
University of Central Florida

Electronic Theses and Dissertations Masters Thesis (Open Access)

Verification and Automated Synthesis of
Memristor Crossbars
2016

Arya Pourtabatabaie
University of Central Florida

Find similar works at: https://stars.library.ucf.edu/etd

University of Central Florida Libraries http://library.ucf.edu

Part of the Computer Sciences Commons

This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Electronic Theses and
Dissertations by an authorized administrator of STARS. For more information, please contact lee.dotson@ucf.edu.

STARS Citation

Pourtabatabaie, Arya, "Verification and Automated Synthesis of Memristor Crossbars" (2016). Electronic Theses and Dissertations.
5606.
https://stars.library.ucf.edu/etd/5606

https://stars.library.ucf.edu?utm_source=stars.library.ucf.edu%2Fetd%2F5606&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu?utm_source=stars.library.ucf.edu%2Fetd%2F5606&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd?utm_source=stars.library.ucf.edu%2Fetd%2F5606&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd
http://library.ucf.edu
http://network.bepress.com/hgg/discipline/142?utm_source=stars.library.ucf.edu%2Fetd%2F5606&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd/5606?utm_source=stars.library.ucf.edu%2Fetd%2F5606&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:lee.dotson@ucf.edu
https://stars.library.ucf.edu?utm_source=stars.library.ucf.edu%2Fetd%2F5606&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu?utm_source=stars.library.ucf.edu%2Fetd%2F5606&utm_medium=PDF&utm_campaign=PDFCoverPages

VERIFICATION AND AUTOMATED SYNTHESIS OF MEMRISTOR CROSSBARS

by

ARYA POURTABATABAIE
B.S. University of Tehran, 2014

A thesis submitted in partial fulfilment of the requirements
for the degree of Master of Science in Computer Science

in the Department of Electrical Engineering and Computer Science
in the College of Engineering and Computer Science

at the University of Central Florida
Orlando, Florida

Fall Term
2016

Major Professor: Sumit Kumar Jha

c© 2016 Pourtabatabaie and Jha

ii

ABSTRACT

The Memristor is a newly synthesized circuit element correlating differences in electrical

charge and magnetic flux, which effectively acts as a nonlinear resistor with memory. The small

size of this element and its potential for passive state preservation has opened great opportunities

for data-level parallel computation, since the functions of memory and processing can be realized

on the same physical device.

In this research we present an in-depth study of memristor crossbars for combinational

and sequential logic. We outline the structure of formulas which they are able to produce and

henceforth the inherent powers and limitations of Memristive Crossbar Computing.

As an improvement on previous methods of automated crossbar synthesis, a method for

symbolically verifying crossbars is proposed, proven and analysed.

iii

TABLE OF CONTENTS

CHAPTER 1: BACKGROUND . 1

1.1 The Memristor . 1

1.2 Memristive Crossbar Computing of Boolean Formulas 1

1.2.1 Memristor Crossbars . 1

1.2.2 Crossbar Designs . 2

1.3 Examples of Simple Circuits . 3

1.4 Scaling Up . 9

CHAPTER 2: FORMAL ANALYSIS . 12

2.1 Static Crossbars . 12

2.2 Crossbars as Boolean Functions . 16

2.3 Number of Acyclic Paths . 17

2.3.1 Paths Between Two Rows . 17

2.3.2 Paths Between Two Columns . 21

2.3.3 Paths Between a Row and a Column . 22

2.4 Lower Bounds on Crossbar Size . 24

CHAPTER 3: VERIFICATION OF CROSSBARS . 28

3.1 The Naive Method . 28

3.2 Iterated Matrix Multiplication . 29

3.3 Graph-based Verification . 31

3.4 BDD-based Symbolic Verification . 31

3.4.1 Preliminaries . 32

3.4.1.1 Probably Inevitable Exponential Time 32

iv

3.4.1.2 The Gist of a Junction . 32

3.4.2 The Symbolic Verification Algorithm . 33

3.4.2.1 Equate and Modified Reduce Algorithms 34

3.4.2.2 Correctness . 35

3.4.2.3 Performance Analysis . 36

CHAPTER 4: AUTOMATED SYNTHESIS OF DENSE CROSSBARS 37

4.1 Exact Methods - SAT Solver Based . 38

4.2 Approximate Methods . 38

4.2.1 Simulated Annealing . 39

LIST OF REFERENCES . 41

v

LIST OF TABLES

Table 2.1: Lower Bounds on Square Crossbar Size Supporting All Boolean Functions . . 27

vi

CHAPTER 1: BACKGROUND

1.1 The Memristor

A memristor is a passive circuit element which changes its resistance in response to how

much charge has passed through it. Imposing a current in one direction causes its (symmetrical)

resistance to drop and imposing current in the other direction would cause it to increase.

The memristor was first theorized in 1971 by Leon Chua[3]. However, they were only fabricated

in 2008. Their small size and passive memory, which would allow for low-power electronics, is

promising for making efficient in-memory computation possible and thus removing the memory-

processor communication bottleneck.

1.2 Memristive Crossbar Computing of Boolean Formulas

1.2.1 Memristor Crossbars

A crossbar is essentially a mesh of horizontal and vertical wires, with certain circuit ele-

ments at their junction. A memristor crossbar is one where there is a memristor at each junction. In

order to tailor this setting to Boolean Combinational computing, we have to attach logical seman-

tics to physical phenomena. For wires, the traditional mapping of supply voltage to 1 and ground

voltage to 0 is acceptable. For memristors, it seems natural to have the resistance extrema repre-

sent boolean values: High conductance corresponds to logical 1 and high resistance corresponds

to 0. Just as medium voltage levels for wires are considered “illegal” values, so are the memristors

presumed to be either in a state of perfect conductance or in a state of perfect resistance.

We index memristors in accordance to the rows and columns they connect, respectively. Each

memristor is either in a state of perfect conductance (corresponding to logical 1, by convention) or

that of perfect resistance (corresponding to logical 0).

With all components in such a circuit being passive, every wire is at the 0 logical state if the circuit

1

is not somehow powered externally. In this thesis, unless otherwise stated, the circuit is powered

by feeding the supply voltage to the bottom row, which we call r0. This means that the logical

state of any wire in the circuit is determined by whether or not it is connected to r0 through a path

of low resistance (namely, through wires and conducting memristors), such paths are called Sneak

Paths.

Example 1.2.1. Consider the circuit below.

c0 c1

r2 1 0

r1 0 0

→ r0 1 0

r0 is at supply voltage and holds the logical value 1 by definition. Withm00 being in the conducting

state, we infer that c0 is also conducting. Additionally, r2 can be powered from c0 through m20

and therefore also holds the value 1. r1 and c1 are at a 0-state, because there is no conducting path

through which they can be powered.

The crossbar considered above is static and is incapable of performing interesting com-

putations. It yields the same result every time it is powered. In order to be able to implement

a Boolean function, we have to introduce some change in the crossbar with respect to the input

vector in consideration.

1.2.2 Crossbar Designs

We can implement Boolean function with conditional pre-programming of memristors with

respect to each input vector. In its simplest form, which is the focus of this thesis, each junction

corresponds to a literal, that is, an atom in the input vector or its negation. For example, a memristor

set to ¬A will be set to high impedance whenever A = 1, and to high conductance wheneber

A = 0.

2

Example 1.2.2. In fact, the static crossbar shown in 1.2.1 was an instance of a half-adder, in a case

where A = 0, B = 1. The full design is as follows:

A A → (A+B)[0]

A 0

1→ B B

As evident, r0 is constantly powered and the result of the operation appears on r2.

1.3 Examples of Simple Circuits

The following results have been obtained through synthesis methods based on that pro-

posed by Velasquez and Jha[1]. The z3 SMT solver was used on a single compute node on the

Comet service from the San Diego Supercomputer Center. These designs can serve as examples

for making crossbar computing more intuitively clear.

Example 1.3.1. Half Adder

A B 0

0 0 A

B A B

Note the sparsity of the design. Such sparsity if often indicative of the existence of more compact

designs, as is the case with this design and 1.2.2.

Example 1.3.2. 3-Bit Parity

The solution was obtained from Comet in a matter of a few seconds. The design is as follows:

B A B

C 1 C

B A B

3

Example 1.3.3. 4-Bit Parity

D C C D

A B B A

D C C D

This took about half an hour on Comet.

Example 1.3.4. Unsigned 2-Bit Comparator

Note that this component can essentially serve as providing the sign bit of a 2’s complement rep-

resentation of the subtraction of the two input numbers A and B. Here, the index under a letter

denotes the index of significance of the bit inside the number in question, with index 0 representing

the least significant bit.

A1 A1

B0 A0

A1 B1

Example 1.3.5. Full Adder

This design is interesting in that it provides two outputs rather than one. r3 holds the sum and r2

holds the carry-out. There are two main inputs a and b, and a carry-in input c.

A B B 0 B → Sum

C 1 A A A → Carry-Out

B 0 0 C 0

0 C B C B

This was designed in a matter of seconds.

4

Example 1.3.6. 2-Bit Subtractor with No Carry-In or Carry-Out

• 5× 5:

A1 B0 A1 0 0 → Result[1]

0 0 0 1 A0 → Result[0]

B1 A0 B1 0 A0

0 A0 0 B0 B0

A1 B0 A1 0 B0

Sparsity in the resulting crossbar hints at the probability of there existing smaller designs.

• 5× 4:

r4 0 0 A1 A1 → Result[1]

r3 A0 A0 0 0 → Result[0]

r2 B0 A0 B1 B1

r1 B0 A0 B1 B1

r0 B0 B0 0 0

* c0 c1 c2 c3
This design is particularly interesting since it shows an order in design which is composed

of distinct object, is provably correct and is intuitive to a human observer therefore is a great

candidate to be used as a heuristic in automated large-scale synthesis.

The rows r4 and r3 can never create a new sneak path, since neither of them at any moment

can have more than single memristor on. Therefore removing them from the design does not

affect the logical function of other wires (The logical function of a wire being f : B0
n → B0

that describes the conducting and non-conducting state of the wire in terms of input in a

particular design).

5

• 4× 5:

0 A1 0 A1 B0 → Result[1]

B0 0 B0 0 0 → Result[0]

B0 B1 A0 B1 A0

A0 A1 A0 A1 B0

• There exists no 4× 4 design for a 2-bit subtractor.

It is fairly obvious that a negative result (i.e. the nonexistence of any implementation of a

function) on the R × C crossbar implies the same on any smaller crossbar. Namely, if no R × C

design exists, neither does an R′ × C ′ design where R′ ≤ R and C ′ ≤ C. This will be formally

proven in the following chapter.

Example 1.3.7. 2-Bit Subtractor: No Carry-In, Providing Carry-Out

• No 5× 5 solution exists.

• 5× 6:

B1 0 B1 0 0 A1 → Result[2](Carry-Out)

A1 0 A1 0 A0 B1 → Result[1]

0 A0 0 B0 0 0 → Result[0]

B1 B0 B1 B0 B0 A1

A1 B0 0 A0 A0 B1

Note: In general, it appears that for each given area set for a crossbar design, those with

more width and less height are more favorable, since there is a higher number of wires to

provide logical ”intermediate results”. This is in spite of the fact that square-shaped cross-

bars are simpler to fabricate.

Observation: Addition (Subtraction) is a computation with ”limited parallelization”, mean-

ing that even though there is some dependency between the results of each output line, those

dependencies can be propagated through the vertical lines, and therefore, we see that in the

6

uppermost wire, all memristors only depend on the most significant bits, on the second, there

is a mixture and on the lowest wire, all memristors depend only on the least significant bits

(that is of course obvious, because the least significant bit of the subtraction depends only

on the least significant bits of the input.)

• The 6× 5 design:

0 B1 B1 B1 0 → Result[2] (Carry)

0 0 A1 A1 0 → Result[1]

A0 B1 0 0 A0 → Result[0]

0 B0 A0 0 B1

A0 0 B1 B1 B0

B0 0 A1 0 B0

Observation: Very rarely is a memristor seen to be unconditionally set to 1. Therefore this

was enforced as a heuristic to shrink the design search space.

Observation: One may also think of the heuristic that the row providing the least significant

bit of the result should only have its memristors depend on the least significant bit of the

input.

Enforcing the heuristics, the following design was obtained:

A1 0 A1 0 0 → Result[2] (Carry)

B1 0 B1 0 A1 → Result[1]

0 B0 0 B0 0 → Result[0]

A1 B0 A1 A0 B1

0 0 B0 0 A0

0 A0 B1 A0 A1

However, no considerable speedup was observed.

7

• The 6× 6 design:

A0 0 B1 B0 B1 0 → Result[2] (Carry)

A0 0 B1 0 B1 0 → Result[1]

0 B0 A1 0 A1 B0 → Result[0]

0 0 0 A0 0 B0

A1 A0 B1 0 0 A0

A0 B0 A1 B0 0 0

Example 1.3.8. 2-Bit Subtractor with Carry-In

It is desirable to be able to cascade crossbar designs in the same way as transistor logic circuits, in

order to build logic capable of large-scale computation. In order to be able to cascade the modules

built to make larger ones, the synthesis of 2-Bit Adders with a Carry-In input was attempted. (The

result then would be Sum = A−B − ci)

• 5× 6, 6× 5 and 5× 7 designs do not exist.

• We could not determine the existence of a 6 × 6 design in 48 hours. In order to facilitate

achieving a positive result given that one exists, the following constraints were imposed:

1. Literals only depend on the most significant bits of the input on the row producing the

carry-out.

2. Literals only depend on the least significant bits of the input and the carry-in on the row

producing the least significant bit of the result.

3. No ’always true’ literals.

The search was finished in less than a day with a negative result. However, negative results

for a restricted design space are not conclusive.

8

1.4 Scaling Up

The last few examples demonstrate the difficulty of designing larger crossbars implement-

ing more complex functions. In order to be able to achieve complex computations, the following

ways come to mind:

1. Designing sparse crossbars constructively

2. Modular Design, cascading multiple smaller crossbars, for each the design problem is man-

ageable

3. Designing more efficient verification techniques

4. Approximate implementations through non-exhaustive search methods

The first way has been the subject of a fair amount of research (citations...).

The remainder of this chapter will be concerned with the second way. Efficiency of verification

techniques and approximations will be the subjects of later chapters 3 and 4, respectively.

The following designs were obtained in an attempt to develop BCD subtractors for the

purpose of designing specialized hardware for pairs trading, a short selling method in financial

markets.

Example 1.4.1. BDC Comparator (Less Than)

This comparator is useful for providing the sign bit of a BCD subtractor’s output.

• 4× 5:

A2 A1 A3 B1 0 → Result[0]

0 B0 0 A0 0

B2 B1 B3 A1 A2

A2 0 B3 0 A3

was obtained in 6 hours.

9

• 5× 4:

B2 A2 0 B3 → Result[0]

A0 A0 B0 0

B3 0 B1 A2

A1 B1 B1 0

B3 A2 0 A3

was obtained in 9 hours.

There are smaller designs feasible for this logic compared to a 4-Bit Comparator. This is

because of the presence of “Don’t Care” literals. However, for large crossbar sizes when the

search is indecisive, in is better to revert to a more restricted instance of the function.

Example 1.4.2. 2-Bit Subtractor

Example 1.4.3. 2-Bit Subtractor with Carry-Out

• 5× 6:

B1 0 B1 0 0 A1 → Result[2](Carry-Out)

A1 0 A1 0 A0 B1 → Result[1]

0 A0 0 B0 0 0 → Result[0]

B1 B0 B1 B0 B0 A1

A1 B0 0 A0 A0 B1

• 6× 5:

0 B1 B1 B1 0 → Result[2] (Carry)

0 0 A1 A1 0 → Result[1]

A0 B1 0 0 A0 → Result[0]

0 B0 A0 0 B1

A0 0 B1 B1 B0

B0 0 A1 0 B0

10

Enforcing a heuristic: The row providing the least significant bit of the result should only

have its memristors depend on the least significant bit of the input. With that heuristic en-

forced we have the following design:

A1 0 A1 0 0 → Result[2] (Carry)

B1 0 B1 0 A1 → Result[1]

0 B0 0 B0 0 → Result[0]

A1 B0 A1 A0 B1

0 0 B0 0 A0

0 A0 B1 A0 A1

11

CHAPTER 2: FORMAL ANALYSIS

First we study the conductance properties of a crossbar in response to external voltages

enforced on the wires and the resistances recorded on the memristors. That behavior can be com-

pletely determined by knowing only the size of the crossbar (Number of rows and number of

columns).

Then we proceed to consider the behavior of crossbars as implementations of Boolean functions.

In this context, a “design” would be a description of memristor resistances and initial wire con-

ductances as functions of some Boolean input, which would imply the voltage of all wires will be

functions of the same input.

2.1 Static Crossbars

Definition 2.1.1. A Static Crossbar is a set {W,M,W0} of wires W : N → B, conjunctions

M : N → B and external voltages W0 : N → B, where the law of conductance (as formalized in

2.1.18) applies.

Remark 2.1.2. For notational convenience, junctions will be referenced bidimensionally (mij), and

wires will be referenced as either rows (ri) or columns (cj).

For any wire, the predicate Row(w) asserts that it is a row and Col(w) asserts that it is a column.

Remark 2.1.3. In our notation, indexes start at 0.

Definition 2.1.4. An R× C crossbar is one for which we have,

∀i ≥ R : ri = 0

and

∀j ≥ C : ci = 0

12

Remark 2.1.5. Naturally, every real-world crossbar is bounded. However, this assumption can

sometimes complicate our analysis process. Therefore, whenever possible, the definitions and

theorems are expressed abstractly, applicable to bounded and infinite crossbars alike.

Remark 2.1.6. Inclusion of the enforced voltage profile was necessary to fully capture the physical

behavior of the crossbar. To have a wire’s enforced voltage to be 1, Vd is forced on it. This

means that no matter how the sneak paths inside the crossbar play out, that wire would have an

“on” voltage. However, the meaning of the enforced voltage to be 0 is merely having the wire’s

power connection to be of high impedance, it does not prevent the wire from having a high voltage

through memristor conductance.

With all that said, a disconnected wire would have a ground voltage in practice due to electric

leakage, and we will capture that with the next set of definitions.

Definition 2.1.7. A Crossbar Path is a finite sequence of wires p = 〈w0, ..., wK〉 where the wires

are of alternating types.

Definition 2.1.8. An Acyclic Crossbar Path is a crossbar path p = 〈w0, ..., wK〉 where no two

wires are identical.

Theorem 2.1.9. For every path, there exists an acyclic subpath.

Proof. Considering the crossbar as a complete bipartite graph with rows on one side and columns

on the other, the result follows from elementary graph theory.

Remark 2.1.10. The last two definitions are only concerned with the positions of the wires, not

their logical values. Therefore they are invariant with respect to different crossbars.

Definition 2.1.11. A Sneak Path in a static crossbar is a path wherein for every consecutive wires

w′i and w′i+1 their junction m′i has value 1.

Definition 2.1.12. An Acyclic Sneak Path in a static crossbar is a Sneak Path for which the under-

lying path is acyclic.

13

Theorem 2.1.13. For every Sneak Path p, there exists an acyclic Sneak Subpath.

Proof. The edges of the acyclic subpath of p’s underlying path constructed by 2.1.9 is a subse-

quence of p’s underlying path’s edges. Since edges correspond to junctions, all junctions in the

acyclic subpath are also conductive and the acyclic subpath is therefore a Sneak Path.

Definition 2.1.14. We call a pair of wires wi and wo Connected iff there exists a Sneak Path

between them. We write this relation as Connected(wi, wo,M)

Remark 2.1.15. In other words, wi and wo are connected if and only if an Acyclic Sneak Path exists

between them.

Theorem 2.1.16. Connectedness is an equivalence relation. Namely,

Reflexivity Connected(w,w)

Symmetry Connected(w,w′)⇒ Connected(w′, w)

Transitivity Connected(w,w′), Connected(w′, w′′)⇒ Connected(w,w′′)

Proof. Reflexitivity The path 〈w〉 connects any wire w is to itself, regardless of the state of any

junction.

Symmetry For any path 〈w,w0, ..., wk, w
′〉 that connects w to w′, the path 〈w′, wk, ..., w0, w〉 con-

nects w′ to w.

Transitivity For any path 〈w,w0, ..., wk, w
′〉 connecting w to w′ and any path 〈w′, w′0, ..., w′k′ , w′′〉

connecting w′ to w′′, the path 〈w,w0, ..., wk, w
′, w′0, ..., w

′
k′ , w

′′〉 connects w to w′′. This path

may be cyclic but it certainly contains an acyclic subpath that connects w to w′′.

Definition 2.1.17. The Transfer Function from wire wi to wo (and back) as a predicate denoting

whether they are connected, as a function of a conductance profile.

14

Definition 2.1.18. The law of conductance:

In a static crossbar, each wire w we have:

w = 1⇔ ∃w′ :
[
Connected{w,w′} ∧ w′0 = 1

]

Remark 2.1.19. By this definition, for any initial voltage enforcement and a conductance profile

for the junctions, the value of all wires is uniquely determined. As such, the value of wires can be

thought of as a function of the former two.

Theorem 2.1.20. Given two wires w and w′ of the same type and a wire w′′ (no two of the three

being necessarily distinct), for any acyclic path betweenw′′ andw, there is an acyclic path between

w′′ and w′ in which every occurrence of w′ has been replaced by w and vice versa.

Proof. Any case where any of the two wires are identical is trivial. Consider the sequence <

w′′, w0, ..., wk, w >. We consider the two following cases:

w′ does not occur in the original sequence In this case < w′′, w0, ..., wk, w
′ > is a legitimate

acyclic path between w′′ and w′. wk and w′ are of alternating types and can be collocated,

and w′ only appears once in the whole sequence.

w′ appears as a wi In this case the original sequence could be written as < w′′, w0, ..., wi−1, wi =

w′, wi+1, ..., wk, w >. Note that wi is the only place where w′ occurs because it cannot ap-

pear more than once. The sequence < w′′, w0, ..., wi−1, w, wi+1, ..., wk, w
′ > is a legitimate

acyclic path between w′′ and w. w and w′ still appear only once, and they collocate properly

with the rest of the sequence.

15

2.2 Crossbars as Boolean Functions

So far we have considered the way in which the truth value of the wires is determined by

those of the junctions and the initially enforced truths. Now we can extend our study to a case

where each of those values are a function of some Boolean vector.

Definition 2.2.1. A Crossbar Function is a function that maps the set of natural numbers to the set

of static crossbars. C : N→ CR

Again, as in the case of the concept of crossbar size, the definition is quite abstract and

further restrictions are necessary to make it applicable to actualities.

Definition 2.2.2. An n-ary Crossbar Function is one where

∀x ≥ 2n : C(x) = 0

Here, 0 denotes the null static crossbar.

Apart from this, there are further non-obvious restrictions on how crossbars are fabricated.

One would expect the “forced” values on the crossbar (i.e. the forced voltages and the junction

values) to be simple in terms of the input. Common sense supports this to some extent since

the availability of complex computations would defeat the purpose of trying to design crossbars

altogether.

Definition 2.2.3. A simple n-ary Crossbar Function is one where for each function F ∈ W0 ∪M

one of the following holds:

1. F (x) = 0 for all x

2. F (x) = 1 for all x

3. F (x) = xi for all x and some i ∈ Z0..n−1

16

4. F (x) = ¬xi for all x and some i ∈ Z0..n−1

where x =
∑n−1

i=0 2ixi

2.3 Number of Acyclic Paths

This section studies the number of acyclic paths in a crossbar, partly demonstrating their

potential for implementing a great number of functions.

2.3.1 Paths Between Two Rows

The path has the form r0, c0, r1, c1, ..., ck−1, rk with r0 and rk being given. Counting the

paths, we have to choose k − 1 rows and k columns from the wires in the crossbar and place them

in distinct positions. Therefore between any two given rows, there are P (R− 2, k− 1)×P (C, k).

That is the number of Acyclic Paths between with k intermediary columns two Rows.

The minimum acceptable number for k is 1. The maximum is determined by the equations: k−1 ≤

R− 2, k ≤ C. Therefore, k ≤ min{C,R− 1}.

Knowing that, we can say that the number of acyclic paths between two rows is:

Paths(ri, ro) =

min{C,R−1}∑
k=1

P (C, k)P (R− 2, k − 1)

Which means that there are
(
R
2

)
pairs of rows as the ends of the path, there are

(
R

2

)min{C,R−1}∑
k=1

P (C, k)P (R− 2, k − 1)

paths between rows in a crossbar.

17

Order of Magnitude:

R− 1 = C case It is natural to take our crossbars to be more or less square-shaped.

f(k) := P (C, k)P (R− 2, k − 1)

Paths(ri, ro) =
C∑
k=1

f(k)

f(k) = C × (P (C − 1, k − 1))2

f(C) = C × (P (C − 1, C − 1))2 = C × ((C − 1)!)2 =
(C!)2

C
= θ(

CC2C

Ce2C
) = θ((

C

e
)2C)

Lemma 2.3.1. For an increasing non-negative series an, if there are constants δ0, C > 0

and 0 ≤ α < 1 where for every natural number δ ≥ δ0 we have an−δ ≤ Cαδan, we have

N∑
−∞

an = θ(aN)

Proof. The sum is obviously Ω(aN).

Additionally,

N∑
−∞

an =

N−δ0∑
−∞

an +
N∑

N−δ0+1

an ≤
∞∑
δ0

aN−δ +
N∑

N−δ0+1

aN ≤
∞∑
δ0

CαδaN + δ0aN

= (
Cαδ0

1− α
)aN = O(aN)

Going back to considering the number of Sneak Paths, we have

f(C)

f(C − δ)
=
C((C − 1)!)2

C((C−1)!
δ!

)2
= (δ!)2 ≥ (C −K + 1)δ

18

Taking δ0 = 2, we have f(C)
f(C−δ) ≥ 4δ−1 = 1

4
4δ and can say Paths(ri, ro) = θ(f(C)) =

θ((C
e
)2C)

R− 1 ≤ C case

Paths(r0, r, 1) ≥ P (C,R− 1)P (R− 2, R− 2) = (R− 2)!
C!

(C −R + 1)!

In this case we will have

Paths(ri, ro) =
R−1∑
k=1

P (C, k)P (R− 2, k − 1)

f(k) = P (C, k)P (R− 2, k − 1) =
C!(R− 2)!

(C − k)!(R− k − 1)!

f(R− 1)

f(R− 1− δ)
=

(C −R + 1 + δ)!δ!

(C −R + 1)!
≥ 1

2(C −R + 3)
(2(C −R + 3))δ

Meaning that

Paths(ri, ro) =
R−1∑
k=1

f(k) = θ(f(R−1)) = θ(P (C,R−1)P (R−2, R−2)) = θ(
(R− 2)!C!

(C −R + 1)!
)

Applying Stirling’s approximation to C! we have:

Paths(ri, ro) = θ(

√
C(R− 2)!CC

(C −R + 1)!eC
)

For R = o(C), we also have R = o(C −R) and
√
C −R + 1 = θ(

√
C). Consequently:

Paths(ri, ro) = θ(
(R− 2)!CCeC−R+1

(C −R + 1)C−R+1eC
) = θ(

(R− 2)!CC

(C −R + 1)C−R+1eR−1
)

19

Now if R = O(1), making the crossbar a thin tape, we would have:

Paths(ri, ro) = θ(
CC

(C −R + 1)C−R+1
) = θ(

CC+R−1

(C −R + 1)C
)

= θ((
C −R + 1 +R− 1

C −R + 1
)C−R+1 × C2R−2) = θ((1 +

R− 1

C −R + 1
)C−R+1 × C2R−2)

= θ(eR−1 × C2R−2) = θ(C2R−2)

R− 1 ≥ C case

Paths(ri, ro) =
C∑
k=1

P (C, k)P (R− 2, k − 1)

f(k) = P (C, k)P (R− 2, k − 1) =
C!(R− 2)!

(C − k)!(R− k − 1)!

f(C)

f(C − δ)
= δ!

(R− 1− C + δ)

(R− 1− C)!

For δ0 = 2, we have f(C)
f(C−δ) ≥

1
2
2δ, therefore:

Paths(ri, ro) = θ(f(C)) = θ(
C!(R− 2)!

(R− C − 1)!
)

The Stirling approximation on (R− 2)! would yield:

Paths(ri, ro) = θ(
C!(R− 2)(R−2)

√
R− 2

(R− C − 1)!e(R−2)
) = θ(

C!(R− 2)R−2
√
R

(R− C − 1)!eR
)

Going further, if C = o(R), we have C = o(R− C − 1) and
√
R− C − 1 = θ(

√
R):

Paths(ri, ro) = θ(
C!(R− 2)R−2eR−C−1

(R− C − 1)R−C−1eR
) = θ(

C!(R− 2)R−2

(R− C − 1)R−C−1eC
) =

θ(
C!(R− 2)R+C−1

(R− C − 1)ReC
)

20

And if C = O(1),

Paths(ri, ro) = θ(
(R− 2)R−2

(R− C − 1)R−C−1
) = θ((

R− C − 1 + C − 1

R− C − 1
)R−C−1 × (R− 2)C−1)

= θ((1 +
C − 1

R− C − 1
)R−C−1 × (R− 2)C−1) = θ(eC−1 × (R− 2)C−1) = θ((R− 2)C−1)

2.3.2 Paths Between Two Columns

A similar analysis would yield P (C − 2, k− 1)× P (R, k) paths with k intermediary rows

between any two given columns,

min{R,C−1}∑
k=1

P (R, k)P (C − 2, k − 1)

paths of all possible lengths between two given columns and

(
C

2

)min{R,C−1}∑
k=1

P (R, k)P (C − 2, k − 1)

inter-columnar paths.

Similarly to the case of paths between two rows, we have the following cases:

C − 1 = R case And in a somewhat square crossbar with C − 1 = R, we can say the order of

magnitude of the number of paths between any two given columns are,

Paths(ci, co) = θ((
R

e
)2R)

C − 1 ≤ R case Generally,

Paths(ci, co) = θ(

√
R(C − 2)!RR

(R− C + 1)!eR
)

21

If C = o(R),

Paths(ci, co) =
(C − 2)!RR

(R− C + 1)R−C+1eC−1

If C = O(1),

Paths(ci, co) = θ(R2C−2)

C − 1 ≥ R case Generally,

Paths(ci, co) = θ(
R!(C − 2)C−2

√
C

(C −R− 1)!eC
)

If R = o(C),

Paths(ci, co) = θ(
R!(C − 2)R+C−1

(C −R− 1)CeR
)

And if R = θ(1),

Paths(ci, co) = θ((C − 2)R−1) = θ(CR−1)

2.3.3 Paths Between a Row and a Column

Without loss of generality, we assume w0 to be a row and w−1 to be a column. The path

would have the form r, c0, r0, ..., ck−1, rk−1, c. Therefore, assuming k intermediary column-row

pairs, there are P (R − 1, k)P (C − 1, k) paths between the wires. Therefore, there are P (R, k +

1)P (C, k + 1) paths with k intermediary column-row pairs in the entire crossbar. There is

min{R−1,C−1}∑
k=0

P (R, k + 1)P (C, k + 1)

paths between rows and columns in the entire crossbar.

Order of magnitude: Let us again concern ourselves with the number of paths between a

given row and a given column.

22

R = C case

Paths(ri, co) =
R−1∑
k=0

P (R− 1, k)P (C − 1, k) =
R−1∑
k=0

f(k),

where f(k) = P (R− 1, k)2.

f(R− 1)

f(R− 1− δ)
= (

P (R− 1, R− 1)

P (R− 1, R− 1− δ)
)2 = (δ!)2

Fast growing rate shows that

Paths(ri, co) = θ(f(R− 1)) = θ(P (R− 1, R− 1)2) = θ(((R− 1)!)2)

= θ(
√
R(R− 1)R−1e−(R−1))

R ≤ C case

Paths(ri, co) =
R−1∑
k=0

P (R− 1, k)P (C − 1, k) =
R−1∑
k=0

f(k),

where f(k) = P (R− 1, k)P (C − 1, k).

f(R− 1)

f(R− 1− δ)
=
δ!(C −R + δ)!

(C −R)!

It is a fast growing function, therefore

Paths(ri, co) = θ(f(R− 1)) = θ(
(R− 1)!(C − 1)!

(C −R)!
) = θ(

√
C(R− 1)!(C − 1)C−1

(C −R)!eC
)

= θ(

√
C(R− 1)!(C − 1)C

(C − 1)(C −R)!eC
) = θ(

(R− 1)!(C − 1)C√
C(C −R)!eC

) = θ(
(R− 1)!CC(1− 1

C
)C

√
C(C −R)!eC

)

= θ(
(R− 1)!CC

√
C(C −R)!eC

)× θ((1− 1

C
)C) = θ(

(R− 1)!CC− 1
2

(C −R)!e2C
)

23

Further, if R = o(C),

Paths(ri, co) = θ(
(R− 1)!CC− 1

2

(C −R)!e2C
) = θ(

eC−R(R− 1)!CC− 1
2

√
C(C −R)C−Re2C

) = θ(
eC−R(R− 1)!CC−1

(C −R)C−Re2C
)

= θ(
(R− 1)!CC−1

(C −R)C−ReC+R
)

And if R = θ(1),

Paths(ri, co) = θ(
CC−1

(C −R)C−ReC
) = θ(C−1(C −R)Re−C)× θ((C −R

C
)−C)

= θ(C−1(C −R)Re−C)× θ((1− R

C
)−C) = θ(C−1(C −R)Re−C)× θ(eR)

= θ(C−1(C −R)Re−C) = θ(CR−1e−C)

R ≥ C case Symmetrically,

Paths(ri, co) = θ(
(C − 1)!RR− 1

2

(R− C)!e2R
)

In cases where C = o(R),

Paths(ri, co) = θ(
(C − 1)!RR−1

(R− C)R−CeC+R
)

And if C = θ(1),

Paths(ri, co) = θ(RC−1e−R)

2.4 Lower Bounds on Crossbar Size

In this section we will go through several theorems indicating the minimum size of a cross-

bar for implementing a function, or a class of functions.

Definition 2.4.1. A void path is an acyclic path along which a pair of incompatible literals or a 0

24

exists. By incompatible literals we mean x and ¬x for some binary variable x. In other words, a

non-void path is one whose literals make up a well-formed conjunction.

Theorem 2.4.2. In a crossbar implementing a Boolean formula, the junction labels along any

non-void path from the supply wire to the target wire should be a superset of the literals in some

prime implicant of the target function.

Proof. If a non-void path exists over the set of literals C, it means that the implemented Boolean

function evaluates to 1 whenever all literals in L hold. The conjunctive clause ∧l∈C l corresponding

to this path is therefore an implicant of f , and is therefore a subset of some prime implicant of

f .

Theorem 2.4.3. For implementing a function having a d-ary prime implicant, a crossbar of size

(d+ 1)× d or more is required.

Proof. It has been established in 2.3.1 that the longest row-to-row Sneak Path in anR×C crossbar

has min{R− 1, C} junctions. Since a path of length at least d is required, we will have:

min{R− 1, C} ≥ d⇒ R ≥ d+ 1 and C ≥ d

Theorem 2.4.4. A Lower Bound on the Number of Functions Represented by a Crossbar

Proof. Any R × C crossbar belongs to a class of (R − 2)! × C! crossbars all implementing the

same function. With there being (2|I|+ 2)RC different crossbar designs, there is at most (2|I|+2)RC

(R−2)!C!

distinct functions implemented by such crossbars. In order for a crossbar space to be able to

implement every Boolean function of |I| inputs, we should have:

(2|I|+ 2)RC

(R− 2)!C!
≥ 22|I| ⇔ RC +RC log(|I|+ 1) ≥ log

[
(R− 2)!

]
+ log(C!) + 2|I|

25

Asymptotically,

RC +RC log(|I|+ 1) = O
(

log
[
(R− 2)!

]
+ log(C!) + 2|I|

)

⇒ RC+RC log(|I+ 1|) = O
(

log(R!)−2 logR+ log(C!) +2|I|
)

= O(R logR+C logC+ 2|I|)

Using the result from 2.4, we can compute a lower bound for the size of a crossbar that is

capable of implementing all Boolean functions of size |I|. It is important to take into account the

limitations of . Firstly, the fact that not all functions of, say, 9 input variables can be implemented

on a 10 × 10 crossbar does not mean that none of them can. The function x1x2...x9 which non-

trivially depends on all input variables can be implemented on a 10 × 10 crossbar. Furthermore,

exceeding the lower bounds implied by 2.4 does not guarantee the possibility of the crossbar size

accommodating all Boolean functions. For example, for |I| = 3 it is implied by 2.4.3 that a 4× 4

crossbar is required to implement x1x2x3.

26

Table 2.1: Lower Bounds on Square Crossbar Size Supporting All Boolean Functions

Size of Input Vector Minumum Crossbar Width Required
2 2
3 2
4 3
5 4
6 5
7 6
8 9
9 12
10 16
11 22
12 31
13 43
14 59
15 82
16 115

27

CHAPTER 3: VERIFICATION OF CROSSBARS

In this chapter we discuss various methods for verifying a crossbar against a target function,

possibly but not necessarily constructing a representation of the functions implemented by the

crossbar itself.

3.1 The Naive Method

This temporal-logic based approach describes a set of transition rules corresponding to

inductive inference. It describes the value of a wire given an input vector through an eventuality

proposition. The automaton can be described as follows:

• The state vector: 〈r0, ..., rR−1, c0, ..., cC−1〉 ∈ BR+C with each term representing the conduc-

tance state of its corresponding wire.

• The junction conductance matrix [Mij], with the value of the junctions being a function of

the input vector, but fixed throughout the evaluation against that vector.

• Initial state: s0 = 〈1, 0, ..., 0〉

• The transition rules:

Xri ⇔ ri ∨
(
∃j : mij ∧ cj

)
Xcj ⇔ cj ∨

(
∃i :ij ∧ri

)
• Interpretation: f̂(I) = 1⇔ FrR−1. More generally, for each wire w, f̂w(I) = 1⇔ Fw

One may note the structural similarities with an inductive argument.

A naive implementation of this method would require O(RC(R + C)2|I|) running time.

However, this mode of analysis provides a rigorous and simple method of formal analysis, much

28

simpler than what we developed in chapter 3.

Also, because of its simplicity and being fully predicated, this formulation of the problem can

be fed into a SAT solver, essentially fusing synthesis and verification into a single process. This

allows the SAT solver to intelligently apply optimizations on the process.

This approach was pioneered by Velasquez and Jha[1], and most designs presented in chapter 2

were obtained from various implementations of the same method.

3.2 Iterated Matrix Multiplication

The previous approach can be formulated in terms of Boolean Linear Algebra. The existen-

tial quantifiers in the transition rules have a fixed and finite domain, therefore they can be statically

expanded as:

ri(t+ 1) = ri(t) +
C−1∑
j=0

mijcj(t) =
C−1∑
j=0

mijcj(t)

cj(t+ 1) = cj(t) +
R−1∑
i=0

mijri(t) =
R−1∑
i=0

mijri(t)

This can be reiterated in the matrix form as:

r0
...

rR−1

c0
...

cC−1

(t+1) =

0 · · · 0 m00 · · · m0(C−1)

...
...

0 · · · 0 m(R−1)0 · · · m(R−1)(C−1)

m00 · · · m(R−1)0 0 · · · 0

...
...

m0(C−1) · · · m(R−1)(C−1) 0 · · · 0

r0
...

rR−1

c0
...

cC−1

(t) =

 0 M

MT 0

X(t)

29

Rewritten through renaming as

X(t+ 1) = MTX(t) = (MT)t+1X(0)

, where X(0) = [1 0 · · · 0]T , and the multiplication and addition operators correspond to

Boolean conjunction and disjunction, respectively.

The sequence X(.) is monotonically increasing, and it is bounded by [1 · · · 1]T . Therefore

it is convergent, and the result can be expressed as f̂(I) = limt→∞(MT)tX(0). The sequence

converges in fewer steps than m + n, and each multiplication operator takes O
(
(R + C)2

)
time.

Therefore, computing the output to any single input vector should take O
(
(R + C)3

)
time, the

same level of complexity as the previous method.

Remark 3.2.1. One might think that implementing this formulation should necessarily perform

worse than a naive implementation of the original temporal logic formulation. That is not the case.

Smaller matrices could be used to transform the state transition relation into a more compact form:

lim
t→∞

X0..(R−1)(t) = lim
t→∞

(MMT)tX0..(R−1)(0)

which would take O
(
R2(R + C)

)
.

In fact, it can also be rewritten as

lim
t→∞

M(MTM)tMTX0..(R−1)(0)

which takes O(C2(R+C)) time. Therefore, it can performs no worse and in fact outperforms the

trivial method in cases where R and C are not of the same order.

The equivalent formula f̂(I) = limt→∞(MT)2
t
X(0) converges inO(log(R+C)). Unfortu-

nately, because the addition operator in the Boolena field is irreversible, the Strassen optimization

30

cannot be applied and each exponentiation should take O((R + C)3) time.

Remark 3.2.2. Applying the same type of optimization as discussed in 3.2.1, we would obtain a

O(min{R,C}3 log(R + C) runtime, that would outperform the method in 3.1 if and only if the

crossbar is narrow (meaning one of the dimensions is considerably larger than the other).

Remark 3.2.3. All runtimes addressed in this subsection apply to the evaluation of the crossbar

with respect to a single input vector. Therefore, they all should be multiplied by a factor of 2i in

order to specify the runtime of a full crossbar verification.

3.3 Graph-based Verification

Another formulation of evaluation is as a graph reachability problem. The crossbar can

be modeled as a bipartite graph, with nodes corresponding to wires and edges corresponding to

junctions. The lack of direct connection among rows and among columns justifies the bipartite

assumption. Rows can be placed on one side and columns on the other. A wire evaluates to 1 if

and only if its corresponding node is reachable from r0’s node.

This approach yields better results from previously considered algorithms, havingO(|E|) = O(RC)

worst-case time complexity and O(|V |) = O(R + C) worst-case space complexity, if trivial

Breadth-First or Depth-First algorithms are used.

3.4 BDD-based Symbolic Verification

The algorithms hitherto presented all view crossbars and target functions as functions. The

following algorithm views those as data, represented by Reduced Ordered Binary Decision Dia-

grams.

31

3.4.1 Preliminaries

3.4.1.1 Probably Inevitable Exponential Time

Theorem 3.4.1. Any representation scheme of Boolean functions with |I| inputs is of Ω(2|I|) on

the worst case.

Proof. There are 22|I| distinct functions mapping {0, 1}|I| to {0, 1}. The depth of any DAG with

22|I| distinct leaves is at least log2 22|I| = 2|I|

This loosely suggests that verifying crossbars is inherently difficult. Assuming (unjustifi-

ably) that a crossbar of a certain size is able to implement all binary functions over input vectors of

size i, its verification should be Ω(2i) worst-case, simply because certain outputs of the algorithm

have to be of that size.

3.4.1.2 The Gist of a Junction

We base our algorithm on a simple observation, that the entire role of a simple (referring

to a literal) junction in the composition of the crossbar function is that it equates certain a cofactor

(restrictions) of the two wires it connects. Therefore, a junction can have either of the three effects

based on the function through which it is set:

1. If mmn = 1 for all input vectors, rm = cn for all input vectors.

2. If mmn = xi (or ¬xi) for some input atom xi, rm and cn are equal over a half of the input

values, namely, the cases where xi (¬xi) holds. Another way to express this is to say that the

cofactors (restrictions) of ri and cj under xi = 1 or 0) are equal. Formally,

(rm)|xi=1 = (cn)|xi=1

, likewise for xi = 0.

32

3. If mmn = 0 for all inputs, this junction bears no information. This also does not mean that

they are necessarily NOT equal. There can be a case when two totally disconnected rows

can have the exact same functions.

Example 3.4.2. In the crossbar below,

1 0

r0 → A A

r1 and c1 implement the same function (A) in spite of the fact that they are in no direct

contact with each other. That fact is caused by other junctions, not the one connecting the

two.

Remark 3.4.3. It is not always straightforward to compute a restriction of a Ordered Binary Deci-

sion Diagram. It is only so when the restricting variable is on the top level.

3.4.2 The Symbolic Verification Algorithm

This algorithm iteratively applies a slightly modified version of the Restrict operation as

originally suggested by Bryant[2], and a new operation named Equate. The Equate function is run

on every junction, equating in each iteration the relevant restrictions of the wires it connects, based

on its label.

Our algorithm will proceed working on “incomplete” ROBDDs, therefore a few notions have to be

introduced:

• A “white” node is an incomplete node without an associated decision variable or edges.

• A node implements an “incomplete” function if and only if there is a white node descending

from it. Such a node can itself be called incomplete as well.

• The “depth” of a node is defined as the variable following its parent’s decision variable if it

is a white node and its own decision variable otherwise.

33

3.4.2.1 Equate and Modified Reduce Algorithms

The reduce algorithm will be modified by simply adding the following assumption:

Any white node is considered distinct from any other node.

This means that in presence of uncertainty, the reduction procedure should act conservatively.

The Equate algorithm is based on the original Restrict algorithm, and it operates as follows:

function EQUATE(n0, n1, x, v)

Ensure: n0|x=v = n1|x=v

if depth(n0) > depth(n1) then

SWAP(n0, n1) . Acts only on the references, not the actual nodes

end if

if n0 = n1 then return success . Any two equal functions share x = v cofactors

else if depth(n0) ≤ x then

if n0 is white then

LABELANDCREATECHILDREN(n0)

end if

if depth(n1) =depth(n0) then

if n1 is white then

LABELANDCREATECHILDREN(n1)

end if

(n11, n10)← (high(n1), low(n1))

else

(n11, n10)← (n1, n1)

end if

if depth(n0) < x or v = 1 then

EQUATE(high(n0), high(n1), x, v)

34

end if

if depth(n0) < x or v = 0 then

EQUATE(low(n0), low(n1), x, v)

end if

return success if all calls returned success, failure otherwise

else if depth(n0) > x and n0 is a white node then

n0 ← n1

REDUCE(n0)

return success

else if depth(n0) > x and n0 is not a white node then return failure

else if n0 and n1 are not white then return failure

end if

end function

3.4.2.2 Correctness

The correctness of the algorithm can be established by proving two propositions:

1. The Equate algorithm presented in 3.4.2.1 is correct.

2. R× C equal cofactor statements are sufficient description for the crossbar.

Theorem 3.4.4. In an ROBDD derived from the iterative cofactor equating process, the 1 ter-

minal node is reached from a wire root on an input vector I if and only if r0 and wire w in the

corresponding crossbar are connected under I .

Proof. Assuming the correctness of the modified Reduce algorithm, the forward direction is straight-

forward:

If r0 and w are connected through a sequence of conducting junctions (minjn), there will be a

35

sequence of corresponding cofactor propositions wn|xn=an = wn+1
|xn=an , where w0 = r0 and wn0 = w

for some n0, and every xn = an actually holds under I . Therefore, for the function values of the

wires under I , we have, r0(I) = w0(I) = ... = wn0(I) = w(I).

For the converse, assuming the correctness of the modified Reduce algorithm, anything resulting

from reasoning based on the ROBDD can also be obtained from the same OBDD had no reduction

occurred. In that scenario, any path from a root node w to the terminal 1, goes through decision

nodes equating the cofactors of two adjacent wires.

3.4.2.3 Performance Analysis

The algorithm iterates over all junctions, performing one Equate operation each time. This

means that it is O(mn2|I|) in the worst case. This is not better than the graph-based verification

algorithm presented in 3.3. However, the actual amount of time needed to perform a Equate oper-

ation is bounded depends on the size of the OBDD representations of the two wire functions being

equated and is not necessarily equal to 2|I|.

36

CHAPTER 4: AUTOMATED SYNTHESIS OF DENSE CROSSBARS

In this chapter we consider how all the analytic and algorithmic tools developed hitherto

can contribute to automatically designing memristor crossbars implementing target Boolean func-

tions.

Fundamentally, all the methods for constructing “dense” circuits (i.e. those with more than an

O(1√
RC

) of its memristors being non-zero) are based on some form of directed search.

A Brute Force exhaustion of the design space is not possible, because of its colossal size. A simple

calculation demonstrates how quickly the design space can grow:

There are R × C junctions in a crossbar. Each of those crossbars can take one of 2|I| + 2

values. This would mean that the number of possible designs sums up to (2|I| + 2)RC . This

necessitates one of the following approaches:

1. Trying to apply heuristics to guide and restrict the search, as discussed in chapter 1

2. Abandoning the idea of dense crossbars entirely, and systematically designing sparse cross-

bars. This method is not covered in this thesis.

3. Settling for an approximation of the target function, one that agrees with it on a majority of

inputs. Such functions are much more numerous and therefore more likely to be found even

in a purely randomized search.

Every synthesis algorithm is coupled with a verification algorithm that gives it feedback on a

measure of agreement between the crossbar and the target function. The feedback can be of a

binary equal / not equal, or perhaps more helpfully, a ratio describing how many of the crossbar’s

outputs match that of the target function.

37

4.1 Exact Methods - SAT Solver Based

As previously mentioned, this method combines the verification and synthesis processes in

a single description. The SAT solver is told the rules through which it can infer whether or not a

design matches a target function, and is asked to reverse-engineer that inference process, finding a

design that satisfies the condition (that of matching the output function completely), or report that

no such design exists.

The advantage of this method is that it can make use of all the pruning power of an established

general purpose SAT solver. SAT solvers have been under development for a long time, and they

have yielded impressive results solving SAT problems with hundreds of variables.

The same issue, namely the use of a general purpose tool may also be this method’s downfall. There

is reasonable speculation that because of the narrow scope of the crossbar design problem, less

overall sophisticated but more specialized tools would outperform the SAT solver based methods.

We believe our work provides evidence to support this claim.

4.2 Approximate Methods

This approach views crossbar design as an optimization problem. The objective is to maxi-

mize through iteration, the fit of the crossbar with respect to the target function. The fitness measure

obtained from the verifier at each iteration is used to direct the search for an optimum with making

a small change to the crossbar. The legitimacy of this method is not indisputable, because there

is no conclusive evidence that fitness functions act “continuously”, meaning that there might be

no strong connection between being close to an optimal crossbar design and having a high fitness

measure. Despite this, empirical evidence leans towards affirming the usefulness of this approach.

38

4.2.1 Simulated Annealing

We experimented with randomized search using Simulated Annealing, and the following

results were obtained for 15 × 15 crossbars implementing functions with 8 inputs, something not

realized by previous methods.

Example 4.2.1. 3-Bit Adder

A0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 A0 B0 B2 A0 0

A1 B0 B1 0 0 0 0 0 0 0

0 0 0 0 0 0 A2 0 0 0

0 0 0 0 0 0 0 0 0 B0

A2 0 B2 0 0 0 0 B2 0 0

0 0 0 0 B2 0 0 0 B2 0

0 B0 0 0 B2 0 0 0 0 0

B1 A0 A1 0 0 0 B2 0 0 0

0 0 A2 0 0 0 A1 A1 0 A0

This result was obtained in less than 2 minutes.

Example 4.2.2. 4-Bit Carry-Out

This circuit computes whether two 4-bit numbers sum up to 16 or more. It can serve as a compo-

nent of a 4-bit adder.

39

0 0 0 0 0 0 0 0 0 B1 0 1 0 0 B3

0 B0 0 0 0 0 0 B2 0 0 0 A2 0 0 0

B2 1 1 0 0 0 0 0 A2 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 A3 0 0 0 0 0

B1 0 B2 0 0 0 0 0 B0 0 A2 0 0 0 0

0 0 B2 0 0 0 0 0 0 0 0 A2 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

B1 0 0 B3 0 0 0 A2 0 0 0 0 B2 0 A3

0 0 0 A3 A0 0 0 0 0 0 0 B3 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 B0 0 0 0 0 0 0 0 0 A0 0 0 0

0 0 0 0 0 0 0 A1 0 B1 0 0 B1 0 0

0 0 A3 0 0 0 0 0 0 0 0 0 0 0 0

0 0 B0 0 0 0 0 A1 0 0 0 0 0 B2 0

0 0 0 A3 0 0 0 0 0 0 0 0 0 0 B3

A design with such large dimensions and input vector size was obtained in only one hour. How-

ever, a smaller design was also found:

0 0 A3 0 B3

0 B1 B2 A1 A2

A1 B0 0 A0 0

A0 A1 A2 0 B2

0 0 B3 0 B3

40

LIST OF REFERENCES

[1] A. Velasquez, S. K. Jha. Automated Synthesis of Computing Nanoscale Crossbars using For-

mal Methods . IEEE/ACM International Symposium on Nanoscale Architectures, 2015.

[2] R. E. Bryant. Graph-Based Algorithms for Boolean Function Manipulation. IEEE Transac-

tions on Computers, 1986.

[3] L. Chua. Memristor - The Missing Circuit Element. IEEE Transactions on Circuit Theory,

1971.

[4] Stirling’s Approximation,

http://mathworld.wolfram.com/StirlingsApproximation.html

41

	University of Central Florida
	
	Verification and Automated Synthesis of Memristor Crossbars
	2016
	Arya Pourtabatabaie
	STARS Citation

	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	CHAPTER 1: BACKGROUND
	1.1 The Memristor
	1.2 Memristive Crossbar Computing of Boolean Formulas
	1.2.1 Memristor Crossbars
	1.2.2 Crossbar Designs

	1.3 Examples of Simple Circuits
	1.4 Scaling Up

	CHAPTER 2: FORMAL ANALYSIS
	2.1 Static Crossbars
	2.2 Crossbars as Boolean Functions
	2.3 Number of Acyclic Paths
	2.3.1 Paths Between Two Rows
	2.3.2 Paths Between Two Columns
	2.3.3 Paths Between a Row and a Column

	2.4 Lower Bounds on Crossbar Size

	CHAPTER 3: VERIFICATION OF CROSSBARS
	3.1 The Naive Method
	3.2 Iterated Matrix Multiplication
	3.3 Graph-based Verification
	3.4 BDD-based Symbolic Verification
	3.4.1 Preliminaries
	3.4.1.1 Probably Inevitable Exponential Time
	3.4.1.2 The Gist of a Junction

	3.4.2 The Symbolic Verification Algorithm
	3.4.2.1 Equate and Modified Reduce Algorithms
	3.4.2.2 Correctness
	3.4.2.3 Performance Analysis

	CHAPTER 4: AUTOMATED SYNTHESIS OF DENSE CROSSBARS
	4.1 Exact Methods - SAT Solver Based
	4.2 Approximate Methods
	4.2.1 Simulated Annealing

	LIST OF REFERENCES

