
University of Central Florida

Electronic Theses and Dissertations Doctoral Dissertation (Open Access)

Network Partitioning in Distributed Agent-Based
Models
2017

Antoniya Petkova
University of Central Florida

Find similar works at: https://stars.library.ucf.edu/etd

University of Central Florida Libraries http://library.ucf.edu

Part of the Computer Sciences Commons

This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Electronic Theses
and Dissertations by an authorized administrator of STARS. For more information, please contact lee.dotson@ucf.edu.

STARS Citation

Petkova, Antoniya, "Network Partitioning in Distributed Agent-Based Models" (2017). Electronic Theses and Dissertations. 5679.
https://stars.library.ucf.edu/etd/5679

https://stars.library.ucf.edu?utm_source=stars.library.ucf.edu%2Fetd%2F5679&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu?utm_source=stars.library.ucf.edu%2Fetd%2F5679&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd?utm_source=stars.library.ucf.edu%2Fetd%2F5679&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd
http://library.ucf.edu
http://network.bepress.com/hgg/discipline/142?utm_source=stars.library.ucf.edu%2Fetd%2F5679&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd/5679?utm_source=stars.library.ucf.edu%2Fetd%2F5679&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:lee.dotson@ucf.edu
https://stars.library.ucf.edu?utm_source=stars.library.ucf.edu%2Fetd%2F5679&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu?utm_source=stars.library.ucf.edu%2Fetd%2F5679&utm_medium=PDF&utm_campaign=PDFCoverPages

NETWORK PARTITIONING IN DISTRIBUTED AGENT-BASED MODELS

by

ANTONIYA PETKOVA
B.S. Bethune-Cookman University, 2006
M.S. University of Central Florida, 2010

A dissertation submitted in partial fulfilment of the requirements
for the degree of Doctor of Philosophy

in the Department of Computer Science
in the College of Engineering and Computer Science

at the University of Central Florida
Orlando, Florida

Fall Term
2017

Major Professor: Narsingh Deo

c© 2017 Antoniya Petkova

ii

ABSTRACT

Agent-Based Models (ABMs) are an emerging simulation paradigm for modeling com-

plex systems, comprised of autonomous, possibly heterogeneous, interacting agents. The

utility of ABMs lies in their ability to represent such complex systems as self-organizing

networks of agents. Modeling and understanding the behavior of complex systems usu-

ally occurs at large and representative scales, and often obtaining and visualizing of sim-

ulation results in real-time is critical.

The real-time requirement necessitates the use of in-memory computing, as it is difficult

and challenging to handle the latency and unpredictability of disk accesses. Combin-

ing this observation with the scale requirement emphasizes the need to use parallel and

distributed computing platforms, such as MPI-enabled CPU clusters. Consequently, the

agent population must be "partitioned" across different CPUs in a cluster. Further, the

typically high volume of interactions among agents can quickly become a significant bot-

tleneck for real-time or large-scale simulations. The problem is exacerbated if the under-

lying ABM network is dynamic and the inter-process communication evolves over the

course of the simulation. Therefore, it is critical to develop topology-aware partitioning

mechanisms to support such large simulations.

In this dissertation, we demonstrate that distributed agent-based model simulations ben-

efit from the use of graph partitioning algorithms that involve a local, neighborhood-

based perspective. Such methods do not rely on global accesses to the network and thus

are more scalable. In addition, we propose two partitioning schemes that consider the

bottom-up individual-centric nature of agent-based modeling. The first technique uti-

lizes label-propagation community detection to partition the dynamic agent network of

iii

an ABM. We propose a latency-hiding, seamless integration of community detection in

the dynamics of a distributed ABM. To achieve this integration, we exploit the similarity

in the process flow patterns of a label-propagation community-detection algorithm and

self-organizing ABMs.

In the second partitioning scheme, we apply a combination of the Guided Local Search

(GLS) and Fast Local Search (FLS) metaheuristics in the context of graph partitioning.

The main driving principle of GLS is the dynamic modification of the objective func-

tion to escape local optima. The algorithm augments the objective of a local search,

thereby transforming the landscape structure and escaping a local optimum. FLS is a

local search heuristic algorithm that is aimed at reducing the search space of the main

search algorithm. It breaks down the space into sub-neighborhoods such that inactive

sub-neighborhoods are removed from the search process. The combination of GLS and

FLS allowed us to design a graph partitioning algorithm that is both scalable and sensitive

to the inherent modularity of real-world networks.

iv

TABLE OF CONTENTS

LIST OF FIGURES . xi

LIST OF TABLES . xii

GLOSSARY . xiii

CHAPTER 1: INTRODUCTION . 1

CHAPTER 2: BACKGROUND . 5

2.1 Complex Systems . 5

2.2 Agent-Based Models . 7

2.2.1 Agents . 8

2.2.2 Topologies . 9

2.2.3 Local and Emergent Behavior . 10

2.2.4 Environment . 11

2.2.5 ABMs vs Analytical Models . 12

2.3 ABM Simulation Platforms . 13

2.4 Use of Traditional Graph-Partitioning Algorithms 14

v

2.5 Use of Community-Detection Algorithms . 15

CHAPTER 3: USING LABEL-PROPAGATION COMMUNITY DETECTION TO DIS-

TRIBUTE AGENT-BASED MODEL SIMULATIONS 18

3.1 Overview . 18

3.2 Simulation Model . 19

3.2.1 The SIR Model . 20

3.2.2 The Label Propagation Algorithm . 21

3.3 Proposed Solution . 23

3.3.1 Initial Application of Max-LPA . 23

3.3.2 Periodic Application of Max-LPA . 24

3.3.3 Integrated Application of Max-LPA 25

3.3.4 ABM Redistribution . 26

3.4 Experimental Setup . 29

3.4.1 Standalone Tool . 29

3.4.2 Repast HPC . 29

3.4.3 Benchmarks . 30

3.4.3.1 Kronecker Network Generation Model 30

vi

3.4.3.2 The Lancichinetti–Fortunato–Radicchi Benchmark Tool . . 32

3.5 Performance Evaluation . 32

3.5.1 Standalone Simulation – Results and Discussion 32

3.5.1.1 Effect of Mixing Parameter 33

3.5.1.2 Run-time Overhead . 34

3.5.1.3 A Side-by-side Comparison 37

3.5.2 Repast HPC – Results and Discussion 38

3.5.3 Comparison with State-of-the-Art . 40

3.6 Conclusion and Future Work . 41

CHAPTER 4: GF-PART – FAST GRAPH-PARTITIONING USING GUIDED LOCAL

SEARCH . 42

4.1 Introduction . 42

4.1.1 Guided Local Search . 43

4.1.2 Fast Local Search . 45

4.2 Problem Statement . 45

4.2.1 k-way Graph Partitioning . 46

4.2.2 Data Distribution Model . 47

vii

4.3 Solution . 47

4.3.1 Overview . 47

4.3.2 Representation . 49

4.3.3 Local Search . 50

4.3.4 Features and Augmented Objective Function 51

4.3.5 Feature Costs . 51

4.3.6 The lambda Parameter . 52

4.3.7 The GF-Part Algorithm . 52

4.4 Experimental Study . 54

4.4.1 Testbed . 54

4.4.2 Metrics . 55

4.4.3 Datasets . 55

4.4.3.1 Kronecker Network Generation Model 56

4.4.3.2 Lancichinetti–Fortunato–Radicchi Benchmark Tool 56

4.4.4 The Impact of the Selection Strategy 56

4.4.5 The Effect of λ on the Edge-cut . 57

4.4.6 Evolution of Edge-cut and Migration Over Time 58

viii

4.4.7 Comparison with State-of-the-Art . 59

4.5 Conclusion . 60

CHAPTER 5: NETWORK PARTITIONERS IN DISTRIBUTED AGENT-BASED MODEL

SIMULATIONS

(DESIGN OF A PERFORMANCE STUDY) 61

5.1 Overview . 61

5.2 The Graph-Partitioning Problem . 62

5.2.1 Preliminaries . 62

5.2.2 Problem Statement . 63

5.3 Standard Partitioning Methods . 63

5.3.1 METIS . 63

5.3.2 ParMETIS . 64

5.3.3 KaFFPa . 64

5.3.4 Ja-Be-Ja . 65

5.4 Experimental Setup . 66

5.4.1 Modeling Environment . 66

5.4.2 Benchmarks . 66

5.4.3 Methods . 68

ix

5.4.4 Simulation Model . 68

5.4.5 Varying Social Contact . 69

5.4.6 Varying Mobility . 70

5.4.7 Varying Computational Workload . 70

5.5 Experimental Study . 70

5.6 Conclusion . 72

CHAPTER 6: APPLYING CATASTROPHE THEORY TO NETWORK REMAPPING

IN DISTRIBUTED AGENT-BASED MODEL SIMULATIONS (FUTURE

WORK) . 73

6.1 Overview . 73

6.2 Preliminaries . 76

6.3 Assumptions . 77

6.4 Scope of Proposed Future Research . 78

CHAPTER 7: CONCLUSION . 79

LIST OF REFERENCES . 82

x

LIST OF FIGURES

Figure 3.1: The SIR ABM. 21

Figure 3.2: Progression of Max-LPA. 22

Figure 3.3: The SIR model run-time deteriorates gradually after every redistribu-

tion step. 27

Figure 3.4: Disease propagation on network G1 with µ = 0.1. 33

Figure 3.5: Disease propagation on network G1 with µ = 0.3. 33

Figure 3.6: Simulation details for the three schemes for network G1 with µ = 0.1 . 34

Figure 3.7: Simulation details for the three schemes for network G1 with µ = 0.3 . 36

Figure 3.8: Simulation details for the three schemes for network G1 with µ = 0.5 . 36

Figure 3.9: Comparison of the three schemes applied on networkG1 for different

values of µ. 38

Figure 3.10:Simulation details for the three schemes for network G2 with µ = 0.1 . 39

xi

LIST OF TABLES

Table 3.1: Parameters Used in Remapping Decision Policy 27

Table 3.2: Parameters Used for Graph Generation 31

Table 3.3: Comparison between LPA-based Partitioner and ParMetis 40

Table 4.1: Datasets . 55

Table 4.2: The Impact of Label Selection on the Edge-cut (Kron1M) 57

Table 4.3: The Effect of λ on the Edge-cut . 58

Table 4.4: Performance for Kron1M (BI) . 58

Table 4.5: Performance for KronDolphin (BI) . 58

Table 4.6: Comparison between GF-Part (GF-P) and ParMetis(PM) 59

xii

GLOSSARY

ABM agent-based model, a computational model that represents autonomous entities

and the interactions between them (see Section 2.2). 1

Catastrophe Theory a branch of mathematics concerned with systems displaying sud-

den shifts in behavior arising from small changes of a variable or a force applied on

the system. 75

community structure a grouping of the nodes in a network into (potentially overlap-

ping) sets such that each set of nodes is densely connected internally and sparsely

connected to other sets. 15

complex system a system made of numerous autonomous elements that interact in a

nonlinear fashion. Global system behavior is irreducible to the simple behaviors

of the elements. 5

D-MASON is the distributed version of the MASON multi-agent platform. 13

EcoLab an agent-based modeling software package that supports parallel and distributed

simulations. 13

emergence defines the development of higher-level systemic phenomena that cannot be

traced back causally to microscopic rules and behaviors (see Section 2.2.3). 6

FLAME an agent-based modeling toolkit that provides support for parallelization. 13

Ja-Be-Ja a fully distributed graph partitioning algorithm (see Section 5.3.4). 65

Jostle a parallel multilevel graph partitioning software package. 15

xiii

KaHIP Karlsruhe High Quality Partitioning suite (see Section 5.3.3). 15

k-means clustering an unsupervised learning algorithm that classifies a given set of data

points into k clusters such that each point belongs to the cluster with the nearest

centroid. 16

Kronecker a model for generating networks with realistic features (see Section 3.4.3.1).

30, 56, 67

LFR Lancichinetti–Fortunato–Radicchi, a benchmark tool that generates networks with

power-law distributions (see Section 3.4.3). 32, 56

LPA Label-Propagation Algorithm, a community-detection algorithm in which each node

carries the label of the community it belongs to. At each iteration, the nodes adopt

the most popular labels in their neighborhoods (see Section 3.2.2). 16

MASON an agent-based modeling toolkit that supports sequential simulations. It was

designed as a smaller and faster alternative to Repast. 13

METIS a software package used for serial partitioning of graphs and meshes (see Section

5.3.1). 15

NetLogo an agent-based modeling toolkit that supports sequential simulations. 13

ParMETIS an MPI-based library that extends METIS and offers parallelized methods for

graph partitioning. 15

PuLP a distributed graph partitioning algorithm based on the label-propagation paradigm

(LPA). 16

xiv

Repast an agent-based modeling toolkit. Repast Symphony supports sequential simula-

tions while Repast HPC supports parallel and distributed simulations. Repast offers

no network partitioning and load-balancing mechanisms (see Section 2.3). 13

Scotch software toolkit for sequential and parallel graph partitioning, static mapping

and clustering, sequential mesh and hypergraph partitioning, and sequential and

parallel sparse matrix block ordering. 15

self-organization a dynamic process by which complex macroscopic behaviors arise spon-

taneously from simple generative rules and behaviors. 6

SIR Susceptible-Infected-Recovered, an epidemiological model of the spread of disease

in a population of agents (see Section 3.2.1). 20

SpaDES a modeling environment specializing in spatially explicit models, including raster-

based, event-based, and agent-based models. It does not provide native network-

distribution functionality. 13

Swarm an agent-based modeling toolkit that does not provide native network-distribution

functionality. 13

xv

CHAPTER 1: INTRODUCTION

Several application domains, including sociology [1, 2], biology [3, 4], defense [5], and

economics [6, 7], utilize systems that have two common characteristics: (1) they are com-

plex and large in scale – made up of a huge number of autonomous entities and (2) the

entities themselves are dynamic, i.e., the interactions and relationships between them

change over time. For example, in a country-wide epidemiological scenario, each person

could be an entity, and the interactions between people (which relate to the spread of dis-

ease) are dynamic, i.e., they change over time. Formally, these systems can be modeled

as graphs, such that entities and their interactions are represented as vertices and edges,

respectively [8, 9]. Moreover, in such systems, there are two aspects to consider – the "lo-

cal" aspect, at micro-scale, such as the spread of disease from person to person, and the

"global" aspect, at macro-scale, which is a view of how the disease is spreading overall

within a geographical region.

Agent-based models (ABMs) are an emerging simulation paradigm for modeling such

complex systems, comprised of autonomous, possibly heterogeneous, interacting agents

[10]. The ability of ABMs to define complex systems in terms of entities (agents) and their

dynamics at micro-scale facilitates high fidelity of the modeled elements and processes.

However, in many complex systems, the global system behavior emerges from the, some-

times seemingly chaotic, ensemble of individual actions of the autonomous agents (akin

to the schooling or flocking behavior of fish or birds) [7, 11]. Such emergent behaviors

often become evident only at very large scales (e.g. building of cathedral mounds by

termites) [12]. Further, if the goal is to track, understand, predict, and act on the spread

of disease, for example, its simulation by agent-based modeling has to take place in real

time. Therefore, two clear requirements emerge: (1) modeling and understanding the be-

1

havior of such systems at large and representative scales, and (2) obtaining and visualizing

the simulation results in real time.

The real-time requirement necessitates the use of in-memory computing, as it is challeng-

ing to handle the latency and unpredictability of disk accesses. Combining this observa-

tion with the large scale requirement emphasizes the need to use parallel and distributed

computing platforms, such as MPI-enabled CPU clusters. Consequently, the agent pop-

ulation has to be "partitioned" across different CPUs in a cluster. Further, the typically

high volume of interactions among agents can quickly become a significant bottleneck

for real-time simulations. The problem is exacerbated if the underlying ABM network is

dynamic and the inter-process communication evolves over the course of the simulation.

Therefore, it is critical to develop topology-aware partitioning mechanisms to support

such large simulations.

Existing work relevant to the problem at hand can be summarized loosely into the fol-

lowing three groupings:

1. ABM simulation environments developed for domain experts: Such environments

focus on ease of use as opposed to performance. Historically, these have supported

sequential simulations [13, 14] and, in recent years, some distributed environments

have been developed [15, 16]. However, they do not offer adequate partitioning

mechanisms.

2. Traditional graph-partitioning techniques: While it is intuitive and natural to model

the ABM network using a graph (vertices being agents and edges being their inter-

actions), it is inefficient to take a traditional graph-partitioning technique (such as a

multilevel algorithm) and call it repeatedly as a subroutine for every change in the

evolving graph.

2

3. Community-detection algorithms: These algorithms exploit a common characteris-

tic in real-world graphs – community structure – an inherent organization of the en-

tities into densely connected groups that are loosely connected with each other [17].

While community-detection algorithms are gaining traction, their applicability to

large and dynamic graphs in the context of distributed computing remains largely

unexplored.

In this dissertation, we demonstrate that distributed agent-based model simulations ben-

efit from the use of graph-partitioning algorithms that involve a local, neighborhood-

based perspective. Such methods do not rely on global accesses to the network and thus

are more scalable. In addition, we propose two partitioning schemes that consider the

bottom-up individual-centric nature of agent-based modeling. The first technique uti-

lizes label-propagation community detection to partition the dynamic agent network of

an ABM. We propose a latency-hiding, seamless integration of community detection in

the dynamics of a distributed ABM. To achieve this integration, we exploit the similarity

in the process flow patterns of a label-propagation community-detection algorithm and

self-organizing ABMs.

In the second partitioning scheme, we apply a combination of the Guided Local Search

(GLS) and Fast Local Search (FLS) metaheuristics in the context of graph partitioning.

The main driving principle of GLS is the dynamic modification of the objective func-

tion to escape local optima. The algorithm augments the objective of a local search,

thereby transforming the landscape structure and escaping a local optimum. FLS is a

local search heuristic algorithm that is aimed at reducing the search space of the main

search algorithm. It breaks down the space into sub-neighborhoods such that inactive

sub-neighborhoods are removed from the search process. The combination of GLS and

3

FLS allowed us to design a graph-partitioning algorithm that is both scalable and sensi-

tive to the inherent modularity of real-world networks.

The rest of the dissertation is organized as follows. In Chapter 2, we present relevant

background information. In Chapter 3, we lay the groundwork for a "topology-aware"

partitioner, based on community detection. In Chapter 4, we propose another graph

partitioning algorithm with strong locality, GF-Part, based on the combination of two

metaheuristics. In Chapters 5, we introduce the design for a performance study that eval-

uates the role of graph partitioning in agent-based model simulations. In Chapter 6, we

discuss future research that focuses on using Catastrophe Theory concepts to facilitate ef-

fective network redistribution. We present our concluding remarks and future directions

in Chapter 7.

4

CHAPTER 2: BACKGROUND

In this chapter, we provide relevant background information, which should reveal the

context of the problem and motivate its study.

2.1 Complex Systems

Complex systems are made of numerous, possibly diverse, autonomous elements that

interact with each other, typically in a nonlinear fashion. Complex systems may form

and evolve through self-organization, facilitating the development of emergent behavior

at macroscopic scales [18]. As Sayama points out, it is helpful to understand what com-

plex systems are not. They are not collections of independent entities, such as an ideal

gas, nor are they collections of strongly coupled bodies [18]. The first example falls into

the category of "problems of disorganized complexity" and is handled by statistics, and

the latter – "problems of simplicity"– where the system can be described with a small set

of variables. Both terms were coined by the mathematician and systems scientist War-

ren Weaver [19]. Complex systems fill in the gap between these two extremes and form

the category of "problems of organized complexity" [18, 19]. However, they are not engi-

neered systems, such as an airplane, put together according to a blueprint [20]. Instead,

complex systems emerge from dynamic processes with a high degree of stochasticity in-

fluenced by dependency and bias [21].

While the complex dynamics of the system affects the expression of its structure prop-

erties, the structure itself critically influences the dynamics of the whole [21–23]. The

structures of complex systems are emerging from the evolving web of interconnections

5

between the elements of the system. Therefore, dynamic networks can be used effectively

to express this evolving topology. They capture structural aspects of complex systems by

encoding elements as nodes and the interactions between them as links. Despite their

diversity, these networks can be derived by a common set of structural and evolutional

properties, such as degree distribution, distance, betweenness, community structure, etc.

Based on these features, we recognize several classes of complex networks. One such

class is that of the Erdős-Rényi random networks, where the links are assumed to exist

completely independently of each other [24]. In contrast, in real-world networks, the ex-

istence of links is typically influenced by nonindependent processes and bias. Another

prominent class is that of small-world networks proposed by Watts & Strogatz [25]. In

these networks, the average distance (shortest path) between two nodes can be orders of

magnitude smaller than the number of nodes making up the network [26]. Another ubiq-

uitous category is that of the scale-free networks [27]. These are networks, whose degree

distributions follow a power law. This property is a result of two generative mechanisms:

1) the network forms by the continuous addition of new nodes, and 2) the new nodes

attach preferentially to nodes with high degrees.

These common network properties give rise or are directly related to the common prop-

erties shared by the systems themselves. Despite the large variety of complex systems,

there is a series of unifying principles and statistical properties that are shared by most

of them [28]. One such feature, emergence, concerns the manifestation and the nontrivial

relationship of the rest of the system’s properties at different scales [18]. Emergence de-

notes the development of higher-level phenomena that cannot be traced back causally to

microscopic rules and behaviors. Another important principle of complex systems is self-

organization, a dynamic process by which complex macroscopic behaviors arise spon-

taneously from simple generative rules and behaviors [26]. Global patterns and order

6

emerge from the interactions of the entities (with each other or the environment) without

explicit instructions. Emergence and self-organization are tightly related to another prop-

erty, nonlinearity, which states that the emergent effects are rarely proportional to causes,

and what happens locally in a system does not translate directly to a cumulative effect.

In other words, the outputs of a system are not produced by a linear combination of the

inputs [18]. As a result of these properties, complex systems are counterintuitive; cause

and effect are distant in time and space [29]. Therefore, we need modeling tools that al-

low us to capture the properties and processes of the system at different scales, from the

ground up.

2.2 Agent-Based Models

Agent-based modeling is a rule-based, discrete-event and -time modeling paradigm that

facilitates the simulation and study of complex systems. These systems consist of a large

number of interacting autonomous entities [30]. The entities may be heterogeneous in

attributes and behavior. Most importantly, their interactions produce an emergent effect

that cannot be derived directly from the effects of the individual behaviors [7]. Agent-

based models (ABMs) attempt to bridge the semantic gap between complex systems and

their computational models by providing a bottom-up approach to building the systems’

representations and dynamics. Specifically, ABMs facilitate the study of real phenomena

by modeling them on a microscopic level – the constituent discrete entities; their internal

states; individual, possibly heterogeneous, behaviors; and interactions with each other. A

typical agent-based model has three elements [11]:

1. A set of agents, including their attributes and behaviors.

7

2. A set of agent relationships forming an underlying topology of connectedness that

defines how and with whom agents interact.

3. The agents’ environment (optional) representing the virtual world, in which these

agents exist. This world may be completely neutral and not affect the agents’ behav-

iors and interactions; or it may be a complex model that causes agents to react [31].

2.2.1 Agents

The modeled entities are known as agents. Even though there are no established stan-

dards for modeling agents, there is an assumed modularity associated with their repre-

sentation. This modularity allows for a certain degree of freedom in specifying the agents’

individual attributes, states, and behaviors. This wide range of possibilities, in turn, leads

to a greater fidelity of the model. Each agent is self-contained, uniquely identifiable, and

has a state that changes over time [11, 32]. In general, agents are assumed to have the

following additional traits [33]:

• autonomy – the capability to operate without external input and human interven-

tion;

• social ability – the capability to interact with other agents in the system;

• reactivity – the capability to react to changes or stimuli from the modeled environ-

ment;

• intelligence (optional) – the ability to learn;

• adaptability (optional) – the ability to adjust behavior and state according to a chang-

ing environment;

8

An ABM can have several different types of agents, each characterized by its own set

of attributes, behaviors, and internal states. The complexity of the system depends very

much on the complexity and number of agents. An ABM could represent both systems

with a huge number of very simple agents and systems with a small number of very

complex agents, or any configuration in between.

2.2.2 Topologies

A central concern of ABMs is modeling agent interactions – how agents are connected

and what mechanisms drive their interactions. ABMs offer three different topologies for

representing connectivity in complex systems [32]. In some cases, the structure of agent

interactions can be represented as simple regular lattices (grids), as in a Cellular Automata

model. Each agent moves from cell to cell on the grid and interacts with other agents

only if they are located in the cells immediately surrounding that of the agent. ABMs

also accommodate movements and interactions of entities on a continuum. This kind

of topology allows the agents to exist and move in an unstructured multi-dimensional

environment. The relationships between agents depend on their spheres of influence

(SOIs) – a region of the space that circumscribes each agent. Any agents that fall in each

others’ SOIs are considered neighbors.

A large number of complex systems have interaction structures that are too complex to be

represented by a simple topological model. In such cases, the network topology is used

to model the social connectivity of the agent population as a graph, where the agents and

their interactions are represented as vertices and edges, respectively. The edges in the

network do not have to reflect physical proximity. Oftentimes, the graph is dynamic, i.e.

its structure may evolve as part of the dynamics of the agent interactions or behaviors.

9

If necessary, one could combine two or even all three topologies in the same model. It is

worth noting that the unifying factor in all topology variants is that agents’ interactions

are localized. Each agent communicates only with others in its neighborhood. There is no

global source of information; interaction is mainly confined in small subsets of the agent

population and thus the global system processes are very much regulated and dependent

on this modularity of the interaction topology.

2.2.3 Local and Emergent Behavior

As already noted, agent-based modeling is a decentralized, individual-centric modeling

paradigm. The modeled system lacks a centrally organized global behavior; there is no

central authority that controls or influences the behavior of the individuals in an attempt

to optimize the global system performance [11]. Agents receive only local information –

either through interactions with neighbors, or through a localized interaction with the en-

vironment – and use it to regulate their own behaviors and decisions. On the other hand,

the evolving topology of connectedness is usually tightly interleaved with the individual

behavior of the agents.

The behaviors of the modeled entities are autonomous and usually heterogeneous. They

are governed by locally-constrained rules and are characterized by intrinsic stochasticity.

The localized interactions between agents generate collective systemic dynamics that are

unrelated and irreducible to the individual behaviors. In many natural systems without

central authority, collective (swarm) intelligence emerges as a result of the interaction of

agents with seemingly simple behaviors [10]. In an agent-based model, the individual

behaviors may be encoded with equations, or they may be specified by decision rules,

such as if-then statements.

10

Each agent goes through changes in its state that can be attributed both to its individual

behavior and the influence of others. In many cases the emergent behavior may arise

as a result of the broken balance between individual behavior and peer influence. In

such situations, the effect of the exchange propagates, takes dominance over autonomous

decision-making, and results in a large-scale self-organized global behavior [34]. Allow-

ing an emergent behavior to develop from low-level actions and interactions provides

insight into the causes and circumstances of its occurrence. However, such behavior is

usually only evident when the system is modeled at a relevant scale – a significant re-

quirement that ABMs are able to accommodate.

In addition to macroscopic and microscopic occurrences, many complex systems also ex-

hibit behavioral and communication patterns on a mesoscopic level, i.e. the tendency

of the agent population to organize into communities. Similarly to the system-level be-

havior, these structures might not appear to be directly associated with the individual

behaviors of the agents. Thus, ABMs might be a useful tool for gaining insight into the

coupling of the system behavior and the evolving structure of complex systems under

study.

2.2.4 Environment

The environment is the virtual world in which agents operate. It could be an active partic-

ipant in the dynamics of the modeled system, or completely neutral and non-reactive [31].

The environment is useful not only because it corresponds to the role of the environment

in the real system and thus increases the fidelity of the model, but also because it might

facilitate the monitoring of the agents. In addition, it could be used to buffer the agent

communication in order to achieve synchronicity. Common environments include geo-

11

graphical spaces, such as cities, or biological structures like the mammalian cell.

2.2.5 ABMs vs Analytical Models

While mathematical modeling is an essential tool in every scientist’s toolbox, because of

its well-formulated approach to representing and computing different phenomena under

study, it is not especially effective when these phenomena are complex. In fact, some sys-

tems are so complex that they are mathematically intractable – formulating an analytical

model to describe them is close to impossible [35]. In such situations, simulation mod-

els could be useful in providing insight into the structure and dynamics of the modeled

system. They can be particularly useful for hypothesis testing and scenario analysis [36].

ABMs, in particular, can handle and truthfully represent many of the aspects of complex

systems that render their mathematical models intractable. Some of these complexity-

inducing factors include 1) a massive number of autonomous entities; 2) heterogeneity

of the entities; 3) interaction between entities; and 4) randomness. In many cases, the

heterogeneity of the parts, their ability to interact, and the randomness in their behaviors

are irreducible to a mean behavior or a set of attributes and have to be modeled explicitly.

ABMs offer a direct correspondence between the modeled entities and their real-world

counterparts. The generative approach of ABMs provides for significant explanatory

power – the system may be built from the bottom up in as much measurable detail as

necessary. That is, a modeler can design both the agents and their environment with

arbitrary complexity and truthfulness to capture the modeled system as observed [37].

Thus, scientists have the chance to look at the full dynamics of the systems at all levels

and study the coupling of the process flow and the structural evolution of the interaction

topology. Finally, ABMs lend themselves to parallelization well and thus can simulate

12

systems comprised of hundreds of million and even billions of agents.

On the other hand, analytical models assume a reductionist perspective w.r.t. the mod-

eled system – a population-level view, where the individual attributes and behaviors are

reduced to a mean representative. Equation-based models, such as System Dynamics,

do not represent the entities of the system directly. Instead, such models transform enti-

ties into probability distributions and focus on aggregate quantities such as the projected

number of infected humans at a given time-step in an epidemiological model [38]. The

assumption is that all agents are the same or belong to a few categories of uniform char-

acter and behavior. In addition, the classic approach to modeling natural phenomena,

such as epidemics, assumes uniform mixing. That is, the individuals in a population are

assumed to come in contact with equal probability, independent of their locations [21].

However, it is well known that the processes of disease propagation and other natural

and social phenomena are localized and depend on the nature of contact. As a result, this

approach to system representation leads to a certain degree of dissociation between the

natural structure and behavior of the system and its model.

2.3 ABM Simulation Platforms

Several modeling environments have been developed in recent years to facilitate the

simulation of agent-based models. Toolkits like Repast [13], NetLogo [14], Swarm [39],

SpaDES [40], and MASON [41] are designed to handle sequential simulations and thus of-

fer inadequate computational scalability for large-scale models [11]. Despite recent devel-

opments of high performance solutions like EcoLab [42], Repast HPC [15], FLAME [43],

and D-MASON, [16] offering support for parallel and distributed simulations, features

like network partitioning (especially, topology-centric) and load balancing are still miss-

13

ing [44].

Repast HPC is considered the most comprehensive ABM simulation environment. In

its core, the tool implements the fundamental building blocks of Repast Symphony (the

current version of Repast for serial simulations) but adapts them to work on parallel

and distributed environments. One of the main purposes of this modeling environment

is ease-of-use and flexibility, that is, to be accessible for users from different domains.

While this objective might have been fulfilled to a great extent, fundamental performance-

optimization features, such as topology-aware model partitioning and load-balancing, are

still missing. DMASON, the distributed multi-agent simulation kit based on MASON, is

conceptually similar to Repast HPC, but offers rudimentary partitioning functionality.

Partitioning of the model is decided by the user in advance and is not sustained in the

course of the simulation. The lack of continuous topology-aware partitioning support

could lead to deterioration in the communication overhead and increased load imbalance

in distributed ABM simulations with dynamic contact networks.

2.4 Use of Traditional Graph-Partitioning Algorithms

The graph-partitioning problem is a well-known NP-hard problem that concerns the par-

titioning of a given graph into a predefined number of components, such that the number

of edges connecting the components is minimized [45]. A variant of this problem, uniform

(or balanced) graph partitioning – where the components have to be similar in size, is es-

pecially relevant in the context of parallel and distributed computing. The goal of such

algorithms is to minimize the inter-process communication overhead while maintaining

near uniform load distribution across the processes. Previous studies that focused on the

problem of uniform graph partitioning produced solutions in the form of heuristic-based

14

or approximation algorithms. Most graph-partitioning algorithms that are effective on

large graphs are based on the multilevel graph-partitioning paradigm [46–48]. Some of

these are offered in packages such as METIS and ParMETIS [49], Jostle [50], Scotch [51],

and KaHIP [52]. Most of the traditional graph-partitioning algorithms are either inade-

quate or not efficient enough in the context of massive self-organizing complex networks

for one or more of the following reasons:

• Most traditional approaches rely on a centralized, omniscient view of the network,

assuming cheap access to the entire network. They typically involve numerous

global operations on the network and therefore might not be a natural fit for the

agent- or vertex-centric nature of self-organizing ABMs.

• The multilevel graph-partitioning approach is memory-intensive and not efficient

on massive complex networks. The goal of most traditional graph-partitioning al-

gorithms is accuracy, at the cost of efficiency.

• The aforementioned algorithms have to be executed as stand-alone procedures when

applied to large distributed simulations of self-organizing complex networks; they

are hard to integrate into the dynamics of the networks. Such an approach incurs

additional overhead and negatively impacts the execution time of the simulation.

2.5 Use of Community-Detection Algorithms

Community structure is an intrinsic property of many complex networks and can be used

to reveal structural and behavioral characteristics of modeled complex systems from dif-

ferent domains [28, 53]. Currently, only several other simulation approaches utilize com-

munity detection in the parallel and distributed execution of ABMs. In [54], Hou et al.

15

present a community-based partitioning scheme for distributing the parallel simulation

of ABMs (of social networks). The proposed method involves the use of the Infomap com-

munity detection algorithm to discover communities in a large-scale social network [55].

Based on the power-law distribution of the resultant communities, a weighted network

is formed in which the communities are abstracted as vertices. A k-way partitioning al-

gorithm is used to map the communities onto k compute nodes such that the load is well

balanced and the inter-node communication is minimized. Unfortunately, the algorithm

is designed to be applied only on static social networks, such as the network of collabo-

rations between movie actors. It applies community detection only once – at the start of

the simulation.

Wang et al. propose a cluster-based partitioning scheme for the distributed execution of

agent-based crowd simulations [2]. The method models crowd dynamics as a dynamic

network in which each agent is represented as a node. Each agent is associated with

its own area of interest (AOI), which acts as its communication range. The network-

partitioning algorithm is based on k-means clustering, which is used for the detection

of clusters of agents. The algorithm assigns each AOI to a compute node and tries to

minimize the overlap (communication overhead) between AOIs occupying different pro-

cessors. Cluster-detection is applied periodically to a snapshot of the dynamic network

and agents are redistributed. The authors report reduction in the communication bot-

tleneck; however, they ignore any overhead incurred by the cluster detection and the

redistribution of the network.

In [56], Slota et al. introduce a distributed graph-partitioning method, PuLP, based on

the label-propagation paradigm [57]. The partitioner uses a label-propagation algorithm

(LPA) to partition small-world networks on distributed platforms while trying to pre-

serve locality and minimize memory usage. PuLP works in three stages. The first stage

16

initializes the network to be partitioned. The second and third stages alternate a label-

propagation-based load balancing step and a refinement step that further improves an

optimization objective. While the authors report notable performance improvement over

METIS, PuLP was designed for simulations of processes on static networks or to provide

an initial partition for simulations of dynamic networks.

17

CHAPTER 3: USING LABEL-PROPAGATION COMMUNITY
DETECTION TO DISTRIBUTE AGENT-BASED MODEL

SIMULATIONS

3.1 Overview

In this chapter, we show how a community detection technique can be successfully ap-

plied to partition the dynamic network (describing the agent population) of an ABM. To

the best of our knowledge, we are the first to propose a latency-hiding, seamless integra-

tion of community detection in the dynamics of a distributed ABM. This strategy lowers

the communication overhead incurred by the constant migration of agents in the network.

Specifically, our contributions are as follows:

• We propose a latency-hiding, seamless integration of community detection in the

dynamics of a distributed ABM. We exploit the similarity in the process flow pat-

terns of a label-propagation community-detection algorithm and self-organizing

ABMs to achieve the integration.

• We demonstrate how periodically adjusting the mapping between the communities

and the processes, without having to run a standalone community-detection proce-

dure beforehand, can be efficient.

• We present a framework for evaluating the frequency of network remapping in a

distributed platform.

• We implement and compare three different schemes that apply LPA to an ABM and

we demonstrate that our approach achieves a speedup of up to eight times over the

baseline (a random distribution of the agents across processors). We implement the

18

algorithms both in a standalone ABM simulation in C and as part of Repast HPC to

showcase the usefulness of the proposed approach.

The rest of the work is organized as follows. In Section 3.2, we describe the agent-based

model. In Sections 3.3, we describe our approach and present the respective algorithms.

We discuss our experimental study and the results thereof, along with analysis of our

findings, in Sections 3.4 and 3.5. We conclude the chapter and discuss our future work in

Section 3.6.

3.2 Simulation Model

In this study, our ABM of choice is the SIR (Susceptible-Infected-Recovered) epidemio-

logical model [58]. We represent the contact network of the ABM as a dynamic undi-

rected graph. Let G = (V,E) be an undirected, unweighted graph with a vertex set

V = {v1, v2, . . . , vn} and an edge set E = {e1, e2, . . . , em} ⊆ (V × V), representing the

set of agents and the interactions among them, respectively. Then, a dynamic graph G is

a series of time-dependent snapshots G = {G0, G1, . . . , Gtmax}, where Gt = (V t, Et) is a

static graph generated at time 0 ≤ t ≤ tmax. Let N(vi) = {vj ∈ V : 〈vi, vj〉 ∈ E} denote

the neighborhood set of vertex vi. Thus, each agent communicates only with others in its

neighborhood. By migrating to a different part of the network, agents change their neigh-

borhoods, which is encoded in the snapshots of the dynamic graph. Furthermore, we

simulate the spread of disease and community detection on the network via a message-

passing approach. Therefore, each vertex has two attributes li and hi, representing its

community membership and health status, respectively. The roles of the attributes will

be clarified further in subsequent sections.

19

3.2.1 The SIR Model

Our agent-based model of choice is the SIR (Susceptible-Infected-Recovered) epidemio-

logical model. The SIR ABM simulates the spread of disease in a population of agents

such that each agent falls in one of three categories: susceptible, infected, or recovered

(see Figure 3.1). We simulate the spread of disease through the exchange of messages be-

tween connected agents. Each message carries the health condition of the sender (i.e., hi)

as payload (Algorithm 1). The disease propagation process is governed by two param-

eters: the rate of infection and the rate of recovery. We assume that the population size

remains constant; that is, we do not include an agent birth and death mechanism. Each

agent updates its status depending on its own health condition and that of its neighbors.

We assume that each agent sends (receives) a message, symbolizing social contact and

disease transmission, to (from) all of its neighbors at each iteration of the simulation. The

stopping condition of the simulation is the complete eradication of the disease, i.e., when

the number of infectious agents reaches zero, or when a predefined number of iterations

is reached. The recovery process of each agent is stochastic in nature. Specifically, for

each infected agent the algorithm draws a random number from a uniform distribution

between 0 and 100. If the number is less than the recovery rate, the agent’s state changes

to ’recovered’ (and therefore, immune). If not, the agent remains infected. Similarly, for

all susceptible agents, the algorithm draws a random number from a uniform distribu-

tion between 0 and 100. If the number is less than the rate of infection, the agent’s state

changes to ’infected’.

20

Figure 3.1: The SIR ABM, in which agents exchange messages to simulate social contact
and the transmission of disease. In step 1, agents 1 and 5 become infected. In step 2, the
disease is transmitted to agents 2 and 3. Meanwhile, agent 1 has recovered. In step 3, all
infected agents have recovered.

Algorithm 1 Standalone SIR_SIM Message-Passing Mechanism
1: procedure RUN_SIR_SIM(G, N(G), t)
2: for all vi ∈ V (G) do
3: send hi[t− 1] to ∀vj ∈ N(vi)
4: receive hj[t− 1] from ∀vj ∈ N(vi)
5: update hi[t] . update health status of vi
6: end for
7: end procedure

3.2.2 The Label Propagation Algorithm

Only a fraction of the community detection algorithms are efficient enough to be used in

the processing of large complex networks. A few attain near-linear time complexity. One

of the most prominent methods in that category is the label-propagation algorithm (LPA),

introduced by Raghavan et al [57]. For the purposes of our study, we adopt an instance of

the LPA community-detection class of algorithms, called Max-LPA [59]. The motivation

behind our choice is that both LPA and most self-organizing ABMs are similarly decen-

tralized, individual-centric in nature. LPA, like many self-organizing complex networks,

achieves order through decentralized interactions between individual elements.

21

Algorithm 2 Standalone Max_LPA Message-Passing Mechanism
1: procedure RUN_MAX_LPA(G, N(G), t)
2: for all vi ∈ V (G) do
3: send li[t− 1] to ∀vj ∈ N(vi)
4: receive lj[t− 1] from ∀vj ∈ N(vi)
5: update li[t] . update community membership of vi
6: end for
7: end procedure

In addition, Max-LPA, specifically, has the following beneficial properties: 1) no random-

ness besides the initial label assignment, which renders the algorithm deterministic (and

stable); 2) tie resolution is deterministic – always in favor of the larger (numerical) label;

3) the algorithm lends itself well to parallelization due to the synchronous nature of the

label updates; and 4) the algorithm demonstrates fast convergence.

Every node in the network is assigned a unique label uniformly and independently at

random. At each time step, every node sends its label to all of its adjacent nodes. After

receiving labels from all neighbors, each node updates its label with the most frequently

occurring label in its neighborhood (Algorithm 2). Ties are broken by selecting the label

with the highest numerical value (Figure 3.2).

Figure 3.2: Progression of Max-LPA. The colors of the nodes represent their community
labels. In step 1, all nodes have unique labels. In step 2, ties are resolved by assigning
labels with higher numerical value (based on agent id). For instance, we can see that
nodes 1 and 2 become red, because they acquire the label of node 4. In step 3, all nodes
have been separated into 2 communities.

22

Algorithm 3 Applying Max_LPA only once, at the beginning of simulation
1: procedure STATIC_LPA(G, N(G))
2: t← 0
3: initialize the network
4: run_MAX_LPA()
5: while true do
6: redistribute network on processors
7: run_SIR_SIM()
8: evolve network
9: t+ +;

10: end while
11: end procedure

3.3 Proposed Solution

In this section, we examine three different optimization scenarios for applying Max-LPA

on an ABM network: Initial Application, Periodic Application, and Integrated Applica-

tion. The applicability of each of these scenarios can vary depending on the nature of the

ABM, and we examine the tradeoffs between them. Further, we introduce an optimiza-

tion in Integrated Application that reduces overhead and improves efficiency. We also

present a framework for evaluating the frequency of network remapping in a distributed

platform.

3.3.1 Initial Application of Max-LPA

In this approach, we apply Max-LPA on the network only once, before starting the ABM

simulation (refer to Algorithm 3). We use the detected communities to distribute the

agent population across the processors. Following the partitioning of the network, we

23

let the ABM simulation progress until completion. This approach is similar to [54, 56]

and is only appropriate for static networks. This is because, in a dynamic network, the

initial community structure changes as the simulation progresses and agents migrate to

different communities.

3.3.2 Periodic Application of Max-LPA

The following partitioning scheme provides an improvement over the aforementioned

single application of community detection (refer to Algorithm 4). We perform an initial

LPA community detection on the network before starting the ABM simulation. In addi-

tion, we apply community detection and re-distribute the network at regular intervals

to prevent the degradation of community quality over time. The label propagation is

executed for several iterations initially, and only one iteration for every subsequent sim-

ulation step of the ABM.

Algorithm 4 Applying Max_LPA at every iteration of the SIR simulation
1: procedure DYNAMIC_LPA(G, N(G))
2: t← 0
3: initialize the network
4: run_MAX_LPA()
5: while true do
6: redistribute network on processors
7: run_SIR_SIM()
8: evolve network
9: run_MAX_LPA()

10: t+ +;
11: end while
12: end procedure

24

Algorithm 5 Integrated LPA_SIR Message-Passing Mechanism
1: procedure RUN_LPA_SIR(G, N(G), t)
2: for all vi ∈ V (G) do
3: send li[t− 1] and hi[t− 1] to ∀vj ∈ N(vi)
4: receive lj[t− 1] and hj[t− 1] from ∀vj ∈ N(vi)
5: update li[t] and hi[t]
6: end for
7: end procedure

3.3.3 Integrated Application of Max-LPA

Our approach is based on the idea that LPA and most self-organizing ABMs share the

same communication pattern. In particular, in both cases dynamic processes are running

on the network, simulating the concept of flow. In both cases the flow of the processes

is realized through the communication of each agent with its neighbors. However, es-

pecially when the size of the graph increases, communication between processors can

generate prohibitive overhead, mandating the need for optimization. The key insight be-

hind our proposed scheme is that the label-propagation mechanism can piggyback on the

communication between agents in the ABM to transmit the label (community member-

ship) information (see Algorithm 5). Here we integrate the MAX-LPA algorithm in the

ABM simulation. LPA relies solely on the structure of the network to drive its process.

We utilize the common communication pattern between the two algorithms and combine

both types of messages into a single one (refer to Algorithm 6). This is the most efficient

scheme of the three because it subsumes the overhead of community detection.

25

Algorithm 6 Integrating Max_LPA into the SIR simulation
1: procedure INTEGRATED_LPA(G, N(G))
2: t← 0
3: initialize the network
4: while true do
5: t+ +;
6: evolve network
7: run_LPA_SIR
8: redistribute network on processors
9: end while

10: end procedure

3.3.4 ABM Redistribution

As mentioned above, our integrated Max-LPA algorithm runs continuously as part of the

ABM dynamics. However, in order to benefit from the detected community structure,

the simulation has to remap it by migrating the affected agents between processes. This

process of dynamic remapping often incurs considerable run-time overhead and thus

raises the concern of how often to redistribute the workload so that the overhead of this

operation does not outweigh its benefit. In this section, we present our effort to answer

this question in the form of a remapping decision policy.

Cost Model: The cost of ABM simulation increases with time after a remapping of the ABM

network, as a result of the dynamic nature of the graph and agents migrating between

communities (see Figure 3.3). In this work, we assume that the rate of agent migration

is known, thus we can estimate empirically the cost of an ABM simulation step at time

t given that the last remapping was completed s steps ago. We represent this as ft(s).

The cost to re-organize the agents by community also increases with time, because more

agents have migrated communities since the last remapping and must be moved.

26

Figure 3.3: The SIR model run-time deteriorates gradually after every redistribution step.
At time step step 17 (p) we perform a redistribution of the graph. Later, at time step 30
(s), the run-time of the SIR model has already deteriorated due to agents migrating.

Similarly, the cost of remapping at time t, given that the last remapping was performed

s steps earlier, is represented by Bt(s). Our remapping decision policy attempts to mini-

mize the ABM simulation time by weighing the costs of remapping at a given time step

against the costs of continuing the simulation without remapping. To understand this

trade-off, we first formulate the cost of delaying the remapping and compare it to the cost

of performing the remapping at a given time step. The parameters used in the formula-

tion are listed in Table 3.1. At a given time step t, our policy evaluates the future cost of

the model simulation, provided a network remapping was performed s steps ago.

Table 3.1: Parameters Used in Remapping Decision Policy

parameter description
t simulation time step
s time steps since last remapping
R remaining simulation time

ft(s) simulation cost if remapping occurred s steps ago
Bt(s) remapping cost if last remapping occurred s steps ago

n total number of simulation steps
Ck(n) average cost of remapping at every k steps

27

If that future cost exceeds the combined cost of remapping at t and executing the re-

maining simulation, then remapping should proceed at t. In other words, it is more cost-

effective to redistribute the network communities on the processors at the current time

step, than let the simulation proceed as is. Formally, we express this notion as follows:

R+t∑
t

ft(s) > Bt(s) +
R+t∑
t

ft(0),

where
∑R+t

t ft(s) is the cost of the remaining R simulation steps, provided remapping

were executed s steps ago but omitted at the current step t. Bt(s) signifies the cost of

remapping at t, given that the last remapping was completed s steps in the past. The last

term designates the cost of the remaining simulation, if we remap the network at t.

With this insight in mind, we seek to determine the optimal frequency of network re-

distribution by examining the cost of remapping at different interval values. We define

the total cost C to run a simulation with remapping at every k steps over the course of n

simulation steps:

Ck(n) =
n∑
t=1

ft(t mod k) +

n/k∑
t=1

Bt(t mod k).

Thus, we aim to find a k such that the value of C is minimized. The model considers both

the cost of delaying the remapping and the overhead of remapping at an interval of k

steps.

The values of the parameters in the cost model depend on the configuration of the sim-

ulation environment. We performed an empirical evaluation of the model for both our

stand-alone tool and RepastHPC and derived a remapping frequency optimal for our

experimental setup.

28

3.4 Experimental Setup

We implemented the simulation of the SIR model with the three partitioning schemes,

presented in Section 3.3, both as a standalone simulation in C and as part of the Repast

HPC platform.

3.4.1 Standalone Tool

The standalone simulation in C utilizes OpenMPI 1.8.1-1.el6.x86_64 message-passing pro-

tocol. All experiments were executed on a CPU-cluster with the following configuration:

10 compute nodes, Dual-Socket Intel(R) Xeon(R) CPU E5-2697 v2 @ 2.7 GHz 30MB LLC,

128 GB DDR3 memory, 500GB SATA Disk and 10 Gigabit Ethernet.

3.4.2 Repast HPC

We implemented our LPA-based partitioning algorithm in Repast HPC – a modeling en-

vironment that enables the highly-parallelized and distributed simulations of massive

ABMs [15]. Repast HPC was developed at the Argonne National Laboratory based on the

core concepts and principles of Repast Symphony – a toolkit mainly aimed at facilitating

sequential simulations of ABMs. It was developed in C++ using MPI (enhanced by the

Boost library) for parallel operations. Some of the inherited features include represent-

ing agents as objects, scheduling events via a dynamic discrete-event scheduler, model

parametrization via property files, and data collection. To facilitate parallelization, Repast

HPC incorporates features like cross-process communication, synchronization, and agent

migration.

29

Every process is responsible for its local agents. In addition, each process has a number

of borrowed agents, i.e., copies of agents that reside on other processes but share edges

with agents local to the given process. Sharing of agent copies simplifies the process of

agent communication by providing local agents easy access to adjacent agents that are

hosted by a different process. Any updates of the original agents require cross-process

synchronization with the remotely-stored copies. The synchronization ensures that the

pan-process model is simulated as a coherent whole. Repast HPC accomplishes the mi-

gration, copying, updating, and synchronization of agents between processes using a

‘package pattern’ [60]. The package encapsulates the state of an agent (or an edge) so that

it can be recreated on a different process. Processes exchange packages over MPI using

the Boost serialization and MPI libraries.

We ran the Repast HPC experiments on a CPU-cluster with the following configuration:

3,578 total compute cores (Intel(R) Xeon(R) CPU E5-2680 @ 2.7 GHz), over 7.5TB of RAM,

and a 20/40Gb Infiniband interconnect. We scheduled our jobs to utilize 128 processors

from this cluster with 3GB of memory per processor.

3.4.3 Benchmarks

We used two different benchmark toolkits to generate synthetic test graphs.

3.4.3.1 Kronecker Network Generation Model

One of the graph generators we used was the Kronecker network generation model, part

of the Stanford Network Analysis Platform (SNAP). SNAP is a general purpose, high

performance system for analysis and manipulation of large networks [61]. The graph

30

generator, KronGen is empirically proven to effectively model the structure of real net-

works and is mathematically tractable [62]. The generator has been proven to obey main

static network patterns that have appeared in the literature as well as temporal evolution

patterns [63].

In addition, SNAP includes KronFit, a linear time, scalable algorithm for fitting the Kro-

necker graph generation model to real networks [64]. One of the benefits of this feature is

that it allows us to generate extrapolations of smaller real networks. These extrapolations

are larger versions of the original graphs, evolved via a set of temporal growth patterns.

We used the Kronecker generator to extrapolate a large version of a small real network.

Specifically, we used KronFit to extract the essential features of the dolphins social network

graph [65]. We then used these features to grow dolphins with KronGen (see Table 3.2). In

addition, we used KronGen to generate a synthetic graph of over one million vertices. The

characteristics of the graph are very similar to those of numerous real-world networks.

Table 3.2: Parameters Used for Graph Generation

parameter description G1 G2 Kron1M KronDolphin
N number of agents 32,768 1,048,576 1,048,576 65,536
k average degree 15 20 – –

maxk maximum degree 50 200 – –
µ mixing parameter 0.1-0.5 0.1-0.5 – –

minc min community size 20 10 – –
maxc max community size 50 200 – –

– agent migration percentage 5% 1-4% – –

31

3.4.3.2 The Lancichinetti–Fortunato–Radicchi Benchmark Tool

Most of the test networks were created using the Lancichinetti–Fortunato–Radicchi (LFR)

benchmark tool [66], as described in Table 3.2. The tool generates networks with power-

law distributions. It allows the user to control parameters such as the mixing parameter

(the percentage of neighbors of a node that do not belong to the same community as that

node), average node degree, and community size.

All simulation runs we executed lasted 50 iterations. In each iteration, a percentage of the

agents were selected at random to change communities, thereby modeling the dynamic

nature of the networks. The properties (listed in Table 3.2) of the initial version of each

network created by LFR were preserved while migrating agents.

3.5 Performance Evaluation

We compare the performance of the three schemes described in Section 3.3 and a baseline

approach which does not use community detection. This approach distributes the agent

population randomly across the CPUs. We present the results in the following subsec-

tions.

3.5.1 Standalone Simulation – Results and Discussion

Here, we present and discuss the results obtained by testing the three partitioners in the

standalone simulation of the SIR model.

32

Figure 3.4: Disease propagation on network G1 with µ = 0.1.

Figure 3.5: Disease propagation on network G1 with µ = 0.3.

3.5.1.1 Effect of Mixing Parameter

In our experiments, one of the parameters we varied was µ, the mixing parameter. It

specifies the fraction of a vertex degree attributed to edges connecting that vertex with

vertices outside of its community. Thus, a higher value of µ indicates more connectivity

between the communities in the graph. We used the following values of µ in our exper-

iments: 0.1, 0.2, 0.3, 0.4, and 0.5. Figures 3.4 and 3.5 show the disease propagation for

values of 0.1 and 0.3, respectively.

33

Figure 3.6: Simulation details for the three schemes for networkG1 with µ = 0.1: (a) Initial-
LPA, (b) Separate-LPA, (c) Integrated-LPA show the execution time for different steps of the
3 schemes respectively. Note that the scale on the y-axis for (a) is different from that of (b)
and (c).

The plots show how the numbers of infected, recovered, and susceptible agents varied

over the course of the simulation.It can be observed that the slopes of the curves are

steeper when µ = 0.3 as compared with µ = 0.1; this supports the intuition that the pro-

cesses of spread and recovery evolve faster when the communities are more tightly con-

nected (higher value of µ) [58].

3.5.1.2 Run-time Overhead

One of the most significant performance results we collected reveals the difference in the

execution times of the three partitioning routines. Figure 3.6 shows the simulation times

for µ = 0.1. Figure 3.6(a) depicts high initial overhead caused by the community detection

procedure (shown in blue). However, subsequent steps of the SIR ABM simulation are

34

very efficient, in comparison, because of the agents being distributed on the computing

cluster according to community membership. However, as the simulation progresses, the

graph changes with the migration of agents across communities. As a result, the com-

munities detected in the initial step become increasingly inaccurate. This is reflected in

the increase in the time spent per simulation step (because of MPI communication). Note

that the majority of the simulation time (more than 90%) was spent on communication,

as evident in all experiments.

Figure 3.6(b) shows the execution time of the second scheme, in which we call the Max_LPA

procedure at every step of the SIR simulation. Note that the y-axis is at a different scale for

this experiment. We achieved a consistent and low simulation time throughout the run,

because each ABM simulation step was performed after a call to the Max_LPA procedure,

and thus benefited from the freshly redistributed (according to community membership)

network. In the plot, we distinguish between the performance results of Max_LPA and

the SIR model by assigning them different colors.

It can be observed that the execution times, demonstrated by both, are approximately

equal. This is because, as in the previous experiment, the dominant factor is the commu-

nication overhead – and the communication patterns are identical in both procedures. If

we consider the average time taken per iteration (last bar in red), we see that it is approx-

imately 4.2x better than in the previous case.

Figure 3.6(c) shows performance results obtained from the third scheme. Here, instead of

completing the community detection before the SIR simulation, we overlapped the two by

integrating the label propagation routine into the message-passing mechanism of the SIR

model. We observe that the first two simulation steps took longer, until the community

structure was refined sufficiently; subsequent steps yielded significant improvement.

35

Figure 3.7: Simulation details for the three schemes for networkG1 with µ = 0.3: (a) Initial-
LPA, (b) Separate-LPA, (c) Integrated-LPA show the execution time for different steps of the
3 schemes respectively. The scale on the y-axis for (a) is different from that of (b) and (c).

Figure 3.8: Simulation details for the three schemes for networkG1 with µ = 0.5: (a) Initial-
LPA, (b) Separate-LPA, (c) Integrated-LPA show the execution time for different steps of the
3 schemes respectively. The scale on the y-axis for (a) is different from that of (b) and (c).

36

We observe that this is the best performing scheme of the three. Label tcombined in the graph

designates the time to perform both community detection and the SIR model, combined.

This is only 5% greater than the time to run the SIR model simulation only (and can be

understood as the overhead of integrating the community detection into the SIR model

simulation). The average execution time per iteration is 8x lower than in the first scheme,

and 1.67X lower than in the second scheme.

Figures 3.7 and 3.8 show the simulation times for higher values of µ = 0.3 and 0.5, re-

spectively. We can make the following observations based on these plots: (1) as the value

of µ increases, the execution time per simulation step also increases. This is because the

communities within the network become less pronounced with the increase of µ, and

therefore the benefit of community detection is reduced. (2) we observe that due to the

very low overhead of community detection in the third scheme, we still see significant

benefit even at higher values of µ. For example, with µ = 0.5, the third scheme is 1.65x

better than both other schemes.

3.5.1.3 A Side-by-side Comparison

Figure 3.9 shows a comparison of the total simulation time for all three schemes, for dif-

ferent values of µ, along with that of a baseline algorithm with no community detection.

Again, we observe the average simulation time increases with the increase in µ. Note

that the first and the second schemes perform worse than the baseline for high values of

µ. This is because the overhead of community detection in these schemes is high; with

high µ values, the gains attributed to improved MPI communication become less than the

overhead. The third scheme is always beneficial, because of its low community detection

overhead. For µ 0.1, our combined scheme outperforms the baseline by 8x.

37

Figure 3.9: Comparison of the three schemes applied on network G1 for different values
of µ.

3.5.2 Repast HPC – Results and Discussion

In this section, we examine the run-time overhead of the SIR model for different network

partitioning scenarios. Figure 3.10 compares the performance of our baseline (no redistri-

bution by community) against the three proposed schemes, i.e. Initial-LPA, Separate-LPA,

and Integrated-LPA. These results are quite revealing in several ways. First, as in Section

3.5.1, we can report significant performance benefits in the execution of the ABM simu-

lation as a result of applying community detection. On average, the execution time per

iteration of the baseline case is 3.5 times higher than that of our integrated-LPA approach

(not accounting for the overhead of redistribution by community).

Second, we observe that in Repast HPC our separate and integrated approaches incur sig-

nificantly higher costs for remapping the network by community than in our standalone

tool. In our separate and integrated schemes we used a redistribution interval of k = 8

for illustrative purposes only. Our results demonstrated that unless the simulation was

long enough to amortize the cost of periodic remapping, the initial-LPA approach proved

more cost-effective.

38

Figure 3.10: Simulation details for the three schemes for network G2 with µ = 0.1: (a) base-
line (upper left corner), (b) initial application of LPA (upper right corner), (c) separate, dynamic
application of LPA (lower left corner), and (d) integrated LPA (lower right corner) show the
execution time of the four schemes, respectively, over the course of the simulation.

The significantly higher cost for agent migration in Repast HPC is due to the inefficient

implementation of that functionality. The cost of the cross-process migration of large

numbers of agents is potentially prohibitive unless the model simulation is long, in which

case the initial redistribution of the network amortizes over the course of the simulation.

Such a scenario also justifies any periodic migration of agents to reflect the evolved com-

munities in the network.

39

Table 3.3: Comparison between LPA-based Partitioner and ParMetis

Dataset LPA Edge-cut ParMetis Edge-cut LPA Time (s) ParMetis Time (s)
Kron1M 5,205,266 4,619,657 13.65 49.48

KronDolphin 1,791,146 2,555,043 5.75 2.23
LFR-1M-mu0.1 3,256,628 1,871,847 51.81 5.22

3.5.3 Comparison with State-of-the-Art

In this section, we compare the performance of the LPA-based partitioner with that of

ParMetis [48,67] in terms of both edge-cut and execution time. For this set of experiments

we used the simulation in Repast HPC and we focused only on the initial partitioning

phase. The results shown in Table 3.3 demonstrate that in most cases ParMetis outper-

forms the LPA-based partitioner. This is most probably due to the fact that the local

search in our algorithm settles in a local optimum. The results show that our partitioner

is faster in the case of Kron1M, however, even if we let it run longer, it is unlikely that

it would reach a better solution, because the algorithm lacks the ability to diversify the

search. We address this issue in the next chapter.

In the case of KronDolphin, which is a very dense graph, the LPA-based partitioner out-

performs Repast HPC in terms of edge-cut. In contrast, LFR-1M-mu0.1 contains predom-

inantly small communities with sizes up to 200 vertices. Even though they are mostly

well formed (due to µ = 0.1) and the community detection algorithm probably detects

them correctly, it is not likely that they would be distributed effectively across multiple

processors. This issue is due to the lack of diversification of the local search and a strategy

to lead it to a more optimal global solution.

It is worth noting that even though ParMetis seems to outperform the LPA-based parti-

40

tioner in many cases, our algorithm will keep refining the results in the course of the SIR

simulation with negligible addition cost. Community detection runs continuously and

does not have to be called as a standalone routine periodically. Calling ParMetis to peri-

odically partition the dynamic graph of the SIR simulation would be costly in comparison

to running our algorithm seamlessly. In addition, a significant part of the execution time

of the LPA-based partitioner is spent on synchronization, as a result of the inefficient im-

plementation of these routines in Repast HPC.

3.6 Conclusion and Future Work

In this chapter, we studied the use of label-propagation community detection to partition

the simulation of ABMs in distributed environments. We studied three schemes for com-

bining LPA with a SIR model simulation. The novelty lies in the seamless integration of

the process flow of LPA and the SIR model. We demonstrated that our approach achieved

a speedup of up to eight times for networks in which we varied the quality of the com-

munity structure. Unresolved issues suggest the benefits of extending this research to

refine the partitioning strategy and study its behavior on much larger synthetic networks

with various topological characteristics, as well as on real-world networks. In addition,

future research should focus on developing a more efficient remapping method with a

corresponding cost model and a load-balancing scheme. In the next chapter, we propose

a partitioning algorithm that guides the local search in escaping local optima to reach

better global solutions.

41

CHAPTER 4: GF-PART – FAST GRAPH-PARTITIONING USING
GUIDED LOCAL SEARCH

4.1 Introduction

Graph partitioning is a fundamental combinatorial optimization problem. A graph con-

sists of a set of vertices connected by a set of edges such that every edge connects only

two vertices. Graph partitioning refers to a process of partitioning the set of vertices into

mutually disjoint sets with the objective that the number of edges connecting the sets

is minimized. Searching for the optimal such partition is computationally prohibitive

for large graphs due to the phenomenon combinatorial explosion (the number of com-

binations to be examined grows exponentially fast). Graph partitioning is an NP-hard

problem, which means that exhausting the search space is unlikely to satisfy the compu-

tational demand of most modern systems or simulations. In such cases, heuristic methods

are used to obtain good results in a reasonable amount of time.

Graph partitioning is increasingly relevant in practice in the context of data processing

and analysis. As established in previous chapters, a wide variety of real-world data sets

can be modeled as graphs. As a result of the ever-growing size of such graphs, it is nec-

essary to exploit their inherent structural characteristics in order to partition the graphs

into manageable chunks. The smaller parts can then be processed in parallel on high-

performance computing platforms. Such partitioning of the data according to their natu-

ral modularity allows each vertex to be processed in the context of its neighborhood. Pre-

serving locality is especially critical when modeling complex systems, such as the spread

of disease, as agent-based models where the exchange of information is primarily local.

42

In this chapter, we propose a graph partitioning algorithm, GF-Part, that utilizes a combi-

nation of the Guided Local Search (GLS) and Fast Local Search (FLS) metaheuristics [45].

GLS is a general penalty-based metaheuristic that usually sits on top of other local search

heuristic methods and guides them to improve their efficiency. FLS also aims to improve

the efficiency of a local search but through reducing the size of the search neighborhoods.

4.1.1 Guided Local Search

Guided Local Search is a deterministic single-solution metaheuristic that is used to guide

an underlying local search algorithm [68]. The main driving principle of GLS is the dy-

namic modification of the objective function in order to escape local optima. The algo-

rithm modifies the features of the obtained solution, thereby transforming the landscape

structure and escaping a local optimum.

In GLS (see Algorithm 7), a set of m features is associated with every solution. The fea-

tures describe characteristics imposed on the solutions in the search space by the specific

problem under consideration. For example, a feature in the Traveling Salesman Problem

could be the link (edge) between cities (vertices) A and B in a given candidate tour (solu-

tion). For each solution s ∈ S, where S is the search space, a feature fi is determined by

the indicator function Ii, i ∈ {1, ...,m}, as follows:

Ii(s) =

1, if s has property fi,

0, otherwise

In addition, GLS associates each feature fi with a cost ci and a penalty pi. Thus, when the

search is trapped in local optima, solutions with certain features are penalized.

43

Algorithm 7 GLS
1: t← 0
2: Crate an initial solution
3: for i = 1 to m do
4: pi = 0
5: end for
6: while Stopping criterion is not met do
7: h = g + λ

∑m
i=1 p1Ii

8: st + 1 = runFLS(V, st, h); . or any other local search heuristic
9: for i = 1 to m do

10: utili ← Ii(st + 1)× ci/(1 + pi); . compute the utility of features
11: end for
12: for each i such that utili is max do
13: pi ← pi + 1
14: Activate all relevant sub-neighborhoods
15: end for
16: t+ +;
17: end while
18: s∗ ← best solution found with respect to objective function g
19: return s*

Given an objective function g, which maps every candidate solution s to a numerical

value, GLS defines an augmented cost function that modifies g by penalizing the solution:

h(s) = g(s) + λ×
m∑
i

(pi × Ii(s)),

where λ represents the relative weight of penalties with respect to the cost of the solu-

tion. Whenever the local search gets trapped into a local optimum, GLS modifies the cost

function by penalizing the features that are present or unfavorable. The selection is made

according to the features’ utility values:

utili(s) = Ii(s)
ci

1 + pi
.

44

Thus, if a feature is not present in the current solution, its utility value is zero. The features

with highest utility are penalized by incrementing the values of their penalties.

4.1.2 Fast Local Search

Fast Local Search is a local search heuristic algorithm that is aimed at reducing the search

space of the main search algorithm [69]. The current neighborhood of the search is broken

down into smaller neighborhoods. FLS allows us to associate each neighborhood with a

solution, thereby assisting GLS in using the solution features to guide the search locally.

Each smaller neighborhood is assigned a bit that indicates whether that neighborhood is

active. The active neighborhoods are the only ones involved in the search. Initially, all of

them are active. However, if a neighborhood does not contain any improving moves, it

is deactivated. Inactive neighborhoods can be activated, if they are related to a neighbor-

hood with an improving move. In the course of the search, the process dies out with fewer

and fewer neighborhoods being activated until all bits turn to 0. The solution generated

at that point becomes the approximate local optimum.

4.2 Problem Statement

In this section we formulate the optimization problem associated with k-way graph par-

titioning. We also describe the distribution model of the system.

45

4.2.1 k-way Graph Partitioning

Let G = (V,E) be an undirected, unweighted graph with a vertex set V and an edge set

E ⊆ (V × V), representing a set of agents and the interactions among them, respectively.

In addition, let N(v) denote the neighborhood set of vertex v, and let d(v) denote the

degree of v, that is d(v) = |N(v)|.

Given a graph G, a mapping π : V → {1, 2, ..., k} partitions V into k disjoint parts, Π =

{π1, π2, . . . , πk}. The mapping assigns a label l, where l ∈ {1, 2, ..., k}, to each vertex p.

Therefore, π(v), or the shorthand πv, refers to the label of vertex v. Thus, all vertices in a

partition have the same label. Consequently, Nv(l) denotes the set of neighbors of v that

have label l:

Nv(l) = {u ∈ Nv : πu = l} (4.1)

We define the cost of the system as the number of edges between vertices with different

labels (equivalent to edge-cut). Thus, the cost of a vertex, cost(v), is the number of its

neighbors with a different label than its own. We can formally define the system cost as

follows:

C(G, π) =
1

2

∑
v∈V

(dv − dv(πv)), (4.2)

where dv(πv) is the number of neighbors of v with label πv. The sum is divided by two to

reflect that each edge is counted once. Then, we can define the optimal partitioning Π∗ of

the graph as

Π∗ = arg min
π
C(G, π). (4.3)

46

4.2.2 Data Distribution Model

We assume that the graph is processed in a distributed environment. Specifically, it is dis-

tributed such that each processor hosts multiple vertices. GF-Part is executed sequentially

on each processor on a portion of the graph. Vertices located on different processors com-

municate via message passing. Local communication benefits from the shared memory

on each host.

GF-Part could be modified to accommodate truly distributed scenarios, where each vertex

resides on a separate processor and communicates with the rest of the network only via

messages, or in a separate thread in a multi-threaded environment.

4.3 Solution

In this section, we describe GF-Part, a heuristic-based algorithm for the k-way partition-

ing problem. It is based on the Guided Fast Local Search (GFLS) metaheuristic which is

designed to lead a local search method to an optimal solution in an efficient manner.

4.3.1 Overview

The goal of applying GFLS to graph partitioning is both to decrease the size of the search

space and to guide the local search to reach a better global solution. The Fast Local

Search aspect of the algorithm proves a suitable fit for graphs with high modularity. The

method is especially suitable in the context of complex systems that have to be mod-

eled as networks of autonomous agents. In such cases, the search space is broken into

sub-neighborhoods that are then mapped to the agents and their respective neighbor-

47

hoods. The portion of the agent population that has to be processed decreases with every

iteration of the partitioning algorithm as the FLS deactivates agents that can no longer

improve their objective values. In addition, the GLS procedure allows the algorithm to

reach a more optimal solution by penalizing solutions that are stuck in local optima. The

interplay between GLS and the local search method leads the search through phases of

intensification and diversification to a better global solution [45, 70].

In GF-Part, the graph (potentially representing an agent population) is initialized by ac-

tivating all vertices and randomly assigning one of k labels each, where k equals the

number of partitions. During an iteration of the algorithm, every active vertex performs

a local search to find a label among its neighbors such that the cost (edge-cut) of the vertex

is decreased.

In this approach, the local search operator is executed sequentially among the vertices

located on a single processor. However, this process can easily be extended to be fully

distributed by forcing all vertices to communicate via messages or protected sharing of

the local resources in a multi-threaded scenario. In this case, one can use a swap operator

and allow the vertices to look for pairwise optimization of the objective function. When

such a mutual improvement between two vertices is found, the vertices swap their labels.

This distribution scenario preserves the initial equal load balance across multiple proces-

sors in a HPC cluster. In other words, this way one can address the balanced k-way graph

partitioning problem.

During the local search, two scenarios are possible – the vertex either finds an improving

solution or it does not. In the former case, the vertex updates its objective value and

the utility values of its features, provided any of them are present in the new solution.

Subsequently, if any features of a vertex are found to have the highest utility, they are

48

penalized, thereby improving the chances of the algorithm escaping a local optimum.

When a vertex finds an improving solution, it remains active and activates all nonactive

neighbors. This action is necessary because, in problems with high locality, the structure

of the search space guides local search methods towards optimal solutions [70]. Any

change of the objective value of a given vertex can potentially affect the objective values

of its neighbors.

In the latter case, the objective value of the vertex cannot be improved and the vertex is

deactivated. An inactive vertex can be reactivated in one of two cases: 1) a neighbor finds

an improving solution (as previously explained), or 2) one or more of the features of the

vertex are found to have maximal values. The rationale behind the second scenario is to

give the vertex a chance to look for an improving solution after its objective function has

been augmented.

4.3.2 Representation

One of the key aspects of building a heuristic solution is determining the representation

of the solution space and the corresponding local (neighborhood) search function. Vec-

tors are common representations (genotypes) for graphs as they represent ordered lists

of decision variables that can be mapped to the vertices of the graph. In addition, the

vector representation allows the use of standard search operators based on the Hamming

metric, because the difference between two solutions can be calculated as the number of

different decision variables [70].

49

4.3.3 Local Search

Many strategies can be applied in the search of a better local solution. The strategy we

employ in this study is best improvement (BI), also known as steepest descent. However,

any heuristic selection method such as first improvement (FI), random selection, or any

other search-space reducing tactic can be used instead. In the best improvement strategy,

the vertex adopts the label that improves its cost function the most. The search in the

neighborhood is exhaustive and thus may be time-consuming for large neighborhoods.

However, this issue is not the focus of this study and can be remedied with a number of

other search-space reducing selection strategies. Furthermore, the FLS phase of GF-Part

reduces the global search space by deactivating non-improving vertices.

The first improvement strategy allows the search to stop after finding the first improving

solution. That way, FI may cover only a portion of a neighborhood. Both BI and FI can be

used in combination with a random search method to diversify the search process.

During the local search phase of the algorithm, each active vertex v scans its neighbor-

hood for an improving solution to its objective function. Specifically, the vertex aims to

minimize its local edge-cut, i.e. cost(v), and looks for a label that would satisfy this ob-

jective. Decreasing the edge-cut is equivalent to increasing the number of neighbors that

share a label with v. The search stops when all candidate neighbors yield solutions worse

than the current. A vertex v selects vertex u’s label only if dv(πu) > dv(πv). When ties

occur, preference is given to the label of a neighbor local to the given vertex to decrease

the number of vertices involved in the redistribution phase. If an improving solution is

found, the vertex activates all its neighbors. It then determines which features are present

in the new solution and computes their new utility values.

50

4.3.4 Features and Augmented Objective Function

Combining GLS and FLS allows us to associate solution features to sub-neighborhoods.

That way, we can relate the features to the moves each vertex makes and observe how

these moves affect both the features and the generated solutions [69]. GF-Part associates

three different features fi, where i ∈ {1, 2, 3}, with every vertex v for every solution s. The

first feature indicates whether a vertex has to move to a different processor as a result of

a new label. The second feature explores whether cost(v) is higher than the number of

internal edges of v. Finally, the third feature keeps track of whether v has donated a label

during the current iteration of the local search. The presence of a feature in a solution is

given by the indicator function as described in Section 4.1.1. For example:

I1(sv) =

1, if πv == processor rank of v,

0, otherwise

where sv is the local solution of v. The features capture the properties of each solution s

and then appropriately modify the objective function by adding penalties as described in

Section 4.1.1.

4.3.5 Feature Costs

As noted in Section4.1.1, each feature fi is associated with a cost ci and a utility value

utili. The costs are used in the computation of the utility values, which on the other hand

are used to decide which features should be penalized. The more a feature is penalized,

the smaller its utility becomes, effectively removing the feature from future solutions (see

Algorithm 7).

51

Features impose or strengthen constraints on the search space as they gather information

about the local solutions. The cost and the number of previous penalties are the determin-

ing factors in the decision to penalize a feature in a local optimum. To escape the local

optimum, GF-Part penalizes the features in s with highest utility values.

In GF-Part we keep the costs of f1 and f3 fixed, i.e. c1 = c3 = 1; however c2 varies

with the difference between cost(v) and the number of internal edges. Specifically, f2 is

concerned with whether the current solution (associated with a specific vertex) yields a

higher external degree for that vertex than internal. A positive answer to this question

leads to the modification of c2 (it is assigned the difference between the external and

internal degrees of vertex v) and util2.

4.3.6 The lambda Parameter

The only parameter in GF-Part is λ. It determines how much the increased penalties

would impact the augmented objective function [71]. The larger the value of λ, the more

aggressive the search and closer it gets to a random search. It allows the search to avoid

solutions with penalized features by letting it execute large jumps in the search space.

Small values of λ allow for slower and more thorough exploration of the search space.

However, the search might require a high number of penalties to escape a local optimum.

4.3.7 The GF-Part Algorithm

The GF-Part algorithm combines the local search method and GFLS. Algorithm 8 presents

FLS which sequentially checks whether the vertices are active. Each active vertex executes

the LocalSearch() procedure (see Algorithm 9) during which it can remain active or get

52

deactivated. The findBestImprovement() searches the neighborhood of vertex v for the

most improving label, and then it returns the selected neighbor, if one was found.

Algorithm 8 FLS
1: bitCounter ← V.size()
2: while bitCounter > 0 do
3: for i = 1 to V.size() do
4: if v → isActive() then
5: v → LocalSearch()
6: if v → isActive()! = true then
7: bitCounter −−;
8: end if
9: else bitCounter −−;

10: end if
11: end for
12: i+ +;
13: end while
14: s∗ ← best solution found with respect to objective function g
15: return s*

Algorithm 9 LocalSearch
1: procedure UPDATESOLUTION(v)
2: neighbor ← findBestImprovement(v);
3: if neighbor == null then
4: v → setActive(false);
5: else v → setLabel(neighbor → getLabel());
6: for all fi ∈ features do
7: if fi is active in s then
8: update utili;
9: end if

10: end for
11: update h ;
12: v → activateNeighbors();
13: end if
14: return h;
15:end procedure

53

If no improving label is found, v deactivates itself. If v found an improving solution, it

updates its own label with the newly found one. The vertex then proceeds to update

any of the features that might be present in the solution. Finally, v updates its objective

function and activates any neighbors that might be inactive. After a predetermined num-

ber of iterations, GF-Part uses the final solution of GFLS, i.e. the latest vertex labels, and

redistributes the graph on the high-performance cluster.

4.4 Experimental Study

In this section, we present the results from our experimental study. We first focus on the

performance of GF-Par with respect to four different label selection strategies. We then

study the effect of λ on the edge-cut. Next, we observe the behavior of the algorithm

over the course of the simulation. Finally, we compare GF-Part’s performance with the

state-of-the-art in terms of edge-cut.

4.4.1 Testbed

We implemented GF-Part in Repast HPC, a complete ABM simulation toolkit. It imple-

ments the core agent-based modeling concepts and features of Repast Symphony (the

current version of Repast for serial simulations) but is aimed at facilitating large-scale

distributed ABM simulations [15]. More specifically, Repast HPC targets both models

with a small number of highly complex agents as well as models with a large number

of relatively simple agents. It was built in C++ but provides interfaces for both C++ and

ReLogo ABM implementations [72]. The toolkit does not provide specific mechanisms

for graph partitioning and load balancing. It supports the notion of community; how-

54

ever it has no community-detection functionality. If a network of agents is deliberately

distributed by the user on processes according to community structure, Repast HPC then

allows the user to maintain and track the communities.

We ran the Repast HPC experiments on a CPU-cluster with the following configuration:

3,744 compute cores (Intel Xeon 64-bit processors), 240TB of configured storage, and a

56Gb Infiniband interconnect.

4.4.2 Metrics

The performance of a graph-partitioning algorithm can be measured by a number of met-

rics [73]. In addition to edge-cut, which is the metric we use in the objective function of

the problem (see Section 4.2.1), we measure the number of vertices being moved during

the redistribution phase (migrations).

4.4.3 Datasets

We used two different benchmark toolkits to generate synthetic graphs: LFR and SNAP’s

KronGen and KronFit tools. The properties of these graphs are listed in Table 4.1.

Table 4.1: Datasets

Dataset |V | |E| Type
Kron1M 1,048,576 7,054,286 Synth.

KronDolphin 65,536 5,338,764 Extrapol.
LFR-1M-mu0.1 1,048,576 10,537,206 Synth.
LFR-1M-mu0.3 1,048,576 10,537,206 Synth.

55

4.4.3.1 Kronecker Network Generation Model

One of the graph generators we used was SNAP’s Kronecker network generation model

that was previously introduced in Chapter 3. The model is empirically proven to effec-

tively model the structure of real networks and is mathematically tractable [62].

We used the Kronecker generator, KronGen, to extrapolate a large version of a small real

network. Specifically, we used KronFit to extract the essential features of the dolphins

social network graph [65]. We then used these features to grow the graph with KronGen

(see Table 4.1). In addition, we used KronGen to generate a synthetic graph of over one

million vertices. The characteristics of the graph are very similar to those of numerous

real-world networks.

4.4.3.2 Lancichinetti–Fortunato–Radicchi Benchmark Tool

We used the (LFR) benchmark tool [66], previously introduced in Chapter 3, to gener-

ate two synthetic graphs with realistic characteristics. The tool generates networks with

power-law distributions. It allows the user to control parameters such as the mixing pa-

rameter (the average percentage of external edges in the degree of a node), average node

degree, and community size.

4.4.4 The Impact of the Selection Strategy

In this section, we study the effects on the edge-cut of several selection strategies. The

strategies of choice were introduced in Section 4.3.3 and are labeled here as BI (best im-

provement), FI (first improvement), BI+R (best improvement with randomness), FI+R

56

(first improvement with randomness). In this set of experiments, FLS was called ten times

by GLS.

As the results in Table 4.2 demonstrate, all four selection strategies improve the initial

edge-cut, the product of the initial random partitioning. As expected, BI yields the best

edge-cut; however, it does not appear to benefit from randomization. On the other hand,

FI+R offers the worst performance in almost all cases. This result is due to the lack of

more thorough exploration of the local neighborhood and the presence of opportunities

to jump to a random place in the global search space. This search strategy works best in

the case of KronDolphins. The highly dense graph does not lend itself well to exhaustive

search strategies. FI also offers improvement over the initial edge-cut. In addition, it

performs slightly better than FI+R in most cases, because the search does not undergo as

much diversification. However, the degree of intensification is not as high as in BI, which

could explain the inferior performance with respect to edge-cut.

4.4.5 The Effect of λ on the Edge-cut

The λ parameter is involved in the modification of the objective function. It controls how

much the penalties take effect and modify the objective. In this experiment, we study

how much that augmentation affects the edge-cut, if at all.

Table 4.2: The Impact of Label Selection on the Edge-cut (Kron1M)

Dataset Initial BI FI BI+R FI+R
Kron1M 5,239,032 4,189,813 4,196,089 4,189,813 4,196,583

KronDolphin 2,594,692 2,505,343 2,505,242 2,505,349 2,505,229
LFR-1M-mu0.1 10,217,807 9,454,239 9,476,337 9,454,672 9,474,597
LFR-1M-mu0.3 10,315,637 9,756,285 9,770,775 9,756,315 9,770,152

57

Table 4.3: The Effect of λ on the Edge-cut

Dataset λ = 0 λ = 0.05 λ = 0.5 λ = 1 λ = 5

Kron1M 4,208,061 4,189,821 4,202,185 4,205,245 4,269,483
KronDolphin 2,505,562 2,505,065 2,505,020 2,505,563 2,528,861

Table 4.4: Performance for Kron1M (BI)

Iterations Edge-cut Migrations
0 5,239,032 0
1 4,209,685 16,025
5 4,189,818 16,041
10 4,189,822 16,041
20 4,189,821 16,041
50 4,189,815 16,041

Table 4.5: Performance for KronDolphin (BI)

Iterations Edge-cut Migrations
0 2,594,692 0
1 2,505,568 8,055
5 2,505,068 8,056
10 2,505,060 8,056
20 2,505,041 8,056
50 2,505,022 8,056

The results listed in Table 4.3 show that λ has some effect on the edge-cut. Increasing its

value allows the algorithm to get out of a local optimum faster. However, after a certain

point, λ = 0.5, the edge-cut values begin to increase. This is valid for the Kron1M dataset.

KronDolphin, on the other hand, seems to benefit from higher values of the parameter.

As a result of the graph’s high density and lack of well-structured clusters of vertices,

the search benefits from randomness. The higher λ is, the closer the search compares to

randomness. Generally, the algorithm is tolerant to the value of λ, but the parameter can

be used to aid the search strategy [69].

4.4.6 Evolution of Edge-cut and Migration Over Time

In this section, we study the evolution of the algorithm over time. The GLS procedure in

GF-Part calls LFS in a loop, which dictates how many times a percentage of the vertices

is re-activated to perform a local search again. We observe the effect of this variation on

58

the values of the edge-cut and the number of migrations. We present results for Kron1M

and KronDolphin, with the BI selection strategy, in Tables 4.4 and 4.5, respectively. In

both cases, the results show that the edge-cut continues to improve with the increase in

run time. However, the number of vertices to be moved levels off very quickly. This

could be attributed to the fact that the algorithm is sequential on each processor (and

BI is deterministic). Therefore, whenever a vertex undergoes a change in label, it affects

a similar number of agents every time during an iteration of FLS. This result is likely

to change if we run GF-Part in a truly distributed environment and allow a degree of

randomness in the label selection strategy.

4.4.7 Comparison with State-of-the-Art

In this section, we compare the performance of GF-Part with that of ParMetis [48, 67] in

terms of both edge-cut and execution time for all graphs. The results are shown in Table

4.6. In some cases, GF-Part produces a better result; in others, ParMetis does. In the case

if the LFR graphs, which are composed of numerous small communities of vertices, GF-

Part with BI does not seem to be able to get out of local optima. It is worth exploring the

effects of modifying the costs of the features and introducing randomization in the label

selection strategy.

Table 4.6: Comparison between GF-Part (GF-P) and ParMetis(PM)

Dataset GF-P Edge-cut PM Edge-cut GF-P Time (s) PM Time (s)
Kron1M 4,209,677 4,619,657 57.02 49.48

KronDolphin 2,505,020 2,549,599 21.96 26.21
LFR-1M-mu0.1 9,550,822 1,630,293 151.39 69.67
LFR-1M-mu0.3 9,817,406 4,486,306 189.96 79.21

59

It is worth noting that a significant part of the execution time of FG-Part is spent on syn-

chronization, as a result of the inefficient implementation of these routines in Repast HPC.

In addition, the results were obtained with the BI local search strategy, which is exhaus-

tive and therefore slows down the convergence.

4.5 Conclusion

In this chapter, we presented a metaheuristic solution to the graph partitioning problem.

To the best of our knowledge, we are the first to apply the combination of Guided Local

Search and Fast Local Search to address the graph partitioning problem. We demon-

strated that the algorithm is characterized by high locality which suits the nature of the

problem. Our algorithm allows the search for a solution to occur from the perspective of

each vertex. Therefore, GF-Part is well suited for partitioning the underlying graphs of

agent-based model simulations.

In addition, GF-Part allows one to tailor the partitioning process to a specific graph by

involving problem-specific features in the process. The features, their costs, and utility

values can play a critical role in the effectiveness of the partitioner. As the underlying

graphs of modeled complex systems can differ according to the nature of the system, the

problem-specific parameters in GF-Part allow the algorithm to tune itself and reflect any

distinctive characteristics pertinent to the partitioning process.

In the next chapter, we focus on the role of graph partitioners in the simulations of com-

plex systems in distributed agent-based environments. We design a study that evaluates

the effects of different types of graph partitioning algorithms on the performance of sev-

eral of the state-of-the-art agent-based modeling platforms.

60

CHAPTER 5: NETWORK PARTITIONERS IN DISTRIBUTED
AGENT-BASED MODEL SIMULATIONS
(DESIGN OF A PERFORMANCE STUDY)

5.1 Overview

Most distributed ABM simulation platforms do not have partitioning and load-balancing

mechanisms. However, most of them attempt to reduce the inter-processor communi-

cation via alternative, typically programmatic, approaches such as duplicate agents, de-

layed synchronization, bulk communication, coalesced messaging, selective agent simu-

lation (i.e., simulating only a subset of the population per iteration with the assumption

that not all agents are active at the same time). The few ABM platforms that consider

some sort of partitioning, do so on the basis of standard geographic divisions such as

zip code or city lines. This strategy, combined with a lightweight, skinny agent design

and selective agent simulation, is usually enough to yield a significant reduction of inter-

processor communication. However, such restrictions might take away from the utility

of ABMs in representing an interaction network of agents with heterogeneous features

and behaviors. While smart object design from a programmatic stand-point is necessary,

it should not diminish the freedom a user needs to create a useful and meaningful model.

Furthermore, heavily relying on spatial structure can lead to computational irreducibility

(the idea that some computations cannot be sped up by any shortcut) when certain kinds

of behavioral rules are applied [18, 74].

In this study, we evaluate the usefulness of partitioners in accelerating the simulations

of ABMs. We focus on three families of de facto standard partitioners, which represent

both traditional graph-partitioning methods and more recent distributed algorithms, de-

61

signed for large-scale partitioning. We conduct our performance study in the context of

Repast HPC, an open source agent-based modeling environment, widely used by scien-

tists from various domains. The goal of our study is to evaluate whether large-scale ABM

simulations benefit from the use of network-partitioning methods. Further, we propose to

investigate when and how distributed, topology-aware partitioners perform better than

the traditional multilevel graph-partitioning methods, which assume global knowledge

and access to the network.

5.2 The Graph-Partitioning Problem

As we stated in Section 2.4, graph partitioning is a well studied problem. The challenge

of its complexity has led to the development of numerous approximation and heuristic-

based algorithms. We focus on balanced k-way graph partitioning for distributed agent-

based simulations, because of its high relevance and applicability to distributed comput-

ing. This problem concerns the partitioning of the graph into equal-sized components.

In many techniques, the equality requirement is relaxed by allowing it to vary by a small

factor. This factor is usually included in a cost function that evaluates the efficiency of the

algorithm.

5.2.1 Preliminaries

Let G = (V,E) be an undirected, unweighted graph with a vertex set V = {v1, v2, . . . , vn}

and an edge set E = {e1, e2, . . . , em} ⊆ (V × V), representing a set of agents and the

interactions among them, respectively. In addition, let N(vi) = {vj ∈ V : 〈vi, vj〉 ∈ E}

denote the neighborhood set of vertex vi, and let d(vi) denote the degree of vi, that is

62

d(vi) = |N(vi)|.

5.2.2 Problem Statement

Given a graph G = (V,E), partition V into k disjoint parts, Π = {π1, π2, . . . , πk}, such that:

(1− εl)
|V |
k
≤ |V (πi)| ≤ (1 + εu)

|V |
k
, (5.1)

while minimizing the size of the global edge cut K, defined as K =
∑

i<j Eij , where

Eij = {{u, v} ∈ E : u ∈ πi, v ∈ πj}}. In addition, εl and εu denote the lower and upper

vertex imbalance parameters.

5.3 Standard Partitioning Methods

In this section, we present some of the most widely used graph-partitioning methods of

recent years. They have gained wide acceptance in the scientific world and are often used

as the de facto standards in graph partitioning for comparison purposes.

5.3.1 METIS

METIS is a software package used for serial partitioning of graphs and meshes, as well as

for producing fill reducing orderings for sparse matrices [75]. The algorithms available in

METIS are based on the multilevel graph-partitioning paradigm. This paradigm consists

of three phases: graph coarsening, initial partitioning, and uncoarsening. The graph-

coarsening phase produces a series of successively smaller graphs by collapsing together

pairs of adjacent vertices. This process reduces the original graph to a new one – of only a

63

few hundred vertices. In the initial partitioning phase, the coarsened graph is partitioned

using relatively simple algorithms such as that by Kernighan-Lin [76]. This phase is quick

because of the small size of the graph. The final phase, uncoarsening, takes the partition-

ing and projects it to successively larger graphs derived from the coarsened graph. This

is accomplished by assigning pairs of vertices, previously collapsed together, to the same

partition, to which their collapsed common vertex belonged. The uncorsening phase in-

corporates various heuristics to refine the partitions after each projection step. This phase

ends when the partition has been projected all the way back to the original graph.

5.3.2 ParMETIS

ParMETIS is an MPI-based library that extends METIS and offers parallelized versions

of the functions in the original tool [77]. Specifically, the parallel graph-partitioning algo-

rithm used in ParMETIS is the parallelized version of the serial multilevel k-way partitioning

algorithm used in METIS [48, 67].

5.3.3 KaFFPa

KaFFPa (Karlsruhe Fast Flow Partitioner) is a multilevel graph-partitioning algorithm

in the Karlsruhe High Quality Partitioning (KaHiP) suite [78]. The algorithm uses local

improvement algorithms based on max-flow and min-cut computations and more local-

ized FM (a heuristic-based network-partitioning algorithm by Fiduccia and Mattheyses)

searches. It also relies on global search strategies borrowed from multi-grid linear solvers.

Another noteworthy technique for graph partitioning in KaHiP is KaFFPaE, a distributed

evolutionary algorithm. It uses KaFFPa as a base to provide effective crossover and mu-

64

tation operators for maintaining high population diversity. KaFFPaE’s latest features in-

clude a local improvement scheme for graph partitions that allows strict balance con-

straints. By combining local searches, which individually violate the balance constraint

into a more global feasible improvement, with a balancing algorithm, KaFFPaE is able to

guarantee any balance constraint [52].

5.3.4 Ja-Be-Ja

Ja-Be-Ja is a fully distributed algorithm that uses local search and simulated annealing

techniques for two types of graph partitioning: edge-cut and vertex-cut [79]. The algo-

rithm is massively parallel – designed to partition extremely large graphs. The algorithm

is claimed to achieve such scalability through its data locality, simplicity, and lack of syn-

chronization requirements.

The basic idea is to assign colors to nodes uniformly at random and then apply a lo-

cal search to push the configuration towards lower energy states (min-cut). Each vertex

iteratively selects vertices either among its neighbors or via a random sample, and in-

vestigates the pair-wise utility of a color exchange. In order to preserve the size of the

partitions, the colors do not change independently, but are swapped, instead. To ensure

that the algorithm does not get stuck in a local optimum during a local search, Ja-Be-Ja

uses simulated annealing. The vertices of the graph are processed periodically and asyn-

chronously such that each vertex only has access to the states of its neighbors and a small

set of random vertices in the graph.

65

5.4 Experimental Setup

In this section, we describe the testbed used in our experimental study.

5.4.1 Modeling Environment

As in previous chapters, we turn to Repast HPC as our modeling environment. Recall

that the toolkit does not provide graph partitioning and load balancing functionality. It

supports the notion of community; however, it relies on the user to identify the communi-

ties. If a network of agents is deliberately distributed by the user on processes according

to community structure, Repast HPC then allows the user to maintain and track the com-

munities.

5.4.2 Benchmarks

As Barabási points out, despite the rich diversity of complex networks, they all share

common structures and evolution as a result of being governed by the same organizing

principles [80]. Consequently, we can categorize (see Section 2.1 for categories) and ana-

lyze them via the use of a common set of mathematical and computational tools.

Although ABMs are an abstraction, they have the potential to represent reality at a high

degree of detail and even simulate real-world phenomena in real time. The fidelity of an

agent-based model relies in part on the credibility of the underlying contact network [81].

In that regard, fusing data from different real-world sources is expected to enhance the

credibility of a model. Potential data sources include censuses, data from a telecommuni-

cation service provider (cellular records) and person-person contact data based on logs of

66

Bluetooth connectivity between devices. Such fused data sets present the most effective

robustness and scalability tests for ABM simulation environments; however, they are not

yet readily available.

Here as in other chapters of the dissertation, we use synthetic networks with realistic

topological characteristics. We use the Kronecker network-generation model, which is

empirically proven to effectively model the structure of real networks and is mathemat-

ically tractable [62]. The generator has been proven to obey not only all the main static

network patterns that have appeared in the literature, but also temporal evolution pat-

terns [63]. Two essential network characteristics are heavy-tailed degree distributions

and small diameters. Heavy-tailed degree distributions, following a power law, describe

real-world networks that contain numerous nodes with very small degrees and a small

number of nodes (aka “hubs”) with very high degrees [80]. In contrast, Erdős-Rényi ran-

dom networks are characterized by a Poisson degree distribution. Most current genera-

tors focus on only one or two patterns, and neglect the others. For example, many mod-

els involve some form of preferential attachment, which yields networks with power-low

tails [27,82]. Others, like the small-world generator, obey the small-diameter pattern [25].

In contrast, the Kronecker network generator has been rigorously proven to address all

known characteristics.

In addition, the generator includes KronFit, a linear time, scalable algorithm for fitting

the Kronecker graph generation model to real networks [64]. One of the benefits of this

feature is that it allows us to generate extrapolations of smaller real networks. These

extrapolations are larger versions of the original graphs, evolved via a set of temporal

growth patterns.

We are using the Kronecker generator to extrapolate a large version of a small real net-

67

work. The benchmark set includes several networks with large sizes (with millions of

nodes) and varied parameters (such as community size and community interconnectivity,

etc). Each network is dynamic in nature – with a fixed number of mobile nodes (agents).

To further ensure high fidelity of our models, we vary the type and complexity of the

modeled phenomena (see Section 5.4.4).

5.4.3 Methods

We compare the performance of the following de facto standard graph-partitioning meth-

ods:

• METIS and ParMETIS: libraries accessed in an ABM implementation through a se-

ries of function calls.

• KaHIP: a C/C++ library, whose algorithms can be accessed in the ABM implemen-

tation through a set of function calls.

• Ja-Be-Ja: No suitable implementation is readily available for this algorithm; there-

fore, a strategy is to implement it in Repast HPC.

• Random: The agent population is equally and randomly distributed across the pro-

cessors.

5.4.4 Simulation Model

Our model of choice is similar to the one we described in Section 3.2.1, but we include it

here for completeness and to allow additional clarification pertaining to this study. The

SIR ABM simulates the spread of disease in a population of agents such that each agent

68

falls in one of three categories: susceptible, infected, or recovered. We simulate the spread

of disease through the exchange of messages between connected agents. Each message

carries the health condition of the sender as payload. The disease propagation process

is governed by two parameters, i.e., the rate of infection and the rate of recovery. We

assume that the population size remains constant; that is, we do not include an agent

birth and death mechanism. Each agent updates its status depending on its own health

condition and that of its neighbors. We assume that each agent sends (receives) a mes-

sage, symbolizing social contact and disease transmission, to (from) all of its neighbors at

each iteration of the simulation. The stopping condition of the simulation is the complete

eradication of the disease, i.e., when the number of infectious agents reaches zero, or a

predetermined number of simulation steps.

The recovery process of each agent is stochastic in nature. Specifically, for each infected

agent the algorithm draws a random number from a uniform distribution between 0 and

100. If the number is less than the recovery rate, the agent’s state changes to ’recovered’

(and therefore, immune). If not, the agent remains infected. Similarly, for all susceptible

agents, the algorithm draws a random number from a uniform distribution between 0 and

100. If the number is less than the rate of infection, the agent’s state changes to ’infected’.

The dynamics of the ABM directly affect the performance of the simulation. To investi-

gate how the overhead due to communication and computation is affected, we vary the

complexity of the model. The following subsections provide the specifics.

5.4.5 Varying Social Contact

In our simulations, an agent’s neighborhood represents the set of all regular contacts of

that agent. However, not all of these contacts have to be active every simulation step. We

69

can vary the number of active links per iteration from none to all. In addition, we allow

for chance encounters with strangers. The frequency of this type of contacts will also be

varied. Varying the amount and patterns of contact will allow us to study the benefits of

network partitioning in different communication scenarios.

5.4.6 Varying Mobility

We vary the fraction of the population that completely changes location, and conse-

quently community membership, every iteration. Varying the mobility parameter allows

us to study the trade-off between the benefits of good partitioning and the cost of detect-

ing the partitions and redistributing the network.

5.4.7 Varying Computational Workload

To investigate the effect of the processor workload on the simulation performance, we let

agents compute a ”Fast Fourier Transform (FFT)” [83]. We vary the workload by using

different sizes of input for the FFT calculus.

5.5 Experimental Study

The purpose of this study is to determine whether graph partitioning is beneficial in dis-

tributed ABM simulations. The hypothesis is that there will be a discernible and even

maybe a significant benefit. However, we would like to find out whether there are any

trade-offs and how they fluctuate with variations in the network topology and character-

istics of the modeled phenomena. To gain clarity on these issues, we propose the follow-

70

ing sets of experiments:

• This experiment is intended to show how the ABM’s execution time varies with the

amount and frequency of social contact. One of the goals is to also determine the

effect of chance communication with strangers. This type of contact is expected to

contribute primarily to the amount of inter-processor communication.

• This experiment is designed to demonstrate how the mobility parameter affects the

execution time. One can plot the performance-deterioration trend over time (using

execution time per iteration) for different values of the mobility parameter.

• This experiment is intended to investigate the effects of the computational load per

node in different work distribution scenarios. Some possibilities are: 1) nodes work

only if they are socially active during a given iteration; 2) all nodes work every it-

eration; 3) a random subset of nodes works every iteration; etc. One can then plot

the relationship between total execution time and amount of workload for all parti-

tioning schemes. Furthermore, this study illustrates how the imbalance of the pro-

cessors’ workloads deteriorates over several iterations, between network repartition

procedure calls.

• Scaling is an important property of any parallel and distributed simulation. The

next two experiments focus on how the ABM scales as we vary two different pa-

rameters. The first one demonstrates how the performance scales up as we double

the population and number of processors repeatedly (weak scaling). The second

one is designed to show how the execution time of a fixed simulation changes as

the available computing power repeatedly doubles (strong scaling).

71

5.6 Conclusion

In this chapter, we proposed a study on the effects of graph partitioning on different

agent-based modeling environments. Its purpose is twofold. First, it aims to demon-

strate that agent-based modeling environments improve in performance as a result of in-

corporating graph partitioning algorithms. Second, it is designed to determine whether

topology-aware graph partitioning approaches are a better fit for distributed simulations

of complex systems than traditional graph partitioners. In the next chapter, we present

our vision for future work. Specifically, we focus on applying Catastrophe Theory con-

cepts to facilitate more effective remapping of networks in distributed ABM simulations.

72

CHAPTER 6: APPLYING CATASTROPHE THEORY TO NETWORK
REMAPPING IN DISTRIBUTED AGENT-BASED MODEL

SIMULATIONS (FUTURE WORK)

6.1 Overview

As demonstrated in Chapter 3, applying community detection as an integrated process in

the dynamics of a distributed ABM leads to a significant drop in the inter-processor com-

munication overhead. However, our study also demonstrated that a distributed ABM

simulation could suffer from additional overhead associated with the periodic redistri-

bution of the model. Essentially, the benefit of exploiting locality is oftentimes offset by

overhead due to inter-processor agent migration. In order to properly take advantage

of locality in the simulation of ABMs, we have to address the communication overhead

due to redistribution and synchronization of the model. With this in mind, we turn to Dy-

namical Systems Theory and attempt to characterize the processes creating the mentioned

overhead.

As with the model-partitioning methods presented in Chapters 3 and 4, the ideas here

attempt to exploit the intrinsic relationship between the structural properties of the un-

derlying ABM network and the dynamics of its elements. As we have noted previously,

one of the main characteristics of complex systems is the emergent global behavior that

is a spontaneous outcome of the behaviors and interactions of the elements on a micro-

scopic scale. These dynamic processes give rise to a complex topology and often hetero-

geneous structure. Knowing and being able to predict how this structure changes over

time can inform the design of more efficient model-partitioning techniques in the con-

text of distributed computing. Unfortunately, decomposing the system to its most basic

73

autonomous elements does not provide insight into the link between its global charac-

teristics and local individual behaviors. This observation is due to the very nature of the

self-organizing principles governing the system dynamics – they arise from the collective

and unsupervised dynamics of the multitude of autonomous elements [20].

On the other hand, there is compelling evidence that fluctuations and complications in

the system are visible at different scales [20]. Therefore, we can expect that changes in

the system on a microscopic level could propagate and affect the system at a global scale.

In many complex networks correlations among the constituent elements are typical and

therefore may generate cascades of microscopic events disrupting the system at all levels.

Barrat et al. note that multilevel complications are statistically encoded in the heavy-tail

distributions characterizing the structural properties of most real-world networks [20,26].

The visibility of fluctuations at different resolutions of the system allows us to observe

them at a more global scale and to discern patterns that could be useful in predicting the

behavior of the system.

As a result of the ubiquity of complex systems in various domains – all sharing charac-

teristics such as emergent behavior, heterogeneous structure, scale-free properties, and

non-trivial statistical correlations – it is intuitive to speculate that there may be certain

mechanisms, governing the system dynamics, that are common across systems with oth-

erwise disparate behaviors. Recent large-scale data analyses demonstrate that there are,

indeed, common self-organizing principles that govern the emergent phenomena in oth-

erwise completely different systems. These observations are very much in agreement

with the notion of universality addressed in statistical physics in relation to "phase tran-

sitions" in dynamic systems. More specifically, universality refers to the fact that very

different complex systems demonstrate large-scale properties that were derived by the

same set of statistical laws [20]. These systems are very different on a microscopic level

74

but similar on a global scale. Universality does not imply equivalence; instead, it at-

tempts to identify any dynamic mechanisms responsible for generating these similarities

regardless of the microscopic details of the system.

Studies of the dynamics of complex systems conducted in the last two decades have

provided compelling evidence that such systems might exhibit critical transitions, also

known as tipping points, that trigger dramatic shifts in the systems’ states. Some exam-

ples of such dramatic changes in real systems include the collapse of financial markets,

the sudden disappearance of natural species, or epileptic seizures [34, 84]. Such systemic

shifts could not only pose challenges to maintaining stability, but also prove catastrophic.

Therefore, it would be beneficial to devise methods for early detection of such dramatic

events. Until recently, it was considered almost impossible to predict sudden systemic

shifts, mainly because changes in the systems leading up to the transitions usually are

either not detectable or seemingly unrelated [84]. In addition, most models of complex

systems are not accurate enough and therefore inadequate in capturing the subtleties of

such seemingly sudden events.

Surprisingly, recent studies demonstrate not only that complex systems exhibit symp-

toms of imminent critical transitions but also that these warning signs appear common

across different phenomena regardless of the disparate system dynamics. The branch of

dynamics known as Catastrophe Theory is concerned with systems that, under particular

conditions, demonstrate sudden shifts from one form to another. These sudden jumps are

associated with a number of catastrophe flags. Some of the leading indicators of critical

transitions that may occur in non-equilibrium dynamics include [84]:

• Critical Slowing Down. This indicator is considered essential in capturing tipping

points in a wide range of natural systems such as cell signaling pathways and cli-

75

mate. The idea behind this warning signal is that complex systems become increas-

ingly slow to recover from perturbations as they approach a critical transition. This

phenomenon occurs in continuous models approaching fold bifurcation [84].

• Fluctuations (Flickering). Persisting small system fluctuations can increase in inten-

sity thereby signaling that a system is entering an unstable regime, a precursor to a

transition to another, perhaps contrasting, state [85].

• Spatial Patterns. As stated in Chapter 2.2.3, some structural patterns emerge when

the behaviors of individual entities are overpowered by the influence of their neigh-

bors. Such shifts in behavior may generate specific patterns indicative of an immi-

nent critical transition.

We argue that the dynamic instability of a distributed ABM simulation can be considered

a catastrophic behavior; a small shift in the workload distribution or sudden large bursts

of inter-processor communication can cause systemic failure or at least prohibitively large

simulation delays. In addition, the distributed simulations of ABMs could be represented

as self-organizing dynamic networks and therefore may be suitable candidates for the

application of Catastrophe Theory.

6.2 Preliminaries

We represent the agent communities or partitions, detected as described in Chapters 3

and 4, as vertices in a graph. The edges in this graph denote the communication links

between the communities. It is safe to conclude that the network portrayed by this graph

is complex in nature – it consists of a large number of nodes (denoting the communities

in an even larger network), whose attributes and interactions evolve over time. In par-

76

ticular, a suitable attribute of a node in this network is the changing number of agents

that belong to a community. Furthermore, instead of portraying the potential multitude

of communication links between pairs of nodes as multi-edges, we can consolidate them

into a single weighted edge per pair and present the number of links as the edge weight.

Thus, the dynamics of the newly formed complex network should reflect the dynamics of

the inter-process communication overhead in the original distributed ABM simulation.

6.3 Assumptions

We base our proposal to apply Catastrophe Theory to the problem of network redistribu-

tion on the following assumptions:

• Simulated ABMs are partitioned on distributed platforms using integrated label

propagation community detection. This approach allows us to avoid the overhead

of the periodic application of any commonly used graph-partitioning algorithm.

• We assume that the underlying network of the ABM is dynamic and therefore changes

structurally over time. These changes progressively reduce the benefits of the community-

to-processor mapping by increasing the inter-processor communication overhead.

This trend eventually may disrupt the flow of the simulation and even render the

system unusable.

• The underlying ABM network is massive – it contains millions of agents and pos-

sibly billions of connections between them. Such test networks provide for a more

realistic testing environment. Moreover, the size of the network exacerbates the

overhead due to synchronization and load-balancing. Thus, we can test our solu-

tions of these issues more effectively.

77

6.4 Scope of Proposed Future Research

The envisioned long term goal of this research direction is to demonstrate the applica-

bility of Catastrophe Theory to the dynamic behavior of distributed simulations of mas-

sive agent-based models (or dynamic networks in general). The purpose of the proposed

approach is to lay the groundwork for this research by focusing on the actual response

strategies triggered by potential catastrophe warning signals. With these response mech-

anisms in place, we will be able to focus on the intricacies of applying Catastrophe Theory

in distributed computing simulations at a later stage of this research.

For the first stage of the study, we propose focusing on the gradual synchronization and

re-balancing of the system using staged artificial catastrophe-prediction signals. The be-

havior of these indicators is stochastic in nature and thus any decision-making procedures

that they trigger will also be probabilistic. Specifically, we envision that the "strength" of

these signals will indicate how many of the agents due for migration will be redistributed

to different processors, as well as which communities might have to be moved in order to

re-balance the processor loads. In this stage, we only focus on devising the methods for

gradual synchronization (i.e., agent migration after change in the community structure of

the ABM network) and processor load-balancing. We propose the use of artificial critical

transition (catastrophe) flags to indicate the potential occurrence of critical system state

shifts. These flags can guide the synchronization and load-balancing processes to avoid

systemic failures or simulation delays.

78

CHAPTER 7: CONCLUSION

Agent-Based Modeling has been gaining momentum as the preferred simulation approach

with respect to complex systems. ABMs can adequately address the complex and decen-

tralized nature of such systems as they are comprised of numerous autonomous, possibly

heterogeneous, interacting agents. This modeling paradigm facilitates the representation

of complex systems at different levels of granularity – from the point of view of the con-

stituent elements at microscopic level, through their organization into groups at meso-

scopic level, to the complex global phenomenon at macroscopic level. ABMs allow the

model to mimic the structure of the original system as it is built bottom up. The elements

at microscopic level are modeled as a network of interacting agents.

As the global behavior in many complex systems emerges at relevant scales, oftentimes

the simulations must be run on high performance computing platforms. The performance

of parallel simulations of large agent-based models distributed across multiple CPUs is

strongly dependent on the distribution of the agents among the processors. The objec-

tive of this dissertation is to address the high inter-process communication overhead in

distributed simulations of massive self-organizing agent-based models.

To address the communication bottleneck, we proposed two different partitioners that

exploit certain topological characteristics of the ABM network. One of the key proper-

ties of many complex networks is community structure – the inherent organization of the

network into groups of densely connected elements that are loosely connected with other

such dense groups. Thus, in the first part of the dissertation we observed that community

structure in self-organizing complex networks could be loosely associated with the com-

munication overhead incurred in distributed simulations of such networks. We proposed

79

a network partitioner based on label-based community detection that performs seamless

continuous community detection as part of the dynamics of the simulated ABM.

While, the LPA-based algorithm seamlessly integrates with the dynamics of modeled sys-

tems to partition them without incurring additional costs, it runs the risk of getting stuck

in a local optimum and not achieving an optimal global partition. To remedy this draw-

back of our fist algorithm, in the second part of this dissertation we proposed GF-Part.

It uses a combination of the Guided Local Search and Fast Local Search metaheuristics

to guide the partitioning process to a better global solution. We demonstrated that the

algorithm fits the decentralized nature of complex systems well. It successfully reduces

the search space to speed up the partitioning process. In addition, it can use attributes

of the specific system being modeled to facilitate the process of avoiding local optima.

The approach allows the use of problem-specific properties to be used in the partitioning

process thereby navigating the search space in a more effective and efficient manner.

In this dissertation, we demonstrated that both of our partitioners have strong locality.

When applied to graphs with high modularity, they are able to effectively partition the

graphs on distributed high performance computing platforms. As future work we intend

to study the effects of different types of graph partitioning algorithms on synthetic and

real-life graphs modeled by state-of-the-art ABM platforms. The goal is to determine not

only to what extent such platforms benefit from graph partitioning, but also what types

of algorithms are most suitable.

In addition, we plan to use concepts from Dynamical Systems Theory to capture criti-

cal changes in the dynamics of complex systems to facilitate more efficient simulations.

Specifically, we intend to apply Catastrophe Theory in an effort to detect when an ABM

network distributed on a HPC platform has to be redistributed in order to avoid a com-

80

munication bottleneck.

81

LIST OF REFERENCES

[1] G. Vigueras, M. Lozano, and J. M. Orduña, “Workload balancing in distributed

crowd simulations: The partitioning method,” The Journal of Supercomputing, vol. 58,

no. 2, pp. 261–269, 2011.

[2] Y. Wang, M. Lees, W. Cai, S. Zhou, and M. Y. H. Low, “Cluster based partitioning for

agent-based crowd simulations,” in Winter Simulation Conference. Winter Simulation

Conference, 2009, pp. 1047–1058.

[3] B. Zhou and S. Zhou, “Parallel simulation of group behaviors,” in Proceedings of the

36th Conference on Winter simulation. Winter Simulation Conference, 2004, pp. 364–

370.

[4] C. W. Reynolds, “Flocks, herds and schools: A distributed behavioral model,”

vol. 21, no. 4. ACM, 1987, pp. 25–34.

[5] J. J. Corner and G. B. Lamont, “Parallel simulation of uav swarm scenarios,” in Pro-

ceedings of the 36th Conference on Winter Simulation. Winter Simulation Conference,

2004, pp. 355–363.

[6] C. M. Macal and M. J. North, “Agent-based modeling and simulation: Abms exam-

ples,” in Winter Simulation Conference, 2008, pp. 101–112.

[7] D. A. Luke and K. A. Stamatakis, “Systems science methods in public health: dy-

namics, networks, and agents,” Annual Review of Public Health, vol. 33, pp. 357–376,

2012.

82

[8] F. Hinkelmann, D. Murrugarra, A. S. Jarrah, and R. Laubenbacher, “A mathemati-

cal framework for agent based models of complex biological networks,” Bulletin of

Mathematical Biology, vol. 73, no. 7, pp. 1583–1602, 2011.

[9] S. L. Mabrya and L. F. Bicb, “Bridging semantic gaps with migrating agents,” Net-

work, vol. 1, no. P2, p. P3, 1999.

[10] C. M. Macal and M. J. North, “Introduction to agent-based modeling and simula-

tion,” in MCS LANS Informal Seminar, 2006.

[11] ——, “Tutorial on agent-based modelling and simulation,” Journal of Simulation,

vol. 4, no. 3, pp. 151–162, 2010.

[12] S. Swarup, S. G. Eubank, and M. V. Marathe, “Computational epidemiology as a

challenge domain for multiagent systems,” in Proceedings of the 2014 International

Conference on Autonomous Agents and Multi-Agent Systems. International Foundation

for Autonomous Agents and Multiagent Systems, 2014, pp. 1173–1176.

[13] M. J. North, N. T. Collier, and J. R. Vos, “Experiences creating three implementations

of the repast agent modeling toolkit,” ACM Transactions on Modeling and Computer

Simulation (TOMACS), vol. 16, no. 1, pp. 1–25, 2006.

[14] U. Wilensky, “Netlogo,” Center for Connected Learning and

Computer-Based Modeling, Northwestern University, Evanston, IL,

http://ccl.northwestern.edu/netlogo/, 1999.

[15] N. Collier and M. North, “Repast HPC: A platform for large-scale agent-based mod-

eling,” Large-Scale Computing Techniques for Complex System Simulations, pp. 81–110,

2011.

83

[16] G. Cordasco, F. Milone, C. Spagnuolo, and L. Vicidomini, “Exploiting D-Mason on

parallel platforms: A novel communication strategy,” in European Conference on Par-

allel Processing. Springer, 2014, pp. 407–417.

[17] M. Girvan and M. E. Newman, “Community structure in social and biological net-

works,” Proceedings of the National Academy of Sciences, vol. 99, no. 12, pp. 7821–7826,

2002.

[18] H. Sayama, Introduction to the modeling and analysis of complex systems. Open SUNY

Textbooks, 2015.

[19] W. Weaver, “Science and complexity,” American Scientist, vol. 36, pp. 536–544, 1948.

[20] A. Barrat, M. Barthelemy, and A. Vespignani, Dynamical processes on complex networks.

Cambridge University Press, 2008.

[21] Z. Toroczkai, “Complex networks,” Science-Based Prediction, p. 94, 2005.

[22] R. Pastor-Satorras and A. Vespignani, “Complex networks: Patterns of complexity,”

Nature Physics, vol. 6, pp. 480–481, 2010.

[23] N. Corson, M. Aziz-Alaoui, R. Ghnemat, S. Balev, and C. Bertelle, “Modeling the

dynamics of complex interaction systems: from morphogenesis to control,” Interna-

tional Journal of Bifurcation and Chaos, vol. 22, no. 02, p. 1250025, 2012.

[24] P. Erdős and A. Rényi, “On random graphs I,” Publicationes Mathematicae Debrecen,

vol. 6, p. 290, 1959.

[25] D. J. Watts and S. H. Strogatz, “Collective dynamics of ‘small-world’ networks,” Na-

ture, vol. 393, no. 6684, pp. 440–442, 1998.

84

[26] C. Gros, Complex and Adaptive Dynamical Systems: A Primer. Springer International

Publishing, 2015.

[27] A.-L. Barabási and R. Albert, “Emergence of scaling in random networks,” Science,

vol. 286, no. 5439, pp. 509–512, 1999.

[28] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D.-U. Hwang, “Complex net-

works: Structure and dynamics,” Physics Reports, vol. 424, no. 4, pp. 175–308, 2006.

[29] J. D. Sterman, “Learning from evidence in a complex world,” American Journal of

Public Health, vol. 96, no. 3, pp. 505–514, 2006.

[30] G. An, Q. Mi, J. Dutta-Moscato, and Y. Vodovotz, “Agent-based models in transla-

tional systems biology,” Wiley Interdisciplinary Reviews: Systems Biology and Medicine,

vol. 1, no. 2, pp. 159–171, 2009.

[31] G. N. Gilbert, Agent-based models. Sage, 2008, no. 153.

[32] C. M. Macal and M. J. North, “Agent-based modeling and simulation,” in Winter

Simulation Sonference. Winter Simulation Conference, 2009, pp. 86–98.

[33] F. Castiglione, “Introduction to agent based modeling and simulation,” in Encyclope-

dia of Complexity and Systems Science. Springer, 2009, pp. 197–200.

[34] H. Moon and T.-C. Lu, “Network catastrophe: Self-organized patterns reveal both

the instability and the structure of complex networks,” Scientific Reports, vol. 5, 2015.

[35] D. J. Barnes and D. Chu, “Agent-based modeling,” in Introduction to Modeling for

Biosciences. Springer, 2010, pp. 15–77.

[36] D. Helbing, “Agent-based modeling,” in Social Self-Organization, ser. Understanding

Complex Systems. Springer Berlin Heidelberg, 2012, pp. 25–70.

85

[37] F. Klügl and A. L. Bazzan, “Agent-based modeling and simulation,” AI Magazine,

vol. 33, no. 3, p. 29, 2012.

[38] E. Amouroux, P. Taillandier, A. Drogoul et al., “Complex environment representa-

tion in epidemiology ABM: application on H5N1 propagation,” Journal of Science and

Technology, pp. 13–25, 2010.

[39] B. Walter, “Virtual environment UAV swarm management using GPU calculated dig-

ital pheromones,” Ph.D. dissertation, Citeseer, 2005.

[40] P. Riley, “SPADES: a system for parallel-agent, discrete-event simulation,” AI Maga-

zine, vol. 24, no. 2, p. 41, 2003.

[41] S. Luke, G. C. Balan, L. Panait, C. Cioffi-Revilla, and S. Paus, “MASON: A Java multi-

agent simulation library,” in Proceedings of Agent 2003 Conference on Challenges in So-

cial Simulation, vol. 9, 2003, p. 9.

[42] R. K. Standish and R. Leow, “EcoLab: Agent based modeling for C++ programmers,”

arXiv preprint cs/0401026, 2004.

[43] M. Kiran, P. Richmond, M. Holcombe, L. S. Chin, D. Worth, and C. Greenough,

“FLAME: simulating large populations of agents on parallel hardware architec-

tures,” in Proceedings of the 9th International Conference on Autonomous Agents and Mul-

tiagent Systems: volume 1-Volume 1, 2010, pp. 1633–1636.

[44] C. Márquez, E. César, and J. Sorribes, “A load balancing schema for agent-based

spmd applications,” in International Conference on Parallel and Distributed Processing

Techniques and Applications (PDPTA), Accepted, 2013.

[45] E.-G. Talbi, Metaheuristics: from design to implementation. John Wiley & Sons, 2009,

vol. 74.

86

[46] B. Hendrickson and R. W. Leland, “A multi-level algorithm for partitioning graphs,”

SC, vol. 95, no. 28, 1995.

[47] G. Karypis and V. Kumar, “Parallel multilevel k-way partitioning scheme for irreg-

ular graphs, department of computer science tech. rep. 96-036,” University of Min-

nesota, Minneapolis, MN, 1996.

[48] ——, “Multilevel k-way partitioning scheme for irregular graphs,” Journal of Parallel

and Distributed Computing, vol. 48, no. 1, pp. 96–129, 1998.

[49] G. Karypis, “METIS and ParMETIS,” in Encyclopedia of Parallel Computing. Springer,

2011, pp. 1117–1124.

[50] C. Walshaw and M. Cross, “JOSTLE: parallel multilevel graph-partitioning software–

an overview,” Mesh Partitioning Techniques and Domain Decomposition Techniques, pp.

27–58, 2007.

[51] F. Pellegrini, “Distillating knowledge about Scotch,” Combinatorial Scientific Comput-

ing, no. 09061, 2009.

[52] P. Sanders and C. Schulz, “Think locally, act globally: Highly balanced graph parti-

tioning,” in Experimental Algorithms. Springer, 2013, pp. 164–175.

[53] M. E. Newman, “The structure and function of complex networks,” SIAM Review,

vol. 45, no. 2, pp. 167–256, 2003.

[54] B. Hou and Y. Yao, “Commpar: A community-based model partitioning approach for

large-scale networked social dynamics simulation,” in IEEE/ACM 14th International

Symposium on Distributed Simulation and Real Time Applications (DS-RT), 2010, pp. 7–

13.

87

[55] M. Rosvall and C. T. Bergstrom, “Maps of random walks on complex networks reveal

community structure,” Proceedings of the National Academy of Sciences, vol. 105, no. 4,

pp. 1118–1123, 2008.

[56] G. M. Slota, K. Madduri, and S. Rajamanickam, “PuLP: Scalable multi-objective

multi-constraint partitioning for small-world networks,” in IEEE International Con-

ference on Big Data (Big Data), 2014, pp. 481–490.

[57] U. N. Raghavan, R. Albert, and S. Kumara, “Near linear time algorithm to detect

community structures in large-scale networks,” Physical Review E, vol. 76, no. 3, p.

036106, 2007.

[58] M. E. Newman, “Spread of epidemic disease on networks,” Physical Review E, vol. 66,

no. 1, p. 016128, 2002.

[59] K. Kothapalli, S. V. Pemmaraju, and V. Sardeshmukh, “On the analysis of a label

propagation algorithm for community detection,” in Distributed Computing and Net-

working. Springer, 2013, pp. 255–269.

[60] N. Collier and M. North, “Parallel agent-based simulation with Repast for High Per-

formance Computing,” Simulation, vol. 89, no. 10, pp. 1215–1235, 2013.

[61] J. Leskovec and R. Sosič, “SNAP: A general-purpose network analysis and graph-

mining library,” ACM Transactions on Intelligent Systems and Technology (TIST), vol. 8,

no. 1, p. 1, 2016.

[62] J. Leskovec, D. Chakrabarti, J. Kleinberg, C. Faloutsos, and Z. Ghahramani, “Kro-

necker graphs: An approach to modeling networks,” Journal of Machine Learning Re-

search, vol. 11, no. Feb, pp. 985–1042, 2010.

88

[63] J. Leskovec, D. Chakrabarti, J. Kleinberg, and C. Faloutsos, “Realistic, mathemati-

cally tractable graph generation and evolution, using kronecker multiplication,” in

European Conference on Principles of Data Mining and Knowledge Discovery. Springer,

2005, pp. 133–145.

[64] J. Leskovec and C. Faloutsos, “Scalable modeling of real graphs using kronecker

multiplication,” in Proceedings of the 24th International Conference on Machine Learning,

ser. ICML’07, 2007, pp. 497–504.

[65] D. Lusseau, K. Schneider, O. J. Boisseau, P. Haase, E. Slooten, and S. M. Dawson,

“The bottlenose dolphin community of doubtful sound features a large proportion

of long-lasting associations,” Behavioral Ecology and Sociobiology, vol. 54, no. 4, pp.

396–405, Sep 2003.

[66] A. Lancichinetti, S. Fortunato, and F. Radicchi, “Benchmark graphs for testing com-

munity detection algorithms,” Physical Review E, vol. 78, no. 4, p. 046110, 2008.

[67] G. Karypis and V. Kumar, “A parallel algorithm for multilevel graph partitioning

and sparse matrix ordering,” Journal of Parallel and Distributed Computing, vol. 48,

no. 1, pp. 71–95, 1998.

[68] C. Voudouris and E. Tsang, “Partial constraint satisfaction problems and guided local

search,” Proc., Practical Application of Constraint Technology (PACT’96), London, pp.

337–356, 1996.

[69] ——, “Guided local search and its application to the traveling salesman problem,”

European Journal of Operational Research, vol. 113, no. 2, pp. 469–499, 1999.

[70] F. Rothlauf, Design of Modern Heuristics: Principles and Application, 1st ed. Springer

Publishing Company, Incorporated, 2011.

89

[71] M. Gendreau and J. Potvin, Handbook of Metaheuristics, ser. International Series in

Operations Research & Management Science. Springer US, 2010.

[72] J. Ozik, N. T. Collier, J. T. Murphy, and M. J. North, “The ReLogo agent-based mod-

eling language,” in Winter Simulation Conference, 2013, pp. 1560–1568.

[73] J. Leskovec, K. J. Lang, and M. Mahoney, “Empirical comparison of algorithms for

network community detection,” in Proceedings of the 19th International Conference on

World Wide Web, 2010, pp. 631–640.

[74] S. Wolfram, A new kind of science. Wolfram Media Champaign, 2002, vol. 5.

[75] G. Karypis and V. Kumar, “A fast and highly quality multilevel scheme for parti-

tioning irregular graphs,” SIAM Journal on Scientific Computing, vol. 20, p. 359—392,

1999.

[76] B. W. Kernighan and S. Lin, “An efficient heuristic procedure for partitioning

graphs,” Bell System Technical Journal, vol. 49, no. 2, pp. 291–307, 1970.

[77] G. Karypis, K. Schloegel, and V. Kumar, “ParMetis: Parallel graph partitioning and

sparse matrix ordering library,” Version 1.0, Dept. of Computer Science, University of

Minnesota, 1997.

[78] P. Sanders and C. Schulz, “High quality graph partitioning.” Graph Partitioning and

Graph Clustering, vol. 588, no. 1, 2012.

[79] F. Rahimian, A. H. Payberah, S. Girdzijauskas, M. Jelasity, and S. Haridi, “A dis-

tributed algorithm for large-scale graph partitioning,” ACM Transactions on Au-

tonomous and Adaptive Systems (TAAS), vol. 10, no. 2, p. 12, 2015.

[80] A.-L. Barabási, Network Science, 1st ed. Cambridge University Press, 2016.

90

[81] M. Laskowski, B. C. Demianyk, M. R. Friesen, R. D. McLeod, and S. N. Mukhi, “Im-

proving agent based models and validation through data fusion,” Online Journal of

Public Health Informatics, vol. 3, no. 2, 2011.

[82] R. Albert and A.-L. Barabási, “Statistical mechanics of complex networks,” Reviews

of Modern Physics, vol. 74, no. 1, p. 47, 2002.

[83] M. Frigo and S. G. Johnson, “The design and implementation of FFTW3,” Proceedings

of the IEEE, vol. 93, no. 2, pp. 216–231, 2005.

[84] M. Scheffer, J. Bascompte, W. A. Brock, V. Brovkin, S. R. Carpenter, V. Dakos, H. Held,

E. H. Van Nes, M. Rietkerk, and G. Sugihara, “Early-warning signals for critical tran-

sitions,” Nature, vol. 461, no. 7260, pp. 53–59, 2009.

[85] D. Helbing, Social self-organization: Agent-based simulations and experiments to study

emergent social behavior. Springer, 2012.

91

	University of Central Florida
	
	Network Partitioning in Distributed Agent-Based Models
	2017
	Antoniya Petkova
	STARS Citation

	ABSTRACT
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	GLOSSARY
	CHAPTER 1: INTRODUCTION
	CHAPTER 2: BACKGROUND
	2.1 Complex Systems
	2.2 Agent-Based Models
	2.2.1 Agents
	2.2.2 Topologies
	2.2.3 Local and Emergent Behavior
	2.2.4 Environment
	2.2.5 ABMs vs Analytical Models

	2.3 ABM Simulation Platforms
	2.4 Use of Traditional Graph-Partitioning Algorithms
	2.5 Use of Community-Detection Algorithms

	CHAPTER 3: USING LABEL-PROPAGATION COMMUNITY DETECTION TO DISTRIBUTE AGENT-BASED MODEL SIMULATIONS
	3.1 Overview
	3.2 Simulation Model
	3.2.1 The SIR Model
	3.2.2 The Label Propagation Algorithm

	3.3 Proposed Solution
	3.3.1 Initial Application of Max-LPA
	3.3.2 Periodic Application of Max-LPA
	3.3.3 Integrated Application of Max-LPA
	3.3.4 ABM Redistribution

	3.4 Experimental Setup
	3.4.1 Standalone Tool
	3.4.2 Repast HPC
	3.4.3 Benchmarks
	3.4.3.1 Kronecker Network Generation Model
	3.4.3.2 The Lancichinetti–Fortunato–Radicchi Benchmark Tool

	3.5 Performance Evaluation
	3.5.1 Standalone Simulation – Results and Discussion
	3.5.1.1 Effect of Mixing Parameter
	3.5.1.2 Run-time Overhead
	3.5.1.3 A Side-by-side Comparison

	3.5.2 Repast HPC – Results and Discussion
	3.5.3 Comparison with State-of-the-Art

	3.6 Conclusion and Future Work

	CHAPTER 4: GF-PART – FAST GRAPH-PARTITIONING USING GUIDED LOCAL SEARCH
	4.1 Introduction
	4.1.1 Guided Local Search
	4.1.2 Fast Local Search

	4.2 Problem Statement
	4.2.1 k-way Graph Partitioning
	4.2.2 Data Distribution Model

	4.3 Solution
	4.3.1 Overview
	4.3.2 Representation
	4.3.3 Local Search
	4.3.4 Features and Augmented Objective Function
	4.3.5 Feature Costs
	4.3.6 The lambda Parameter
	4.3.7 The GF-Part Algorithm

	4.4 Experimental Study
	4.4.1 Testbed
	4.4.2 Metrics
	4.4.3 Datasets
	4.4.3.1 Kronecker Network Generation Model
	4.4.3.2 Lancichinetti–Fortunato–Radicchi Benchmark Tool

	4.4.4 The Impact of the Selection Strategy
	4.4.5 The Effect of on the Edge-cut
	4.4.6 Evolution of Edge-cut and Migration Over Time
	4.4.7 Comparison with State-of-the-Art

	4.5 Conclusion

	CHAPTER 5: NETWORK PARTITIONERS IN DISTRIBUTED AGENT-BASED MODEL SIMULATIONS (DESIGN OF A PERFORMANCE STUDY)
	5.1 Overview
	5.2 The Graph-Partitioning Problem
	5.2.1 Preliminaries
	5.2.2 Problem Statement

	5.3 Standard Partitioning Methods
	5.3.1 METIS
	5.3.2 ParMETIS
	5.3.3 KaFFPa
	5.3.4 Ja-Be-Ja

	5.4 Experimental Setup
	5.4.1 Modeling Environment
	5.4.2 Benchmarks
	5.4.3 Methods
	5.4.4 Simulation Model
	5.4.5 Varying Social Contact
	5.4.6 Varying Mobility
	5.4.7 Varying Computational Workload

	5.5 Experimental Study
	5.6 Conclusion

	CHAPTER 6: APPLYING CATASTROPHE THEORY TO NETWORK REMAPPING IN DISTRIBUTED AGENT-BASED MODEL SIMULATIONS (FUTURE WORK)
	6.1 Overview
	6.2 Preliminaries
	6.3 Assumptions
	6.4 Scope of Proposed Future Research

	CHAPTER 7: CONCLUSION
	LIST OF REFERENCES

