the local intra-transactional code as well. Therefore, helper threads must always start at

the beginning of the transaction, which causes them to perform unnecessary work. To address this

problem, we store return values of completed operations in a return values list. At the beginning

of the CALLOP method, we check to see if the return values list contains an entry for the current

operation (line 4.4.5). If so, that means that another thread has already performed this operation, so

42

Algorithm 4.4: Call Operation
1 Function CallOp(Desc* desc, Container c, OpType type, args...)
2 if desc.status = Aborted then
3 return Null

4 int opid← helpstack.GETOPID();
5 if desc.returnV alues[opid] exists then
6 return desc.returnV alues[opid]

7 NodeInfo* info← new NodeInfo info.desc← desc, info.opid← opid;
8 Operation* op← new Operation(args);
9 desc.ops[opid]← op;

10 int ret;
11 if type = Find then
12 ret← c.FIND(desc, info, opid, args)

13 else if type = Insert then
14 ret← c.INSERT(desc, info, opid, args)

15 else if type = Delete then
16 ret← c.DELETE(desc, info, opid, args)

17 desc.returnV alues[opid]← ret;
18 helpstack.NEXTOP();
19 return ret

the current thread avoids duplicate work by simply returning the value from the return values list

corresponding to the current operation (line 4.4.6). Otherwise, the thread performs the operation.

As in LFTT, we create a NODEINFO object, which will be placed into the info field of the node is

being accessed. Then we create a new OPERATION object and place it into the transaction descrip-

tor’s ops list (line 4.4.9). This contrasts with LFTT in that LFTT requires the user to input a list of

pre-defined OPERATION objects at the start of the transaction. Instead, DTT requires the user to

input a transactional function, and each CALLOP method builds the list of operations dynamically

over the course of the transaction. Although DTT does not require a list of operations as input,

the ops list is still needed for the logical interpretation scheme inherited from LFTT, discussed

in Section 2. Then, we call the specific data structure operation specified from the transactional

function. After performing the operation, the thread stores the return value into the return values

43

list (line 4.4.17). Then any helping threads that encounter this operation in the future will be able

to observe that the work has already been done for this operation and skip it, as in line 4.4.3. Then,

the thread’s help stack is updated to increment the index of the current operation within the current

transaction (line 4.4.18).

Transactions Among Multiple Data Structures

Our methodology for transactions among multiple data structures adopts the node-based conflict

detection and logical rollback presented in LFTT.

A drawback of LFTT is that atomic operations among containers are not possible. An example

of the need for atomic operations with multiple data structures is moving elements between sets

without duplicates, with the restriction that elements not become inaccessible to other transactions

for any period of time. We need to remove an item from one set, and insert it into another in

what appears to be one indivisible step. We can achieve atomicity in this case by modifying

the transaction descriptor, so that each operation stores a reference to the container on which the

operation should be performed.

We add a container field to an operation, which stores a reference to the data structure that a

particular operation should be executed on. This information is added to every operation in a

transaction descriptor. Once all of the operations have been created, the EXECUTE function of

the transaction descriptor is called. The EXECUTE function is a wrapper function that calls the

EXECUTEOPS function of the data structure referenced by the container field.

44

Wait-free Transactions

To guarantee wait-freedom, we modify the transactional code path that LFTT adds to the base

data structure, by implementing the fast-path-slow-path approach [38]. As such, we limit the

number of retries for any data structure operation to a user-defined constant which can be tuned to

trade-off performance versus fairness. When the limit is reached the thread places their transaction

descriptor in a global table, called the announcement table, which other threads periodically check.

If a thread finds a transaction descriptor in the announcement table, then the thread helps execute

the other transaction’s operations regardless of whether or not that transaction’s operations conflict

with its own. Using the announcement table in conjunction with limiting the number of retries

yields a wait-free approach [38].

Wait-free Transactions - Pseudocode

We ensure wait-free progress for each operation within a transaction through our progress assur-

ance scheme, as shown in Algorithm 4.5. Let n be the number of threads in the system. An

announcement table of length n, shown on line 4.5.1, is maintained such that a delayed thread

ti may post a descriptor, a NODEINFO, at position i to alert the other threads that it needs help

completing an operation. Prior to starting an operation within a transaction, a thread will incre-

ment a delay counter delayCount. Once the delayCount reaches a constant HELP DELAY

operations on line 4.5.8, the thread will check the announcement table to determine if the thread

it is assigned to help has a pending operation. If the thread to be helped has posted a transaction

in the announcement table, the helping thread will execute the entire transaction starting from the

current operation id, shown on line 4.5.12. Upon completing the transaction or determining that no

help is required, the helpId is updated to the next thread to be helped on line 4.5.13 and the thread

will proceed to begin its own operation. Each thread is given MAX FAILURES attempts to

45

complete its operation in a lock-free manner, shown on line 4.5.26. After MAX FAILURES

attempts, a thread will post its transaction information in the announcement table on line 4.5.18

and continue to attempt to execute its own transaction. The transaction information is removed

from the announcement table when the transaction has either committed or aborted.

The progress assurance scheme guarantees wait-free progress because in a worst case scenario,

all threads will eventually reach a delayed thread’s transaction information in the announcement

table. In this case, all n− 1 threads will be assigned to complete the delayed thread’s transaction.

Since all threads are working towards completing the delayed thread’s transaction, all operations in

the transaction are guaranteed to be completed by some thread. If a conflict on a node is detected

while attempting to perform an operation, the thread that detected the conflict will help complete

the transaction associated with the node. While helping this conflicting transaction, a thread is still

required to check the announcement table according to the progress assurance scheme in order to

ensure wait-free progress in the presence of conflicts.

A Transactional Transformation Template

In this section, we will use the MDList as an example to introduce the methodology of transform-

ing non-blocking data structures into transactional containers. A multi-dimensional list (MDList)

partitions a linked list into shorter lists where each node contains multiple links to the child nodes

arranged according to the dimension.

The INSERT and DELETE operation commute if they access different nodes. The transformed

INSERT, detailed in Algorithm 4.6, checks if a node is present in the set on line 4.6.10. If the

node does not exist in the set, then no conflict is detected and the INSERT operation of the base

data structure is called on line 4.6.15. However, if the node does exist in the set, then a conflict is

detected and UPDATEINFO is invoked on line 4.6.11 in order to finish the transaction associated

46

with the node and logically interpret if the key exists in the set. If the key does not logically exist

in the set, the node’s transaction information is updated to the NODEINFO of the calling thread and

true is returned; otherwise, false is returned.

The transformed DELETE, detailed in Algorithm 4.8, checks if a node is present in the set on

line 4.8.10. If the node does not exist in the set, then DELETE returns fail on line 4.8.13. However,

if the node does exist in the set, UPDATEINFO is invoked on line 4.8.11 in order to finish the

transaction associated with the node and logically interpret if the key exists in the set. If the key

logically exists in the set, the node’s transaction information is updated to the NODEINFO of the

calling thread and true is returned; otherwise, false is returned.

The transformed FIND, similar to the INSERT of Algorithm 4.6, checks if a node is present in the

set.

The transformed FIND, in Algorithm 4.7, checks if a node is present in the set on line 4.7.10. If

the node does not exist in the set, then FIND returns fail on line 4.7.13. If the node exists in the

set, UPDATEINFO is invoked on line 4.7.11 in order to finish the transaction associated with the

node and logically interpret if the key exists in the set. Given that the key logically exists in the

set, the node’s transaction information is updated to the NODEINFO of the calling thread and true

is returned; otherwise false is returned. The templates for the transformed INSERT, DELETE, and

FIND are applicable to the MDList, dictionary, linked list, and skip list.

The dictionary, linked list, skip list, and binary search tree also provide the set operations INSERT,

DELETE, and FIND. They all use the same templates for the transformed versions of each of those

functions, as described above.

The base data structure of the dictionary is based on the node layout of the MDList, described

above. The linked list in DTT is a lock-free linked list that was presented by Harris [20]. The

47

skip list was published by Fraser [14]. The tree is a non-blocking binary search tree proposed by

Howley [33].

48

Algorithm 4.5: Progress Assurance Scheme
1 NodeInfo*[] announcementTable← new NodeInfo*[THREAD COUNT];
2 thread local int threadId;
3 thread local int delayCount← 0;
4 thread local int helpId← 0;
5 thread local int failures← 0;
6 ;
7 Function CheckForAnnouncement()
8 if delayCount = HELP DELAY then
9 delayCount← 0;

10 NodeInfo* info← announcementTable[helpId];
11 if info 6= null then
12 HELPTRANSACTION(info.desc, info.opid+ 1);

13 helpId← (helpId+ 1) mod THREAD COUNT ;

14 else
15 delayCount← delayCount+ 1;

16 ;
17 Function MakeAnnouncement(NodeInfo* info)
18 announcementTable[threadId]← info;
19 HELPTRANSACTION(info.desc, info.opid+ 1);
20 announcementTable[threadId]← NULL;

21 ;
22 Function ResetFailures()
23 failures← 0;

24 ;
25 Function HasReachedMaxFailures()
26 if failures = MAX FAILURES then
27 return true
28 else
29 failures← failures+ 1;
30 return false

49

Algorithm 4.6: Template for Transformed Insert Function
1 Function Insert(int key, Desc* desc, int opid)
2 NodeInfo* info← new NodeInfo;
3 info.desc← desc, info.opid← opid;
4 RESETFAILURES();
5 CHECKFORANNOUNCEMENT();
6 while true do
7 if HASREACHEDMAXFAILURES() then
8 MAKEANNOUNCEMENT();

9 Node* curr ← DO LOCATEPRED(key);
10 if ISNODEPRESENT(curr, key) then
11 ret← UPDATEINFO(curr, info, false)

12 else
13 Node* n← new Node;
14 n.key ← key, n.info← info;
15 ret← DO INSERT(n)

16 if ret = success then
17 return true
18 else if ret = fail then
19 return false

50

Algorithm 4.7: Template for Transformed Find Function
1 Function Find(int key, Desc* desc, int opid)
2 NodeInfo* info← new NodeInfo;
3 info.desc← desc, info.opid← opid;
4 RESETFAILURES();
5 CHECKFORANNOUNCEMENT();
6 while true do
7 if HASREACHEDMAXFAILURES() then
8 MAKEANNOUNCEMENT();

9 Node* curr ← DO LOCATEPRED(key);
10 if ISNODEPRESENT(curr, key) then
11 ret← UPDATEINFO(curr, info, true)

12 else
13 ret← fail

14 if ret = success then
15 return true
16 else if ret = fail then
17 return false

51

Algorithm 4.8: Template for Transformed Delete Function
1 Function Delete(int key, Desc* desc, int opid)
2 NodeInfo* info← new NodeInfo;
3 info.desc← desc, info.opid← opid;
4 RESETFAILURES();
5 CHECKFORANNOUNCEMENT();
6 while true do
7 if HASREACHEDMAXFAILURES() then
8 MAKEANNOUNCEMENT();

9 Node* curr ← DO LOCATEPRED(key);
10 if ISNODEPRESENT(curr, key) then
11 ret← UPDATEINFO(curr, info, true)

12 else
13 ret← fail

14 if ret = success then
15 del← curr;
16 return true
17 else if ret = fail then
18 del← NIL;
19 return false

20 ;
21 Function MarkDelete(set delnodes, Desc* desc)
22 for del ∈ delnodes do
23 if del = NIL then
24 continue
25 NodeInfo* info← del.info;
26 if info.desc 6= desc then
27 continue
28 if CAS(del.info, info, SETMARK(info)) then
29 DO DELETE(del)

52

CHAPTER 5: NON-BLOCKING TRANSACTIONAL HASH MAP

In this chapter, we demonstrate the application of our lock-free transactional transformation on

hash maps. Map data structures store keys and their associated values. Maps also provide an

update operation to change the value associated with a particular key, in addition to the insert, find,

and remove operations that are present in set data structures. To support map data structures we

add a VALUE field to the OPERATION and NODE structs present in Figure 2.1, and an UPDATE to

the OPTYPE enumeration.

The reason we make these changes to Algorithm 2.1 is to provide two different places to save a

node’s value, one in the node itself, and one in the node’s descriptor. We use these two locations

to preserve the current value of a node, and buffer pending updates in the node’s descriptor. This

allows FIND operations from the same transaction to return the correct VALUE, held in the descrip-

tor, if the transaction commits, without erroneously overwriting the value stored in the node by the

most recently committed transaction. If we use the FIND operation from Algorithm 4.7, we will

erroneously overwrite pending updates as the FIND operation will place its descriptor at a node,

overwriting the node descriptor of the active UPDATE operation. To solve this problem, we note

that the node descriptor of a FIND operation only needs to store the key that it is searching for, and

its operation type. In this case, the pending update can be preserved by copying its value from the

old node descriptor of the UPDATE operation to the node descriptor of the FIND operation which

is now placed at the node. In this way, the pending writes to a node’s value can be preserved

without overwriting the node’s current value, which would prevent inverse interpretation on trans-

action abort. This is an extension of logical status interpretation, as we choose a different VALUE

depending on whether or not the transaction is ABORTED, ACTIVE, or COMMITTED.

Our addition of value fields to the OPERATION and NODE structs in Figure 2.1 allows us to perform

53

logical status interpretation on key-value pairs, as we will be able to recover the previous value

associated with a key if an UPDATE operation is aborted. We propagate this change to ISKEYP-

RESENT by treating the UPDATE operation the same way we treat a FIND, as neither operation

changes the presence of a key.

To perform logical status interpretation of a key-value pair we implement an ISVALUEPRESENT

function as the UPDATE operation buffers writes to a node in the node’s descriptor until it commits.

The pseudocode for this function is presented in Algorithm 5.1. This function returns whether or

not the value present in the NODE should be treated as present; if not, the value in the NODEINFO

descriptor is used, because there is a pending update from the same transaction descriptor whose

buffered write is logically interpreted as the node’s value.

In the ISVALUEPRESENT function, INVALID represents a sentinel value that indicates a value

has not been set for a FIND operation. The semantics that we adhere to for a map data structure do

not allow the user to search for a specific key-value pair, instead the user searches for a key and the

matching value is returned. We use the VALUE field of a FIND operation to hold pending updates

buffered in a node’s descriptor which would otherwise be erroneously overwritten by FIND placing

its own NODEINFO descriptor at that node.

We copy the pending updates, which are buffered in a node’s descriptor, to the node in a lazy

fashion. Once the transaction with the pending updates is committed, the next FIND or UPDATE

operation that attempts to update the NODEINFO descriptor of that node will examine that node

descriptor in order to determine whether or not the last operation that was performed was a com-

mitted FIND or UPDATE. If it sees a FIND operation’s descriptor that holds a different valid VALUE

from the node’s current value, then the MAPUPDATEINFO algorithm will update the node’s value.

If the operation sees an UPDATE descriptor at the node, with any value other than that currently

stored in the node, then the operation copies the value stored in the descriptor to the node. Once

54

the operation completes the copy, it can perform its operation as usual. This copy preserves correct

semantics for all operations, as the old VALUE will be ignored by an INSERT or DELETE operation,

and a FIND or UPDATE operation uses the new value in the node’s VALUE field. The pseudocode

for the MAPUPDATEINFO algorithm is displayed in Algorithm 5.2. The lazy update of the node’s

value occurs in the if-then statement on line 5.2.17.

Algorithm 5.1: Logical Status for Maps
1 Function IsNodePresent(Node* n, int key)
2 return n.key = key

3 ;
4 Function IsKeyPresent(NodeInfo* info, Desc*desc)
5 OpType op← info.desc.ops[info.opid];
6 TxStatus status← info.desc.status;
7 switch status do
8 case Active do
9 if info.desc = desc then

10 return op = Update or op = Find or op = Insert;

11 else
12 return op = Update or op = Find or op = Delete;

13 case Committed do
14 return op = Update or op = Find or op = Insert
15 case Aborted do
16 return op = Update or op = Find or op = Find

17 ;
18 Function IsValuePresent(NodeInfo* info)
19 Operation op← info.desc.ops[info.opid];
20 if op.type == Update || op.type == Find && op.value! = INVALID then
21 return false;

22 return true;

As with the transactional linked list and skiplist, we encapsulate the base data structure’s methods

for locating, inserting, and deleting nodes. We describe the templates for each of the four canonical

map operations INSERT, DELETE, FIND, and UPDATE. The only change we make to the templates

for the INSERT, DELETE, and FIND operations as shown in Algorithms 4.6, 4.8, and 4.7 is that

55

we must set the VALUE field of the new node in an INSERT to the value that is associated with the

key. No other changes are necessary as these operations do not examine the value associated with

a key. Additionally, the underlying DO LOCATEPRED algorithm must search for a node using the

hashed key instead of the key itself. The template for the UPDATE function is similar to that of the

INSERT function (except we call MAPUPDATEINFO with TRUE as the final argument), since the

MAPUPDATEINFO function lazily updates the VALUE of a node.

56

Algorithm 5.2: Update NodeInfo for Maps
1 Function MapUpdateInfo(NodeInfo* info, bool wantkey)
2 NodeInfo* oldinfo← n.info;
3 if ISMARKED(oldinfo) then
4 DO DELETE(n);
5 return retry

6 if oldinfo.desc 6= info.desc then
7 EXECUTEOPS(oldinfo.desc, oldinfo.opid+ 1)

8 else if oldinfo.desc, oldinfo.opid+ 1 then
9 return success

10 bool haskey ← ISKEYPRESENT(oldinfo) ;
11 if (!haskey and wantkey) or (haskey and !wantkey) then
12 return fail

13 if info.desc.status 6= Active then
14 return fail

15 Operationop← info.desc.ops[info.opid];
16 Operation oldOp← oldinfo.desc.ops[oldinfo.opid];
17 if op.type == Update || op.type == Find then
18 if oldOp.value ! = node.value && oldinfo.desc.status ==

Committed && IsV aluePresent(oldinfo) then
19 n.value← oldOp.value;

20 if CAS(&n.info, oldinfo, info) then
21 if op.type == Find then
22 if oldOp.type == Update || (oldOp.type == Find && oldOp.value ! =

INV ALID) then
23 n.info.value← oldOp.value;
24 return n.info.value;

25 else
26 return n.value;

27 return success

28 else
29 return retry

57

CHAPTER 6: NON-BLOCKING TRANSACTIONAL VECTOR

In this chapter, we describe the extension of the original LFTT algorithm for contiguous data

structures, especially those with a single point of contention. The vector that we discuss is based

on the design in [8]. As such, we use a two-level array to grow the capacity of the vector without

needing to move elements during a resize operation.

LFTT resolves conflicts by detecting node-level conflicts. In the original LFTT paper this is all

described using the KEY field of a node. To preserve semantic conflict detection in an array, vector,

or another contiguous container that does not store key-value pairs it is sufficient to use any unique

identifier, such as the index of the element.

To synchronize transactions in a data structure that has a single point of contention, we must add

a global node to our transaction synchronization. A global node is identical to any other node

with regard to its structure, however we use the global node to synchronize all pushBack and

popBack operations. Any transaction that wants to perform a pushBack or popBack must place its

transaction descriptor not only in the node’s transaction descriptor pointer, but also in the global

node’s transaction descriptor pointer. The global node also stores a value that is equal to the

pending size, that is the size the vector will be if the current transaction succeeds. By storing

the pending size we allow multiple pushBack operations within the same transaction to complete

successfully.

Listings 6.1 and 6.2 display the code for the read and write operations which perform bounds-

checking before attempting their respective operations. After bounds-checking the traditional

LFTT semantic conflict detection, and helping process are executed. Listings 6.3 and 6.4 show

the pushBack and popBack operations that use our new global node to synchronize transactions

that use these operations. After helping any pending transactions, the pushBack operation attempts

58

to compare-and-swap its transaction descriptor into the global node. If successful, the new node

is created with a reference to the global node’s transaction descriptor, so that no concurrent read

or write operations can be executed on this node which has not yet been logically inserted. The

global node’s value is then updated by adding one to signify the new size if the transaction commits.

Listing 6.5 presents the size function which reads from the global node’s value if the transaction

executing the size operation is the same as the pending transaction that has its transaction descrip-

tor store in the global node. Otherwise, the size class variable is returned, which reflects the current

size based only on committed transactions.

As we are building on LFTT, we need only to show that the vector operations are linearizable. See

Appendix D for the proof of correctness.

i n l i n e R e t u r n F l a g Read
(u i n t 3 2 t pos , TxDesc∗ desc , TxInfo ∗ i n f o , u i n t 8 t op id)
{

whi le (t rue)
{

i f (g loba lNode−>i n f o−>desc == i n f o−>desc)
s i z e = globa lNode−>v a l ;

e l s e
s i z e = t h i s−>s i z e ;

i f (pos <= s i z e)
{

Node∗ c u r r = a t (pos) ;
TxInfo ∗ o l d C u r r I n f o = c u r r−>i n f o ;

F i n i s h P e n d i n g T x n (o l d C u r r I n f o , de sc) ;

i f (I s S a m e O p e r a t i o n (o l d C u r r I n f o , i n f o))
re turn RET SKIP ;

i f (I s K e y E x i s t (o l d C u r r I n f o))
{

TxInfo ∗ c u r r I n f o = c u r r−>i n f o ;

i f (desc−>s t a t u s != ACTIVE)
{

re turn RET FAIL ;
}

c u r r I n f o = CAS(& c u r r−>i n f o , o l d C u r r I n f o , i n f o) ;

59

i f (c u r r I n f o == o l d C u r r I n f o)
re turn RET OK ;

}
e l s e

re turn RET FAIL ;
}
e l s e

re turn RET FAIL ;
}

}

Listing 6.1: Transactional Vector Read

i n l i n e R e t u r n F l a g Push Back
(u i n t 6 4 t key , TxDesc∗ desc , TxInfo ∗ i n f o , u i n t 8 t op id)
{

whi le (t rue)
{

TxInfo ∗ o l d C u r r I n f o = globa lNode−>i n f o ;

F i n i s h P e n d i n g T x n (g loba lNode−>i n f o , de sc) ;

i f (I s S a m e O p e r a t i o n (g loba lNode−>i n f o , i n f o))
re turn RET SKIP ;

i f (desc−>s t a t u s != ACTIVE)
re turn RET FAIL ;

TxInfo ∗ c u r r I n f o = globa lNode−>i n f o ;

c u r r I n f o = CAS(& globa lNode−>i n f o , o l d C u r r I n f o , i n f o) ;

i f (c u r r I n f o == o l d C u r r I n f o)
{

Node∗ c u r r = a t (g loba lNode−>v a l) ;
c u r r−>i n f o = i n f o ;
c u r r−>v a l = key ;
g loba lNode−>v a l ++;

re turn RET OK ;
}

}
}

Listing 6.2: Transactional Vector Push Back

i n l i n e R e t u r n F l a g Wr i t e
(u i n t 3 2 t pos , u i n t 6 4 t va l , TxDesc∗ desc , TxInfo ∗ i n f o , u i n t 8 t op id)

60

{
u i n t 3 2 t s i z e = 0 ;

whi le (t rue)
{

i f (g loba lNode−>i n f o−>desc == i n f o−>desc)
s i z e = globa lNode−>v a l ;

e l s e
s i z e = t h i s−>s i z e ;

i f (pos <= s i z e)
{

Node∗ c u r r = a t (pos) ;
TxInfo ∗ o l d C u r r I n f o = c u r r−>i n f o ;

F i n i s h P e n d i n g T x n (o l d C u r r I n f o , de sc) ;

i f (I s S a m e O p e r a t i o n (o l d C u r r I n f o , i n f o))
re turn RET SKIP ;

i f (I s K e y E x i s t (o l d C u r r I n f o))
{

TxInfo ∗ c u r r I n f o = c u r r−>i n f o ;

i f (desc−>s t a t u s != ACTIVE)
re turn RET FAIL ;

c u r r I n f o = CAS(& c u r r−>i n f o , o l d C u r r I n f o , i n f o) ;

i f (c u r r I n f o == o l d C u r r I n f o)
re turn RET OK ;

}
e l s e

re turn RET FAIL ;
}
e l s e

re turn RET FAIL ;
}

}
Listing 6.3: Transactional Vector Write

i n l i n e R e t u r n F l a g Pop Back
(TxDesc∗ desc , TxInfo ∗ i n f o , u i n t 8 t op id)
{

whi le (t rue)
{

TxInfo ∗ o l d C u r r I n f o = globa lNode−>i n f o ;

F i n i s h P e n d i n g T x n (g loba lNode−>i n f o , de sc) ;

61

i f (I s S a m e O p e r a t i o n (g loba lNode−>i n f o , i n f o))
re turn RET SKIP ;

i f (desc−>s t a t u s != ACTIVE)
re turn RET FAIL ;

TxInfo ∗ c u r r I n f o = globa lNode−>i n f o ;

c u r r I n f o = CAS(& globa lNode−>i n f o , o l d C u r r I n f o , i n f o) ;

i f (c u r r I n f o == o l d C u r r I n f o)
{

i f (g loba lNode−>v a l != 0)
{

Node∗ c u r r = a t (g loba lNode−>v a l) ;
c u r r−>i n f o = i n f o ;
g loba lNode−>va l−−;

U p d a t e S i z e (i n f o , t rue) ;

re turn RET OK ;
}
e l s e

re turn RET FAIL ;
}

}
}

Listing 6.4: Transactional Vector Pop Back

i n l i n e R e t u r n F l a g S i z e
(TxDesc∗ desc , TxInfo ∗ i n f o , u i n t 8 t op id)
{

u i n t 3 2 t s i z e = 0 ;

i f (g loba lNode−>i n f o−>desc == i n f o−>desc)
s i z e = globa lNode−>v a l ;

e l s e
s i z e = t h i s−>s i z e ;

re turn RET OK ;
}

Listing 6.5: Transactional Vector Size

62

CHAPTER 7: PERFORMANCE EVALUATION

Wait-free Hash Map

We tested several algorithms against our wait-free implementation; we tested with two different

values for arrayLength, to show the space-time trade-off that this parameter represents. The val-

ues that we chose for the arrayLength were four (WaitFree-4) and six (WaitFree-6). As there are

no other wait-free hash maps in the literature we chose the best available lock-free maps as well

as a standard locking algorithm to test against. The locking solution that we include is the C++11

standard template library hash map protected by an optimized global lock (Lock-STL) [35]. The

lock-free algorithms, from the literature, that we compare against are Split-Ordered Lists (Split-

Ordered) [52] and Michael’s lock-free hash map (Michael) [46]. We use the freely available im-

plementations of Split-Ordered Lists and Michael’s hash map that are provided by the Concurrent

Data Structures library [36].

We also compare against two versions of Click’s hash map. The first version is provided by him,

and is written in Java (Click-Java) [5]. In order to avoid an unfair comparison by comparing

C/C++ implementations to Java code, we include the second version which is provided by nbds

(Click-C++) [10], and is written in C++. We also compare against Intel TBB’s implementation

(TBB) [34], because it is known to have high performance.

Careful attention has been paid to the comparability of the different implementations; for example,

all tested data structures are able to accept different initial capacities. We only timed the operations

of the hash map, avoiding any performance overhead of memory management and any overhead

due to the testing itself. All data shown is the average of thirty runs, which were made to minimize

the effects of any extraneous factors in the system. All tests were run on a SuperMicro server with

63

four sockets, each populated by a sixteen-core AMD Opteron 6272 processor at 2.1 GHz, and a

total of 64 gigabytes of RAM. The machine was running 64-bit Ubuntu Linux version 11.04, and

all code was compiled with g++4.7, with level three optimizations enabled. The testing variables

for the graph presented in Figure 4 include creating a hash map that has an initial capacity of 210

elements. This hash map was filled to its capacity and then we performed one million operations.

We divided our operations into three different kinds of distributions. The first type of distribution

is based on a reported typical operation mix for hash maps [52]. This mix was reported without

mention of an update function. We run the reported distribution, 88% get, 10% insert, 0% update

2% remove and a modified version that includes calls to update, 88% get, 8% insert, 2% update

2% remove. The second kind of distribution involves inverting the two versions of the aforemen-

tioned typical usage distribution within reason by moving the focus from the get operation to the

insert and update operations; this yields the following operation mixes: 10% get, 88% insert,

0% update 2% remove; 10% get, 70% insert, 18% update 2% remove; and 10% get, 18% insert,

70% update 2% remove. The third distribution consists of a more even mix of operations. We

have two of these distributions; one includes update: 25% get, 25% insert, 25% update 25%

remove; one does not include update: 34% get, 33% insert, 0% update 33% remove.

The performance results in Figure 4 show that, on average, our wait-free algorithm outperforms

the traditional blocking design by a factor of 7 or more, and it performs faster than the lock-free

algorithms typically by a factor of 15. The lack of scalability of the blocking solution is a result

of the fact that the lock is applied to all operations, not only those that conflict. Both lock-free

solutions scale; however, they perform worse when more insert operations are performed, because

the insert operations trigger more global resizes. Due to the incremental approach that we take

to resizing the hash map, we see performance improvements over the other designs in the tested

scenarios except for TBB. The other lock-free designs show an average of a 17.5 times performance

decrease when compared to Intel’s TBB implementation. In contrast, our approach is competitive

64

with only a 14% loss in performance to provide the stronger progress guarantee of wait-freedom.

On average, the lock-free algorithms use 1.8 times more memory than our algorithm, and the

blocking approaches use 1.4 times more memory than our design. When we compare the two

different configurations of our algorithm, we see that when we set the arrayLength to 6 we use 4%

more memory, but complete the test runs 5% faster. In general, it is advisable to set the size of the

main array equal to the ceiling of the binary logarithm of the expected number of elements; this

allows the hash map to perform a minimal number of resizes, without using too much memory.

The arrayPow determines how much space is added when a hash collision occurs; it should be set

based on the expected number of hash collisions. The maxFailCount should be set to the expected

number of threads that will compete for a single location in the hash map; in practice, the failCount

never surpassed 3, but a value of 10 was used for testing. If maxFailCount is set too low, then the

hash map may be unnecessarily expanded.

The following graphs show the average number of nanoseconds per thread that each operation

took to execute the test versus the number of threads, and the average number of kilobytes per

thread for each test. These graphs contain error bars which represent a 95% confidence interval

for the results. The memory results for the Java version of Click’s hash map were not able to be

completely separated from the overhead of the virtual machine; so, these are not reported here.

65

(a) 10% Get, 18% Insert, 70% Update, 2% Remove

(b) 10% Get, 70% Insert, 18% Update, 2% Remove

66

(c) 10% Get, 88% Insert, 0% Update, 2% Remove

(d) 25% Get, 25% Insert, 25% Update, 25% Remove

67

(e) 34% Get, 33% Insert, 0% Update, 33% Remove

(f) 88% Get, 8% Insert, 2% Update, 2% Remove

68

(g) 88% Get, 10% Insert, 0% Update, 2% Remove

Figure 7.1: Hash Map Performance Results for Different Operation Mixes

Dynamic Transactions

We compare the containers in DTT with transactional boosting and STM versions. As word-based

STM is the most commonly used approach to transactions, we perform our STM comparison

using the Rochester STM package [45], which contains over one dozen STM implementations.

Of the approaches in RSTM, NOrec STM [6] is the fastest implementation on our machine, and

we use it for comparison with the list, MDList, dictionary, and binary search tree. We make

an exception for the skip list, as Fraser provides an open-source implementation of the skip list

that uses his own object-based STM implementation [14]. Because modern word-based STM

69

implementations inherently support dynamic transaction execution, we do not need to modify them

for our performance evaluation.

We compare against the state-of-the-art transactional boosting approach. Transactional boosting

is designed to be used with STMs for replaying undo logs; however, we scrap the STM environ-

ment as it is not necessary for our test case. The removed STM environment is replaced with a

lightweight per-thread undo log. This replacement reduces the runtime overhead for a fair com-

parison. Like STM, the transactional boosting algorithm does not require any major modifications

to support dynamic transaction execution.

We also compare against LFTT, which is the methodology on which DTT builds. LFTT does not

include a wait-free progress assurance scheme, or a way to perform dynamic multi-container trans-

actions. We show this comparison to demonstrate the low performance overhead of the progress

assurance scheme and dyanmic transaction support. Because each alternative approach performs

memory management differently, we statically allocate all nodes at the beginning of the evalua-

tion and disable node reclamation for a fair comparison of each approach’s conflict management

scheme.

Experimental Setup

We use a micro-benchmark to evaluate performance across three different operation distributions:

read-dominated, mixed, and write-dominated. In this canonical evaluation method [6, 21], each

thread repeatedly performs transactions with randomly chosen mixtures of INSERT, DELETE and

FIND operations. This loop continues to execute transactions for 10 seconds. The transaction

size (i.e., the number of operations in a transaction) is chosen randomly for each transaction in

the test up to a maximum size of 7 operations, as in [54]. The tests are conducted on a 64-core

NUMA system (4 AMD Opteron 6272 CPUs with 16 cores per chip @ 2.1 GHz). The library of

70

data structure implementations (plus the micro-benchmark) is compiled with GCC 4.8 with C++11

features and O3 optimizations. 1

In this section, we present the performance results for each container as graphs that include the

throughput and number of spurious aborts. The throughput is measured in committed transactions

per second. The number of spurious aborts takes into account the number of aborted transactions

except self-aborted ones (i.e., those that abort due to failed operations). We include the num-

ber of spurious aborts as an indicator of the effectiveness of the contention management strategy.

The three operation distributions are 15% INSERT, 5% DELETE, 80% FIND (read-dominated);

33% INSERT, 33% DELETE, 34% FIND (mixed); and 50% INSERT, 50% DELETE, 0% FIND

(write-dominated). To save space, we only display the graphs for the read-dominated and mixed

scenarios, as they are the closest to real-world operation distributions [40]. The graphs for the

write-dominated scenario is very similar to the other distributions, and we present the average

results of the three distributions.

Each wait-free transactional data structure is run with HELP DELAY set to 10 and MAX -

FAILURES set to 5. We denote LFTT as LFT, DTT as DTT, transactional boosting as BST, and

software transactional memory as STM for all performance graphs.

The upper portion of the figures represents the throughput with the x-axis in logarithmic scale and

the y-axis in linear scale. The key for all of the performance graphs is the same, and can be found

in Figure 7.1. The bottom half of all figures represents the histogram of spurious aborts, with the

x- and y-axes in logarithmic scale. The key for the lower plot, of aborted transactions, is shown on

the right half of Figure 7.1.

1All source code will be made available upon publication at https://github.com/ucf-cs/tlds

71

https://github.com/ucf-cs/tlds

Overall Results

Across all data structure evaluations, DTT outperforms BST by an average of 118%, STM by an

average of 203%, and LFT by an average of 0.767%. DTT gains an advantage over BST and STM

because of its semantic conflict detection and logical interpretation, which allows it to avoid the

costs of excessive aborts and physical rollbacks. The reason that DTT achieves the same perfor-

mance as LFT is because the MAX FAILURES parameter of the progress assurance scheme

is set to 5. This means that a thread will wait until it has retried an operation five times before

posting an announcement in the announcement table, which is rarely observed in practice [40]. As

a result, threads rarely need to pause their own operations to help other threads. Also, DTT allows

threads to avoid the cost of duplicate work by utilizing a return values list. Therefore, our library

provides dynamic transaction execution, wait-free progress, and multi-container transactions at no

additional cost.

Figure 7.1: Key for Performance Graphs

72

0

20k

40k

60k

80k

100k

120k

T
h

ro
u

g
h

p
u

t

1 2 4 8 16 32 64
1

100

10k

A
b

o
rt

s

Number of Threads

(a) 15%INSERT, 5%DELETE, 80%FIND

0
10k
20k
30k
40k
50k
60k
70k
80k

T
h

ro
u

g
h

p
u

t

1 2 4 8 16 32 64
1
100
10k
1M

A
b

o
rt

s

Number of Threads

(b) 33%INSERT, 33%DELETE, 34%FIND

0
10k
20k
30k
40k
50k
60k
70k
80k

T
h

ro
u

g
h

p
u

t

1 2 4 8 16 32 64
1
100
10k
1M

A
b

o
rt

s

Number of Threads

(c) 50%INSERT, 50%DELETE, 0%FIND

Figure 7.2: Transactional List Performance

73

0

200k

400k

600k

800k

1M

T
h

ro
u

g
h

p
u

t

1 2 4 8 16 32 64
1

100

A
b

o
rt

s

Number of Threads

(a) 15%INSERT, 5%DELETE, 80%FIND

0
100k
200k
300k
400k
500k
600k
700k

T
h

ro
u

g
h

p
u

t

1 2 4 8 16 32 64

100

A
b

o
rt

s

Number of Threads

(b) 33%INSERT, 33%DELETE, 34%FIND

0
100k
200k
300k
400k
500k
600k
700k

T
h

ro
u

g
h

p
u

t

1 2 4 8 16 32 64
1

100

10k

A
b

o
rt

s

Number of Threads

(c) 50%INSERT, 50%DELETE, 0%FIND

Figure 7.3: Transactional Skip List Performance

Transactional List

We compare the throughput of four different implementations of transactional linked lists in Fig-

ure 7.2. The base data structure used by all of the implementations is the lock-free list by Har-

ris [20]. Each thread in the transactional list performs transactions for 10 seconds with a key range

of 10, 000.

74

In overall throughput, DTT outperforms BST by an average of 168% and STM by an average of

459% across all operation distributions. The superior performance of DTT (as well as LFT) can

be attributed to its logical status interpretation and cooperative contention management. When

BST and STM encounter a conflict, they abort one of the conflicting transactions, decreasing the

overall throughput. On the other hand, DTT avoids most of these spurious aborts because threads

help each other to complete each other’s transactions, allowing both transactions to commit. This

phenomenon can be observed in the number of spurious aborts shown in the bottom half of each

graph in Figure 7.2. For example, in the case of 64 threads, BST experiences 3 times more spurious

aborts than DTT and LFT, and STM experiences four orders of magnitude more spurious aborts.

STM’s throughput particularly suffers when the number of threads increases, due to the excessive

aborts in response to memory access conflicts. In a linked list, all operations traverse the nodes

at the beginning of the list, resulting in a high chance of memory access conflicts and subsequent

aborts.

DTT outperforms LFT by 1.93% while also providing the benefits of dynamic transaction execu-

tion and wait-free progress. The overhead of DTT is low because it rarely needs to activate its

wait-free progress assurance scheme. Also, for each operation, the performance cost of traversing

the linked list far outweighs the cost of the progress assurance scheme. In addition, by using a list

of return values, DTT allows helper threads to avoid duplicate work.

Transactional Skip List

We compare the throughput of four different types of transactional skip lists in Figure 7.3. The

implementations are based on the skip list presented by Fraser [14]. Because skip lists have loga-

rithmic search time, we increase the workload such that the skip list has a key range of 1, 000, 000.

75

The skip lists execute transactions much more efficiently than the linked lists, with a maximum

throughput of 1, 000, 000 transactions per second (versus 80, 000 transactions per second for the

linked lists). Also, because of the increase in key range, concurrent transactions for LFT, DTT,

and BST are less likely to encounter node-level conflicts. Because skip lists traverse through fewer

nodes, concurrent STM transactions are also less likely to encounter conflicts. As a result, all

implementations of the transactional skip list experience no more than 4% of the spurious aborts

that the corresponding linked lists experience, with DTT and LFT experiencing no spurious aborts

at all.

In overall throughput, DTT outperforms BST by an average of 82.1% and STM by an average of

90.9%, while performing 4.53% faster than LFT. As with the transactional linked list, the DTT

version of the skiplist experiences low overhead on top of LFT.

Transactional MDList

Figure 7.4 shows the throughput and spurious aborts for the four types of transactional MDLists.

The base data structure for the transactional MDList of all implementations is the lock-free MDList

by Zhang et al. [60]. Like the skip list, the MDList has logarithmic search time, so we perform the

evaluation with a key range of 1, 000, 000.

The results are similar to those concerning the transactional skip list in Section 7. In overall

throughput, DTT is on par with LFT, performing 0.398% faster, and it outperforms BST by an

average of 110% and STM by an average of 149%.

A noteworthy difference can be found between the throughput of the STM skip list and STM

MDList. The throughput of the STM skip list increases with the number of threads. Conversely,

the STM MDList’s throughput increases until 16 threads and then decreases significantly. This

76

phenomenon can be attributed to a combination of factors: the MDList’s unique method of node

insertion, STM’s use of memory barriers, and the cost of inter-processor communication between

remote cores in the NUMA system. Each node in an MDList has several child nodes. When an

MDList inserts a node, some cases require the new node to ”adopt” its successor node’s children.

Since this process takes some time, the new node is associated with an adoption descriptor object.

When another thread traverses to the new node, it must check the new node’s adoption descriptor

to see if it must help in the child adoption process. This greatly increases the number of shared

memory locations to read during the traversal. For each of these reads, STM uses a memory bar-

rier to prevent incorrect instruction re-orderings. To adhere to the memory barriers, concurrently

executing cores must send messages according to the machine’s cache coherence protocol. On the

NUMA machine, inter-processor communication between cores on separate chips is expensive and

slows the MDList traversal.

Transactional Dictionary

The graphs of the performance of the transactional dictionaries are omitted, because they are the

same as those for the transactional MDLists in Section 7. The dictionary has the same memory lay-

out and similar underlying code as the transactional MDList, with the addition of a value parameter

attached to the insert and find operations.

77

0

200k

400k

600k

800k

1M

T
h

ro
u

g
h

p
u

t

1 2 4 8 16 32 64
1

100

A
b

o
rt

s

Number of Threads

(a) 15%INSERT, 5%DELETE, 80%FIND

0
100k
200k
300k
400k
500k
600k
700k

T
h

ro
u

g
h

p
u

t

1 2 4 8 16 32 64
1

100

A
b

o
rt

s

Number of Threads

(b) 33%INSERT, 33%DELETE, 34%FIND

0
100k
200k
300k
400k
500k
600k
700k

T
h

ro
u

g
h

p
u

t

1 2 4 8 16 32 64
1

100

A
b

o
rt

s

Number of Threads

(c) 50%INSERT, 50%DELETE, 0%FIND

Figure 7.4: Transactional MDList Performance

78

0

200k

400k

600k

800k

1M

T
h

ro
u

g
h

p
u

t

1 2 4 8 16 32 64
1

100

A
b

o
rt

s

Number of Threads

(a) 15%INSERT, 5%DELETE, 80%FIND

0
100k
200k
300k
400k
500k
600k
700k

T
h

ro
u

g
h

p
u

t

1 2 4 8 16 32 64
1

100

A
b

o
rt

s

Number of Threads

(b) 33%INSERT, 33%DELETE, 34%FIND

0
100k
200k
300k
400k
500k
600k
700k

T
h

ro
u

g
h

p
u

t

1 2 4 8 16 32 64
1

100

A
b

o
rt

s

Number of Threads

(c) 50%INSERT, 50%DELETE, 0%FIND

Figure 7.5: Transactional Binary Search Tree Performance

Transactional Binary Search Tree

Figure 7.5 shows the performance results of the four types of transactional binary search trees. The

DTT, LFT, and BST implementations are based on the non-blocking binary search tree proposed

by Howley [33]. Because the binary search tree provides logarithmic search time, we perform the

evaluation with a key range of 1, 000, 000.

79

The performance results of the transactional binary search trees resemble those of the transac-

tional MDLists in Section 7. In overall throughput, DTT performs 1.98% slower than LFT and

outperforms BST by an average of 124% and STM by an average of 173%.

0
50k

100k
150k
200k
250k
300k
350k
400k

T
h

ro
u

g
h

p
u

t

1 2 4 8 16 32 64

1

100
A

b
o

rt
s

Number of Threads

(a) 15%INSERT, 5%DELETE, 80%FIND

0
50k

100k
150k
200k
250k
300k
350k
400k

T
h

ro
u

g
h

p
u

t
1 2 4 8 16 32 64

1

100

A
b

o
rt

s

Number of Threads

(b) 33%INSERT, 33%DELETE, 34%FIND

0
50k

100k
150k
200k
250k
300k
350k
400k

T
h

ro
u

g
h

p
u

t

1 2 4 8 16 32 64

1

100

A
b

o
rt

s

Number of Threads

(c) 50%INSERT, 50%DELETE, 0%FIND

Figure 7.6: Wait-free Multi-Container Performance

80

Wait-free Transactions

We perform experimental evaluations to study the effect of the wait-free progress assurance scheme

on the performance of DTT. We observe the throughput and number of spurious aborts with the

progress assurance scheme enabled, compared to when the scheme is disabled. When enabled,

the data structure is run with HELP DELAY set to 1 and MAX FAILURES set to 1. These

parameter settings are at the highest level in that they cause the progress assurance scheme to

be invoked the most frequently possible. We set the parameters in this way to clearly observe the

effects of the scheme in the most extreme case. We denote the approach with the wait-free progress

assurance scheme enabled as WF, and disabled as LF for the remainder of this section. In our test

cases, we vary the number of threads between 1 and 64, and we vary the key range between 10

and 1, 000, 000. We only present the results for the transactional binary search tree, as they are

representative of the other data structure results.

Overall, the results indicate that the progress assurance scheme has an insignificant impact on the

performance of the transactional data structure, while offering the guarantee of wait-free progress.

Across all of our test cases, the average throughput of WF is only 0.88% less than that of LF. For

the extreme test case with a key range of 10, WF falls behind LF by 5.5%, due to an increase in

the number of spurious aborts and other factors which we discuss in this section.

Figure 7.7 shows the performance results of the two approaches across varying key ranges. For

each key range, the figure displays the average throughput (commits per second) and number of

spurious aborts for all of the test cases with different numbers of threads. The trend we observe is

that the impact of the progress assurance scheme on the performance of the data structure increases

as the key range is reduced. For a key range of 1, 000, 000, the progress assurance scheme has an

insignificant effect on the throughput, with WF outperforming LF by 0.582%. For a key range of

10, the progress assurance scheme slightly reduces the throughput; WF falls behind LF by 5.76%.

81

This trend can be explained by the difference in contention levels for each key range, which affects

the frequency at which the progress assurance scheme is activated. A lower key range increases

contention levels, which causes the progress assurance scheme to be invoke more often.

100k

150k

200k

250k

300k

350k

T
h

ro
u

g
h

p
u

t

LF WF

10 100 1k 10k100k 1m
0

20k

40k

A
b

o
rt

s

Key Range

Figure 7.7: Wait-free Progress Assurance Scheme Overhead

How does the progress assurance scheme diminish the throughput? There are three ways to explain

this. (1) Posting to and reading from the announcement table incurs an overhead to the system. (2)

Having threads help each other on the same transactions reduces parallelism. (3) Helper threads

are delayed, resulting in more conflicts and therefore more spurious aborts. We observe this phe-

nomenon in the data, as WF induces 7.97 times as many spurious aborts as LF. To explain this,

we must first describe a type of abort that we refer to as abort-on-helper. Say a thread t1 begins

a transaction T1 and then helps another transaction T2 through the progress assurance scheme. An

abort-on-helper occurs in the case that another thread t3 running transaction T3 finds that T3 con-

82

flicts with T1, so it aborts T3. We find that for the test cases with a key range of 10, aborts-on-helper

account for 67.7% of all spurious aborts. These results suggest that aborts-on-helper play a role in

the difference in fake aborts between WF and LF. We believe that aborts-on-helper occur so fre-

quently because when the helper thread t1 helps another thread, its own transaction T1 takes more

time to complete and therefore increases the likelihood that another transaction T3 will conflict

with it, causing a spurious abort.

One interesting result we encounter is that for a key range of 10, the ratio of spurious aborts to

commits for WF is extremely high compared to LF (53.3% versus 13.7%), yet WF still has a similar

number of commits per second to LF, reaching 94.3% of the throughput of LF. If WF processes

transactions at the same speed as LF but has more spurious aborts, then we would expect that

WF would have a lower number of commits. On the contrary, what we encounter is that although

a greater percentage of transactions are aborting, this is mostly counteracted by the fact that all

transactions are being processed more quickly. This surprising increase in transaction processing

speed could be attributed to the following: that in this case of high contention, having threads work

together on transactions reduces contention and therefore offsets some of the costs of the progress

assurance scheme.

Transactions Among Multiple Data Structures

We perform experimental evaluations on transactions that span multiple containers, and the per-

formance results are shown in Figure 7.6. Our experiments include a transactional linked list, skip

list, MDList, dictionary, and binary search tree. We use one instance of each container type in this

evaluation, although multiple instances of each container type can be used. Each thread performs

transactions for 10 seconds with a key range of 10, 000. The evaluation method on multiple con-

tainers is similar to the evaluation method on a single container, but each operation in a transaction

83

is randomly chosen to be executed on one of the five containers. We only present the DTT results

as DTT is the only methodology to support transactions that span multiple data structures.

Transactional Hash Map

We compare the overhead and scalability of our lock-free transactional list and skiplist against

the implementations based on transaction boosting, NOrec STM from Rochester Software Trans-

actional Memory package [45] and Fraser’s lock-free object-based STM [14]. RSTM is the best

available comprehensive suite of prevailing STM implementations. In our test, TML [6] and its

extension NOrec [6] are among the fastest on our platform. They have extremely low overhead and

good scalability due to elimination of ownership records. We choose NOrec as the representative

implementation because its value-based validation allows for more concurrency for readers with

no actual conflict.

For transaction boosting, we implement the lookup of abstract locks using Intel TBB’s concurrent

hash map. Although the transaction boosting is designed to be used in tandem with STMs for

replaying undo logs, it is not necessary in our test case as the data structures are tested in isolation.

To reduce the runtime overhead, we scrap the STM environment and implement a lightweight

per-thread undo log for the boosted data structures. We employ a micro-benchmark to evaluate

performance in three types of workloads: write dominated, read dominated, and mixed. This

canonical evaluation method [6, 21] consists of a tight loop that randomly chooses to perform a

fixed size transaction with a mixture of INSERT, DELETE and FIND operations according to the

workload type. We also vary the transaction size (i.e., the number of operations in a transaction)

from 1 to 16 to measure the performance impact of rollbacks. The tests are conducted on a 64-

core NUMA system (4 AMD opteron 6272 CPUs with 16 cores per chip @2.1 GHz). Both the

micro-benchmark and the data structure implementations are compiled with GCC 4.7 with C++11

84

features and O3 optimizations. 2

Transactional Map

In Figure 7.7, we show the throughput for the lock-free transactional hash map. The LFTT map,

and the transaction boosting version that we compare to, are based on the wait-free hash map

in [40].

In order to test the LFTT map with a large workload, we apply the same evaluation procedure as

in Section 7, giving each thread a workload of 1 million transactions and setting the key range to

1 million. As we can see in Figure 7.8a, large transactions such as LFT-8 and LFT-16 achieve

maximum throughput on a single thread, then their throughput steadily falls as the number of

threads increases. This is the same behavior observed in Figure 7.3c. The trend is weaker for

the graph shown in Figure 7.7c, because the 75% FIND operations leads to a greater number of

operations in the larger transaction sizes committing without failing. An example of this is shown

for the transaction size of 8 in Figure 7.7c, which seems to level out compared to the other two

operation distributions with the same transaction size. The transactional boosting version of the

hash map follows the same trends, in these cases, but has lower performance due to executing

transactions which must be rolled back when they abort. In comparison, our approach, does not

suffer from any spurious aborts in any of the tested scenarios. Overall, with a peak throughput of

more than 2.6 million (OP/s), transaction execution on our hash map is considerably more efficient

than on linked lists, and comparable to skiplists despite the extra overhead on the UPDATEINFO

function due to the UPDATE operation. On average, the LFTT hash map is 74% faster than the

transactional boosting version.

2All source code can be downloaded from https://github.com/ucf-cs/tlds

85

https://github.com/ucf-cs/tlds

10k

100k

1M

10M

T
h

ro
u

g
h

p
u

t
(O

P
/s

)

LFT-1
BST-1
LFT-2

BST-2
LFT-4
BST-4

LFT-8
BST-8
LFT-16

BST-16

1 2 4 8 16 32 64 128

100

10k

A
b

o
rt

e
d

 T
ra

n
s
a
c
ti

o
n

Number of Threads

LFT
BST

(a) Throughput for the Lock-free Transactional Hash Map (1M Key Range):
50% INSERT, 50% DELETE, 0% UPDATE, 0% FIND

10k

100k

1M

10M

T
h

ro
u

g
h

p
u

t
(O

P
/s

)

LFT-1
BST-1
LFT-2

BST-2
LFT-4
BST-4

LFT-8
BST-8
LFT-16

BST-16

1 2 4 8 16 32 64 128
1

100

10k

A
b

o
rt

e
d

 T
ra

n
s
a
c
ti

o
n

Number of Threads

LFT
BST

(b) Throughput for the Lock-free Transactional Hash Map (1M Key Range):
25% INSERT, 25% DELETE, 25% UPDATE, 25% FIND

86

100k

1M

10M

T
h

ro
u

g
h

p
u

t
(O

P
/s

)

LFT-1
BST-1
LFT-2

BST-2
LFT-4
BST-4

LFT-8
BST-8
LFT-16

BST-16

1 2 4 8 16 32 64 128

100

10k

A
b

o
rt

e
d

 T
ra

n
s
a
c
ti

o
n

Number of Threads

LFT
BST

(c) Throughput for the Lock-free Transactional Hash Map (1M Key Range):
15% INSERT, 5% DELETE, 5% UPDATE, 75% FIND

Figure 7.7: Throughput for the Lock-free Transactional Hash Map (1M Key Range)

87

CHAPTER 8: CONCLUSION

In this dissertation, we present dynamic transactional data structures that provide the wait-free

progress guarantee.

We present a wait-free hash map that is not transactional, this approach demonstrates non-blocking

programming techniques, and the drawbacks of traditional non-blocking data structures. Our de-

sign outperforms state of the art non-blocking designs, and standard blocking approaches by 15

and 7 times, respectively.

We discuss an extension of a lock-free transactional transformation methodology (LFTT), that has

been applied to the wait-free hash map. We adapt LFTT to support map data structures, and use

this extended version to implement a transactional hash map.

We introduce the first methodology that provides dynamic lock-free data structure transactions,

DTT. This design allows dynamic wait-free transactions to be executed on multiple containers

within a single transaction. Our experimental results demonstrate that our performance is at least

on par with state of the art approaches, and in all but one case surpasses them. We apply our

extended version of DTT to create a library of five wait-free transactional data structures. With

this library, a developer can write transactional programs without knowledge of the underlying

algorithms for wait-free progress or transaction synchronization.

All of the above has been or will be released as open source software, so that the maximum impact

can be made in industry and academia.

88

Future Work

An idea for future work is to update DTT, so that it is no longer necessary to separate transactional

code into transactional functions; this would increase the usability of DTT.

89

APPENDIX A: CORRECTNESS OF THE WAIT-FREE HASH MAP

90

In this section we outline a correctness proof. For brevity, we give informal proofs; these follow

the style in [46]. Several useful definitions follow. Abbreviations of the form U11 are used; the

letter is the first letter of the corresponding operation e.g. U11 refers to the eleventh line of the

update algorithm pseudocode.

(1) For all times t, a node is in the hash map at t, if and only if at t it is reachable by following

pointers starting from the head.

(2) For all times t, the state of the hash map is represented as Sn,m,p where n, m, and p are defined

as follows.

(a) n : the number of dataNodes in the hash map at t.

(b) m : the number of markedDataNodes in the hash map at t.

(c) a : the number of arrayNodes in the hash map at t (this excludes the main array).

For example, the hash map is in state S2,1,0 if it contains exactly two dataNodes, one marked-

DataNode, and zero arrayNodes.

Lemma 1. The hashed key of a dataNode never changes while it is in the hash map.

Lemma 2. A markedDataNode is not unmarked until the corresponding expansion has occurred.

Lemma 3. An arrayNode is never removed from the hash map.

Safety

To prove safety, we attempt to prove Claim 1.

The hash map is in a valid state, if and only if it matches the definition of some state Sn,m,a that

is reachable, through the specified transitions, from the initial state S0,0,0. The state of the map

91

changes upon the successful execution of any of the following lines: markDataNode line 2, I13,

R37, or E10 (see Section 3). In Figure A.1, these lines are abbreviated as follows: markDataN-

ode line 2 which marks a node becomes M, I13 which inserts a dataNode becomes I, R37 which

removes a node becomes R, and E10 which unmarks a markedDataNode and adds a new arrayN-

ode becomes N. Transitions that occur on the execution of markDataNode line 2 from S1,1,0 and

S2,1,0 have been omitted for clarity.

Claim 1. All transitions are consistent with the hash map’s semantics. If the hash map is in a valid

state, then if a CAS succeeds a correct transition occurs, as shown in the state transition diagram

in Figure A.1.

In the case of a successful update operation the state triple does not change; however, the set of all

dataNodes that exist in the map is changed (see Section 3). Specifically, a dataNode is atomically

removed from the set and replaced by a dataNode with the same key but a different associated

value, this occurs at line U38.

We prove Claim 1 by induction. In the basis step, we assume that the hash map is in the valid,

initial state S0,0,0. We take Claim 1 to be the induction hypothesis. In the inductive step, we show

that, at any time t, the application of any transition on a valid state yields a valid state.

Lemma 4. If successful, the atomic OR operation in line I11 takes the hash map to a valid state,

and marks a dataNode.

Lemma 5. If successful, the CAS on line I13 takes the hash map to a valid state, and inserts a

dataNode into the set.

Lemma 6. If successful, the CAS on line U38 does not change the state, and updates the value

associated with a key.

92

I R

M

I I

N

I

M N

I I I

M N

I

…

…0,0,0

1,0,0

2,0,0

3,0,0

0,1,0

1,1,0

2,1,0

2,0,1

1,0,1

3,0,1

0,0,1

…

…

…

……

R

R

R

R

R

R

R

Figure A.1: A state transition diagram for the hash map.

Lemma 7. If successful, the CAS on line R37 takes the hash map to a valid state, and removes a

dataNode from the set.

Lemma 8. If successful, the CAS on line E10 takes the hash map to a valid state and replaces a

markedDataNode with an arrayNode that contains an unmarked version of the markedDataN-

ode.

Theorem 1. Claim 1 is true at all times.

Linearizability

Our hash map is linearizable, because all of its operations have linearization points (see Section 3

for details).

93

The linearization points below are presented for each operation, when executed concurrently with

any other operation of the hash map. If there is no concurrent execution, then linearizability is

not applicable, because the definition of a linearization point is meaningless when defined on a

single operation. In the case of a single operation, that of sequential execution, correctness of

the algorithms becomes much easier to prove; such proofs are omitted. The linearization points

of the supporting algorithms are trivial to prove. Due to the composability of linearizability we

do not need to further consider the supporting functions. See Section 3 for a discussion of the

linearizability of the memory management functions.

Lemma 9. Every get operation takes effect upon its read on line G06.

Lemma 10. Every update and remove operation that returns true takes effect upon its CAS on

lines U38 and R37, respectively.

Lemma 11. Every update and remove operation that returns false takes effect when a dataNode

with a different key is encountered during traversal (see Section 3).

Lemma 12. Every insert operation that returns true takes effect upon its CAS on line I13.

Lemma 13. Every insert operation that returns false takes effect upon its CAS on line I13, its

atomic read on line I08, or its atomic read at line I23.

Given the derived linearization points, we are able to provide a valid sequential history from every

concurrent execution of the hash map’s operations; this proves Theorem 2.

Theorem 2. The hash map’s operations are linearizable.

94

Wait-Freedom

To prove wait-freedom we must show that every call to insert, update, get, and remove returns in

a bounded number of steps [37]. This is trivial to prove for the get, update, and remove operations

as they are bounded by a for-loop, that runs at most maxDepth times, and the progress of these

operations is unhindered by the side effects of any combination of concurrent operations. To prove

wait-freedom for insert we need to show that the number of operations that may linearize before a

particular insert operation is bounded [37].

We need only consider those insert operations that act on the same position in the hash map, as

disjoint operations may proceed in parallel without issue. Furthermore, operations that attempt

to insert the same key at the same position at the same time do not break the wait-free progress

guarantee, because one operation will complete the CAS successfully, and the others will fail and

will not retry. However, when concurrent insert operations with different keys attempt to work

on the same position they would retry infinitely if it were not for maxFailCount (see Section 3),

which is an upper bound on the number of times that the insert operations would conflict before

an expansion occurred at that position. In the worst-case, the expansions would be performed until

maxDepth was reached, with maxFailCount attempts at expansion being needed every time.

All of these operations complete in a finite number of steps; this is expressed in Theorem 3. The-

orem 4 follows directly from Theorems 1, 2, and 3.

Lemma 14. The insert operation completes in a number of steps that is bounded by maxDepth ∗

maxFailCount.

Lemma 15. The update operation completes in a number of steps that is bounded by maxDepth.

Lemma 16. The get operation completes in a number of steps that is bounded by maxDepth.

95

Lemma 17. The remove operation completes in a number of steps that is bounded by maxDepth.

Theorem 3. All operations of the algorithm are ∈ O(1), in the worst case.

Theorem 4. The algorithm is wait-free.

96

APPENDIX B: CORRECTNESS OF DYNAMIC TRANSACTIONS

97

Correctness

DTT guarantees that any arbitrary history of committed transactions is strictly serializable, which

is a correctness property that is the analogue of linearizability [32] for transactions. Our proof of

correctness is based on the notion of commutativity isolation [26], which states that the history

of committed transactions is strictly serializable for any transactional data structure that obeys the

rules of linearizability, commutativity isolation, compensating actions, and disposable methods.

We first define the rules of commutativity isolation, then we prove that DTT follows these rules

and therefore provides the guarantee of strict serializability.

Definitions

We provide the definitions and correctness rules from Herlihy and Koskinen’s work [26] that are

necessary for our proof of strict serializability. A history of computation is a sequence of instanta-

neous events. Events associated with a method call include invocation I and response R. A single

transaction running in isolation defines a sequential history. A sequential specification for a data

structure defines a set of legal histories for that data structure.

Definition 1. A history h is strictly serializable if the subsequence of h consisting of all events of

committed transactions is equivalent to a legal history in which these transactions execute sequen-

tially in the order they commit.

Definition 2. Two method calls I, R and I ′, R′ commute if: for all histories h, if h · I · R and

h · I ′ · R′ are both legal, then h · I · R · I ′ · R′ and h · I ′ · R′ · I · R are both legal and define the

same abstract state.

Commutativity is a property on operations that have no dependencies on each other such that

the execution of commutative operations in any order yields the same abstract state. Let OA be

98

transactional container A and let OB be transactional container B. The commutativity specification

for set operations among multiple containers is as follows:

OA.INSERT(x)↔ OA.INSERT(y), x 6= y

OA.INSERT(x)↔ OB.INSERT(x), A 6= B

OA.DELETE(x)↔ OA.DELETE(y), x 6= y

OA.DELETE(x)↔ OB.DELETE(x), A 6= B

OA.INSERT(x)↔ OA.DELETE(y), x 6= y

OA.INSERT(x)↔ OB.DELETE(x), A 6= B

OA.FIND(x)↔ OA.INSERT(x)/false↔

OA.DELETE(x)/false

OA.FIND(x)↔ OB.INSERT(x), A 6= B

OA.FIND(x)↔ OB.DELETE(x), A 6= B

(B.1)

Definition 3. For a history h and any given invocation I and response R, let I−1 and R−1 be the

inverse invocation and response. That is, the invocation and response such that the state reached

after the history h · I ·R · I−1 ·R−1 is the same as the state reached after history h.

Definition 4. For a history h, let G be the set of histories g such that h · g is legal. A method call

denoted I · R is disposable if, ∀g ∈ G, if h · I · R and g · I · R are legal, then h · I · R · g and

h · g · I ·R are legal and both define the same state.

The method call I ·R is disposable if it can be delayed arbitrarily long, and the abstract state of the

system is the same as the case in which I ·R had occurred.

Rule 1. Linearizability: For any history h, two concurrent invocations I and I ′ must be equivalent

to either the history h · I ·R · I ′ ·R′ or the history h · I ′ ·R′ · I ·R

99

Rule 2. Commutativity Isolation: Let T1 and T2 be transactions. For any non-commutative

method calls I1, R1 ∈ T1 and I2, R2 ∈ T2, either T1 commits or aborts before any additional

method calls in T2 are invoked, or vice-versa.

Rule 3. Compensating Actions: For any history h which contains the abort of transaction T , then

it must be the case that T executed the following operations: I0 ·R0 · · · Ii ·Ri ·I−1i ·R−1i · · · I−10 ·R−10

where i indexes the last successfully completed method call.

Rule 4. Disposable Methods: For any history h and transaction T , any method call invoked by T

that occurs after T commits or aborts must be disposable.

Serializability and Recoverability

We now show that DTT meets the four above correctness requirements in order to show that any

arbitrary history of transactions is strictly serializable. We denote the concrete state of a set as

an node set N . At any time, the abstract state observed by transaction Ti is Si = {n.key | n ∈

N ∧ ISKEYPRESENT(n.info, desci)}, where desci is the descriptor of Ti.

Linearizability is the correctness property such that concurrent operations appear as if they took

place instantaneously at some points between their invocations and responses. We reason about

linearizability by identifying linearization points in which the transformed operations take effect.

We use the notion of decision points and state-read points to facilitate our reasoning. The decision

point of an operation is defined as the atomic statement that finitely decides the result of an op-

eration, i.e. independent of the result of any subsequent instruction after that point. A state-read

point is defined as the atomic statement where the state of the data structure, which determines the

outcome of the decision point, is read.

Lemma 1. The set operations INSERT, DELETE, and FIND are linearizable, satisfying Rule 1.

100

Proof. The DELETE operation will check if a node exists in a transactional container, as shown on

line 4.8.10. If the node does not exist, then DELETE will return fail on line 4.8.13. If the node does

exist, then the descriptor for the node is attempted to be updated to the current node descriptor by

UPDATEINFO on line 4.8.11. The state-read point for this case is when info.desc.status is read

on line 2.3.13. The abstract states S ′ observed by all transactions immediately after the reads are

unchanged, i.e., ∀i, S ′i = Si. The decision point for a successful logical status update occurs when

the CAS operation on line 15 succeeds. The abstract states S ′ observed by the transactions Td

executing this operation immediately after the CAS is i = d =⇒ S ′i = Si − n.key. For all

other transactions i 6= d =⇒ S ′i = Si. In all cases, the update of abstract states conforms to the

sequential specification of the DELETE operation. After a successful logical status update, then

the node to be deleted is stored in del on line 4.8.15, which will be inserted in the delnodes set.

If the transaction status is updated by CAS from Active to Committed, then the delnodes set is

marked for deletion. Once the node descriptor is marked by CAS on line 4.8.28, the node will

be physically deleted by DO DELETE on line 4.8.29. The UPDATEINFO operation will physically

delete a node on line 2.3.4 if the node descriptor is marked. The code path for physically deleting

a node is linearizable because the corresponding DO DELETE operation in the base data structure

is linearizable.

The same reasoning process applies to the transformed INSERT and FIND operations because they

share the same logical status update procedure with DELETE.

The commutativity isolation rule prevents operations that are not commutative from being executed

concurrently.

Lemma 2. Conflict detection in DTT satisfies the commutativity isolation rule as defined in Rule 2.

Proof. As identified in Equation B.1, INSERT and DELETE commute if they access different keys

101

or operate on different transactional containers. Because of the one-to-one mapping from node to

keys, we have ∀nx, ny ∈ N, x 6= y =⇒ nx 6= ny =⇒ nx.key 6= ny.key. Therefore, INSERT and

DELETE commute if they access two different nodes. Let T1 denotes a transaction that currently

accesses node n1, i.e., n1.info.desc = desc1 ∧ desc1.status = Active. If another transaction

T2 were to access n1, it would invoke UPDATEINFO, and therefore perform EXECUTEOPS for T1

on line 2.3.7. EXECUTEOPS always updates the transaction status by CAS because a failed CAS

indicates that some other thread updated the transaction status. Therefore, it is guaranteed that

desc1.status = Committed∨desc1.status = Aborted before T2 proceeds. Since it is guaranteed

that desc1.status = Committed∨desc1.status = Aborted before T2 proceeds, DTT satisfies the

commutativity isolation rule.

Lemma 3. The logical rollback mechanism of DTT handles aborts equivalently to performing the

inverses of completed transactions, satisfying Rule 3.

Proof. Let T denote a transaction that executes the operations I0 ·R0 · · · Ii ·Ri on nodes n0 · · ·ni

and then aborts. Let S0 denote the abstract state of the data structure immediately before I0, and

Si denote the abstract state immediately after Ri. The requirement of Rule 3 is that after T aborts,

it must execute the inverses of the successful method calls, namely I−1i · R−1i · · · I−10 · R−10 . This

requirement is equivalent to the abstract state being restored to S0, the original state of the data

structure.

We prove that for a data structure generated by DTT, when a transaction T aborts, then the follow-

ing is true for each node nx in n0 · · ·ni: the next operation (whether INSERT, DELETE, or FIND)

that accesses nx will logically interpret the current abstract state Sy to be equal to S0.

INSERT method. For an INSERT(nx.key) call, there are two cases. In the first case where nx.key /∈

S0, the INSERT method call either places a new node nx into the data structure (line 4.6.15), or

INSERT changes the existing node’s transaction descriptor field (line 4.6.11). Either way, after

102

Rx, nx has its transaction descriptor field pointing to T . Assume that T aborts after Rx, resulting

in T ’s transaction descriptor status being set to Aborted . The next operation that accesses nx will

follow the transaction descriptor field of nx, observe T ’s descriptor status as Aborted , and logically

interpret that nx.key /∈ Sy. Therefore, Sy = S0.

In the second case where nx.key ∈ S0, the INSERT method call does not perform any writes to the

data structure and therefore does not change the abstract state. Then assume that T aborts some

time after Rx, so T ’s transaction descriptor status is set to Aborted . However, this action does not

affect the abstract state regarding nx.key, so Sy = S0.

DELETE method. For a DELETE(nx.key) call, there are two cases. In the first case where

nx.key ∈ S0, the DELETE method call changes the transaction descriptor field of the existing

node nx to point to T (line 4.8.11). Assume that the T aborts after Rx, resulting in T ’s transaction

descriptor status being set to Aborted . The next operation that accesses nx will follow the trans-

action descriptor field of nx, observe T ’s descriptor status as Aborted , and logically interpret that

nx.key ∈ Sy. Therefore, Sy = S0.

In the second case where nx.key /∈ S0, the DELETE method does not perform any writes to the

data structure, so this case is similar to the INSERT case in which nx.key ∈ S0.

FIND method. For a FIND(nx.key) call, there are two cases. In the first case where nx.key ∈ S0,

the FIND method call changes the transaction descriptor field of the existing node nx to point to

T (line 4.8.11). Whether or not T aborts, the next operation that accesses nx will always logically

interpret that nx.key ∈ Sy. Therefore, Sy = S0.

In the second case where nx.key /∈ S0, the FIND method does not perform any writes to the data

structure, so this case is similar to the DELETE case in which nx.key ∈ S0.

Lemma 4. The MARKDELETE method is the only method call that can be invoked by a transaction

103

T after T has committed or aborted. The MARKDELETE method is disposable, so DTT satisfies

Rule 4.

Proof. We prove that the MARKDELETE method is disposable because it does not change the

abstract state of the data structure. This implies that it is disposable since it can be postponed

arbitrarily without anyone being able to tell that it did not occur.

We now prove that the MARKDELETE method does not change the data structure’s abstract state.

MARKDELETE can only be called on a node n if it has been invoked by a transaction T that called

DELETE(n) and then committed. Then after T commits, n.key /∈ S, where S is the abstract state

of the data structure. The node n is still linked in the data structure, but its key is not present in the

abstract state. MARKDELETE(n) causes n to no longer be linked in the data structure. This step is

handled by the underlying DO DELETE method of the base data structure. Because n is no longer

linked in the data structure, n.key /∈ S. Therefore, MARKDELETE does not change the abstract

state, so it is disposable.

Theorem 1. The history of committed transactions is strictly serializable for a data structure

constructed by DTT.

Proof. Following Lemmas 1, 2, 3, 4, and the main theorem in Herlihy and Koskinen’s work [26],

the theorem holds.

Theorem 2. For a data structure generated by DTT, the complete history of transactions (including

committed and aborted transactions) is strictly serializable.

Proof. According to the Theorem of Aborted Transactions in Herlihy and Koskinen’s work, if a

system that obeys the four rules discussed in this section, then any history defines the same abstract

state as a history with aborted transactions removed. Following Theorem 1, and the Theorem of

104

Aborted Transactions, then a data structure constructed by DTT guarantees that any history defines

the same abstract state as a strictly serializable history. Therefore, any such history is strictly

serializable.

Progress Guarantees

The wait-free progress assurance scheme is based on the approach by Kogan et al. [38]. In order

to provide wait-free progress for all threads in the system, we guarantee that each operation will

be completed in a finite number of steps, and that the helping mechanism employed for the node-

based conflict detection will detect a cyclic dependency in a finite number of steps. Lemma 5 gives

an upper bound on the time to complete a single operation. Lemma 6 gives an upper bound on

time to detect a cyclic dependency.

Lemma 5. Let F be the number of steps to complete an operation in a lock-free manner. Let D be

the delay to help a thread complete a pending operation. Let n be the total number of threads in

the system. Let k be the maximum number of operations in a transaction. The number of steps to

complete a single operation in a transaction is bounded by O(F + (D + k) · n2 + k).

Proof. We first show the time complexity for a delayed operation to be completed. An arbitrary

thread ti that fails to complete an operation will post its transaction information in the announce-

ment table. A thread tj will perform D operations prior to checking the announcement table and

updating its HELPID to the next thread to be helped. When tj begins to help another thread, tj

will start the thread’s transaction at the current operation id. Thread tj will perform at most k

operations for each thread that it helps prior to reaching ti. Since there are n threads, it will take

O((D + k) · n) time for tj to begin to help ti. In a worst case, all threads will be required to help

ti. The time complexity for all threads to reach ti is O((D + k) · n2).

105

We now show the time complexity for a single operation. An arbitrary thread ti that starts an op-

eration will initially check the announcement table to determine if a thread tj needs help with a

pending operation. If a pending operation exists, then ti will help tj complete its entire transaction.

In a worse case, it will take O((D + k) · n2) time to complete tj’s operation. In this scenario,

all threads will now be assigned to tj’s transaction. It will therefore take at most k steps to com-

plete the transaction, yielding a time complexity of O((D + k) · n2 + k). After ti completes tj’s

transaction, it may begin its own operation. Thread ti will attempt to complete an operation in

its transaction in a lock-free manner within F number of steps. If ti fails to complete the opera-

tion, it will post the transaction information in the announcement table, which will take at most

O((D + k) · n2) steps to complete the operation. The total time complexity to complete a single

operation is O(F + (D + k) · n2 + k).

Lemma 6. Let n be the total number of threads in the system. Let k be the maximum number of

operations in a transaction. The time complexity to detect a cyclic dependency is O(n · k).

Proof. In the presence of conflicts, threads may set out to help each other during the execution

of each of the operations. The number of recursive helping invocations is bound by the number

of active transactions. For a system with n threads, the upper bound of the number of active

transactions is n. Prior to helping a transaction, a thread will push the transaction descriptor onto

the thread local help stack. Since the maximum transaction length is k, a cyclic dependency will

be detected due to a duplicate descriptor in the help stack in at most O(n · k) steps.

106

APPENDIX C: CORRECTNESS OF THE TRANSACTIONAL HASH

MAP

107

Proof. As identified in Equation B.1, two set operations commute if they access different keys.

Because of the one-to-one mapping from node to keys, we have ∀nx, ny ∈ N, x 6= y =⇒ nx 6=

ny =⇒ nx.key 6= ny.key. This means that two set operations commute if they access two

different nodes. Let T1 denote a transaction that currently accesses node n1, i.e., n1.info.desc =

desc1 ∧ desc1.status = Active. If another transaction T2 were to access n1, it must perform

EXECUTEOPS for T1 on line 2.3.7 because EXECUTEOPS always updates the transaction status

when it returns on line 4.3.21 or 4.3.24 (note that failed CAS also means the transaction status has

been set, by another thread). We thus ensure that desc1.status = Committed ∨ desc1.status =

Aborted before T2 proceeds.

108

APPENDIX D: CORRECTNESS OF THE TRANSACTIONAL VECTOR

109

Lemma 7. The vector operations PUSH BACK, POP BACK, READ, and WRITE are linearizable.

Proof. The PUSH BACK operation will add a new element to the end of a transactional container.

The descriptor for the node is attempted to be updated to the current node descriptor by UPDATE-

INFO. The state-read point for this case is when info.desc.status is read on line 2.3.13. The

abstract states S ′ observed by all transactions immediately after the reads are unchanged, i.e.,

∀i, S ′i = Si. The decision point for a successful logical status update occurs when the CAS op-

eration on line 15 succeeds. The abstract states S ′ observed by the transactions Td executing this

operation immediately after the CAS is i = d =⇒ S ′i = Si ∪ n.key. For all other transactions

i 6= d =⇒ S ′i = Si. In all cases, the update of abstract states conforms to the sequential specifica-

tion of the PUSH BACK operation. The code path for the physical insertion of a node is linearizable

because the corresponding DO PUSH BACK operation in the base data structure is linearizable.

The same reasoning process applies to the transformed POP BACK, READ, and WRITE operations

because they share the same logical status update procedure with PUSH BACK.

110

LIST OF REFERENCES

[1] G. Barnes. A method for implementing lock-free shared-data structures. In Proceedings

of the Fifth Annual ACM Symposium on Parallel Algorithms and Architectures, SPAA ’93,

pages 261–270, New York, NY, USA, 1993. ACM.

[2] N. G. Bronson, J. Casper, H. Chafi, and K. Olukotun. Transactional predication: high-

performance concurrent sets and maps for stm. In Proceedings of the 29th ACM SIGACT-

SIGOPS symposium on Principles of distributed computing, pages 6–15. ACM, 2010.

[3] C. Cascaval, C. Blundell, M. Michael, H. W. Cain, P. Wu, S. Chiras, and S. Chatterjee.

Software transactional memory: Why is it only a research toy? Queue, 6(5):40, 2008.

[4] A. T. Clements, M. F. Kaashoek, N. Zeldovich, R. T. Morris, and E. Kohler. The scalable

commutativity rule: Designing scalable software for multicore processors. ACM Transactions

on Computer Systems (TOCS), 32(4):10, 2015.

[5] Cliff Click. A lock-free hash table (http://www.azulsystems.com/events/javaone 2007/

2007 LockFreeHash.pdf). Retrieved 12/12/2012.

[6] L. Dalessandro, M. F. Spear, and M. L. Scott. Norec: streamlining stm by abolishing owner-

ship records. In ACM Sigplan Notices, volume 45, pages 67–78. ACM, 2010.

[7] D. Dechev. The ABA Problem in Multicore Data Structures with Collaborating Operations. In

Proceedings of the 7th International Conference on Collaborative Computing: Networking,

Applications and Worksharing (CollaborateCom 2011), 2011.

[8] D. Dechev, P. Pirkelbauer, and B. Stroustrup. Lock-free dynamically resizable arrays. In

M. Shvartsman, editor, Principles of Distributed Systems, volume 4305 of Lecture Notes in

Computer Science, pages 142–156. Springer Berlin / Heidelberg, 2006.

111

http://www.azulsystems.com/events/javaone_2007/2007_LockFreeHash.pdf
http://www.azulsystems.com/events/javaone_2007/2007_LockFreeHash.pdf

[9] D. Dice, Y. Lev, M. Moir, D. Nussbaum, and M. Olszewski. Early experience with a com-

mercial hardware transactional memory implementation. 2009.

[10] J. Dybnis. nbds. https://code.google.com/p/nbds/, October 2014.

[11] F. Ellen, P. Fatourou, E. Ruppert, and F. van Breugel. Non-blocking binary search trees.

In Proceedings of the 29th ACM SIGACT-SIGOPS symposium on Principles of distributed

computing, pages 131–140. ACM, 2010.

[12] R. Fagin, J. Nievergelt, N. Pippenger, and H. R. Strong. Extendible hashing - a fast access

method for dynamic files. ACM Trans. Database Syst., 4:315–344, September 1979.

[13] S. Feldman, C. Valera-Leon, and D. Dechev. An efficient wait-free vector. IEEE Transactions

on Parallel and Distributed Systems, 27(3):654–667, March 2016.

[14] K. Fraser. Practical lock-freedom. PhD thesis, PhD thesis, Cambridge University Computer

Laboratory, 2003. Also available as Technical Report UCAM-CL-TR-579, 2004.

[15] K. Fraser. Practical lock-freedom. In Computer Laboratory, Cambridge Univ, 2004.

[16] H. Gao, J. F. Groote, and W. H. Hesselink. Almost wait-free resizable hashtable. In IPDPS,

2004.

[17] G. Golan-Gueta, G. Ramalingam, M. Sagiv, and E. Yahav. Concurrent libraries with foresight.

In ACM SIGPLAN Notices, volume 48, pages 263–274. ACM, 2013.

[18] G. Golan-Gueta, G. Ramalingam, M. Sagiv, and E. Yahav. Automatic scalable atomicity via

semantic locking. In Proceedings of the 20th ACM SIGPLAN Symposium on Principles and

Practice of Parallel Programming, pages 31–41. ACM, 2015.

112

https://code.google.com/p/nbds/

[19] V. Gramoli, R. Guerraoui, and M. Letia. Composing relaxed transactions. In Parallel &

Distributed Processing (IPDPS), 2013 IEEE 27th International Symposium on, pages 1171–

1182. IEEE, 2013.

[20] T. L. Harris. A pragmatic implementation of non-blocking linked-lists. In Proceedings of

the 15th International Conference on Distributed Computing, DISC ’01, pages 300–314,

London, UK, 2001. Springer- Verlag.

[21] T. L. Harris. A pragmatic implementation of non-blocking linked-lists. In Distributed Com-

puting, pages 300–314. Springer, 2001.

[22] T. L. Harris. A pragmatic implementation of non-blocking linked-lists. In Proceedings of

the 15th International Conference on Distributed Computing, DISC ’01, pages 300–314,

London, UK, UK, 2001. Springer-Verlag.

[23] A. Hassan, R. Palmieri, and B. Ravindran. On developing optimistic transactional lazy set.

In Principles of Distributed Systems, pages 437–452. Springer, 2014.

[24] D. Hendler, I. Incze, N. Shavit, and M. Tzafrir. Flat combining and the synchronization-

parallelism tradeoff. In Proceedings of the Twenty-second Annual ACM Symposium on Par-

allelism in Algorithms and Architectures, SPAA ’10, pages 355–364, New York, NY, USA,

2010. ACM.

[25] D. Hendler, N. Shavit, and L. Yerushalmi. A scalable lock-free stack algorithm. In Proceed-

ings of the sixteenth annual ACM symposium on Parallelism in algorithms and architectures,

SPAA ’04, pages 206–215, New York, NY, USA, 2004. ACM.

[26] M. Herlihy and E. Koskinen. Transactional boosting: a methodology for highly-concurrent

transactional objects. In Proceedings of the 13th ACM SIGPLAN Symposium on Principles

and practice of parallel programming, pages 207–216. ACM, 2008.

113

[27] M. Herlihy, V. Luchangco, and M. Moir. Obstruction-free synchronization: Double-ended

queues as an example. In Proceedings of the 23rd International Conference on Distributed

Computing Systems, ICDCS ’03, pages 522–, Washington, DC, USA, 2003. IEEE Computer

Society.

[28] M. Herlihy, V. Luchangco, M. Moir, and W. N. Scherer III. Software transactional memory

for dynamic-sized data structures. In Proceedings of the twenty-second annual symposium

on Principles of distributed computing, pages 92–101. ACM, 2003.

[29] M. Herlihy and J. E. B. Moss. Transactional memory: Architectural support for lock-free

data structures. In Proceedings of the 20th Annual International Symposium on Computer

Architecture, ISCA ’93, pages 289–300, New York, NY, USA, 1993. ACM.

[30] M. Herlihy and N. Shavit. The Art of Multiprocessor Programming. Morgan Kaufmann

Publishers, New York, NY, USA, 2008.

[31] M. P. Herlihy and J. M. Wing. Linearizability: a correctness condition for concurrent objects.

ACM Trans. Program. Lang. Syst., 12(3):463–492, July 1990.

[32] M. P. Herlihy and J. M. Wing. Linearizability: A correctness condition for concurrent ob-

jects. ACM Transactions on Programming Languages and Systems (TOPLAS), 12(3):463–

492, 1990.

[33] S. V. Howley and J. Jones. A non-blocking internal binary search tree. Spaa, page 161, 2012.

[34] Intel Corporation. Reference for Intel Threading Building Blocks

(http://threadingbuildingblocks.org/). Retrieved 08/25/2015.

[35] ISO/IEC 14882 Standard for Programming Language C++. Programming languages: C++.

American National Standards Institute, September 2011.

114

[36] M. Khiszinsky. Concurrent data structures. http://libcds.sourceforge.net/, May 2013.

[37] A. Kogan and E. Petrank. Wait-free queues with multiple enqueuers and dequeuers. In Pro-

ceedings of the 16th ACM symposium on Principles and practice of parallel programming,

PPoPP ’11, pages 223–234, New York, NY, USA, 2011. ACM.

[38] A. Kogan and E. Petrank. A methodology for creating fast wait-free data structures. In

Proceedings of the 17th ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming, PPoPP ’12, pages 141–150, New York, NY, USA, 2012. ACM.

[39] E. Koskinen, M. Parkinson, and M. Herlihy. Coarse-grained transactions. ACM Sigplan

Notices, 45(1):19–30, 2010.

[40] P. LaBorde, S. Feldman, and D. Dechev. A wait-free hash map. International Journal of

Parallel Programming, pages 1–28, 2015.

[41] P. LaBorde, L. Lebanoff, C. Peterson, D. Zhang, and D. Dechev. Wait-free dynamic transac-

tions without rollbacks for linked containers. Technical report, University of Central Florida,

2018.

[42] P. Larson. Dynamic hashing. BIT Numerical Mathematics, 18:184–201, 1978.

10.1007/BF01931695.

[43] J. Lindén and B. Jonsson. A skiplist-based concurrent priority queue with minimal memory

contention. In Principles of Distributed Systems, pages 206–220. Springer, 2013.

[44] Lockless Inc. Technical specifications for the lockless inc. memory allocator. http:

//locklessinc.com/technical allocator.shtml, December 2011.

[45] V. J. Marathe, M. F. Spear, C. Heriot, A. Acharya, D. Eisenstat, W. N. Scherer III, and M. L.

Scott. Lowering the overhead of nonblocking software transactional memory. In Workshop on

115

http://libcds.sourceforge.net/
http://locklessinc.com/technical_allocator.shtml
http://locklessinc.com/technical_allocator.shtml

Languages, Compilers, and Hardware Support for Transactional Computing (TRANSACT),

2006.

[46] M. M. Michael. High performance dynamic lock-free hash tables and list-based sets. In

SPAA ’02: Proceedings of the fourteenth annual ACM symposium on Parallel algorithms

and architectures, pages 73–82, New York, NY, USA, 2002. ACM Press.

[47] M. M. Michael. High performance dynamic lock-free hash tables and list-based sets. In Pro-

ceedings of the fourteenth annual ACM symposium on Parallel algorithms and architectures,

pages 73–82. ACM, 2002.

[48] M. M. Michael. Hazard pointers: Safe memory reclamation for lock-free objects. IEEE

Trans. Parallel Distrib. Syst., 15:491–504, June 2004.

[49] M. M. Michael and M. L. Scott. Simple, fast, and practical non-blocking and blocking con-

current queue algorithms. In Proceedings of the fifteenth annual ACM symposium on Princi-

ples of distributed computing, PODC ’96, pages 267–275, New York, NY, USA, 1996. ACM.

[50] Microsoft. System.collections.concurrent namespace. http://msdn.microsoft.com/en-us/

library/system.collections.concurrent.aspx, 2011. .NET Framework 4.

[51] M. Moir and N. Shavit. Handbook of Data Structures and Applications, chapter Concurrent

Data Structures, pages 47–1–47–30. Chapman and Hall/CRC Press, 2007.

[52] O. Shalev and N. Shavit. Split-ordered lists: lock-free extensible hash tables. In PODC ’03:

Proceedings of the twenty-second annual symposium on Principles of distributed computing,

pages 102–111, New York, NY, USA, 2003. ACM Press.

[53] N. Shavit and D. Touitou. Software transactional memory. Distributed Computing, 10(2):99–

116, 1997.

116

http://msdn.microsoft.com/en-us/library/system.collections.concurrent.aspx
http://msdn.microsoft.com/en-us/library/system.collections.concurrent.aspx

[54] A. Spiegelman, G. Golan-Gueta, and I. Keidar. Transactional data structure libraries. In

Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and

Implementation, pages 682–696. ACM, 2016.

[55] H. Sundell. Wait-free reference counting and memory management. In Parallel and Dis-

tributed Processing Symposium, 2005. Proceedings. 19th IEEE International, page 24b, april

2005.

[56] H. Sundell and P. Tsigas. Lock-free deques and doubly linked lists. J. Parallel Distrib.

Comput., 68:1008–1020, July 2008.

[57] I. Walulya and P. Tsigas. Scalable lock-free vector with combining. In 2017 IEEE Interna-

tional Parallel and Distributed Processing Symposium (IPDPS), pages 917–926, May 2017.

[58] D. Zhang and D. Dechev. A lock-free priority queue design based on multi-dimensional

linked lists. IEEE Transactions on Parallel and Distributed Systems, PP(99):1–1, 2015.

[59] D. Zhang and D. Dechev. An efficient lock-free logarithmic search data structure based on

multi-dimensional list. In 2016 IEEE 36th International Conference on Distributed Comput-

ing Systems (ICDCS), pages 281–292, June 2016.

[60] D. Zhang and D. Dechev. A lock-free priority queue design based on multi-dimensional

linked lists. IEEE Transactions on Parallel and Distributed Systems, 27(3):613–626, March

2016.

[61] D. Zhang and D. Dechev. Lock-free transactions without rollbacks for linked data structures.

In Proceedings of the 28th ACM Symposium on Parallelism in Algorithms and Architectures,

SPAA ’16, pages 325–336, New York, NY, USA, 2016. ACM.

[62] D. Zhang, P. Laborde, L. Lebanoff, and D. Dechev. Lock-free transactional transformation

for linked data structures. ACM Transactions on Parallel Computing (TOPC), 2018.

117

	University of Central Florida
	
	Practical Dynamic Transactional Data Structures
	2018
	Pierre LaBorde
	STARS Citation

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	CHAPTER 1: INTRODUCTION
	CHAPTER 2: BACKGROUND
	Related Work
	Overview of Work Related to Non-blocking Data Structures
	Hash Map
	Vector
	Overview of Work Related to Transactional Data Structures
	Transactional Memory
	Transactional Boosting
	LFTT

	CHAPTER 3: WAIT-FREE HASH MAP
	Algorithms
	Structure and Definition
	Traversal
	Main Functions
	Algorithm 1 - insert (key, value)
	Algorithm 2 - Update (key, expectedValue, newValue)
	Algorithm 3 - get (key)
	Algorithm 4 - remove (key, expectedValue)
	Algorithm 5 - expandMap (local, pos, right)

	Memory Management
	Algorithm 6 - watch (value)
	Algorithm 7 - safeFreeNode (nodeToFree)
	Algorithm 8 - allocateNode (value, hash)

	Supporting Functions

	CHAPTER 4: DYNAMIC TRANSACTIONAL TRANSFORMATION
	Overview
	Using DTT
	Implementation Details
	Transactions Among Multiple Data Structures
	Wait-free Transactions
	Wait-free Transactions - Pseudocode
	A Transactional Transformation Template

	CHAPTER 5: NON-BLOCKING TRANSACTIONAL HASH MAP
	CHAPTER 6: NON-BLOCKING TRANSACTIONAL VECTOR
	CHAPTER 7: PERFORMANCE EVALUATION
	Wait-free Hash Map
	Dynamic Transactions
	Experimental Setup
	Overall Results
	Transactional List
	Transactional Skip List
	Transactional MDList
	Transactional Dictionary
	Transactional Binary Search Tree
	Wait-free Transactions
	Transactions Among Multiple Data Structures

	Transactional Hash Map
	Transactional Map

	CHAPTER 8: CONCLUSION
	Future Work

	APPENDIX A: CORRECTNESS OF THE WAIT-FREE HASH MAP
	Safety
	Linearizability
	Wait-Freedom

	APPENDIX B: CORRECTNESS OF DYNAMIC TRANSACTIONS
	Correctness
	Definitions
	Serializability and Recoverability
	Progress Guarantees

	APPENDIX C: CORRECTNESS OF THE TRANSACTIONAL HASH MAP
	APPENDIX D: CORRECTNESS OF THE TRANSACTIONAL VECTOR
	LIST OF REFERENCES

