
University of Central Florida

Electronic Theses and Dissertations Masters Thesis (Open Access)

Compiler Design of a Policy Specification
Language for Conditional Gradual Release
2018

Manasa Kashyap Harinath
University of Central Florida

Find similar works at: https://stars.library.ucf.edu/etd

University of Central Florida Libraries http://library.ucf.edu

Part of the Computer Sciences Commons

This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Electronic Theses and
Dissertations by an authorized administrator of STARS. For more information, please contact lee.dotson@ucf.edu.

STARS Citation

Kashyap Harinath, Manasa, "Compiler Design of a Policy Specification Language for Conditional Gradual Release" (2018). Electronic
Theses and Dissertations. 5959.
https://stars.library.ucf.edu/etd/5959

https://stars.library.ucf.edu?utm_source=stars.library.ucf.edu%2Fetd%2F5959&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu?utm_source=stars.library.ucf.edu%2Fetd%2F5959&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd?utm_source=stars.library.ucf.edu%2Fetd%2F5959&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd
http://library.ucf.edu
http://network.bepress.com/hgg/discipline/142?utm_source=stars.library.ucf.edu%2Fetd%2F5959&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd/5959?utm_source=stars.library.ucf.edu%2Fetd%2F5959&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:lee.dotson@ucf.edu
https://stars.library.ucf.edu?utm_source=stars.library.ucf.edu%2Fetd%2F5959&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu?utm_source=stars.library.ucf.edu%2Fetd%2F5959&utm_medium=PDF&utm_campaign=PDFCoverPages

COMPILER DESIGN OF A POLICY SPECIFICATION LANGUAGE FOR

CONDITIONAL GRADUAL RELEASE

by

MANASA KASHYAP HARINATH

B.E. Sir M Visvesvaraya Institute of Technology 2013

A thesis submitted in partial fulfillment of the requirements

for the degree of Master of Science

in the Department of Computer Science

in the College of Engineering and Computer Science

at the University of Central Florida

Orlando, Florida

Summer Term

2018

Major Professor: Gary T. Leavens

ii

© 2018 Manasa Kashyap Harinath

iii

ABSTRACT

Securing the confidentiality and integrity of information manipulated by computer

software is an old yet increasingly important problem. Current software permission systems

present on Android or iOS provide inadequate support for developing applications with secure

information flow policies. To be useful, information flow control policies need to specify

declassifications and the conditions under which declassification must occur. Having these

declassifications scattered all over the program makes policies hard to find, which makes

auditing difficult. To overcome these challenges, a policy specification language, ‘Evidently’

is discussed that allows one to specify information flow control policies separately from the

program and which supports conditional gradual releases that can be automatically enforced. I

discuss the Evidently grammar and modular semantics in detail. Finally, I discuss the

implementational details of Evidently compiler within the Xtext language development

environment and the implementation’s enforcement of policies.

iv

I dedicate this thesis to my parents Gayathri Tekal Ramarao and Harinath Kashyap

Bheema Rao who have loved me unconditionally and whose good examples have taught me to

work hard for the things that I aspire to achieve.

v

ACKNOWLEDGMENT

I take this opportunity to express my great appreciation towards Professor Dr. Gary T.

Leavens for his invaluable and great advice and support. Without his advice and guidelines,

I couldn’t accomplish this work. Dr. Leavens not only helped me in going through this

research and accomplish the work, but even more importantly, showed me how to look from

different perspectives into the same problem. I would also like to thank the members of my

thesis committee, Professors Damla Turgut and Liqiang Wang for their advice and guidance

during the entire process. Special thanks to my best friend, Siddarth Vellakovil Rajamani,

who has been a constant source of support and encouragement during the challenges of

graduate school and life.

vi

TABLE OF CONTENTS

LIST OF FIGURES ... viii

LIST OF ACRONYMS ... x

CHAPTER ONE: INTRODUCTION .. 1

Problem and its importance .. 2

Background on Evidently ... 3

Declassification .. 3

Overview of the thesis .. 5

CHAPTER TWO: SECURITY POLICIES USING EVIDENTLY .. 6

Models .. 6

Flowpoints... 6

Predicate Expressions and Predicate Operators .. 7

Properties .. 9

Specification of Properties .. 9

Levels ... 10

Policies ... 11

The Root Policy .. 11

CHAPTER THREE: EVIDENTLY COMPILER IMPLEMENTATION 13

Introduction .. 13

Overview of Xtext .. 13

vii

Architecture .. 13

Grammar ... 14

Cross References .. 14

Validations .. 15

Policy Enforcement .. 16

CHAPTER FOUR: CONCLUSION .. 21

Future Work ... 21

APPENDIX: CODE FOR THE COMPILER .. 22

Grammar... 23

Validation Rules ... 31

LIST OF REFERENCES ... 36

viii

LIST OF FIGURES

Figure 1: Predicate Expressions and Predicate operators .. 7

Figure 2: Syntax of Model in Evidently .. 8

Figure 3: Flowpoint predicates .. 9

Figure 4: Syntax of Levels in Evidently .. 11

Figure 5: Syntax of Policy in Evidently ... 12

Figure 6: Example of Cross reference and Namespace in Evidently....................................... 15

Figure 7 : Checking for Duplicate Models .. 16

Figure 8: Enforcement of Policies ... 17

Figure 9: Java source code ... 19

Figure 10: Evidently policy ... 20

Figure 11: Evidently Grammar part a .. 23

Figure 12: Evidently Grammar part b .. 24

Figure 13: Evidently grammar part c ... 25

Figure 14: Evidently Grammar part d .. 26

Figure 15: Evidently Grammar part e .. 27

Figure 16: Evidently Grammar part f... 28

Figure 17: Evidently Grammar part g .. 29

Figure 18: Evidently Grammar part h .. 30

ix

Figure 19: Evidently Grammar part i ... 30

Figure 20: Validation Rules part a ... 31

Figure 21: Validation Rules part b ... 31

Figure 22: Validation Rules part c ... 32

Figure 23: Validation Rules part d ... 33

Figure 24: Validation Rules part e ... 34

Figure 25: Validation Rules part f ... 35

x

LIST OF ACRONYMS

ANTLR Another Tool for Language Recognition

AST Abstract Syntax Tree

CGR Conditional Gradual Release

EMF Eclipse Modelling Framework.

IDE Integrated Development Environment

JDK Java Development Kit

JML Java Modeling Language

1

CHAPTER ONE: INTRODUCTION

In software systems that operate on data with different sensitivity levels, the challenge

is to provide security assurance by controlling the information flow within the system. Access

control has been a tool to prevent secure information from being disseminated. Access control

verifies the program’s access rights at the point of access, and either grants or denies permission

to access the secure information.

Information flow control monitors the flow of information through the program thus

ensuring its information security. An ideal secure system must possess two major properties:

Confidentiality and Integrity. Confidentiality suggests that no secure information is released to

insecure program locations and Integrity suggests that no insecure program location may

influence the values stored at the secure program locations. Noninterference is a security

property that specifies constraints on the information between program locations.

A system with perfect Confidentiality and Integrity is not always ideal when it comes

to real world applications. For example, consider a system that provides a login prompt to a

user. If the user enters the incorrect login credentials, the system must deny the user access.

However, this action reveals something about what values the username and password are not

and therefore leaks information. Such a system does not have the noninterference property.

Since the noninterference property is not practical in real systems, some amount of release of

the information must be allowed. Programs that release information are said to declassify that

information.

Therefore, the user (designer) must answer the questions such as: how much

information should be released? What information should be released? Under what constraints

information should be released? The answer to these questions are specified by information

flow control policy specifications.

2

“Evidently” is a specification language designed for specifying information flow

control policies. In Evidently, the Information Flow Control policy specifications are separated

from the actual program. Separating the policy specifications from the implementation of a

system permits the policy to be modified without changing its underlying implementation.

Additionally, when policy specifications are separated from the program code, policy scattering

and tangling of policies throughout the program code can be avoided. This feature of Evidently

makes auditing easier.

 Tangling occurs when the module in the application includes repeated code for each

type of Conditional gradual release, in many modules. Scattering occurs when the information

flow control policies are mixed with the business logic of the application.

Problem and its importance

As discussed, monitoring information flow between program locations is an inevitable

aspect of information flow control policies. Chong and Myers [1] have described a

declassification policy language where policies are written along with the program code. This

means the expressions for the declassifications are interwoven with the program code, making

auditing difficult. Additionally, when the user changes the program code, care must be taken

to examine the complete program to verify all the declassification expressions. Similarly, in

other specification languages such as, JIF [4], JFlow [5], JRif [6] and Paragon [7] the

declassifications rules are specified along with the program code.

Denning [2] presents a compiler-time methodology that verifies the program for

secured information flow, before the program is even executed. However, statically-typed

policy specification is not always recommended. Real computing systems have information

flow that vary dynamically and that cannot be completely determined at compile time. Zheng

3

and Myers [3] proposed a policy specification language, ƛDSec to securely monitor and

manipulate information with dynamic secure labels.

 In ƛDSec , the dynamic labels can be used as type annotations to support static analysis.

The type system of ƛDSec enforces noninterference ensuring secure information flow control.

Evidently is a specification policy language that describes information flow control

policies and declassification separate from the program code thereby avoiding scattering and

tangling. Writing policies separately from the program code enables the policies to be reused.

In Evidently, the security labels are designed in the models using flowpoints which is point of

contact through which the policy interacts with the program code. Therefore, if the program

code changes, only the model need to be modified.

In this thesis, Evidently language is discussed in detail describing Evidently semantics

and constructs. An implementation of Evidently is discussed, which describes enforcement of

information flow policies for programs written in the Java.

Background on Evidently

In Evidently, the security policy is defined by labelling each location in the program

code with a value that represents the security level of that location. For instance, a program

location with a high security property might be labelled as ‘H’ and a program location with a

lower security property might be labelled as ‘L’. The declassification rules apply constraints

on the information flow from ‘H’ to ‘L’.

Declassification

Evidently uses Conditional Gradual Release, for declassification, i.e., rather than the

delimited style of declassification, wherein declassifications are arbitrarily powerful

4

relabelings. In Evidently, policies may express the conditions for declassification. In Evidently,

the declassification properties of Java program are specified by policies. The policies answers

questions such as: ‘what’ information is being released?, ‘where’ is this information released

to in the program code?, and ‘when’ is this information allowed to flow?

 To be concrete, let us consider a hypothetical example of a free HBO subscription

account. This account holds good for a month, after which, the account is terminated. Suppose,

the user who still has a valid free HBO subscription, wants to watch an episode of their favorite

series. Let us analyze the application of policies through this example.

What. While specifying information flow control policy, what indicates the information

that is being allowed to flow. In our example, the “what” could be the episode of a particular

series that the user requests to watch, i.e., a video. The “what” could also be more fine-

grained—for example, even though, the user has a free subscription and can watch that episode,

there might be a constraint on the duration of the episodes that user is allowed to watch. This

information flow and its constraints are specified by Evidently abstractions called ‘Models’

and ‘Properties’ which will be discussed in the next chapter.

Where. In the context of declassification, “where” can refer to policies that describe

release to locations in the code. These locations are represented by variables or fields or even

various security levels. In our example, where suggests the security level say, from the

DATABASE of HBO to NETWORK. In Evidently, the “where” feature is represented by an

abstraction called ‘Levels’ which will be discussed in the next chapter.

When. In Evidently, this dimension can be specified using properties in the policies.

The ‘When’ dimension permits declassification under certain arbitrary conditions. Property

specifications will be discussed in detail in the next chapter. Considering our example of HBO

subscription, the episode will be allowed to be viewed by the user while he has a valid

5

subscription. Once the subscription expires, the user will not be able to watch the episode. In

Evidently, the when dimension is encoded by combining properties inside the policy.

Overview of the thesis

Chapter Two explains more details about Evidently syntax and semantics. Chapter

Three discusses the implementation details of the Evidently compiler and enforcement of

policies. Evidently is implemented using Language Development framework Xtext. Chapter

Four also provides a brief insight about the Future work and Summary of the paper. The

Appendix contains the compiler code to the compiler.

6

CHAPTER TWO: SECURITY POLICIES USING EVIDENTLY

As discussed, Evidently is a policy specification language with centralized

declassification rules that are not scattered throughout a program. This enables the reusability

of the policies. When policies are scattered throughout the program code, any modification

done to the program, might change the semantics of the policies. To achieve centralization of

policies in Evidently, the user describes an abstraction of the program, which can be used

throughout the policy. Evidently provides four abstractions namely: Models, Lenses,

Projections, and Levels.

Models, Projections, and Levels are used in describing a Policy, which is the fourth and

main abstraction. We discuss the properties and functionalities of all these abstractions starting

with models, which describes the program locations that user wants to monitor information

flow.

Models

Models in Evidently contain references to the data locations that the user wishes to

write declassification rules about. A model may define single or multiple data locations by

declaring flowpoints. Using these flowpoints, models might also contain properties to specify

constraints on the flowpoints. We discuss flowpoints and properties in detail in the next section.

The syntax of Models in Evidently is provided in the figure 1.

Flowpoints

flowpoints are defined in the models to refer to data locations in a program’s code. As

discussed, in Evidently, the primary functionality of models is to identify data locations in the

7

program code. A model might contain one or more flowpoints. Evidently allows users to be

specific or generic by providing a pointcut-like-predicates and operators for describing sets of

data locations. Figure 2 provides a brief description of these predicates.

Predicate Expressions and Predicate Operators

The flowpoints are comprised of predicate expressions. Predicates are combined to

form predicate expressions that describes a set of data locations. The predicate expressions may

be joined using && and || operator. The && operator denotes the intersection of two sets of

data locations and || denotes their union. Figure 1 shows an example:

flowpoint adminMode:boolean = {
 within(AsmTrial) && field("adminMode")
 }

Figure 1: Predicate Expressions and Predicate operators

8

Figure 2: Syntax of Model in Evidently

9

Figure 3: Flowpoint predicates

Properties

In models, properties specify the attributes of the model that are supposed to be released

by the policy. They also denote how much of this information is released by the policy. This

feature is enabled using projections which will be discussed in the next section.

Specification of Properties

Having only properties will not make information flow completely secure. For

example, if we have a method which displays only last 4 digits of credit card number and we

10

have defined properties to ensure this flow in the models. Suppose, if the method changes, it

might degrade the quality of security provided by the policy. To overcome this challenge, there

are specifications attached to the properties. These specifications are called pre- and post-

conditions specifications. In Evidently, pre-, and post- conditions are achieved using requires

keyword and ensures keywords respectively.

Levels

In previous sections, we have been using generic parameters H and L to represent high

security and low security labels. In Evidently, these security labels are specified using the

abstraction levels. Once defined, these levels are recognized within a policy which we will

discuss in the next section. A level may be defined as a sink, which denotes the program

locations to which information may flow to, or a source, which denotes program locations from

which information may flow. The levels we show below are derived from Sparta [8]. Figure 3

shows the syntax of levels in Evidently.

11

Figure 4: Syntax of Levels in Evidently

Policies

In Evidently, policies are responsible for bringing all abstractions together to express

security specifications of a program. In this section we will discuss the policy features of

Evidently as well as show examples of how to encode common security properties in Evidently

policies. In Evidently, the release keyword is used to specify the actual flow. A release

statement in the policy contains a property or flowpoint and set of templates F -> T which

denoted the generic information flow. The set of templates, F->T represent the what and where

dimensions respectively. ‘F’ and ‘T’ may be instantiated with any two declared labels.

Evidently supports parametric polymorphism, similar to Java’s generics. The set of templates,

F->T is used within the release tuple. The when dimension is denoted by the keywords, when

and unless.

The Root Policy

In Evidently, the information flow policy of an application is not written within the

program’s code. However, to support better modularity, Evidently abstractions such as models,

12

levels, projections and policies may be written in multiple files. To combine all these elements

together, our system requires a root policy file, policy.epl, which is the starting point into an

applications information flow policy. Within this file the user may import other policies, and

set the enforcement level of the various policies. We show the syntax of policy files in

Evidently in Figure 4.

Figure 5: Syntax of Policy in Evidently

13

CHAPTER THREE: EVIDENTLY COMPILER IMPLEMENTATION

Introduction

Implementation of Evidently for the Java language is discussed in this section. I used

the Xtext language development tool [9] to implement Evidently. Prior to using Xtext,

Evidently’s grammar was implemented using Jastadd [10]. In this method, the Lexer and Parser

are written using JFlex [11] and Beaver [12] respectively. JastAdd, a meta compilation system

that supports Reference Attribute Grammars was used to implement Evidently.

Overview of Xtext

Xtext is an ideal language development workbench, to implement Evidently. In Xtext,

the grammar is specified in the ‘.xtext’ file. From this specification, Xtext automatically

generates the parser and lexer in Java. Like ANTLR, Xtext only needs the grammar

specification to create the AST and corresponding Java classes. To implement type checking,

validation, and code generation, Xtext provides a structured language called ‘Xtend’ [13]. In

our implementation, the validation checks, type checking and code generation are written using

Xtend.

Architecture

In this section we discuss the implementational details of Evidently compiler. First, we

discuss how the grammar is written using Xtext DSL, Validations using Xtend and, describe

14

how to enforce the information flow control policies during runtime.

Grammar

In Xtext, the grammar is written in the ‘.xtext’ file. The Evidently grammar is written

in ‘Evidently.xtext. The first rule in the grammar defines where the parser starts and the type

of the root element of the grammar and the AST. For Evidently, ‘PolicyFile’ is the root element

of the AST which contains one or more Evidently abstractions such as Levels, Models and

Policy. The complete grammar of Model, Level and Policy is described in the Appendix.

The parser algorithm of Xtext does not deal with left recursive rules. A rule is said to

be left recursive when the rule's non-terminal (each rule in a CFG has a non-terminal on the

left hand side) refers to itself. To avoid left recursion one must use “left factoring” to remove

left recursion. For example, consider the left-recursive rule A -> A a | b. This rule can be

replaced by adding another rule say, A’, as follows:

A-> b A’

A’ -> a A’ | (empty)

Cross References

To refer to another element in the grammar, Xtext allows cross references using EMF.

The Eclipse Modelling Framework (EMF) [14] is a set of plug-ins available for Eclipse IDE

that allows the developer to create the meta-model of the application. Generally, EMF is used

to define these meta-models of the application and generate corresponding Java

implementation classes.

In Evidently, the root policy, ‘policy.epl’ generally contains references to models,

policies and the levels which are handled using the cross-reference property of Xtext. In EMF,

15

the element type is not any primitive data type but, is a reference. This reference is an instance

of EReference (from EMF). Xtext provides a mechanism to store all the cross-referencing

objects using a structure called, ‘Index’. This index store stores only the meta-data of the object

using IEObjectDescription elements. Xtext use namespaces to allow elements with the same

name in different namespaces. To achieve this functionality, Xtext provides the type

QualifiedName. Below is a code snippet from Evidently.xtext (Appendix) to demonstrate the

usage of namespace with cross reference.

Figure 6: Example of Cross reference and Namespace in Evidently

Validations

Parsing is only the first stage of language development and overall correctness of an

Evidently policy is not completely determined during parsing. Having constraint checks during

the parsing process makes grammar specifications more complex and difficult to understand.

Hence, it is better to do as little as possible in the grammar and as much as possible in

Validation. In the implementation, all the validations are written in the

‘EvidentlyValidator.xtend’ file. Xtext performs validation by invoking all the methods

annotated with @Check. Inside these methods, we carry out the semantic checks on the

Evidently elements and if the check fails, an error method is called. The error method is passed

with the following: 1) A message for the error 2) Information about the EObject against which

the error was reported. The source code for all the validations is provided in the Appendix. An

example method is showing in Figure 8 which checks for duplicate models.

16

Figure 7 : Checking for Duplicate Models

Policy Enforcement

To demonstrate the runtime enforcement of policies, we have implemented Evidently

to work with the Java language. This section provides details on Evidently policy enforcement

during runtime.

17

Figure 8: Enforcement of Policies

Figure 9 gives an overview of our implementational details of the Evidently policy

enforcement. Evidently makes use of ASM tool to perform additional bytecode generation.

ASM [15] is a tool for the Java language designed for runtime class transformation and

generation. In Evidently, ASM transforms the Java program by instrumenting bytecodes as per

the underlying Evidently policy.

 In Evidently, flowpoints describe the data locations in the Java program and are an

integral part of the models. A model can contain one or more flowpoints. We used Xbase to

map flowpoint constructs of the Evidently model to the corresponding Java model elements.

This mapping is specified by implementing an IJvmModelInferrer interface. Since we use

Xbase in our grammar, Xtext automatically generates an Xtend stub class,

18

EvidentlyJvmModelInferrer in the jvmmodel sub-package. The EvidentlyJvmModelInferrer

has an infer method to create Java model elements, associate them to Evidently elements, and

pass them to the acceptor which implements the mapping. The JvmTypesBuilder is an

extension that provides an API to create Java model elements such as: toClass, toMethod,

toField and so on. The generated flowpoint class contains two methods, getField() and

getCodeClass() that returns the name of data field in the target Java program and its

corresponding class respectively.

 We leveraged the ASM tool to identify the data locations to instrument the policy

specifications. The target source code is compiled into Java bytecode and the ASM tool uses

this bytecode to inject additional bytecode to the target source code. The ASM tool checks all

the class variables and method variables and verifies if there are flowpoints associated with the

fields. We handle the policy enforcement by instrumenting the code with special calls to our

runtime monitor. The runtime monitor checks the generated policy and corresponding

flowpoints and generates appropriate code to instrument into the target source code.

 The runtime monitor checks the generated policy file for information to be released and

conditions under which it should be released. The ‘information’ to be released is the Flowpoint

and the condition is specified within the ‘when’ clause. If the condition for the information

release is not met, an exit routine is called, which stops the information from being released.

19

public class Test {

 public static int secureNumber = 10;
 public static boolean adminMode=false;

 public static void add(){

 boolean isOk= true;

 if(isOk){
 //Exit code should be instrumented here
 //We should not allow this
 System.out.println(secureNumber);
 }
 else{
 //No need to add anything here
 System.out.println("Not an admin");
 }
 }
 public static void main(String[] args) {
 add();
 }

}

 Figure 9: Java source code

Figure 8 shows a sample Java source code, we wish to write a policy for. We should be

able write a policy in Evidently which restricts the release of ‘secureNumber’, if ‘adminMode’

is false. Figure 9 shows the corresponding policy example.

20

model AdminAccess {

 flowpoint adminMode:boolean = {
 within(AsmTrial) && field("adminMode")
 }i

 flowpoint secureNumber:int = {
 within(AsmTrial) && field("secureNumber")
 }
}

policy ReleaseSecureNumberToAdmin {

 use model AdminAccess;

 release(AdminAccess.secureNumber, X->Y){
 when {
 adminMode == true
 }
 }
}

Figure 10: Evidently policy

We define a model ‘AdminAccess’ with two flowpoints, ‘adminMode’ and

‘secureNumber’. Furthermore, we define ReleaseSecureNumberToAdmin policy, to use

AdminAccess model which allows the policy to access all the flowpoints and properties in the

model. The release statement specifies the flowpoint (what) that is to be released based on the

condition that is specified by when clause. The second parameter within the release tuple

(F->T), specifies where dimension. In Figure 8, System.out.println(secureNumber); is

executed only when the adminMode is ‘true’. Otherwise, an exit statement is called before

‘secureNumber’ is accessed.

21

CHAPTER FOUR: CONCLUSION

Evidently is a specification language that defines centralized information flow control

policies separate from the program code. This avoids policies being scattered throughout the

program code thereby making auditing easier. I discussed how the Evidently grammar and

Validation rules are written with XText language development tool. Finally, I discussed how

policies are enforced during runtime using the concepts of bytecode instrumentation.

Future Work

The current implementation is targeted to monitor the information flow of assignments

in the program code. The implementation can be extended to track and control the information

flow during method calls, and conditional statements. Currently, Evidently is implemented to

control information flow in a program written in Java Language. The implementation can be

extended to control information flow in the program written in various other object-oriented

programming language such as Python.

22

APPENDIX: CODE FOR THE COMPILER

23

Grammar

Figure 11: Evidently Grammar part a

24

Figure 12: Evidently Grammar part b

25

Figure 13: Evidently grammar part c

26

Figure 14: Evidently Grammar part d

27

Figure 15: Evidently Grammar part e

28

Figure 16: Evidently Grammar part f

29

Figure 17: Evidently Grammar part g

30

Figure 18: Evidently Grammar part h

Figure 19: Evidently Grammar part i

31

Validation Rules

Figure 20: Validation Rules part a

Figure 21: Validation Rules part b

32

Figure 22: Validation Rules part c

33

Figure 23: Validation Rules part d

34

Figure 24: Validation Rules part e

35

Figure 25: Validation Rules part f

36

LIST OF REFERENCES

[1] S. Chong and A. C. Myers, “Security policies for downgrading,” Proceedings of the

11th ACM conference on Computer and communications security - CCS 04, 2004.

[2] Certification of Programs for Secure Information Flow

http://www.cs.cornell.edu/andru/cs711/2003fa/reading/denning77.pdf

[3] Zheng, L., & Myers, A. C. (n.d.). Dynamic Security Labels and Noninterference

(Extended Abstract). Formal Aspects in Security and Trust IFIP International

Federation for Information Processing, 27-40. doi:10.1007/0-387-24098-5_3

[4] Java + information flow. https://www.cs.cornell.edu/jif/

[5] Andrew C. Myers. JFlow: Practical Mostly-static Information Flow Control. In

Proceedings of the 26th ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages, POPL ’99, pages 228–241, New York, NY, USA, 1999.

ACM. doi:10.1145/292540.292561.

[6] Elisavet Kozyri, Owen Arden, Andrew C. Myers, and Fred B. Schneider. JRIF:

Reactive Information Flow Control for Java. February 2016.

[7] Niklas Broberg, Bart van Delft, and David Sands. Paragon for practical programming

with information-flow control. In APLAS, volume 8301, pages 217–232. Springer,

2013.

[8] Michael D. Ernst, Ren´e Just, Suzanne Millstein, Werner Dietl, Stuart Pernsteiner,

Franziska Roesner, Karl Koscher, Paulo Barros Barros, Ravi Bhoraskar, Seungyeop

Han, Paul Vines, and Edward X. Wu. Collaborative Verification of Information Flow

for a High-Assurance App Store. In Proceedings of the 2014 ACM SIGSAC

http://www.cs.cornell.edu/andru/cs711/2003fa/reading/denning77.pdf
https://www.cs.cornell.edu/jif/

37

Conference on Computer and Communications Security, pages 1092–1104, New

York, NY, USA, 2014. ACM. doi:10.1145/2660267.2660343.

[9] Xtext language development tool:

https://www.eclipse.org/Xtext/documentation/index.html

[10] G. Hedin. Tutorial: An Introductory Tutorial on JastAdd Attribute Grammars

GTTSE III, 166-200, LNCS 6491, 2011. http://dx.doi.org/10.1007/978-3-642-

18023-1_4.

[11] JFlex, lexical analyzer generator for Java: http://jflex.de/manual.html

[12] Beaver - a LALR Parser Generator: http://beaver.sourceforge.net/

[13] Building Domain-specific Languages with Xtext and Xtend:

https://blogs.itemis.com/en/building-domain-specific-languages-with-xtext-and-xtend

[14] Eclipse Modeling Framework (EMF) – Tutorial:

http://www.vogella.com/tutorials/EclipseEMF/article.html

[15] "Using the ASM framework to implement common bytecode transformation

patterns", E. Kuleshov, AOSD.07, March 2007, Vancouver, Canada.

https://www.eclipse.org/Xtext/documentation/index.html
http://dx.doi.org/10.1007/978-3-642-18023-1_4
http://dx.doi.org/10.1007/978-3-642-18023-1_4
http://jflex.de/manual.html
http://beaver.sourceforge.net/
https://blogs.itemis.com/en/building-domain-specific-languages-with-xtext-and-xtend
http://www.vogella.com/tutorials/EclipseEMF/article.html

	University of Central Florida
	
	Compiler Design of a Policy Specification Language for Conditional Gradual Release
	2018
	Manasa Kashyap Harinath
	STARS Citation

	ABSTRACT
	ACKNOWLEDGMENT
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF ACRONYMS
	CHAPTER ONE: INTRODUCTION
	Problem and its importance
	Background on Evidently
	Declassification

	Overview of the thesis

	CHAPTER TWO: SECURITY POLICIES USING EVIDENTLY
	Models
	Flowpoints
	Predicate Expressions and Predicate Operators
	Properties
	Specification of Properties

	Levels
	Policies
	The Root Policy

	CHAPTER THREE: EVIDENTLY COMPILER IMPLEMENTATION
	Introduction
	Overview of Xtext
	Architecture
	Grammar
	Cross References
	Validations
	Policy Enforcement

	CHAPTER FOUR: CONCLUSION
	Future Work

	APPENDIX: CODE FOR THE COMPILER
	Grammar
	Validation Rules

	LIST OF REFERENCES

