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Abstract 

For over 40 years archaeologists have been using predictive modelling to locate 

archaeological sites. While great strides have been made in the theory and methods of site 

predictive modelling there are still unresolved issues like a lack of theory, poor data, biased datasets 

and poor accuracy and precision in the models. This thesis attempts to address the problems of poor 

model performance and lack of theory driven models through the development of a new method for 

predictive modelling, agent based modelling. Applying GIS and agent based modelling tools to a 

project area in southeaster New Mexico this new methodology explored possible behaviours that 

resulted in site formation such as access to water resources, travel routes and resource exploitation. 

The results in regards to improved accuracy over traditional methods were inconclusive as a data 

error was found in the previously created predictive models for the area that were to be used as a 

comparison. But, the project was more successful in providing explanatory reasons for site 

placement based on the models created. This work has the potential to open up predictive 

modelling to wider archaeology audiences, such as those based at universities. Additional findings 

also impacted other areas of archaeological investigation outside of predictive modelling, such as 

least cost path analyses and resource gathering analyses.   
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Agent Based Predictive Models in Archaeology Introduction and 

Outline 

 This thesis has its roots in a 14-hour drive to the ‘Bootheel’ area of New Mexico, USA, and 

some of my experiences while working in Commercial Archaeology in United Kingdom and Cultural 

Resource Management Archaeology (CRM) in the USA. In 2008, I was working in CRM Archaeology in 

New Mexico after finishing my undergraduate degree. At one of the excavation projects that I 

worked on, the landowners of the property asked for the artefacts to be given to them and due to 

the nature of the project that request was granted. So in the Spring of 2009, my colleague Brian and 

I got in a truck and drove seven hours down to the ‘Bootheel’ of New Mexico from our company 

office in Albuquerque, and seven hours back, all in the same day. 

During that 14-hour drive many conversations were had, but one conversation in particular 

contributed to my undertaking of this thesis – Brian said that I should enjoy our work now, because 

in 30 years all of the archaeological sites would have been found. This statement struck me as 

something that did not seem right. ‘Surely we have barely scratched the surface of archaeology’, was 

what I thought. In the truck we did not have the resources to confirm or refute this hypothesis and 

so it was left at that.  

Yet, that conversation had an impact on me because later that year, when I began my 

Masters studies at Newcastle University in the United Kingdom, I remembered it when I was 

considering topics to research for my dissertation. ‘Had we found most of the archaeology in New 

Mexico?’ was the question that initially drove my research. To me the simple solution was to take 

the known archaeological sites and compare that against the estimated undiscovered sites to see 

how much we still had to find and then to look at the number of sites found per year to determine 

the pace of discovery. With that information I could determine if we were quickly running out of 

archaeology. The known sites were the easy part, as they were stored in a database; it was 

attempting to find estimates of the unknown sites that was difficult as no one had made such 

estimates. Eventually my research led me to site predictive modelling, computer models that 

estimate where undiscovered archaeological resources are, as a solution to my problem. Predictive 

modelling would form the basis of my Masters’ dissertation, but that dissertation focused on a 

different question as I moved on to more complex issues than how much is left to find.  

A comment on a long drive had brought me to site predictive modelling but it would be my 

experience with CRM in the United States and Commercial Archaeology, as CRM is known as in the 

UK, which would provide the drive behind this thesis. I have always had an eye on a career outside 

academia. When I undertook my Masters I did so because a Masters is usually needed to get a 

permanent CRM position in the United States. I knew at that time that academic positions were few 
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and far between, but it would be years later that I would discover exactly how hard they are to get 

(Rocks-Macqueen 2016), so I did not intend to undertake a PhD as it seemed unnecessary to me at 

that time. Instead of focusing on a career in academia I found opportunities to broaden my CRM 

experience. One of these experiences was working with a Council Archaeologist in the UK. I learnt 

about the planning process in the UK and was shocked by some of the practices I observed. Planning 

conditions were placed on development projects by first looking at the Historic Environment Record 

and if archaeological resources had been found previously in the general area, as estimated by 

eyeballing the map, then a planning condition would be recommended for archaeology. If nothing 

had been found in the area, then no planning condition would be recommended. The fact that areas 

could have nothing because no archaeological work had been conducted did not factor in the 

decision. As I saw it, potentially lots of archaeology was simply being bulldozed because there was 

no better system in place. Given my experience with site predictive modelling, I saw the potential for 

this method to help solve these issues. While not perfect, predictive modelling, in my opinion, could 

give better results than eyeballing a map.  

Further influential experiences occurred through my CRM work in the United States. During 

one project we surveyed the routes for several access roads and found archaeological resources. 

Later, it was deemed too expensive to excavate what we had found. Instead, a proposal was put 

forward to survey the land around the proposed routes and then redirect the access roads around 

the archaeological sites to avoid a costly excavation. The company had done this before by sending 

out crews with an engineer to survey a route until they found a site, then reroute around the site 

and continue, basically blindly surveying until they could find a route without sites. This process 

takes up resources and time. Again, site predictive modelling seemed well posed to help solve this 

by helping plan out potential routes without archaeological resources before the survey began.  

Another experience that highlighted the advantages of predictive modelling was project 

planning for surveys in the western United States. Projects were typically planned by taking the 

number of acres to be surveyed and then dividing that by an estimated number of sites that would 

be encountered per acres surveyed. This would give roughly the number of sites planners could 

expect to encounter and have to record, helping them get an estimate of time/costs. The inevitable 

problem with such a method is that if more sites were discovered than anticipated the project would 

overrun its budget. Conversely, if a project over-estimated sites and budgeted too much they might 

lose out in any competitive tendering as the bid would be too high. Site predictive modelling in my 

mind had the potential to better estimate the archaeological resources encountered and thus be 

able to improve project cost planning in cases with the need for inflexible budgets. 
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Once I had been exposed to site predictive modelling I could see a range of potential 

applications in CRM archaeology where it was not currently being utilised. However, my research 

found that predictive modelling had been hyped in the past and failed to deliver its promised returns 

(Chapter 1). I also knew there were numerous problems with predictive modelling (reviewed in 

Chapter 2) and that these problems had kept site predictive modelling from having wider use. With 

my experience and background knowledge, though limited as it was in 2010, when I only had a few 

years of archaeological experience, I came to the conclusion that research was needed to see if 

predictive models could be improved enough to be of greater use for archaeologists. 

Thesis Aims, Objectives and Activities 

 Given the background that led to this project the following aim was set on the outset of this 

project — improve the performance of site predictive modelling for CRM archaeology uses. To 

reach that aim the following objective was set for this project – increase the explanatory abilities of 

predictive modelling. When researching how to improve performance, I found that adding more 

theory/explanatory aspects to predictive models, which have typically been correlative and theory 

devoid, improved the model’s performance. I saw this as a route worth exploring for this research 

project. To achieve that objective a new methodology for creating predictive models, agent-based 

modelling (ABM), was tested. It was also realised, by myself and others, that such a methodology 

could attract more academic interest in predictive modelling (Chapters 1 & 2), a bonus benefit but 

one which was not the primary focus of this project.  

To achieve that research aim the following activities were planned for at the beginning of 

the project: 

1. research causes of poor model performance and find cause to address; 

2. create a methodology to solve the problem(s) that lead to poor model performance; 

3. test proposed solution(s); 

4. compare solution results against independent models to determine their 

effectiveness. 

Thesis Outline 

This thesis reviews the process undertaken to meet that goal and objective. What follows is the 

outline of this thesis, which in turns mirrors the process that was undertaken for this project. As will 

be demonstrated, initial assumptions turned out to be wrong and changes were made throughout 

the project that altered the process. The thesis is broken down into chapters and each chapter 

considers a distinct subject which contributes to the whole project. While certain chapters may be 

read out of order, for example, skipping the background and moving on to model testing, the thesis 

is intended to be read in sequential order. It lays out in order the process of research undertaken for 

this project. 
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The first chapter starts with definitions and key concepts so that readers will have a clear 

understanding of what is meant by certain terms. After that it reviews the historical development of 

site predictive modelling in archaeology. It follows the early development of the theory 

underpinning predictive modelling into the post-modernist critique of such work and up to current 

developments. At the same time, developments in methodology and technology are reviewed to 

create a holistic view of the expansion and waning use of predictive modelling over the last few 

decades. This provides the historical context in which this project began.  

The problems that this project will tackle are outlined in Chapter 2. This outlines criticisms of 

predictive modelling, from theoretical, methodological, technological or cultural standpoints, and 

then examines known solutions to these problems. It will show that several problems remain 

outstanding in predictive modelling. The chapter ends with a review of the decisions made, and their 

justifications, as to why this project concentrated on certain problems and not others. Specifically, 

the lack of contribution most predictive models made to our understanding of the past. As will be 

shown, the literature indicated that improving models explanatory abilities would increase its 

performance.  

Chapter 3 introduces the proposed solution of using a new methodology: Agent-based 

modelling. Firstly, the precursors to the use of ABM in predictive modelling are reviewed and how 

they have indicated that ABM could present a viable solution to the issues. An examination of recent 

developments by other researchers in predictive modelling that occurred during the project is also 

conducted. These developments present an even stronger case for the use of ABM in predictive 

modelling. 

Chapter 4 examines a range of ABM programmes that could have been used for the project. 

This chapter lays out the rationale used in deciding which features were most important in an ABM 

programme for use in this project. The list of required features is then used to find the best ABM to 

use for this project, in this case, NetLogo. This chapter also briefly scrutinises some of the other 

programmes that met the required criteria but were not chosen, and the reasons why they were not 

chosen for this project.  

The fifth chapter is an examination of the project area in southeastern New Mexico, USA, 

used to test the project’s methodology. This chapter outlines why the project area was chosen. It 

then provides relevant background information on the project and surrounding areas, ranging from 

the cultural history to the environment of the area. It provides a general review of factors that were 

key components required for the creation of the model.  

This is followed by three chapters, 6, 7 and 8, which discuss the application of ABM in 

different contexts. Chapter 6 looks at site distribution as a result of travel routes across the project 
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area and indicates that least-cost-path analysis is deeply flawed. Furthermore, this chapter will show 

that, in the project area, site location does not appear to be related to long-distance travel routes. 

The results of this chapter are not just applicable to predictive modelling but to other projects that 

attempt to look at human mobility.  

Chapter 7 reviews the hydrology of the project area and concludes that site location is not 

based on access to water. It also provides significant information about how past peoples interacted 

with the landscape and what activities they could have undertaken in the project area. Essentially, it 

will show that a lack of perennial water sources limited how long people could stay in the project 

area. It will also demonstrate a link between water availability and the activities available in the 

project area that may have attracted people to it, as discussed in the next chapter. 

Chapter 8 examines different resources that could attract people to the project area, such as 

lithic quarries, plant resources and shelter. This chapter will show that these different resources 

could have acted to draw past peoples to the project area. The modelling will provide both valuable 

information about site locations and potential site locations as well as information about the cultural 

history of the area.  

The final chapter summarises and discusses the results of the preceding three chapters’ 

investigation. It then draws together these results into the solutions sought by this project and 

attempts to assess the overall effectiveness of ABM as a solution to some of the problems facing 

predictive modelling.  

Appendices present various datasets and the code used for the models.  

Confidential appendix 

The archaeological site data used for this project is from the Archaeological Records Management 

Section (ARMS) in New Mexico and comes with the stipulation that: 

‘All information obtained pursuant to the user’s access to the HPD/ARMS system shall 
remain confidential unless subject to public disclosure pursuant to the New Mexico Cultural 
Properties Act of 1978 [NMSA 1978, §§18–6-1 to 18–6-17], and the Archaeological 
Resources Protection Act of 1979 [16 U.S.C. §470aa et. seq.], and anyone misusing such 
information may be subject to prosecution under the Federal Computer Security Act of 1987 
[15 U.S.C. §§271, 272, 278g-4, and 278h].’ 

Consequently, limits are imposed on the information that can be shared publicly, in 

particular site locations. These restrictions are intended to prevent the looting of archaeological sites 

in New Mexico. For this study all site locations have been removed from any datasets found 

throughout this thesis, including any reference to sites on maps. Many figures have purposely been 

made vague to ensure that known sites or potential site locations, as this project deals with site 

predictive modelling, are not discoverable.  
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A confidential appendix has been created for this project containing more detailed images 

and sensitive information. This appendix will not be published with this thesis but researchers can 

obtain this appendix by contacting the author and demonstrating they will be using the information 

for reputable purposes. Furthermore, should the author be uncontactable the full list of sites by LA 

number, the reference number used by ARMS to identify sites, used in this project has been included 

so that the exact site datasets may be obtained from ARMS. The locations of where all other 

datasets can be obtained are given and the code for the ABM models included, which makes it 

possible to recreate the results of this project once one has obtained the site data from ARMS. 
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Chapter 1: Site predictive models: background and historical 

development 

The purpose of this chapter is to introduce the concept of site predictive modelling, discuss 

its origins in archaeology and the direction of its development when this project started in 2010. The 

defining of site predictive modelling and its associated concepts ensures clarity when using the 

terms throughout this work. The history and trajectory of site predictive modelling in archaeology 

will give context to the problems facing predictive modelling when this project began in 2010. It will 

show the historic situation in which this project was developed – low usage and scepticism about its 

benefits. Moreover, some of the issues raised with predictive models, and discussed further in 

Chapter 2, are related to the history of its development.  

Defining Predictive Modelling 

 The way one interprets or defines site predictive modelling, as with many different terms, 

can be highly subjective, e.g. a ‘long road’ could be 1km, 10km, 100km, etc. In the interest of clarity, 

it is best to define what the term ‘site predictive modelling’ means for this project. There have been 

a plethora of definitions of what a site predictive modelling is or should be: 

‘... a predictive archaeological locational model may simply be regarded as an assignment 
procedure, or rule, that correctly indicates an archaeological event outcome at a land parcel 
location with greater probability than that attributable to chance.’ (Kvamme 1990 p. 261) 

‘… simplified set of testable hypotheses, based either on behavioural assumptions or on 
empirical correlations, which at a minimum attempts to predict the loci of past human 
activities resulting in the deposition of artefacts or alteration of the landscape.’ (Kohler 1988 
p. 33)  

‘Models that are deductively derived and attempt to predict how particular patterns of 
human land use will be reflected in the archaeological record’ or ‘identify and quantify 
relationships between archaeological site locations and environmental variables.’ (Judge and 
Sebastian 1988 p. 4) 

‘Predictive models are tools for projecting known patterns or relationships into unknown 
times or places.’ (Asch and Warren 2000 p. 6) 

These are but a few of the many ways archaeologists have defined site predictive models. A 

definition used by several archaeologists (Ebert 2004, Kamermans, van Leusen et al. 2009b) is Kohler 

and Parker’s:  

‘Predictive modelling is a technique to predict, at a minimum, the location of archaeological 
sites or materials in a region, based either on the observed pattern in a sample or on 
assumptions about human behaviour.’ (Kohler and Parker 1986 p. 400)  
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Essentially, all of these definitions say almost exactly the same thing— that a predictive 

model’s purpose is to predict the location of unknown archaeological resources, however one 

defines archaeological resources, e.g. sites, landscapes, tombs, monuments, Roman villas, etc. This is 

how this project will define site predictive modelling as a process for determining the potential 

locations of undiscovered archaeological resources. 

Site Predictive Model or Archaeological Resource Predictive Model or Predictive Model? 

 Most literature on archaeological predictive modelling refers to the models as ‘site 

predictive models’. However, as pointed out by some predictive modellers, ‘site’ is an arbitrary term 

that changes definition from project to project, or location to location, or even author to author 

(Ebert 2000). A more accurate term would have been ‘archaeological resource predictive model’, as 

this does not explicitly define the unit of measurement of the archaeological resources that are 

being modelled. However, given the historic use of the term by other authors, the term ‘site 

predictive model’ will be used here to ensure clarity and continuity of terminology. Moreover, 

throughout this thesis ‘site predictive modelling’ is shortened to just ‘predictive modelling’. 

While I agree with much of the criticism of the concept of ‘sites’ – that it entails arbitrary 

boundaries and does not capture the full range of past human behaviour – this is how the 

archaeological data for the project area is provided. As such, this thesis uses ‘sites’ as a unit of the 

archaeological resources that are tested for in this project. 

Contextualising the History of Predictive Modelling 

The historical development of predictive modelling has followed the ‘Gartner Hype Cycle’ (Figure 1). 

 

Figure 1: Graphical representation of the Gartner Hype Cycle (Wikipedia: 
http://en.wikipedia.org/wiki/File:Gartner_Hype_Cycle.svg Creative Commons Attribution-Share Alike 
3.0. Author Jeremykemp) 
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The Gartner Hype Cycle, named after research company Gartner (Gartner 2008), is a cycle 

that many emerging technologies or new processes go through. It consists of five phases:  

1. ‘Technology Trigger’ — the first phase of the hype cycle is the ‘technology trigger’. It is a 

breakthrough, new application or event that generates significant interest in the 

technology/technique/process. 

2. ‘Peak of Inflated Expectations’ — the second phase is significant publicity about the new 

development in question. This ‘hype’ generates over-enthusiasm and unrealistic 

expectations of the new development. During this time there may be some successful 

applications of a technology, but there are usually more failures. 

3. ‘Trough of Disillusionment’ — this phase occurs when the new development fails to meet 

the inflated expectations that occurred in the ‘Peak of Inflated Expectations’. This usually 

results in the development quickly becoming unfashionable.  

4. ‘Slope of Enlightenment’ — even though many people will have stopped working with the 

technology, some people or organisations will continue to work on the subject through the 

‘slope of enlightenment’. They typically experiment in attempts to understand the benefits 

and practical application of the technology. 

5. ‘Plateau of Productivity’ — this is the phase where the benefits of it become widely 

demonstrated and accepted. The technology becomes increasingly stable and evolves in 

second and third generations. The final height of the plateau varies according to whether the 

technology is broadly applicable or benefits only a niche market. 

The development of predictive modelling mirrored this cycle, as will be demonstrated in the rest of 

this chapter. However, it should be noted that the Gartner Hype Cycle is not reflective of all possible 

routes. As Newman and Lee (2012) have discussed, the Gartner Hype Cycle should actually have an 

additional drop at the end when a technology, method or process eventually becomes obsolete 

(Figure 2). There are also technologies that will never reach certain stages of the cycle. 

 

Figure 2: Gartner Hype Cycle with Newman and Lee ‘slope into obsolescence’. 
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The First Landscape Archaeology 

 Site predictive modelling evolved from the culmination of decades of work by various 

individuals and organisations. The first step in the creation of site predictive modelling was for 

archaeologists to identify wide-scale patterns between site locations and characteristics of the 

landscape, either cultural or environmental. Most modern predictive modellers attribute the start of 

predictive model theory (Kohler 1988, Dalla Bona 1994, van Leusen 2002, Altschul, Heidelberg et al. 

2004, Altschul, Hayden et al. 2005, Canning 2005, Kamermans and van Leusen 2005, Kvamme 2006, 

Mount and Schwarz 2006, Verhagen 2007d) to Willey’s work in the Virù Valley of Peru (Willey 1953, 

Willey 1956), though some mention is given to Julian Stewart’s work as an inspiration. Willey 

undertook large-scale landscape surveys, and established that there were correlations between site 

locations and environmental features (Willey 1953, Willey 1956).  

While much of the literature credits Willey, in the 1950s, as the first to recognise patterns in 

site placement, similar work identifying patterns to site placement was accomplished in the United 

Kingdom decades before (Crawford 1912, Fleure 1916, Crawford 1921, Fox 1923). These earlier 

endeavours are not mentioned in any predictive modelling literature. This could be because the 

early development of predictive modelling was undertaken primarily by North American 

archaeologists, as will be discussed further in this chapter (Bradt, Groenewoudt et al. 1992 p. 268; 

Garcia Sanjuan and Wheatley 1999 p. 215; Kamermans 2007 p. 72), who may not have been aware 

of these earlier developments outside of their geographic area of work when they created the first 

history of predictive modelling.  

Environmental Determined Predictive Models 

 Willey’s ‘first discovery’ started what has been termed an ‘ecological approach’ to site 

placement (Verhagen 2007d). This term refers to the idea that the environment influences the 

location of sites. This approach stresses the environmental characteristics of a landscape, e.g. rivers, 

hills, etc., which determine where archaeological sites are situated. In the last few decades this 

perspective has come under scrutiny as both limiting the potential of predictive models and not 

fitting into the wider interests of archaeologists (Brandon, Burgett et al. 2000, Ebert 2000, Wheatley 

2004, Harris and Lock 2006).  

After Willey first made the connection between site locations and environmental factors 

several theories and analytical techniques developed this idea further (Kohler 1988, Dalla Bona 

1994, van Leusen 2002, Altschul et al. 2004, Altschul et al. 2005, Canning 2005, Kamermans and van 

Leusen 2005, Verhagen 2007d). One such concept was Chisholm’s (1962) geographical location 

theory, which adopted many of the concepts laid out by Isard (1956). This would be followed by site 

catchment theory (Higgs and Vita-Finzi 1972), which tried to establish the rules that determine 

human spatial behaviour, advanced from the perspective of subsistence economy. Appearing a little 
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later was Jochim’s publication, Hunter-Gatherer Subsistence and Settlement: A Predictive Model 

(Jochim 1976), which looked at the location of hunter-gatherer sites. All these theories led predictive 

modelling to be described in terms of environmental determinism:  

‘Most archaeological predictive models rest on ... [the] fundamental assumption[s] ... that 
the settlement choices made by ancient peoples were strongly influenced or conditioned by 
characteristics of the natural environment ...’ (Asch and Warren 2000 p. 8) 

Landscape Studies 

 During the 1970s several settlement pattern projects were undertaken, similar to Willey’s 

project. A leading group in the United States concerned with this research was the Southwest 

Anthropological Research Group (SARG). The goal of SARG was to investigate where archaeological 

sites were located. They concentrated on environmental factors as the source of site placement and 

tried to create ‘objective measurements’ of environmental variables and their relationships to site 

placement (Hill and Plog 1971). By the 1970s and 1980s this work, and that of others (Bettinger and 

Thomas 1976, Bettinger 1980, Shermer and Tiffany 1985, Kellogg 1987), had established that, as 

Willey had found, it was possible to identify that there are significant correlations between 

environmental factors and site location.  

Development of Methodologies  

 With the knowledge that site locations could be correlated landscape components, such as 

closeness to water, slope, etc., a method was needed to take these observations and convert them 

into a predictive model. It was at this time, the 1970s, that the three oldest and most widespread 

methodologies for predictive modelling were created: Boolean, Weighted and Regression 

Algorithms. The following sub-section of this chapter will briefly describe these methods for readers 

who may be new to predictive modelling. 

Boolean Models 

 This method works by first making a hypothesis about where a site/archaeological resource 

will be located (Gillings and Wheatley 2002). The hypothesis is decided by the designer and some are 

instinctive/judgement choices (Dalla Bona 2000, Gillings and Wheatley 2002, Canning 2005, Cole, 

Madry et al. 2006, Kamermans 2006, Kuiper, Leveson et al. 2006, Verhagen 2006, Kay and Witcher 

2009) while others use decision rules (Verhagen 2006). Attempts to make a more rigorous protocol 

for the assignment of values to attributes have resulted in the use of the ratio of expected sites to 

observed sites (Brandt, Groenewoudt et al. 1992, Johnson 1996, Berger and Verhagen 2007) or even 

using statistics to gather correlations to guide their choices (Gazenbeek and Verhagen 2007). Other 

modellers have used hybrid models of both judgement and observed patterns (Verhagen 2006, 

Clarke, Ford et al. 2009). Regardless of how these hypotheses are made, Boolean mathematics is 
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used to assign one of two numbers, 0 or 1, to each of the two possible outcomes. In the case of site 

predictive modelling, those outcomes are site or archaeological resources either present (1) or 

absent (0) (Gillings and Wheatley 2002). More than one hypothesis can be made at a time and can 

also be combined by multiplying together the assigned numbers (Altschul et al. 2004). Accordingly, 

the results indicate one of the two possible outcomes (0 or 1) (Equation 1). 

 

((x1, x2, x3,…) > 0) = M      ex. (1 × 1 × 1 × 1) = 1 = M 

((x1, x2, x3,…) ≤ 0) = M’       (1 × 0 × 1 × 0) = 0 = M’ 

Equation 1: Boolean maths for site predictive models. 

 

In practice, this method is fairly straightforward. The model creator makes statements about where 

sites will be using any of the above-mentioned methods, e.g. sites will be located: within 2km of 

water; within 1km of a Roman road; only on flood plains. After these statements are made the 

different data is assigned either a 0 or a 1. Using this example, if sites will be found within 2km of 

water, a modeller would then say all locations within 2km will be assigned 1. The reverse of this 

statement then must be assigned 0. So any area that was more than 2km from water should be 

assigned a 0. This is done with every statement and then applied to each section of the study area 

(Equation 2).  

 

((x1, x2, x3,…) > 0) = M    (1 × 1 × 1) = 1 = M = site presence 

((x1, x2, x3,…) ≤ 0) = M’    (0 × 0 × 0) = 0 = M’ = no site present 

(0 × 1 ×x 1) = 0 = M’ = no site present 

 

(distance to water ≤ 2km = 1) × (distance to Roman road ≤ 1km = 1) × (land type is 

floodplain = 1) 

(distance to water > 2km = 0) × (distance to Roman road >1km = 0) × (land type is not 

floodplain = 0) 

Equation 2: Boolean maths in site predictive models. 

 

A result of this method is that those areas on a map that meet all of the conditions will be 

labelled 1, indicating the likelihood of a site being present. Those that do not meet all of the 

conditions will be labelled 0, defining the absence of a site. The results of this method can be seen in 

Figure 3. A definition 0 would follow even if a location were to meet 99 out of 100 conditions. These 



24 

 

results are called a ‘multivariate discrimination function’, because it produces a binary, mutually 

exclusive outcome, making it impossible to have any sort of gradation of where sites might be 

(Gillings and Wheatley 2002 pp. 152–153). These binary results make it very hard to scale these 

models to include multiple factors, as the more factors that are added, the more likely false 

exclusion will occur. 

 

Figure 3: Boolean model of Azoto Mesa (Altschul et al. 2005 p. 90 Figure 6.10). 

Weighted Models 

 In this method, the variables used to construct the model (distance to water, slope, etc.) are 

given weights (ratings) on how likely they are to indicate the location of archaeological resources 

(Brandt et al. 1992, Dalla Bona 2000, Gillings and Wheatley 2002, Altschul et al. 2004, Kamermans 

2006). These weights are then added together to create models with multiple outcomes. Weighted 

models do not reject a location as suitable if it meets 99 out of 100 of the criteria as a Boolean 

model would, and because of this are usually considered a better method (Dalla Bona 2000).  

How one assigns weights, as with the Boolean method, varies. Some weights are made 

through instinctive/judgement choices (Dalla Bona 2000, Gillings and Wheatley 2002, Canning 2005, 

Cole et al. 2006, Kamermans 2006, Kuiper et al. 2006, Verhagen 2006, Kay and Witcher 2009), by 

decision rules (Verhagen 2006), the ratio of expected sites to observed sites (Brandt et al. 1992, 

Johnson 1996, Berger and Verhagen 2007) or even using statistics to gather correlations to guide 

weighting (Gazenbeek and Verhagen 2007). Finally, in some instances, hybrid models of both 

judgements and correlative patterns have been advanced (Verhagen 2006, Clarke et al. 2009). In 

these instances, a variety of weighting systems can be used depending on the preference of the 
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model creator. However, once the weighting is done, all the weights for the variables are then added 

together to obtain a result for the location (Altschul 1990, Dalla Bona 2000, Kay and Witcher 2009).  

 

Location 1= (x1 + x2 + x3) = (.1 + .2 + .5) = .8 = more likely to have sites 

Location 2= (x4 + x5 + x6) = (.01 + 0 + .01) = .02 = less likely to have sites 

Equation 3: Example of how weighted method works. 

 

As with the Boolean models, this simple addition can be completed using either raster or vector data 

in a GIS program. Those areas with higher numbers are then labelled as being more likely to have 

archaeological resources and vice versa for lower probability areas. Figure 4 shows a graphical 

representation of this, with a grading of red areas being more likely to have sites to green areas 

where there is very little chance of finding archaeological sites.  

 

Figure 4: Loco Hills weighted site predictive model with four classes (Altschul et al. 2005 p. 59 Figure 
5.10). Class 1 are areas least likely to have sites and class 4 are areas most likely to have sites. 

Regression Algorithms  

 While environmental determinism became one of the persuasive theories of the 1960s and 

1970s archaeologists, mainly in North America (Trigger 2006), quantitative approaches became a 

driving force behind the methodologies of that era (Kohler 1988, Kamermans 2006). Several volumes 

on spatial analysis (Hodder and Orton 1976, Clarke 1977) were published during this time and 
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heavily influenced the methods of predictive modelling, especially towards the use of statistics 

(Kohler 1988, Gaffney, Stancic et al. 1996, Kamermans 2006). In the early 1970s, Green was the first 

to use multiple linear regression on Mayan sites in Belize to create a predictive model (Green 1973). 

Since then regression algorithms have been one of the most popular methods for creating 

predictive models, especially regression algorithms (Cole, Gould et al. 2006, Hatzinikolaou 2006). 

This method calculates the correlations between known sites and different aspects of a landscape 

(Figure 5), e.g. distance to water, political boundaries (Warren 1990b, Gillings and Wheatley 2002, 

Cole et al. 2006, Hatzinikolaou 2006). These correlations are then projected onto areas not 

previously surveyed (Warren 1990b, Asch and Warren 2000, Beckman and Duncan 2000, Gillings and 

Wheatley 2002, Altschul et al. 2004). Like other methods, the results can be represented graphically 

in an easy to understand map form (Figure 6). Unlike Boolean or weighted methods, regression 

algorithms are not easily accomplished by hand and require the use of GIS software (Warren 1990b). 

 

Figure 5: Idealised logistic regression of two groups of objects (sites and nonsites) across two 
independent variables (X and Y) (after Warren 1990a). The line running lengthwise through the 
horizontal scatter of points is the axis that best discriminates sites from nonsites. The vertical plane is 
defined by an S-shaped logistic regression line. This line shows an increase in site-presence 
probability from left to right along the axis of discrimination  (Asch and Warren 2000 p. 11 Figure 
2.2). 
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Figure 6: Logistic regression model Otero Mesa (Altschul et al. 2005 p. 138 Figures 7.12 & 7.13)  

There are two commonly used regression algorithms for site predictive models: linear 

multiple regression (Equation 4) and logistic multiple regression (Equation 5) (Gillings and Wheatley 

2002 pp. 154–156). The results produced by each algorithm are different and have advantages and 

disadvantages. While linear multiple regression produces estimates on the absolute value of a 

variable, logistic multiple regression produces results of the probability of a particular outcome 

(Warren 1990b, Gillings and Wheatley 2002, Legg and Taylor 2005, Cole et al. 2006).  

 

y = a + b1x1 + b2x2 + b3x3 + … + bkxk 

Equation 4: Linear multiple regression; where a is a constant and b1…bk are all the variables, and y is 
the dependent variable, in this case, archaeological resources.  

 

L = a + b1x1 + b2x2 + b3x3 + … + bkxk 

Equation 5: Logistic multiple regression. 
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There are multiple linear regression and logistic multiple formulae but they all take the same forms 

(Equation 4 and Equation 5). Unlike linear multiple regression, logistic multiple regression algorithms 

usually undergo a further step to calculate the value of L (Gillings and Wheatley 2002 p. 155) using 

the following formula: 

 

P = (eL/ 1 + eL) = 1 / 1 + e(1–L) 

Equation 6: Cumulative logistic distribution function. 

 

There is also binary logistic regression, which has been used on occasion for modelling (Crawford 

and Vaughn 2009). Binary logistic regression does not assume normality of the variables, but does 

require non-collinearity between independent variables (Crawford and Vaughn 2009 p. 548): 

 

Probability (y) = 1 / ( 1 + (Exp – b0 + b1X1 + b2X2 … bpXp)) 

Equation 7: Binary logistic regression function. 

 

The maths for these formulae is not simple and cannot be given justice in this short section, but for 

more information on regression approaches in site predictive modelling see Warren (1990b) or Asch 

and Warren (2000) or Kvamme (1988b). For more on the statistics it is best to examine Altschul and 

Rose (1998).  

Demand for Predictive Modelling (Gartner Hype Trigger and Peak Expectations) 

 The development of these methods was created as a result of the perceived demand for 

predictive models in the United States of America because of the passage of the National Historic 

Preservation Act (NHPA) in 1966, the National Environmental Policy Act (NEPA) in 1969 and the 

Archeological Resources Protection Act of 1979 (ARPA). These Acts mandated different actions on 

the part of federal government agencies with regard to the cultural resources that were, and still 

are, under their jurisdiction. One of the actions required was the identification of significant cultural 

resources that might be disturbed or destroyed (Berry 1984, Altschul et al. 2004, Dore and 

Wandsnider 2006, Naunapper 2006, Wescott 2006, Verhagen 2007d, Cushman and Sebastian 2008). 

Suddenly, hundreds of millions of acres of government land needed to be surveyed or required pre-

development investigations. At the same time, the introduction of new state laws also required 

similar work on state land (Kaufmann 2006). 

The principle was established that predictive models could locate sites and that CRM 

managers could demonstrate they had undertaken their due diligence to locate the archaeological 
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resources without having to carry out a physical survey (Berry 1984, Brandon et al. 2000, Altschul et 

al. 2004, Dore and Wandsnider 2006). Not having to physically survey millions of acres of land would 

save significant amounts of time and money. This concept of ‘predictive locating’ can be seen in 

some of the first models created. For examples see Dincauze and Meyer (1976), Fuller, Gregonis et 

al. (1976), Grady, McCarth et al. (1978), Hackenberger (1978), Robertson and Robertson (1978), 

Barber and Roberts (1979), Holmer (1979), Burgess, Kvamme et al. (1980), DesJeans, Feiss et al. 

(1980), Senour (1980). This was part of the ‘Trigger Event’ on the Gartner Hype Cycle for predictive 

modelling, the other trigger was GIS.  

The Rise of GIS 

 A rising demand for predictive models in archaeology also coincided with the appearance of 

a new tool, the computer. The late 1970s brought the first use of affordable computers; more 

accurately, ‘affordable for archaeologists’, to speed up the process of predictive model creation 

(Kvamme 1983a, Kvamme 1983b, Kvamme 2006). Chadwick was probably the first to use computers 

for predictive modelling in his study of the location of Early to Middle Helladic settlements in the 

Messenian region of Greece (Chadwick 1978). However, computers could only speed up the process 

of predictive modelling so much without the right software.  

What had the most profound effect on modelling was the development of Geographic 

Information Systems (GIS) software programs for computers in the 1980s (Kohler and Kvamme 1988, 

Kvamme 1989, Kvamme 1999, Verhagen 2007d). GIS allows the user to manipulate and calculate 

large amounts spatial data (Savage 1990, Kvamme 1999, Beckman and Duncan 2000, Ebert 2000, 

Wescott 2000). Like word processing programs, there are many versions of GIS programs but they all 

do comparatively similar things, with some notable differences (Zubrow 1990, Hunter and Steiniger 

2010). As stressed by many predictive modellers, GIS is a tool, nothing more (Allen, Green et al. 

1990, Gaffney and van Leusen 1995, Harris and Lock 1995, Neustupny 1995, Berman, Camilli et al. 

1996, Church and Ruggles 1996a, Church and Ruggles 1996b, Verhart and Wansleeben 1997, 

Beckman and Duncan 2000, Ebert 2000, Altschul et al. 2004, Verhagen 2007a, Wilcox 2009). For a 

general discussion on archaeology and GIS see Gillings and Wheatley (2002). 

Before GIS, the tools involved in the creation of site predictive models were simple grid 

maps, pencils and either a calculator or scrap paper (Church and Ruggles 1996a, Kvamme 1999, 

Wescott 2000, Kvamme 2006a). Probabilities were calculated by hand and then sketched onto grid 

maps. This was, and still is, a time-consuming endeavour that severely limited the size and speed at 

which models could be created (Wescott 2000). By adopting GIS programs archaeologists could 

complete these steps in a matter of hours instead of days, saving effort, time and money (Brandon 

et al. 2000). If it had not been for GIS, the creation of models would have ‘required the services of a 
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small army to … create, test, and display the … predictive model’ (Asch and Warren 2000). Further 

advantages of GIS were: 

‘The standards inherent in the design of the system assure that the data structure remains 
constant. In this way, analyses are cumulative, regardless of current research questions, 
researchers, or biases. In addition, the intuitive, graphical platform of GIS provides an 
interface through which ideas may easily be communicated with non-specialists.’ (Altschul et 
al. 2004 p. 2) 

It was the increasing ease of calculations and usability of GIS programs, combined with 

affordable computers to run the programs, that made the wide-scale use of site predictive modelling 

possible in the 1980s (Kohler and Kvamme 1988, Kvamme 1989, Kvamme 1999, Beckman and 

Duncan 2000, Brandon et al. 2000, Wescott 2000, Harris and Lock 2006). This, with the increased 

demand because of new laws in the United States, was the ‘Trigger Event’ on the Gartner Hype Cycle 

for predictive modelling. 

Peak of Inflated Expectations 

 During the late 1970s and early 1980s there was an explosion in predictive modelling in the 

United States for CRM purposes (Kohler and Parker 1986, Thomas 1988). To support the growth of 

this work a US government department, the Bureau of Land Management, commissioned a 

comprehensive study of, and guide to, best practices for the creation of site predictive models. This 

was published as Quantifying the Present and Predicting the Past: Theory, Method and Application of 

Archaeological Predictive Modelling (Judge and Sebastian 1988). The late 1980s also saw that first 

development of predictive modelling in Canada (Dalla Bona 2000). This was the ‘Peak of Inflated 

Expectations’ for predictive modelling, the creation of a guide in anticipation of significantly more 

models being created and use expanding to other countries. 

Clouds on the Horizon: Problems with Theory (‘Trough of Disillusionment’) 

 The focus on the environment as the most significant factor influencing site location in the 

1960s, 1970s and 1980s arose because of the prevailing theoretical trends in North America at that 

time (Canning 2005). ‘New Archaeologists’ or ‘Processual Archaeologists’ prevailed as the dominant 

group and their theories and methodologies were firmly rooted in objective measurements and 

environmental determinism (Aldenderfer and Maschner 1996, Harris and Lock 2006, Trigger 2006, 

Ladefoged and McCoy 2009). Subsequent studies of archaeological theories have shown that the 

specific theory an archaeologist follows is predominantly determined by the intellectual climate 

when they began working, often approximately defined by the decade (Zeder 1997). This caused 

many archaeologists to perceive predictive modelling as an essentially Processual endeavour 

(Kamermans et al. 2009b).  
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While site predictive modelling was flourishing at the beginning of the 1980s, academic 

archaeologists were going through a re-examination of their methods and theories. From the late 

1970s and through most of the 1990s Processual archaeology was the focus of criticism by Post-

Processual archaeologists (Verhagen 2007d, Verhagen and Whitley 2011). Predictive modelling ties 

closely with the idea of ecological determinism, and statistical analysis came under criticism as part 

of a the wider critique of Processual archaeology put forth by the Post-Processual archaeologists 

(Harris and Lock 2006, Verhagen 2007d, Verhagen and Whitley 2011). Even GIS, a tool, came under 

scrutiny for being too ecologically deterministic (Gaffney, Stancic et al. 1996, Harris and Lock 2006). 

These criticisms did not just come from Post-Processual archaeologists. Some who would consider 

themselves Processualist were also critical of predictive modelling. 

The term ‘environmental determinism’ was levelled at predictive models both as a 

descriptor and as a derogatory term. The ecological traits that had been used to recreate patterns of 

site locations throughout the 1960s to the 1980s were criticised for not representing the full range 

of potential factors determining human choices and decisions for site selection, such as religion or 

trade (Ridges 2006, Verhagen 2007d, Kay and Witcher 2009). This critique created a debate in site 

predictive modelling about what actually determines site location, a debate that is still ongoing 

today (Verhagen and Whitley 2011).  

Furthermore, many Post-Processual archaeologists firmly refute the idea that human 

behaviour can be patterned (Shanks and Tilley 1987, Harris and Lock 2006, Deeben, Hallewas et al. 

2007). Such an approach is hard to reconcile with predictive modelling, which is predicated on the 

idea that there are patterns to human behaviour: 

‘Predictive modelling is a technique to predict, at a minimum, the location of archaeological 
sites or materials in a region, based either on the observed pattern in a sample or on 
assumptions about human behaviour.’ (Kohler and Parker 1986 p. 400)  

Clouds on the Horizon: Problems with Accuracy, Precision and Legality (‘Trough of 

Disillusionment’) 

 At the same time that the theory behind the models was being criticised, concern was raised 

about models being used as a substitute for field surveys to inventory heritage resources (Berry 

1984, Gaffney and van Leusen 1995, Harris and Lock 1995, Ebert 2000, Wheatley 2004, Dore and 

Wandsnider 2006, Kamermans 2007, Verhagen 2007a, Kamermans et al. 2009b). The central 

argument against using site predictive models to replace field surveys to meet the demands of the 

new laws was that they were simply not accurate enough. The models did not capture all of the 

previously known sites in a study area and as such their ability to capture unknown sites was 
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questioned (Kvamme 1990, Brandon et al. 2000, Wheatley 2004, Kamermans 2007). Ebert observed 

that: 

‘For some reason, and I have yet to determine just why this may be, the reported accuracies 
of inductive modelling seem to hover in the 60-70% range. Perhaps no one wants to report 
“success” rates only minimally higher than 50% ... sixty to seventy percent is not really bad 
but it is not very good either – certainly not good enough to justify spending a lot of money.’ 
(Ebert 2000 p. 133) 

Others pointed out (Verhagen 2007c, Verhagen 2009) that the reason accuracy is so low has 

to do with balancing it against precision. In predictive modelling, accuracy is the measurement of 

how many locations are correctly labelled as containing archaeological remains (Altschul et al. 2004, 

Whitley 2004b, Kvamme 2006, Verhagen 2007c). However, if we label 100% of a project area as 

likely containing sites then the model, technically, would be 100% accurate as the model has 

identified all the archaeological resources correctly (Figure 7). This sort of labelling, full coverage of a 

subject area, is useless as it does not tell us where sites are going to be located, other than 

everywhere. To limit the area archaeologists have to look for archaeological remains, they have to 

use precision in their models. Precision in archaeological predictive modelling is defined as labelling 

the least amount of land as likely to contain archaeological resources (Altschul et al. 2004, Whitley 

2004b, Verhagen 2007c).  

 

Figure 7: Accuracy vs. precision in site predictive modelling. 

A modeller wants accuracy because missing a site creates the possibility for ‘gross error’. 

That is when a model indicates an area of land is devoid of archaeological resources when in fact it 

contains archaeological sites (Altschul 1988). Missed sites can result in two outcomes, neither of 

which are desirable for archaeologists. One is that archaeological resources are simply bulldozed 

without any further investigation, because the model indicated no archaeological resources were in 
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a location (see Verhagen (2007c) for an example of this scenario almost happening). This is an 

incalculable loss of information, a scenario that archaeologists, heritage managers and the 

concerned public find unacceptable (Gaffney and van Leusen 1995, Harris and Lock 1995, Ebert 

2000, Wheatley 2004, Dore and Wandsnider 2006, Kamermans 2007, Verhagen 2007a, Kamermans, 

van Leusen et al. 2009a). The other possible outcome is that an agency, such as government 

organisations, construction companies or developers, would have invested heavily in predictive 

modelling so they could avoid destroying archaeological resources when building but then still find 

archaeological resources in their development sites (Verhagen 2007c). They would then still have to 

undertake expensive surveys and rescue excavations. Not only would they have excavation costs, 

but delays in construction would ensue, which would be even costlier as they would also have to pay 

for idle equipment. This, in effect, makes it risky for developers to use predictive models. Precision 

reduces the scope required for archaeological prospection in advance of major developments, saving 

both time and money.

 

Figure 8: Accuracy of the Montgomery logistic regression model. The curves are percentages of 
correct predictions along a gradient of predicted site probability (Asch and Warren 2000 p. 25 Figure 
2.7). Note there appears to be an error in the original figure – the x-axis scale should go to 1.0 and 
not 0.0. 
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As precision increases, accuracy decreases or vice versa (Figure 8). As models get more 

precise, labelling less of a study area ‘high probability’, accuracy goes down as fewer sites are 

captured. This is not perfectly linear but, as seen in Figure 8, rarely can significant gains be made in 

one area without some sort of diminishing returns in the other. Thus 30% or 40% of known sites 

were observed being missed in many models and it was concluded that this was an unacceptable 

error rate for Cultural Resource Managers (Custer, Eveleigh et al. 1986, Ebert 2000, Wheatley 2004).  

In addition to these accuracy problems, CRM archaeologists in North America, which at this 

time was the primary location of predictive models (Brandt et al. 1992, Garcia Sanjuan and Wheatley 

1999, Gillings and Wheatley 2002, Stancic and Veljanovski 2006, Kamermans 2007), realised that 

these models would not help them to fulfil all the legal requirements of the National Historic 

Preservation Act: Sections 106 and The National Environmental Policy Act. This legislation does not 

just require the identification of locations but also requires a determination on the significance of 

the cultural resource for our understanding of the past (Altschul et al. 2004, Altschul, Klein et al. 

2005, Dore and Wandsnider 2006, Cushman and Sebastian 2008). In effect, this turns inventories 

from simple exercises in site location to locating sites and determining whether the sites can tell us 

something about the past. Early attempts to use predictive modelling to replace field surveys were 

thus ruled insufficient in the eyes of the law. 

While several proposals have been put forward to create predictive models that could 

determine potential site significance, these proposals have never been implemented (Altschul et al. 

2005, Cushman and Sebastian 2008). As such, predictive models are currently not judged to be able 

determine the significance of a site. Most US archaeologists now conclude that ‘Although a model 

can identify areas of high potential for sites, it in no way substitutes for or eliminates the need for 

intensive archaeological survey.’ (Kuiper and Wescott 2000 p. 74.)  

Further Problems 

To compound the issues faced by predictive models, a slew of technical problems appeared 

at about the same time. These details will be discussed in further detail in the next chapter but a 

sample of them from Kvamme’s (2006 p. 6) list include: 

 ‘GIS data did not have sufficient resolution and poorly represent the real world’; 

 ‘GIS data were inaccurate’; 

 ‘known site distributions in extant government files and databases are biased because of 

(a) the haphazard way in which many were discovered and (b) variations in 

obtrusiveness, visibility, and preservation’; 

 ‘many known sites are inaccurately located on maps and in databases’. 
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The Doldrums 

During the 1980s and 1990s these technical issues, combined with a heavy critique of 

methodologies and purpose by the academic sector of archaeology, together with a reduction of 

interest from CRM archaeologists, resulted in a significant reduction in interest in predictive 

modelling. It has been said that at the beginning of the 1990s predictive modelling ‘entered a period 

of doldrums’ (Brandon et al. 2000, Brandon and Wescott 2000,  Kvamme 2006) that some say 

persists to the present, or at least till recently (Altschul et al. 2004, Deeben et al. 2007). This was 

predictive modelling’s ‘Trough of Disillusionment’ on the Gartner Hype Cycle. 

A Silver Lining 

 Yet this period was not without its positive developments. Predictive modelling became less 

North America-centric and the application of predictive models began to spread around the world, 

with European archaeologists beginning to take an interest in predictive modelling (Brandt et al. 

1992, Lock and Stançic 1995, Kvamme 1999, Verhagen 2007d). Archaeologists in the Netherlands 

were especially keen adopters (Kamermans and van Leusen 2005, Kamermans et al. 2009a). Since 

then, Dutch archaeologists have been the driving force behind some of the most recent innovations 

in predictive modelling (Verhagen 2007d), as will be discussed later in this chapter. At the same 

time, some CRM managers in the United States still saw use for them, especially those involved in 

CRM for the military (Altschul et al. 2004).  

New Demand  

 An important development in site predictive modelling during the 1990s was the creation of 

the Minnesota Department of Transportation (MDOT) State-wide Site Predictive Model. The 

Minnesota model was created to help with the planning of new developments, in what is called the 

‘flag and avoid’ method of use (MDOT 2009). ‘Flag and avoid’ is when locations that are likely to 

contain archaeological resources are highlighted by a site predictive model and then development 

projects are moved around those locations (Figure 9) (Warren 1990a, Altschul et al. 2004, Canning 

2005, Cole et al. 2006, Naunapper 2006, Stancic and Veljanovski 2006, Wescott 2006, Cushman and 

Sebastian 2008, Bailey, Grossardt et al. 2009, MDOT 2009, Kamermans et al. 2009a). Surveys and 

mitigations are still carried out but the surveys take less time, because they are able to avoid the 

majority of sites (MDOT 2009). If there are fewer sites affected, that also means less time and 

money is spent on rescue excavations or further testing.  
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Figure 9: Hypothetical example of flag and avoid use in predictive modelling for a new road.  

Using ‘flag and avoid’ had dramatic results in Minnesota. The MDOT estimates that it was 

able to handle an increase of 35% more projects without increasing its archaeological staff. At the 

same time, the application of this approach lowered the need for mitigations by 80% and increased 

their turnaround on projects by 30%. This resulted in savings of around $12 million over the first 

four-year period of the model’s use and it was estimated that it paid for itself within the first year 

and a half of use (MDOT 2009). These numbers do not take into account other organisations or 

individuals who also used the model to support their planning needs.  

This project was followed by another in North Carolina (Cole et al. 2006, Cole et al. 2006). 

Furthermore, using ‘flag and avoid’ with predictive modelling has also become a more widely 

accepted tool among a variety of construction organisations (Cambridge Systematics 2009). It has 

led to an increased interest in predictive modelling and a revival in its use. 

The Predictive Decision Matrix 

Flag and avoid was not the only new use of predictive modelling for CRM purposes. In 

Canada, managers began to expand the use of predictive models by combining them with decision 

matrixes. These were tools to tell the users what types of archaeological resources they will likely 

encounter, what sort of developments will disturb them and the appropriate action to take (Dalla 

Bona and Larcombe 1996, Dalla Bona 2000, Clement, Kloot et al. 2001). This simplified a complex 

process for non-archaeologists into a graphical presentation. It was found to provide a useful 

planning tool for non-archaeologist project managers, who were usually unsure about what to do 

(Dalla Bona 2000). These predictive model and decision matrix combinations have been proposed 

for use in the USA (Altschul et al. 2004, Altschul et al. 2005), for determining the significance of a site 
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(Altschul et al. 2004, Altschul et al. 2005, Cushman and Sebastian 2008, Goudswaard, Isarin et al. 

2009) or rarity of the site type (Verhagen 2007c).  

Predictive Erosion  

 At the same time, predictive models were also combined with erosion models and remote 

sensing techniques to produce maps of unsurveyed areas where potential sites were threatened by 

erosion (Figure 10) (Ebert and Singer 2004, Dore and Wandsnider 2006). As many CRM managers do 

not have the resources to examine all of the land under their care, this application of predictive 

modelling highlights those locations in most critical need of survey. There have been suggestions of 

expanding this technique to counteract additional problems such as looting, recreational damage, 

military training, etc. (Dore and Wandsnider 2006.) 

 

Figure 10: Example of erosion of site predictive model (Ebert and Singer 2004 Figure 4). 
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Light at the End of the Tunnel (‘Slope of Enlightenment’) 

 Even during the ‘doldrums’ a small group of archaeologists continued to publish on the 

topic, but with the renewed demand for predictive models because of new uses like ‘flag and avoid’, 

the turn of the millennium saw a significant increase in research. There were two major books from 

conferences, Practice Applications of GIS for Archaeologists: A Predictive Modeling Kit (Brandon and 

Wescott 2000) and GIS and Archaeological Site Location Modelling (Mehrer and Wescott 2006). In 

the Netherlands archaeologists ran a series of projects and created several publications on the 

subject of improving site predictive models (Kamermans and van Leusen 2005, Verhagen 2007a, 

Kamermans et al. 2009a). This has led to the development and testing of new methods such as 

Bayesian and Dempster-Shafer statistics (see Chapter 2 for discussion on these methods). The first of 

these publication was ‘Predictive Modelling for Archaeological Heritage Management: A Research 

Agenda‘ (Kamermans and van Leusen, eds, 2005), which addressed the issues of methodology and 

model improvement. The second was Case Studies in Archaeological Predictive Modelling (Verhagen 

2007a), which tackled some of the cultural resource issues of predictive models. These were 

followed by Archaeological Prediction and Risk Management (Kamermans et al. 2009a), which 

combined elements of both with additional projects to create an integrated overview of predictive 

modelling. 

Furthermore, a series of individual journal articles and reports (Whitley 2006, Podobnikar 

and Šprajc 2007, Goel, Jackson et al. 2009, Verhagen and Whitley 2011) have also been published in 

the last few years that have added greatly to the development of predictive modelling. For example, 

Podobnikar and Šprajc’s (2007) predictive model looked at the cultural concept of visualisation as a 

predictor; a practice proposed a few years ago (Harris and Lock 2006), while others have tested out 

newer methodologies, like Fuzzy Logic (Hatzinikolaou 2006, Bailey et al. 2009), in hopes of improving 

predictive modelling. Several recent models have looked at cultural factors as influencing features in 

predictive modelling, addressing some concerns of environmental determinism (Maschner 1996, 

Harris and Lock 2006, Ridges 2006, Stancic and Veljanovski 2006, Podobnikar and Šprajc 2007, 

Crawford and Vaughn 2009).  

Where is Predictive Modelling in Its Development Now? 

The late 1970s and early 1980s witnessed a strong need for predictive modelling to meet the 

needs of CRM archaeologists in the USA. This also coincided with the application of GIS in predictive 

modelling, which greatly aided in the speedy construction of predictive models. These combined 

became the ‘trigger’ point for predictive modelling, with strong demand combined with easier 

access. All of which led to a ‘Peak of Inflated Expectations’, when the BLM created a ‘how to’ guide 
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for modelling in anticipation of great demand, Quantifying the Present and Predicting the Past: 

Theory, Method and Application of Archaeological Predictive Modelling (Judge and Sebastian 1988).  

The late 1980s and the 1990s, the period typified as the ‘doldrums’ (Brandon et al. 2000, 

Brandon and Wescott 2000,  Kvamme 2006), saw the inflated hype surrounding predictive modelling 

dissipate. In the case of the United States, it was realised that predictive modelling cannot replace 

physical survey and still meet the requirements of the law. Furthermore, predictive modelling in 

general ran into problems with the rise of Post-Processualism as one of the dominant theoretical 

perspectives. This development coincided with the realisation that there are many technical 

problems with predictive models. 

Finally, aspects of the ‘Slope of Enlightenment’ were seen, with archaeologists proposing 

new methodologies to help solve some of the problems facing predictive modelling. Models began 

to take into account non-environmental factors. Most importantly, with the development of the 

MDOT Minnesota predictive model, a new use was found for predictive modelling that did not 

attempt to substitute for physical surveys. All this began in the mid-1990s with the MDOT model and 

was continuing, arguably, to when this project began. although as some have mentioned, predictive 

models were, and possibly still are, in a period of depressed use (Altschul et al. 2004, Deeben et al. 

2007).  

Market for Predictive Models 

 Even with developments to address issues in predictive modelling there was still great 

potential for predictive modelling to expand beyond its current niche use. In the area of CRM, where 

it sees its strongest use, predictive models are still not of interest to the majority of cultural resource 

management organisations (Kaufmann 2006). Only one country has full site predictive model 

coverage, The Netherlands, and only one state in the United States, Minnesota. This represents a 

little less than .17% of the world’s land, leaving well over 99% of the land without site predictive 

models. Even when including other smaller models, the percentage of world coverage was unlikely 

to break one or two percentage points.  

This is the historical context in which this project began— uncertainty about whether 

predictive modelling had reached its peak performance and usefulness for archaeology, finding a 

small niche use within archaeology or if it could be improved still further and be expanded in use. 

There certainly was the potential for growth given the low usage, which meant there was still scope 

to add something significant to the development of predictive modelling. As the next chapter will 

review there were, and still are, many problems that can be addressed and significant areas in which 

this project can contribute to the development of predictive modelling.  
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Chapter 2: Current Problems Facing Archaeological Predictive 

Modelling 

 The previous chapter presented a history of predictive modelling that matches the Gartner 

Hype Cycle and indicated that predictive modelling was on the ‘Slope of Enlightenment’, as it was in 

2010 when this research project began. Predictive models still had problems that needed to be 

solved in order to improve the process and expand its use beyond a small niche of archaeologists.  

What follows is the presentation of the major problem that this project aims to solve: poor 

model performance. As discussed in the previous chapter, there were many issues raised with 

predictive modelling in the past and the justification for choosing poor performance as the topic is 

discussed. This is then followed by exploration of the potential causes of poor performance. In doing 

so this chapter covers the first planned-for project activity: 1. research causes of poor model 

performance and find cause to address. The chapter ends with a discussion of the causes of poor 

performance that this project would attempt to solve. 

Overarching Problem 

‘the reported accuracies of inductive modelling seem to hover in the 60–70% range... sixty to 
seventy per cent is not really bad but it is not very good either – certainly not good enough 
to justify spending a lot of money ...’ (Ebert 2000 p. 142). 

There are problems with predictive modelling but Ebert’s criticism cuts to the heart of the reason 

99% of the world is without predictive modelling. As discussed in the review of predictive modelling, 

if a model does not capture enough sites it can lead to ‘gross error’ (Figure 11). A solution would 

then be to increase accuracy to eliminate this ‘gross error’. The problem with this solution is that the 

‘flag and avoid’ method requires a high level of precision in models. Most developers have their own 

constraints that require them to use only certain parts of the landscape, e.g. you build on land you 

own, wind turbines need to be in locations that have wind. This limits the amount of land that is 

suitable for development and where cultural resources are absent, thus the need for high precision. 

Fundamentally, this means that models need to have both high accuracy and precision, but that 

rarely happens. 
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Figure 11: Example of gross error sites found during construction. Predictive model indicates that an 
area is devoid of sites and the project is moved to those areas. Sites are found in the very low 
probability areas. 

One estimate is that for models to be truly useful they need to capture 70% of sites in the 

high probability zone while only covering 10% of the land (Gibson, 2005). The Minnesota Model 

(MnModel) discussed in Chapter 1 captures 85.5 % of the sites while covering 23% of the land and 

that has a proven record of use and utility (MDOT 2009). To measure both accuracy and precision 

Kvamme has developed a simple statistic known as Kvamme’s Gain Statistic. This takes the total area 

covered by the model (precision) and the total number of sites captured, either with old data or new, 

to create a simple number that represents both accuracy and precision. Kvamme’s Gain Statistic is 

the most commonly used method of measuring quality of models (Verhagen 2007c, Ducke, Millard et 

al. 2009). 

 

Gain = 1 – (% of total area covered by model / % of total sites within model area) 

Equation 8: Kvamme’s Gain Statistic, the closer to one the better the model.  

 

Using Kvamme’s gain equation it was possible to compare these numbers to see what goal models 

should be obtaining in their predictive model as far as accuracy and precision is concerned. 

The results were that the MnModel had a gain value of .73 and Gibson’s proposal was .86. 

This indicates that a gain value of at least .7 to .85, or above, is needed to have significant precision 

and accuracy to reduce the possibility of gross error and to be able work in most CRM contexts. 

Otherwise models end up in drawers or buried on hard drives, and are never used again (Altschul et 

al. 2004). 

An examination of previously reported gain values or calculated gain values revealed that 

many models do not reach this level of performance (Table 1 below). These models only represent 
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those projects with published results; the actual number of predictive models created in the world is 

much higher. It was seen that across a plethora of locations, using a variety of methods, many 

models struggle to reach the desired level of performance.  

This is a clear, unresolved problem for predictive modelling. Why does this matter? Because, 

as Ebert said, performance like that, ‘… is not really bad but it is not very good either – certainly not 

good enough to justify spending a lot of money on doing this sort of predictive modelling’ (Ebert 

2000 p. 142). Predictive models are not always cheap to produce; the MN model cost $6 million and 

the North Carolina model cost the same but did not cover the whole state (Cole et al. 2006, MDOT 

2009). The original models for the subject area of this project were part of a $1 million project. 

These costs occur for different reasons, much of which has to do with the cost of obtaining data, and 

can vary from project to project. Still, this is a significant amount of funding to invest in a project that 

may not return the desired performance. It is not surprising that heritage managers are not more 

interested in predictive modelling. As such the aim of this research project was created – improve 

the performance of site predictive modelling for CRM archaeology uses.  



Accuracy Precision  Gain Statistic Source Method 

82% 24.6% .7 (Clarke et al. 2009) Bayesian 

59%   (Harris and Lock 2006) Boolean 

84% 22% .74 (Hasenstab and Resnick 1990) Boolean/correlative 

1996: 36.1%; 1997: 67.6%; 1998: 70.3% 1996: 13.9%; 1997: 16%; 1998: 
14.8% 

.79 (Gazenbeek and Verhagen 2007) Correlative 

89.8%; 79.4% 61.3%; 46.7% .32; .41 (Verhagen 2007c) Correlative 

89.19%; 83.78% 12.48%; 16.25% .86; .58 (Dalla Bona 2000) Deductive/weighted 

  .45-.73 (Ducke et al. 2009) Dempster-Shafer 

  .9242; .9316; .9412; 9297; .9218; 
.9333 

(Bailey et al. 2009) Fuzzy Logic 

42 of 46 high (91%); 4 of 46 medium (9%)  (19.2%) high; (29%) medium Gain .52-.79 (Kuiper and Wescott 2000) Regression 

77% 30% .61 (Asch and Warren 2000) Regression 

79%   (Beckman and Duncan 2000) Regression 

95%; 85% 8% high; 11% medium .92 and .87 (Custer et al. 1986) Regression 

87.6% 1st; 50.7% 2nd   (Legg and Taylor 2005) Regression 

80%  24.6% and 30.6%  (Wilcox 2009) Regression 

65.5% high; 30.8% medium 26% high; 47% medium .63 (Cole et al. 2006) St. John’s County Regression 

84% high 29% high .65 (Cole et al. 2006) Duval County Regression 

57.89% 42.82% .26 (Crawford and Vaughn 2009) Regression 

90% 1st; 90% 2nd  22.4% 1st; 39% 2nd  .75; .57 (Devitt, Hill et al. 2009) Regression 

86.97%   (Maschner 1996) Regression 

68%   (Warren 1990a) Regression 

75%   (Carmichael 1990) Regression 

71% 1st; 75% 2nd    (Ridges 2006) Regression 

70.8% 20% .72 (Cole et al. 2006) Regression 

86% 1st; 84.5% 2nd 18% 1st; 23% 2nd .79; .73 (Graves 2010) Regression 

24% high; 57% middle 6%; 36% .75; .37 (Brandt et al. 1992) Weighted 

20% highest; 53% with medium 6%; 26% .7; .49 (Kay and Witcher 2009) Weighted 

38.75% 1st; 67.38% 2nd  25% 1st; 44.94% 2nd  .35; .33 (Altschul et al. 2004) FortStewart Weighted 

60% 40% .333 (Altschul et al. 2004) Eglin AFB Weighted 

1: 71.43% & 53.33%; 2: 71.42% & 68.33%  46.18% 1; 51.3% 2 .75-.81 (Mink, Pollack et al. 2006) Weighted 

60% 46% .23 (Brewster and Reddy 1999) Weighted 

Table 1: Selection of performance results from site predictive models. Kvamme’s Gain Statistic column (Black text) when listed (Red text) estimated based on 
accuracy and precision values. 
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Performance Vs Other Problems 

Poor model performance is not the only reason that predictive modelling is not more widely 

used. Chapter 1 reviewed the issues with the lack of explanatory power of predictive modelling, and 

its reliance on Processual theories and methods made it unappealing to non-Processual 

archaeologists. However, the initial goal of this project was to explore predictive modelling for CRM 

archaeology purposes. So initially the other concerns with predictive modelling were set aside and 

performance was focused on, but as will be shown in this chapter the issues of performance and lack 

of theory are not mutually exclusive.  

Specific Causes of Performance Issues 

 A failure to obtain high accuracy and precision results is the problem, but what are the 

causes? When this project was started it was suspected that there might be several causes that 

contributed to this issue. There have been a few reviews of the detailed problems surrounding 

predictive modelling (Ebert 2000, Wheatley 2004, Kvamme 2006, Kamermans 2007). Since those lists 

were created work has been conducted to solve some or all of the issues listed. This section of the 

chapter presents the review of the listed issues conducted at the beginning of this project to 

determine which problems were still relevant to site predictive modelling, and whose solving might 

have contributed to solving model performance issues. 

Kvamme’s list (2006 p. 6) (Table 2 below) will serve as a baseline to start with in the review. 

Several additional problems not addressed in Kvamme’s list will be examined as well. This should 

provide a clear idea of what are, and are not, still problems for predictive modelling.  

 Archaeological  

1 ‘Many archaeological sites are buried, and we cannot model them because we do not and cannot know 
their distribution.’ 

2 ‘Known site distributions in existing government files and databases are biased because of (a) the 
haphazard way in which many were discovered and (b) variations in obtrusiveness, visibility, and 
preservation.’ 

3 ‘Many known sites are inaccurately located on maps and in databases.’ 

4 ‘One cannot model archaeological site distributions because “site” is a meaningless concept; human 
behaviour did not occur in discrete bounded areas but formed a continuum over the landscape.’ 

5 ‘Functional, temporal, or cultural site types cannot be readily determined for most sites in an 
archaeological database, yet profound locational differences must exist between the types.’ 

6 ‘We must be able to model and understand the archaeological formation process, both natural and 
cultural, before we can model where sites might be found.’ 

 Environmental 

7 ‘We do not know the locations of resources important in past times, such as water sources, springs, 
edible-species distributions, lithic raw material sources, and the like.’ 

8 ‘Past environments were very different from present ones, so we cannot model the past based on the 
present.’ 

9 ‘Models based on landscape variables are meaningless.’ 

 Technical 
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10 ‘Models based on site presence-absence criteria are mis-specified because one cannot assume site 
absence.’ 

11 ‘Blue-line features on topographic maps are frequently arbitrary and unreliable indicators of water.’ 

12 ‘Modern soil types are meaningless because they are changed from the past and, in any case, are 
frequently irrelevant to past farming practices.’ 

13 ‘GIS data have insufficient resolution and poorly represent the real world.’ 

14 ‘GIS data are inaccurate.’ 

15 ‘Linear distances computable in GIS are meaningless.’ 

16 ‘Models based on statistics cannot meet random-sampling assumptions because most extant data were 
not obtained by random sampling.’ 

17 ‘Models derived from random cluster sampling are mis-specified because they do not adjust for 
underestimated variances.’ 

18 ‘Grouping sites of many types into a single, site-present class creates too much variability to model.’ 

 Behavioural 

19 ‘Environmental variables shown to be important to site locations may only be proxies for variables that 
were actually important.’ 

20 ‘Human behaviour is too idiosyncratic to be modelled; one cannot model the unique.’ 

21 ‘One must understand and model complete behavioural systems before archaeological models can be 
built.’ 

22 ‘Site location is more a function of unknown (and frequently unknowable) social environments 
representing dimensions that we cannot map.’ 

23 ‘The most interesting sites are the (idiosyncratic) ones that do not fit the pattern. 

Table 2: Table created to include Kvamme’s list of problems with predictive modelling (Kvamme 2006 
p. 6). 

Kvamme’s list, while comprehensive, catalogues many issues as separate problems when 

they could have been combined as a single issue. Much of this can be viewed as semantics, whether 

or not a person is a ‘splitter’ or a ‘lumper’ when it comes to lists. To minimise repetition for this 

dissertation I take a lumping approach and try to address several similar problems at once, where 

applicable. which means not all of the problems are addressed in the order of the list. 

To start: 

3. ‘Many known sites are inaccurately located on maps and in databases.’ (Kvamme 2006 p. 
6) 

In many predictive models, site location data comes from existing databases (Kamermans 

2007 p. 74) and is usually the result of the compilation of many different projects and surveys 

(Carmichael 1990). This results in a lack of standardisation, clerical mistakes, and incomplete records 

that lead to errors in the data (Marozas and Zack 1990, Garcia Sanjuan and Wheatley 1999, Beckman 

and Duncan 2000, Kuiper and Wescott 2000, Altschul et al. 2004, Kvamme 2006). 

It is thought that inaccurate data will lead to poor model outcomes and work has 

determined there are problems with site records used for predictive models. A project in Nebraska, 

USA, found that sites were anywhere from a few hundred metres to kilometres away from their 

correct locations in the database. To account for that they had to add buffer rings using GIS to site 

locations of between 353m to 1km to produce a 90% confidence in site locations (Dore and 
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Wandsnider 1999, Dore and Wandsnider 2006). An examination of site locations held in Bureau of 

Land Management regional offices in the United States found that close to 10% of sites are located 

more than 100m, and some close to 400m, from their supposed locations (Kvamme 1988a). 

However, neither of these projects investigated whether this would cause problems with predictive 

models.  

My Masters project did spot checks of sites. Errors were found to exist in site locations in the 

subject area but these errors had no effect on the results for three different methods of predictive 

model creation: Boolean, weighted and regression algorithms (Rocks-Macqueen 2010). This was 

because the number of misplaced sites was fairly small, not enough to change correlations or cause 

false results, and these incorrect locations actually had the same characteristics as the correct 

location (Rocks-Macqueen 2010). For example, one site was incorrectly located in the database by 

100m but was still next to a drainage channel on flat land (Figure 12), an area that would have been 

considered high probability.  

This leaves this problem as one that had potential to be investigated. There were known 

issues with data accuracy in predictive modelling. My Masters work found that it was not an issue, 

but that was a single case study. There was the possibility that this could be a major issue in 

predictive modelling and further testing would be needed to confirm that and find some possible 

solutions. 

 

Figure 12: Hypothetical example of mis-located site not changing the correlation with environmental 
factors. 
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4. ‘One cannot model archaeological site distributions because “site” is a meaningless 
concept; human behaviour did not occur in discrete bounded areas but formed a continuum 
over the landscape.’ (Kvamme 2006 p. 6). 

It has been recognised that sites are arbitrary boundaries drawn around locations.(Gaffney and van 

Leusen 1995, Berman et al. 1996, Ebert 2000, Dore and Wandsnider 2006, Harris and Lock 2006, 

Whitley 2006). This was required because CRM laws and regulations force some sort of limit on what 

is considered an archaeological resource (van Leusen 1996, Brewster and Reddy 1999, Dalla Bona 

2000, Verhagen 2007b). This limit can range from any two different artefacts in close proximity 

(Verhagen 2007b) or a historically significant location to a group or larger society (Altschul et al. 

2004, Altschul et al. 2005, Dore and Wandsnider 2006, Cushman and Sebastian 2008). For CRM 

purposes a site is a very real concept that must be modelled, though defined differently across 

countries. 

If there is concern with modelling a ‘continuum over the landscape’ of cultural heritage, then 

one could use ‘siteless’ data. In practice, while not widespread, several ‘siteless’ surveys have been 

undertaken (Dunnell and Dancey 1983, Ebert, Larralde et al. 1984, Ebert and Kohler 1988, Banning 

2002, Caraher, Nakassis et al. 2006). However, while ‘siteless’ surveys have been created there has 

been almost no interest in creating a ‘siteless’ predictive model. Still, the option is available should a 

model maker feel that it is in their best interest to do so.  

The concept of the site and its relationship with archaeology is complex and affects whole 

swathes of archaeological research, theory and work, not just predictive modelling. But, given the 

goal of focusing on CRM which requires ‘sites’ this aspect was deemed too broad for a project that 

was to focus on predictive modelling and not particularly relevant to the project at hand. 

5. ‘Functional, temporal, or cultural site types cannot be readily determined for most sites in 
an archaeological database, yet profound locational differences must exist between the 
types.’ (Kvamme 2006 p. 6 ) 

Which is roughly the same concern as:  

18. ‘Grouping sites of many types into a single, site-present class creates too much variability 
to model.’ (Kvamme 2006 p. 6) 

Due to sample sizes and gaps in the information known about sites in databases, some modellers 

lump together all site types regardless of cultural, utility, or temporal makeup in a single class 

(Brandon et al. 2000, Kuiper and Wescott 2000, Dore and Wandsnider 2006, Kamermans 2007). It is 

said that models that employ such data are of low statistical value when trying to infer differential 

patterns of human behaviour (Hasenstab and Resnick 1990, Dore and Wandsnider 2006). Several 

models have been quite successful in separating out different site types and creating effective 
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models from those (Hasenstab 1996, Maschner 1996, Kuiper and Wescott 2000, Stancic and 

Veljanovski 2000, Gazenbeek and Verhagen 2006, Kamermans 2006, Vermeulen 2006, Whitley 2006, 

Berger and Verhagen 2007, Gili, Mico et al. 2007, Ducke et al. 2009).  

The variety of methods used in different models means that lumping together site types  

only effects some models and not others. Furthermore, the assumption that it ruined the model has 

yet to be tested, meaning this area did have the need for more research.  

6. ‘We must be able to model and understand the archaeological formation process, both 
natural and cultural, before we can model where sites might be found.’ (Kvamme 2006 p. 6) 

The cultural aspect of that statement encompasses this issue as well:  

22. ‘One must understand and model complete behavioural systems before archaeological 
models can be built.’ (Kvamme 2006 p. 6) 

The reason Kvamme lists this as a problem is not clear. Looking at the published literature, no 

reference is found that makes the statement, ‘We must be able to model and understand the 

archaeological formation process, both natural and cultural, before we can model where sites might 

be found’, or any related statements. It is possible that Kvamme is referencing unpublished work, 

but he does not cite where these problems come from so it is impossible to follow up on this point. 

No other predictive modelling references this as being an issue. Given the lack of discussion around 

this topic in predictive modelling it was not considered a strong candidate for further research for 

this thesis.  

All of the following issues address the problem of past environments: 

7. ‘We do not know the locations of resources important in the past times, such as water 
sources, springs, edible-species distributions, lithic raw material sources, and the like.’ 

8. ‘Past environments were very different from present ones, so we cannot model the past 
based on the present.’ 

12. ‘Modern soil types are meaningless because they are changed from the past and, in any 
case, are frequently irrelevant to past farming practices.’  

(Kvamme 2006 p. 6) 

Archaeologists have questioned the effectiveness of using present environmental data as a basis for 

past environments in predictive modelling (Canning 2005, Verhagen 2007e, Beckman and Duncan 

2000, Brandon et al. 2000, Ebert 2000). At the risk of repeating the same statement over and over 

again, no research has been provided to back up these statements. For example, several modellers 

have discussed the changes in soil type (Allen 2000, Brandon et al. 2000, Ebert 2000) but as yet this 

is untested in regards to negative consequences for predictive modelling. Whitley’s caloric based 
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predictive models (Goel et al. 2009, Verhagen and Whitley 2011), which are created using soil 

patterns to estimate the caloric capacity of a landscape for his predictive models, appear to suffer no 

ill effects from using modern soil data. This leaves these problems as unsubstantiated but possible 

candidates for investigation.  

11. ‘Blue-line features on topographic maps are frequently arbitrary and unreliable 
indicators of water.’ (Kvamme 2006 p. 6) 

This problem is identified by several archaeologists (Brandon et al. 2000, Ebert 2000). At the 

beginning of this project it was assumed that this question was not an issue, due to past models 

working using modern hydrology data and some models recreating waterways. An example of the 

recreated waterways was the PUMP III predictive model, discussed in chapter 5, which used GIS 

tools to reconstruct waterways. However, as this project would discover after first dismissing this 

issue, it was actually a very significant problem, at least for this project’s case study area.  

20. ‘Environmental variables shown to be important to site locations may only be proxies for 
variables that were actually important.’ (Kvamme 2006 p. 6)  

In essence, correlation does not equal causation in predictive modelling (Kvamme 1985, Maschner 

1996, Brandon et al. 2000, Dalla Bona 2000, Harris and Lock 2006). This is a good point and one that 

can be applied to all of archaeology and other disciplines. It is too general a problem to be a site 

predictive modelling problem only, and was considered better placed as a critique of archaeology in 

general.  

9. ‘Models based on landscape variables are meaningless.’ (Kvamme 2006 p. 6) 

This issue is discussed in the section in Chapter 2 about environmental determinism and the Post-

Processual critique of models based on environmental variables, concepts that have been hotly 

debated in site predictive modelling literature (Ebert and Kohler 1988, Wheatley 1993, Gaffney and 

van Leusen 1995, Wheatley 1995, Gaffney et al. 1996, van Leusen 1996, Wheatley 1996, Asch and 

Warren 2000, Beckman and Duncan 2000, Brandon et al. 2000, Dalla Bona 2000, Kuiper and Wescott 

2000, Wheatley 2004, Legg and Taylor 2005, Harris and Lock 2006, Ridges 2006, Deeben et al. 2007, 

Kay and Witcher 2009). The crux of the argument is that, by focusing on environmental factors, 

modellers were potentially excluding important cultural factors (e.g. trade, religion) which could 

influence site locations. 

It is unlikely that some archaeologists will ever accept the use of environmental factors from 

a theoretical standpoint. Furthermore, many archaeologists do not know how to include these non-

environmental factors into models (Kohler 1988, Brewster and Reddy 1999). In addition, 
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representing cultural factors using GIS is time-consuming and difficult, putting off other model 

makers from the idea (Judge and Sebastian 1988, Kvamme 1988b, Gaffney and van Leusen 1995, 

Joolen 2003, Kvamme 2006, Deeben et al. 2007) while environmental data is the easiest to obtain 

(Kvamme 1990, Kvamme 2006) and cheaper (Dore and Wandsnider 2006). Nevertheless, many 

recent models have branched out into cultural or semi-cultural based predictive modelling (Lock and 

Harris 2006; Ridges 2006; Verhagen, Kamermans et al. 2007) to challenge this assumption that 

predictive models are based solely on environmental factors. This was considered a potential topic 

of investigation. 

13. ‘GIS data have insufficient resolution and poorly represent the real world.’  

14. ‘GIS data are inaccurate.’  

(Kvamme 2006 p. 6)  

This is a problem that has been widely discussed in the literature (Altschul 1990, Carmichael 1990, 

Kvamme 1990, Savage 1990, Warren 1990a, Allen 2000, Brandon et al. 2000, Ebert 2000, Dore and 

Wandsnider 2006, Stancic and Veljanovski 2006, Kamermans 2007, Cushman and Sebastian 2008). 

Furthermore, how GIS programs interpret raw data can cause errors, as is the case when using some 

DEM datasets and different interpolation programs (Marozas and Zack 1990, Warren 1990a, Bennett 

and Hageman 2000). These problems, along with such issues as sample size, software used, datum 

of the data, data entry, etc. (Kaufmann 2006) makes the accuracy of GIS data a major concern for 

archaeologists.  

Even though this is a real concern of modellers, the effects of such problems are diminishing 

with time. For example, it took the United States Geological Survey (USGS) from 1935 to 1992 to 

create 1:24,000 scale topographic maps of the whole United States of America (USGS 2012a). Now 

this work is done by satellites in a matter of months. It is now possible to obtain LiDAR data with 

50cm resolution of most of the globe for predictive modelling (Mesterházy, Padányi-Gulyás et al. 

2012). Data correction techniques are now catching many of the errors that can occur in the data. 

With these advances, not just in predictive modelling but in GIS and data collection, there was little 

room to contribute to this topic.  

23. ‘The most interesting sites are the (idiosyncratic) ones that do not fit the pattern.’ 
(Kvamme 2006 p. 6)  

Idiosyncratic sites are those sites described as ‘red flag site’ in Chapter 1. An argument has been 

made that these sites are more important because they are not predicted (Altschul 1990, Hasenstab 

and Resnick 1990, Altschul et al. 2004). The criticism is that because these sites are not in high-
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priority areas, according to the predictive model, they will be ignored or, worse, destroyed by 

development, which is not the purpose of a predictive model (Berry 1984, Gaffney and van Leusen 

1995, Harris and Lock 1995, Ebert 2000, Wheatley 2004, Dore and Wandsnider 2006, Kamermans 

2007, Verhagen 2007a, Kamermans et al. 2009b). 

‘Once anomalies, or red flags, are identified they become the subject of additional research. 
As patterns are found, many anomalies become predictable. Those sites whose locations 
remain anomalous grow in importance. Archaeologists want to know about these sites to 
further our insight into the past. Managers want to know the locations of these sites so that 
they can be included early in project plans.’ (Altschul 1990 p. 288) 

This is the issue with performance of models discussed at the beginning of this chapter. During my 

Masters research I examined some of these ‘red flag’ sites and found that they were the result of 

errors in site coordinates (Rocks-Macqueen 2010). The reason the model did not predict sites being 

at those locations was because they were, in fact, not actually there. Mislocation of sites in 

databases could explain these ‘red flag’ sites for some models. Some sites may be missed because of 

the resolution of the data used (Padányi-Gulyás, Stibrányi et al. 2012) or how the data were 

incorporated into a GIS program (Marozas and Zack 1990, Warren 1990, Hageman and Bennett 

2000). This would indicate that ‘red flag’ sites are actually data errors and model performance may 

be related to that.  

1. ‘Many archaeological sites are buried, and we cannot model them because we do not and 
cannot know their distribution.’ (Kvamme 2006 p. 6) 

The potential issue is that buried sites might be missed during surveys or testing and excluded from 

the dataset used in the model creation or in model testing. This exclusion could result in false 

correlations or false assumptions; basically, models that are wrong (Savage 1990, Asch and Warren 

2000, Dore and Wandsnider 2006, Berger and Verhagen 2007, Verhagen 2007c, Verbruggen 2009). 

This same line of thinking can be applied to other issues, such as a site being destroyed either 

through natural occurrences, like erosion, or man-made damage, such as looting or ploughing (Dore 

and Wandsnider 2006). Which is essentially this issue: 

10. ‘Models based on site presence-absence criteria are mis-specified because one cannot 
assume site absence.’ (Kvamme 2006 p. 6) 

Basically, both issues can be summarised as: one cannot assume that because a location has been 

reported as not containing a site that no site exists there, or did not exist at some point in time. 

Is this still a problem for site predictive modelling? Surprisingly, no one had tested this 

assumption that missed sites would affect the outcome of a specific model, or attempted to quantify 

how many sites are supposedly missed. Still, methods have been developed to combat this issue: 
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 Fuzzy logic methods allow the incorporation of expert opinion on the likelihood of such 

problems (Bailey et al. 2009).  

 With the Dempster-Shafer methods it is possible to conduct surveys or sub-level tests 

looking for buried deposits and then incorporate this into the current or previous 

predictive models (Ducke et al. 2009). 

 The Minnesota State-wide model took into account locations that would have deep 

buried deposits, thus not found in most site databases (MDOT 2009).  

 In a case from northeastern Oklahoma, archaeologists modelled where sites would be 

buried due to a soil-geomorphic model and then proceeded to find ones that had been 

missed by previous surveys (Artz and Reid 1983). 

 Verhagen and Berger’s model in France specifically used buried archaeological sites to 

create the predictive model (Berger and Verhagen 2007).  

 There has been discussion on how to undertake a sampling process to look for such 

buried sites (Tol and Verhagen 2007).  

 

These are just examples dealing with buried sites. Advanced models have recently been 

created to map not just site density but also the likely preservation of sites (Verhagen 2006). 

Kamermans has called this process ‘land evaluation’ and has used it with the evaluation of site 

locations in the Netherlands, see Kamermans (2000) for more details. This is a method advocated by 

other archaeologists (Brandon et al. 2000).  

To say this issue is solved for all predictive models would be misleading, as there is potential 

for it to occur. However, there has been significant work undertaken to create methods to address 

this problem, as listed above. This has made the exploration of this problem for this project less 

appealing, as it was hard to see how one could improve upon the methods that already address the 

issue. 

2. ‘Known site distributions in existing government files and databases are biased because of 
(a) the haphazard way in which many were discovered and (b) variations in obtrusiveness, 
visibility, and preservation.’ (Kvamme 2006 p. 6)  

Part (b) is addressed in the previous section but part (a), survey bias, is still a problem. Several 

solutions to survey bias have been put forth. It has been suggested that to avoid potential biased 

data a project can collect its own data in a less haphazard way, which is well discussed in the volume 

Quantifying the Present and Predicting the Past, in the chapter on data collection (Altschul and Nagel 

1988). This data collection process has been both accomplished (see Asch and Warren (2000)) in the 

past and has a detailed methodology laid out (Tol and Verhagen 2007). One does not have to rely on 

data gathered by others to create a predictive model. 

However, in some cases collecting one’s own data may not be feasible, as data collection 

costs money and projects may be working on a small budget. Moreover, just because one collects 

one’s own data does not mean it is not biased in some way. As such, recently more methods have 
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been created to address the issue of biased data. The use of Dempster-Shafer or Bayesian 

methodologies can be used to offset potentially biased data (Verhagen 2006, Wescott 2006). Briefly, 

those methods are as follows:  

Bayesian 

‘… it is impossible to separate opinions (prior beliefs), data and decisions/actions. In the 
“classical” approach, our opinions influence our procedures in all sorts of subtle and little-
understood ways, for example in choosing the significance level of a hypothesis test. It’s 
better to be as explicit as we can about our prior beliefs, and let the theory take care of how 
they interact with data to produce posterior beliefs, rather than to let them lurk at the backs 
of our minds and cloud a supposedly “objective” belief. This way the Bayesian approach can 
be more than just a nice piece of mathematics.” (Orton 2003) 

The basic concept of Bayesian statistics is: 

 

posterior belief = conditional belief * prior belief 

Equation 9: Formula for Bayesian statistics 

 

In predictive models, prior belief would be what we know about current site locations. Conditional 

belief is new information used to adjust the traditional predictions to get the correct result, i.e. 

posterior belief. A hypothetical example of this would be an area where site density is one site per 

every 10 acres; the conditional belief. If you were to survey 20 acres you would expect to find two 

sites. But you know that when you survey land next to rivers you find one site per every one acre 

surveyed. In this hypothetical example, if you were to survey 20 acres but 10 of those acres were 

next to a river you would expect to find 11 sites (10 sites in the 10 acres next to the river and one 

site in the other ten acres). Bayesian statistics are as simple as taking into account new information 

to adjust previously held data.  

For the use of Bayesian statistics in predictive modelling the prior belief has usually been set 

as the current site density per area unit for the study area. For some projects, previous predictive 

models have been used to set the prior belief (Millard 2005, Verhagen 2006, Wescott 2006). For 

other projects, expert judgement was used as prior belief (Verhagen 2006, Ducke et al. 2009), see 

Ducke et al. (2009) for an example of expert judgement. For conditional belief, some archaeologists 

have used expected versus actual site located ratio of the study area (Verhagen 2006, Clarke et al. 

2009). Ultimately, this method compares old models/beliefs/interpretations with new data and then 

makes an adjustment layer to represent a new, more accurate or precise result through statistical 

procedure. 
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This approach has the advantage of allowing greater flexibility. When using previous site 

predictive models, regardless of type, it is possible to make improvements to the data without 

having to completely re-calculate every aspect of the model (Verhagen 2006). As new data is 

acquired these Bayesian models are automatically updated (Verhagen 2006, Wescott 2006, Finkea, 

Meylemans et al. 2008). In effect, modellers no longer have to completely disregard previous models 

because of flaws in the data but can build upon these imperfect datasets and adjust the models 

accordingly. It also means that biases in data collection can be taken into account and adjusted. 

Dempster-Shafer 

Dempster-Shafer Theory (DST) is built around the concept of belief, a generalised version of 

mathematical probability (Ducke et al. 2009). This method enables the use of uncertainties and 

beliefs as inputs for a predictive model alongside more traditional datasets (Canning 2005). The 

method works by taking one or more hypotheses and comparing them against variables that might 

be related to the belief of the hypothesis’s outcome (Canning 2005, Stancic and Veljanovski 2006). 

'Belief' being different then to 'probability', as the latter involves a more rigid mathematical 

framework. This is done through the following mathematical formula: 

 

  

Equation 10: Formula for Dempster-Shafer 

 

This chapter will not go into the details of this method as the best description can be found in 

Canning (2005)  and Ducke et al. (2009).  

Even if Dempster-Shafer or Baysian methodologies are not used predictive modellers can 

simply list areas where the data may be weak or potentially captured in a bias way, as was the case 

with the MDOT model (Figure 13). That model labelled areas that had very little archaeological data 

but high potential as ‘suspected high’ while areas with strong survey data and high potential as 

‘high’. These adjusted users’ expectations so that they realised the model could be wrong in certain 

areas where the data was weak. Signposting can be an effective tool when dealing with possible 

problems with the data. 
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Figure 13: Minnesota Department of Transportation Assignment of Values for Confidence in 
Archaeological Site Probability. From MDOT website (MDOT 2009). 

A final point is that the limited testing of haphazard gathering of data in database does not 

always affect models. The PUMP III project in New Mexico (Altschul et al. 2005) (discussed further in 

Chapter 5) was able to create a time depth analysis of databases to examine the biases in haphazard 

data collection resulting from CRM work and found that they had no effect on the predictive models 

(Figure 14). Further testing is needed but haphazard collection of data through CRM work might only 

be relevant in a few cases for predictive modelling. 

 

Figure 14: Correlation of logistic model by year of data available for PUMP III project. Very little 
deviation in models results due to data being added between years  (Altschul et al. 2005 Figure 6.18 
p. 101). 

Given the work to develop methodologies to address the issue of biased data and that in 

some cases that haphazard data collection does not affect model outcomes there was little scope for 

further improvement.  



56 

 

Method-specific Problems  

 There are issues with specific methods as well as general predictive modelling problems.  

16. ‘Models based on statistics cannot meet random-sampling assumptions because most 
extant data were not obtained by random sampling.’ (Kvamme 2006 p. 6) 

Some statistical methods require random-sampled data (Beckman and Duncan 2000). This can be 

hard to achieve in archaeology. Site databases are the result of many different projects and surveys 

being compiled together (Kuiper and Wescott 2000, Kamermans 2007, Verhagen 2007c). Even when 

random-sampling surveys are undertaken they are not done correctly for predictive modelling (Berry 

1984, Verhagen 2007c) or these projects can have different standards or goals that lead to errors in 

the data and a distinctly non-random sampling strategy (Marozas and Zack 1990, Garcia Sanjuan and 

Wheatley 1999, Beckman and Duncan 2000, Kuiper and Wescott 2000, Altschul et al. 2004, Kvamme 

2006).  

17. ‘Models derived from random cluster sampling are mis-specified because they do not 
adjust for underestimated variances.’ (Kvamme 2006 p. 6) 

This is what has been referred to as the Teotihuacan Quandary (Altschul and Nagel 1988). It is so 

named because some sites, due to their political power and cultural significance, like Teotihuacan in 

Mexico Valley, would greatly influence the location of the surrounding archaeological record but 

could easily be missed by random sampling (Altschul and Nagel 1988). Of course, anyone conducting 

a survey of the Mexico Valley region would not miss Teotihuacan, due to its importance and 

immense size, but it would have to be excluded by the strict requirements of random sampling. 

Correlative methods are stuck in a problem where they must exclude important sites to meet 

random sampling but by excluding important sites they are potentially damaging their models.  

There are additional problems with correlative models, and in particular with the regression-

based models: 

 Some modellers misinterpret results, as the results are usually relative and not absolute in 

mathematical terms. The answers provided by these methods do not specify that area X has 

a higher probability of having archaeological resources than area Y. In practice, the model 

suggests that X’s probability is Z and Y’s probability is V. Misrepresenting this outcome is 

quite common in many site predictive models (Woodman and Woodward 2002). 

 Collecting data samples can be difficult as tests have shown that significant amounts of the 

landscape need to be surveyed: <10% in (Altschul et al. 2005), 7.5% in (Gazenbeek and 

Verhagen 2007) otherwise the model will fail (Stancic and Veljanovski 2006). This 

requirement cannot always be met from existing data and the acquisition of this additional 
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data can be costly and time-consuming, or impossible in some cases (Kuiper and Wescott 

2000). 

 Problems specific to linear regression algorithms mean that this equation assumes a linear 

relationship between sites and landscapes. This means that linear regression models fail 

with non-linear datasets (Warren 1990a). Furthermore, it is necessary for the data to be 

measured on an ordinal scale or higher. Unfortunately, spatial data is frequently nominal 

rather than ordinal (Gillings and Wheatley 2002). 

 A technical problem with the logistical regression method is that it can be biased towards 

prediction of the larger class examined. In archaeology, the larger class is usually site 

absence (Gillings and Wheatley 2002). 

 

Other traditional methods, like Boolean and Weighted, have problems of their own that 

make them just as undesirable. Boolean methods are very poor for explanatory modelling or 

modelling in general as they result in binary mutually exclusive outcomes. As mentioned in Chapter 

1, even if an area fulfilled 99 out of 100 of the desirable characteristics for containing sites it would 

still be marked as poor by Boolean methods. Medium or mild archaeological intensity cannot be 

captured using a binary, mutually exclusive, result (Altschul et al. 2004). 

Weighted methods have been found to rely on overly simplistic assumptions, e.g. people 

lived near water; people liked flat land. These are criticised because they ignore theoretical 

approaches to landscape and settlement, except in the most basic sense. Moreover, many weighted 

methods undergo little testing to determine to what extent each attribute influences the model 

(Brandon et al. 2000).  

More Methods, More Problems 

 It is for these very reasons that there has been a recent push to promote and develop new 

methodologies (Brandon et al. 2000, Kamermans and van Leusen 2005, Mehrer and Wescott 2006, 

Verhagen 2007a, Kamermans et al. 2009a). However, the limited testing of these new methods 

against older methodologies has not proven to be very successful (Ducke et al. 2009) and there 

remain issues with these methodologies. 

For instance, testing the Dempster-Shafer method has resulted in mixed outcomes. This 

method derives from research in the Netherlands, but when applied to different periods it returned 

varied levels of performance (van Leusen, Millard et al. 2009). In some instances, this method was 

found to be an improvement on previous methods (Palaeolithic and Mesolithic period sites), but in 

other instances it was found to perform worse (late medieval period sites). Since the model has not 

provided significant improvements over previous methods it remains to be seen if there is scope for 

significant research to be devoted to this method in the future.  
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A serious problem with Bayesian methods is that any data used to establish conditional 

belief needs to be independent of the previous data and non-biased (Millard 2005, Verhagen 2006, 

Clarke et al. 2009). This may sound simple, but obtaining new data can be complex and time-

consuming.  

‘The bottleneck in this statement is the fact that the new data should be independent from 
the old data in order to be able to adapt the posterior belief; otherwise there is the very real 
danger of self-fulfilling prophecies. This is precisely the problem of using archaeological 
predictive maps for guiding surveys: there will be a natural tendency to select those areas 
where high site densities are predicted, and this may lead to an ever-increasing amount of 
biased-sample data.’ (Verhagen 2006 p. 187) 

Another problem with Bayesian statistics is that it is not capable of dealing with revisions of 

the original hypothesis. If a model is wrong and needs additional parameters, then it will have to be 

completely rebuilt. This has led those who have tested this method to conclude:  

‘The claim, sometimes made, that Bayesian statistics constitute a superior way of doing 
statistical analysis, is in my view exaggerated. Given the doubts and complexities 
surrounding the subject, I have not further pursued its development.’ (Verhagen 2007f p. 
91.) 

Summation of Issues 

 After reviewing the issues with predictive modelling and whether they were being resolved 

or not, the following table of problem status was created to help visualise areas that still needed to 

be solved: 

Category Problems Raised with Predictive Modelling 

General to all 
of archaeology 
or unknown 
how it affects 
predictive 
modelling 

6. ‘We must be able to model and understand the archaeological formation process, both 
natural and cultural, before we can model where sites might be found.’  
20. ‘Environmental variables shown to be important to site locations may only be proxies 
for variables that were actually important.’ 
22. ‘One must understand and model complete behavioural systems before archaeological 
models can be built.’ 

Problems with 
methodologies 
created to 
solve the 
issues 

1. ‘Many archaeological sites are buried, and we cannot model them because we do not 
and cannot know their distribution.’ 
2. ‘Known site distributions in existing government files and databases are biased because 
of (a) the haphazard way in which many were discovered and (b) variations in 
obtrusiveness, visibility, and preservation.’ 
4. ‘One cannot model archaeological site distributions because “site” is a meaningless 
concept; human behaviour did not occur in discrete bounded areas but formed a 
continuum over the landscape.’ 
9. ‘Models based on landscape variables are meaningless.’ 
10. ‘Models based on site presence-absence criteria are mis-specified because one cannot 
assume site absence.’ 
11. ‘Blue-line features on topographic maps are frequently arbitrary and unreliable 
indicators of water.’ 
13. ‘GIS data have insufficient resolution and poorly represent the real world.’  
14. ‘GIS data are inaccurate.’ 
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Problems with 
potential for 
further 
research, but 
some with 
unknown 
extent of issue 

3. ‘Many known sites are inaccurately located on maps and in databases.’ 
5. ‘Functional, temporal, or cultural site types cannot be readily determined for most sites 
in an archaeological database, yet profound locational differences must exist between the 
types.’  
7. ‘We do not know the locations of resources important in the past times, such as water 
sources, springs, edible-species distributions, lithic raw material sources, and the like.’ 
8. ‘Past environments were very different from present ones, so we cannot model the past 
based on the present.’ 
12. ‘Modern soil types are meaningless because they are changed from the past and, in 
any case, are frequently irrelevant to past farming practices.’  
18. ‘Grouping sites of many types into a single, site-present class creates too much 
variability to model.’ 
23. ‘The most interesting sites are the (idiosyncratic) ones that do not fit the pattern.’ 

Method-
specific 

16. ‘Models based on statistics cannot meet random-sampling assumptions because most 
extant data were not obtained by random sampling.’ 
17. ‘Models derived from random cluster sampling are mis-specified because they do not 
adjust for underestimated variances.’ 
Some modellers misinterpret results. 
Collecting data samples can be difficult as tests have shown that significant amounts of 
the landscape need to be surveyed for regression methods. 
Linear regression algorithms assume a linear relationship between sites and landscapes. 
Logistical regression method can be biased towards prediction of the larger class 
examined. 
Boolean assumes mutually exclusive binary outcomes. 
Weighted methods can be simplistic. 
Bayesian methods: data used to establish conditional belief needs to be independent of 
the previous data, and non-biased, which can be difficult to obtain. 

Table 3: Project categories of problems facing predictive modelling. 

 

There were issues that had been addressed in the preceding years since they were first raised. Most 

methods also have various issues, some of which are inherent in the methodology and cannot be 

fixed, e.g. Boolean methods are binary and so mutually exclusive. There were issues with potential 

for further research as they had only been briefly been explored or were unresolved.  

While considering which of these problem to pursue another possible avenue of research 

presented itself as one worthy of investigating. A project in Australia was able to improve the 

performance of previously created predictive models by adding cultural datasets to environmental 

ones (Ridges 2006). Ridges’ first model was able to capture 71% of the known sites in the high-

probability level. This model was then modified with an explanatory preference for site location, in 

this instance the cultural preference for rock art. That work was based on a solution put forward by 

van Leusen and influenced by Zubrow (1994): 

‘By applying an ED (environmentally deterministic) model to a dataset, one can eliminate 
environmental patterning in the data, leaving a clearer view of whatever cultural factors 
may influence the data.’ (Gaffney and van Leusen 1995 p. 370) 
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The result was an improvement in the model results from 71% to 75% of sites captured 

(Ridges 2006). Trying to determine why people choose locations, as opposed to simply looking for 

correlations, improved the performance of the predictive model.  

This was not a one-off experiment either; similar work by Maschner came to the same 

conclusion (Maschner 1996). He found that correlative models based on environmental factors 

accounted for the majority of site locations but that explanatory aspects were important for some of 

the sites in his study area. Complementing these findings are a steady stream of archaeologists 

advocating looking at more explanatory sources for some site locations (Gaffney and van Leusen 

1995, Allen 2000, Brandon et al. 2000, Ebert 2000, Whitley 2003, Whitley 2006, Goel et al. 2009, 

Verhagen and Whitley 2011). Other archaeologists have specifically called for more explanatory 

based work in combination with CRM goals to improve models (Whitley 2004a, Verhagen and 

Whitley 2011).  

This approach is intertwined with a larger issue, that predictive modelling use has been 

primarily limited to CRM and it has not seen widespread use by university-based archaeologists:  

‘… the development of predictive modelling has veered away from mainstream 
archaeological thought and theory and has now become a largely self-contained activity – 
enjoying reasonable success as a tool for CRM, but not commanding much respect from 
academic scholars ...’ (Verhagen and Whitley 2011 p. 50) 

In general, academic archaeologists have been sceptical of, and sometimes even averse to, 

predictive modelling as practiced in CRM (Kamermans and van Leusen 2005). This is due to a failure 

to engage theory or an explanatory framework in models (Brandon et al. 2000, Ebert 2000, Harris 

and Lock 2006, Verhagen and Whitley 2011).  

This difference between CRM and university-based archaeologists’ interest has sometimes 

been portrayed in binary fashion and using different terms (Table 4) in predictive modelling 

literature. This has further tied into debates in the predictive modelling literature about inductive 

and deductive methods. However, these descriptors are not very accurate; for example, the first 

nation-wide predictive model for the Netherlands used inductive methods (Verhagen 2007a, 

Kamermans et al. 2009a).  

Inductive Deductive Source 

Correlative Explanatory (Judge and Sebastian 1988) 

Data driven Theory driven (Gillings and Wheatley 2002 p. 149) 

American European (Lock and Stançic 1995) 

CRM (Cultural Resource 
Management) 

Academic (Podobnikar, Oštir et al. 2001, Whitley 2003, 
Stancic and Veljanovski 2006) 

Bottom Up Top Down (Podobnikar and Šprajc 2007 p. 3–4) 

Table 4: Historic divisions in the descriptions of site predictive modelling methods. 
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In the author’s personal opinion, the divisions of ‘CRM’ and ‘Academic’ archaeology are 

oversimplifications and not very productive. That being said there is agreement that predictive 

modelling has not been as popular with academic archaeologists as it has been with archaeologists 

working in CRM. The lack of interest in the academic sector has had a detrimental impact on the use 

of predictive models throughout archaeology. For example, in the UK most academic archaeologists 

who have weighed in on the subject of predictive modelling have been mainly critical (Gaffney and 

van Leusen 1995, Gillings and Wheatley 2002, Wheatley 2004). Consequently, there have been very 

limited uses of predictive models in the UK, with only two published models being completed (see 

Wilcox (2009) or Graves (2010)), and only by postgraduates not under the supervision of those 

critical of predictive modelling. Of course, this is a complex problem and the aversion of UK 

academic archaeologists may not be the only factor that influences such an outcome. However, the 

vast majority of archaeologists receive their initial training at universities in Europe (Aitchison, 

Alphas et al. 2014) and North America (Zeder 1997). It is this formative experience that determines 

the views archaeologists carry throughout the rest of their careers (Zeder 1997). If predictive 

modelling were to move beyond a niche use and gain wider usage and acceptance in archaeology, it 

would require the interest of archaeologists based in universities who can pass on this interest and 

the required skills to future generations of archaeologists. 

Initially, this project aimed to focus on performance issues and not those of theoretical 

disagreement, but further investigation presented the possibility that they were linked. The 

proposition of both increasing performance and gaining wider use/acceptance of predictive 

modelling at universities seemed like an excellent direction to take the research into. If moving away 

from environmental correlative and into more explanatory modelling could accomplish this then this 

seemed like the best route to take. The project’s objective was thus set to increase the explanatory 

abilities of predictive modelling. The next chapter goes into the details of how this project creates a 

methodology to meet that objective. 

Hindsight  

This chapter has presented the views held at the beginning of the project, but as will be 

demonstrated later in this thesis they were not always correct. The impact of blue-line features, i.e. 

water locations on maps, was underestimated at this point in the project, being dismissed as not a 

high priority issue. This and several other assumptions turned out to be incorrect but this could not 

have been known when the project began. 
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Chapter 3: Routes to Improving Predictive Models 

The review of the history of predictive modelling showed its development over the years 

and how at the beginning of this project it had not yet reached its fullest potential. Chapter 2 

presented many of the problems holding back predictive modelling. It presented the aim of this 

project – to improve the performance of site predictive models for CRM archaeology uses. The 

review also found that in several instances more explanatory methods of predictive modelling could 

lead to improved performance and that many archaeologists have been calling for such models to be 

made for decades now (Gaffney and van Leusen 1995, Allen 2000, Brandon et al. 2000, Ebert 2000, 

Whitley 2003, Whitley 2006, Goel et al. 2009, Verhagen and Whitley 2011). This meant that the 

project created an objective to increase the explanatory abilities of predictive modelling. This 

chapter explores in more detail what was envisioned as an explanatory predictive model and the 

tools that would be tested to create one, agent-based modelling. This chapter covers part of the 

second planned activity for this project — to create a methodology to solve the problem(s) that lead 

to poor model performance. 

Problems to Solve 

 Improve the explanatory abilities of predictive modelling – newer methods, while full of 

potential, have not yet proved themselves capable, as the review of methodological problems in the 

previous chapter demonstrates. Most of the methods to create predictive models involve correlative 

methods and their performance (see Table 1) and utility were doubted. As Verhagen has said of 

some of the newer correlative methods, ‘Given the doubts and complexities surrounding the 

subject, I have not further pursued its development.’ (Verhagen 2007f p. 91.) Besides the technical 

failures of these methods most lack any way to explain why sites are located where they are. 

Inductive models can show connections between different variables and site locations but cannot 

explain why those connections exist (Brandon et al. 2000, Ebert 2000, Harris and Lock 2006, 

Verhagen and Whitley 2011). While they can test archaeological theory, it is very hard to incorporate 

theory into the models. The so-called deductive-leaning/explanatory methods, like the weighted or 

Boolean methods, are simplistic and in many cases provide less information about possible past 

human behaviour than the correlative methods because they are reduced to simple assumptions 

such as distance to water, slope, etc. without any consideration of what those assumptions actually 

represent. Lock and Harris discussed such generalisations of site locations and the potential to not 

understand cause and effect in one of their papers: 

‘… now consider the following predictive model. In similar fashion to the above approach, a 
new study area was designated that again emphasised distance to water (buffered from 100, 
500, and >500 m), low slopes and valley bottomlands (<18°), fertile alluvial soils, favoured 
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old-field sites, and at a preferred elevation from just above sea level to 300 m and up to 
770 m (Figure 2.2). Without stretching the point too far, these parameters are not greatly 
dissimilar to those specified above for the prehistoric site model. However, these latter 
parameters correspond not to the location of archaeological sites, but to the habitat of the 
common sycamore tree (Platanus occidentalis L.), a fast-growing, long-lived tree and one of 
the most common trees in eastern U.S. deciduous forests (Wells and Schmidtling 2001) …’ 
(Harris and Lock 2006 p. 43) 

These issues with past methods led this project to explore new possible tools and methods for 

creating predictive models. 

New Methodology      

 This idea of pursing more explanatory predictive modelling did not occur in isolation. A little 

over ten years before this project began several predictive modellers, Brandon, Burgett and Church 

(2000), laid out a plan to create such a model through an eight-point manifesto in their paper, ‘GIS 

Applications in Archaeology: Method in Search of Theory’. This raised issues that were incorporated 

into the early thinking that drove the project’s planning, while others were not taken into account. 

The first point of the manifesto was, 

‘We advocate that the body of theory and methods that have come to be termed “landscape 
ecology” has much to offer to the study of prehistoric populations. We are fully cognisant of 
the pitfalls in borrowing from other disciplines. In regards to this we agree with Keene, who 
stated, “The source of the problem is borrowing without modification and a tendency to 
adopt rather than adapt.” (Keene 1983 p. 142) However, we find that arguments against any 
use of ecological method and theory in archaeology are provincial and arrogant.’ (Brandon 
et al. 2000 p. 159–60) 

This was a rebuke to the Post-Processual critique that began in the 1980s and carried on into the 

1990s about the environmental determinism aspect of predictive modelling. Their second point 

continued that rebuke but also acknowledged that cultural factors have a role to play in site 

location: 

‘We accept the argument that, as societies have developed, the constraints imposed by the 
surrounding environment have been increasingly mitigated by cultural responses. However, 
we believe that during almost all of North American prehistory ecological forces have limited 
and shaped prehistoric population activities to a substantial degree. We therefore argue that 
an understanding of the ecological system and its interaction with the geomorphological and 
culture systems is essential to interpreting the archaeological record.’ (Brandon, Burgett et 
al. 2000 p. 159–60) 

These were interesting arguments but ones that were not applicable to all sites, regions or 

cultural histories around the world and I would argue not even true for ‘almost all of Northern 

American prehistory’ either. As such the use of ‘landscape ecology’ as the only body of theory was 

not incorporated into the theoretical drive of this project. Such a theory was viewed as being 
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incorporated into the models but not as the sole theoretical provision. It would be their other points 

that would be embraced at the beginning of this project when creating a methodology. For example, 

there was much to agree with the statement that, ‘Arguments to the effect that human behaviour is 

too complex to model and, therefore, any attempt to model cultural systems will be so generalised 

as to be useless are nihilistic and passive in viewpoint. No one is denying the complexity of the task, 

but that is the challenge, not an excuse’ (Brandon, Burgett et al. 2000 p. 159–160).  

There was further agreement with concerns about correlative models, 

‘We strongly believe that the current additive strategy in archaeology where information 
from a number of points or sites is used as the base to build a picture of regional prehistory 
is theoretically shallow, methodologically costly, and ultimately misleading. The 
archaeological record is more profitably used to validate hypotheses generated by models 
than as a basis for model-building itself.’ (Brandon, Burgett et al. 2000 p. 159–60) 

Though several of the other points were not relevant to the goals of this project, there was a final 

point that was influential in conceptualising what the explanatory predictive model should look like:  

‘The key factor that makes this proposed approach superior to traditional correlative models 
is the flexibility of data. Traditional predictive models are generalised models of static 
variables. With the predictive model structure proposed here, managers can generate data 
that incorporates temporally variable aspects, post-depositional processes that might 
obscure, alter, or destroy the archaeological record, as well as flag areas having a high 
probability of sites, including those more specialised sites that are often ignored in 
traditional predictive models. “Understanding patterns in terms of the processes that 
produce them is the essence of science and the key to the development of principles for 
management.” (Levin 1995 p. 278)’ (Brandon, Burgett et al. 2000 p. 159–60) 

At the very earliest stages of the project, in the Fall of 2010, some of the ideas presented by 

Brandon, Burgett and Church influenced some of the early conceptions of how to meet the goals of 

this project. Adopting parts of Brandon, Burgett and Church’s manifesto such as not giving up 

because the process might be complex, injecting more theory into model creation and a flexible 

enough model to incorporate dynamic data, created a template to examine possible new 

methodologies. However, parts of their vision were also discarded. Focusing on a single theoretical 

framework when archaeologists have diversified the theory they use, was seen as 

counterproductive. Archaeological theory and methods had moved on since they wrote their paper 

and to ignore these developments would have alienated many archaeologists. Considering that one 

of the underlying drivers of this project was to garner the interests of academic archaeologists, who 

have different views on theory, this counterproductive aspect was dropped. 

Enter Agent Based Modelling 

 With these guiding principles of stronger use of theory to drive modelling and the need to 

handle dynamic data sets, agent-based modelling (ABM) was stumbled upon, a chance finding when 
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searching for terms ‘modelling’ and ‘archaeology’ in Google Scholar Search, as a possible 

tool/methodology that could meet the needs of this project. ABMs are a class of computational 

models used for simulating the actions and/or interactions of autonomous agents. An agent can be 

anything that can be represented as a single unit: a person, a plant, even a rock. If you can represent 

something as a single object, then it can be modelled by an ABM program.  

In ABM each agent individually assesses its circumstances and makes choices on the basis of 

a set of programmed rules. These individual actions then combine to create more complex systems. 

The process is one of emergence from the lower-level decisions of systems to a higher level 

(Bonabeau 2002). Agents may undertake any variety of behaviours depending on the model-maker’s 

needs (Axtell and Epstein 1996, Axelrod 1997).  

‘Repetitive competitive interactions between agents are a feature of agent-based modeling, 
which relies on the power of computers to explore dynamics out of the reach of pure 
mathematical methods.’ (Bonabeau 2002 p. 7280) 

At the simplest level, an agent-based model consists of an agent and its relationships to its 

surroundings. Sophisticated ABM sometimes incorporates neural networks, evolutionary algorithms 

or other learning techniques, to allow learning and adaptation by agents. The models can be as 

complex or as simple as needed. 

History of ABM 

 ABM began in the 1940s, with von Neumann and Ulam’s investigations into cellular 

automata and modelling of ‘cells’ and their interactions with one another through mathematics (von 

Neumann 1951). One of the earliest agent-based models was Thomas Schelling’s segregation model 

(Schelling 1971). Although Schelling used coins and graph paper rather than computers, the model 

personified the basic concept of agent-based models as autonomous agents interacting in an 

environment. In the early 1980s, Robert Axelrod hosted a tournament of Prisoner’s Dilemma 

strategies with an agent-based concept (Axelrod 1997). The first use of the term ‘agent’ as the 

definition currently used today is attributed to John Holland and John H. Miller’s (1991) paper 

(Hussain and Niazi 2011).  

ABM can use complex and significant calculations which require significant computer power. 

Due to its high demand on computers ABM did not become widely used until the 1990s, with the 

increase in affordable computing. A major thrust for ABM was the book Growing Artificial Societies 

(Axtell and Epstein 1996). This showed how simple and interpretable rules for agents could simulate 

behaviour for a wide variety of disciplines such as sociology, anthropology and economics. By the 

end of the decade the use of ABM was growing exponentially and continues to do so (Hussain and 

Niazi 2011).  
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Swarm, an agent-based modelling program which was designed by Chris Langton at the 

Santa Fe Institute to explore ‘artificial life’ (Askenazi, Burkhart et al. 1996) was created in 1996. A 

variety of agent-based modelling programs have been created over the years; the next chapter 

reviews over 70 of them. Each program has its own advantages and disadvantages as well as 

common and unique tools. Currently no program dominates ABM, which means most models are 

created with different programs and cannot be easily transferred between platforms.  

ABM in Anthropology and Archaeology 

 ABM-based work has gained prominence in archaeological and anthropological circles in 

recent years (Gumerman and Kohler 2000, Baden and Beekman 2005, Kohler and van der Leeuw 

2007, Costopoulos and Lake 2010). This is partly due to the fact that archaeologists have played key 

roles in the development of the software for ABM. Kohler’s models of group dynamics in southern 

Colorado originally started out as a GIS-based investigation, but quickly switched over to ABM 

(Kohler and Van West 1996). This work played a key role in developing ABM at the Santa Fe Institute 

(Gumerman and Kohler 2000). Archaeology has been involved in ABM almost from the beginning.  

ABM is Simulation 

 Agent-based modelling is a form of simulation. Simulations are the action of 

experimenting/working with a model in order to understand system behaviour and/or its underlying 

causes (Shannon 1977, Breitenecker and Popper 2011). In this case a model is when, ‘one creates 

some kind of simplified representation of “social reality” that serves to express as clearly as possible 

the way in which one believes that reality operates’ (Gilbert 2008 p. 2). Simulations cover a much 

wider range of tools in archaeology, from 3D re-creations of sites in gaming engines to using 

algorithms to estimate past behaviours. Simulation in archaeology has a much deeper history than 

agent-based modelling stretching back to the 1960s and 1970s. Since this project finished, two 

reviews of simulation in archaeology, specifically focused on ABM but including much of this earlier 

work, have been published and are worth reading to gain a better understanding of the history, see 

Lake 2014, Cegielski and Rogers 2016.   

Why use ABM/Simulation? 

 Formalisation, understanding and prediction were the three of the most relevant reasons, of 

many (Epstein 2008, Gilbert and Troitzsch 2009), to use ABM for predictive modelling. For example, 

formalisation means removing those generic statements seen so often in Boolean or weighted 

predictive models, i.e. sites are within 400m of water. Mathematical and computational modelling 

forces one to be precise. Using natural language to express theories and models explains work but 

are rarely precise (Epstein 2008). With ABM, ambiguities cannot be tolerated if the model is to run, 

as every aspect of the model needs to be laid out. Basic assumptions have to be tested and building 
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a model highlights logical gaps and data gaps in the verbal models and theories. ABM ‘allows us to 

formalise our thinking about how the past worked’ (Graham 2009 p. 2). 

Simulating the past helps us understand the past by enabling us to explore our assumptions 

systematically and experiment with them (Graham 2009). A model can be set up and run under 

changing conditions, as any variable can be introduced and changed. Once changes are made 

simulations are observed to see how the conditions affect the systems. Essentially, a series of ‘what-

if scenarios’ can be run effectively. Such an approach can identify underlying dynamics and help 

illuminate causal relationships. This reaches the heart of trying to create explanatory predictive 

models, understanding relationships between archaeological resources and their location in 

landscapes. 

The last aspect and most relevant for this project is prediction, though not in the same terms 

that most ABM modellers imagine. Traditionally, predicting with ABM was seen in the following way:  

‘If we can develop a model that faithfully reproduces the dynamics of some behaviour, we 
can then simulate the passing of time and thus use the model to “look into the future”. A 
relatively well-known example is the use of simulation in demographic research, where one 
wants to know how the size and age structure of a country’s population will change over the 
next few years or decades. A model incorporating age-specific fertility and mortality rates 
can be used to predict population changes a decade into the future with fair accuracy.’ 
(Gilbert and Troitzsch 2009 p. 4)  

For this project the future is now, but the idea is the same— faithfully model the dynamics of a 

behaviour to create an understanding of how that behaviour will manifest itself at some point in 

time, being past, present or future. A tool commonly used for prediction is exactly what this project 

needed. 

Complex systems   

 An additional attraction for ABM was its ability to deal with complex systems. One of the 

influences when searching for a new predictive model method was the idea that,  

‘Arguments to the effect that human behaviour is too complex to model and, therefore, any 
attempt to model cultural systems will be so generalised as to be useless are nihilistic and 
passive in viewpoint. No one is denying the complexity of the task, but that is the challenge, 
not an excuse.’ (Brandon, Burgett et al. 2000 p. 159–60)  

This is an issue of complex systems, which are systems that are composed of many different parts. 

Interactions of the systems’ different parts lead to unpredictable behaviour at the system level. In 

other words, cause and effect relations are non-linear. Consequently, system behaviour cannot be 

explained by looking at the system parts (Bentley and Maschner 2003, Kohler and van der Leeuw 

2007). ABM is well adapted to deal with such systems. ABM can model this system behaviour 

through actions and interactions of individuals (agents) from the ‘bottom up’. ‘The ability to study 
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non-linear dynamics generated from the bottom up not only distinguishes agent-based models from 

top-down, deterministic models, but it also makes them especially attractive to social scientists’ 

(Premo 2008 p. 44). This ABM an even more attractive tool for this project.  

Basically, with ABM it is possible to build artificial societies and landscapes which can then 

be experimented with (Dean, Gumerman et al. 2000, Premo 2008). Jim Doran has stressed that ABM 

allows the exploration of human cognition (Doran 1999). Such a process enables archaeologists to 

explore our ideas about the past, experiment with those ideas and test hypotheses. 

Issues with ABM 

 While there are many benefits to using ABM there are drawbacks to its use. Creating an 

ABM model can require a substantial effort in time and other resources, even with simple models 

(Gilbert 2008). ABM enables the exploration of ideas about the past but that means it is not 

modelling the past itself but rather ideas about the past (Premo 2008). A simulation does not tell 

archaeologists how things were even when a simulation’s results perfectly match the archaeological 

record. A match with the archaeological record is not conclusive proof that that is how it happened 

in the past (Premo 2008, Premo 2010). This has led to a discussion among archaeology modellers 

about the direction agent-based modelling should be headed (Costopoulos and Lake 2010, Lake 

2010, Premo 2010). This discussion centres around whether models should try to emulate the real 

world as closely as possible or be as simple as possible and be mainly used for exploration and 

experimentation. 

For this project a simulation not exactly representing the past was not an issue in one sense. 

The goal of the project was to improve performance. If the results could do that, then whether the 

simulation exactly represented the past or not was not important. However, a subtext to the need 

for explanatory models was to increase the interest of other archaeologists in predictive modelling. 

If this is an issue for some archaeologists than this is a concern for the project. Even then, one has to 

wonder why this has been specifically targeted at modelling when this is applicable to all of 

archaeology. Barring the creation of a time machine to check, all archaeological knowledge is 

assumptions made with the best available information. There was no reason to think that ABM was 

any more problematic than archaeology in general.  

ABM for Predictive Modelling 

 Serendipitously for this project, there were other predictive modellers, Verhagen and 

Whitley, concerned about the lack of explanatory aspects in predictive modelling and how this had 

caused a siloing of its use, who had a paper published early in this project’s development (online first 

on February 1st 2011) to address this issue of explanatory modelling. Verhagen and Whitley used GIS 

to attempt to achieve their goal of a theory-based predictive model. Because their models were 
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agent-focused but did not use ABM they referred to their models as agency/agent models. Agency in 

archaeology has unfortunately been turned into a catch-all term to describe a plethora of different 

thoughts. Dobres and Robb (2000) mention that out of 16 papers on the subject in archaeology 

there were 12 different definitions for the term ‘agency’. The only common point that was agreed 

between these papers was that ‘agency’ should be included in archaeological research.  

‘Archaeologists appear to actively employ popular terms such as “agency” without specifying 
or perhaps even understanding their definitions.’ (Verhagen and Whitley 2011 p. 67) 

Originally developed out of a series of small projects, this methodology has progressed into 

a defined endeavour to instil theory in predictive models so as to stimulate academic interest into 

predictive modelling (Whitley 2000, Whitley 2003, Whitley 2004a, Whitley 2006, Goel et al. 2009, 

Burns and Whitley 2012). Verhagen and Whitley (2011) have attempted to define the general 

concept of agency within predictive modelling as follows: 

 

1. Any investigation of behaviour that deals with spatial decisions and placement would 

incorporate a perspective held by the agent. The understanding of past human behaviour should 

be based on situations in which agents are presented with local conditions, that may or may not 

be representative of regional or global conditions, from which decisions are made on.  

1.1. Agents are most usually represented as an individual but group agency is possible. Some 

material culture manifests itself as a group decision instead of that of an individual.  

2. Agency encompasses the Post-processual emphasis on pluralism. That is the idea that there are 

multiple different angles from which to look at a problem. This is seen as the way forward for 

archaeological sciences. BUT, this embrace of pluralism does not include the ‘anything goes’ 

attitude that is seen in some Post-processual writing. Instead, pluralism is incorporated into 

agency in the refutationist tradition, where multiple models and theories are tested and 

compared. The goal of this is to reveal weaknesses in those models or theories and thus 

contribute to the advancement of theory (Bell 1994). 

3. By not embracing the ‘anything goes’ mantra, agency-based predictive modelling does not 

accept all interpretations as being equally valid. This is in direct conflict with some Post-

processual thought that advocates the belief that all interpretations are valid and that only the 

interpreter needs convincing of the validity of their beliefs. Predictive modelling, which is 

created for the needs of modern people and societies, cannot abide by such an extreme and 

simplistic view of archaeology. Models are created to address the needs of laws dictated by the 

current social and political views of modern people. To fulfil their purpose, models will need to 

follow those beliefs and constraints to their operations. This means not all sites or landscapes 
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will be considered of equal importance and neither will all archaeological explanations and 

interpretations. This is a compromise that must be reached to satisfy both groups, CRM and 

academic, that are to benefit from this model. 

(Verhagen and Whitley 2011 p. 60-63, 70-73, 86-87) 

 

To use an idiom, Verhagen and Whitley attempted to thread the needle between Post-

Processual and Processual schools of thought by embracing aspects of both. It takes on board the 

Post-Processual view of the individual (agent) as a driving force in the phenomenon that creates the 

archaeological record and that there can be multiple interpretations of the past, yet embraces more 

Processual-leaning concepts like refutationism.  

This is not the first attempt at a bridge between Post-Processual and Processual schools of 

thought; cognitive archaeology in the mid-1990s attempted this very same undertaking. Renfrew 

and Zubrow (1994) explicitly include cognitive (social) aspects in a systemic view of human 

behaviour. But, as Whitley and Verhagen point out, ‘cognitive archaeology arose at a time in which 

the two extremes of archaeological theory were at their most divisive, and no real conciliation 

between them was sought or expected by either side’ (Verhagen and Whitley 2011 p. 62). 

GIS was tied up in these early attempts at peace-making, and still is (Harris and Lock 2006). It 

was thought that GIS could be used to produce a quantitative example of the phenomenological 

results favoured by Post-Processualists. In this way, the quantitative methods of Processual 

archaeology could serve as an underlining bridge between the two groups. This led to the creation of 

models of land use from the perspective of agency (Robb and Van Hove 2003, Trifković 2005), view 

sheds (Llobera 1996, Witcher 1999, Llobera 2000, Llobera 2001, Llobera 2003) and Ingold’s creation 

of taskscapes as a way to view the world (Ingold 1993, Ingold 2000). Some of these experiments 

have since made their way into traditional predictive models as datasets. Verhagen and Whitley’s 

view of agency can be seen as an evolution from these earlier ideas and methodologies.  

The idea of perspective from an individual/agents point of view is also not dissimilar to Lock 

and Harris’s (2006) proposal to humanise the landscapes of predictive modelling. They proposed the 

use of viewsheds and cost–path analysis to show ‘location based on the subtleties of vision and 

movement as well as historical context’ (Harris and Lock 2006 p. 51). While not explicitly calling this 

‘agency’ the results are very similar and based on an individual/agent’s perspective of local 

landscapes.  

Meeting Expectations 

Their paper demonstrated the reasons why ABM was chosen in the first place by this 

project— formalisation, understanding and prediction. The use of theory is inseparable from the 

process. Whitley’s paleoeconomic model of the Georgia coast, covering the time period of 2000BC–
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AD1650 (Goel et al. 2009, Verhagen and Whitley 2011) worked on human energy budgets, the 

caloric resources available spatially and cognitive features of human behaviour. These were 

combined through the application of Optimal Foraging Theory (Emlen 1966, MacArthur and Pianka 

1966), Central Place Foraging (Orians and Pearson 1979, Krebs and Stephens 1986) (for examples in 

archaeology see also Simms (1987), Jones and Madsen (1989), Barlow and Metcalfe (1992), Kelly 

(1995), Kennett and Winterhalder (2006)). Additionally, theoretical studies such as the Diet-Breadth 

Modelling (Hames and Vickers 1982, Hawkes and O’Connell 1984, Winterhalder 1987, Smith 1991, 

Delpech and Grayson 1998) and Prospect Theory (Kahneman and Tversky 1979, Kahneman and 

Tversky 1992, Machielse, Timmermans et al. 2003) played a role in the creation of this cognitive-

paleoeconomical model.  

Whitley’s model applied accumulated caloric distances onto pseudo-topographic surfaces 

which could be translated into multiple cognitive presentations, such as the representation of 

territories, social dominance, perception and pathways. That model integrated theories such as 

Optimal Foraging Theory, Central Place Foraging, Diet-Breadth, Prospect Theory, etc. all while 

supporting an understanding of the locations of cultural resources. It moved predictive modelling 

out of the pure concentration on CRM resources to one that informs both CRM and academic 

interests.  

It will not go without notice that these examples of theories focus on a specific side of the 

archaeological theory spectrum. It was imagined that simulation would actually be of interest to 

archaeologists who are interested in more Post-Processual theory like phenomenology. The author 

once heard the following phase at a conference, ‘GIS is a method in search of theory while 

phenomenology is a theory in search of method’. It was thought at the beginning of this project that 

computer simulations, not just ABM, could greatly benefit phenomenology by allowing for the 

exploration of many different experiences with more scientific rigour than has occurred in the past.  

In terms of prediction Verhagen and Whitley translated the accumulated caloric distances 

onto pseudo-topographic surfaces which formed pathways. These pathways would form corridors 

‘along which resource gatherers would routinely spend a great deal of their time’ and then they 

‘would expect that sites resulting from the loss or discard of artefacts associated with daily activities 

would occur along these pathways, and a predictive model could be generated to capture them’ 

(Verhagen and Whitley 2011 p. 81).  

‘The (deductive) cognitive modeling framework is extremely flexible, easier to operate and 
understand, better suited for testing purposes, and as far as we can tell produces better 
predictions than the currently prevailing alternatives…’ (Verhagen and Whitley 2011 p. 90)  
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Different Routes for the Project 

Even though Verhagen and Whitley created an ‘agent’-based predictive model that 

successfully highlighted the benefits of such work, this project was originally unaware of that work 

and so there were key deviations that put this project on a different path of exploration, and thus it 

did not simply run their methodology in a different location. The first of these differences was the 

goals of the work. Verhagen and Whitley were specifically aiming to reconcile academic and CRM 

divisions with predictive modelling:  

‘… many researchers working in archaeological applications of GIS and predictive modeling 
have struggled to come to terms with the ensuing theoretical debate in archaeology 
between the Processual and Post-processual schools of thought (see, e.g., Wheatley 1993, 
2004; Witcher 1999) [...] As an undesired consequence, the development of predictive 
modeling has veered away from mainstream archaeological thought and theory and has now 
become a largely self-contained activity—enjoying reasonable success as a tool for CRM, but 
not commanding much respect from academic scholars […] We hope that this will point the 
way out of a debate which we feel has been unduly polarized along the lines of CRM versus 
academic research, as we are convinced that predictive modeling can be a useful instrument 
for both fields of application.’ (Verhagen and Whitley 2011 p. 50) 

This was also a goal of this project, but not the only goal. Originally this project’s aims were 

to improve predictive modelling performance and the idea of a more explanatory modelling helping 

to achieve that was pursued. The fact that such a framework could also address the CRM and 

academic divide in predictive modelling was an added bonus. This led to decisions in this project that 

focused more on trying to improve and measure performance, i.e. choice of project area. 

Verhagen and Whitley saw great potential for the use of ABM in predictive modelling to 

implement their agency theory. They point to Lake’s (2000) dynamic Mesolithic foraging model on 

the island of Islay (Scotland). That model looked at the correlation between lithic scatters and the 

gathering of hazelnuts. Lake discovered that there was a poor correlation between known lithic 

scatters and areas where the agents would most likely be harvesting hazelnuts. This threw out the 

theoretical assumption that hazelnut gathering was the determinant of site location on the island of 

Islay in the Mesolithic era. These findings were negative, but were a positive example of the 

potential that agent-based predictive modelling has to add to our understanding of the past. Even 

the negative results provide insights into the past and help create a better predictive model through 

elimination of potential factors in site locations. For this reason, Verhagen and Whitley see ‘real 

potential in these techniques for predictive modelling, especially since the cognitive predictive 

modelling approach does not need to be significantly adapted in order to be used in a dynamical 

modeling context’ (Verhagen and Whitley 2011 p. 87-88). 
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Yet, they did not use ABM software for their agent/agency-based predictive modelling. A 

review of the available resources by Verhagen and Whitley found a lack of ‘GIS capacity’ with ABM 

programs:  

 

• MAGICAL software, developed by Lake for the above-mentioned Islay Mesolithic 

project, was for the GIS software GRASS, version 4, and has not been upgraded 

in the decade since, which effectively eliminates this as a possible program to 

use. 

• SWARM, which is maintained by the SWARM initiative (www.swarm.org), is 

updated pretty regularly but does not have GIS capacity. In addition, to operate 

the software it is necessary to possess advanced programming skills, which is 

usually beyond the capacity of most archaeologists.  

• An examination of the freeware agent-based modelling package NetLogo found 

that it recently acquired the capability to import GIS data, though the examiners 

found that it has not been used to create a single archaeological model 

(http://ccl.northwestern.edu/netlogo/models).  

 

In this case ‘GIS capacity’ means the ability to import data to represent the real world, which 

can create a major problem if one is trying to create a model of the real world. As a result they 

concluded that there remains ‘lukewarm interest in these modelling techniques from the side of 

archaeologists despite the optimism expressed in Bentley and Maschner (2003) and Beekman and 

Baden (2005)’ (Verhagen and Whitley 2011 p. 88). 

This project had discovered ABM before Verhagen and Whitley published their paper. As 

discussed in the next chapter this project found that several ABM programs had developed GIS 

capabilities and thus were suitable for use. The difference in results from this project and their work 

is not unsurprising given how quickly technology advances, and a publication in 2011 probably 

meant that the actual work occurred several years before, when ABM was less developed. Because 

of this Verhagen and Whitley used GIS as the tool to pursue agent/agency-based predictive models 

while this project used ABM. In a sense this project could pursue this type of modelling with ‘better’ 

tools. 

GIS vs ABM 

This project did not wish to fetishise tools such as ABM or GIS. Using a term like ‘better’ to 

describe ABM against GIS needs to be quantified because ABM and GIS are tools and nothing more. 

GIS is good for some uses but struggles in others. Archaeologists have found that representing 

complex theoretical factors using GIS is time-consuming and hard to do (Judge and Sebastian 1988, 
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Kvamme 1988b, Gaffney and van Leusen 1995, Joolen 2003, Kvamme 2006, Deeben et al. 2007). 

Many times in GIS complex cultural phenomena are simply reduced to buffer zones around existing 

resources to indicate an attraction. A problem of model creation being driven by the tool not the 

needs (Harris and Lock 2006).  

ABM is also strong in some aspects but not in others. Most of the ABM programs have 

almost no GIS data editing abilities (discussed more in Chapter 4). They can import layers but cannot 

alter the data, like clipping large datasets . Being able to modify datasets to represent ‘real life’ 

conditions as possible through GIS is critical for ABM modelling: 

‘In most cases, dynamical models will be able to give a good idea of the kinds of pattern that 
will emerge from certain behaviors but not of the exact location or the chronological order 
in which they will appear. This is due to the fact that these so-called non-linear models are 
extremely sensitive to initial conditions and the accumulation of small variations (Allen 1997) 
[…] Any dynamical model that would aim for (reliable) prediction would therefore have to be 
based on “real” initial conditions and have benchmark data available of intermediate and 
end conditions as well in order to limit the outcome of the simulations to more or less 
realistic scenarios.’ (Verhagen and Whitley 2011 p. 87)  

Currently, most ABM programs have very limited or non-existent abilities to edit datasets 

that create the initial conditions. At some point in the future this distinction may blur as GIS gains 

more ABM features or vice versa. Until then they are very different tools with very different abilities 

at the same time complement each other. This project was the first test of ABM to create agency-

based predictive models, but it also used GIS where appropriate. Indeed, most of the work 

undertaken in Chapter 8 was done with GIS because it was the tool that was needed. ‘Better’ is 

subject to the needs of the model and what the tool can deliver. 

Projects Agent/Simulation Based Predictive Modelling 

These differences resulted in a methodology that was somewhat different from Verhagen 

and Whitley’s but still similar. It has as its overarching concepts: 

 The final product needed to work in a CRM legal context. While archaeological 

resources can take many different forms from isolated artefacts to whole 

landscapes not all of them will be acknowledged as such by the laws that govern 

CRM archaeology and so only those archaeological resources relevant to CRM in the 

project area would be focused on. It was understood that such a stance would not 

be appealing to all archaeologists. However, the aim of this project is to improve 

predictive modelling performance for CRM uses first and foremost. 

 This project would not be a slave to ABM. The best tool, be it GIS, ABM or a 

mathematical model, was to be used. This method is about simulating behaviours 
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and this is really a simulation-based predictive model. ABM happened to be a good 

tool for running the simulations that this project wants to undertake.  

 The person’s perspective was to be the driver of the models. This was about 

locations that past people inhabited. Understanding why they undertook the 

behaviours they did that led to the current archaeological record was key to being 

able to predict site locations. This is not to say that agents could not be other things 

and all agents had to be people.  

 Multiple theories and scenarios should be explored. The power of simulation is the 

ability to test out many different assumptions. A model should not just stop 

because the results somewhat match the expected outcomes. Different theories 

should be tested to find one that best fits the available data. 

 Level of detail will be dependent on what gives the best results. If an abstract model 

can help pinpoint the location of certain sites then that will be used. As discussed 

above, I believed that the level of detail in the model should be dependent on the 

desired outcomes and there was no need to get bogged down in arguments about 

abstraction, at least to meet the aims of this project. 

In more practical terms, it was envisioned that this project would undertake the following 

steps: 

1. A project area would be found that had previous predictive models so that the results of the 

explanatory modelling could be compared against traditional methods of predictive 

modelling; 

2. The prevailing theories about why sites were patterned in that landscape would then be 

examined; 

3. Each theory would then undergo simulation, using the best tools GIS, ABM, etc., to attempt 

to understand which theory/theories best represented the available data; 

a. It was understood that this might result in several bespoke and possibly not 

interchangeable models. 

b. The level of abstraction would be dependent on if it helped pinpoint site locations. 

Although this project would be looking for sites in a specific project, it was imagined 

that data to represent local conditions would be needed but that the level of detail 

in that data might vary. 

4. The resulting simulations would then be used as a predictive model to represent areas of 

archaeological potential in the project area.  
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Chapters five through eight describe in detail how this process was implemented. This was just the 

initial plan of investigating the use of ABM/simulations for predictive model creation.  
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Chapter 4: Finding an Agent Based Modelling Program to Use 

As reviewed in Chapter 3, there were issues with past predictive modelling methods that led 

this project to explore the use of agent based modelling as a possible tool and methodology to 

create more explanatory predictive models. Verhagen and Whitley (2011) reviewed ABM programs 

and come to the conclusion that they were not yet viable as a tool for archaeologists. However, as 

explained, this project had conducted an independent review and came to a very different 

conclusion about the abilities of ABM programs. This chapter covers that review of the ABM 

programs as part of the second planned activity for this project— creating a methodology to solve 

the problem(s) that lead to poor model performance. The purpose of the work undertaken in this 

chapter was to determine if ABM was a viable tool for predictive modelling use. 

 This chapter begins with a discussion of the development of ABM programs at the time 

beginning of this project, circa 2010. It will then review the criteria created for selecting a program 

and the use of that criteria to narrow down the selection of programs. Those programs that were 

short listed are discussed in more detail. Finally, the chapter ends with a summation of the program 

chosen, NetLogo, and the reasons for choosing that program. 

State of ABM Programs 

At the beginning of this project in 2010 there were close to 80 agent based modelling (ABM) 

programs that one could use; possibly more (Madey and Nikolai 2009). In terms of knowing the 

quality of the software there have been several general reviews of ABM software (Madey and 

Nikolai 2009, Allen 2010) and a review of GIS capabilities of ABM programs (Castle and Crooks 2006). 

These studies had found that while all programs follow the same concept, modelling through agents, 

the quality of features and the ease of use vary greatly between programs. 

For archaeology modelling, Verhagen and Whitley (2011) reviewed a half dozen programs 

and concluded that none of them could undertake the work needed to create ‘agency’ based 

models, at that point in time. However, at the beginning of this project Verhagen and Whitley’s 

findings had yet to be published and an independent review of the ABM software was undertaken as 

part of this project. This review found several programs that had the needed features; a striking 

difference in only a period of a year or two from Verhagen and Whitley’s findings, but not surprising 

given how fast technology advances. 

The Review  

To gain a clear understanding of the capabilities of ABM in relation to creating a predictive 

model this project conducted an investigation into over 70 different ABM programs. The first step in 
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this process was the creation of criteria for making an objective as possible assessment of the ABM 

programs that were going to be reviewed. What follows are the criteria considered and why: 

GIS Capabilities 

Verhagen and Whitley (2011) listed GIS capabilities as one of the criteria for an ABM 

program. They believed that for archaeological use an ABM program must be able to import GIS data 

or use the ABM software in conjunction with a GIS software program. Because all of the desirable 

datasets that would be used in this project were in the form of GIS data it was concluded that GIS 

capabilities would be a non-negotiable criterion. Entering in by hand all of the different data points 

would not be economically feasible, e.g.  

 thousands of site locations in the form of ArchGIS vector data 

 thousands of previous archaeological investigations’ data, e.g. archaeological 

surveys, is in the form of ArchGIS vector data 

 millions of points in the raster DEM, which is only available in raster form 

This project came to that same conclusion about GIS capabilities and so it was considered the 

primary characteristic for judging programs. 

File Formats 

Many different data formats can be read and altered by GIS programs. For instance, a TIFF 

(Tagged Image File Format) file commonly used for photos can be read and used by GIS programs. If 

an ABM program can import data through TIFF files then it can still use applications available to GIS 

programs. As such, the definition of GIS compatible is more flexible than being able to import ArcGIS 

files. 

Documentation and Support 

The next criterion that was set was a need for strong learning options. Considering I would 

have to personally learn how to operate the software I wanted good documentation on how to use 

the software. A program could meet all the other needs but if it is impossible for a user, in this case 

myself, to understand how to operate the system then it is useless.  

The same goes for a support system. If there is no support system to help work through any 

problems that may arise and cannot be answered in the documentation, then there is a real 

potential for projects to hit a dead end and fail. Such support could be: 

 personal communication avenues with the software developers, e.g. email  

 discussion forum 

 email list 

Training materials and a way to obtain outside help were considered sufficient enough support for 

this project. 
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Cross Platform Use 

Compatibility with different modern computer operating systems, like Windows version (X), 

Linux (at least one version), or Mac OS, is another aspect that was considered important for this 

project. This could be in the form of compatibility with each specific operating system though 

platform-specific versions of the software. Or an alternative was that the agent based modelling 

program could run on something like Java which has cross-platform support. Because one of the 

goals of this project is to widen the use of predictive modelling, cross-platform use was considered a 

requirement of the system 

Open Licence or Free Use 

A second component of access is cost. Being able to access software on most computers is 

not very helpful if one cannot afford to use the software. Thus, to ensure the widest possible use, a 

requirement that the software be Open Source or free was implemented. Open Source was 

preferable because if a creator or vendor stopped supporting/updating a software system, future 

users or researchers could potentially pick up supporting it and continue to update it. However, free 

use for proprietary software was considered acceptable as well, as long as the licenses ensure 

protection for free use in the future.  

Continual Development 

The last requirement for an ABM program was for ongoing support for the software. While 

Open Source licensing makes it possible to use programs that are no longer supported or updated it 

was preferred that an ABM program had a strong development backing. There are several reasons 

for this. One was the development of new features. GIS capabilities are new features for ABM but 

one which this project could not be run without. While no one can predict what features will be 

needed in the future a strong development team will ensure they are added and that the ABM 

program stays relevant.  

Moreover, ongoing support means that should an issue have arisen that needed outside 

support there would have been someone to approach for guidance. This goes back to the help 

requirement but takes it further. Sometimes problems arise that might require part of the code of 

the program to be rewritten. This ability may be outside of the abilities of the user and can only be 

undertaken by those that developed the program. In such a case continual development of the 

program would be needed. 

3D capabilities 

3D capabilities were not a requirement for this project but they were noted. A benefit of 

ABM is that the simulation run on them allows one to observe possible real world interactions. In 

most cases a 2D bird’s-eye view is sufficient but someone may want to view simulations in 3D.  
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Measuring Criteria 

Based on these criteria the data was collected in the following forms: 

 GIS Capabilities - this came in the form of Yes/No. So few programs support GIS that asking 

for specific GIS software was not considered. 

 3D modelling - this also came in the form of Yes/No. Because this was considered a bonus 

there was no need to collect extensive details. 

 User support - any and all support listed was collected. 

 License - all licenses and terms of use were examined and noted. Though only those that 

were Open source or free were recorded as usable. 

 Operation systems - all platforms the program could be used on were listed. 

 Continual development. The date of last upgrade/release of the software was collected. To 

determine support a maximum date of last release was set at three years (2008) from when 

this review was conducted. This was decided upon after looking at a large sample of 

programs and seeing that if a new version of model is not released within two years most 

programs cease to be supported. 

Programs 

A total of 76 agent based modelling programs were examined to see which of the above 

criteria were met. The list of programs was gathered from varied sources such as Nikolai and 

Madey’s paper (2009), agent-based-modeling.com, Swarmforums, agent based models and GIS blog, 

etc. This list, while extensive, probably has missed a few ABM software programs created. Still, there 

is high confidence that the majority of programs have indeed been reviewed.  

Each program’s website was investigated in full to gather the relevant data. In addition, 

second party information such as other websites, research papers, and documents were also 

examined. This was because in several instances outside researchers have created their own add-ons 

or workarounds for the software which expanded or increased its capabilities. Not all of these 

additions were always listed on the primary websites. The full table of results can be seen in Table 

32.  

  



Software Website Last 
Updated 

License Windows Linux Mac Java User Support GIS  3D  

A-Global http://agents.felk.cvut.cz/aglobe 2008 Free Yes Yes Yes Yes Tutorials, Manual Yes No 

AnyLogic http://www.xjtek.com/ 2011 Proprietary- 
very 
expensive 

Yes Yes Yes Yes Demos, training, 
consulting, knowledge 
base, online forum, ask a 
question, documentation, 
selected references, book 

Yes Yes 

GAMA http://gama.ifi.refer.org/mediawiki/index.
php/GAMA 

2010 LGPL Yes Yes Yes No Contact authors, report 
bug, tutorials, guide 

Yes No 

MASON  http://cs.gmu.edu/~eclab/projects/mason
/ 

2011 Academic 
Free 
License 
(Open 
Source) 

Yes Yes Yes Yes Mailing list, 
documentation, tutorials, 
third party extensions, 
reference papers, API 

Yes Yes 

NetLogo http://ccl.northwestern.edu/netlogo/ 2011 Free, not 
Open 
Source,  

Yes Yes Yes Yes Documentation, FAQs, 
selected references, 
tutorials, third party 
extensions, defect list, 
mailing lists 

Yes Yes 

Repast http://repast.sourceforge.net/ 2011 BSD Yes Yes Yes Yes Documentation, mailing 
list, defect list, reference 
papers, external tools, 
tutorials, FAQ, examples 

Yes Yes 

SeSAm (Shell for 
Simulated Agent 
Systems)  

http://www.simsesam.de/ 2010 LGPL  Yes Yes Yes Yes Tutorials, mailing list, 
FAQs, wiki, author contact 

Yes Plugin 
available 

TerraME http://www.terrame.org/doku.php 2011 Open 
Source 

Yes No No No Tutorials, examples, 
courses, references 

Yes No 

AMP (Agent 
Modelling 
Platform) 

http://www.metascapeabm.com/content/
view/57/120/ 

2011 Open 
Source 

Yes Yes Yes No Documents, forum, guide, 
wiki, bug report 

coming 
soon 

coming 
soon 

Cormas 
(Common-pool 
Resources and 
Multi-Agent 
Systems)  

http://cormas.cirad.fr/indexeng.htm 2011 Free to 
modify but 
not to 
distribute  

Yes Yes Yes No Training, selected 
references, examples, 
online forum, email 
developers, 
documentation 

Yes No 

Table 5: ABM programs with GIS capabilities   



Results 

Just looking at the GIS capacities of the different ABM programs cut down the usable 

programs to ten (Table 5). AMP (Agent Modelling Platform) was in development and while GIS 

capacities were on the list of coming features, when it was first looked at, this development did not 

materialise in time for this project, eliminating this program as one to investigate. In addition, 

AnyLogic was a proprietary system that was quite expensive which eliminated it as an option. A-

Global had not been updated in several years which eliminated this as an option. Finally, TerraME 

was not cross-platform and eliminated. This left seven possible software programs to investigate as 

an option for the dynamic agency based site predictive model: 

NetLogo 

NetLogo was first created in 1999 by Dr. Uri Wilensky at the Center for Connected Learning 

and Computer-Based Modeling, then at Tufts University. The CCL moved to Northwestern University 

in 2000 and all work has been directed from there since then. NetLogo grew out of StarLogoT, which 

was authored by Wilensky in 1997. StarLogoT can trace its beginning to the StarLogo developed at 

the MIT Media Lab in 1989-1990 and which ran on a supercomputer called the Connection Machine. 

In 1994 a version was developed for the Macintosh computer, MacStarLogo. StarLogoT was 

essentially an extended version of MacStarLogo with many extra features and capabilities. NetLogo 

could be considered a fork from StarLogo and both have been developed separately since then.  

NetLogo is written mostly in Java with a few elements written in Scala, such as 

BehaviorSpace and the compiler. The Scala code compiles to Java byte code and works with Java and 

other JVM languages. The major releases of NetLogo were: 1.0 in 2002; 2.0 in 2003; 3.0 in 2005; 4.0 

in 2007 and 4.1 in 2009. Version 4.1.3 was available at the beginning of this project and version 5.0 

was released in 2012. It is primarily aimed to be an educational tool for all ages but it has been used 

in many research settings as well.  

At the beginning of this project Netlogo was distributed under its own licensing terms: 

‘NetLogo software, models and documentation are distributed free of charge for use by the 
public to explore and construct models.’  

All users were granted permission to copy or modify the NetLogo software for educational and 

research purposes only. These licensing was changed during this project and the software is now 

licensed under an Open Source license.  

The 4.0 version of NetLogo runs on Windows 7, Vista, 2000, and XP for Microsoft operating 

systems. For Apple computers Mac OS X 10.4 or newer is required. (NetLogo 4.0 was the last version 

to support 10.3 and 10.2.) It should also work on any platform in which Java 5 or later is installed. 
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Netlogo does have 3D capacities to represent agents but some older, less powerful systems may not 

be able to use the 3D view or NetLogo 3D.  

Cormas 

Cormas is maintained by the Green research unit from CIRAD, a French research centre 

working with developing countries to tackle international agricultural and development issues. 

Cormas is based on the VisualWorks programming environment which allows the development of 

applications in the Smalltalk object oriented language. It has mostly been applied to management of 

natural resources, namely studying the interaction of human societies with the Earth's eco-system.  

Cormas is protected by authors' rights but it can be downloaded for free after filling out a 

brief form to inform the authors of the reason for use. The purpose behind this is to place the 

software in the public domain so that others can use it as a ‘tool for exchanges and dialogs regarding 

the problem of natural-resources management’. There is no mention of restrictions on commercial 

use and it is free to distribute.  

Cormas was developed with the non-commercial version of VisualWorks from Cincom 

Systems, which means to run the program one has to first install a compatible version of 

VisualWorks, which is version 7.6. Cormas is not compatible with version 7.7 or above. VisualWorks 

works with multiple operating systems, including Windows, Mac OS X, Linux, and several versions of 

Unix.  

At the time of this review in 2011 the last version of Cormas was released in March 2008. A 

new version has since been released in 2014 but that was too late for this review. 

GAMA 

GAMA was developed by the research team MSI (located in Hanoi, Vietnam). It is a 

simulation platform, which aims at providing a complete modelling and simulation development 

environment for building spatially explicit multi-agent simulations. It was originally created in 2007 

and the version available during the reviews was 1.2, released on January 19, 2010. According to the 

website:  

The most important requirements of spatially explicit multi-agent simulations that GAMA 

fulfils are:  

1. The ability to use complex GIS data as an environment for the agents;  

2. The ability to handle a vast number of (possibly heterogeneous) agents;  

3. The ability to offer a platform for automated controlled experiments (by automatically 

varying parameters, recording statistics, etc.);  

4. The possibility to let non-computer scientists design models and interact with the agents 

during simulations.  

Beyond these features, GAMA also offers:  
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 a complete XML-based modelling language, GAML, for modelling agents and environments  

 a large and extensible library of primitives (agent's movement, communication, 

mathematical functions, graphical, ...)  

 a cross-platform reproducibility of simulations  

 a powerful and flexible plotting system  

 a user interface based on the Eclipse platform  

 a complete set of batch tools, allowing for a systematic or ‘intelligent’ exploration of models’ 

parameters spaces  

The software is under a LGPL license which means anyone has free access to the code and 

edit it or/and redistribute it under the same terms. GAMA runs on most operating systems but is 

constrained by the amount of memory available; some models may need up to 2GB of free memory. 

It works on: Windows 7; Vista; XP; 2000; NT; ME; 98; Mac OS X 10.4 or newer plus 10.3 and 10.2; 

Linux machines but Ubuntu is recommended; any platform on which a Sun Java Virtual Machine, 

version 1.5 or later, is installed.  

During the reviewed period it appeared that GAMA was undergoing a change in support. No 

new code updates have been made since 2010 and the main website had a message saying the page 

will no longer be updated and directs visitors to a Google code project version of the website 

(http://code.google.com/p/gama-platform/) but that website did not appear to be kept up. Changes 

have since been made but the review came to the conclusion it had stopped development.   

SeSAm 

SeSAm (Shell for Simulated Agent Systems) provides a generic environment for modelling 

and experimenting with agent-based simulation. The key aspects of that SeSAm is claimed to provide 

are: 

 easy visual agent modelling  

 flexible environment and situation definition 

 the whole power of a programming language 

 integrated graphical simulation analysis  

 distribution of simulation runs in your LAN 

 and many further features.... 

The first version of SeSAm was available in the winter of 1998 as result of the PhD thesis of Franziska 

Klügl. In 2000 it was fully re-designed and re-implemented using JAVA, allowing it to be used on 

most computers.  

MASON 

As the website humorously says, MASON stands for ‘Multi-Agent Simulator Of 

Neighborhoods... or Networks... or something...’. MASON is an ongoing project between George 
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Mason University's Evolutionary Computation Laboratory and the GMU Center for Social Complexity. 

It was designed by Sean Luke, Gabriel Catalin Balan, Keith Sullivan, and Liviu Panait. They received 

help from Claudio Cioffi-Revilla, Sean Paus, Keith Sullivan, Daniel Kuebrich, Joey Harrison, and Ankur 

Desai in the process of creating the program. The website describes it as, ‘a fast discrete-event 

multi-agent simulation library core in Java, designed to be the foundation for large custom-purpose 

Java simulations, and also to provide more than enough functionality for many lightweight 

simulation needs.’ The highlighted features of MASON are: 

 100% Java   

 fast, portable, and fairly small  

 models are completely independent from visualisation, which can be added, removed, or 

changed at any time  

 models may be checkpointed and recovered, and dynamically migrated across platforms  

 can produce results that are identical across platforms  

 models are self-contained and can run inside other Java frameworks and applications  

 2D and 3D visualisation  

 can generate PNG snapshots, Quicktime movies, charts and graphs, and output data streams  

As Mason runs on Java 1.3, or higher, it can run on almost any computer and with any operating 

system as long as Java is installed. 

MASON has GIS capabilities through the extension GeoMason, an optional extension that 

adds support for vector and raster geospatial data. GeoMason natively supports reading and writing 

ESRI shape files. Conversely, there is optional support via third party libraries, such as GeoTools, 

GDAL, and OGR for other data formats, like PostGIS, Web Feature Format, SDTS, DTED, GeoTIFF, 

USGS Digital Orthophotoquad, SDTS, GML, TIGER, S57, KML and NTF formats.  

MASON is licensed under the Academic Free License (‘AFL’) v. 3.0. This grants users a 

worldwide, royalty-free, non-exclusive, sublicensable license, to reproduce the program and modify 

it in any way the user sees fit. User can also distribute copies of the original program or modified 

version, with the modified version under any license they see fit.  

RePast 

RePast is a cross-platform Java-based modeling system that runs on Microsoft Windows, 

Apple Mac OS X, and Linux. RePast Simphony (RepastS) models can be developed in several different 

forms including the ReLogo dialect of Logo, point-and-click flowcharts, Groovy, or Java, all of which 

can be fluidly interleaved. NetLogo models can also be imported. RepastS has been used in many 

different applications from future hydrogen infrastructures models to ancient pedestrian traffic.  

It was developed by a team, led by Michael North of The Center for Complex Adaptive Agent 

Systems Simulation in the Division of Information Sciences at Argonne National Laboratory. RePast 
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was originally created at the University of Chicago. Since then it has been maintained by 

organisations such as Argonne National Laboratory. RePast is now managed by the non-profit 

volunteer RePast Organization for Architecture and Development (ROAD). Developers of the 

software include Mark Altaweel, Dariusz Blachowicz, Mark Bragen, Carl Burke, Nick Collier, Robbie 

Davidson, Tom Howe, Charles Macal, Bob Najlis, Michael North, Jonathan Ozik, Miles Parker, Eric 

Tatara, Jerry R. Vos. 

RePast has GIS capabilities both within the system and through the extension Agent Analyst, 

developed by the Redlands Institute and Argonne National Laboratory. Agent Analyst, unlike most 

other integrations of GIS and ABM, brings the ABM capabilities into a GIS instead of the other way 

around. It is specifically designed for the ESRI's ArcGIS suite of products. The extension has its own 

website, http://www.spatial.redlands.edu/agentanalyst/Default.aspx, which boasts that ‘Agent 

Analyst allows users to create, edit, and run RePast models from within the ArcGIS 9 geoprocessing 

framework, including access through ArcToolbox, ModelBuilder, and ArcMap. The graphical Agent 

Analyst tools allow the user to create agents, schedule simulations, establish mappings to ArcGIS 

layers, and specify the behavior and interactions of the agents.’ 

RePast is licensed under a ‘New BSD’ style license which states: 

‘Redistribution and use in source and binary forms, with or without modification, are 
permitted provided that the following conditions are met: 

Redistributions of source code must retain the above copyright notice, this list of conditions 
and the following disclaimer. 

Redistributions in binary form must reproduce the above copyright notice, this list of 
conditions and the following disclaimer in the documentation and/or other materials 
provided with the distribution. 

Neither the name of the Argonne National Laboratory nor the names of its contributors may 
be used to endorse or promote products derived from this software without specific prior 
written permission.’ 

Testing of Programs’ GIS Capabilities 

The closer examination of the programs eliminated Cromas and GAMA, because of the 

uncertainty surrounding their future support. Thus the remaining programs, SeSAm, MASON, 

RePast, and Netlogo, underwent testing to see if they could meet the projects needs in terms of GIS 

use.  

The first operation test was the importing of a DEM of the project area (see Chapter 5 for 

details on the area) into each program. In the case of RePast, which brings the ABM software into a 

GIS program, this step was reversed with the ABM program being brought into the GIS program. For 

SeSAm the GIS capabilities of this model were found to be insufficient. With the use of a plugin it 
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was theoretically possible to import vector data. There was a limit to what could be imported as a 

second plugin was required to produce polygons using SpatialInfo. The lack of documentation for 

how to operate these plugins led to several unsuccessful attempts to integrate GIS with this ABM 

program. While the initial investigation found documentation for the ABM program a further 

investigation found none for the GIS plugins. Taking into account these unsuccessful attempts and 

the limited range of the GIS capabilities, this program was eliminated as a possible program for this 

project. 

Choosing a Program 

This process had narrowed down 70+ choices to three, MASON, RePast and NetLogo. Out of 

the three programs NetLogo had the best documentation, tutorials, and was, and still is, considered 

the easiest program to use (Figure 15). Moreover, it is not as underpowered as shown in Figure 15, 

that image was created by the RePast team and it is not without its biases. Importantly, RePast has 

ReLogo which converts NetLogo models into RePast models. That meant that models could be 

created in NetLogo, an easier to use program, and if required more advance computing power, like 

that of a High Performance Computer (aka super computer), it could be converted to a RePast code 

and used on RePast S. Using NetLogo meant that the advantages of both NetLogo and RePast could 

have been utilised for this project if they were so needed. MASON did not have this ability and as 

such was removed from contention. This project undertook the agent based model creation in 

NetLogo.  

 

Figure 15: Modelling Power vs Ease of Model Development. Figure from (Macal and North 2006).  
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Chapter 5: Subject Area and Data 

In the beginning this project planned to compare the proposed solution results against 

independent models to determine its effectiveness, activity four. Basically, compare the old methods 

against the new to see if there was in fact any improvement in performance. To achieve such an aim 

meant finding a project area that previously had a predictive model made for it by others. That way 

my personal biases and skills deficits would not influence the creation of models that used older 

methods. This chapter presents the project area that was found and some of the other reasons it 

was chosen, as there are many dozens of areas of with predictive models that could have served as 

the project area. After that discussion the rest of the chapter gives background information about 

the project area like cultural history, geology, ecology, etc. This background information helped 

shape some of the model creation discussed in the proceeding chapters. 

Subject Area 

The primary subject area chosen to trial the agent based predictive models was located in 

south eastern New Mexico, USA (Figure 16). It consists of eight USGS 7.5-minute quadrangles 

(quads) maps, aligned in a matrix of four quads across, east to west, and two deep, north to south. A 

quad is a 1:24000 scale map that measures 7.5 minutes on all sides. The name of the subject area, 

Azotea Mesa (named after one of the quadrangle maps), was derived from a previous site predictive 

model project that used the same area: the PUMP III project (Altschul et al. 2005).  The dimensions 

of the project were also derived from that project which used digitized 1:24000 scale maps as the 

bases for its data; this project used a different dataset but the same dimensions.  

Why this area and why use the dimensions of a previous project? There were several 

reasons for the selection of this area:  

1. The Azotea Mesa project area had been the subject of previous site predictive models for 

the PUMP III project using traditional methodologies (Boolean, Weighted, and Regression). 

This allowed for a comparison between several older methodologies and the newer agent 

based modelling approach. As discussed this was the primary reason for choosing this area. 

2. Previous investigations also checked for survey biases in the known archaeological record. 

By only using data available in each year of 1982, 1992, 1997, 2000, and 2002 they created 

models for those years. The results showed that after about 10% of the subject area had 

been surveyed the output of the models created rarely change, with a correlation of .98 

between years (Altschul et al. 2005). This eliminates a possible outlier in the results, i.e. data 

bias.  

3. This area has been the subject of this author’s Master’s thesis on site location accuracy and 

its effects on predictive modelling. The methods developed during the Master’s work will 
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make it possible to ascertain locational biases in site location data. This eliminates site 

location errors as a possible problem in the testing of the performance of the diverse 

methodologies. 

4. A further advantage is that this section of the state has some of the most intense survey 

coverage due to the natural gas and oil developments, as discussed later in this chapter. This 

means that an excellent database already exists of recorded sites to use as the basis for 

testing the different models’ precision and accuracy.  

5. Finally, data for this subject area is free and easy to access. Previous archaeological data is 

held both in a central state database as well as the regional offices of the Bureau of Land 

Management which is free to access remotely for researchers through databases. Digital 

elevation and biodiversity data has been collected by the United States Geological Survey 

(USGS) which it provides to the public. Conditions that significantly reduce the cost of 

gathering data for a predictive model and making it financially feasible to undertake this 

project.  

6. Open Data – because most data in the project is free and in public domain, it can be 

redistributed to other researchers or the general public so that they may check the results or 

expand upon the research. A caveat to this is that the site location data cannot be shared 

with the general public without permission of ARMS (Archaeological Records Management 

Section) of the New Mexico State Historical Preservation Division. However, ARMS does give 

access to this information to any serious researcher, after filling out a short form.  

All of these benefits combine to make this study area the right location for this project. The ability to 

compare this model against previous independent ones is why this project has opted for the exact 

PUMP III study area size and location.  

Background of Previous Site Predictive Models 

The PUMP III project was a component of larger project known as The Adaptive 

Management and Planning Models for Cultural Resources in Oil and Gas Fields in New Mexico and 

Wyoming (DE-FC26-02NT15445), a partnership between Gnomon, Inc., the U.S. Department of 

Energy (DOE) and the National Energy Technology Laboratory (NETL). It was funded through DOE’s 

Preferred Upstream Management Practices grant programme and examined cultural resource 

management practices in two major oil and gas-producing areas: south eastern New Mexico and the 

Powder River Basin in Wyoming. The project was started in 2002 and completed in 2005 (Altschul et 

al. 2005).  

As part of this investigation into cultural resource management in the specific gas fields of 

New Mexico and Wyoming, site predictive models were created for three separate zones of the 
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south eastern New Mexico portion of the project. These areas were Otero Mesa, Azotea Mesa, and 

Loco Hills, each named after one of the quadrangles (quad) in their respected study areas. The quads 

are used as a unit of measurement for the project, because at the time there was limited digital data 

available. Some of the datasets had to be digitised from existing quad maps, thus the boundaries 

were defined by the quad maps. The Azotea Mesa area had three predictive models created using 

each one of the different methods – Boolean, Weighted, and Logistic Regression. 

The other PUMP III areas, Otero Mesa and Loco Hills, were not used for this project. Loco 

Hills did not have three different predictive models created, only two – Weighted and Logistic 

Regression, for it so it was less valuable in terms of testing past methods. Another reason was the 

poor performance of the previous predictive models in those different areas. Results of the different 

PUMP III models, when compared against the previously recorded archaeological record of the 

areas, can be seen in Table 6. The criteria, used by the PUMP III project, for evaluating success in 

these models, was Kvamme’s gain value.  

A perfect gain score would be 1 but as was noted in a previous study (Rocks-Macqueen 

2010) and by other modellers the Gain Statistic does not take into account the area a site must 

occupy (Kamermans 2006, Kvamme 2006, Verhagen 2007c). For example, in the area for this project 

known sites occupy 3% of the currently surveyed area. To accurately capture all sites at least 3% of 

the area has to be labelled as containing sites. In that case the maximum gain value could only be .97 

instead of 1. Thus expectations needed to be adjusted on what the maximum possible gain value will 

be, which was calculated for the project area.   

The relative poor performance of the traditional site predictive models in the Azotea Mesa 

area leaves the usefulness of site predictive models in this area in question and the opportunity for 

an agent based model approach to prove itself. For the Otero Mesa area this was also an 

opportunity but given its high performance any improvement would have been smaller and thus the 

possibility of other factors causing slight changes in outcomes that could be misinterpreted. 

Moreover, only Azotea Mesa had its site locations fully investigated to confirm data accuracy 

through the Master’s work conducted in this area (Rocks-Macqueen 2010). There were not the 

resources available to conduct spot checks in Otero Mesa and Loco Hills which could have 

potentially biased the outcomes. Because of these reasons only the Azotea Mesa area was used in 

this project. 
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Figure 16: Study areas of the PUMP III project (Altschul et al. 2005 p.2 Figure 1.2). 

 

Study Area Max Gain 
Values  

Boolean Weighted Logistic Regression 

Loco Hills 0.960 ------------- 0.46 41% 76% 0.25 71% 95%  

Azoto Mesa 0.970 0.21 46% 58% 0.39 43% 70% 0.26 63% 85% 

Otero Mesa 0.995 0.62 (East) 31% 81% 0.71 (West) 25% 87% 0.62 (West) 34% 90% 

Table 6: Max gain values and data they are based on from the project area. (Black) Gain Values (Blue) 
Land cells covered in medium to high probability zones (Red) Site cells captured. Percentage of land 
that constitutes sites on surveyed land are used to estimate the max land coverage of sites: Loco Hills 
4%; Azoto Mesa 3%; Otero Hills .5%. 
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Potential Issues 

After their creation, the use of the PUMP III predictive models was sporadic at best, with 

only anecdotal evidence that they were ever used for cultural resource management. During visits in 

2009 and 2012 the local and state BLM office were unable to locate any copies of the models. By 

contacting the authors of the report it was possible to obtain some datasets however their formats 

were unusable in the GIS software available, ArcGIS or QGIS. There were concerns that this would be 

a detriment to the project as it meant relying on the results presented in the report and not being 

able to check them in GIS.  

However, it was decided to go forward with this project area, despite this lack of access to 

the direct data, because: 

1. Getting access predictive model data is very difficult. As discussed in Chapter 2 most 

models are created and then placed in drawers. If a model is not constantly used, then 

the datasets are not preserved. Attempts were made to find other suitable locations but 

most modelling results are only available through publications and not datasets. This 

would have been an issue for most locations. 

2. The other factors for choosing this project area were still valid. The site locations have 

been previously tested for accuracy, the area had been tested for survey biases, multiple 

methods had been independently created, etc. There were many reasons to choose this 

project area, not just the previous predictive models created there.  

Measuring Performance 

 Because the PUMP III models used Kvamme’s Gain Statistic and because that is most used 

standard of measuring performance (see discussion in Chapters 1 & 2) it was decided that this would 

be the measurement of performance used for the agent based predictive models. As will be 

discussed in the conclusion of this project it is probably not the best measurement of model 

performance. However, that conclusion was only reached after undertaking the project and so this 

project started with the expectation that a Gain Statistic would provide easily measurable outcomes 

to compare with the models.  

Regional Geology and Geography  

The Azotea Mesa study area is located west and south west of the city of Carlsbad. Indeed, 

some of the edges of the study area are part of the Carlsbad city boundaries which also includes the 

Pecos River. The river runs through the north east corner of the study area and the edge of its river 

valley runs north-south through the eastern half of the study area. The western edge of the 

boundary captures the lower slopes of the Guadalupe Mountains. This means that the elevation of 
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the project area ranges from roughly 1,700 metres (5,600 feet) in the south west to 950 metres 

(3,100 feet) in the north east corner (rounded to the nearest 50 metres) (METI and NASA 2012).  

These larger geographic entities, the Guadalupe Mountains and the Pecos River, are 

significant components of the regional landscape.  The Guadalupe Mountains continue south from 

the study area into Texas. The highest elevation in this range is Guadalupe Peak in Texas, at 2,667 

metres (8,751 feet) (National Geodetic Survey 2012). Runoff on the east side of the mountains 

drains into the Pecos River watershed and includes the drainages running through Azotea Mesa. The 

runoff from the west side of the mountains drains into the Salt Basin (Altschul et al. 2005). This 

mountain range is both important in terms of ecological resources provided but also in terms of raw 

materials. There are several lithic procurement sites in the Guadalupe Mountains that would have 

provided raw materials for many people in the region (Hogan 2006). Furthermore, a review of the 

archaeological record shows that several lithic materials quarries are also located within the project 

area. 

The Pecos River Valley flows for roughly 926 miles, from its headwaters in the Sangre de 

Cristo Mountains in north-central New Mexico, all the way into Texas where it joins the Rio Grande 

river (Kammerer 2005, Office of the State Engineer 2005). This river has been the primary perennial 

water source for most of human occupation in the area (Altschul et al. 2005). It also butts up against 

the Mescalero Plain which is defined as the pediment surface sloping westward from the base of the 

Mescalero Ridge to the Pecos River. It is estimated that about 80% of the Mescalero Plain is covered 

by what are called the ‘Mescalero’ Dunes and the rest of this flat region is spattered with dry and 

seasonal streams, sinks, and resistant rock outcrops (Reeves 1972). 

Further east of that is the Llano Estacado plateau, which covers some 32,000 square miles in 

east New Mexico and west Texas (Reeves 1972). The plateau consists of large sections of caliche, a 

layer of soil that has been hardened by minerals, and has low rainfall which makes this plateau semi-

arid. In some areas the caliche is buried below sandy and clay deposits. The broad uplands between 

are dotted with thousands of shallow depressions, many containing playas (old dry lake beds) with 

lunate dunes on their leeward margins (Hawley 1986), all inhospitable geology for many plants and 

animals to live in, let alone humans. These conditions in the Llano Estacado and Mescalero Plain 

make the Pecos River Valley one of the few suitable locations for agriculture in the surrounding 

region.  

Current Climate 

Azotea Mesa’s climate is semi-arid, with very hot summers and mild winters. During the 

summer the average high temperature is 35-38 Celsius (mid-90s to over 100 degrees Fahrenheit). It 

is not uncommon for temperatures to reach up and over 46 C (115 F). The winters sees daytime 

temperatures of around range -3 to 13 C (high 20s-50s F) though outliers of -10 to 24 C  (teens to 70s 
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F) are not uncommon, even in the same day (WRCC 2012). The high altitude and lack of cloud cover 

account for these wild swings in temperatures. For the most part, cold temperatures are not too 

common, with frost free days averaging more than 200 days a year (Altschul et al. 2005). The annual 

rain fall varies from 10 to 16.5 inches per year (25.4-41.9 cm) (WRCC 2012) but this varies 

substantially with elevation (NMAES 1971). More information on rainfall and weather is discussed in 

Chapter 8. 

Paleoenvironment 

There are paleoenvironmental studies from the Southern Plains (Reeves 1972, Stafford 

1981, Hall 1982, Johnson and Holliday 1989, Johnson and Holliday 1995)  and the northern 

Chihuahuan Desert, but the only reconstructions in the study area are those of the Guadalupe 

Mountains (Van Devender, Spaulding et al. 1979, Van Devender 1980, Roney 1985). Preference 

would have been to have a paleoenvironmental reconstruction encompassing the study area but 

given no alternatives these studies can serve as acceptable proxies.  

Humans are assumed to have arrived in south eastern New Mexico during the last Late 

Pleistocene/Early Holocene pluvial, roughly 11,000 to 4,000 BC. At the beginning of this period there 

was increased precipitation and lower summer temperatures. This created an environment that had 

small and large playas (ponds/lakes) surrounded by mixed grassland/open woodland vegetation. 

This all changed around 9000 BC when the climate became much drier, with warmer summers. Shifts 

also included possibly cooler winters and a concentration of precipitation during the winter months. 

The result of which was a shift to grasslands. This period also saw the extinction of megafauna, like 

mammoths and Bison antiques (Altschul et al. 2005). 

From around 8500 BC to 7500 BC this area saw some fluctuations between wetter and drier 

periods. Yet, the general pattern was towards increased dryness in the area. By 7000 BC all of the 

woodland vegetation had disappeared from the Southern Plains and the majority of playas had dried 

up. The landscape turned into a desert grassland very similar to what it is today. A brief period of 

higher moisture during the San Jon pluvial 6500-5000 BC intersects this period of dryness but for the 

most part the climate has stayed the same. This is assuming that the subject area followed a similar 

pattern to the surrounding landscapes which have paleoenvironmental studies. 

What this means in terms of human behaviour is that for the majority of possible human 

occupation there is no significant change in resource availability. Changes in technology can affect 

how well the local populations could exploit these resources but overall there was a stable 

environment. However, brief periods of extreme weather such as droughts do need to be taken into 

account. In terms of modelling this will mean fewer variables to account for. Though more 

environment variability is not necessarily a negative aspect for predictive modelling, it just requires 

more work. 
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Vegetation 

The vegetation data gathered for the PUMP III project was from the Gap Analysis Program 

(GAP) of the USGS. This data is divided into 17 subcategories (Figure 17) and the majority of the 

vegetation in the study area was listed as Chihuahuan desert grassland (Table 7).  

 

Figure 17: GAP vegetation data from the PUMP III predictive model project (Altschul et al. 2005p. 82 
Figure 6.5 ).  
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PUMP III  Percent of 
Land 

Coverage  

GAP Data for this project Percent of 
Land 

Coverage 

Chihuahuan Foothill-
Piedmont Desert 
Grassland 

68.65% Chihuahuan Creosotebush, Mixed Desert and 
Thorn Scrub 

46.70% 

Chihuahuan Desert Scrub 15.32% Apacherian-Chihuahuan Semi-Desert Grassland 
and Steppe 

32.98% 

Chihuahuan Desert 
Grassland 

5.53% Western Great Plains Shortgrass Prairie 10.48% 

Table 7: The largest vegetation zones in the study area from PUMP III and GAP (Altschul et al. 2005, 
USGS 2012b). 

As discussed at the beginning of this chapter, the original dataset was no longer available for use in 
this project. This meant that new data from the GAP program was gathered (USGS 2012b). 

 

Figure 18: Gap data distribution of vegetation. Only those classes making up more than 1% of the 
project area are listed. 
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In the newer GAP data the largest ecological zone is the Chihuahuan Creosotebush, Mixed 

Desert and Thorn Scrub covering roughly 47% of the study area. This land cover type is composed of 

two ecological systems, the Chihuahuan Creosotebush Xeric Basin Desert Scrub (CES302.731) and 

the Chihuahuan Mixed Desert and Thorn Scrub (CES302.734). This cover type includes xeric 

creosotebush basins and plains and the mixed desert scrub in the foothill transition zone above, 

sometimes extending up to the lower montane woodlands.  

The next largest ecology system is the Apacherian-Chihuahuan Semi-Desert Grassland and 

Steppe system, which is broadly defined desert grassland, mixed shrub-succulent or xeromorphic 

tree savannah. It covers roughly 33% of the subject area. It is found on gently sloping bajadas, mesas 

and steeper piedmont/foothill slopes in the Chihuahuan Desert. It is characterised by typically 

diverse perennial grasses  

The last major ecological zone in the subject area is the Western Great Plains Shortgrass 

Prairie, which covers about 10.5% of the subject area. This zone occurs primarily on flat to rolling 

uplands. Higher grasses may be found in this ecological zone but they are of secondary importance 

to the sod-forming short grasses. In areas with sandy soils there can be a higher cover of 

Hesperostipa comata, Sporobolus cryptandrus, and Yucca elata. Moreover, scattered shrub and 

dwarf species can be found in this zone. A detailed breakdown of the vegetation systems is found in 

Appendix D. 

The new GAP data was significantly different than that listed in the PUMP III project (Table 

7) with more detailed categories. This is due to higher resolution data collection by the USGS which 

changed the accuracy of the GAP data. The PUMP III project noted this low resolution data:  

‘The gross scale at which the vegetation is mapped and the general nature of the vegetation 
categories do not allow us to observe or model the effects of relatively small patches of 
highly valued resources such as succulents or seed grasses on the location of past human 
activities. At best, we can only evaluate general land-use patterns related to vegetation 
categories.’ (Altschul et al. 2005 p. 82) 

As the newer data had higher accuracy it was tested in some of the model creation but as will be 

demonstrated it contributed very little to the models. Because, even the newer more detailed GAP 

data did not play a significant part in the model creation no attempts were made to try reconcile the 

two different GAP datasets. This information is mainly presented to give an understanding of the 

ecology of the project area for background purposes.  

Project Area Geology  

For this project, soil data was obtained from the Natural Resources Conservation Service 

(NRCS) Soil Survey, a division of the United States Department of Agriculture. These data were 

acquired from the web soil survey website 
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(http://websoilsurvey.nrcs.usda.gov/app/HomePage.htm) and Chapter 7 discusses how this data 

was collected. The results of which present a similar, but not exactly the same, picture of soil types 

to the PUMP III data (Table 8).  

NRCS 
Code 

Type Brief Description Percentage of 
project area covered 

EC Ector stony loam, 0 to 9 percent slopes Very shallow to shallow, well-drained, 
calcareous, stony and extremely rocky 
soils that are underlain by limestone. 

24.60% 

EE Ector extremely rocky loam, 9 to 25 
percent slopes 

23.55% 

ER Ector-Reagan association, 0 to 9 
percent slopes 

8.45% 

LT Limestone rock land Steep to very steep canyon walls and 
escarpments. 

8.97% 

RE Reagan-Upton association, 0 to 9 
percent slopes 

Deep, well-drained, moderately dark 
coloured, calcareous loams that 
developed in old alluvium derived from 
calcareous, sedimentary rocks of the 
uplands. 

9.34% 

UG Upton gravelly loam, 0 to 9 percent 
slopes 

Calcareous, gravelly soils that developed 
in old alluvium derived from calcareous 
sedimentary rocks. 

9.87% 

Table 8: Major (>5% project area coverage) soil types from NRCS dataset (NMAES 1971, USDA 1981). 

A more detailed breakdown of the soil attributes is found in Appendix D and a discussion on 

the water absorption abilities of the different soils in Chapter 7. The NRCS data shows that the 

majority of the project area is characterised as eroding bedrock with thin soils (Table 9). There are 

several percentage points differences between soil types in the PUMP III and NRCS datasets and 

their distributions are different as well (Figure 19 & Figure 20). Yet, the results are similar enough to 

say that the general geology of the subject area is one of eroding bedrock with thin soils 

interspersed with alluvium deposits. Several other soils types making up minor deposits throughout 

the project area to round out the geomorphology. 

Soil Type Distance to 
restrictive layer 

% of 
coverage 

Soil Type Distance to 
restrictive layer 

% of 
coverage 

EC, EE, ER, LT, RPG, 
RTE, Up 

<=15 66.43% Aa, AH, Ah, Ao DP, GA, 
GC, Ha, Hk, Ku,  LN,  
MXC, PD, Pe, PM, RA, 
Rc, Rdm, RE, RG, RM 

>200 19.67% 

At, DRG, DYE, SG, 
SM, TN, TPE, UG, 
Uo, UR, Ut 

>15 and <84 13.83% GA, W N/A 0.07% 

Table 9: Distance (cm) to a restrictive layer, e.g. bedrock, cemented layers, dense layers, and frozen 
layers (USDA 1971, USDA 1981). 
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Figure 19: Geomorphology of Aztea Mesa study area (Altschul et al. 2005 p. 80 Figure 6.4).   
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Figure 20: Study area geomorphology from NRCS dataset. 

The differences between data sets are a result of how the data was collected. The PUMP III 

project procured geomorphologic data for the project area through the mapping of black and white 

stereo aerial photographs (scale about 1:52,000) and colour infrared stereo aerial photographs 

(scale about 1:86,000). This process involved: 

‘Landforms were identified from the stereo aerial photographs using a Topcon mirror 
binocular stereoscope at 3× magnification, and the location and spatial distribution of the 
landforms were then plotted on 7.5-minute topographic maps (scale 1:24,000), the base-
map standard for this project. Landforms smaller than about 200 feet in greatest dimension 
(ca. one-tenth of an inch on topographic maps and smaller yet on the aerial photos) were 
not mapped.’ (Altschul et al. 2005 p. 80-81) 

This is similar to the Natural Resources Conservation Service (NRCS) Soil Survey data collection 

methods which also used aerial photograph to map soil distribution. However, the NRCS also set 

teams to investigate the soil profiles, take samples and test those samples in labs giving it a more 

detailed understanding of the soil profiles. It also meant additional characteristics such as soil depth 

or soil absorption rates were also collected. Given that these characteristics were needed for some 

of the model creation this data was used instead of attempting to recreate the PUMP III data from 

the report’s images. 

Elevation Data 

The PUMP III project used a DEM dataset provided by the United States Geological Survey 

(USGS) to represent the topography of the project area. However, the specifics of this data were not 

discussed in the report with only the mention that the data was laid out on 30 x 30 metre squares.  
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The current project relied on the newest version of data provided by the USGS for the 

project area, Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global 

Digital Elevation Model (GDEM) Version 2 (ASTER GDEM2), as a base for modelling the topography 

of the area. The data is distributed in 1 x 1 degree tiles and uses the WGS84 1984 World Geodetic 

System. This covers 3601 x 3601 pixels that are each 1 arc-second. 1 arc-second is equal to 31 

meters and so the pixels are 31 x 31 meters. This is close to the 30 x 30 m squares of the PUMP III 

data. However, it is unknown if the PUMP III data was originally in a 30 x 30 format or if this data has 

undergone any sort of interpolation. Thus it is assumed that these datasets are similar but not the 

same. 

The ASTER GDEM2 data was collected by using nadir- and aft- looking near infrared cameras 

by the National Aeronautic and Space Administration (NASA) and the Ministry of Economy, Trade, 

and Industry (METI) of Japan. In October 2011, NASA and METI released GDEM 2. It has an overall 

accuracy of around 17-m at the 95% confidence level, and a horizontal resolution of approximately 

75-m. It is given out for free by METI and NASA with condition the following message is included in a 

publication: ‘ASTER GDEM is a product of METI and NASA’ (METI and NASA 2012). 

Culture History 

There have been several detailed major syntheses for this general region of the state; see-

(Larralde and Sebastian 1989, Rothman 1998, Duran, Eidenbach et al. 2001, Katz and Katz 2001). The 

following is a brief general overview of the cultural history of the subject area. The chronology of the 

area can be grouped into four broad temporal periods: Paleoindian (first humans – 5,000 BC), 

Archaic (5,000 BC – AD600/900, Ceramic (AD600/900 – AD1500s) and Protohistoric (Spanish Arrival 

in AD 1500s to 1860s/1880s with the arrival of US settlers) (Katz and Katz 2001).  

Paleoindian 

The first human inhabitants in this area were the Paleoindians. There are very few 

Paleoindian sites in the region and most are identified and classified by the projectile points they 

have left behind, e.g. Clovis (ca.9000 BC) and Folsom (ca. 8500 years BC). Both the Clovis and Folsom 

period peoples used the fluted spear points, for which they are named, to hunt the, now extinct, 

megafauna such as mammoths and Bison antiquus. The butcher and kill sites from these animals are 

the most commonly found archaeological sites from this period (Rothman 1998). However, a lack of 

archaeological data makes it hard to determine if this was their primary subsistence or not. 

Sebastian and Larralde (1989) contend that Clovis, in particular, was probably a broadly-based 

hunter-gatherer adaptation instead of specialised big game hunters. Recent evidence from the Gault 

Site in central Texas tends to support this assertion (Collins 2002). So far research does not indicate 

any sites older than Clovis (ca. 9000 years BC) in south eastern New Mexico (Hogan 2006). 
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Concern has been raised about dating and clarification of sites through projectile points 

(Cordell 1979, Larralde and Sebastian 1989). However, since then the number of radiocarbon dates 

associated with paleopoints has tripled (Eighmy and LaBelle 1996) and now allows for a more 

accurate chronology and identification of Paleoindian site through projectile points (Hogan 2006). 

However, because these sites are mainly identified through their distinctive projectile points, 

selective collection of projectile points, both prehistorically by native groups for reuse and in recent 

times, by amateurs for collection purpose creates a problem of biased sample data. This has 

probably limited our ability to identify these sites as Paleoindian instead of the generic label of lithic 

scatter. As a consequence, in the project area there is only one site that has had an identified 

Paleoindian component to it. 

As mentioned in the Paleo-climate section above, there were changes in the climate 8500-

6500 BC years ago and this is reflected in the cultural record of the Later Paleoindian sites (8500–

6500 years BC). The mass extinction of megafauna caused the local populations to concentrate on 

smaller prey, such as the modern bison (Bison bison) (Larralde and Sebastian 1989, Rothman 1998, 

Judge 2007). It seems that the later Paleoindian toolkits (those associated with Scottsbluff and Eden 

projectile point forms) were employed, which indicates a more generalised subsistence strategy and 

a settlement pattern focused on playas (temporary lakes) and springs (Larralde and Sebastian 1989, 

Rothman 1998, Altschul et al. 2005). 

Archaic 

This generalised subsistence strategy would continue into what is defined as the Archaic 

Period (7,000 years ago). It also coincides with the last major shift in the climate to create the 

environment seen today. The majority of what is known about early archaic adaptation to this region 

comes from excavations in dry caves of the Guadalupe Mountains and of open-air sites in the Pecos 

Valley and southern Tularosa Basin (Altschul et al. 2005). These excavations have yielded a wide 

range of artefacts including organic and trade goods like woven articles of high quality such as yucca 

mats, and bracelets made from glycimeris shell, originating in the Gulf of California (Rothman 1998). 

As will be discussed in the archaeological data section, there have been very few excavations in the 

actual study area. Much of the information about the cultural history is reliant on information 

gathered from the surrounding areas. 

It is not known how the Paleo people relate to those in the Archaic. It had been argued that 

Paleoindian hunters withdrew from the south west as climatic conditions deteriorated and were 

replaced by Archaic populations moving into the region from the west (Irwin-Williams 1979). The 

other view is that the existing Paleoindians became Archaic hunter-gatherers as they adapted to the 

environmental changes during the early Holocene.  
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Ceramic  

Domesticated corn arrived in the area, from Mexico, in the mid to late Archaic period, 

before 1000 BC, the earliest known dates being 1500 BC (Carmichael 1982). It played a minor role in 

diets until the first millennium (Larralde and Sebastian 1989), with the earliest known evidence of 

cultivation from around AD 1-50 (Wiseman 1996). The beginning of cultivation was due to the 

introduction of more productive type of corn and other domesticated plants such as beans and 

possibly amaranth. The domestication of plants plus the introduction of ceramics and the bow and 

arrow is viewed as the end of the Archaic and beginning of the Ceramic period, roughly between AD 

600 and 900. This led to the use of corn agriculture and more sedentary village or farmstead 

settlements on alluvial fans at the edges of the desert basins and along the tributaries of the Pecos 

River, all firmly established by AD 900 (Katz and Katz 1985).  

What is not known is whether the Archaic form of subsistence and living continued in other 

areas of the region, outside of the Pecos river valley. No evidence of agriculture has been found in 

the Guadalupe Mountains. It has been suggested that a mobile hunting and gathering lifestyle 

persisted during the Ceramic period (Applegarth 1976), with hunting focused on small game and the 

collection of plants. This hypothesis is supported by the radiocarbon dates on ring middens, which 

are predominantly dated between AD 500 and 1450 (Katz and Katz 1985). It is possible that this sort 

of living continued with the incorporation of ceramics and bows and arrows. It is also possible that 

different groups of farmers and hunter-gatherers both inhabited the region (Larralde and Sebastian 

1989).  

More permanent settlement that comes with agriculture gives way to substantial pithouse 

sites by the AD 1000s and 1100s. This even leads to modest pueblo sites by the AD 1200s and what is 

called the Formative period. Though unlike other areas of New Mexico, the Formative cultures in this 

region seem to concentrate on agave and shin oak for subsistence instead of corn, beans, and 

squash (Leslie 1979); a continuation of the trends seen in the preceding Archaic periods. This period 

of farming is quickly followed by a shift from sedentary farming to nomadic bison hunting between 

about AD 1250 and 1350, (Jelinek 1967).  

Protohistoric 

By more or less AD 1400 south eastern New Mexico was largely abandoned by agricultural-

based peoples. This is attributed to localised droughts throughout the 1300s and the beginning of 

the Little Ice Age (Rothman 1998). When European contact brings a written record to the area it is 

inhabited by the Kiowa and Mescalero Apache, nomadic hunting groups who lived in short-terms 

camps and kill/butchering sites on the Plains. These groups pushed out or absorbed the preceding 

local populations such as the Jumano, who were assumed to be descendants of the local populations 

stretching back to the Archaic (Rothman 1998). Data suggests that these groups were sedentary or 
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at least foraged within a much more restricted range during a part of the year, and were only 

seasonally mobile until the introduction of horses which greatly increased their range (Hogan 2006).  

Early Spanish expeditions into the south west did not visit the project area (Weber 1994, 

Rothman 1998) until the Espejos expedition, which travelled along the Pecos River in 1583 (Kelly 

1937, Weber 1994). An expedition in 1590 led by Gaspar Castaño de Sosa also passed through the 

Pecos River area and found a found a cache of shelled corn in an olla, near the location of present-

day Carlsbad (Rothman 1998). However, they found very little signs of life and after that Spanish 

explorers ignored this area of the state. This meant that in 1595, when King Philip II of Spain 

commissioned Juan de Oñate to conquer and settle ‘New Spain’ this conquest took place mainly in 

the north of New Mexico near Santa Fe and along the Rio Grande (Faunce 2000). Consequently the 

establishment of  the Camino Real, or Royal Highway, to connect the settlements of the northern 

frontier, was well to the west of the Guadalupe mountains (Schneider-Hector 1993).  

The Spanish largely ignored this area in the following centuries. The only real interaction was 

the launch of punitive expeditions against the Apaches to keep them at bay and prevent them from 

raiding in the El Paseo Area. In 1786, Bernardo de Gálvez, the viceroy of New Spain, expanded upon 

this policy of punitive raids with the promise of supplies if the hostile bands would agree to live in 

peace. This stick and carrot approach worked relatively well and from 1793 to 1821 the region 

experienced peace (Hawthorne 1994, Faunce 2000). 

By the 1700s the Apache  were displaced from east of the Pecos with the arrival of the 

Comanche who are the last American Indian group to move through this region (Hogan 2006).  The 

Pecos River was usually considered the western border of the Comanche lands, leaving the areas 

west, and the project area, inhabited by Apaches (Hogan 2006).  

Historic 

In 1821 Mexico won independence from Spain which at that time included all of New 

Mexico but still showed no interest in the area. It was not until the USA gained control of the region 

after the Mexican-American war that non-American Indian people began to show interest in the 

area (Faunce 2000). However, raiding by Apache bands continued, all the way through 1860s, which 

discouraged settlement and forced the US military to launch several military campaigns in the area 

(Faunce 2000). Eventually this led to the creation of the Mescalero Apache Indian Reservation 

(Mehren 1969, Hawthorne 1994) and the subsequent removal of the last remaining American Indian 

groups to this reservation. This resulted in the pacification of the area and moving in of Anglo 

(White) ranchers, sheep and cattle, and miners during the 1880s. 

The 1880s and 1890s brought homesteaders who were drawn to the area by the water 

provided by the Pecos River and railroad developments. The town of Carlsbad was founded in 1888 

as the town of Eddy but would change its name to Carlsbad after the famous European spa of 
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Carlsbad, Bohemia (City of Carlsbad 2012). Drilling for water wells led to indications of oil and gas 

resources in the area and further exploration. In April of 1924 the Illinois #3 became the first viable 

producing well in south east New Mexico, which is the second largest oil and gas pool in the United 

States (Altschul et al. 2005). Oil and gas would prove to be the driving factors in development of the 

area since that point and a key driver of the archaeological research in the area. 

Archaeological Data 

The site location data for this project was gathered from the New Mexico Cultural Resources 

Information Systems (NMCRIS), the state-wide archaeological record database, of the Archaeological 

Records Management Section (ARMS), a part of the New Mexico Historic Preservation Division 

(NMHPD). As noted, state laws prohibit the unauthorised distribution of site location information. 

Thus that data is not included in this publication and the images are purposely designed to be vague 

about site locations (NMHPD 2012). 

Archaeology of the Area 

Gas and oil development over the last 90 years has worked with more recent heritage 

legislation to create an intensely surveyed area. The majority of the land in the area is government 

owned, thus requiring survey work. This fact, combined with aspects of the oil and gas industry, such 

as seismic survey and the relative density that wells can be placed through a landscape, means that a 

large proportion of the region has received archaeological survey, relative to other areas of the state 

(Altschul et al. 2005, Hogan 2006). The study area alone has had roughly 35,000 acres surveyed.  

 

See Confidential Appendix- Figure 88, Figure 89, Figure 92 

 

NMCRIS data  

In the project area, over 858 archaeological sites have been identified in NMCRIS. Although 

previous investigations (Rocks-Macqueen 2010) have found that some sites have been recorded 

more than once and given different identification numbers. To ensure a detailed archaeological 

record for this project the NMCRIS site reports were examined and the resulting relevant 

information was manually entered into a database (Table 44). A significant number of sites have 

identifiable components, with some sites having multiple components. But another problem with 

dating the components is the plethora of terms and dates used between reports. For example, some 

sites were labelled as Apache but the date range from1539 AD to 1846AD or 1870AD or 1890AD 

(Table 44) with six different ways of describing the time/cultural period of those sites. This data was 

standardised, as seen in Table 43 and the results are as follows:  
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Period Number of Sites 

Clovis to Late Paleoindian 1 

Late Paleoindian 8000BC to 6600BC 2 

Terminal Paleoindian 6600BC to 5500 BC 1 

Early Archaic 2 

Early Archaic to Middle Archaic 1 

Middle Archaic 3 

Middle Archaic to Late Archaic 9 

Early Archaic to Late Archaic 2 

Late Archaic 55 

Late Archaic to Unspecific Archaic 800BC to 200AD 1 

Archaic 2 

Unspecific Archaic 10 

Plains Woodland to Panhandle Aspect 250AD to 1400 AD 1 

Early Pithouse 1 

Early Pithouse to Early Pueblo 1 

Early Pithouse to Late Pithouse 2 

Early Pithouse to Late Pueblo 15 

Late Pithouse 16 

Late Pithouse to Early Pueblo 7 

Late Pithouse to Late Pueblo 69 

Unspecific Jornada 28 

Early Pueblo 7 

Early Pueblo to Late Pueblo 28 

Late Pueblo 8 

Apache 11 

Historic 92 

Unknown/ Unspecific 541 

Table 10: Site period component breakdown for project area.  Sites can have more than one 
component.)  

This surface data links up well with the general cultural history of the area. Limited activity in 

the Paleoindian to early Archaic periods with a steady increase in activity after this all the way up 

until the major cultural shift right before the Protohistoric period. The number of sites does not 

equate quality of sites (Table 11), as many sites are small lithic scatters of under 100 lithics.  

Number of Lithics Number of sites 

0 76 

1 to 9 106 

10 to 99 303 

100 to 999 156 

1000 to 9999 39 

10000 to 99999 10 

Unknown 109 

Number of Ceramics Number of sites 

0 585 

1 to 9 82 

10 to 99 29 

100 to 999 4 

1000 to 9999 1 

10000 to 99999 0 

Unknown 96 

Table 11: Artefact distribution in known sites in the project area. Full data in Table 44. 
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See Confidential Appendix- Figure 93, Figure 94, Figure 95 

 

Time Period Issues 

There were significant issues with identifying the temporal period for those sites. Most sites 

had no C14 dates and almost all dating conventions were based on diagnostic surface artefacts, like 

projectile points or ceramics, which has problems. Projectile points could be reused 100s or 1000s of 

years after they were first created. Ceramics in the project area are not easily distinguishable. A 

common ceramic type is Mogolleon brown ware, which looks very similar to the later Protohistoric 

Apache ceramics that are also brown. The identifications are made in the field and it is unknown 

how many identifications were by a ceramics expert. In the Author’s personal experience of CRM in 

New Mexico it would be rare to have a ceramics expert there to make an identification. 

Of those sites with identifiable artefacts the NMCRIS database lists 328 sites as having 

prehistoric components. However, an investigation into the individual site reports for the project 

area found very different numbers. For example, 92 sites have a historical component according to 

their NMCRIS site reports, which is 20 more sites than listed by the NMCRIS database.  

Lack of Excavations 

A review of the ARMS records shows that as of the 1st of March 2012, out of 2040 

archaeological activities listed, 2035 were surveys and only five were not survey actions. This was 

some limited testing on several sites, though very little was found (Clifton 1996; Gibbs 2003; Griffiths 

and Sciscenti 1996). The most promising result was the excavation of the Punta de los Muertos site 

which yielded C14 dates (Wiseman 2003). However, this site was heavily disturbed by looters and 

the information it provided is suspect. This lack of excavation data is indicative of the whole region. 

Only 51 site excavations were undertaken between 1990 and 2005 in south eastern New Mexico 

(Hogan 2006), an area comprising of Chaves, Curry, De Baca, Eddy, Guadalupe, Lea, Lincoln, Quay, 

and Roosevelt counties. It encompasses 31,590 sq. mi, an area about the size of the state of South 

Carolina.  

This lack of excavation is because the study area is mainly owned by government agencies, 

there is little pressure to place oil and gas wells and supporting roads in any specific location due to 

partial ownership, i.e. they only have permission to build on certain owner’s land. This situation 

means that when archaeological resources are encountered for oil and gas development these can 

simply be moved over to the next available area without archaeological resources. There is no 

pressure to only build in a limited area (Altschul et al. 2005).  An example of this can be seen at site 

LA129788; the site report indicates that on encountering potential cultural remains, a hearth feature 

and only three lithics, the support road to the well was moved (Figure 21).  
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Figure 21: Image of construction near LA 129788, GIS shape files of surveyed areas (light green) and 
site (green). Blue line is original path of road and red line is the diverted road created to avoid 
LA129788.   

Further investigations found that several excavations had taken place in the project area, 

mainly on cave sites. Some investigations had been done in the 1930s (Mera 1938) and in the 1960s 

(University of Wisconsin 1968); however, no legacy data exists for these projects in NMCRIS. In the 

case of the later excavations, the NMCRIS site record is the result of a letter sent in 1968 with very 

little further information. In essence, while in fact excavations have taken place in the project area, 

contrary to the NMCRIS activities query results, the data available from these projects is of very 

limited value for determining sites period(s) of use. 

The almost complete lack of C14 dates, none from undisturbed contexts, and dating based 

on surface finds, and the associated issues with that method, meant the estimates of sites age in the 

database were almost complete guesses. They may have been educated guesses but still guesses 

and ones that covered a minority of sites in the project area. The majority of sites had no estimation 

of age. For this project that did not influence the outcomes as will be demonstrated in the discussion 

the area appeared to have the same use regardless of time period, except the recent historic. 

However, this does mean that significant more field work does need to be conducted to determine if 

this hypothesis is correct and that there are no differences in use between time periods. 
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Chapter 6: Movement Across the Landscape of Azotea Mesa with 

Least Cost Path Analysis  

With the project area determined, agent based modelling software chosen and background 

information reviewed the project moved into model creation, planned activity 3. This chapter 

reviews the first model created for this project. It presents some of the prevailing theories about the 

project area, which were then used to guide the building of the models. As discussed in Chapter four 

the plane for the testing of explanatory models was to use the site location theories for the project 

area for modelling. This chapter specifically focuses on the movement of people in the project area 

as an explanation for the pattern of site placement.  

Site Pattern Theories   

When deciding on which theories to model, this project turned to the prevailing theories in 

the project area about why people would have been in the project area and thus the site distribution 

pattern.  This was summarised by the PUMP III project:  

‘We know that people came into the area, possibly in small, mobile groups that exploited 
locally available resources and then left, or as travellers following a favoured route from the 
river to the uplands, or possibly even as part-time agriculturalists establishing opportunistic 
fields at favourable locations to capture runoff. What we don’t know is which one or ones of 
these strategies they were pursuing, where they came from and where they went, how use 
of this area changed through time, and whether the structure of use changed as a result of 
organisational changes at a larger scale.’ (Altschul et al. 2005 p. 106) 

There were several different hypotheses about why people were in the project area but it was 

unknown which of these hypotheses was correct. The strength of agent based modelling is that it 

allows for the exploration of different hypothesis and situations.  This project did not need to pick a 

single route to test but could utilise the strengths of modelling to test all the different possible 

explanations. The next few chapters examine these different situations: foraging groups, traveling 

groups, or part-time agriculturalists.  

Movement of People Plausible?  

The first hypothesis tested was the idea of ‘travellers following a favoured route from the 

river to the uplands’.  This was a plausible situation, given the large amounts of evidence for 

continual habitation in both the mountains and along the river compared to a lack of evidence in the 

project area (Previous Chapter). As the previous predictive model was aimed at subsistence 

patterns, e.g. vegetation, distance to water, it was possible that the poor results were caused by a 

mismatch between the behaviours that formed the archaeological record and the data used to 
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model these behaviours. The archaeological record could have been the result of movement across 

the landscape from the river to the mountains or vice versa. 

At the beginning of preparing for model creation concerns were raised that that the 

archaeological record did not indicate simple layover campsites on journeys between the two 

ecological zones. Examination of the NMCRIS records found that at least 39 sites are listed as having 

between 1000-9999 lithics (Table 11), viewable pieces in a surface survey, and at least ten sites are 

listed as having more than 10,000 lithics. These are just estimates but when combined with the 

listings of a wide range of features from mortars to roasting pits, it is hard to view these sites as 

simple one-night camping locations on a journey. But one could not rule out travel as the main 

reason for site placement without testing the hypothesis. This project proceeded to test this 

hypothesis to attempt to confirm one way or the other if it accounted for site placement.   

Least Cost Path Analysis  

A common way to analysis potential routes of movement in archaeology is to use a least 

cost path analysis (Gillings and Wheatley 2002, Conolly and Lake 2006). Least cost path analysis 

calculates best path from a source to a destination based on the costs. Cost is defined by the 

modeller, from distance to calories used. In nearly all of these investigations, the aim has been to 

reconstruct ancient routes and route networks (see Fábrega Álvarez and Parcero Oubiña (2007), 

Schriever, Shackley et al. (2010)) or to identify the principal factors governing the construction of 

known roads or road segments (Bell and Lock 2000, Kantner and Hobgood 2003, Jeneson and 

Verhagen 2012) . Until recently, it was rare to see this in predictive models and only a few projects 

are currently undertaking such work (see Bertoncello, Brughmans et al. 2012).  

GIS Methodology and Problems with Least Cost Path 

At the beginning of this project, least cost path analysis appeared to be a possible tool to 

explore site locations, as determined by ‘travellers following a favoured route from the river to the 

uplands pathways across the project area.’ There had been critiques of least cost path analysis, like 

the issues of implementing anisotropic costs in GIS (for full review see Husdal (2000), Gillings and 

Wheatley (2002), Conolly and Lake (2006)). Anisotropic costs are direction dependent; an example of 

this would be slope. A traveller going directly up a hill with a 30% gradient will experience significant 

anisotropic costs. However, if they would travel perpendicular to the direction of the slope it would 

be the equivalent of walking on a flat surface, with a slight slant to one’s left or right. Unfortunately, 

GIS programs have problems implementing these directional forces, as most layers can only account 

for force in one direction. Unless a person travels a straight line their path will alter direction 

multiple times, thus changing their aspect and how they interact with anisotropic costs. 
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Some GIS models will create multiple layers accounting for force from different directions 

but they are awkward and do not work well. A lack of integration of anisotropic costs was the 

primary reason for deciding to move beyond GIS into agent based modelling, which can account for 

these changes in direction. However, there are multiple problems that have been raised with 

regards to the use of least cost path analysis in GIS (for a good review see Herzog (2012)) and this 

was not the only reason to use agent based modelling: 

 Incompatible results across different GIS platforms e.g. results gathered in GRASS GIS cannot 

be replicated in ArcGIS. (Doneus, Gietl et al. 2008). 

 Different neighbour sampling methods result in sub-optimal routes (Bevan 2012). 

 Some GIS packages do not implement Dijkstra’s algorithm in all parts (Lee, Munro-Stasiuk et 

al. 2003). 

 GIS software is incapable of creating zigzag or hairpin curves seen on many roads and trails 

(Llobera and Sluckin 2007).  

Which Costs? 

The first step in creating a least cost path analysis was to determine the costs involved in 

travel. One was vegetation, but after investigating this as a travel cost it was discarded. The majority 

of the project area contains grasses or small shrubs that would not impede travel. Even larger 

barriers, such as pinion trees, were not significant enough at the scale used. The topographic data is 

31 x 31 m and none of the vegetation was that large or in densities that big.   

Soils and waterways were also considered as costs. As discussed in the following chapter, 

waterways in the project area are not perennial or large. Except for the occasional flash flood, 

streams would not impede travel. Soil at first seemed more promising, as the soil reports listed many 

soil types as hard to transverse (see Chapter 8). Under closer examination it was determined that 

while some soils are not conducive to comfortable travelling, like walking over hard pointed rocks in 

moccasins, the greatest cost is actually associated with slope. Walking up or down a slope greatly 

affects the speeds with which one can cross a landscape and the energy expended in such an 

endeavour. Thus the primary variable used as cost in this project is slope. 

Costs relating to social issues were also considered. For example, if part of the subject area 

was owned/controlled by a rival group, then one may not cross this area to avoid conflict. While 

surely a factor in many past cultures, unfortunately no research found any evidence to support the 

existence of such ‘no-go’ zones in the project area. A common occurrence with least path models as 

noted by Van Leusen (2002 p. 6), ‘it is unlikely that ‘social’ costs can be established with any degree 

of objectivity’. This assertion is also supported by other archaeologists as well: Bell, et al. (2002) 

point out that political boundaries, religious taboos or attractions leave hardly any mark in the 
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archaeological record. Without evidence, it is impossible to model such an event other than as a wild 

guess or as a what-if exercise.  

Slope as Cost 

The cost incurred from slope can be measured in several different ways; one is time. 

Archaeologists often represent slope effects on walking as a time cost using Tobler walking function 

(Equation 11). This formula was first introduced to archaeology two decades ago (Tobler 1993). The 

equation calculates the walking speed dependent on the slope of the transverse area and thus time 

to cross that distance. 

 

Kmp = 6 ( exp -3.5 * abs (dh/dx + 0.05) ) 

Equation 11: Tobler’s Hiking Function. Six multiplied by Napier’s number (2.718) raised to -3.5 
multiplied by the absolute value of the slope (rise over run) plus 0.05. 

 

Another measurement of cost that has been used is the calorific cost: how many calories 

one uses to travel across a certain landscape. Herzog and Posluschny (2011)  supported the formula 

presented by Llobera and Sluckin (2007), which was based on a large sample of metabolic cost 

measurements, as the best function for modelling pedestrian movement. However, (Herzog 2012) 

now argues that Minetti’s (Equation 15) is the best model of travelcosts. It should be noted that 

Llobera and Sluckin were not trying to create an optimal path solution in the traditional sense. For 

example, they examined an optimal path for summiting a peak which, in most archaeological 

studies, is not done.  

 

M(s) = 2.635 + 17.37s + 42.37 s^2 – 21.43 s^3 + 14.93 S ^ 4 

Equation 12: Llobera and Sluckin’s quartic polynomial. Units are in KJ m ^-1.  

 

The GRASS GIS program has its own algorithm for calculating cost distance: r.walk. This 

linear cost function is based on the (Langmuir 1995) rule of thumb calculations. It is: 

 

A * ∆_D + b * ∆_H_up + c * ∆_H_gd + d * ∆_H_sd 

Equation 13: ∆_D is the distance covered in metres; ∆_H_up is altitude difference in metres; ∆_H_gd 
gentle and ∆_H_sd steep downhill differences. The default values for the varibles are: a = 0.72; b = 
6.0; c = 1.9998; d = 1.9998.  

Wheatley (2002) used a ‘backpackers equation’ (Equation 14) for his cost path analysis. In 

that case it was Erison et al. (1980): 
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∆_D + 3.168 * ∆_H_up + * abs ∆_H_down 

Equation 14: ‘Backpackers equation’ ∆_D is the distance covered in metres; ∆_H_up is positive 
altitude difference in metres; ∆_H_down is negative altitude difference in metres.  

The minimum cost function of the ‘backpacker's equation’ is for walking on level ground. 

However, studies have found that the actual optimal is on a 10% down slope (Ferretti, Minetti et al. 

2002). A method to model this has been put forth by Minetti et al. (2002): 

 

1337.9 s^6 + 278.19 S^5 – 517.39 s^4 – 78.199 s^3 + 93.419 s^2 + 1.64 

Equation 15: Minetti’s cost path equation. s is mathematical slope. 

 

Any one of these equations would have worked for this project. While the formulas vary, 

their outputs are similar (Figure 22 & Figure 23); it is only when one gets to extremes slopes that 

there is a great deviation in the returns. Initially all the formulas were going to be tested to 

determine if even the smallest difference between the formulas would affect the outcomes. 

However, only Tobler’s equation was used. It was the first equation tested and by the time other 

equations were to be tested it had already been determined the least cost path analysis was not a 

viable methodology, probably for any project.  

 

Figure 22:  LCPs between Hennef-Geistingen and Olpe (Herzog 2010 Figure 3 p. 434) 
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Figure 23: Some slope-dependent cost curves (Herzog 2010 Figure 1 p. 431). 

Optimal Path 

Determining costs does not produce a path; for that to occur; the costs need a decision 

algorithm. Traditionally, this has been done through a Dijkstra algorithm (Dijkstra 1959). Conceived 

by Dutch computer scientist Edsger Dijkstra in 1956, it is a graph search algorithm that solves the 

single-source shortest path problem. It produces a shortest path tree for nonnegative path costs. For 

a given source node in the graph, the algorithm finds the path with lowest cost between that node 

and every other node.  

 

O(|E| + |V| log |V|) 

Equation 16: Dijkstra algorithm.  

 

The Dijkstra algorithm works by: 

1. Assigning to every node a tentative value: set to zero for the initial node and to infinity for all 

other nodes. 

2. Marking all nodes unvisited and setting the initial node as current.  

3. From the current node, considering all of its unvisited neighbours and calculating their 

tentative cost. For example, if the current node A is marked with a cost of x and the edge 

connecting it with a neighbour B has a cost of y, then the distance to B (through A) will be x + 

y. If this distance is less than the previously recorded tentative cost of B, then overwrite that 

distance. Neighbours, even examined, remain as an unvisited set. 



115 

 

4. When all neighbours have been considered the current node is marked as visited and 

removed from the unvisited set. A visited node is never checked again. 

5. Setting the unvisited node marked with the smallest tentative costs as the next ‘current 

node’ and repeat. 

6. The algorithm ends if the destination node has been marked visited.  (Dijkstra 1959) 

 

Implementation of Cost Path Analysis in Agent Based Modelling 

The computer code examined in this chapter is divided into two types: least path calculating 

and optimising the running of the model. Calculating path is a self-explanatory utility and the code is 

laid out to help readers find any errors in implementation of the theory. The optimising code is code 

that has been inserted into the model so that it can run faster and complete the calculations in a 

timely fashion: hours instead of days. However, optimising a model can cause unforeseen glitches or 

errors in a model, which can affect the outcomes. Major sections of the code containing key 

assumptions are examined in the following section with the purpose of finding potential faults with 

the model. The full code is in Appendix C. 

Agent Based Model Design  

Before examining the code used it is important to clarify some NetLogo terms. The agents in 

NetLogo are referred to as turtles. These agents can move around anywhere in the NetLogo world in 

which the simulations run. There is a second type of agents known as patches. These agents are 

static and cannot move around the world. However, they can interact with each other and with 

turtles. Patches create the environment that the agents use to interact. In the models below, GIS 

raster squares are converted to patches.  

GIS capacity is not a normal function of the NetLogo program and it must use an extension, 

the GIS extension, to work with GIS data. The full list of the custom commands for the GIS extension 

can be viewed in the NetLogo Directory and on the web version of the directory –  

http://ccl.northwestern.edu/netlogo/docs/. The primary developer of the GIS extension was Eric 

Russell, who makes use of several open-source software libraries including:  

 Java Topology Suite  

 JScience  

 Java Advanced Imaging  

 Apache Commons Codec  

 Apache Jakarta HttpClient  

 Apache Commons Logging  

It also contains elements borrowed from My World GIS.  
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NetLogo currently only supports raster and vector files from ArcGIS and any dataset needs to 

be converted to those file types. There are no known issues with using ArcGIS files and the NetLogo 

extension but a problem with the extension could result in poor or inaccurate results. 

ASTER GDEM2 

For this project, the elevation data was the ASTER GDEM2 data discussed in Chapter 5. The 

data was first imported into ArcGIS where it was trimmed to fit the project area. The NetLogo GIS 

extension can handle GIS data as a layer of patches but a GIS program like ArcGIS or QGIS is needed 

to handle most functions such as reshaping project areas, combining datasets and buffering. 

Convolution, Potential Problems 

It was easier to import a single elevation layer into NetLogo and then use code to create 

separate aspect and slope datasets than trying to create the different layers in ArcGIS and importing 

them. This was done with code borrowed from the NetLogo GIS example in the Example Libraries. 

This process involves several methodological choices that, as will be demonstrated, can change the 

model outcomes. The following code was used to create these datasets in the NetLogo program. 

 

Figure 24: Code example of NetLogo code used to convert DEM to NetLogo patches. 

These commands create two variables, horizontal-gradient and vertical-gradient, using 

convolve. A convolution is a mathematical operation that computes each output cell by multiplying 

elements of a kernel with the surrounding cell values. In this case, a kernel is a matrix of values. The 

centre cell being the ‘key element’ that is computed from the surrounding cells.  

In NetLogo the values of the kernel matrix are given as a list, which acts as the elements of 

the matrix following the pattern of left to right, top to bottom. For example, a 3-by-3 matrix would 

be listed in the following order:  

1 2 3 

4 5 6 

7 8 9 

The ‘33’ lets the program know that it is a 3 x 3 matrix and the numbers that follow are the values. In 

this model, the horizontal-gradient appears as:  

1 1 1 

0 0 0 

-1 -1 -1 

  let horizontal-gradient gis:convolve elevation 3 3 [ 1 1 1 0 0 0 -1 -1 -1 ] 1 1 

  let vertical-gradient gis:convolve elevation 3 3 [ 1 0 -1 1 0 -1 1 0 -1 ] 1 1 

  set slope gis:create-raster gis:width-of elevation gis:height-of elevation 

gis:envelope-of elevation 

  set aspect gis:create-raster gis:width-of elevation gis:height-of elevation 

gis:envelope-of elevation 
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The vertical-gradient is:  

1 0 -1 

1 0 -1 

1 0 -1 

Convolution is a critical step in this methodology. It determines how the GIS data translated 

to the NetLogo world. Any change in this matrix will alter the values in NetLogo and thus potentially 

the outcomes. For example, one could use a Sobel Operator (-1 0 1 -2 0 2 - 1 0 1 & -1 -2 -1 0 0 0 1 2 

1) or a Scharr Operator (3 10 3 0 0 0 -3 -10 -3 & 3 0 -3 10 0 -10 3 0 -3) to convert the GIS data to 

NetLogo values, with very different results. To test the potential difference in results the final cost 

path model was tested using three different operators: the one provided in the GIS example code, 

the Sobel Operator and the Scharr Operator. Figure 25 highlights the different outcomes of these 

operators with a limited sample of one location to 20 destinations. Any change in the operator used 

for convolution will greatly influence the outcomes: a potential problem that will be discussed later 

in this chapter.  

 

Figure 25: Different cost paths based on the different convolution operators. Black – normal, Red – 
Sobel, Blue – Scharr.  

If convolution changes the outcomes of the model, then why create aspect and slope 

datasets; why not use elevation only for the model? It is possible to use the underlying elevation 

dataset to measure the slope between any two given points. The problem with this is that it changes 

the directional forces of the slope. It makes all calculations of slope relative to the position of the 

agent instead of based on the aspect of the landscape. This results in a different result for the least 

cost path (Figure 26). The limitations of the model forces the use of aspect. 
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Figure 26: Comparison of least paths based on elevation (red) versus aspect and slope (blue).  

Sampling Method Issues 

If the NetLogo world is not set to the exact same size as the GIS data i.e. 100 patches for 100 

raster cells, then the values have to be translated from the raster dataset to the patches. How one 

determines this translation could change the outcomes of the model. The sampling method could be 

any one of the following options:   

 

 ‘NEAREST_NEIGHBOUR’: the value of the cell nearest the sampling location is used. 

 ‘BILINEAR’: the value of the four nearest cells are sampled by linear weighting, according to 

their proximity to the sampling site.  

 ‘BICUBIC’: the value of the sixteen nearest cells are sampled, and their values are combined 

by weight according to a piecewise cubic polynomial recommended by Rifman. 

 ‘BICUBIC_2’: the value is sampled using the same procedure and the same polynomial as 

with BICUBIC above, but using a different coefficient. This method may produce somewhat 

sharper results than BICUBIC, but that result is data-dependent.  

These different sampling strategies were tested to see if they changed the model outcomes.  

 

Table 12 runs through the different combinations tested, in order. Over a test of 20 paths, no 

differences in results were noticed for this model.  
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Elevation Slope Aspect 

NEAREST_NEIGHBOUR NEAREST_NEIGHBOUR NEAREST_NEIGHBOUR 

BILINEAR NEAREST_NEIGHBOUR NEAREST_NEIGHBOUR 

BICUBIC NEAREST_NEIGHBOUR NEAREST_NEIGHBOUR 

BICUBIC_2 NEAREST_NEIGHBOUR NEAREST_NEIGHBOUR 

NEAREST_NEIGHBOUR BILINEAR NEAREST_NEIGHBOUR 

NEAREST_NEIGHBOUR BICUBIC NEAREST_NEIGHBOUR 

NEAREST_NEIGHBOUR BICUBIC_2 NEAREST_NEIGHBOUR 

NEAREST_NEIGHBOUR NEAREST_NEIGHBOUR BILINEAR 

NEAREST_NEIGHBOUR NEAREST_NEIGHBOUR BICUBIC 

NEAREST_NEIGHBOUR NEAREST_NEIGHBOUR BICUBIC_2 

BICUBIC_2 BICUBIC_2 BICUBIC_2 

BICUBIC BICUBIC BICUBIC 

BILINEAR BILINEAR BILINEAR 

Table 12: Different sampling methods of least cost paths tested.  

Potential Problems from Optimisation 

Checking every single patch in the project, while thorough, is inefficient. To help increase the 

efficiency, reducing the time it takes to run the models, this project implemented a code to reduce 

the number of patches that would be searched. The assumption was that even in ideal conditions a 

route could only be so far away from a straight route to the designation. Essentially, the code 

ignored any areas too far away from the agent. A concern was that by limiting the range of 

calculations the model could be creating an edge effect. Where certain paths were excluded, not 

because they were unlikely to be the quickest route but because the optimisation code ruled out 

such a possibility.  

As before, the completed model was tested to determine the influence, if any, this would 

have on the results of the model. As seen in  

Figure 27, there were changes in possible routes when the range was shrunk down to a very 

thin range, i.e. a radius of 30 patches, but after about a radius of 100 patches there is very little 

change. Thus all models were run with the distance of deviation set at 100. 

 

Figure 27: Difference between scanned zone. Radius 30 (Black) 50 (Red) 70 (Yellow) 100 (Blue) 150 
(Pink).  
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Optimisation of Calculations 

The cost path analysis behaviour model was based on a Dijkstra algorithm. Using this 

method, each squared is checked, and then the path to the next set of squares are calculated in 

order, until the goal is reached. Each square points to the previous square that had the lowest cost 

path to reach it. However, instead of having patches undertake this operation, it is quicker to have 

patches create turtles on a new patch to undertake the calculations.  

To speed up the process, only certain patches, i.e. those within the radius discussed above, 

undertake the calculations. However, NetLogo will still have to search through every patch to find 

those that need to undertake the calculation; a very inefficient process. It is quicker to have the 

information transferred by turtle agents between the patches than to run through every patch.  

The code creates eight agents (turtles with the breed mark) with each facing a separate 45 

degree direction: 0 degrees is the top of the screen in the NetLogo world (Figure 28). The agents 

then calculate the cost between the centre point of the patch to the centre point of the patch it is 

facing. It then adds that cost to the inherited cost from the patch it started from and then passes 

that information onto the patch it is facing.  A test of a version that ran with the slower patch only 

method was found to have no difference in cost path results, except that it took significantly longer, 

roughly 2.5x, than the model that employed the mark breed turtles. This method gave the same 

results at a much faster speed but could result in some unforeseen outcomes in the model. 

 

Figure 28: Direction in degrees in the NetLogo world. 

Directional Costs 

As discussed earlier, GIS least past cost path analyses rarely use multiple directional costs; 

instead, they deal with single directional costs. This agent based model was specifically designed to 
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take into account direction from the agent’s perspective. Yet, it was not known if this would actually 

affect the outcomes of a least cost path. A scenario was run to test this in which two agent based 

models were designed, one to take into account all directional resistances from the agents’ 

perspective i.e. forwards, side to side, reverse, etc. and one to only take into account one direction 

cost: i.e. travelling west in the model or 270 degrees in NetLogo (Figure 28). Essentially, one model 

only calculated the costs of moving forward while the second calculated costs if agents moved 

laterally i.e. possibly creating a zig zag effect of movement up hills.  

Figure 29 shows the results, which indicate that different directional forces do change the 

path taken. 

 

Figure 29: Multi-direction force cost path (Red) versus single direction cost path (Black).  

When this is expanded to more interactions (Figure 30) it is possible to see that this is not a 

one-off occurrence. There are significant differences in the routes taken by the different methods 

across the whole project area. Some are minor fluctuations in the path and can be ignored as mirror 

deviations; however, others cannot. For example, several paths are over several kilometres from 

each other. That is a significantly different route of travel to the same location. 

 

Figure 30: Multiple destination multi-direction path (Red) versus single direction cost path (Black).  

Likewise, when examining the difference between a multi-directional and slope only, 

without directional applications, a difference is noticed in the paths (Figure 31). This was done by 
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removing the code that dictates directional influences on costs. It is of note that when directional 

forces are removed the paths smooth out. 

This project opted to use the multi-directional method for calculating costs. A decision made 

because a multi-directional model is a better representation of the actual forces one would 

encounter in the real world. 

 

Figure 31: Multiple destination multi-direction path (Red) versus no directional cost path (Blue).  

Simple Model Test and Distortion 

It has been noted that some GIS software programs, like ArcGIS, fail the ‘simple model test’ 

(Bevan 2012). This was a test applied by Bevan to least cost paths; it states that if one were to have a 

perfectly flat surface then the least cost path should be a single line between two points. ArcGIS 

cannot produce a straight line; instead,, it produces a jagged one (Figure 32). Bevan attributes this to 

the fact ArcGIS only samples the immediate 8 surrounding pixels to calculate costs. He uses GRASS 

GIS as an example of a GIS system that samples 16 locations and passes his ‘simple model test’.  

 

Figure 32: Simple models and cost surface problems. Cost surfaces and a least cost path calculated 
on a flat 100 x 100 surface, for two kinds of spreading algorithm: (a) D8 in ArcGIS, and (b) D16 in 
GRASS GIS (Bevan 2012 p. 6 Figure 1). 
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However, the solution proposed by Bevan, sampling more pixels, may not actually solve the 

problem. The jagged edge is the result of the use of a Dijkstra algorithm on a raster that causes a 

distortion. Due to this distortion, there are errors; the length of the actual path exceeds the length 

of the optimal path by about 20% in a D8 configuration (Gillings and Wheatley 2002, Adriaensen, 

Chardon et al. 2003). Increasing the number of sampled squares can lower this but only so much. As 

demonstrated by Herzog (2012)  (Figure 33), the error rate is reduced to 11% for 15 neighbours but 

only 4.6% with 120 neighbours. It is likely the results seen by Bevan for the D16 sample conducted 

by GRASS GIS is the result of other factors; GRASS GIS uses a modified version of a Dijkstra algorithm 

and samples its data directly from the elevation layers. As seen in Figure 26, the results of working 

directly from elevation datasets can greatly alter, and notably straighten, the results.  

 

Figure 33: Worst case scenarios for different neighbourhood sizes, when a straight line is optimal but 
LCPs deviate from the straight line due to the raster to graph conversion. Neighbourhood sizes: (a) 
3x3, (b) 5x5, (c) 7x7, (d) 9x9, (e) 11x11. The maximum distance of the worst case LCP (dashed black) 
to the true optimal path (grey straight line) decreases with increasing neighbourhood sizes. The 
dotted grey polylines are LCPs incurring the same cost as the worst case LCPs (Herzog 2012 p. 9 
Figure 2).  

Distortion and Agent Based Models 

All of the models used throughout this project were based on an eight neighbour sampling 

system (Figure 34). However, the decision was made to investigate a wider variety of sampling 

ranges to see how they affect the agent based model. This involved more trigonometry to determine 

the correct angles and length of a patch that agent would cross (Figure 34).  
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Figure 34: Eight and 16 square coverage of calculations. Angles to reach 16 square coverage are: 26.6 
and 63.3 degrees. 

Testing of the 16 neighbour model did not result in any deviation from the paths taken by 

the eight neighbour model (Figure 35). Moreover, it did not result in any improved ability to find the 

optimal path in the dump model (Figure 36). Essentially, the agent based models still suffer from 

distortion when making calculations about optimal routes to travel. The jagged paths found when all 

costs are removed are still seen.  

 

Figure 35: 16 neighbour (Blue) and eight neighbour (Red has been covered over by blue) models.  
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Figure 36: 16 neighbour (Blue-covered over) and eight neighbour (Red) solving the dump model.  

Full Model Test 

The fact that optimisation and sampling methods did not change outcomes was reassuring 

that the model would represent the real world. Moreover, a multiple directional cost calculation 

meant that the model was more representational of the real world. However, the fact that it still 

suffers from distortion and that convolution operators can dramatically change the digital 

representation of the area meant that errors could still affect the modelling outcomes. Even with 

these reservations, it was decided to test the model to see if any observable patterns could be 

discerned in the project area.  

The first model was designed to examine the natural paths through the project area. This 

meant calculating multiple paths from different points along the natural Pecos River to the 

Guadalupe Mountains corridor, the main travel avenue hypothesised by the PUMP III report. A total 

of 40 points destination and beginning points on both edges were used. One point would plot paths 

to 40 other points on the other side of the project area. Figure 37 shows such a pattern, with all the 

routes from a single point on the eastern edge of the project area to the arbitrary points on the 

western edge. Also included, are the straight line paths to and from these locations. 

 

Figure 37: One location to 40 possible end points with straight line path (blue) and least cost path 
(Red).  
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Why Arbitrary Beginning and End Points?  

At first, the known archaeological sites along the eastern and western edges of the project 

area were going to be used as starting and ending points. However, upon further consideration this 

option was discarded because we do not know the exact location people were coming from. They 

could be coming from sites hundreds of miles away, well outside the project area. Arbitrary even 

spaced points could capture the general travel routes throughout the whole area without having to 

know specifics. 

East and West 

The models were run from heading west to east (Figure 38) and vice versa (Figure 39). They 

were then combined to show all travel possibilities along the E-W/W-E travel corridor (Figure 40). 

There are a few locations on the edges that are missed but this is due to an edge effect of the model, 

which did not run routes near the edge. The results showed that the pathways missed some notable 

clusters of sites i.e. Black Canyon was missed (Confidential Appendix Figure 96). However, it did 

correlate to some sites and might explain the positions of those sites. 

 

Figure 38: Western to eastern least cost paths across the project area.  
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Figure 39: Eastern to western least cost paths across the project area.  

 

Figure 40: Combined eastern and western travel routes.  

Vision and Cost Path   

A possible explanation for the poor predictive results is that the least cost path analysis does 

exactly what it is meant to do: find the optimal route. An optimal route assumes perfect knowledge 

of all past environments and costs; an assumption that is not known. Constant travel in an area 

would cause a person to gain local knowledge of the landscape, to a level that might be close to 
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perfect and, accordingly, the costs associated with travelling across it. Yet, this is an assumption and 

we do not know the level of knowledge individuals might have had. 

It was decided to test a model that took into account both costs and the knowledge of those 

costs. This involved adding two new components to the model, a vie shed procedure and a decision 

procedure. The viewshed model is used to determine which aspects of a landscape a traveller would 

have been aware of as they travelled. This information is then acted upon by the decision procedure 

to calculate the best path according to the knowledge available to the agent. For this, the goal was 

set as the farthest point that the agent is aware of along the same direction as the destination. The 

agent knows it wants to end at a certain direction but it is navigating by heading to the farthest point 

in that same general direction that it is aware of; in other words, a waypoint model. 

The results of this model show a significant difference in paths taken by the limited 

knowledge based model and the traditional perfect knowledge based model (Figure 41). The 

decision procedure for the model tested was based on distance travelled. After a set distance, the 

agent re-evaluates its surroundings and chooses a new path. Tests show that, as one would imagine, 

changing the decision procedure changes the path outcomes. 

 

Figure 41: Local knowledge cost path based off of viewshed (Red) compared to the normal cost path 
(Blue). 70 Patch decision setting.  

Errors – People are Not Perfect 

Even when using a limited knowledge model the assumption is still made that people are 

able to calculate travel costs perfectly. That assumption seemed overly optimistic about a person’s 

ability to estimate travel times. It is unlikely that a person would be able to calculate correctly the 

optimal path 100% of the time or even the majority of the time. Revaluating this assumption 

requires that the models be examined in the context of imperfect knowledge. 

To create ‘errors’ in knowledge the cost of each patch was changed using different formulas. The 

first one tested was a random float rate function in the NetLogo program. Several different 

percentages were tested to see what would happen if agents incorrectly estimated costs of travel, 

e.g. over or underestimate costs by 5%, 10% etc. The results can be seen  
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Figure 42: 

 

Figure 42: Cost path with random-float error rates. Error rates: black- 0%; grey- 1%; red- 2%; orange- 
5%; brown- 10%; yellow- 15%; lime- 20%; turquoise- 25%; cyan- 30%; blue- 50%.   

Using a random float rate there was very little change in the paths undertaken by the 

agents, even when set to a 50% error rate. This is because the random float method used could not 

guarantee 50% difference between the reality and the agent’s view but any number between 0 and 

50%. One patch could be off by 1% and another by 3% and a third by 45%. While there could be 

significant difference, the range blunted the impact.  

To explore further the influence of errors in judgment on cost path analysis a different 

approach was undertaken. That was to eliminate the random number but keep the random + or – 

error in estimation. This involved setting a constant error rate with this code: set pc pc + ( pc * 

(((random 2) * 2) - 1) * er). Figure 43 shows the results. Even with a difference of 50%, with the 

random + or – results in a potential difference of 100% between to patches, the results show only 

minor changes in paths.  
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Figure 43: Paths with a set error rate in calculating costs. (Blue) normal cost path. (Black) plus or 
minus 50% error rate.  

Other Error Rates 

To undertake due diligence and explore as many representations of possible error rates in 

the cost path several other commands were used. One was a normal distribution of error rates from 

zero with different standard deviations. The results (Figure 44) are more significant for the normal 

distribution than the previous error rates. Even with a standard deviation of only 10%, there are 

significant swings in least cost paths routes compared to a perfect least cost path.  

 

Figure 44: Paths with a normal distribution error rate in calculating costs, mean set at 0. (Blue) 
standard deviation of 0. (Yellow) standard deviation of 10%. (Orange) standard deviation of 50%.  
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Another option explored was to use the random exponential NetLogo command to set the 

error rate to an exponential curve. Significantly, this did not result in a great divergence in paths as 

seen with some of the other distributions of error rates.  

 

Figure 45: Normal cost path (Black) compared to a random exponential error rate (Yellow).  

All of these rates assume a random miscalculation in rates but it may be the case that the 

problems with estimating costs are patterned. For example, a person could overemphasise costs 

associated with steeper slopes. However, this does not need to be a mistake in assumptions; it could 

be that a person has trouble walking up or down steep slopes. If that were the situation, then a 

person may just have a preference for shallow slopes. To over-emphasise the costs associated with 

slopes, the square and cube of travel costs were taken into account. The results show that the paths 

are very different from those seen with the normal calculation of costs.  
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Figure 46: Cost paths using an exponential (Red) and cubed (Blue) calculation, to emphasise lower 
slopes, compared to the normal cost path (Black).  

Discussion 

All of this testing has shown that there can be significant changes in least cost paths due to a 

multitude of factors. These factors combined with other noted problems result in an extensive list of 

factors that alter the actual least cost path taken as explored with the agent based model: 

 resolution of the datasets used 

 the different programs used to create the paths, e.g. ArcGIS, GRASS GIS, NetLogo 

 the directional application of forces: single, multiple, full 360 degrees 

 dataset creation and interpretation by the programs used 

 neighbour sampling: D8, D16, D24 etc. 

 how costs are calculated: Tobler’s Hiking, Backpacker’s equation, Minetti’s cost path 

equation etc. 

 error in calculating/estimating travel cost by individuals 

 knowledge of paths, i.e. viewshed 

 edge effect: paths next to data set edges are not taken into account 

In some of examples shown above the differences in paths were several kilometres apart. 

For site predictive modelling that is too great an error rate to be of any use in analysis. It could even 

be argued that this is too great an error rate for any other applications. Certainly, when comparing 

the past least cost path models with actual travel data there are significant differences in the results. 

Figure 47 shows least cost paths compared against known trails in Michigan: the results show that 

least cost paths can be tens and hundreds of miles/kilometres off from the paths they are supposed 



133 

 

to model. One has to question how, if at all, least cost path analysis in its current form could be of 

any use to archaeology.  

 

Figure 47: Historic trails and modelled routes compared in Michigan (Howey 2007 Figure 8 p. 1841). 

Does Least Cost Path Even Matter? 

The underlying concept of least cost path is to find the ‘optimal’ route. However, that 

assumes that an optimal route actually makes a difference in the results. Traditional least cost path 

analysis only allows one to check the ‘optimal’ route and not to investigate alternative pathways. 

However, with the agent based model it is possible to take into account alternative routes. This 

allows the possibility to examine alternative routes and the costs associated with them.  

By limiting the possible range that the agent could take it was possible to create alternative 

routes. This was done with the optimisation code, which caused the route taken to be straighter. 

The results of these investigations show that the difference between the distance and time taken by 

the optimal route and other routes are minimal (Table 13). However, the differences between these 

routes are significant. For example, the furthest points between the 100 patch and 20 patch path 
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were 5.25 km away while the difference in distance travelled in only .05 km and the time difference 

is a little more than two hours.  

Limiting 
range- 

patches 
(distance 

km) 

Total 
Distance 
Travelled 

(km) 

Total Time 
(Hr.) 

Difference 
From Optimal 

Total 
Distance (km) 

Difference From Optimal 
Total Time 

Colour  

300 (18.52) 69.0211   19.4518 - - orange 

100 (6.17) 68.2822   19.5608 0.73895 0.109 (6.54 min) red 

50 (3.09) 68.5565 19.9596 0.4646 0.5078 (30.47 min) black 

20 (1.23) 68.2398 21.8760 0.7813 2.4242 (2 hr. 25 min) blue 

10 (.62) 66.9127 23.7209 2.1084 4.2691 (4 hr. 15 min) yellow 

5 (.31) 65.4869 33.0143 3.5342 13.5625 (13 hr. 34 min) pink 

Table 13: Travel times and distances for different cost paths.  

 

Figure 48: Different cost path routes for Table 13.  

These results are similar because, for all the complex calculations taking into account 

direction of travel, aspect of the landscape and different cost calculations, the actual cumulative 

costs are similar. Figure 49 shows the spread of costs from a single point across the landscape at 

different scales. While there are areas where one can travel quicker than in others, the cumulative 

difference is minimal.  
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Figure 49: Cumulative cost path analysis at different scales. A: max 1500 B: max 700 C: max 300.  
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Time Difference 

Cumulative totals blunt the effects of optimal routes. The yellow path in Figure 29 only takes 

22% more time than the optimal route and yet deviates by more than 6 km in some areas. The blue 

path only takes 12.5% more time and still has a difference of over 6 km. This raises a question that 

has yet to be addressed in archaeological literature: how much did time actually matter to past 

people? Would half an hour have made a difference? 

Costs in this example are measured in time, but these costs could easily be measured in 

something else, such as calories used. Yet, the difference is going to be very small and one has to 

question where people, past or present, are able to tell the difference in calories burned with any 

sort of accuracy. Would they be able to tell the difference between 10, 20, 50, 100, 1500 calories?  

Regardless of how cost is calculated the same problem remains: least cost path analysis 

gives results in the form of a single detailed line when there are multiple paths, all similar in costs. 

Corridor Analysis 

In other projects, least cost paths have been used to create line density analysis of 

landscapes. This process involves looking at multiple least cost paths between various locations to 

find areas that receive a high and low number of least costs paths. Those areas that receive a higher 

density of paths could be labelled as travel corridors. These areas can then be compared against 

known sites to see correlations (Figure 50), a use that could be applied to a predictive model. One 

could use ‘Morphometric Analysis’ as a tool to find natural corridors in a landscape. Moreover, 

others have used tools like ‘Corridor Analysis’ in ArcGIS can, and has been used, to determine 

natural corridors (Figure 51) (Doneus et al. 2008).  

 

Figure 50: Least cost past used to find natural travel corridors (Murrieta-Flores 2012 p. 112-13 
Figures 8 and 9). 
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Figure 51: Example of Corridor Analysis in ArcGIS (Doneus et al. 2008 p. 5 Figure 4). 

Corridors and Intensity of Travel 

It was possible to apply a type of corridor analysis to the agent based model by looking at 

the intensities of areas travelled. The number of times the different paths intercepted were 

recorded creating a math of intensity of travel along the route (Figure 52). This was done with the 

standard model and none of the additional ones such as the viewsheds or imperfect knowledge. 

Figure 53 shows those paths in relation to the elevation model. This analysis did identify several 

potential main throughways across the landscape; areas that also correlated with known 

archaeological sites (Confidential Appendix Figure 97). But, there were also many sites that did not 

correlate at all to these corridors of travel.  
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Figure 52: Frequency of path travelled for points five patches apart. White= higher frequency of 
travel. 

 

Figure 53: Same map as Figure 52 but overlaid over an elevation map of the project area. Not to 
scale. White= higher frequency of travel. 

Discussion 

These investigations raise several key concerns about the use of least cost path analysis. On 

the technical level, there is concern that components of the agent based model may not accurately 

represent the real world through the processing of the data, i.e. convolution operators. The use of a 

Dijkstra algorithm causes distortions. However, that is a problem found with GIS programs and they 
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have their own technical issues which do not make them a better tool. There are some potential 

technical issues that may invalidate the results. 

On a theoretical level, this work has found serious flaws in least cost path analysis. Any 

deviation from an agent’s perfect knowledge of the area leads to significantly different results. 

Incorporating a local viewshed and limiting knowledge, which is a closer representation of some 

situations, changes the paths taken. If a real person over or underestimates the effort involved in 

slopes, that can greatly change the outcomes.  

The most damning indictment of least cost path analysis is that the optimal path makes very 

little difference to the results. Taking a less optimal path only increases the costs slightly, be it time 

or calories. One has to question if people, both past and present, would notice an extra six minutes 

in a 19.5 hour journey? Yet, that same journey takes them .7 km away from the optimal path. For 

predictive modelling or modelling travel in general, that is a significant difference.  

At best, one ends up with corridors of travel. There are areas that the landscape funnels 

people into but not the neat lines seen with least cost path analysis. These corridors are limited in 

scope and subject to edge effect, not to mention all of the possible changes in paths laid out above. 

Moreover, these corridors are obvious and it would be questionable that a person looking at a 

topographic map would not have been able to spot and label them without the use of an agent 

based model. 

This does not mean these results are not useful. We clearly have several areas with high 

potential for archaeological sites, assuming they result from travel to/from the mountains to/from 

the river. It terms of the hypothesis about the project area: 

‘We know that people came into the area… as travellers following a favoured route from the 
river to the uplands...’ (Altschul, Hayden et al. 2005 p. 106) 

The results of the modelling leave this as a possible contributing factor but not the main factor. This 

information alone is not enough to create a full predictive model but when combined with other 

datasets it can help modify the model. Doing such work will be discussed in the following chapters. 

Overall, the results indicate that least cost path analysis has very little utility for predictive 

modelling or archaeology in general. Given the problems found here when testing human actions 

and the costs of less than optimal paths it seems as though least cost path may have limited 

application in the future.  
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Chapter 7: Water and Surviving 

‘We know that people came into the area, possibly in small, mobile groups that exploited 
locally available resources and then left … or possibly even as part-time agriculturalists 
establishing opportunistic fields at favourable locations to capture runoff’ (Altschul, Hayden 
et al. 2005 p. 106) 

After route analysis failed to account for most site locations, beyond several possible choke points 

that were associated with a few sites, the next pattern to be examined was one based on 

subsistence and living. It was suggested that the archaeological record reflects a pattern of 

subsistence in the project area. A hypothesis was tested and reviewed in this chapter. 

Water in the Project Area 

Chapter 6 outlined how the project area is and was an arid environment with little rainfall; a 

desert. Moreover, the studies of the paleoecology indicate that it has been this way for most of 

human occupation. Even if there was sufficient plant and animal life to support seasonal or long-

term occupation in the subject area, without a constant and significant source of water habitation 

would have been impossible. Even limited foraging would have been constrained. Water was the 

foremost constraint on population exploitation of the project area and needed to be modelled to 

understand the possible foraging strategies employed. 

Geology and Water 

The geology and environment of the subject area limits where and how local populations 

could obtain water. For example, digging wells would be impossible in the majority of the subject 

area as the water table is below a restrictive layer (Table 14). A ‘restrictive layer’ is a nearly 

continuous layer that significantly impedes the movement of water and air through the soil or that 

restricts it. Examples are bedrock, cemented layers, dense layers and frozen layers  (USDA 2012). It 

would not have been feasible for prehistoric people to reach the water table with hand-dug wells. 

Modern occupants have to dig wells over 100m through cemented layers (Hale 1945) and prehistoric 

occupants in the region are not known to have done this. This leaves running water from rivers, 

streams, springs and ponds as the primary source of water for the local populations. 
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Soil Distance to 
Restrictive 

Layer 

% of area Soil Distance to 
Restrictive 

Layer 

% of 
area 

Soil Distance to 
Restrictive 

Layer 

% of 
area 

Aa >200 0.13% Ha >200 0.01% RM >200 1.17% 

At 84 0.01% Hk >200 0.02% RPG 0 0.56% 

AH >200 0.01% Ku >200 0.01% RTE 0 0.28% 

Ah >200 0.004% LN >200 0.18% SG 48 0.21% 

Ao >40 0.02% LT >200* 8.97% SM 48 0.07% 

DP >200 3.76% MXC >200 0.19% TN 38 0.03% 

DRG 36 0.04% PD >200 0.06% TPE 25 0.70% 

DYE 20 0.02% Pe >200 0.13% UG 33 9.87% 

EC 15 24.60% PM >200 0.70% Uo 33 0.50% 

EE 15 23.55% RA >200 2.45% Up 14 0.02% 

ER 15 8.45% Rc >200 0.13% UR 33 2.32% 

GA >200 0.14% Rd >200 0.39% Ut 30 0.04% 

GC >200 0.30% RE >200 9.34% W N/A 0.08% 

GP N/A 0.004% RG >200 0.55%    

Total  Land > 200 28.73%  Total Land < 200 71.27% 

Table 14: Distance in cm to a restrictive layer. *the distance for LT is listed as >200cm; however, this 
layer is itself a restrictive layer of limestone.  

Several historical place names have the term ‘spring’ in their names (Table 15). Indian Big 

Spring was known to have occasional discharges (Motts 1968, Engineer 2004) but information on 

this spring was limited. Satellite photos on Google Earth indicate that the area around McKittrick 

Spring had significantly more greenery than the surrounding landscape, but it is unknown if this is 

connected to a natural spring. Further research showed that the local spring flow is determined by 

the height of the water table. This in turn is influenced by the rainfall in the project area (Cox 1967). 

Above average rainfall results in the slow trickle of water from the higher elevations into the lower 

gullies, which raises the water tables in those areas and results in springs forming. This explained the 

seasonality of Indian Big Springs and the fact that known springs are only found in the lower 

elevations.  

Besides Indian Big Springs the majority of the springs listed for this project area did not have 

any record of use, except for the springs next to the Pecos River (Carlsbad Spring Number 16). 

Moreover, research on geology and hydrology indicated that only certain locations in the project 

area were suitable for springs. Part of the area lies on top of a reef escarpment that is not 

conductive to underground water flows (Brooke, Dawson et al. 1997, Goodbar and Rice-Snow 2012). 

This reef drops off at the Pecos River Valley at which point it is possible to have springs, and several 

do exist next to the Pecos River.  
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Name Latitude Longitude 

Indian Big Spring 32.4553907 -104.4888505 

Lancaster Spring (Lassiter Spring) 32.4117469 -104.3220966 

Little Walt Spring 32.4165295 -104.4709678 

McKittrick Spring (Mc Kitric Spring) 32.4136817 -104.3528780 

McGruder Spring 32.4017753 -104.3331474 

Walt Spring 32.4325679 -104.4811743 

Yellow Jacket Spring 32.2878934 -104.3643942 

Carlsbad Spring Number 16 32.4445617 -104.2643951 

Table 15: List of Spring place names in the project area.  

 

Figure 54: Location of Spring place names on Google Maps.  

Past Predictive Models and Surface Runoff 

Seasonality of springs meant that runoff from rain was the only possible consistent source of 

water for the majority of the project area. That was the next model to be considered. 

Modelling surface runoff was not new in predictive modelling. Dalla Bona (2000) has stated 

that water is one of the key datasets employed by almost every site predictive model. Some 

predictive models have even been created solely based on sites’ proximity to water (Altschul et al. 

2004). Water played a key role in some of the previous predictive models created for the subject 

area (Altschul et al. 2005). There was a correlation between the areas predicted as having high 

probability of containing sites and proximity to the water features created on the map (Figure 55, 

Figure 56).  
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Figure 55: Dataset of drainages and ridges in the Azotea Mesa study area from the PUMP III project. 
(Altschul et al. 2005 p. 79 Figure 6.3)   

 

Figure 56: Results of PUMP III Regression Model. (Altschul et al. 2005 p.95 Figure 6.12) overlaid with 
an image (black lines) of the water system traced from (Altschul et al. 2005 p. 79 Figure 6.3). 
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Blue Line Features and Data Issues 

A problem raised with predictive modelling is that ‘blue line features’ on maps may or may 

not actually contain water (Ebert 2000), an issue relevant to this project. Considering that, on 

average for the last hundred years, the city of Carlsbad had only received annual rainfall of a little 

less than 13 inches and the annual evaporation rate is 109.48 inches, it seemed unlikely that any of 

the waterways used in the previous project would actually contain water. Moreover, hydrology 

research of this and the surrounding areas indicated that, aside from some springs and the Pecos 

River, most of the channels listed are the result of flash floods (Hale 1945, Cox 1967) not perennial 

water ways. This raised the question if currently available datasets are in fact an accurate 

representation of the water systems. 

The water systems used in the PUMP III model were not created from maps, but through the 

use of a GIS hydrology program. The PUMP III model used this data to represent distance to water, 

assuming that each and every one of the water features represented a usable continual source of 

water in the project area. Yet, this dataset was not checked against any other data to determine if it 

accurately represents the real distribution of water in the project area. 

To confirm these suspicions that the GIS datasets did not represent the actual water system 

this project looked at the raw water flow data from the USGS. The USGS keeps records on water 

flows throughout the United States including areas in and adjacent to the subject area. There were a 

limited number of measurement stations in the drainages of the subject area but they did provide a 

picture of the information about the volume and frequency of water flowing out of the subject area 

(Table 16). These numbers are limited but they illustrate the fact that the vast majority of the 

precipitation in the study area is not converted into a consistent water flow. The images of long 

flowing streams crossing the subject area are clearly not reflected in any water data. 
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Test Point Drainag
e Area 

Period of Record Annual 
Runoff 
(ac-ft) 
2010 

Annual 
Runoff 
(ac-ft) 
1964-
2010 

Days with 
flow 2010 

Avg. Annual 
Runoff Against 

Avg. Rainfall 
(assuming avg. 

12 inches of rain) 

08401900 Rocky 
Arroyo at Highway 
Bridge, Near Carlsbad, 
NM  

285 mi², 
approxi
mately. 

November 1963 to 
current year. 

939 4,040 5 2.1% 

08405050 Last Chance 
Canyon, Near Carlsbad 
Caverns, NM  

2 mi². Water years 1959 
to 1996, 2005 to 
current year 

Not 
listed 

Not 
listed 

Not listed  

08405100 Mosley 
Canyon, Near White 
City, NM 

14.6 
mi². 

Water year 1959 
to current year. 

Not 
listed 

Not 
listed 

Not listed  

08405105 Dark 
Canyon Draw Near 
White City, NM 

327 mi², 
approxi
mately. 

February 2002 to 
current year. 

2280 2560 7 1.2% 

08405150 Dark 
Canyon Draw at 
Carlsbad, NM 

451 mi², 
approxi
mately. 

January 1973 to 
current year. 

260 3290 (+ 
2100 for 
irrigation
) 
5390 

1 1.9% 

Table 16: USGS water data gathering stations in and next to the subject area. Full table with locations 
in Appendix D. Mi- miles, ac-ft- Acre-feet 

Project Implications 

In terms of the agent based model, this information had implications for how the model was 

constructed because it presented different behaviour issues. Limited water flows would have 

severely limited the ability of local populations to sustain themselves for any significant period of 

time. If water supplies had to be transported into the project area, then the time groups could spend 

hunting and gathering resources would be significantly limited. Limited water would have meant 

that the few springs that did exist in the area would not have had water either. On the other hand, 

the pooling of water into small reservoirs, depending on how deep they were, could have provided 

year-round water supplies. If such pools existed, they would have attracted people and thus the 

placement of archaeological sites. 

Faced with these possibilities, this project set out to determine the conditions needed for 

runoff that will lead to pooling, water flows, or neither in the project area. The idea was to model 

these conditions to create an accurate picture of the natural flows of the water. These models were 

then calibrated with the actual climate conditions, current and historic, and the model adjusted 

accordingly to ensure accurate results. The knowledge it provided allowed me to make a 

determination on both the suitability of the areas for long-term occupation and the appropriate 

locations for such occupation.  
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Model Creation 

Creating a hydrology model was more complex than making a travel model because a variety 

of variables needed to be taken into account. For one, precipitation can take different routes to 

become runoff (Garen and Moore 2005) that need to be modelled. There was Infiltration Excess 

Overland Flow, which occurs when the rainfall concentration exceeds the infiltration capacity of the 

soil, and the rainfall that cannot be absorbed by the soil runs down the land surface of the hillslope. 

It can easily be confused with Saturation Excess Overland Flow events, which occurs when the soil is 

already saturated before a rainfall and the water immediately runs off. Water from the saturated 

soils could also exfiltrate, called a return flow.   

Saturation Excess Overland Flow typically takes place at the base of hillslopes, where soil 

moisture is high because of downslope movement of subsurface water. This process was first 

identified in the late 1960s (Dunne 1978) and is now well known among the hydrologic research 

community. However, it appears to not be well understood by many practising engineers and 

hydrologists (Garen and Moore 2005). This is the dominant streamflow generating process during 

most storms of ordinary intensity. Infiltration Excess Overland Flow typically occurs in high intensity 

storms while Saturation Excess Overland Flow can occur in low intensity storms.  

Other routes that water could take were:  

 Shallow Subsurface Flow - In some areas, water can flow downslope shallowly within the 

soil quickly enough to be considered part of the storm flow. This is often enhanced by the 

presence of macropores caused by earthworms, burrowing animals, tree roots, etc. 

Basically, a subsurface runoff flow. 

  Ground Water Flow/Base Flow - This is the water that exfiltrates from the aquifer to the 

stream.  

 Direct Precipitation Onto Stream Surface - Water is added directly to the flow without 

interacting with soil.  

 Percolation - Water moves down through the soil into the aquifer. Though because this 

model was focused on runoff, events like percolation were not modelled. 

Model Formula 

To convert rainfall to runoff one uses an expression of conservation of mass where runoff is 

determined by the rainfall minus abstractive losses: 

 

Q = P – L 

Equation 17:  Conservation of mass for runoff. Q = runoff; P = rainfall; and L = abstractive losses.  
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These abstractive losses fall into five categories (Hawkins and Ponce 1996):  

1. Interception storage by vegetation foliage, stems, litter or by cultural features e.g. roofs on 

houses, water storage facilities, etc. 

2. Surface storage in ponds, puddles and other small temporary storage locations. 

3. Infiltration to the subsurface to feed and replenish soil moisture, interflow, and ground-

water flow. 

4. Evaporation from water bodies such as lakes, reservoirs, streams and rivers as well as from 

moisture on the bare ground.  

5. Evapotranspiration - the sum of evaporation and plant transpiration of water from the 

Earth's surface to its atmosphere. 

Runoff Curve Number 

The most common way to calculate these losses in the United States, and in other locations 

across the world, is through a Runoff Curve Number (RCN). The curve number procedure was 

developed in the 1950s by the Soil Conservation Service (SCS) as a simple procedure for estimating 

streamflow caused by rain storms. It should be noted that it only covers Direct Precipitation Onto 

Stream Surface, Infiltration Excess Overland Flow, and Saturation Excess Overland Flow and not any 

of the other flows mentioned. The primary documentation for the procedure is USDA-SCS (1972). 

The number takes into account vegetation and soil characteristics that can be looked up using 

tables. It does not take into account long-term losses caused by evaporation or evapotranspiration.  

The advantages listed by Ponce and Hawkins (1996) for using a curve number are:  

1. It is a simple, predictable, and stable conceptual method for the estimation of direct runoff 

depth based on storm rainfall depth, supported by empirical data.  

2. It relies on only one parameter, the runoff curve number, which varies as a function of four 

major runoff-producing watershed properties: 

a. hydrologic soil group: A, B, C, and D 

b. land use and treatment classes 

c. hydrologic surface conditions of native pasture: poor, fair, good 

d. antecedent moisture condition: 1, 2, 3 

3. It is the only agency methodology that features readily grasped and reasonably well-

documented environmental inputs. 

4. It is a well-established method, having been widely accepted for use in the United States and 

other countries. 
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The disadvantages listed were: 

1. The method was originally developed using regional data, mostly from the Midwestern 

United States, and has since been extended by way of practice to the rest of the world. 

Some caution is recommended for its use in other geographic and climate regions. 

2. In some instances, particularly for the lower curve numbers and/or rainfall depths, the 

method may be very sensitive to curve number and antecedent conditions. This is not 

necessarily a weak point, since it may be a reflection of the natural variability. There is , 

however, a lack of clear guidance on how to vary antecedent conditions. 

3. The method performs poorly in forest sites and is best with negligible base flow found in arid 

and semiarid regions. 

4. The use of curve numbers for areas greater than 100 sq mi or 250 sq km is unreliable.  

5. The method fixes the initial abstraction ration as 0.2 but this can vary between climates. 

 

Several of the disadvantages of this method were found to be applicable to the project area, 

i.e. different climate, low rainfall. However, as pointed out by Ponce and Hawkins (1996), 

replacement formulas presented up until the 1990s could not replace the curve number as a 

superior method. Garen and Moore (Garen and Moore 2005) have listed some additional methods 

but as of yet there is no clear replacement model for the curve number and as such was used in 

some of the models.  

The SCS runoff equation that uses the runoff curve number is: 

 

Q= (P – Ia) 2 / (P-Ia) + S 

Equation 18: SCS runoff equation: Q = runoff (in); P = rainfall (in); S = potential maximum retention 
after runoff begins (in); Ia = initial abstraction (in). 

 

Ia can vary between values of 0.0 and 0.3 but has been generally found to be 0.2. Thus the equation 

can be converted to: 

 

Q = (P-0.2S) 2 / (P + 0.8S) 

Equation 19: Converted SCS runoff equation. Where S = (1000 / curve number) – 10 
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The formula results in the follow outputs:  

 

Figure 57: Rainfall to direct runoff chart using the runoff curve number (USDA 1986 p. 14 Figure 2-1).  

Soil Groups 

The curve number is primarily determined by soil groups, which are classified as A, B, C, D, 

and vegetation coverage. The soil classifications are: 

‘Group A: Soils having high infiltration rates even when thoroughly wetted and a high rate of 
water transmission. Examples are deep, well to excessively drained sands or gravels. 

Group B: Soils having moderate infiltration rates when thoroughly wetted and a moderate 
rate of water transmission. Examples are moderately deep to deep, moderately well to well 
drained soils with moderately fine to moderately coarse textures. 

Group C: Soils having low infiltration rates when thoroughly wetted and a low rate of water 
transmission. Examples are soils with a layer that impedes the downward movement of 
water or soils of moderately fine to fine texture. 

Group D: Soils having very low infiltration rates when thoroughly wetted and a very low rate 
of water transmission. Examples are clay soils with a high swelling potential, soils with a 
permanently high water table, soils with a clay pan or clay layer.’ 

(USDA 1986) 

 

Vegetation works in combination with soil types to help determine the final runoff curve 

number. Several tables have been created to make determining the correct curve number from the 
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combination of these two variables. The table for arid environments was used for this project (Table 

17).  

Cover description Hydrologic soil group 

Cover type Hydrologic 
condition  

A B C D 

Herbaceous—mixture of grass, weeds, and low-growing brush, with 
brush the minor element. 

Poor  80 87 93 

Fair  71 81 80 

Good  62 74 85 

Oak-aspen—mountain brush mixture of oak brush, aspen, mountain 
mahogany, bitter brush, maple, and other brush. 

Poor  66 74 79 

Fair  48 57 63 

Good  30 41 48 

Pinyon-juniper—pinyon, juniper, or both; grass understory. Poor  75 85 89 

Fair  58 73 80 

Good  41 61 71 

Sagebrush with grass understory. Poor  67 80 85 

Fair  51 63 70 

Good  35 47 55 

Desert shrub—major plants include saltbush, greasewood, 
creosotebush, blackbrush, bursage, palo verde, mesquite, and cactus. 

Poor 63 77 85 88 

Fair 55 72 82 86 

Good 49 68 79 84 

Table 17: Vegetation conversion runoff curve numbers for arid environments. Poor: <30% ground 
cover (litter, grass, and brush overstory). Fair: 30 to 70% ground cover. Good: > 70% ground cover 
(USDA 1986).  

As the curve number also models Saturation Excess Overland Flow one needs to take into account 
soil saturation. The SCS modified formula had three categories of soil moisture levels known as 
Antecedent Moisture Condition (AMC) Classes. AMC classes were used to adjust the runoff curve 
numbers (Table 39) (USDA 1986).  

 AMC I: The soils in the drainage basin are practically dry (i.e. the soil moisture content is at 

wilting point).  

 AMC II: Average condition. 

 AMC III: The soils in the drainage basins are practically saturated from antecedent rainfalls.  

Agent Based Model of Water 

Because the runoff curve numbers were not meant to be temporal calculations but an 

estimation of the runoff that will occur from a rain event an agent based model needed to be 

created to determine what happened to the runoff once additional factors such as evaporation or 

evapotranspiration were taken into account. These are the factors that determine if pools of water 

existed in the project area or seasonal streams, answering the questions raised about site locations 

and their association with water features. Again, the decision was made to use the NetLogo program 

to model the full water system of the project area. GIS programs were used to manipulate some of 

the landscape datasets. 
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Soil Data 

The soil quality the NRCS datasets mention in Chapter 6 were used in this model. The data 

had been collected in two surveys, one that captured the majority of Eddy County and was 

completed in 1966 (Anderson, Chugg et al. 1971). This data was originally at 1:20,000 and 1:31680 

scales. It was gathered by first sending physical inspectors into the subject area to survey soil types. 

Then the soil types were mapped using aerial photography. The NRCS claims that field investigations 

and data collection are carried out in sufficient detail to identify, accurately and consistently, areas 

of about six acres. An evaluation was made of the soil survey in 1996 which determined that the soil 

map was accurate. Several minor updates were made and that updated version was digitalised and 

used in this project.  

The Eddy County survey did not capture all of the project area, with a small portion of the 

south west corner missing. Data from a second soil survey, covering the missing portion of Eddy 

County and parts of Otero and Chavez counties, was included in the dataset (Derr 1981). This survey 

was finished in 1976. The scale of that report was at 1:24,000 and 1:63,360. This data was evaluated 

in 2003 and, like the other report, minor changes were made to some of the classifications before it 

was digitalised.  

This data also contained information on water-carrying capacity, absorption rates and 

hydrology classifications used for calculating the runoff curve number for the different soils (Table 

18).  
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Carrying Capacity 
(% of unit of 

measurement) 

Percentage 
of Project 

Area 

Soil Absorption 
Rates 

Percentage 
of Project 

Area 

Soil 
Hydrology 

Classificatio
n 

Percentage 
of Project 

Area 

0.06 23.55% 0.00 to 0.06 in/hr 3.67% A 3.76% 

0.07 0.02% 0.01 to 0.60 in/hr 12.75% B 15.46% 

0.08 0.74% 0.06 to 2.00 in/hr 56.60% C 13.22% 

0.09 24.67% 0.20 to 0.60 in/hr 1.21% D 67.49% 

0.1 10.37% 0.20 to 2.00 in/hr 0.44% N/A 0.08% 

0.11 0.21% 0.57 to 1.98 in/hr 0.01% 

0.12 0.13% 0.60 to 2.00 in/hr 12.33% 

0.13 2.24% 2.00 to 6.00 in/hr 3.95% 

0.14 2.45% bedrock 8.97% 

0.15 0.33% N/A 0.08% 

0.16 0.21% 

0.17 0.18% 

0.18 0.01% 

0.19 0.03% 

0.2 0.83% 

.07-0 0.84% 

.1-.09 0.01% 

.14-.09 8.45% 

.14-.11 2.32% 

.14-.13 9.40% 

.15-.11 0.07% 

.2-.12 3.76% 

N/A 9.19% 

Table 18: Characteristics of the soil on the project area from NCRS data. Detailed data in Appendix D. 

Looking at the data for water carrying capacity we see that about two-thirds of the project 

area has none to very low carrying capacity and thus high potential for runoff. Also, there were low 

levels of absorption rates and lots of category D ratings, which also indicate a high potential for 

runoff.  

Evaporation 

Evaporation, like infiltration, is a complex system that has many components that influence 

it (Ritzema 1994), such as: 

 dryness of the surrounding air 

 exposure to wind 

 composition of the air itself 

 pressure of the surrounding atmosphere 

 temperature of the water 

 temperature of the air 



153 

 

Evaporation rates gathered from the Western Regional Climate Center showed that the 

project area has an annual evaporation rate of 109.48 inches and hourly rate of .012 inches. 

Adjusted for season variation the hourly evaporation rates ranged from 0.00 inches in the winter to 

.022 inches in the summer (Table 19). Compared against the estimates for soil absorption rates 

evaporation would only play a minor part in water loss. As such, it was decided to use only general 

hourly rates instead of trying to model complex systems like the dryness of the air and exposure to 

wind.  

Location Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec Year 

Monthly 4.65 0.00 8.62 11.77 14.61 15.46 14.19 12.22 9.88 7.97 5.77 4.34 109.48 

Daily* .150 0.00 .278 .392 .471 .515 .458 .394 .329 .257 .192 .140 .300 

Hourly* .006 0.00 .012 .016 .019 .022 .019 .016 .014 .011 .008 .006 .012 

Table 19: Evaporation rates from Brantley Dam 1987-2005. * calculated from the monthly averages. 

Evapotranspiration 

Evapotranspiration is a term used to describe the sum of evaporation and plant transpiration 

from the Earth's land surface to atmosphere. There are several formulae for determining 

evapotranspiration rates such as the Turc (1954), Jensen-Haise (1963), Blaney-Criddle (1950) and the 

Penman-Monteith (Monteith 1965) (Table 20). Each formula has its own data requirements and 

while some of the data required is available for the project area, in most cases it is not available. This 

forces the project to use a coefficient of .7 multiplied by the evaporation rate to set the 

evapotranspiration rate. This ratio has been found to be an accurate approximation of 

evapotranspiration rates (Linacre 1994).   
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Formula Name Equation Information 

Turc’s Formula 
(Turc 1954) 

ETp = (P + 80) / √(1 
+ (P + 45 / LTc)2) 
 

ETp = 10-day potential evapotranspiration (mm); P = 10-day 
precipitation (mm); LTc = evaporative demand of the 

atmosphere, calculated as LTc = (Ta + 2) √Rs / 11.1 were Ta = 
average air temperature at 2m and Rs = incoming short-wave 
radiation (W/M2) 

Jensen-Haise 
formula 
(Haise and 
Jensen 1963) 

ETp = (0.025Ta + 
0.08) Rs / 28.6 
 

ETp = potential evapotranspiration (mm); Ta = average air 
temperature at 2m; Rs = incoming short-wave radiation 
(W/M2) 

Blaney-Criddle 
formula (Blaney 
and Criddle 
1950) 

ETp = k p (0.457Tam 
+ 8.13) (0.031Taa + 
0.24) 
 

ETp = monthly potential evapotranspiration (mm); k = crop 
coefficient; p = monthly percentage of annual daylight hours; 
Tam = monthly average air temperature; Taa = annual average 
air temperature. 

Penman-
Monteith 
equation 
(Monteith 1965) 

ET = ∆ Rn + PaCp (δe) 
ga / (∆ + γ (1 + 
ga/gs)) λv 
 

ETp = monthly potential evapotranspiration (mm) λv = latent 
heat of vapourisation (J/g); E = Mass water evapotranspiration 
rate (gsm2); Δ = Rate of change of saturation specific humidity 
with air temperature (kPa); Rn = Net irradiance (Wm2); Cp = 
Specific heat capacity of air (J/kg K); ρa = dry air density 
(kg/m3); δe = vapour pressure deficit, or specific humidity (Pa); 
ga = Conductivity of air, atmospheric conductance (mm/s); gs = 

Conductivity of stoma, surface conductance (mm/1); γ = 

Psychrometric constant (γ ≈ 66 kPa). 

Table 20: Equations for determining evapotranspiration rates.  

Historical Data 

Historical data was needed to both calibrate the model and compare the results against. 

There was over 100 years of historical data for parts of the project area. While there were 

fluctuations in weather as noted in the paleo-climate research for the general area the climate has 

stayed roughly the same since 5000 BC (see Chapter 6 discussion of paleoenvironment). It was thus 

possible to use modern climate data as a proxy for past weather events 

The data for climate in the project area was obtained from the Western Regional Climate 

Center (WRCC), one of six regional climate centres in the United States (Center 2012). WRCC holds a 

variety of datasets on weather and climate in the Western United States. The specific datasets used 

were historical information on precipitation for stations in and around the project area but other 

datasets were also investigated such as temperature, snowfall, etc. 

The historical data shows that precipitation occurs most frequently and in the highest 

concentrations in the middle to late summer months of July, August, and September (Table 21). A 

period locally referred to as the ‘Monsoon Season’. August is the only month never to go without a 

precipitation event since data has been kept, though the data from the very early years is 

questionable. During the summer the primary source of rainfall is moist, warm air that pushes inland 

from the Gulf of Mexico. This moist air, combined with surface solar heating, results in localised 
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afternoon and evening thunderstorms in the subject area. In the winter it is Pacific storm systems 

moving in from the west that provide the majority of the moisture. A problem is that the Guadalupe 

Mountains tend to block many of these systems from reaching the Azotea Mesa area (Sebastian, 

Altschul et al. 2005). No climate data was used in the PUMP III site predictive model so there is no 

conflicting datasets. 

From Year=1900 To Year=2012  

  Precipitation  

  
  

Mean 
(in.) 

High 
(in.) 

Year 
  

Low 
(in.) 

Year 
  

1 Day Max. (in.) >= 
0.01 
in. 

>= 
0.10 
in. 

>= 
0.50 
in. 

>= 
1.00 
in. 

# Days 

January 0.4 2.31 1949 0 1912 0.79 1980 3 1 0 0 

February 0.44 2.26 1997 0 1900 1.25 1997 2 1 0 0 

March 0.48 4.39 1919 0 1903 2.41 1919 2 1 0 0 

April 0.65 5.04 1915 0 1902 2.86 2004 2 1 0 0 

May 1.19 12.28 1941 0 1903 3.41 1959 4 2 1 0 

June 1.49 6.24 1948 0 1928 3.8 1972 4 3 1 0 

July 1.86 10.5 1902 0 1903 3.8 1902 5 3 1 0 

August 1.79 7.7 1984 0.01 1938 5.12 1916 5 3 1 0 

September 2.14 12.27 1980 0 1907 4.6 1980 5 3 1 1 

October 1.34 8.08 1907 0 1903 4.3 1945 4 2 1 0 

November 0.58 4.58 2004 0 1915 2 2000 3 1 0 0 

December 0.51 3.79 1991 0 1903 1.18 1986 3 1 0 0 

Annual 12.87 33.94 1941 2.95 1924 5.12 1916 42 25 8 3 

Winter 1.35 6.16 1992 0 1934 1.25 1997 7 4 1 0 

Spring 2.32 17.99 1941 0 2011 3.41 1959 8 5 1 1 

Summer 5.14 18.06 1902 0.74 1924 5.12 1916 15 9 3 1 

Fall 4.05 16.01 1974 0.27 1951 4.6 1980 12 7 3 1 

Table 21: Carlsbad historical climate data. For monthly and annual means, thresholds, and sums: 
months with five or more missing days are not considered, Years with one or more missing months 
are not considered, Seasons are climatological not calendar seasons ( Winter = Dec., Jan., and Feb.; 
Spring = Mar., Apr., and May;  Summer = Jun., Jul., and Aug.; Fall = Sep., Oct., and Nov.) (Center 
2012). 

Caution was taken when applying these numbers to the model as the Guadalupe Mountains 

received a higher annual precipitation then the surrounding areas (Figure 59). Unfortunately, the 

WRCC data stations were all located in the eastern portion of the project area around the city of 

Carlsbad (Figure 58). Luckily, there are several stations located next to the study area that served as 

proxies. On average the lower elevation stations have roughly (+ or – half an inch) the same average 

rainfall. The stations near the Guadalupe Mountains indicate a slightly higher amount of rain, around 

an inch or two each year (Table 22).    
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Figure 58: Data collection stations for the Western Regional Climate Center (Center 2012). 

  

Figure 59: Precipitation map of New Mexico (Center 2012). 
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Station Location Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Annual 

Brantley Dam  0.35 0.49 0.37 0.66 1.3 1.57 2.14 1.56 1.83 0.88 0.55 0.59 12.28 

Carlsbad  0.4 0.44 0.47 0.65 1.2 1.49 1.86 1.79 2.14 1.34 0.58 0.51 12.86 

Carlsbad Caverns  0.47 0.46 0.42 0.63 1.45 1.7 2.09 2.29 2.97 1.38 0.5 0.53 14.87 

Carlsbad Airport  0.34 0.4 0.4 0.46 1.19 1.22 1.79 1.9 2.29 1.07 0.51 0.48 12.06 

Lake Avalon 0.38 0.37 0.45 0.56 1.36 1.21 1.5 1.48 2.05 1.41 0.44 0.42 11.62 

Queen Ranger Station  0.38 0.92 0.69 0.4 0.5 1.85 2.03 4.8 3.7 1.23 0.73 0.69 17.93 

Difference Between 
Highest and Lowest- 
All Stations 

0.13 0.55 0.32 0.26 0.95 0.64 0.64 3.32 1.87 0.53 0.29 0.27 6.31 

Difference Between 
Highest and Lowest of 
Lower Elevation 
Stations 

0.06 0.12 0.1 0.2 0.17 0.36 0.64 0.42 0.46 0.53 0.14 0.17 1.24 

Table 22: Average precipitation for weather stations around project area: Period of Record: Brantley 
Dam (291153) 8/ 1/1987 to current; Carlsbad (Station number- 291469) 2/ 1/1900 to current; 
Carlsbad Caverns (291480) 2/ 1/1930 to current;  Carlsbad FAA Airport (291475) 9/ 1/1942 to 
current; Lake Avalon, (294736) 8/ 1/1914 to 2/28/1979; Queen Ranger Station (297176) 1/ 1/1963 to 
3/31/1975 (Center 2012). 

Data was also obtained on the quality and frequency of the rain events at the different 

weather stations. Table 23  shows that a little less than half of rain events result in only .01-.099 

inches of rain and the vast majority were under half an inch of rain.  

 Carlsbad Carlsbad 
Airport 

Brantley Dam Lake 
Avalon 

Carlsbad 
Caverns 

Queen 
Ranger  

>= 0.01 in. 42 49 47 33 54 36 

>= 0.10 in. 25 25 26 24 30 31 

>= 0.50 in. 8 7 8 7 9 13 

>= 1.00 in. 3 2 2 2 3 5 

Table 23: Average annual frequency of precipitation event. 

Model Creation  

After the different methods of representing runoff were examined and the appropriate 

datasets gathered, a model for the project areas water system was constructed using NetLogo. The 

DEM was imported into the NetLogo world, like in the previous chapter, and this was used to create 

an aspect and slope dataset to determine the direction of water flows. The soil data was processed 

through ArcGIS first, to clip the dataset into the project area dimensions, and then imported into the 

system. These layers would serve as the environment for the model. 

Turtle agents served as the water agents in this model. The agents would set their direction 

based on the two variables, either the aspect of the patch they were on or they would face a 

neighbour patch with the lowest elevation. Water levels were included in patch elevation but 

because the resolution of the elevation data was one metre this rarely made a difference in the 

model. The speed at which the ‘water’ moved was determined by the Manning formula (Equation 

20) with took into account the slope of the patch and the roughness of the earth, represented by 

Manning’s roughness coefficient. This coefficient was set at .0035, which is the coefficient for rough, 
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uneven, thin vegetation environments. Coefficients were not set for each patch as this information 

was not available.    

 

V= Rh 2/3 * S1/2 / n 

Equation 20: Manning formula. Rh = hydraulic radius which is A/P where A = cross-sectional area. 
and P = wetted perimeter; S = sloped; n = Manning’s roughness coefficient 

 

The initial runoff, used as a variable of the water agents, was set using the runoff curve 

numbers most appropriate to the project area. There are only three possible variables for soil 

moisture rates, given this low number of variables all were tested in the model. The same was done 

with vegetation rates in the project area. Combinations of these rates for the different land forms 

were also investigated. However, the default levels were set as poor vegetation cover based both on 

the author’s personal observations and from aerial photographs.   

However, that only set the initial runoff and was not continuous. Additional reduction of 

water was taken into account through evaporation, evapotranspiration and soil absorption. More 

detailed discussion is presented later in this chapter. After the initial runoff was set the agents were 

let loose into the environment. When they lost all of their runoff, representing loss of water, they 

would disappear from the model. This could occur by either moving outside of the environment, i.e. 

draining out of the project area or through evaporation, evapotranspiration, or soil absorption. 

Infiltration rates (Table 38) were taken from the soil data and applied to the project area. 

Also, max water holding capacity was included in this model. As a result, the model included the 

ability to reach saturation and thus stop absorbing water, should enough water be present in an 

area. This was modelled using the ratio of hydraulic conductivity to the water capacity of the soil. 

Research has shown that this relationship is not perfect (Marshall, Holmes et al. 1999) but it is a 

close enough approximation for the purposes of this study. Infiltration was set to take place after a 

brief rest, simulated five minutes, to take into account the Runoff Curve Number (RCN) would 

account for initial infiltration. With infiltration rates were set to two classifications, the lowest and 

highest rates listed (Table 38). 

A problem with runoff curve numbers was that they are ineffective for rain below one inch 

(USDA 1986). Which is what the historical data indicates is the most common rain event in the 

project area (Table 23). Other agent based models that have modelled water systems all have used 

simple infiltration in combination with evapotranspiration or evaporation (McDonnell 2003, Hong, 

Lin et al. 2007, Reaney 2008, Bithell and Brasington 2009, Bohensky, Butler et al. 2009). Given that 

other researchers have found no drawbacks to using this method a model was created that used just 
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infiltration and evapotranspiration to look at the lower rainfall events the RCN removed from the 

model as the initial starting point. It was also decided to include duration and intensity of the rain 

event. The RCN method does not account for this but seeing that the infiltration and 

evapotranspiration will not initially reduce the rainfall event it was decided to model this to 

compensate for the lack of initial reduction.  

Adjustable time frames were created to represent the scale at which the agents moved. This 

scale also determined how much ‘water’ was lost every turn. While this scale was adjustable it was 

set to a five-minute scale for all of the models presented here. This was to ensure that the agents did 

not overshoot their targets when moving. It also gave an easy to use time frame that did not extend 

out the modelling time too significantly and was small enough to capture small changes in water 

levels. 

There were two possible ways to determine the direction of flow: aspect and elevation. 

Choosing which variable the models followed had significant repercussions for the outcomes. If 

elevation is followed, the agent moves to the patch with the lowest elevation, where an agent can 

potentially run into dips. These are areas of the project area where the agent has moved to what is 

the lowest point relative to its surrounding so the agent must wait for evaporation, 

evapotranspiration, or soil absorption to cause it to be removed from the surface. Agents following 

aspect, in contrast, do not take into account these dips in the project area and ignore water traps. 

The code for this model can be found in Appendix C. 

Model Results 

The different models, i.e. those with RCN and without, aspect or elevation based paths etc., 

were tested with an assortment of different variables and settings; the results can be seen in Table 

24. Those scenarios with the higher infiltration rates result in higher amounts of surface water being 

present longer. This may seem counter-intuitive, as higher infiltration rates would result in the water 

being absorbed faster and less likely to be on the surface. The reason this occurs is because higher 

absorption rates result in a higher initial absorption but this in turn results in lower longer term 

absorption rates as soil reaches its maximum capacity more quickly. Lower absorption rates result in 

more water moving outside of the project area in flows and higher absorption rates and capacity 

later to clear out the left over water.  

 



 Rain 
Fall (in) 

RCN Direction Infiltrati
on Rate 

hr 1 hr 6 hr 12 day 1 day 2 day 3 day 5 day 7 end 

 .01 None Elevation High         35 mins 

 .01 None Elevation Low         40 mins 

 .01 None Aspect High         35 mins 

 .01 None Aspect Low         40 mins 

 .1 None Elevation High 7804 4197 3052 1677 543 177 19 1 8 days 

% of total     16% 8% 6% 3% 1% 0% 0% 0%  

Max 
depth 

    4.89  4.07  3.94  3.68  3.16  2.64  1.60  0.57   

 .1 None Elevation Low 4055 1746 1392 862 311 110 12 1 9 days 

% of total     8% 3% 3% 2% 1% 0% 0% 0%  

Max 
depth 

    4.36  4.47  4.34  4.08  3.56  3.04  2.00  0.97   

 .1 None Aspect High 3943 41 2      18 hrs 

% of total     8% 0% 0% 0% 0% 0% 0% 0%  

Max 
depth 

    4.24  1.77  0.30        

 .1 None Aspect Low 1810 2 0      15 hrs 

% of total     4% 0% 0% 0% 0% 0% 0% 0%  

Max 
depth 

    4.08  0.26  0.06        

 .5 None Elevation High 131558 88398 83305 74271 59069 47194 30489 19856 49 days 

% of total     53% 35% 33% 30% 24% 19% 12% 8%  

Max 
depth 

    27.44  25.26  25.13  24.87  24.35  23.84  22.80  21.76   

 .5  None Elevation Low 76900 24355 22854 20060 15482 11950 7158 4328 35 days 

% of total     31% 10% 9% 8% 6% 5% 3% 2%  

Max 
depth 

    18.91  18.15  18.02  17.76  17.24  16.72  15.69  14.65   

 .5  None Aspect High 99414 170 1      23 hrs 

% of total     40% 0% 0% 0% 0% 0% 0% 0%  

Max 
depth 

    31.92 2.64 0.56       

 .5  None Aspect Low 63743 4 0      23 hrs 
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 Rain 
Fall (in) 

RCN Direction Infiltrati
on Rate 

hr 1 hr 6 hr 12 day 1 day 2 day 3 day 5 day 7 end 

% of total     25% 0% 0% 0% 0% 0% 0% 0%  

Max 
depth 

    24.07 0.66 0.24       

 1  None Elevation High 305299 206520 200689 189273 168163 149871 118924 94611 97 days 

% of total     61% 41% 40% 38% 34% 30% 24% 19%  

Max 
depth 

    50.23 50.12 49.99 49.73 49.22 48.7 47.66 46.62  

 1  Normal Elevation High 63499 49439 44314 35775 23526 15646 7041 3236 29 days 

% of total     13% 10% 9% 7% 5% 3% 1% 1%  

Max 
depth 

    14.89 15.09 14.96 14.7 14.18 13.66 12.63 11.59  

 1  Low Elevation High 6,809  3,052  1,971  977  333  152  36  9  11 days 

% of total     1% 1% 0% 0% 0% 0% 0% 0%  

Max 
depth 

    5.79 5.68 5.55 5.29 4.77 4.26 3.22 2.18  

 1  Saturated Elevation High 148,244  109,891  104,305 93,583  76,038  62,041 31,734 28,246 60 days 

% of total     30% 22% 21% 19% 15% 12% 6% 6%  

Max 
depth 

    31.19 31.08 30.95 30.69 30.17 29.65 28.61 27.58  

 1  None Aspect High 158981 107 1      1 day 

% of total     32% 0% 0% 0% 0% 0% 0% 0%  

Max 
depth 

    52.1 3.45 0.74       

 1  None Aspect Low 139523 4.5 1      1 day 

% of total     28% 0% 0% 0% 0% 0% 0% 0%  

Max 
depth 

    57.06 0.87 0.74       

 2  None Elevation High 602251 429004 422098 408326 381166 355188 310029 26923
1 

144 days 

% of total     60% 43% 42% 41% 38% 36% 31% 27%  

Max 
depth 

    78.68 74.47 74.34 74.08 73.56 73.04 72 70.97  

 2  Low Elevation High 104206 81806 76160 66058 50007 38038 22538 13475 41 days 
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 Rain 
Fall (in) 

RCN Direction Infiltrati
on Rate 

hr 1 hr 6 hr 12 day 1 day 2 day 3 day 5 day 7 end 

% of total     10% 8% 8% 7% 5% 4% 2% 1%  

Max 
depth 

    20.57 21.06 20.93 20.67 20.15 19.64 18.6 17.56  

 2  None Aspect High 143592 57 1      22 hrs 

% of total     14% 0% 0% 0% 0% 0% 0% 0%  

Max 
depth 

    82.96 2.79 0.2       

 5  None Elevation High 1303238 1014590 1005776 988197 953027 917977 848196 77984
5 

256 days 

% of total     52% 41% 40% 40% 38% 37% 34% 31%  

Max 
depth 

    132.84  132.73 132.6 132.34 131.82 131.3 130.27 129.23  

 5  Low Elevation High 668829 528915 521461 506593 477004 447685 392016 34701
1 

175 days 

% of total     27% 21% 21% 20% 19% 18% 16% 14%  

Max 
depth 

    95.59 90.54 90.41 90.15 89.63 89.12 88.08 87.04  

 5  Normal Aspect High 71214 14       12 hrs 

% of total     3% 0% 0% 0% 0% 0% 0% 0%  

Max 
depth 

    74.4 1.31        

Table 24: Results of agent based models. All with evaporation rates for June. Water left by days is measured in patches (500,000) by depth of water. 



Possible Model Needs Influencing Model Results 

The models where elevation was dictating water flow direction resulted in dips, where water 

pools and no longer forms stream flows. That meant that these water agents no longer need to take 

into account the soil absorption rates of the soils it might land in; a process that takes up both 

computing capacity and time, as the models need to make calculations for every patch at every tick 

of the model. Nor does it need to run through the entire simulation to determine when it will 

disappear, as these calculations can be done by dividing the water by the evaporation rate. To 

reduce the run time of the models when less than 1% of the water in the project area had stopped 

moving, the model would stop and compute the remaining factors with simple maths, i.e. amount of 

water divided by evaporation rates, instead of running out the model.  

This significantly reduced the time it took the models to run. Yet, this also changed the 

outcomes of the models but only slightly. For example, results between the optimised model and 

one that ran all the way through was a difference of a few hours for max time water was still present 

in the project area: a difference of <5% in results. This difference did not matter to the final results 

and conclusions drawn but it is something to be aware of if trying to use the model for your own 

purposes.  

Results Against Known Events 

To confirm that these models are accurate representations of the actual hydrology of the 

project area the results were compared against the historical data collected. That data needed to be 

adjusted because it came from two different sources. The USGS had runoff collection stations (Table 

16) but WWCR had precipitation data. There were only two USGS stations, 08405150 (Carlsbad) and 

08405150 (Carlsbad Airport) in the subject area. Interestingly, it was found that when comparing the 

USGS data to the WWCR data there was limited correlation between rainfall and runoff: .46 and .49 

for Carlsbad Airport and Carlsbad (Table 41). There is actually a correlation in the amount of rain and 

runoff experienced. 

There are several reasons for this discrepancy between the datasets. One is that the stations 

are in different locations. Rainfall was not distributed evenly over the project area. Table 22 

illustrated how different weather stations record different amounts of water; some of these stations 

were only a few miles away from each other.  Another reason for discrepancy between datasets is 

that the intensity of the rainfall affects runoff flows. Using the agent based model it was possible to 

demonstrate how intensity, not just volume, affects runoff. The American Meteorological Society 

characterises rain events as ‘light’, ‘moderate’ or ‘heavy’. Light rain is considered rain of between 

trace amounts and 0.25 cm (0.10 in.) per hour, with a maximum rate of fall being no more than 

0.025 cm (0.01 in.) in six minutes. Moderate rain is between 0.26 and 0.76 cm (0.11 to 0.30 in.) per 
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hour and a maximum rate of no more than 0.076 cm (0.03 in.) in six minutes. While heavy rain is 

considered any rain over 0.76 cm (0.30 in.) per hour or more than 0.076 cm (0.03 in.) in six minutes 

(Society 2012). Plugging those factors into the model demonstrated how intensity changes the 

outcomes (Table 25).  

This was done by instead of having the water agent represent all the water from an event 

multiple water agents were created over a period of time. A process that created many more agents 

but that was also more reflective of real world conditions.  



Rain Rain Hr. 1 Hr. 6 Hr. 12  Day 1 Day 2 Day 3  Day 5 Day 7 End 

0.1 Light 12207 7747 5629 3002 855 243 25 3 8 days 

% of total  24% 15% 11% 6% 2% 0% 0% 0%  

Max depth  3.84 4.25 4.12 3.86 3.34 2,82 1.79 0.75  

0.1 Moderate 8528 4447 3126 1633 469 136 11 1 9 days 

% of total  17% 9% 6% 3% 1% 0% 0% 0%  

Max depth  5.08 4.49 4.37 4.11 3.59 3.07 2.03 1  

0.1 heavy (.5 per hr) 3770 1929 1506 920 321 108 11 0 7 days 

% of total  8% 4% 3% 2% 1% 0% 0% 0%  

Max depth  4.63 3.55 3.42 3.16 2.64 2.12 1.09 0.05  

0.5 Light 114281 91267 85079 74066 56472 43505 26355 16196 45 days 

% of total  46% 37% 34% 30% 23% 17% 11% 6%  

Max depth  23.39 23.29 23.16 22.9 22.38 21.86 20.83 19.79  

0.5 Moderate 104286 77689 72776 63777 49226 38159 23287 14332 55 days 

% of total  42% 31% 29% 26% 20% 15% 9% 6%  

Max depth  28.69 28.58 28.45 28.19 27.67 27.16 26.12 25.08  

0.5 heavy (.5 per hr) 96263 71242 66489 57885 44101 33792 20288 12292 42 days 

% of total  39% 28% 27% 23% 18% 14% 8% 5%  

Max depth  27 21.44 21.31 21.05 20.53 20.02 18.98 17.94  

1 Light 257436 228284 220250 204506 176803 152938 115772 87911 97 days 

% of total  51% 46% 44% 41% 35% 31% 23% 18%  

Max depth  39.75 49.96 49.83 49.57 49.05 48.53 47.49 46.46  

1 Moderate 255848 201105 194564 181708 158369 138712 1066640 82533 81 days 

% of total  51% 40% 39% 36% 32% 28% 213% 17%  

Max depth  42.18 42.07 41.94 41.68 41.16 40.64 39.61 38.57  

1 heavy ( .5  per hr.) 240373 183367 177228 165207 143337 125062 95402 73260 79 days 

% of total  48% 37% 35% 33% 29% 25% 19% 15%  

Max depth  41.01 40.9 40.78 40.52 40 39.48 38.44 37.41  

1 heavy (1 per hr.) 231026 173396 167438 155795 134610 116317 87320 65846 75 days 

% of total  46% 35% 33% 31% 27% 23% 17% 13%  

Max depth  37.97 38.86 38.74 38.48 37.96 37.44 36.4 35.37  

1 heavy (2 per hr.) 242119 180381 174341 162441 140196 121040 90536 68227 78 days 

% of total  48% 36% 35% 32% 28% 24% 18% 14%  

Max depth  35.24 40.05 39.92 39.66 39.14 38.62 37.59 36.55  
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Rain Rain Hr. 1 Hr. 6 Hr. 12  Day 1 Day 2 Day 3  Day 5 Day 7 End 

2 Light 508906 464717 455756 437863 402427 368616 312848 264709 120 days 

% of total  51% 46% 46% 44% 40% 37% 31% 26%  

Max depth  62.38 62.27 62.14 61.88 61.36 60.84 59.81 58.77  

2 Moderate 516220 456780 448534 432091 399687 368519 315927 269288 146 days 

% of total  52% 46% 45% 43% 40% 37% 32% 27%  

Max depth  75.53 75.43 75.3 75.04 74.52 74 72.97 71.93  

2 heavy (.5 per hr) 502661 418633 411052 395980 366286 337443 288745 245434 179 days 

% of total  50% 42% 41% 40% 37% 34% 29% 25%  

Max depth  69.98 69.87 69.74 69.48 68.97 68.45 67.41 66.37  

Table 25: Surface water in the project area resulting from different rain intensities. Time counted from after rainfall stops. 



Unfortunately, the historical distribution of rainfall over the project area was only measured 

by a few weather stations (Figure 58), making it impossible to determine rain distribution accurately 

for each historic rain event. The same goes for rainfall intensity; there was no dataset for the project 

area that gives historical rainfall intensity. As such, the project was left with a crude approximation 

of how rainfall correlates with runoff – when rainfall is over an inch there is usually a runoff event. 

However, most of the time precipitation translates into very little runoff (Table 25). 

Year Runoff  ac-ft Rain (in) % runoff out of total 

2011 135 5.06 0.11092% 

2010 2280 17.32 0.54728% 

2009 917 11.96 0.31876% 

2008 0.06 9.39 0.00003% 

2007 845 19.02 0.18470% 

2006 668 8.67 0.32032% 

Table 26: Runoff and rain per year for Carlsbad. 

This historical approximation is what is seen in the agent based model. For small rain events 

there is almost no runoff and water is almost completely gone from the project area within hours 

(Figure 60). Moreover, the runoff is so weak that only a few major waterways appear to attract what 

could be called flows. Most of the water ends up being absorbed and not draining away. Coalescing 

into ponds or lakes also does not happen, as there is not enough water to pool into anything 

significant. A few small pools/puddles form but they quickly dissipate. Only large rainfall results in 

anything that could be considered streams or large pools and those are rare events in the project 

area (Table 21). 

  



 

Figure 60: Water (black) in project area for 0.1 inch rainfall event with low intensity rain at A. 1 hour B. 6 hours C. 1 day D. 3 days.  

 

A. 
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Figure 61: Sinks in the project area. Red dots represent patches where none of the neighbours have a lower elevation.  



Sinks and Pools 

Even if the large rainfall events were rare, the models showed that there were many areas 

that would have had pools (Figure 61). Most models showed that flows in the form of streams and 

flash floods subside after only a few hours. All water still available in the project area after a 

precipitation event was in the form of these pools. The models demonstrated that any available 

water would have been in the form of pools, possibly some springs, and not streams.  

There were limits to the conclusions that could be reached from this sort of model. The sinks 

in the project area were the result of the DEM data used, the accuracy of that data and its 

resolution. The resolution is only a vertical metre, which meant that any difference in elevation, 

which dictated movement, of less than a metre will not have been registered. The accuracy of the 

DEM data is only 17 metres at a 95% confidence. Different convolution functions used to interpolate 

the data were found to change the placement of sinks in the project area. Moreover, a sink in the 

DEM could actually be the result of a data error. This error could result from a problem with the 

radar that gathered the points. It could have occurred with the transfer of the raw data or even with 

the reading of the data by NetLogo. That made it questionable to try to ascertain the exact location 

of these sinks in the project area from the model. 

Determining which water sinks were real, or not, was not possible with the model and data. 

Nevertheless, the model did provide some data as to where these sinks may exist on a larger scale. 

Slopes have to be present to funnel surface water into the sinks, but not too steep, as that reduces 

the probability of having sinks. Figure 61 best illustrates the regions that are most likely to contain 

sinks in the project area. 

Duration of Habitation 

Results for the duration of the runoff and the intensity of that runoff over time indicate that 

the majority of the project area was not suitable for long-term habitation. When the rain intensity is 

significant enough surface water can be present for several days, even weeks, in small amounts.  

Historical data conversely indicates that the probability of such rainfall is low (Figure 62), with a less 

than 10% chance of 5 inches (12.7 cm) of rain during any given year. At best, water would be present 

for brief periods of time, in the late summer and early fall.  
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Figure 62: Precipitation probability in a 30 day period for Carlsbad, New Mexico (Center 2012).  

This meant that people could either: 

1. Bring in water to the centre of the project area from the Pecos River or sources in the 

Guadalupe Mountains during periods of low perception. Limiting the time spent in the area 

to how much water can be carried into the area. 

2. Wait until a rain storm of intense enough downpour occurs (> 1 inch) and then move into 

the project area to use the residual water to survive for several days or weeks, assuming 

sinks occur. 

3. Move into the project area during months with high probability of rain events and survive 

off of the rainfall and/or surface water in sinks that are likely to occur after a rainfall. 

 

The first option would handicap the amount of time a person could spend in the project area. For 

example, if a person drinks three litres of water a day they would have to carry with them 3.03 kg of 

water. A week would require 21.21 kg of water; a significant amount of weight to carry into the 

project area. In that scenario there are obvious limits to the amount of time one could stay away 

from a source of water. 

Discussion of Water Model  

While the models provide very interesting results, it also left the project with still 

unanswered questions. The PUMP III project had run statistical analysis and found that site location 

had the strongest correlation with the drainages. However, the model showed that these drainages 

would not have contained water for 99.9% of any given year. Even during wetter years it was 
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unlikely that the drainages would have water. The landscape did not have the capacity to maintain 

perennial water sources. 

There were possible exceptions to this. Knowledge of the geology and water table indicates 

that during wet years the Indian Big Spring might have been a potential stable water source. 

Moreover, there was an edge effect occurring in the model. Because the project area did not include 

outside areas, like the Guadalupe Mountains, that could have fed water into the project area, there 

is the potential that outside sources might have provided water. Indeed, the PUMP III project had 

problems with its models because it forgot to take into account the Pecos River.  

However, the Indian Big Spring and outside water sources are funnelled into either one of 

the two major drainages. Even if those drainages did contain water for any matter of time, more 

than a few hours, it could not account for the correlation between site locations and all drainages 

(Confidential Appendix Figure 98). Sites are associated with many of the minor drainages. The same 

drainages that the model shows did not contain water, even during extreme water events. Leaving 

the mystery of why people were attracted to these draining locations if it was not for the water?  
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Chapter 8: Attractors  

‘We know that people came into the area, possibly in small, mobile groups that exploited 
locally available resources and then left...’ (Altschul et al. 2005 p. 106) 

The first two models created for this project indicated that it was unlikely that the area could 

have supported part-time agricultural subsistence, except for areas near the Pecos River. 

Furthermore, the idea that the area was used as a thoroughfare was not possible to prove and that 

theory could not explain many of the locations of different sites but it may contribute to some sites 

locations. With these activities ruled out as explanations for site location, the project explored the 

subject of attractors bringing people into the project area i.e. ‘people came into the area, possibly in 

small, mobile groups that exploited locally available resources and then left’. The models discussed 

in this chapter were created to explore possible attractors that would bring people into the project 

area and possibly created the archaeological record.  

Lithic Material Procurement 

One attractor that is rarely discussed in predictive modelling literature is quarry sites to 

procure raw materials such as chert, obsidian, quartzite, etc. During the research review only two 

predictive models were found to have created predictive models that looked at quarry sites in 

Wyoming (Church 1996) and Iowa (Goings 2003). Models of the distribution of chert across Europe 

have also been produced (Duke and Steele 2009). For clarification, when this thesis refers to lithic 

sources it specifically is referencing material used for cutting tools such as chert or obsidian, as 

opposed to materials used for decoration or utilities such as building or food preparation, like 

grinding stones. The advantages of modelling lithic sources were best articulated by Church: 

‘Lithic sources offer several distinct advantages for modelling. The first is that they are 
unmoving and relatively unchanging. They can only be physically depleted. This also means 
that they are present today and have been investigated and mapped to some extent by 
geological studies, thus providing a reliable base of information. Further, desired sources of 
chipped stone are a relatively rare occurrence in the landscape. Second, stone was a 
consistently sought resource until the introduction of metal. Prehistoric people could often 
decide to shift from one to another comparable subsistence resource, if necessary. They 
could shift from big game to small game or from a game emphasis to a gathering emphasis. 
No such option existed in terms of the stone needed to perform many day-to-day activities, 
although they might shift emphasis within the narrow set of types of stone.’ (Church 1996 p. 
157) 

Predicting quarry sites served two purposes: one was to predict the location of a single type of site. 

The other was to predict the location of associated sites. For example, if the source material is more 

than a day’s travel from the normal habitation zones then campsites, and associated sites, will be 
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created along the routes. Examples of this sort of construction are discussed by Andrefsky Jr. (1994) 

or Bamforth (2006).   

There were several lithic quarries listed in the NMCRIS archaeological site records for the 

project area. These were broadly categorised as modern quarries (LA 88108, LA 131359), some of 

which resulted from vandals digging up sites (LA 116471) of large prehistoric quarries with 

thousands of artefacts (LA 28752, LA 67513, LA 112620, LA129466) or smaller prehistoric sites where 

lithic materials are listed as present but in small enough quantities that they are not extensively 

mined (LA 116399). 

Methodology for Modelling Lithic Material Procurement 

The first step in creating a lithic sources model was to look at the geology of the area. This 

information was obtained from the USGS (Anderson, Jones.G.E. et al. 1997). The USGS data showed 

that there was a lack of volcanic activity in the area which ruled out obsidian as a source of lithic 

material. However, the three primary rock formations that make up the project area, the Yates and 

Tansill Formation, Seven Rivers Formation and Grayburg and Queen Formation, are composed of 

carbonated rock such as limestone and dolostone; some of the common materials chert and 

chalcedony deposits are found in (Rapp 2009). The data provided by the USGS on geological 

formations in the area indicated that, in fact, the project area was rich in potential for lithic quarries, 

almost everywhere except the alluvium plains (Figure 63). 

 

 

 

Figure 63: Geological map of southeaster New Mexico. Yates and Tansill – Permian (Age) Fine-grained 
mixed clastic rock (Primary) Carbonated rock (Secondary). Formation Seven Rivers Formation - 
Permian (Age) Evaporite (Primary) Fine-grained mixed clastic rock (Secondary). Grayburg and Queen 
Formation: Permian (Age) Carbonate rock (Primary) Sandstone (Secondary). Modified from (USGS 
2012c) 
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The next set of variables examined were distance to water, slope, relief and depth to 

bedrock. These variables were chosen to find areas that the deposits of chert were likely to be 

exposed and accessible to people in the past. Hillsides and riverbeds are natural areas where erosion 

will expose the underlying bedrock. Uplifted areas of the landscape, where bedrock has been moved 

closer to the surface, are other areas of a landscape with higher likelihood of finding exposed 

deposits. Even if the majority of the area has geological potential it was thought areas with 

likelihood of finding quarries could narrow down the search area.  

GIS over Agent Based Modelling  

Given the static nature of the datasets i.e. geological, GIS was used to create this model. As 

discussed in previous chapters GIS is a better tool for dealing with geographic data and has greater 

functionality when dealing with such data than agent based modelling programs i.e. buffering, 

combining datasets, and a host of the other functions.  GIS was used to combine different datasets 

to create a map of areas with little soil and with either rugged areas or stream beds i.e. areas with 

exposed bedrock and likely to contain quarries. 

Most of the data had already been gathered for the previous models in this project. Soil 

depth was obtained from the NRCS data (Figure 64). The DEM data from the NASA provided all of 

the necessary base data to create datasets for slope and relief. For this model the ruggedness index 

created through the QuantumGIS (QGIS) tools was used instead (Figure 65). Ruggedness is a 

quantitative measurement of terrain heterogeneity. Details of Ruggedness is described by (DeGloria, 

Elliot et al. 1999). It is calculated for every location, by summarizing the change in elevation within 

the 3x3 pixel grid. The reason for using Ruggedness is because it acts as a proxy measurement of 

abrupt change in the landscape and thus the likelihood of finding exposed rock outcrops. The 

ruggedness index was based on a 3x3 moving window (DeGloria et al. 1999).  

Water drainage data was the same USGS data discussed in Chapter 8 (Figure 66). There was 

no need to use the complex water model created previously because the model only needed to 

know where the water moves and not the absorption rates and other details of the model. The USGS 

data was sufficient for these purposes as it contained all the areas that potentially might have water 

erosion.  
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Figure 64: Soil depth map of project area. 

 

 

 

Figure 65: Ruggedness index of the project area. 
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Figure 66: Water drainage paths in the project area. 

All of the datasets were processed using QGIS and the GRASS GIS plugin for QGIS. The 

ruggedness application was also applied to the elevation model to create a ruggedness dataset 

(Figure 65). The soil depths were reclassified to those areas below and above 25 cm in depth. This 

was to eliminate areas with soil depths above 25 cm from the areas with potential for quarry sites. 

This is an arbitrary classification but, based on the resolution of data available it was felt this would 

eliminate areas with high deposits of soils that would obscure quarry sites. This dataset was then 

converted into positive and negative zones and combined with datasets of the water drainage 

features and ruggedness to produce the potential map (Figure 67). High soil depth was a negative 

factor while drainages and ruggedness were considered positive attractors and added together with 

equal weights.  

 

Figure 67: Probability map for quarry sites.  
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It was noted that all of the known quarry sites are above 3800 ft. (1159 m) (Table 27). It was not 
known if this is because no sites have been positively identified at lower elevations or because this 
elevation represents a natural seam of lithic materials. In case this did represent a natural seam of 
material, a filter of 1159 metres above sea level was added to the final model to narrow down the 
range of high potential areas (Figure 68). Also see Figure 99 in Confidential Appendix.  

Site (LA) Elevation (feet above sea level) 

116399 4940  

28752 4530 

67513 4280 

112620 3870 

129466 4440 

Table 27: Elevations of quarry sites in project area. 

 

Figure 68: Quarry probability map for sites located above 1159m above sea level. 

Discussion of Lithic Procurement  

The result of the quarry predictive model showed that a significant portion of the project 

area could contain quarry sites. Not only was it a high percentage of the project area but these areas 

were also those that were labelled by the past site predictive models as not likely to contain sites, 

e.g. bedrock, steep slopes. This complicated the process of creating a predictive model, as quarry 

sites, while relatively rare in the project area, could potentially be located throughout the landscape. 

This eliminates that as a possible aspect for predictive modelling as too much of area would have to 

be labelled as possibly containing sites but only a few sites would be captured. 

Depending on whether the above 1159m elevation model was an accurate representation of 

all quarries, two potential different resource procurement strategies were identified. One based on 

special journeys from the Pecos River area to obtain lithic materials from quarries because there 

were no resources near the river. The other potential strategy was to obtain materials during other 

activities undertaken in the project area, a ‘pick up the milk on your way home from work strategy’.  
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Both were possible but the later one does fit in with a pattern of food acquisition discussed later in 

this chapter. The special journey scenario is also realistic but cannot explain the location of most 

sites in the project area. Many sites were located in the Eastern portion of the project area.  

Shelter in the Project Area as an Attractor 

Without a satisfactory explanation for site locations based on quarrying, this project then 

looked at shelter. That was because, regardless of why people were in the project area, most 

journeys would have required an overnight stay. As shown in Figure 70, most of the project area is 

not within a day’s walk of either the foothills of the Guadalupe Mountains or the Pecos River. This 

meant that past people would have had to camp throughout the project area. One possible attractor 

of people looking for a place to stay was caves and rock shelters. Given that the temperature in the 

project area can rise above 100 F (38 C), cool caves and shady areas were a logical location to try to 

model.  

 

Figure 69: Travel time for south eastern corner of the project area: Red (0-3hrs.); Yellow (3-6 hrs.); 
Blue (6-9 hrs.). Most people experience a significant drop in pace after eight hours of walking (gray 
line).  

Designing the Shelter Model 

Similar to quarries, the project determined that these sites would best be modelled by the 

variables of slope and soil. Slope was used because rockshelters are formed by overhangs of bedrock 

which require vertical and near vertical rock outcrops (Figure 70). It would be very hard to find an 

overhang on level ground. Soil, on the other hand, does not cause overhangs to be formed but it 

does determine the likelihood of finding caves. Alluvium soils at the bottom of drainages and on 
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flood plains would fill in any caves in those areas. Thus a cave needs to be above drainage zones 

where they could not be filled in by soil (Figure 71).  

 

Figure 70: Overhang on the north face of Dark/Last Chance Canyon. Right photo is an enhanced view 
of the left photo. 

 

 

Figure 71: Cave above the flood plain on south side of Dark/Last Chance Canyon. 

As before, all of these datasets were already used in this project and were repurposed to 

find potential areas with rockshelters and caves. However, the dataset for water features was not 

used. While erosion through water would cause many of the features to be created, this would have 

to take place over millennia and it was felt by the author that the USGS dataset could not accurately 

reflect water features tens of thousands or even millions of years ago. Basically, the cave and 

rockshelter model used the same methods as the quarry model but removed the waterway dataset. 

The resulting model can be seen in Figure 72. 

Discussion of Cave and Rockshelter model 

The number of listed caves and rockshelter sites for the project area (Table 28) is 

significantly more than quarry sites. These known sites served as a dataset to check if, in fact, these 

type of sites are found in the predicted zone. The results (Figure 72) did, in fact, capture almost all of 
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the known caves and rockshelters. Several were not captured but further investigations found that 

this was due to a data error. The soil data for some foothills near the entrance of Dark Canyon/Last 

Chance Canyon (purple rectangle in Figure 72) were labelled as deep alluvium soils as opposed to 

lightly covered outcrops of limestone outcrops. This fact was confirmed by a site visit in 2012. 

Changing this data resulted in correctly capturing the known sites within the model.   

LA # Name (if one is recorded) LA # Name (if one is recorded) 

1770 Sheeo Draw Caves 82638  

9052 Honest Injun Cave 89375 Sunny Day Shelter, Sunny Day 
Smoked Shelter 

14179 The Hobo Site 89376 Peek-a-Boo Shelter 

14288 Robert's Indian Cave, Roberts Rockshelter, Roberts 
Rockshelter #1, Rockshelter #1 

89377 Roberts Rockshelter 2 

14289 Ellis Site 89378 Arrowhead Cave, Arrowhead Shelter 

43426  89379 Riley's Folly Cave 

43427  89380 Pancho's Cave 

43431  89381 Dead Sheep Shelter 

43432 Dark Canyon Shelter 89382 Water Hole Shelter 

43434 Dark Canyon Cave 89383 Heidi's Cave 

43435 Horizon Shelter 89529 Anderson's Cave 

43440 Richard Brown Site 89530 Root Cave 

43441  89531 Duplex Cave 

43442  89532 Dogleg Cave 

43446 Double Ended Cave 101494 Burial Cave 

43449  101495 Cremation Cave, Barker Pen Cave 

43671 Sacahuiste Draw 112611  

43673  113504 Maverick Canyon Site 

43674 Roberts Cave, Robert's Indian Cave, Rockshelter #2 113606 Rattlesnake Cave 

43676  116398  

43677  116399  

43679 Walt Canyon Site 116400 Elephant Head Shelter 

43682  116404  

61348 Sitting Bull Falls Shelter 116405  

68252  140882  

81502 Kee Painted shelter, Kee Shelter, Key Shelter 140942  

Table 28: Known caves and rockshelters in the project area. 

 



185 

 

 

Figure 72: Probability of finding caves and rockshelters. Purple rectangle is mislabelled soil data. 

Again, the results of the cave and rockshelter model indicated that there was high potential for ‘red 

flag’ sites throughout the project area. These were areas missed by the previous model. 7 % of these 

types of sites did not match the most significant characteristics used in the previous site predictive 

models, which could also explain some of the poor performance of those models. Moreover, the 

archaeological record indicates that these sites are more prevalent than quarry sites, with 52 known 

examples (Table 28 and see Figure 100 in Confidential Appendix). They were potentially a greater 

issue than quarry sites. 

Subsistence in Determining Site Location  

With travel routes, caves and rockshelters, approximation to water and quarries ruled out as 

the primary explanation for site location, additional avenues were explored. An examination of the 

known sites found that close to 60% of sites contained fire cracked rock (FCR) features. These FCR 

features were referred to in the records in several different ways, such as mescal pits, ring middens, 

hearths and roasters. These features were typically used to cook the edible agave plant (mescal) 

(Figure 73). These plants must be cooked because the sap of agave is toxic and can cause acute 

contact dermatitis (Crosby 2004).  

This process has a long cultural history in that area of the US. The Mescalero Apache who 

inhabited the area during recent protohistory (see Chapter 6) practised agave roasting till very 

recently: 

 ‘Although not so extensively as formerly the Apache women still make expeditions to 
regions where agave grows in abundance for the purpose of collecting the edible portions of 
the plant. These visits are usually made in late May or early June when the reddish flower 
stalks begin to appear and the plants are most palatable.’ (Castetter and Opler 1936 p. 35) 
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Neighbouring Apache bands called the Mescalero Nadahéndé, ‘People of the Mescal’ (Opler and 

Opler 1950). Mescal roasting still occurs in the city of Carlsbad to this day (Emery 2012). 

 

Figure 73: Image of agave lechuguilla (Anderson 2004). The primary agave plant found in the project 
area. 

Archaeological Data 

A substance strategy of agave roasting and collecting was observed in the central Jornada 

cultural area, on the west side of the Guadalupe Mountains. It was found that from the Archaic up to 

the Early Pueblo period the inhabitants practised seasonal movement and resource collection 

(Whalen 1994). Past peoples would stay in the river valleys and mountains during the winter but 

venture into the highland desert areas during the rainy seasons to collect resources; primarily agave. 

This was in the Jornada cultural complex, which also includes the project area. Excavations in the 

surrounding region have yielded a similar pattern of subsistence and the importance of agave to past 

peoples (see Mera (1938) or Katz and Katz (1985)). On the basis of this data from the surrounding 

areas and the fact that 60% of the recorded sites had roasting features it was possible to focus on 

agave roasting as a key determinant activity in the study area.      

Agave Roasting 

Anthropologists working with the Mescalero in the 1930s described the process of roasting 

agave, which gave insights into how to model agave gathering and roasting:  
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‘The crowns of the mescal plants are dug out with three foot sticks cut from oak branches 
(Quercus sp.) and flattened at the end. This end, when pounded with a rock into the stem of 
the plant just below the crown, permits the crown to be removed readily. A broad stone 
knife is used to chop off the leaves, two being left for tying the crowns together, thus 
making transportation more convenient. The naked crowns are bulbous, white in colour, and 
from one to two feet in circumference.  

Pits in which the crowns are baked are about ten to twelve feet in diameter and three or 
four feet deep, lined with large flat rocks. On the largest rock, which is placed in the centre, 
a cross is made with black ashes. Rocks are piled on the flat stones, but care is always taken 
that the top shall be level. Upon this, oak (Quercus sp.) and juniper wood (Juniperus sp.) are 
placed. Before the sun comes up this is set on fire and by noon the fire has died down.  

On these hot stones is laid moist grass, such as bunchgrass (Sporobolus airoides), side-oats 
grama (Bouteloua curtipendu2a), Texan crab-grass (Schedonardus paniculatus), big blue-
stem (Andropogon furcatus), mesquite grass (Muhlenbergia wrightii), marsh foxtail 
(Alopecurus aristulatus), Muhlenbergia neomexicana, or the leaves of bear grass (Nolina 
microcarpa), but bear grass is usually preferred since it does not burn readily… After the 
mescal has been covered with the long leaves of bear grass and the whole with earth to a 
depth sufficient to prevent steam from escaping, the crowns are allowed to bake the rest of 
the day and all night. Early in the morning the pit is opened and a crown examined and 
eaten. The pit is again closed and the Indians refrain from drinking until noon of this day so 
as to prevent rain. The following morning all the mescal is removed.’ (Castetter and Opler 
1936 p. 35-36) 

Creating roasting pits and roasting agave took at least two days of work, possibly longer, and 

required a variety of different materials, from rocks to plant materials. This investment in time 

meant they could not simply roast agave for lunch on their trip out to a quarry but that this was a 

planned out activity instead of an opportunistic one. People would have had to came into the 

project area to specifically undertake agave roasting, given the time and resource commitment 

involved. 

This assumption was corroborated by the ethnographic data on such tasks. Castetter and 

Opler (1936) indicate that the procurement of agave was a significant event by itself. The other 

accounts of agave gathering and roasting mentioned that excursions usually lasted ten days to two 

weeks away from the primary camps, during which other resources such mesquite beans were also 

collected (Hodgson 2001). This was usually undertaken by groups of five to eight women (Buskirk 

1986). While applying ethnographic accounts to the study of past peoples can be fraught with 

problems, it was noted that these accounts fit the line of evidence seen in Chapter 8 that excursions 

into the project area would be limited to only a few weeks due to a lack of water. Thus the 

ethnographic evidence matches the known environmental data for the project area. 

Roasting Pit? 

The pit method of cooking agave, described in the ethnographic accounts, does not reflect 

all of the archaeological remains found in the project area; a fact noted by the ethnographic 
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accounts. Even in the 1930s the archaeological record indicated that the area near Carlsbad did not 

contain solely pit features (Bell, Castetter et al. 1938) but included roasters that were built on top of 

the surface instead of into a pit (Mera 1938). Moreover, Castetter and Opler (1936) also noted that 

there are earlier ethnographic accounts of Apache boiling agave near the Guadalupe Mountains. An 

account from Marcy in 1849 states:  

‘… we have this evening for the first time seen the Maguey plant which constitutes almost 
the only vegetable food that the Apaches and southern Comanches get for a great portion of 
the year. They prepare it by boiling it until it is soft, then mash it into a paste, and I am told 
that in this form it makes a very palatable, nutritious food.’ (Marcy 1850) 

Castetter and Opler (1936) dismissed this as not being agave because the Mescalero Apaches they 

observed did not boil their agave, although this did not exclude it as a possible method. Boiling of 

agave can leave piles of fire cracked rock (FCR) as one method to boil water is to drop heated rocks 

into water. The process causes the rocks to split and, discarded after use, these can build up refuse 

piles of FCR. Thus the wide range of descriptor features in the archaeological record from ring 

midden to mescal pit to piles of FCR are likely to represent the different means of cooking agave in 

the project area. 

Methodology   

Based on the archaeological and ethnographic data several assumptions were made in 

creating the model. The first of these assumptions was that roasting features would be situated 

close to the actual resources. This was based on ethnographic accounts – one group would gather 

the agave from close by and another group would create the roasting pit (Buskirk 1986). 

Furthermore, estimations of distance travelled and time spent collecting plant resources varies from 

hunter-gatherer societies around the world and could suggest  a time limit at around an hour or two 

and only a few kilometres from a base camp (Waguespack 2005). Base camps being the temporary 

camps set up during the agave roasting activities. Thus proximity to resources was emphasised in 

this model. 

Another assumption made was that while agave grew, and still grows, on steep slopes the 

location of roasting pits requires more level ground. This assumption was based on an examination 

of the archaeological data of the project area (Appendix D). Sites with roasting features are located 

on level ground or areas with low slopes. This was probably to prevent the rock piles and the fires 

from sliding down the hillside. As a result, sites will be located not in areas of high potential for 

agave plants but flat areas close to those areas. 

Agave habitation 

The project area contained three species of agave that are edible, Agave gracilipes, Agave 

neomexicana, Agave lechuguilla  and A. gracilipes  which is a hybrid of the other two species 
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(Burgess 1979). Agave typically grows on dry ground at elevations between 3,000 and 8,000 feet 

(915-2440 m) (Bell et al. 1938, Buskirk 1986), well within the relief of the project area. Actual 

investigations into the distribution of the project area have shown that A. lechuguilla grows at lower 

elevations than the other two species, and while there is overlap, they tended to be segregated by 

elevation zones.  

Modern Data 

A first attempt was made using modern vegetation datasets to attempt to model agave 

distributions. Agave plants are considered a primary indication of the Chihuahuan desert habitation 

and with the GAP program (USGS 2012b) (Chapter 5) it was thought that one could identify these 

areas. The GAP data provides detailed information on a scale of one acre that clearly indicates the 

areas that encompass the Chihuahuan desert vegetation class; the areas in which agave was 

expected to be found. However, Chihuahuan desert vegetation accounted for 86.31 % of the project 

area (Figure 74). That is too high of a number to create a predictive model that can be precise.  

  

Figure 74: Gap data distribution of vegetation. Only those classes making up more than 1% of the 
project area are listed. 
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Distribution Studies 

The next approach taken to determine distribution of agave was to examine flora studies of 

the Carlsbad area. A project had been conducted in the 1960s on the Guadalupe Escarpment to 

determine dominance and prevalence of plant species for different stratum and landscape 

conditions (Gehlbach 1967). As the Guadalupe Escarpment encompasses part of the project area it 

was decided to use this data to determine the optimal locations to find agave in the project area.  

Spot checks during visits to the project area confirmed the accuracy of this method. 

Gehlbach’s investigation found that Agave lecheguilla was the leading half-shrub between 

3,800 and 4,600 ft. (1159-1402 m). It had higher IV numbers, a measurement of dominance, than 

any other species in any stratum below tree level (Figure 75). This is because the species forms 

extensive clones on coarse gravelly loams or weathered limestone outcrops. This clonal nature of A. 

lecheguilla suppresses other species in its range. The range of A. lecheguilla was found to be 

between a little over 3,700 ft. to around 5,200ft (1128-1585 m) in elevation and the highest point of 

dominance was around 4,200-4,600 ft. (1281-1402 m) (Gehlbach 1967) .   

 

Figure 75: Ecologic amplitudes of some leading dominants in three strata on the Guadalupe 
Escarpment (A- Flourensia cernua, B-Larrea tridentata, C-Acacia constricta, D-Mimosa biuncifera, E-
Dasylirion leiophyllum (sotol), F-Juniperus monosperma, G-Quercus grisea, H-Rhu-s trilobata, I-
Gutierrezia lucida, J-Parthenium incanum, K-Opuntia phaeacantha, L-Agave lecheguilla, M- Viguiera 
stenoloba, N Opuntia engelmanni, O-Nolina microcarpa, P-Tridens pulchellus, Q-Bouteloua eriopoda, 
R-Muhlenbergia setifolia, S-Tridens muticus, T- Tridens pilosus, U-Bouteloua curtipendula) (Gehlbach 
1967 p.409 Figure 4). 
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In addition to dominance of agave by elevation the research also determined that there 

were only slight variations in density of agave between north and south facing slopes. Because of 

this lack of significant consistent difference this project assumed there was no difference in north 

and south facing slopes for agave. Moreover, it was found that agave is located on slopes in the 

project area and not in the valley floors of canyons. These slopes range from 10-20% gradient and 

above, but not sheer cliff faces (Gehlbach 1967). Further studies of agave on the Guadalupe 

Escarpment have also shown that while A. lecheguilla is dominant at lower elevations, A. gracilipes 

and A. neomexicana can be found at higher elevations. The range of agave does not stop at the 

5,200 ft (1,585 m) limit of A. lecheguilla but continues higher in elevation, though with different 

species. 

Results of Modelling Agave Distribution 

Using the distribution of agave, described above, and QGIS, a map of potential distributions 

was constructed. Elevation was weighted in percentages, according to the distribution of A. 

lecheguilla in the literature. These involved weighting the elevations 4,200-4,600 ft (1,281-1,402 m) 

at 100 % likely to contain agave. 4,600-4,900 ft (1,402- 1,494 m) and 3,900-4,200 ft. (1,189- 1,280m) 

were weighted at 50% and the elevations of 3,700-3,900 ft (1,128- 1,189 m) and above 4,900 ft. 

(1,494 m) were weighted at 30%. All areas above 4,900 ft were given the 30% weight to account for 

A. gracilipes and A. neomexicana while everything below 3,700 ft was given a 10% weight. This was 

based on the distribution data. The ecological data also indicated that agave would not grow on 

slops of less than 10 degrees. To complete the model, the slope dataset was reclassified to eliminate 

those areas with slopes less than 10 degrees who were given a 0 weighting verses a 1 for the other 

areas. All of these layers were then multiplied together using the map algebra tool to create an 

estimation of the distribution of agave in the project area (Figure 76).  
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Figure 76: First attempt at mapping agave potential. 

Accounting for Paleoenvironment  

This first attempt at mapping did not correlate well with known sites that contain roasting 

features. Several possible explanations were then investigated to attempt to improve the model. 

Paleoenvironmental studies have shown that the distribution of plants can and does move up and 

down in elevations during different climate periods. One estimate is that during the end of the 

Pleistocene a 1,300-1,400m depression of life zones existed, extending the tree line all the way 

down to the Pecos River. However, others have disagreed with this assessment and believe that a 

xerophilous juniper woodland would have existed at this point in time instead of a dense forest. The 

general consensus, though, is that a 1,000m depression of ecological zones existed during this period 

(Van Devender 1995).  

In terms of the model this meant that as the climate changed from the late Pleistocene into 

the early and middle Holocene there were significant movements in ecological zones upwards. The 

current desert scrub lands and grasslands that agave inhabits would have moved across the project 

area and would not have been present at all periods of time. In addition, there are micro-periods of 

wetter and drier conditions at various periods in the south west which would have expanded or 

shrunk the desert scrubs and grasslands. A wet period has been confirmed to exist at 3000 BP as 

indicated from faunal remains (Applegarth 1979) and if the conditions were the same across New 

Mexico others would have occurred at 3000 and 1000 BP. These would have been the time periods 

with possible seasonal springs (see Chapter 8) but less agave.  
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However, expanding the ranges of high potential for agave growing up and down the 

elevations did not improve the model greatly. Furthermore, not knowing the age of most sites, it 

was not known if there was, in fact, any correlation between climate and the location of roasting 

pits. Because of these issues other solutions were then examined. 

Sotol 

Agave is not the only plant that was roasted in the past; other plants include sotol 

(Dasylirion leiophyllum) (Figure 77). Sotol was another desert plant that is indicative of the 

Chihuahuan desert. It returns a similar number of calories as agave when roasted, though typically a 

little less (Dering 1999). Sotol, unlike agave, was in more environmentally diverse locations as found 

by researchers. It was on slopes of hills but also in water drainages. Furthermore, it was also more 

sensitive to aspect, with some southern facing slopes having a 320% increase compared with north 

facing slopes. But in most cases the difference is closer to 50% and that is the norm (Gehlbach 1967).  

 

 

Figure 77: Sotol (Dasylirion leiophyllum). Documented in the project area by Dr. Ian Ralston, August 
2012. 
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Final Model 

Taking into account both paleoclimate change and the distribution of sotol a new 

distribution map was created. This involved stripping out the elevation weights from the previous 

model to account for paleoclimate, while sotol data was added in two ways. One was to use the 

DEM to create an aspect model. This model was then weighted so that south facing landscapes had a 

50% increase in final score, east and west a 25% increase and north had none. In addition to that, 

the alluvium soil category was taken out of the soil dataset and added to the slope model as areas 

likely to contain the desired vegetation. The slope data itself was modified to eliminate slopes below 

10%, as these areas were unlikely to contain the plants but not eliminating alluvium soils that 

overlapped with areas that were under the 10% slope. All of the datasets were finally recombined, 

resulting in the following distribution map: 

 

Figure 78: Areas with potential for roasting plants based on slope and soil. Red represents the 
highest likelihood for containing roasting plants. Grey almost zero likelihood of having the plants. 

Again, this newer model did not result in the desired increase in performance when 

compared against known archaeological sites. But this problem was solved by replacing the soils 

dataset with the known water features dataset. This was to represent the stream beds that sotol 

was known to grow in. The early use of soil was determined to be too coarse a dataset. The resulting 

distribution greatly improved the performance of the model.  
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Figure 79: Distribution of potential areas with roasting plants with stream data. Red represents the 
highest likelihood for containing roasting plants. Grey almost zero likelihood of having the plants. 

Maps in NetLogo 

The next step was to find roasting sites, areas with low slope, that were located near these 

resources. The agave and sotol maps were then imported into NetLogo. Agents were sent out from 

low slope locations to see how many potential areas that might contain agave and sotol were within 

a set distance of that point. This distance was set at half an hour’s walk, which gave total trip time of 

about one hour, in line with ethnographic accounts of foraging. The code used for this is a slightly 

modified version of the code used in Chapter 7 to determine full directional travel cost. The results 

of these models can be seen in Figure 80. This final predictive map correlates well with the known 

archaeological record (See Confidential Appendix Figure 101). 

 

Figure 80: Areas for potential roasters.  
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Additional Attractors 

Other attractors were considered for the project area but were eliminated for several 

different reasons. For example, large game hunting was considered as a possible attractor. 

Excavations in project area caves (Applegarth 1979) and in the surrounding areas (Katz and Katz 

1985) have indicated a broad based subsistence strategy for those living in and near the mountains. 

Optimal foraging theory would dictate that priority should have been given to activities that return 

the highest caloric returns per hour of activity. According to research in the Trans-Pecos Region, 

which the study area is a part of, big game hunting has the best returns, significantly more calories 

per hour than agave and sotol roasting (Dering 1999). 

However, when researching the potential areas where large game may have occurred it was 

found that big game hunting was unlikely in the project area. Big game found in this part of New 

Mexico, such as elk, deer, and American bison (buffalo), inhabit areas within several kilometres of 

water sources (mule deer (Brujes, Ballard et al. 2006, Esparza-Carlos, Laundre et al. 2011), elk (Truett 

1996) buffalo (McHugh 1958, Truett 1996)). As Chapter 8 demonstrated, other than the Pecos River, 

water sources are highly unlikely to be present in the project area. There is the possibility that near 

Sitting Bull Falls and, depending on the intensity the yearly rain fall, Big Indian Spring may produce 

some water. Yet this left the vast majority of the project area as being unattractive to big game at 

any period of the year. 

In addition to the lack of water in the project area, it was found that changes in the 

environment would further limit the availability of big game. Colder wetter climates are better for 

the growth of grasses while the drier and hotter climates are better for the desert scrub (McClaran 

and Van Devender 1995). Changes in climate are known to reduce the chances of finding large game 

associated with grasses (Parmenter and Van Devender 1995, Truett 1996). The archaeological 

evidence for bison hunting in the project area or even the surrounding areas is sparse (Hogan 2006). 

Historical evidence of these animals is also rare (Truett 1996). Finally, even during wetter periods 

sites near Big Indian Spring yielded no faunal remains of large game animals (Applegarth 1976). It 

may be those large game, which are heavily dependent on grasses for food stock and reliable water 

sources, could not have existed, and were not present in the project area for the periods of human 

occupation of the area.  

Another activity considered was the hunting of rabbits, which had higher caloric rates of 

return than roasting plants (Dering 1999).Unfortunately, or fortunately if you were a prehistoric 

person, research into the habitat of the black-tailed jackrabbit (Lepus Californicus), found that these 

animals could range across a wide breadth of environmental zones. They could have been found in: 

desert shrublands; palouse, shortgrass, and mixed-grass prairies; desert grassland; open-canopy 

chaparral; oak (Quercus spp.) and pinyon-juniper (Pinus-Juniperus spp.) woodlands; and even low- to 
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mid-elevation coniferous forests (Chapman, Dunn et al. 1982). These habitats cover the majority of 

the project area and thus it was not possible to limit the range of potential sites based on rabbit 

hunting. While this hunting or trapping probably did occur currently it is not possible to determine 

site location from it.  

Additional site types and sites features were considered as another possibility however this 

was found to be problematic. A few sites have burials listed as some of the features but it was too 

few to draw any sort of conclusion about possible distribution. Mortors were other features found at 

sites but again too few to draw any conclusions from. Given the lack of excavations in the project 

area (Chapter 5) there were no other artefacts or features from which to try to investigate site 

patterns with. A lack of history in the project area also meant that cultural aspects like political 

boundaries could not be explored either.  

Discussion 

Despite the narrow field of attractors discussed the results were significant. 60% of sites 

could be accounted for by examining one single factor: optimal locations to place roasters. An 

additional 7% of sites could be accounted for by modelling locations that are likely to contain 

quarries, caves or rockshelters. This is a significant number of sites to be able to pinpoint while 

looking at only a few potential attractors.  

More importantly, it was the quality of those sites captured that mattered the most. Caves, 

rockshelters and sites with roasting pits are all likely to contain dateable material. Because of that, 

they are likely to qualify for the National Register of Historical Places and possibly require excavation 

if a development were to be placed through the sites (Altschul et al. 2005). The remaining sites not 

captured by the roaster model and which were not a cave or rockshelter were very small lithic 

scatters (Table 29). Lithic scatters such as these rarely produce any sort of intact archaeological 

remains; most excavations of these sites end up removing the surface lithics and finding very little 

else (Hogan 2006). 

Number of Lithics Number of Sites Percentage of Sites 

0 20 6% 

1 26 8% 

10 153 49% 

100 55 18% 

1000 9 3% 

10000 2 (both quarries)  

unknown 48 15% 

Table 29: Prehistoric sites that do not have roasting features. 

In essence, while not all sites are identified by these models, the ones most valued by 

cultural resource management were. These sites were also some of the rarer of the site types, caves 

and rockshelters, and are found in areas that would not have been expected in traditional predictive 
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models. The method was able to demonstrate its value in terms of time and resource management 

in the planning stages of a CRM project. The implications of this and more detailed discussion will 

follow in the next chapter. 
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Chapter 9: Discussion and Conclusions 

This thesis set out to improve the performance of site predictive modelling for CRM 

archaeology uses. To reach that aim the objective of increasing the explanatory abilities of predictive 

modelling was created, along with a plan of activities to reach that objective: 

1. research causes of poor model performance and find cause to address; 

2. create a methodology to solve the problem(s) that lead to poor model performance; 

3. test proposed solution(s); 

4. compare solution results against independent models to determine their 

effectiveness. 

 

The first three activities were undertaken and reviewed in the preceding chapters. The 

groundwork was set for the last activity, testing performance, with the project area being specifically 

chosen so that the results could be compared against previous predictive modelling methods. So did 

the more explanatory model live up to its goal of improving model performance? The answer to that 

is more complicated than originally imagined, measuring Kvamme Gain Statistics for all sites 

between old and new predictive models.  

Problem with Older Predictive Models 

Initially this project undertook the comparison and found that the explanatory models 

performed better than the older models in terms of Kvamme’s Gain Statistic, with some caveats 

which will be discussed later in this chapter, but problems developed. After this project had been 

completed in 2012, I set out to use some of the models in other research projects, specifically the 

water models. It was then that a serious flaw in the data used by the past predictive models was 

discovered. While the original PUMP III datasets were no longer available, it was possible to trace 

the images to semi-accurately recreate the dataset. A comparison of this data against USGS water 

data demonstrated clear differences between the two datasets (See Figure 55 and Figure 82). 

Satellite imagery (and physical spot checks undertaken in the summer of 2013) confirmed that the 

USGS data was accurate and that the PUMP III water systems were incorrect. 

Projection Issues 

There are issues with taking the data from the PUMP III report images. Figure 82 appears to 

indicate that there is a problem with different projections. Attempts were made to use different 

projections in GIS but were not successful in aligning the two datasets. An examination of Figure 56 

in Chapter 7 shows that the water system does not match up perfectly with an image from the same 

report. It is suspected that some image editing occurred in the report creation that has changed the 
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dimensions of the image and thus ruined the projections. However, the key point to take away from 

the image is that the water pathways are significantly different in shape, even with projection issues. 

 

 

Figure 81: USGS quad map of Carlsbad West with hydrology features (blue). 

 

Figure 82: Water features in the project area from the USGS (2012) (blue) compared to PUMPIII 
water model (orange).  
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Why is the Data Wrong? 

The GIS method of hydrology creation creates water systems by first using a ‘fill’ 

(terminology can vary between programs) to ‘fill’ in any small depressions or divots in the landscape; 

this is done with a raster DEM. Usually, this is undertaken by an interpolation program that ensures 

that each square is of a relative height to its neighbours. There are two reasons for this: one is to 

clean the data of any elevation errors that might exist in the dataset. The other reason is because 

the next step requires each square to feed into its neighbours, and depressions in the landscape 

interfere with this process. 

After the dataset has been cleaned, each square is assigned an aspect or aspect-like number. 

The aspects are then used to assign numbers to a given square based on how many connected 

squares point at that particular square. The user then sets a threshold of how many ‘pointed 

connects’ a square should have before it is registered as containing a hydrology feature, flowing 

water. Theoretically the aspect and connection acts as a model for the direction in which runoff 

water would flow, and the threshold of connections sets a hypothetical point at which runoff would 

condense into a solid (liquid) body.  

These techniques caused several problems. One is that this methodology assumes uniform 

connections and it fills in any depression in the landscape. That requirement was based on the 

system requirements of the GIS hydrology program and not tied to natural processes. A sink in the 

landscape would have caused water to pool at that location and not turn into the flowing linear 

features presented by GIS hydrology programs; a very likely scenario in the subject area, as the 

geomorphology report noted that the limestone in the area, ‘is karstic with several sinkhole 

depressions, especially in the western portion of the study area’ (Altschul et al. 2005 p. 81). 

A further problem is the issue of edge effect. Because the method is based on cascading 

cells, those next to the edge of the dataset will have few cells to feed into each other. The real world 

areas that would have provided water flow to the edge are excluded from the dataset. Unless 

significant extra areas were included in the model the area is missing key data. This problem and the 

issue of ‘filling’ in parts of the DEM will create changes in stream location seen in the GIS waterways. 

Implications of Poor Data 

These problems explained the poor performance of the past predictive models and the ‘red 

flag’ sites observed. Proximity to the waterways was the highest weighted variable in the different 

PUMP III predictive models. A look at the ‘red flag’ sites finds that in the PUMP III model they are not 

near any waterway but an examination of the USGS data shows that in fact they are. Poor data has 

significantly affected the model’s performance.  
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With none of the original data available from the PUMP III models it was not possible to 

recreate the older predictive models with updated drainage data. However, using the drainage 

dataset from the USGS (discussed in Chapter 8) it was possible to create a traditional predictive 

model by placing buffers, capturing the area within a certain distance of the drainages. The results of 

the new model presented some very interesting findings. One is that good data is very important to 

data creation. The new simple model was able to double the Kvamme Gain Statistic of the PUMP III 

Boolean and Regression models and improve on the weighted model as well (Table 30). The ‘red 

flag’ sites mentioned in the PUMP III report were identified by this simple model as well. An adage 

popular among modellers is ‘garbage in, garbage out’. 

Method Precision Accuracy 
with site 

point data 

Gain Accuracy with 
site shape data 

Gain 

Buffer 100m 30% 37%          0.21  53% 0.44 

Buffer 150m 42% 51%          0.18  66% 0.36 

Buffer 200m 71% 81%          0.12  85% 0.17 

Buffer 300m 81% 90%          0.09  92% 0.11 

Buffer 400m 88% 93%          0.05  95% 0.07 

PUMP III Boolean 46%   58% 0.21 

PUMP III Weighed 43%   70% 0.39 

PUMP III Regression 63%   85% 0.26 

Table 30: Results of traditional models in the project area from this project (Buffered “streams”) and 
the PUMP III project. 

The second finding is that even with better data the results are not improved that much. The 

doubling of results is impressive, but less so when the bar was set so low. Moreover, it only captured 

40-50% of the known sites before the performance collapsed down to the same level as the previous 

models. This greatly increases the chances of ‘gross error’, an unwelcomed outcome. The problem 

with this simple model, and the PUMP III models, is that it assumes that there is a correlation 

between sites and the streams. Which as presented by statistical analysis in the PUMP III project, 

and the results of the simple model here, there is.  

The flaw with these methods is that there is the assumption that this relationship is direct 

and fairly linear. As demonstrated through this project it is most likely that this relationship is 

secondary with the real relationship being with agave and sotol resources. Figure 83 shows that this 

project’s roaster model is able to capture those sites that do not appear to be correlated with the 

drainages and those that are as well, because it is capturing the correct relationship between sites 

and plant resources. The missing of a few sites in the image is due to using points to represent sites 

and the resolution of the data. 
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Figure 83: A section of the project area with sites within 100m of “waterways” and those further 
away with the roaster potential as a backdrop showing most sites not captured by distance to water 
is captured by roaster potential.  

(See Figure 102 in Confidential Appendix for better presentation of the image.) 

Was This the Right Performance? 

Modelling for agave and sotol improved the performance of the predictive modelling in the 

project area, into the high 50s of the Gain Statistic depending on how the final results were adjusted. 

With a few tweaks to the model 71% of the sites could be captured with the labelling of 34% of the 

project area for a gain value of 0.52 or 29% and 68% for a gain of 0.57. That shows, at least, a 

roughly 20% increase in performance for the explanatory model over the other models. But it was 

this constant tinkering to improve the Gain Statistic that raised serious questions about how well this 

project measured performance. 

It was anticipated at the beginning of this project that this goal would be measured by a 

simple metric, the Kvamme Gain Statistic. A project area was specifically chosen that had previous 

predictive models created by others that had this measurement. This allowed for the testing of an 

independent traditional method model’s performance against the models created for this project 

without the worry of the author’s skills/bias affecting the outcomes. The Kvamme Gain Statistic 

would have acted as an easy-to-compare metric of the performance between the two models. 

However, it is now my belief that, after undertaking this project, reducing outcomes to a 

single number was not the best approach to measure predictive modelling results. Similar to some of 

the issues raised in the past about predictive modelling: ‘functional, temporal, or cultural site types 
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cannot be readily determined for most sites in an archaeological database, yet profound locational 

differences must exist between the types’; ‘Grouping sites of many types into a single, site-present 

class creates too much variability to model’ (Kvamme 2006 p. 6). The earlier criticism was based on 

the assumption that putting all different types of sites into a model as a single dataset would reduce 

performance. I would argue that this criticism has not been taken far enough and should include the 

presentation and measurement of results.  

There has been significant effort to find methods to measure predictive model performance 

beyond the Kvamme Gain Statistic. Kvamme (2006) has published a list of different measurements of 

predictive modelling performance: 

Table 31: List of different measurements of model performance. 

Verhagen (2007c) has also listed multiple methods, many listed by others. There is the Attmell-

Fletcher test (Kamermans 2006), which is similar to the author’s max gain and Verhagen (2007c). 

Also, there is the S statistic (Altschul et al. 2004). But, regardless of the methods used to measure 

performance they almost always focus on measuring all sites, regardless of differences between 

them, with few exceptions (see Figure 84 for an example). 

Statistic Derivation Interpretation 

p(S) From survey data: (total area of site 
class)/ (total area field surveyed) 

Base rate or chance probability of 
archaeological site class in study region 

p(M) Determined exactly by GIS: (total area of 
model)/(total study area) 

Base rate or chance probability that a 
model will indicate a site; proportion of 
study region mapped to M 

p(M′) 1−p(M) Model precision; high values indicate 
high precision 

p(M)/p(S) Ratio Model fit; indicates how many times 
larger a model mapping is than the 
total site-class area 

p(M|S) Estimated by proportion of known 
archaeological sites correctly specified 
by model 

Model accuracy; probability that a 
model will correctly indicate a site: 
100×p(M|S)= percent correct 

p(S|M) Estimated by proportion of locations in 
M that contain archaeological sites 

Probability of archaeological site 
presence when model specifies a site 

p(S|M′) Estimated by proportion of locations in 
M′ that contain archaeological sites 

Probability of archaeological site 
presence when model does not specify 
a site  

p(M|S)−p(M) Subtraction Improvement that model offers over 
chance in specifying known 
archaeological sites 

p(S|M)/p(S) Ratio Model improvement ratio; indicates 
how many times more likely a site is in 
M than the base-rate site probability 

p(S)/p(S|M′) Ratio Model improvement ratio; indicates 
how many times less likely a site is in 
M′ than the base-rate site probability 

p(S|M)/p(S|M′) Ratio Model improvement ratio; indicates 
how many times more likely a site is in 
M versus M′ 
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Figure 84: Predicted distribution of sites by time period: A - Neolithic; B - Chalcolithic; C - all periods, 
from Gili et al. (2007) p. 181-2 Figures 8.5(A) & 8.6(B) &  p. 190 Figure 8.17 (C). 

Yet the separation of site types is a key activity for, and has a significant impact on, CRM 

archaeology, because not all sites are created equal in terms of the law and resources to manage 

them. The time and resources required to document and/or excavate a small lithic scatter consisting 

of a few flakes on the surface and no buried deposits is significantly different from a site that has a 

hundred roasting features and many buried artefacts. For project planning in CRM it is not just the 

number of sites one will encounter but the quality of those sites as well. As pointed out by others, at 

least in the US, predictive models are most helpful if they can predict which sites might qualify for 

inclusion in the National Registry and thus require more investigation (Altschul et al. 2004). 

The models created for this project showed several types of sites, caves and overhangs, 

quarries and roasting sites, that are connected and complementary but, in many areas, mutually 

exclusive, i.e. roasting features won’t be on cliff sides but caves and overhangs will. Combining these 

different datasets resulted in very poor quality predictive models because of this lack of overlap. 

Kvamme’s Gain Statistic is based on labelling the least amount of area likely to contain sites. A 

predictive model that labels a majority of the project area as likely to contain sites will perform 

poorly in terms of the Gain Statistic.  

 

A B 

C 



206 

 

 

Figure 85: Model of areas likely to contain roasting features. 

 

Figure 86: Model of areas likely to contain caves and rock shelters.  

 Taking each behaviour model/site type on its own provides more information for CRM 

managers. The roasters model accounts for the placement of the majority of sites in the project 

area. For CRM workers this can serve as a guide for where most sites are likely to be found and allow 

them to plan accordingly. The quarry and cave models represent only a fraction of the sites likely to 

be encountered, about 6%, but also ones that are most likely to be the most expensive to excavate. 

The quarries in the project area can have hundreds of thousands of lithics that would need to be 

recorded (Appendix D). Caves have the potential to have buried deposits and if excavations in the 

surrounding areas are any indication they will require expensive preservation of organic materials 

and analysis of human and/or animal remains.  
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From the perspective of a CRM manager, this information can help better estimate costs for 

projects. They will know what type of site is likely to be located in which locations. They would know 

that they will most likely encounter roasting features on flat surfaces near drainages and hills. If their 

project takes them near hills and limestone outcrops they should anticipate quarries and 

caves/shelters but only a few. This is information that can be conveyed to clients before work begins 

to shape their expectations and to alert them to the risks. It also gives the clients the ability to 

decide if they want to develop areas with high likelihood of smaller sites or areas with less likelihood 

of sites but ones which have greater cost potential. This result is exactly the type of outcome that 

CRM managers have been asking for (Altschul et al. 2004, Altschul et al. 2005).  

Wrong Project Area for Single Gain Statistic? 

If the simulations are correct than the project area is disposed to not work well with a single 

Gain Statistic. A significant portion of the project area has agave and sotol growing potential. 

Moreover, those areas with less potential for roasting features are areas that are likely to contain 

caves and rock shelters. There are two different location strategies that do not overlap significantly 

with each other. Finally, there is not a strong attractor like water resources to draw people to limited 

areas of use. The project area has a dispersed use pattern which makes it very hard to increase the 

precision of the models. Even under the best scenario the performance of the model capturing all 

sites is unlikely to reach the .7 or .8 gain value of some ‘high performing’ models. 

What is the Right Measurement? 

This project started out with the vision that models could simply be measured using the 

Kvamme Gain Statistic and the results would speak for themselves. It did show that the explanatory 

models could improve performance by about 20%, however, that metric does not accurately capture 

the quality of the outputs for CRM purposes, site type, and is unlikely to work well in the project 

area with such wide difference in locations between site types. Reducing the results to one number 

obscures the complexity of the archaeological record. Predictive models should discern site time 

when presenting results, using Gain Statistic, Attmell-Fletcher test, or any other measurement. In 

the case of the models created in this project the agave model had a Gain Statistic of the high 0.5s, 

depending on how it is tweaked. The cave and rock shelter model had higher performance in the 

0.6s, again the results can be tweaked up or down. As will be discussed later in this chapter it may be 

possible to increase the performance of this model with better data. This range of performances 

better reflects the archaeological record and meets the needs of CRM managers. 

Did the Model Improve Our Understanding of the Past?  

As discussed in Chapter 2, this project chose researching explanatory-based predictive 

models as it had the added benefit of potentially being of greater interest to academic 
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archaeologists, because they could be used to explore past human behaviours. So did the models 

add to the archaeological understanding of the project area and thus broaden the appeal of 

predictive modelling? The results show a clear yes. These models helped answer some of the 

questions that have been raised about the area: 

‘What is particularly interesting about the project area, however, is that much of south-
eastern New Mexico does not conform to the traditional image of Formative cultures in the 
American Southwest. Rather than being based predominantly on corn, beans, and squash, 
much of the post-Archaic subsistence intensification in this region seems to have been based 
on agave and shin oak, and in many ways it appears to have been a continuation of an 
otherwise largely Archaic lifeway.’ (Altschul et al. 2005 p. 10) 

The question about change in subsistence from the Archaic (hunter-gatherer) to the 

Formative/Pueblo/Ceramic period (traditionally farming and sedentary living) has been raised in the 

regional research framework (see Hogan (2006)) as a topic that needs investigation. The prevailing 

theory is that during the Ceramic period the region was occupied by both farmers and hunter-

gatherers, with hunter-gatherers located in the project area away from the Pecos River (Larralde and 

Sebastian 1989). This is based on excavations of roasters that have Ceramic period C14 dates. 

Because of this theory the regional research framework asked questions about the subsistence 

patterns of these ‘ceramic period hunter-gathers’: 

 

 ‘What wild plant and animal resources were exploited by Ceramic period groups in 

each of these areas?’ 

 ‘Which resources were dietary staples?’ 

 ‘What seasonal variability is there in the availability of those resources?’ 

 ‘Were any food resources stored?’ 

 ‘Could the available mix of food resources in the area support a year round 

occupation, or would resources in other areas have to be exploited at some point in 

the annual round?’ 

(Hogan 2006) 

 

The models for this project help to explain why we find both agriculture and hunter-gatherer 

type subsistence strategies alongside each other during the Ceramic period and can aid in the 

process of creating archaeological theory. The water model and paleoclimate data show that for the 

majority of the cultural history of the area there was no perennial water. Potentially, there would be 

seasonal streams fed by springs when enough rain fell to raise the water table. Otherwise the whole 
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area could not support long-term habitation. People could only travel into the area for brief periods 

of time.  

The roasting model shows that the majority of sites in the project area are associated with 

roasting activities. It is possible that agriculturalists or semi-agriculturalists were coming into the 

area during the Ceramic period to exploit the resources then leaving. Agave and sotol could have 

provided an alternative food source to diversify the diet. Excavations of sites in the region along river 

terraces dating from the Ceramic period indicate that the people would hunt and gather whatever 

resources were immediately available to them (Hogan 2006) and this fits the general pattern of the 

model. Agave and sotol are not just food resources; the leaves are used for producing mats, sandals, 

baskets, cloths, etc. People could have been collecting agave for other reasons, and using agave and 

sotol for food was a secondary activity. The different models created for this project help us 

understand that instead of having two different groups of people during the Ceramic period we have 

one group, who were able to exploit agave and sotol alongside their other activities. This is not to 

say that they did not also practise hunting-gathering at the same time. However, the project area 

would not support separate groups of people undertaking different subsistence strategies living next 

to each other year-round. 

Returning to the regional research framework, the scenario created by the models makes it 

possible to answer part or all of the questions asked about subsistence in this region: 

‘What wild plant and animal resources were exploited by Ceramic period groups in each of 
these areas?’ (Hogan 2006) 

For the project area we can say that agave and sotol roasting were some of the resources 

exploited. Moreover, because deer, elk and buffalo require a water supply relatively close to where 

they roam, 5–10km, it is possible to exclude those resources for parts of the project area based on 

the water model.  

‘Could the available mix of food resources in the area support a year-round occupation, or 
would resources in other areas have to be exploited at some point in the annual round?’ 
(Hogan 2006) 

The models show that in most of the project area there would not be year-round 

occupation, except near the Pecos River and areas with reliable water sources. Based on the model 

and ethnographic research it would appear that food resources were exploited on an annual 

rotation or only occasionally. 

Additional research and work will be required to confirm these results. Still, the models have 

created a plausible explanation to answer some of the questions from the regional research 

framework. Something that the previous predictive models were unable to do – 
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‘As the preceding discussion indicates, correlative predictive models may allow us to discern 
patterns in settlement. They do not explain such patterns ...’ (Altschul et al. 2005 p. 97) 

For this project the models were able to broaden their use beyond that of a basic CRM utility 

to find sites. In doing so it met the goals of trying to expand such modelling outside its narrow field 

of use. 

Such positive outcomes need to be tempered with the knowledge that this is only a case 

study. This methodology has been demonstrated but further tests in different settings need to 

confirm the utility of using simulations for predictive modelling. Even then the full impact of this 

research will not be felt until such methods garner wider use in archaeology. At the moment this 

project stands as a positive first step in that process.  

Did This Actually Increase Our Understanding? 

ABM enables the exploration of ideas about the past, but that means it is not modelling the 

past itself but rather ideas about the past (Premo 2008). A simulation does not tell archaeologists 

how things actually were, even when a simulation’s results perfectly match the archaeological 

record. A match is not conclusive proof that that is how it happened in the past (Premo 2008, Premo 

2010). It is worth reiterating these points as this review has discussed the knowledge gain as though 

the simulations prove what happened. As discussed earlier in this thesis, that is archaeology. We 

take the best evidence we have about the past and create narratives about what we think 

happened. As new evidence comes to light we change those narratives. Barring the creation of a 

time machine we will never know if we are 100% correct, but we move forward in the hope that 

were are at least close. So the results of this project indicate outcomes with the best evidence 

possible using the best tools available. Only more research will confirm or refute the theories 

created through simulations in this project. 

Unexpected Outcomes and Observations 

While this project started out with a very specific goal of improving model performance, it 

also contributed to other areas of research. What follows are some of those observed contributions 

outside of the stated goals and objectives.  

Least Cost Path 

ABM modelling of least-cost path analysis added several new insights into the practice in 

archaeology:  

 

 The model provided a new tool for exploring travel costs, not limited to the single or few 

directional costs that can be modelled with most GIS programs. An agent-based model gives 

the ability to easily and quickly calculate 360 degree directional forces that change with each 
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action taken by a person (agent). This is an attribute that may be of use to those 

investigating travel costs. For example, it could be used in site catchment analysis to produce 

an examination of resources within walking distance as demonstrated in Figure 70. 

 Testing of the models found many issues revolving around interpolation and how NetLogo 

handles the DEM data. This indicated that interpolation will affect the least-cost path results.  

 Problems were found when trying to interpret how a past person would view ‘costs’. Most 

notable of these interpreting ‘cost’ issues was the combined viewshed and least-cost path 

analysis model, which showed that paths can dramatically change based on what an agent 

has knowledge of.  

 A further issue, and one that questions the basic assumptions of least-cost paths, found that 

different paths taken by a person could diverge by several kilometres but arrive at the same 

location at almost the same time, negating cost as a determinant of paths. If costs are so 

small as to not be noticeable, then least-cost path loses its advantage. 

 

Overall, this project resolved one of the problems with least-cost paths, single direction cost 

modelling, but raised many more problems, including one that questions the fundamental 

assumptions of such models, that least-cost routes matter. If multiple, significantly divergent, paths 

can lead to the same point with very similar costs then what is the utility of such a method? 

Archaeology needs to reconsider its use of least-cost paths as they probably are not demonstrating 

what most archaeologists are assuming: that people take the quickest/less calories burned/some 

other type of cost-saving path, and thus that the least-cost method shows the exact route taken.  

Inaccurate Data 

In Chapter 2 the different range of problems facing predictive modelling was reviewed and 

several of those that were not focused on still played a role in this project, such as ‘GIS data are 

inaccurate’ (Kvamme 2006 p. 6). As discussed in Chapter 8, some of the soil data used was found to 

be incorrectly labelled for soil depth. This project just adds one more example of the need to be 

aware of data quality as heavily discussed in any modelling literature or most literature that deals 

with data. Furthermore, this project demonstrated how ABM and GIS interpret the data, convert 

data or model actions that can dramatically change the outcomes. Chapter 6 reviewed tests 

undertaken by this project to see if the NetLogo program works and changes outcomes. Most 

predictive models do not undertake such work, or at least it is not reported. This raises a concern 

that not only can GIS data be inaccurate but the presentation of such data can alter the accuracy as 

well. 
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Blue Line Features 

‘Blue-line features on topographic maps are frequently arbitrary and unreliable indicators of 

water’ (Kvamme 2006 p. 6). This project has demonstrated that it is not just maps that may have 

issues but that attempts to create water datasets using GIS tools have significant flaws. This will 

need to be replicated in different project areas but anyone using such datasets should re-evaluate 

them. As the water simulation confirmed that blue-line features on maps should be used with a 

sceptical eye to the intensity of water resources they represent, many will vary greatly in the 

amount of water present in them at any given time. 

This project set out to improve predictive modelling performance, which it did, just not in 

the role envisioned; in the process it found serious issues that may affect model performance. 

Certainty the issue of ‘blue lines’ impacted the performance of past models. There is clearly more 

work that needs to be done to tackle the different problems with predictive modelling. These were 

just a few examples encountered in this project but the list from Chapter 2 needs to be more fully 

investigated.  

Data Resolution 

‘GIS data have insufficient resolution and poorly represent the real world.’ (Kvamme 2006 p. 

6). This was dismissed as a concern at the beginning of this project but experiences have since 

shown that to be a wrong assumption, data resolution does matter. The New Mexico Bureau of 

Geology and Mineral Resources is in the process of creating 1:24000 geology maps of the state 

(Resources 2012). At the time of this project only a small percentage of the state was covered; 

however, that included the Carlsbad West Quad. The data from this map shows that only a small 

percentage of the geology actually contains the potential for chert or chalcedony concentrations as 

compared to the general geological formation information provided by the USGS (Figure 87). 

Potentially, if such a detailed dataset were applied to the whole project area it might be possible to 

significantly reduce the areas that are predicted to contain lithic resources.  
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Figure 87: 1:24000 geological map for Carlsbad West Quad (Resources 2012). 

The resolution of the DEM could have also affected the outcomes. The 30-metre resolution 

of the DEM used and how different software programs interpolate this data obscures the finer 

details of the landscape. Site visits to various locations in the project area for this project recorded 

multiple sheer faces of exposed bedrock (Figure 88). These geological formations would have been 

excellent locations to find exposed seams of lithic materials. Yet these formations, due to how GIS 

interprets the data, did not show up in the digital data available. Targeting only these formations 

could cut down the potential quarry and cave areas to a fraction of the model’s current coverage.  
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Figure 88: South canyon side of Dark/Last Chance Canyon. 

 

Did this project Choose the Right Goal? 

Returning to Ebert’s criticism, after undertaking this project, ‘... sixty to seventy per cent is 

not really bad but it is not very good either – certainly not good enough to justify spending a lot of 

money’ (Ebert 2000 p. 142), I now question if focusing on the problem of model performance, 

specifically in terms of accuracy and precision, was the right choice. Of course, with the literature 

available at the beginning of this project this seemed like a logical problem to tackle. As discussed 

above, it was only through the exploration of model performance that issues arose with using a ratio 

of accuracy and precision to measure performance, the conclusion was reached that this is 

inadequate for the needs of CRM archaeologists.  

Possibly more significant is Ebert’s assumption that such performance is not enough to 

justify spending a lot of money. While the Minnesota and North Carolina models cost $6 million each 

to make, the vast majority of those costs came in obtaining the data, specifically, digitising the 

necessary data (Cole et al. 2006, MDOT 2009). Similarly, a little over 10 years ago the PUMP III 

project had to use aerial photography to create digital soil data, which is why it had a more than 

million dollar budget (Altschul et al. 2005). However, now most archaeological records are digitised, 

and increasingly so are most other datasets as discovered during the process of this project, and able 
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to obtain DEM, soil, water and plant data for free and in higher resolution than was available to the 

PUMP III project. The cost of such data will vary between countries as not all countries make their 

data open as the US does. But if the Minnesota, North Carolina and PUMP III projects were to be 

conducted today they might only cost a few thousand dollars. 

As accuracy of data increases, it is now possible to get sub-metre point cloud data of 

landscapes, and costs of obtaining such data continue to fall; drones can now collect LiDAR data, and 

the costs associated with creating predictive models will almost become a non-factor. One could 

probably spend an afternoon obtaining data from various websites and then working with a GIS 

program to create a fairly decent predictive model. Which raises the question, even if the accuracy 

and precision performance is poor, a dubious measurement, does it matter if the model cost next to 

nothing to create? 

With costs being limited to the labour required to work a GIS program or other software 

there may be the potential for CRM archaeologists to focus on developing more explanatory models. 

Spending a few days attempting to better understand the placement of certain sites may be worth 

the cost for a better model for CRM purposes, i.e. a model that differentiates site types, something 

that would cost significantly less than the million dollars spent on other predictive models. It could 

be that we may be entering an era of explanatory-based predictive models, driven by CRM funding 

freed up from the need to obtain data.  

Observations on ABM as a Method 

Is there a role for agent-based modelling in explanatory predictive models? Based on the 

results of this project I believe so, at least the idea of more complex simulations being used to guide 

model creation. They may not necessarily take the form of agent-based modelling, sometimes 

mathematical modelling is more appropriate for simulations. As demonstrated by Verhagen and 

Whitley (2011) it is also possible to use GIS but with an agent-like construction.  

The agent-based modelling allowed for the exploration of key concepts at different stages of 

the project. At the beginning ABM made it possible to examine ideas of least cost path analysis, 

adding to a growing literature on the problems with least cost paths. Critically, it allowed for the 

creation of a model that could show that multiple diverging paths could result in almost the same 

costs. Could this have been accomplished with GIS? Possibly, with a custom plugin designed to 

measure travel costs along a route but it would not have been an elegant system and without the 

ability to contribute to more complex models. 

ABM really demonstrated its usefulness with the water model. GIS methods of water 

analysis were shown to be flawed, as the PUMP III models demonstrated. In this case, GIS is not 

currently able to replicate what ABM was able to accomplish. GIS programs did not have the tools to 
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calculate absorption rates and such absorption rates’ interaction with the movement of water. 

Understanding water systems set the stage for much of the theory developed about the project 

area.  

GIS or ABM? 

These observations of ABMs abilities are not to say it is superior to GIS in all ways. Each are 

separate programs that have their strengths. Much of the work on attractors involved GIS because it 

was the better tool for the modelling. As discussed in Chapter 4 some GIS programs have ABM 

plugins. It may be at some point that ABM and GIS become merged into a single computer program. 

While this project set out to test ABM this was only in service to the main goals of the project. The 

best tools for explanatory predictive modelling were going to be used, regardless if that was ABM or 

something else. 

More complex models? 

The ABM models created for this project were self-contained models, each focusing on a 

specific theory about the project area. Why were the models not combined together into a more 

complex model? Because there was no need. Each model addressed a specific theory that was 

different in its simulation needs. A person walking across the project area had no bearing on the 

absorption rates of soils. It made little sense to combine the models into a larger model when the 

individual simulations provided the required explanation about travel, water systems and attractors. 

Yet the real potential of ABM may best be exploited in more complex models. After 

exploring the different avenues for site creation, a model utilising aspects of the resource gathering 

and travel simulations was created. This model combined viewsheds and travel paths. Past projects 

have combined least-cost paths and viewsheds to model in GIS what people would see as they 

travelled (see Harris and Lock (2006)). Yet these modelling attempts have been very static. A path is 

created first and then viewsheds are taken from points along that path. What people would have 

seen along that path does not influence their decision on the route they take.  

ABM modelling allows the modelling of what a person sees to influence the route they take. 

For example, an agent could represent a person looking to reach a far-off destination but be 

travelling through an area they are not familiar with. Thus instead of assuming perfect knowledge of 

costs of travel, as happens in GIS, the agent decisions could be based on the knowledge available to 

them. They could end up travelling a less than optimal route because they are unware they will 

eventually run into thick vegetation or an unscalable cliff. Such a model was created post project. 

The walking model was improved with a viewshed component. The agent would run a 

viewshed analysis from where it was positioned. Then only the areas that were visible were taken 

into account when running the cost path analysis. Based on that analysis, with imperfect knowledge 



217 

 

of the project area – only what could be seen or had been seen, the agent would move on the first 

step of the path. At which point the process repeats itself with the agent looking around and 

reassessing the best route as new information is made available. Similar to how most travellers 

would plan their trips, a series of micro changes take account of changing environments. This creates 

a very different travel path (Figure 89). 

 

Figure 89: Higuchi viewsheds: (red) short distance (trees are recognised as individual entities with 
leaves and branches; distance of 60× tallest plant), (yellow) middle distance (the outline of trees are 
visible but not individual trees, 1,100× tallest plant) and (blue) long distance (can tell vegetation is 
present and little else, max distance 18km). 

This only begins to scratch the surface of what such a model can do. Adding a Higuchi 

viewshed (see Figure 89 caption for detail) one could create a map of how one sees the landscape 

based on plants. In the example given for the project area (Figure 89), the red represents areas on 

the person’s journey where they could distinguish individual leaves on a sotol plant and the yellow is 

areas where they can distinguish individual plants, while the blue shows areas of vegetation where 

they cannot identify individual species but their vision shows a blending of vegetation. This type of 

model then starts to move in phenomenological approaches to landscapes. It is now modelling what 

people would have experienced, at least visually, as they moved throughout the landscape. Combine 

this model with the water model and then you have a model of how past people would have seen a 

rain storm on a journey throughout the area. 

While that is interesting, it adds very little to the goals of the project and that is why it was 

not further explored here. It is an answer to different research questions. It does demonstrate the 

potential for ABM to model different and potentially more complex issues than those in this project. 
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This example is something that would be incredibly time-consuming to attempt in GIS. Every single 

position would have to be modelled, which would create hundreds, if not thousands, of layers. It is 

just not practical to attempt something like this in GIS without ABM. That is why in my opinion ABM 

has the potential to be a valuable tool in the predictive modeller’s tool box. It can allow for very 

complex models, even if this project did not need to utilise them.  

Observations on Explanatory Method 

The point of this discussion is that whether using GIS or ABM it does not matter, they are 

tools. Some tools will work better than others in certain situations. The driving method of this 

project is the use of simulations to explore possible locations of sites, or more precisely exploring the 

behaviours that create those sites. It moves beyond the guess work of past inductive predictive 

models, i.e. people need water so sites must be next to water. It is about testing those assumptions 

about site placement using ABM and/or GIS. The results of those tests give modellers a greater 

understanding of the processes that lead to site creation and thus where to find sites. For this 

project, that knowledge was with regard to water resources, travel and plant resources that led to a 

20% increase in overall performance, even though that is a poor measurement of outcomes as 

discussed. It is this process, explicitly testing theory, that is most important, not the tools. 

This project has demonstrated that this process can create models that perform better than 

older methods. This is in line with the views of Whitely and Verhagen (2011). This is now one of 

several projects that have found explanatory models perform better than deductive and earlier 

crude ‘inductive’ models. That does not mean it will always perform better, but this project stands as 

a case study about its potential. 

Closing Thoughts and Future Work 

In summary, several benefits were identified from using explanatory, in this case 

agent/agency-based modelling methods: 

 It provided more nuanced models for CRM workers to use when estimating future project 

costs and potential resources discovered in the project area. 

 It was able to provide answers to many of the questions left unanswered by the previous 

models that used older methods: 

o the pattern of sites does not match area usage as a travel route; 

o agricultural activity would not be possible in the majority of the project area; 

o people were moving into the project for brief periods of time to gather resources. 

 The model adds to the regional research framework and presents evidence against the 

prevailing theory that the Ceramic period had two groups of people undertaking two 

different subsistence patterns. 
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 Discoveries during the process add to the growing literature on concerns about data 

accuracy in modelling. 

 Results from one of the models added to the growing concern about using least-cost path in 

archaeology.  

 A new sort of model using path choice and viewshed was created that could be used for 

future research by others. 

 Increased performance as measured by the Kvamme Gain Statistic. 

 

It has improved our knowledge at the local (site location), regional (understanding of 

subsistence and habitation), and international (new models and methods) levels. It added new 

insights to the discussions in several fields of archaeological research, such as predictive modelling, 

least-cost path and hydrology. It also tested a new method of predictive model creation. These 

results exceed the original expectations of the project. 

Project Problems 

This project was not without its setbacks. There were many issues with data, ranging from 

accuracy with the data used in this project to significant deficiencies with the data used for previous 

projects. The latter issue made this project’s initial attempts at measuring modelling performance 

unattainable. That was not necessarily a bad thing, as the project highlighted that attempting to 

quantify performance with a single number does not capture the nuanced outputs required for CRM 

work. My initial dismissal of some of the problems facing predictive modelling when deciding on 

which issue to tackle were shown to be incorrect and more work is needed to address these 

problems.  

Future Work 

These problems requiring work highlight opportunities for future research. This thesis began 

with placing the history of predictive modelling into the Gartner Hype Cycle and this project has 

highlighted that predictive modelling has yet to reach the ‘plateau of productivity’. There is still 

significant work that can be undertaken on predictive modelling. Specifically, areas that have been 

highlighted through this project: 

 More exploration of agent-based modelling. This project served as a case study and 

demonstrated its usefulness but it is far from a comprehensive review of all its 

advantages and disadvantages. More comprehensive research needs to be undertaken to 

fully flesh out the benefits and problems with using such a method for predictive 

modelling. 
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 Data issues: rarely have such problems been explored in the predictive modelling literature. 

This project has found several problems with data and it should be explored more. A 

future project should look at how data problems affect predictive models. 

 Further to exploring data issues, testing older predictive models against ones with new 

methods and data would be an interesting exercise and may give a better indication of 

issues with model quality. Could older models’ performance, however one measures that, 

be improved with better data? Was the discovery of poor water data a one-off 

occurrence or do most predictive models suffer from data issues? 

 Measuring predictive models’ outputs needs revising. I started this project as a proponent of 

the Gain Statistic but now think it is a poor measurement of performance. Moreover, I do 

not see the other methods of measuring performance as being much better. A project to 

determine optimal methods for measuring the usefulness of predictive modelling would 

greatly benefit the uptake of predictive modelling. Aligning the outputs better with users’ 

needs is likely to increase use.  

 Fully examining all of the issues reviewed in Chapter 2: data problems, clumping together all 

sites regardless of site type, not creating explanatory frameworks, etc. This project 

encountered many more of the issues raised by others than was originally anticipated. 

There are a whole range of topics that could be researched further. 

 

This project met its aim but in doing so created more questions than it answered. There will 

be much work to undertake in the areas of predictive modelling and agent-based modelling in the 

future. 



Appendices 

Appendix A- Full list of agent based modelling programs investigated. 

Table 32: List of ABM programs reviewed in this project. 

 Software Website Last 
Updated 

License Windows Linux Mac Java User Support GIS  3D  

1 ABLE (Agent 
Building and 
Learning 
Environment)  

http://www.alphawork
s.ibm.com/tech/able 

6/19/2005 Open 
source 
(free for 
academi
c use) 

Yes No Yes Yes FAQ section, tutorials, examples, 
discussion forum, emailing 
developers, selected publications, 
API, documentation 

No No 

2 ADK (Tryllian 
Agent 
Development Kit)  

http://www.tryllian.co
m/adk.html 

  Defuct             

3 AgentBuilder  http://www.agentbuild
er.com/Documentation
/Lite/ 

6/4/2004 Propriet
ary-Fees 

Yes Yes No? Yes Consulting, training, example, FAQ 
sectrion, users manuals, defect 
reporting, mailing list 

No No 

4 AgentSheets http://www.agentsheet
s.com/ 

2011 Propriet
ary-Fees 

Yes Yes Yes Yes Manuals, tutorial movies, FAQ, 
Books on programming and 
simulation, personal contact with 
developers, elementary school 
training, teacher guides, Wiki 

No No 

5 A-Global http://agents.felk.cvut.
cz/aglobe 

2008 Free Yes Yes Yes Yes Tutorials, Manual Yes No 

6 Altreva Adaptive 
Modeler  

http://www.altreva.co
m/ 

2011 Propriet
ary-Fees 

Yes No No No FAQ, documentation, tutorial, 
examples, forum, email support 

No No 

7 AMP (Agent 
Modeling 
Plantform) 

http://www.metascape
abm.com/content/view
/57/120/ 

2011 Open 
Source? 

Yes Yes Yes No documents, forum, guide, wiki, 
bug report 

coming 
soon 

comi
ng 
soon 

8 AnyLogic http://www.xjtek.com/ 2011 Propriet
ary-Fees 

Yes Yes Yes Yes Demos, training, consulting, 
knowledge base, online forum, ask 
a question, documentation, 
selected references, Book 

Yes Yes 
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 Software Website Last 
Updated 

License Windows Linux Mac Java User Support GIS  3D  

9 AOR Simulation https://oxygen.informa
tik.tu-cottbus.de/aor/ 

2010 Creative 
Common
s License 

Yes Yes Yes Yes Web site, selected references, 
documentation, examples 

No No 

10 Ascape  http://ascape.sourcefor
ge.net/index.html#Intr
oduction 

2010 BSD 
Open 
Source 
license 

Yes Yes Yes Yes Online forum (emailing list), 
selected references, papers, 
manual, API 

No No 

11 Brahms http://www.agentisolut
ions.com/index.htm 

2011 Free for 
research  

Yes Yes Yes Yes Documentation, API, tutorials, 
discussion forums, email contacts 

No No 

12 Breve https://github.com/jon
klein/breve,  
http://www.spiderland.
org/breve/ 

2/25/2008 Open 
Source 

Yes Yes Yes No Email developer, tutorials, FAQ, 
forums, defects section, API, 
documentation 

No Yes 

13 Construct  http://www.casos.cs.c
mu.edu/projects/constr
uct/index.php 

2011 Research 
Only 
purpose
s 

N/A N/A N/A N/A Mailing list No No 

14 Cormas 
(Common-pool 
Resources and 
Multi-Agent 
Systems)  

http://cormas.cirad.fr/i
ndexeng.htm 

2011 Free to 
modify 
but not 
to 
distribut
e the 
modified 
version 

Yes Yes Yes No Training, selected references, 
examples, online forum, email 
developers, documentation 

Yes No 

15 Cougaar http://cougaar.org/ 2011 The 
Cougaar 
Open 
Source 
License 
(COSL) is 
a 
modified 
version 

Yes Yes Yes Yes FAQ, tutorials, slide shows, 
documentation, selected 
references, email support, public 
forums, mailing lists 

No No 
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 Software Website Last 
Updated 

License Windows Linux Mac Java User Support GIS  3D  

of the 
OSI 
approve
d BSD 
License. 

16 DeX/AndroMeta  http://dextk.org/Andro
Meta/Home.html 

2011 Propriet
ary-Fees 

No Yes Yes No Manual No Yes 

17 D-OMAR 
(Distributed 
Operator Model 
Architecture)  

http://omar.bbn.com/ Last 
updated 
04/17/200
9 but 
most from 
2004 

Open 
Source 

Yes Yes Yes Yes API, technical support from 
authors 

No No 

18 ECHO  http://tuvalu.santafe.e
du/~pth/echo/ 

2002 Free, 
Open 
Source 

No No No Yes A few selected publications, one 
outdated publication on how to 
compile and use Echo 

No No 

19 ECJ http://cs.gmu.edu/~ecl
ab/projects/ecj/ 

2009 Academi
c Free 
License – 
open 
source 

Yes Yes Yes Yes Tutorials, examples, API, 
documentation, online mailing list, 
Book 

No No 

20 EcoLab http://ecolab.sourcefor
ge.net/ 

2011 Open 
Source 

Yes Yes Yes No documentation,  No No 

21 Entorama http://www.entorama.
com/ 

10/3/2008 Unknow
n 

N/A N/A N/A N/A Contact authors, help files No Yes 

22 EVO       Defunct             

23 FAMOJA 
(Framework for 
Agent-based 
MOdelling with 
JAva)  

http://www.usf.uos.de/
projects/famoja/ 

2007 LGPL 
licences 

Yes Yes Yes Yes Tutorial, API, wiki, documentation, No No 

24 FLAME http://www.flame.ac.u
k/ 

2011 Unknow
n 

Yes Yes Yes No Tutorials, user guide, contact 
authors 

No No 
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 Software Website Last 
Updated 

License Windows Linux Mac Java User Support GIS  3D  

25 Framsticks http://www.framsticks.
com/ 

2011 Depends 
on 
module- 
GPL/LGP
L/Proper
tiary 

Yes Yes Yes No Email developer, tutorials, 
manual, FAQ, forums, API, 
documentation, selected 
publications, examples 

No Yes 

26 GAMA http://gama.ifi.refer.or
g/mediawiki/index.php
/GAMA 

2010 LGPL Yes Yes Yes No Contact authors, report bug, 
Tutorials, guide 

Yes No 

27 GROWlab  http://www.icr.ethz.ch
/research/growlab/ 

July 4, 
2008 

Freely 
available 

Yes Yes Yes Yes Guid,, Publications,  No Yes 

28 ICARO-T  http://icaro.morfeo-
project.org/ 

2008 Open 
Source 

Yes No No No Code with examples and 
documentation. 

No No 

29 iGen [18] http://www.chisystems.com/cognitiv
emodel.html 

no 
longer 
for 
public 
use 

              

30 JADE http://jade.tilab.com/ 2011 Open 
Source 
LGPL 
version 2 

      Yes FAQ, mailing list, defect list, 
tutorials, API, documentation 

No No 

31 Jade’s sim++        defu
nt 

          

32 JAMEL (Java 
Agent-based 
MacroEconomic 
Laboratory)  

http://p.seppecher.free
.fr/jamel/ 

2010 General 
Public 
Licence 
(GPL) 

Yes Yes Yes Yes examples, reference paper, 
contact developer 

No No 

33 Janus  http://www.janus-
project.org/Home 

2011 GPLv3 
for non-
commer
cial use, 
or adhoc 
commer

Yes Yes Yes No FAQ, documentation, online 
forum, examples, defect list, 
tutorials 

No Yes 
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 Software Website Last 
Updated 

License Windows Linux Mac Java User Support GIS  3D  

cial 
license. 

34 JAS  http://jaslibrary.source
forge.net/ 

3/18/2006 Open 
Source 
LGPL, 
associat
ed third 
party 
licenses  

Yes Yes Yes Yes API, documentation, tutorials, 
email authors 

No No 

35 JASA (Java 
Auction Simulator 
API)  

http://sourceforge.net/
projects/jasa/ 

2011 GNU 
General 
Public 
License 
(GPL) 

Yes Yes Yes Yes Public forum, not very well used, 
API, small set of selected readings, 
limited documentation 

No No 

36 JCA-Sim  http://www.jweimar.de
/jcasim/jcasim.html 

4/11/2001 Free 
(closed 
source) 

Yes Yes Yes Yes Examples, documentation, API, 
one contact listed 

No Yes 

37 jEcho        Defunct             

38 jES (Java 
Enterprise 
Simulator) 

http://web.econ.unito.i
t/terna/jes/ 

2006 Academi
c free 
license 

Yes Yes Yes Yes limited documentation No No 

39 JESS  http://herzberg.ca.sand
ia.gov/jess/ 

11/11/200
8 

Propriet
ary, free 
for 
academi
c use 

Yes Yes Yes Yes FAQ, documentation, mailing list, 
examples, third party plug ins and 
libraries, wiki 

No No 

40 JIAC  http://www.jiac.de/age
nt_frameworks/jiac_v/ 

2011 Unknow
n 

Yes Yes Yes Yes Manual No No 

41 LSD (Laboratory 
for Simulation 
Development)  

http://www.labsimdev.
org/Joomla_1-3/ 

4/24/2009 GPL Yes No Yes No Documentation, a couple of 
examples, forum 

No No 
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 Software Website Last 
Updated 

License Windows Linux Mac Java User Support GIS  3D  

42 Madkit (Multi 
Agent 
Development Kit) 

http://www.madkit.org
/ 

2011 LGPL for basic libraries, GPL for 
development and non- commercial 
applications 

Yes FAQ, documentation, online 
forum, examples, defect list 

No No 

43 MAGSY  http://www-ags.dfki.uni-sb.de/~kuf/magsy.html   defu
nct 

          

44 MAML (Multi-
Agent Modeling 
Language) 

http://www.maml.hu/
maml/initiative/index.h
tml 

10/20/200
0 

The 
compiler 
is freely 
downloa
dable for 
evaluati
on 
purpose
s (open 
source) 
Later the 
system 
will be 
put 
under 
GNU 
license 

Yes Yes No No Tutorial, examples, reference 
papers, contact developers 

No No 

45 MASON  http://cs.gmu.edu/~ecl
ab/projects/mason/ 

2011 Academi
c Free 
License 
(open 
source) 

Yes Yes Yes Yes Mailing list, documentation, 
Tutorials, third party extensions, 
reference papers, API 

Yes Yes 

46 MASS (Multi-
Agent Simulation 
Suit)  

http://mass.aitia.ai/ 2009 Propriet
ary, free 
version 
available 

Yes Yes Yes Yes Manuals, tutorials, mailing lists, 
reference papers. 

No No 

47 MAS-SOC (Multi-Agent Simulations for the SOCial Sciences)   defu
nct 
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 Software Website Last 
Updated 

License Windows Linux Mac Java User Support GIS  3D  

48 MASyV (Multi-
Agent System 
Visualization) 

http://masyv.sourcefor
ge.net/ 

7/22/2008 Open 
Source 

No Yes Yes No bug report, referneces No No 

49 MIMOSE (Micro-
und Multilevel 
Modelling 
Software)  

http://www.uni-
koblenz.de/~moeh/proj
ekte/mimose.html 

10/15/199
9 

Free 
(closed 
source) 

Yes Yes Yes Yes User’s manual No No 

50 Moduleco          defu
nct 

          

51 MOOSE 
(Multimodeling 
Object-Oriented 
Simulation 
Environment)  

http://www.cise.ufl.ed
u/~fishwick/moose.htm
l 

1997 Unknow
n 

Yes Yes No No Selected references, user’s 
manual in toolkit package 

No No 

52 NetLogo http://ccl.northwestern
.edu/netlogo/ 

2011 Originally free, but not Open Source, 
when project began. Became Open 
Source during project. 

Yes Documentation, FAQ, selected 
references, tutorials, third party 
extensions, defect list, mailing lists 

Yes Yes 

53 OBEUS (Object 
Based 
Environment for 
Urban 
Simulation)  

http://www.enib.fr/~ha
rrouet/oris.html 

2000 Free 
(closed 
source) 

Yes No No No User’s manual No No 

54 Omonia 
(previously 
Quicksilver)  

http://www.xlog.ch/om
onia/ 

1/13/2007 LGPL Yes Yes Yes Yes Examples, little documentation No No 

55 oRIS [40] http://www.enib.fr/~ha
rrouet/ 

2003? Propriet
ary - 
(free for 
academi
c 
institutio
ns) 

Yes Yes No No Documentation, examples , API No No 

56 PS-I (Political 
Science-Identity)  

http://ps-
i.sourceforge.net/ 

2011 GNU 
General 

Yes Yes Yes No Documentation, selected 
publications 

No No 
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 Software Website Last 
Updated 

License Windows Linux Mac Java User Support GIS  3D  

Public 
License 
(GPL) 

57 Quicksilver     defunct             

58 Repast http://repast.sourcefor
ge.net/ 

2011 BSD Yes Yes Yes Yes Documentation, mailing list, 
defect list, reference papers, 
external tools, tutorials, FAQ, 
examples 

Yes Yes 

59 SDML (Strictly 
Declarative 
Modeling 
Language)  

http://cfpm.org/sdml/ 2000 GPL, 
third 
party 
license 
(for 
VisualW
orks) 

Yes Yes Yes Yes Mailing list, tutorial, selected 
references, limited documentation 
included with software package 

No No 

60 SEAS (System 
Effectiveness 
Analysis 
Simulation)  

http://teamseas.com/ 2011 Free 
with 
governm
ent 
approval 

Yes No No No User manual, examples, training, 
email, phone 

Unkno
wn 

Yes 

61 SeSAm (Shell for 
Simulated Agent 
Systems) 

http://www.simsesam.
de/ 

2010 LGPL  Yes Yes Yes Yes Tutorials, mailing list, FAQ, wiki, 
author contact 

Yes Plugi
n 
avail
able 

62 SimAgent (also 
sim agent)  

http://www.cs.bham.ac
.uk/research/projects/p
oplog/packages/simage
nt.html 

5/30/2005 Free 
(open 
source), 
may be 
replaced 
by GPL 

Yes Yes Yes No Tutorials, documentation, 
Selected publications, examples, 
author contact 

No No 

63 SimBioSys http://www.lucifer.com
/~david/SimBioSys/ 

1994? Artistic 
License 

Yes Yes Yes No None No No 
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 Software Website Last 
Updated 

License Windows Linux Mac Java User Support GIS  3D  

Agreeme
nt 

64 SimPack        defunct             

65 SimPlusPlus  http://www.simplusplu
s.com/ 

early 
2000's? 

GPL Yes Yes Yes No Contact authors No No 

66 SimPy http://simpy.sourcefor
ge.net/ 

7/2/2005 GNU, 
LGPL 

Yes Yes Yes No References, wiki, Tutorials, 
Manuals, Book, email list, contact 
programers, bug reporting 

No No 

67 Soar http://sitemaker.umich
.edu/soar/home 

2011 BSD Yes Yes Yes No Documentation, FAQ, selected 
publications, defect list, third 
party extensions, mailing list, 
contact authors, tutorial, 
examples, wiki 

No No 

68 Spark http://www.pitt.edu/~c
irm/spark/ 

2010 Unknow
n 

N/A N/A N/A N/A Guide, Tutorials, user group, 
contact author 

No No 

69 StarLogo http://education.mit.ed
u/starlogo/ 

6/30/2005 Free 
(closed 
source) - 
Cleartho
ught 
Software 
License, 
Version 
1.0 

Yes Yes Yes Yes Mailing list, tutorials, FAQ, bug 
list, documentation, developer 
contacts 

No  Yes 

70 StarLogo TNG http://education.mit.ed
u/starlogo/ 

2011 StarLogo 
TNG 
License 
v1.0 - 
(closed 
source) - 
the code 
may be 
freed up 

Yes Yes Yes No Tutorials, FAQ, documentation, 
mailing lists, API 

No Yes 
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 Software Website Last 
Updated 

License Windows Linux Mac Java User Support GIS  3D  

eventual
ly.  

71 Sugarscape http://sugarscape.sour
ceforge.net/ 

??? GPL Yes Yes Yes Yes API, walkthrough, tuturial  No No 

72 Swarm http://www.swarm.org
/index.php/Main_Page 

2011 GPL Yes Yes Yes No Wiki, tutorials, examples, 
documentation, FAQ, selected 
publications, mailing lists 

No No 

73 TerraME http://www.terrame.or
g/doku.php 

2011 Open 
Source 

Yes No No No Tutorials, Examples, Courses, 
references 

Yes No 

74 VisualBots  http://www.visualbots.
com/ 

1/5/2008 Free, 
Not 
Open 
Source 

Yes No No No Object model documentation, 
tutorials, example projects 

No No 

75 VSEit  http://www.vseit.de/ 2001 Free 
(closed 
source) 

Yes Yes Yes Yes Examples, users guide, defect list, No No 

76 Xholon  http://sourceforge.net/
apps/mediawiki/xholon
/index.php?title=Main_
Page 

2001 LGPL Yes Yes Yes Yes Tutorials, many examples, user 
guide, web sites 

No No 

77 ZEUS      Defunct                
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Appendix B- Data used in the project. 

Table 33: Soil types from NRCS dataset (NMAES 1971, USDA 1981). 

Code Soil Soil Description Percentage of 
Project Area 

Covered 

Aa Anthony sandy loam, 0 to 1 percent slopes Deep, light-colored, nearly level, calcareous soils that developed in 
stratified alluvium derived from crystalline an sedimentary rocks 

0.13% 

At Atoka loam, 1 to 3 percent slopes Well-drained, moderately dark colored, level to gently sloping soils that 
developed in moderately deep old alluvium derived from calcareous 
sedimentary rocks 

0.01% 

Ah Anthony sandy loam, 0 to 1 percent slopes, eroded Soil has been eroded by wind but it the same as Aa 0.01% 

AH Arno-Harkey complex, saline, 0 to 1 percent slopes Soils affected by salinity and a fluctuating high water table 0.004% 

Ao Atoka Loam, o to 1 percent slopes Well-drained soils that developed in moderately deep old alluvium, 
derived from calcareous sedimentary rocks 

0.02% 

DP Dev-Pima complex, 0 to 3 percent slopes Nearly level, moderately dark colored, gravelly soils that developed in 
alluvium. 

3.76% 

DRG Deama-Rock outcrop complex, 50 to 150 percent  
slopes 

Shallow, well drained soils that formed in residuum from limestone 
bedrock. 

0.04% 

DYE Dye-Encierro complex, 5 to 30 percent slopes Shallow, well drained soils on hills and tops of messas 0.02% 

EC Ector stony loam, 0 to 9 percent slopes Very shallow to shallow, well-drained, calcareous, stony and extremely 
rocky soils that are underlain by limestone. 

24.60% 

EE Ector extremely rocky loam, 9 to 25 percent slopes 23.55% 

ER Ector-Reagan association, 0 to 9 percent slopes 8.45% 

GA Gypsum land Very steep and steep broken, or eroded exposures of gypsiferous rocks 
and earths and very shallow soils 

0.14% 

GC Gypsum land-Cottonwood complex, 0 to 3 percent slopes 0.30% 

GP Gravel Pit  0.004% 

Ha Harkey sandy loam, 0 to 1 percent slopes Deep, well-drained, strongly calcareous, moderately dark colored soils 
that developed in mixed alluvium. 

0.01% 

Hk Harkey very fine sandy loam, 0 to 1 percent slopes 0.02% 

Ku Karro loam, 1 to 3 percent slopes A stongly calcareous, loamy soils that developed in deep, old alluvium 
derived from calcareous sedimentary rocks 

0.01% 

LN Largo-Stony land complex, 0 to 25 percent slopes Deep, reddish-brown, calcareous, gently sloping soils that developed in 
alluvium derived from upland sedimentary material. 

0.18% 

LT Limestone rock land Steep to very steep canyon walls and escarpments 8.97% 

MXC Montecito loam, 0 to 10 percent slopes Deep well-drained soils formed in mixed alluvium and eolian material 0.19% 
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Code Soil Soil Description Percentage of 
Project Area 

Covered 

PD Pajarito-Dune land complex, 0 to 3 percent slopes Deep, well-drained, weakly calcareous to noncalcareous soils that 
developed in wind worked material and alluvium derived from mixed, 
sandy sediments of the uplands 

0.06% 

Pe Pima silt loam, 0 to 1 percent slopes Deep, well-drained, moderately dark colored, calcareous soils that 
developed in alluvium derived limestone. 

0.13% 

PM Pima silt loam, 0 to 1 percent slopes 0.70% 

RA Reagan loam, 0 to 3 percent slopes Deep, well-drained, moderately dark colored, calcareous loams that 
developed in old alluvium derived from calcareous, sedimentary rocks of 
the uplands. 

2.45% 

Rc Reagan loam, 0 to 1 percent slopes 0.13% 

Rd Reagan loam, 1 to 3 percent slopes 0.39% 

RE Reagan-Upton association, 0 to 9 percent slopes 9.34% 

RG Reeves-Gypsum land complex, 0 to 3 percent slopes Well-drained, calcareous soils that are shallow to moderately deep over 
gypsiferous earths or rocks. 

0.55% 

RM Reeves-Reagan loams, 0 to 3 percent slopes 1.17% 

RPG Rock outcrop-Deama complex, 40 to 150 percent  
slopes 

 0.56% 

RTE Rock outcrop-Tortugas-Ustifluvents complex, 0 to 80  
percent slopes 

 0.28% 

SG Simona gravelly fine sandy loam, 0 to 3 percent slopes Well-drained, moderately dark colored soils that are calcareous and 
moderately course in texture. 

0.21% 

SM Simona-Bippus complex, 0 to 5 percent slopes 0.07% 

TN Tonuco loamy fine sand, 0 to 3 percent slopes, eroded Moderately dark colored noncalcareous soils that have been worked by 
wind 

0.03% 

TPE Tortugas-Deama association, moderately steep Shallow, well-drained soils that formed in residuum from limestone and 
calcareous sandstone. 

0.70% 

UG Upton gravelly loam, 0 to 9 percent slopes Calcareous, gravelly soils that developed in old alluvium derived from 
calcroues sedimentary rocks. 

9.87% 

Uo Upton gravelly loam, 0 to 9 percent slopes 0.50% 

Up Upton soils, 0 to 1 percent slopes 0.02% 

UR Upton-Reagan complex, 0 to 9 percent slopes 2.32% 

Ut Upton soils, 1 to 3 percent slopes 0.04% 

W Water  0.08% 
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Table 34: Distribution vegetation in the study area. (Altschul et al. 2005, USGS 2012b). 

Pump III Vegetation  Percent of Land 
Coverage  

GAP Data for this project Percent of Land 
Coverage 

Chihuahuan Foothill-Piedmont Desert 
Grassland 

68.65% Chihuahuan Creosotebush, Mixed Desert and Thorn Scrub 46.70% 

Chihuahuan Desert Scrub 15.32% Apacherian-Chihuahuan Semi-Desert Grassland and Steppe 32.98% 

Chihuahuan Desert Grassland 5.53% Western Great Plains Shortgrass Prairie 10.48% 

Rocky Mountain/ Great Basin Closed 
Conifer Woodland 

3.05% Apacherian-Chihuahuan Mesquite Upland Scrub 4.69% 

Chihuahuan Lowland/Swale Desert 
Grassland 

2.05% Chihuahuan Mixed Salt Desert Scrub 1.14% 

Short Grass Steppe 1.44% Chihuahuan Stabilized Coppice Dune and Sand Flat Scrub 0.49% 

Southwest and Plains Forested/Shrub 
Wetland 

.92% Coahuilan Chaparral 0.48% 

Madrean Open Oak Woodland .62% North American Warm Desert Riparian Woodland and Shrubland 0.44% 

Rocky Mountain Montane Scrub and 
Interior Chaparral 

.6% Developed, High Intensity 0.38% 

Broadleaf Evergreen Interior Chaparral  .59% Western Great Plains Sandhill Steppe 0.31% 

Rocky Mountain/ Great Basin Closed 
Conifer Woodland 

.49% Chihuahuan Gypsophilous Grassland and Steppe 0.25% 

Urban Vegetated  .3% Cultivated Cropland 0.22% 

Basin/Playa .17% Developed, Low Intensity 0.20% 

Barren .12% North American Warm Desert Lower Montane Riparian Woodland and 
Shrubland 

0.18% 

Rock Outcrop .08% North American Warm Desert Bedrock Cliff and Outcrop 0.18% 

Riverine/Lacustrine .07% Inter-Mountain Basins Semi-Desert Shrub Steppe 0.17% 

Irrigated Agriculture .06% North American Warm Desert Wash 0.15% 

 Open Water (Fresh) 0.11% 

Western Great Plains Cliff and Outcrop 0.11% 

Southern Rocky Mountain Juniper Woodland and Savanna 0.07% 

Mogollon Chaparral 0.04% 

North American Warm Desert Playa 0.04% 

Madrean Juniper Savanna 0.04% 

Chihuahuan Succulent Desert Scrub 0.03% 
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Pump III Vegetation  Percent of Land 
Coverage  

GAP Data for this project Percent of Land 
Coverage 

Chihuahuan Sandy Plains Semi-Desert Grassland 0.03% 

Madrean Encinal 0.03% 

North American Arid West Emergent Marsh 0.02% 

Madrean Pinyon-Juniper Woodland 0.01% 

North American Warm Desert Active and Stabilized Dune 0.002% 

Rocky Mountain Lower Montane Riparian Woodland and Shrubland 0.001% 

Colorado Plateau Mixed Low Sagebrush Shrubland 0.001% 

Madrean Pine-Oak Forest and Woodland 0.0003% 
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Table 35: Data from USGS water data gathering stations in and next to the subject area. 

Test Point Location Drainage Area Period of 
Record 

Annual 
Runoff (ac-

ft) 2010 

Annual 
Runoff 
(ac-ft) 

1964-2010 

Days 
with 
flow 
2010 

Avg. Annual Runoff 
Against Avg. Rain 

Fall (assuming avg. 
12 inches of rain) 

 08401900 
Rocky Arroyo 
at Highway 
Bridge, Near 
Carlsbad, NM  

 Lat 32°30'21.89", long 104°22'29.96" referenced to North 
American Datum of 1983, Eddy County, NM, Hydrologic 
Unit 13060011, at downstream end of bridge pier nearest 
left bank on U.S. Highway 285, 2.1 mi upstream from 
mouth, and 10 mi northwest of Carlsbad. Mouth at Pecos 
River mile 475.2. 

 285 mi², 
approximately. 

November 
1963 to 
current 
year. 

939 4,040 5 2.1% 

 08405050 
Last Chance 
Canyon, Near 
Carlsbad 
Caverns, NM  

 Lat 32°17’31’’, long 104°36’25’’ referenced to North 
American Datum of 1983, Eddy County, NM, Hydrologic 
Unit 13060011, upstream from culvert on State Highway 
137, 0.1 mi north of road to Sitting Bull Falls, and 12.5 mi 
northwest of Carlsbad Caverns. 

 2 mi². Water 
years 1959 
to 1996, 
2005 to 
current 
year 

Not listed Not listed Not 
Listed 

 

 08405100 
Mosley 
Canyon, Near 
White City, 
NM 

 Lat 32°15’27’’, long 104°22’43’’ referenced to North 
American Datum of 1983, Eddy County, NM, Hydrologic 
Unit 13060011, 600 ft downstream from dip on Dark 
Canyon Road, and 5.5 mi north of Whites City. 

 14.6 mi². Water year 
1959 to 
current 
year. 

Not listed Not listed Not 
Listed 

 

 08405105 
Dark Canyon 
Draw Near 
White City, 
NM 

 Lat 32°17’25.55’’, long 104°20’57’’ referenced to North 
American Datum of 1983, Eddy County, NM, Hydrologic 
Unit 13060011, on left bank 0.25 mi upstream from mouth 
of canyon, and approximately 11.0 mi upstream from Dark 
Canyon Draw at Carlsbad. 

 327 mi², 
approximately. 

February 
2002 to 
current 
year. 

2280 2560 7 1.2% 

 08405150 
Dark Canyon 
Draw at 
Carlsbad, NM 

 Lat 32°24’12’’, long 104°13’46’’ referenced to North 
American Datum of 1983, Eddy County, NM, Hydrologic 
Unit 13060011, on right bank and upstream from San Jose 
Street, and 1.0 mi upstream from mouth. Mouth at Pecos 
River mile 459.2. 

 451 mi², 
approximately. 

January 
1973 to 
current 
year. 

260 3290 (+ 
2100 for 
irrigation) 
5390 

1 1.9% 

 

Table 36: Conversion table for Runoff Curve Numbers from Antecedent Moisture Condition Class II to AMC Class I or Class III (after USDA-SCS (1972)). 
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AMC II AMC I AMC III AMC II AMC I AMC III 

100 100 100 58 38  76 

98 94  99  56  36  75 

96 89 99 54 34 73  

94 85  98 52 32 71 

92 81 97 50 31 70 

90  78 96 48  29 68 

88 75  95  46 27 66 

86  72 94  44 25 64 

84 68 93 42 24 62 

82 66  92  40 22 60 

80 63 91 38 21 58 

78 60 90 36 19 56 

76 58  89 34 18 54 

74  55 88 32 16 52 

72 53 86 30 15 50 

70  51  85 25 12  43 

68 48 84 20  9  37 

66  46 82  15 6 30 

64 44 81 10 4 22 

62  42 79  5  2  13 

60 40 78 0 0 0 
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Table 37: Soil water carrying capacity (% of unit of measurement).  

Code Water capacity Project Area Coverage Code Water capacity Project 
Area 

Coverage 

Aa .12 0.13% Pe .2 0.13% 

At  .19 0.01% PM .2 0.70% 

AH .1-.09 0.01% RA .14 2.45% 

Ah .12 0.004% Rc .13 0.13% 

Ao .19 0.02% Rd .13 0.39% 

DP .2-.12 3.76% RE .14-.13 9.34% 

DRG .08 0.04% RG .13 0.55% 

DYE .15 0.02% RM .13 1.17% 

EC .09 24.60% RPG .07-0 0.56% 

EE .06 23.55% RTE .07-0 0.28% 

ER .14-.09 8.45% SG .11 0.21% 

GA N/A 0.14% SM .15-.11 0.07% 

GC .15 0.30% TN .09 0.03% 

GP N/A 0.004% TPE .08 0.70% 

Ha .15 0.01% UG .1 9.87% 

Hk .16 0.02% Uo .1 0.50% 

Ku .18 0.01% Up .07 0.02% 

LN .17 0.18% UR .14-.11 2.32% 

LT N/A 8.97% Ut .09 0.04% 

MXC .16 0.19% W N/A 0.08% 

PD .14-.13 0.06%    
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Table 38: Soil absorption rates for the soils in project area. 

Code Soil absorption rates Project Area Coverage Code Soil absorption rates Project Area Coverage 

Aa 2.00 to 6.00 in/hr 0.13% Pe 0.20 to 0.60 in/hr 0.13% 

At 0.00 to 0.06 in/hr 0.01% PM 0.20 to 0.60 in/hr 0.70% 

AH 0.00 to 0.06 in/hr 0.01% RA 0.60 to 2.00 in/hr 2.45% 

Ah 2.00 to 6.00 in/hr 0.004% Rc 0.60 to 2.00 in/hr 0.13% 

Ao 0.00 to 0.06 in/hr 0.02% Rd 0.60 to 2.00 in/hr 0.39% 

DP 2.00 to 6.00 in/hr 3.76% RE 0.60 to 2.00 in/hr 9.34% 

DRG 0.00 to 0.06 in/hr 0.04% RG 0.00 to 0.06 in/hr 0.55% 

DYE 0.00 to 0.06 in/hr 0.02% RM 0.00 to 0.06 in/hr 1.17% 

EC 0.06 to 2.00 in/hr 24.60% RPG 0.00 to 0.06 in/hr 0.56% 

EE 0.06 to 2.00 in/hr 23.55% RTE 0.00 to 0.06 in/hr 0.28% 

ER 0.06 to 2.00 in/hr 8.45% SG 0.00 to 0.06 in/hr 0.21% 

GA 0.20 to 2.00 in/hr 0.14% SM 0.00 to 0.06 in/hr 0.07% 

GC 0.20 to 2.00 in/hr 0.30% TN 0.00 to 0.06 in/hr 0.03% 

GP N/A 0.004% TPE 0.00 to 0.06 in/hr 0.70% 

Ha 0.57 to 1.98 in/hr 0.01% UG 0.01 to 0.60 in/hr 9.87% 

Hk 0.60 to 2.00 in/hr 0.02% Uo 0.01 to 0.60 in/hr 0.50% 

Ku 0.20 to 0.60 in/hr 0.01% Up 0.01 to 0.60 in/hr 0.02% 

LN 0.20 to 0.60 in/hr 0.18% UR 0.01 to 0.60 in/hr 2.32% 

LT bedrock 8.97% Ut 0.01 to 0.60 in/hr 0.04% 

MXC 0.20 to 0.60 in/hr 0.19% W N/A 0.08% 

PD 2.00 to 6.00 in/hr 0.06%    
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Table 39: Soil hydrology classification for soils in project area. 

Code  Project Area Coverage Code  Project Area Coverage Total 

Aa B 0.13% Pe B 0.13% A 3.76% 

At C 0.01% PM B 0.70% B 15.46% 

AH D 0.01% RA B 2.45% C 13.22% 

Ah B 0.004% Rc B 0.13% D 67.49% 

Ao C 0.02% Rd B 0.39% N/A 0.08% 

DP A 3.76% RE B 9.34%   

DRG D 0.04% RG B 0.55%   

DYE D 0.02% RM B 1.17%   

EC D 24.60% RPG D 0.56%   

EE D 23.55% RTE D 0.28%   

ER D 8.45% SG D 0.21%   

GA C 0.14% SM D 0.07%   

GC C 0.30% TN D 0.03%   

GP A 0.004% TPE D 0.70%   

Ha B 0.01% UG C 9.87%   

Hk B 0.02% Uo C 0.50%   

Ku B 0.01% Up C 0.02%   

LN B 0.18% UR C 2.32%   

LT D 8.97% Ut C 0.04%   

MXC B 0.19% W N/A 0.08%   

PD B 0.06%      
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Table 40: Carlsbad historical climate data.  For monthly and annual means, thresholds, and sums: Months with 5 or more missing days are not considered, 
Years with 1 or more missing months are not considered, Seasons are climatological not calendar seasons. ( Winter = Dec., Jan., and Feb.; Spring = Mar., Apr., 
and May;  Summer = Jun., Jul., and Aug.; Fall = Sep., Oct., and Nov.). 

From Year=1900 To Year=2012  

  Precipitation  Total Snowfall  

  
  

Mean 
(in.) 

High 
(in.) 

Year 
  

Low 
(in.) 

Year 
  

1 Day Max. (in.) >= 
0.01 in. 

>= 
0.10 in. 

>= 
0.50 in. 

>= 
1.00 in. 

Mean 
(in.)  

High 
(in.)  

Year 
  

# Days 

January 0.4 2.31 1949 0 1912 0.79 1980 3 1 0 0 1.2 17.2 1949 

February 0.44 2.26 1997 0 1900 1.25 1997 2 1 0 0 1 17.8 1905 

March 0.48 4.39 1919 0 1903 2.41 1919 2 1 0 0 0.3 6 1969 

April 0.65 5.04 1915 0 1902 2.86 2004 2 1 0 0 0.2 13.5 1928 

May 1.19 12.28 1941 0 1903 3.41 1959 4 2 1 0 0 0 1905 

June 1.49 6.24 1948 0 1928 3.8 1972 4 3 1 0 0 0 1905 

July 1.86 10.5 1902 0 1903 3.8 1902 5 3 1 0 0 0 1905 

August 1.79 7.7 1984 0.01 1938 5.12 1916 5 3 1 0 0 0 1909 

September 2.14 12.27 1980 0 1907 4.6 1980 5 3 1 1 0 0 1906 

October 1.34 8.08 1907 0 1903 4.3 1945 4 2 1 0 0 0 1905 

November 0.58 4.58 2004 0 1915 2 2000 3 1 0 0 0.6 10.3 1976 

December 0.51 3.79 1991 0 1903 1.18 1986 3 1 0 0 1.2 16.2 2009 

Annual 12.87 33.94 1941 2.95 1924 5.12 1916 42 25 8 3 4.5 20 2007 

Winter 1.35 6.16 1992 0 1934 1.25 1997 7 4 1 0 3.4 22.2 2010 

Spring 2.32 17.99 1941 0 2011 3.41 1959 8 5 1 1 0.4 6 1969 

Summer 5.14 18.06 1902 0.74 1924 5.12 1916 15 9 3 1 0 0 1910 

Fall 4.05 16.01 1974 0.27 1951 4.6 1980 12 7 3 1 0.6 10.3 1976 
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Table 41: Rain fall and peak mean flow for Carlsbad in recorded years. 

Date high mean flow  ac-ft (USGS) max 1-day rain (in) (WWCR) Date high mean flow  ac-ft(USGS) max 1-day rain (in) (WWCR) 

Sep-74      2,170  4.62 Jun-95            83 0.95 

Oct-74      4,260 1.64 Sep-95            82 1.32 

Sep-78      3,480 2.62 Oct-97            31. 3 

Nov-78          355  1.99 Jul-02          554  1.58 

May-79          227 1.3 Oct-03            20 0.55 

Jun-79          137 1.46 Apr-04    12,400 2.86 

Jul-81          367 1.13 Jul-04          203 1.42 

Aug-84      2,670  2.35 Aug-04            27 1.13 

Jun-86      8,360 2.73 Sep-04            58  1.12 

May-87            74 1.15 Sep-06          228 1.28 

Aug-88            46 1.65 May-07          216 1.45 

Sep-88            19 2.85 Sep-07          195 1.85 

Sep-90            93  0.16 Jun-09          460 1.18 

Sep-91          523 2.26 Sep-10          131 1.12 

Aug-94          140 0.76    
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Table 42: List of rain fall in inches of Carlsbad New Mexico from 2001-2011. a = 1 day missing from record, b = 2 days missing from record, c = 3 days, ..etc.., z 
= 26 or more days missing, A = Accumulations present. 

Year(s) Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Annual 

2001 0.90 0.48 0.88 0.49 0.53 1.22 0.45 0.52 0.96e 0.11 1.25 0.20 7.99 

2002 0.17 0.63 2.15 0.00 0.00 0.26 2.49 2.08 0.97 1.99a 0.56 0.50 11.80 

2003 0.00 0.99 0.35 0.00 1.19 0.50a 0.56 0.31 0.00z 1.23 0.48 0.00 5.61 

2004 0.25 0.95 1.71 4.17 0.00z 1.67 2.85 2.05 4.12 0.77 4.58 0.82 23.94 

2005 0.45 1.66 0.67 0.18 1.51 0.12 0.57 2.40 0.26 1.05 0.00 0.00 8.87 

2006 0.00 0.31 1.20 0.10 0.00z 1.80a 0.54b 0.00z 4.30 0.00z 0.09 0.33 8.67 

2007 1.64 0.48 2.64 0.59 3.45 1.01 1.30 1.47 5.11 0.00 0.41 0.92 19.02 

2008 0.01 0.04 0.23 0.00 0.86 0.62 2.52 1.88 2.33 0.73 0.04 0.13 9.39 

2009 0.00 0.00z 0.14 0.01a 0.40 1.78 6.13 0.63 0.26 1.02 0.10 1.49 11.96 

2010 0.98 1.34 0.41 0.61 0.86 1.24 7.36 1.00 3.41 0.10 0.00 0.01 17.32 

2011 0.00 0.43 0.00 0.00 0.00 0.04 0.62 0.50 1.67 0.27 0.05 1.48 5.06 

 

Table 43: Site Classifications in NMCRIS and categories used in this project. 

Project Category Other Classifications Count 

Apache Apache 1539 AD to 1846AD, Apache 1850 AD to 1879AD, Apache 1867AD to 1875AD, Apache 1870AD 1890AD, 
Spanish Contact to Mexican 1539 AD to 1846 AD, Apache 1840AD to 1870AD 

11 

Archaic Archaic 5500BC to 900AD, Archaic 5500BC to 200AD 2 

Clovis to Late Paleoindian Clovis to Late Paleoindian 9500 BC to 6600 BC 1 

Early Archaic Early Archaic 5500 BC to 3000 BC 2 

Early Archaic to Late Archaic Early Archaic to Late Archaic 4000BC to 1000AD, Early Archaic to Late Archaic 5500BC to 200AD 2 

Early Archaic to Middle Archaic Early Archaic to Middle Archaic 5500BC to 1800AD 1 

Early Pithouse Early Pithouse to Early Pithouse 200AD to 950AD 1 

Early Pithouse to Early Pueblo Early Pithouse to Early Pueblo 600AD to 1200AD 1 

Early Pithouse to Late Pithouse Early Pithouse to Late Pithouse 200AD to 750AD, Early Pithouse to Late Pithouse 500AD to 1000AD 2 

Early Pithouse to Late Pueblo Early Pithouse to Late Pueblo 1000 AD to 1400AD, Early Pithouse to Late Pueblo 1AD to 1375AD, Early Pithouse to 
Late Pueblo 2000AD to 1400AD, Early Pithouse to Late Pueblo 200AD to 1100AD, Early Pithouse to Late Pueblo 
200AD to 1400AD, Early Pithouse to Late Pueblo 350AD to 1400AD, Early Pithouse to Late Pueblo 500AD to 
1400AD, Early Pithouse to Late Pueblo 650AD to 1300AD, Early Pithouse to Late Pueblo 650AD to 1400AD, Early 
Pithouse to Late Pueblo 700AD to 1600AD 

15 
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Project Category Other Classifications Count 

Early Pueblo Early Pueblo 1100AD to 1200AD, Early Pueblo 950AD to 1200AD 7 

Early Pueblo to Late Pueblo Early Pueblo to Late Pueblo 1075AD to 1375AD, Early Pueblo to Late Pueblo 1100 AD to 1400 AD, Early Pueblo to 
Late Pueblo 1100AD to 1350AD, Early Pueblo to Late Pueblo 1100AD to 1500AD, Early Pueblo to Late Pueblo 
1150AD to 1250AD, Early Pueblo to Late Pueblo 950AD to 1300AD, Early Pueblo to Late Pueblo AD 1100-1400, 
Early Pueblo to Late Pueblo AD 1175-1400 

28 

Historic  92 

Late Archaic Late Archaic (1486 BC) to Late Archaic (200 AD), Late Archaic 0AD to 900AD, Late Archaic 1000BC to 200AD, Late 
Archaic 1000BC to 500AD, Late Archaic 1000BC to 750AD, Late Archaic 100BC to 900AD, Late Archaic 1065 BC to 
145AD, Late Archaic 1500BC to 300AD, Late Archaic 1800 BC to 200AD, Late Archaic 1800BC to 700AD, Late 
Archaic 1800BC to 900 AD, Late Archaic 1800BC to 950AD, Late Archaic 1AD to 1000AD, Late Archaic 200AD to 
1200 AD, Late Archaic 200AD to 900AD, Late Archaic 200BC to 600AD, Late Archaic 200BC to 900AD, Late Archaic 
2300 BC to 1100AD, Late Archaic 500BC to 200AD, Late Archaic 750AD to 950AD, Late Archaic 800BC to 600AD, 
Late Archaic 820BC to 900AD 

55 

Late Archaic to Unspecific Archaic 
800BC to 200AD 

Late Archaic to Unspecific Archaic 800BC to 200AD 1 

Late Paleoindian 8000BC to 6600BC Late Paleoindian 8000BC to 6600BC 2 

Late Pithouse Late Pithouse 750AD to 1100AD, Late Pithouse 750AD to 1400AD, Late Pithouse 850AD to 1000AD, Late Pithouse 
900AD to 1040AD, Late Pithouse 900AD to 1100AD, Late Pithouse 900AD to 1400AD, Late Pithouse to Late 
Pithouse  (750 AD) to (1100 AD), Late Pithouse to Late Pithouse 750AD to 1100AD, Late Pithouse to Late Pithouse 
850AD to 1000AD, Late Pithouse to Late Pithouse 900AD to 1100AD 

16 

Late Pithouse to Early Pueblo Late Pithouse to Early Pueblo  (750 AD) to (1200 AD), Late Pithouse to Early Pueblo 1000AD to 1200AD, Late 
Pithouse to Early Pueblo 750AD to 1100AD, Late Pithouse to Early Pueblo 750AD to 1175AD, Late Pithouse to 
Early Pueblo 750AD to 1200AD 

7 

Late Pithouse to Late Pueblo Late Pithouse to Late Pueblo  (1000 AD) to (1300 AD), Late Pithouse to Late Pueblo  (700 AD) to (1500 AD), Late 
Pithouse to Late Pueblo  (750 AD) to (1400 AD), Late Pithouse to Late Pueblo  (900 AD) to (1350 AD), Late 
Pithouse to Late Pueblo  (900 AD) to (1400 AD), Late Pithouse to Late Pueblo  (900 AD) to (1600 AD), Late 
Pithouse to Late Pueblo  750 AD to 1400 AD, Late Pithouse to Late Pueblo  900 AD to 1400 AD, Late Pithouse to 
Late Pueblo  900 AD to 1450 AD, Late Pithouse to Late Pueblo 1000AD to 1200AD, Late Pithouse to Late Pueblo 
1100AD to 1500AD, Late Pithouse to Late Pueblo 750AD to 1200AD, Late Pithouse to Late Pueblo 750AD to 
1400AD, Late Pithouse to Late Pueblo 750AD to 1450AD, Late Pithouse to Late Pueblo 850AD to 1200AD, Late 
Pithouse to Late Pueblo 900AD to 1350AD, Late Pithouse to Late Pueblo 900AD to 1400AD, Late Pithouse to Late 
Pueblo 900AD to 1450AD, Late Pithouse to Late Pueblo 950AD to 1300AD, Late Pithouse to Late Pueblo 950AD to 
1350AD 

69 

Late Pueblo Late Pueblo 1175AD to 1400AD, Late Pueblo 1175AD to 1500AD, Late Pueblo 1175AD to 1545AD, Late Pueblo 
1200AD to 1400AD, Late Pueblo 1275AD to 1400AD, Late Pueblo 1200AD to 1500AD 

8 



244 

 

Project Category Other Classifications Count 

Middle Archaic Middle Archaic 2500BC to 800BC, Middle Archaic 3000BC to 1800BC 3 

Middle Archaic to Late Archaic Middle Archaic to Late Archaic 2500BC to 1000BC, Middle Archaic to Late Archaic 3000BC to 1000 BC, Middle 
Archaic to Late Archaic 3000BC to 200AD, Middle Archaic to Late Archaic 4850BC to 100AD, Middle to Late 
Archaic 2000BC to 200AD 

9 

Plains Woodland to Panhandle Aspect 
250AD to 1400 AD 

Plains Woodland to Panhandle Aspect 250AD to 1400 AD 1 

Terminal Paleoindian 6600BC to 5500 
BC 

Terminal Paleoindian 6600BC to 5500 BC 1 

Unknown/ Unspecific 
 

Unknown, Unknown 25000 BC to 1994 AD, Unknown 25000 BC to 1995 AD, Unknown 25000 BC to 1996 AD, 
Unknown 25000 BC to 1997 AD, Unknown 25000 BC to 9999 AD, Unknown 9500 BC to 1993 AD, Unknown 9500 
BC to 1997 AD, Unknown 9500 BC to 1999 AD, Unknown 9500 BC to 9999 AD, Unspecific 1300 AD to 1600AD, 
Unspecific 500 AD  to 1750AD, Unspecific 750 AD to 1840AD, Unspecific 9500 BC to 1550AD, Unspecific 9500 BC 
to 1840AD, Unspecific 9500 BC to 1850AD, Unspecific 9500 BC to 1860AD, Unspecific 9500 BC to 1870AD, 
Unspecific 9500 BC to 1880AD, Unspecific 9500 BC to 1993AD, Unspecific 9500 BC to 1994AD, Unspecific 9500 BC 
to 1997AD, Unspecific 9500 BC to 1999AD, Unspecific 9500 BC to 2001AD, Unspecific 9500 BC to 9999 AD 

541 

Unspecific Archaic Unspecific Archaic 4850 BC to 110AD, Unspecific Archaic 5500 BC to 200AD, Unspecific Archaic 5500BC to 900AD, 
Unspecific Archaic 5500BC-200AD 

10 

Unspecific Jornada Unspecific Jornada 200AD to 1000AD, Unspecific Jornada 200AD to 1400AD, Unspecific Jornada 900AD to 
1400AD 
 

28 

Table 44: Sites in the project area. LA- LA number, H- Hearth, RM- Ring Midden/roasting pit/ mescal pit, B- Burial, C-Cave/Rockshelter, S- shell midden, M- 
midden, Q- quarry, R-mortar, O- other, V- Number of visits. 

LA Time Period Ceramics Lithics H RM B C S M Q R O V 

1770 Late Pueblo 1175AD to 1400AD 0 0  1        1 

1774 Early Pueblo to Late Pueblo AD 1100-1400           1 2 

1775 Early Pueblo to Late Pueblo AD 1175-1400           4 1 

8049 Unspecific Archaic 5500BC to 900AD 0 Unknown  1   1     2 

8050 Unspecific 9500 BC to 1840AD 0 Unknown  7        1 

8051 Unspecific 9500 BC to 1840AD 0 Unknown  1      1  3 

9052 Archaic 5500BC to 900AD           1 1 

14000 Historic 0 100 to 999  1        2 
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LA Time Period Ceramics Lithics H RM B C S M Q R O V 

14179 Historic           4 1 

14288 Early Pueblo 1100AD to 1200AD           4 2 

14289 Late Pithouse to Late Pueblo  900 AD to 1400 AD 1 to 9 10 to 99 3 11       4 2 

14304 Unspecific 9500 BC to 1840AD Unknown Unknown  2        1 

15919 Early Pueblo to Late Pueblo 1100AD to 1400AD           1 1 

16462 Unspecific 9500 BC to 1840AD 0 1 to 9  1        1 

17787 Unspecific 9500 BC to 1840AD 0 10 to 99  1        1 

18152 Unspecific 9500 BC to 1840AD 0 0  1        1 

20974 Unspecific 9500 BC to 1840AD 0 0  1        2 

28684 Unspecific 9500 BC to 1840AD 0 10 to 99          1 

28685 Unspecific 9500 BC to 1840AD 0 1000 to 9999 5
2 

6    1   1 2 

28752 Unspecific 9500 BC to 1840AD 0 Unknown  1        1 

29504 Apache 1870AD 1890AD            1 

29505 Unspecific 9500 BC to 1840AD 0 10 to 99 1 2        1 

30625 Unspecific 9500 BC to 1840AD 0 10 to 99  3        2 

33077 Late Pueblo 1200AD to 1400AD 0 10 to 99    1      1 

33078 Unspecific 9500 BC to 1880AD 0 100 to 999 1 4        2 

33970 Late Pithouse to Late Pueblo 750AD to 1400AD 0 1000 to 9999 4 8        3 

33971 Unspecific 9500 BC to 1840AD 0 0  2        1 

35557 Unspecific 9500 BC to 1840AD 0 0  1        2 

35681 Unspecific 9500 BC to 1840AD 0 1000 to 9999          1 

36609 Unspecific Jornada 200AD to 1400AD Unknown Unknown          2 

36610 Unspecific Jornada 200AD to 1400AD Unknown Unknown          2 

38193 Historic 1 to 9 100 to 999 4 4        3 

38194 Unknown 9500 BC to 1993 AD 0 1 to 9  1        1 

38195 Unknown 9500 BC to 1993 AD 0 100 to 999 8         1 

38196 Unknown 9500 BC to 1993 AD 0 10 to 99          3 

38197 Unknown 9500 BC to 1993 AD 0 10 to 99  1        1 
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LA Time Period Ceramics Lithics H RM B C S M Q R O V 

38198 Unspecific 9500 BC to 1993AD 0 0    1      1 

38199 Unspecific 9500 BC to 1880AD, Historic 1 to 9 10 to 99          1 

38201 Unknown 9500 BC to 1993 AD 10 to 99 10 to 99          1 

38202 Late Archaic 1800 BC to 200AD 1 to 9 100 to 999 1
4 

       1 3 

38203 Unknown 9500 BC to 1993 AD 0 10 to 99          5 

38204 Unknown 9500 BC to 1993 AD 10 to 99 100 to 999        2 7 6 

38205 Unknown 9500 BC to 1993 AD Unknown Unknown  10 1      1 6 

38206 Unknown 9500 BC to 1993 AD 0 Unknown  7        2 

38207 Unknown 9500 BC to 1993 AD 0 0 1 5  2      1 

38208 Unknown 9500 BC to 1993 AD 0 10 to 99    1   1   1 

38209 Unknown 9500 BC to 1993 AD 0 1 to 9  5  1      1 

38210 Unspecific 9500 BC to 1880AD 0 10 to 99  3        4 

38211 Unknown 9500 BC to 1993 AD 0 1000 to 9999  14     1   2 

38212 Unknown 9500 BC to 1993 AD 0 1000 to 9999 2 7        4 

38213 Unknown 9500 BC to 1993 AD 0 100 to 999          1 

38214 Unknown 9500 BC to 1993 AD 0 1 to 9  1        1 

38215 Late Archaic 750AD to 950AD, Historic 1 to 9 1000 to 9999          5 

38216 Early Pueblo to Late Pueblo 1100AD to 1400AD           1 1 

38217 Unknown 9500 BC to 1993 AD 0 10 to 99  4        1 

38731 Late Pithouse to Late Pueblo 750AD to 1400AD 1 to 9 10 to 99 6 5        2 

43426 Unspecific 9500 BC to 1840AD 0 10 to 99          1 

43427 Early Pueblo to Late Pueblo 1100AD to 1400AD            1 

43428 Late Pithouse to Late Pueblo 750AD to 1400AD 10 to 99 100 to 999 5 3        1 

43429 Late Pithouse to Late Pueblo 750AD to 1400AD Unknown Unknown  3       1 1 

43430 Early Pueblo 1100AD to 1200AD            2 

43431 Late Pithouse to Early Pueblo 750AD to 1200AD 1 to 9 10 to 99  1        2 

43432 Early Archaic to Late Archaic 4000BC to 1000AD, Late Pithouse to Late 
Pueblo  (750 AD) to (1400 AD) 

1 to 9 100 to 999  2        3 
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LA Time Period Ceramics Lithics H RM B C S M Q R O V 

43433 Late Pithouse to Late Pueblo 750AD to 1400AD 0 10 to 99          2 

43434 Late Pithouse to Late Pueblo  750 AD to 1400 AD 0 1 to 9  1       1 3 

43435 Unspecific 9500 BC to 1840AD 0 10 to 99  4        2 

43436 Unspecific 9500 BC to 1840AD Unknown Unknown  1        2 

43437 Late Pithouse to Late Pueblo 750AD to 1400AD 0 10 to 99  1        1 

43438 Unspecific 9500 BC to 1880AD 1 to 9 10 to 99  7        2 

43439 Early Pueblo to Late Pueblo 1150AD to 1250AD           2 1 

43440 Late Archaic 200AD to 1200 AD, Spanish Contact to Mexican 1539 AD to 
1846 AD 

Unknown Unknown  3        1 

43441 Unspecific 9500 BC to 1840AD 0 10 to 99  3        3 

43442 Unspecific 9500 BC to 1840AD 0 Unknown 2 5       1 3 

43443 Unspecific 9500 BC to 1840AD 0 1 to 9  4        3 

43444 Late Archaic 1000BC to 750AD, Late Pithouse to Late Pueblo  (900 AD) to 
(1350 AD) 

0 10 to 99  2        2 

43445 Unspecific 9500 BC to 1840AD 0 100 to 999          4 

43446 Early Pueblo to Late Pueblo AD 1100-1400            1 

43447 Late Pueblo 1200AD to 1400AD, Spanish Contact to Mexican 1539 AD to 
1846 AD 

1 to 9 1 to 9 6 2       1 3 

43448 Unspecific 9500 BC to 1840AD 0 10 to 99          2 

43449 Early Pueblo to Late Pueblo 1100 AD to 1400 AD            1 

43450 Unspecific 9500 BC to 1840AD 0 Unknown          1 

43451 Early Pueblo to Late Pueblo 1100 AD to 1400 AD, Apache 1539AD to 
1846AD 

Unknown Unknown  1       8 1 

43460 Historic 0 10 to 99          1 

43496 Late Pithouse to Late Pueblo  (900 AD) to (1350 AD) Unknown Unknown    1  1    1 

43507 Unspecific 9500 BC to 1840AD 0 100 to 999  2        2 

43537 Early Pueblo to Late Pueblo 1100AD to 1400AD           1 2 

43671 Unspecific 9500 BC to 1840AD 0 1 to 9  1        1 

43672 Apache 1539 AD to 1846AD      1      1 
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LA Time Period Ceramics Lithics H RM B C S M Q R O V 

43673 Late Archaic 1800BC to 200AD, Late Pithouse to Late Pueblo 900AD to 
1400AD 

1 to 9 1000 to 9999 1         2 

43674 Unspecific Jornada 200AD to 1400AD Unknown Unknown  3  1  1  2  4 

43675 Unspecific Archaic 5500 BC to 200AD, Unspecific Jornada 200AD to 
1400AD 

1 to 9 100 to 999 2 5      1 2 3 

43676 Unspecific 9500 BC to 1840AD Unknown Unknown   1       1 

43677 Late Pithouse to Late Pueblo 900AD to 1400AD 1 to 9 10 to 99  1        2 

43679 Early Pueblo to Late Pueblo AD 1100-1400           5 1 

43680 Late Pithouse to Late Pueblo 750AD to 1400AD 10 to 99 10 to 99  1        1 

43682 Late Pithouse to Late Pueblo 750AD to 1400AD 1 to 9 1000 to 9999 1
0 

6        3 

43684 Early Pueblo 1100AD to 1200AD 0 0          2 

43685 Late Pithouse to Early Pueblo 750AD to 1100AD, Historic 1 to 9 10 to 99          1 

43704 Late Pithouse to Late Pueblo  (750 AD) to (1400 AD), Apache AD 1539-
1846 

0 0         4 1 

43732 Late Pithouse to Late Pueblo 750AD to 1200AD 10 to 99 100 to 999 2
5 

2        1 

43733 Early Pueblo to Late Pueblo AD 1100-1400           1 1 

43734 Unspecific 9500 BC to 1840AD 0 Unknown 1         1 

43735 Historic 0 1 to 9          1 

43736 Unspecific 9500 BC to 1850AD 0 1 to 9  1        2 

43737 Late Pithouse to Late Pueblo 750AD to 1400AD 1 to 9 1 to 9  16      5 2 2 

43738 Late Pithouse to Late Pueblo 750AD to 1400AD 10 to 99 100 to 999 4 3        2 

43741 Unknown 9500 BC to 1993 AD 0 10 to 99          1 

45231 Unknown 9500 BC to 1993 AD 0 10 to 99          1 

45861 Unspecific 9500 BC to 1880AD 0 100 to 999  1        3 

45863 Late Archaic 820BC to 900AD, Late Pueblo 1200AD to 1500AD 1 to 9 1000 to 9999 1 4 7 3  2    6 

45865 Unknown 9500 BC to 1993 AD 0 1 to 9 2 4        3 

45866 Unknown 9500 BC to 1993 AD 0 1 to 9 3         1 

45956 Unknown 9500 BC to 1993 AD 0 100 to 999 1 3        2 
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LA Time Period Ceramics Lithics H RM B C S M Q R O V 

48735 Unspecific 9500 BC to 1993AD 0 0    1      1 

48736 Early Pithouse to Late Pithouse 200AD to 750AD           4 2 

48737 Unknown 9500 BC to 1993 AD 0 100 to 999  1        2 

48738 Unspecific 750AD to 1840AD 0 0  1        2 

48759 Unspecific 9500 BC to 1840AD 0 10 to 99          1 

48772 Early Pueblo to Late Pueblo AD 1100-1400, Apache AD 1539-1846 0 0  1        1 

48773 Late Archaic (1486 BC) to Late Archaic (200 AD), Unspecific 9500 BC to 
1880AD 

0 10 to 99          1 

48774 Unspecific 9500 BC to 1840AD Unknown Unknown 3         1 

49461 Late Archaic 1800BC to 900AD 1 to 9 100 to 999  10    1    1 

49462 Late Archaic 1800BC to 900 AD 1 to 9 100 to 999  1       1 1 

49463 Unspecific 9500 BC to 1840AD 0 Unknown 1         1 

50484 Unspecific 9500 BC to 1880AD 0 100 to 999  2        2 

51007 Early Pueblo to Late Pueblo 950AD to 1300AD, Historic 0 100 to 999 1         3 

55986 Late Archaic to Unspecific Archaic 800BC to 200AD, Historic Unknown 10 to 99  1        1 

61245 Unspecific Archaic 5500BC to 900AD 0 1000 to 9999  1        1 

61246 Unspecific 9500 BC to 1880AD 0 1 to 9  12        3 

61348 Unspecific 9500 BC to 1840AD Unknown Unknown  4        1 

61349 Unspecific 750 AD to 1840AD, Historic 1 to 9 0  1        1 

64499 Unspecific 9500 BC to 1840AD 0 1 to 9  1        1 

65400 Late Pithouse to Late Pueblo 900AD to 1400AD, Historic 1 to 9 10 to 99  1        1 

67384 Unspecific 9500 BC to 1840AD 0 1000 to 9999 1 2        3 

67513 Terminal Paleoindian 6600BC to 5500 BC, Archaic 5500BC to 200AD 0 0         1 1 

67514 Historic 0 1000 to 9999  1       2 4 

67515 Unspecific 9500 BC to 1880AD 0 10 to 99          2 

67519 Early Archaic 5500 BC to 3000BC     1       1 

67520 Unspecific 9500 BC to 1550AD 0 10 to 99  2       6 1 

67529 Late Pithouse to Early Pueblo 750AD to 1175AD 10 to 99 10 to 99 1 5        2 

67530 Unspecific 9500 BC to 1840AD 0 1 to 9 6 4        1 
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67531 Historic 0 100 to 999 1
4 

5    1   1 1 

67854 Late Archaic 1800BC to 900AD 1 to 9 10 to 99  1        2 

67855 Late Pithouse 750AD to 1100AD Unknown Unknown  1        1 

67856 Unspecific 9500 BC to 1840AD 0 1 to 9  1        1 

67861 Unspecific 9500 BC to 1880AD 0 10 to 99         3 4 

67862 Late Pithouse 900AD to 1100AD, Historic 0 10 to 99 1         1 

67863 Late Pithouse to Late Pueblo 750AD to 1400AD Unknown Unknown  1 1 1      1 

68252 Unknown 9500 BC to 1993 AD 0 100 to 999          1 

68481 Unspecific 750AD to 1840AD 0 1 to 9 6 4        1 

69032 Unspecific 9500 BC to 1840AD Unknown Unknown  4        1 

69033 Historic Unknown 1000 to 9999  28      5
0 

 6 

69034 Unspecific 9500 BC to 1840AD 0 10 to 99          1 

69035 Unspecific 9500 BC to 1840AD 0 Unknown  4        2 

70107 Unspecific 9500 BC to 1840AD 0 10 to 99  1        1 

71989 Apache 1539 AD to 1846AD, Historic Unknown Unknown   1 1      2 

72256 Early Pithouse to Late Pueblo 700AD to 1600AD           4 1 

72265 Unspecific 9500 BC to 1840AD 0 10 to 99  3        1 

72390 Unspecific 9500 BC to 1840AD 0 10 to 99  2        3 

73721 Late Pithouse 900AD to 1100AD Unknown 10 to 99  2        2 

73722 Unspecific 9500 BC to 1880AD 0 10 to 99          2 

73723 Unspecific 9500 BC to 1880AD Unknown 100 to 999 3         3 

75564 Unspecific 9500 BC to 1840AD 0 10 to 99          1 

76486 Unspecific 9500 BC to 1840AD Unknown Unknown          1 

76487 Unspecific 9500 BC to 1840AD 0 100 to 999           

76488 Unspecific 9500 BC to 1840AD 0 100 to 999  1        2 

77952 Unspecific 9500 BC to 1840AD 0 100 to 999          1 

77953 Unspecific 9500 BC to 1840AD 0 Unknown  1        1 
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77954 Unspecific 9500 BC to 1840AD 0 10 to 99  1        2 

77955 Unspecific 9500 BC to 1840AD 0 Unknown  2        1 

77956 Unspecific 9500 BC to 1840AD 0 10 to 99          1 

77957 Unspecific 9500 BC to 1840AD, Historic 1 to 9 100 to 999          1 

77958 Historic 0 100 to 999 1
6 

3        3 

78425 Late Pithouse to Late Pueblo 750AD to 1450AD 0 10 to 99           

78426 Unspecific 9500 BC to 1840AD 0 0  1        2 

78427 Unspecific 9500 BC to 1840AD Unknown 0 5         1 

78428 Unspecific 9500 BC to 1840AD 0 10 to 99 2         2 

79813 Unspecific 9500 BC to 1840AD 0 0  1        1 

81502 Unspecific 9500 BC to 1880AD 0 10 to 99 2 3        2 

82638 Unspecific 9500 BC to 1840AD 0 10 to 99 2 7        4 

82639 Unspecific 9500 BC to 1840AD 0 Unknown  3        1 

82640 Unspecific 9500 BC to 1840AD 0 0  1        1 

82641 Unspecific 9500 BC to 1840AD 0 1 to 9  5        2 

82642 Unspecific 9500 BC to 1840AD Unknown Unknown  4        2 

84548 Unspecific 9500 BC to 1840AD 0 0 1 7       9 3 

84549 Unspecific 9500 BC to 1840AD, Historic 1 to 9 1 to 9  1 4 1  1    1 

84550 Unspecific 9500 BC to 1840AD 0 Unknown  4        1 

84551 Unspecific 9500 BC to 1840AD 0 10 to 99  2        1 

84552 Unspecific 9500 BC to 1840AD Unknown Unknown 4         1 

84553 Late Pithouse 900AD to 1100AD 0 0         2 2 

84554 Unspecific 9500 BC to 9999 AD 0 10 to 99          1 

84820 Late Archaic 2300 BC to 1100AD Unknown Unknown  3        2 

84992 Late Pithouse to Late Pithouse 900AD to 1100AD 1 to 9 10 to 99  1        1 

84993 Unspecific 9500 BC to 1840AD 0 0  1        3 

84994 Unspecific 9500 BC to 1840AD 0 Unknown          1 

84995 Unspecific 9500 BC to 1840AD 0 10 to 99  3        5 
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84996 Unspecific 9500 BC to 1840AD 0 0  1        2 

86122 Unspecific 9500 BC to 1840AD 0 10 to 99          1 

86197 Unspecific 9500 BC to 1840AD Unknown Unknown  2        1 

87012 Unspecific 9500 BC to 1840AD 0 10 to 99          1 

87013 Unspecific 9500 BC to 1840AD 0 1 to 9          1 

87014 Historic 1 to 9 100 to 999 1 7        5 

87015 Late Pueblo 1175AD to 1545AD 0 10 to 99    1      1 

87038 Unspecific 9500 BC to 1840AD 0 1 to 9          1 

88071 Late Archaic 1500BC to 300AD, Late Pithouse to Late Pueblo  (900 AD) to 
(1600 AD) 

10 to 99 100 to 999  1        1 

88108 Historic           9 1 

89375 Unspecific 9500 BC to 1994AD 0 100 to 999  1  1      1 

89376 Late Pithouse to Late Pueblo 900AD to 1400AD 0 10 to 99 1 6        3 

89377 Late Pithouse to Late Pueblo  (900 AD) to (1400 AD) 1 to 9 1000 to 9999  28    1   3 2 

89378 Unspecific 9500 BC to 1994AD 0 1 to 9 1 7        2 

89379 Unspecific 9500 BC to 1994AD 0 10 to 99          1 

89380 Unspecific 9500 BC to 1840AD, Historic 10 to 99 10 to 99 1 1        5 

89381 Late Pithouse to Late Pueblo  750 AD to 1400 AD 1 to 9 100 to 999  38        5 

89382 Late Pithouse to Late Pueblo 900AD to 1400AD 0 10 to 99          1 

89383 Late Pithouse to Late Pueblo  900 AD to 1400 AD 0 10 to 99          1 

89529 Unspecific 9500 BC to 1994AD 0 10 to 99          1 

89530 Unspecific 9500 BC to 1994AD 0 10 to 99          1 

89531 Unspecific 9500 BC to 1840AD 0 1 to 9          1 

89532 Late Pithouse to Late Pueblo  900 AD to 1450 AD 10 to 99 100 to 999 3 1        2 

89857 Unspecific 9500 BC to 1840AD 0 10 to 99          1 

89859 Unspecific 9500 BC to 1840AD 0 10 to 99          1 

89860 Unspecific 9500 BC to 1840AD 0 10 to 99          1 

89861 Unspecific 9500 BC to 1840AD, Historic Unknown Unknown 4 9        2 

89878 Unspecific 9500 BC to 1840AD 0 1 to 9  1        1 
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98320 Unspecific 9500 BC to 1840AD 0 100 to 999  6        1 

98322 Late Archaic 1800BC to 200AD Unknown Unknown          2 

98804 Unspecific 9500 BC to 1840AD 0 1 to 9          1 

98805 Unspecific 9500 BC to 1840AD 0 1 to 9 5         3 

99464 Late Pithouse to Late Pueblo 900AD to 1450AD 0 0  6        1 

99932 Unspecific 9500 BC to 9999AD 0 100 to 999         2 3 

101201 Middle Archaic 2500BC to 800BC 0 10 to 99          1 

101202 Unknown 9500 BC to 1993 AD 0 1 to 9  12        4 

101308 Unspecific 9500 BC to 1840AD 0 1 to 9 1 2        3 

101494 Unspecific 9500 BC to 1880AD, Unspecific Jornada 200AD to 1400AD Unknown 100 to 999 1 2       2 3 

101495 Unspecific Jornada 200AD to 1400AD Unknown Unknown   1 1      2 

103221 Unknown 25000 BC to 1994 AD 0 0   1 1      2 

103222 Unknown 25000 BC to 1994 AD Unknown Unknown        8  1 

103223 Unknown 25000 BC to 1994 AD Unknown Unknown 1         1 

103224 Unknown 25000 BC to 1994 AD Unknown 1 to 9 1         2 

103225 Unknown 25000 BC to 1994 AD Unknown 1 to 9 1 1        2 

103226 Historic 10 to 99 100 to 999  6        1 

103227 Unknown 25000 BC to 1994 AD Unknown Unknown 1         1 

103228 Unknown 25000 BC to 1994 AD Unknown Unknown  2        1 

104447 Unknown 25000 BC to 1995 AD, Historic 1 to 9 10 to 99  2        3 

104544 Late Pithouse to Early Pueblo 1000AD to 1200AD 1 to 9 100 to 999  47        1 

104545 Unspecific 9500 BC to 1550AD 0 100 to 999  4        1 

104546 Late Pithouse to Late Pithouse 750AD to 1100AD 0 100 to 999  4        1 

104948 Unspecific 9500 BC to 1550AD 0 1 to 9          1 

104982 Unspecific 9500 BC to 1840AD Unknown 1 to 9 1 1        2 

104983 Unspecific 9500 BC to 1880AD 0 10 to 99          2 

105253 Unspecific 9500 BC to 1550AD 0 100 to 999          3 

105254 Unspecific 9500 BC to 1550AD 0 100 to 999          1 

105505 Unspecific Archaic 5500 BC to 200AD 1 to 9 10 to 99          1 
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106005 Unspecific 9500 BC to 1550AD 0 10000 to 
99999 

 1       1 4 

106049 Unspecific 9500 BC to 1880AD 0 100 to 999          2 

107125 Unknown 25000 BC to 1994 AD Unknown Unknown  1        1 

107436 Clovis to Late Paleoindian 9500 BC to 6600 BC           1 1 

107437 Late Archaic 1800BC to 200AD, Apache 1840AD to 1870AD 0 0         9 2 

107743 Unspecific 9500 BC to 1550AD 0 0  4        1 

107902 Unspecific 9500 BC to 1550AD 0 0 7 6        2 

107903 Unspecific 9500 BC to 1550AD 0 0  6        1 

107937 Late Pithouse 900AD to 1040AD Unknown Unknown  1        1 

107938 Unspecific 9500 BC to 1550AD 0 10 to 99  11        1 

107939 Unspecific 9500 BC to 1880AD 0 100 to 999  1       1 4 

108063 Unspecific 9500 BC to 1550AD 0 10 to 99  7        1 

108064 Unspecific 9500 BC to 1550AD 0 0  8        1 

108138 Early Pithouse to Late Pueblo 200AD to 1100AD           1 1 

108348 Late Pithouse to Late Pueblo 900AD to 1400AD 1 to 9 10000 to 
99999 

 40
0 

 3    3 1
6 

1 

108349 Middle Archaic to Late Archaic 3000BC to 1000 BC 0 10 to 99 1 1         

108350 Late Pithouse to Late Pueblo 750AD to 1400AD 1 to 9 100 to 999  1        1 

108376 Early Pithouse to Early Pueblo 600AD to 1200AD           3 3 

108377 Unspecific 9500 BC to 1550AD 0 0  2        1 

108378 Unspecific 9500 BC to 1550AD 0 10 to 99          2 

108556 Unspecific 9500 BC to 1550AD 0 1 to 9  33        1 

108557 Unspecific 9500 BC to 1550AD 0 0  8        1 

108626 Late Archaic 1800BC to 200AD 1 to 9 10 to 99 8 16        1 

108627 Late Pithouse to Late Pueblo 900AD to 1400AD 0 1 to 9           

108628 Unspecific 9500 BC to 1550AD 0 0  3       1 1 

108641 Unspecific 9500 BC to 1550AD 0 0  7        1 

108642 Unspecific 9500 BC to 1550AD 0 0 1         3 
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108643 Unspecific 9500 BC to 1550AD 0 1 to 9 3 9        3 

108644 Unspecific 9500 BC to 1550AD 0 1000 to 9999          1 

108645 Unspecific 9500 BC to 1550AD, Historic 1 to 9 1000 to 9999 6
5 

70       9 2 

108646 Unspecific 9500 BC to 1550AD 0 0  4       1 2 

108647 Unspecific 9500 BC to 1550AD, Historic 0 100 to 999          1 

109230 Late Archaic 1065 BC to 145AD 0 10 to 99  2        2 

109323 Early Archaic to Late Archaic 5500BC to 200AD, Early Pueblo 1100AD to 
1200AD 

0 100 to 999          1 

109335 Early Pithouse to Late Pueblo 200AD to 1400AD           1 1 

109909 Unspecific 9500 BC to 1550AD, Unspecific 1550AD to 1996 AD Unknown 1 to 9  29        2 

109910 Unspecific 9500 BC to 1550AD, Historic 10 to 99 100 to 999  20       1 4 

110143 Middle Archaic 3000BC to 1800BC, Early Pithouse to Late Pueblo 200AD 
to 1400AD 

0 10 to 99 2 4        1 

110147 Unspecific 9500 BC to 1880AD, Historic 0 10 to 99          1 

110359 Early Pueblo 1100AD to 1200AD           1 3 

110385 Unspecific 9500 BC to 1880AD 0 100 to 999  2        2 

110387 Early Pithouse to Late Pueblo 500AD to 1400AD, Historic 10 to 99 1000 to 9999 1
4 

19    1    3 

110388 Early Pueblo to Late Pueblo 1100AD to 1400AD   1        2 2 

110389 Late Pithouse to Late Pueblo 750AD to 1400AD 1 to 9 10 to 99 1 11        3 

110513 Unspecific 9500 BC to 1550AD 0 1 to 9  2        1 

110660 Unspecific 9500 BC to 1550AD, Historic 1 to 9 10 to 99  7        2 

110909 Unspecific 9500 BC to 1550AD 0 0  1        1 

111137 Unspecific 9500 BC to 1550AD 0 1 to 9  3        1 

111138 Unspecific 9500 BC to 1880AD 0 10 to 99 3         1 

111215 Late Archaic 1800BC to 200AD, Late Pithouse 750AD to 1400AD 1 to 9 Unknown 1         1 

111216 Early Pithouse to Late Pueblo 650AD to 1300AD           2 1 

112327 Early Pithouse to Late Pueblo 200AD to 1400AD   1        3 1 

112347 Unspecific 9500 BC to 1550AD 0 0  1        1 
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112610 Unspecific 9500 BC to 1550AD 0 1 to 9  4        1 

112611 Unspecific 9500 BC to 1550AD 0 1 to 9  53        1 

112612 Unspecific 9500 BC to 1550AD 0 0  1        1 

112613 Unspecific 9500 BC to 1550AD 0 0 1         1 

112614 Unspecific 9500 BC to 1880AD 0 100 to 999  4        3 

112615 Unspecific 9500 BC to 1550AD 0 0  2        1 

112616 Unspecific 9500 BC to 1550AD Unknown Unknown          2 

112617 Unspecific 9500 BC to 1550AD 0 10 to 99 1         1 

112618 Unspecific 9500 BC to 1550AD 0 10 to 99          1 

112619 Unspecific 9500 BC to 1550AD 0 10 to 99 1 3        1 

112620 Unspecific 9500 BC to 1550AD 0 1 to 9  1        2 

112621 Unspecific 9500 BC to 1550AD 0 100 to 999          3 

112622 Unspecific 9500 BC to 1550AD 0 10 to 99          1 

112623 Unspecific 9500 BC to 1550AD 0 10 to 99          1 

112624 Unspecific 9500 BC to 1550AD 0 100 to 999          2 

112625 Unspecific 9500 BC to 1550AD 0 10 to 99 2 6        1 

112626 Unspecific 9500 BC to 1840AD Unknown Unknown 1 2        3 

112627 Unspecific 9500 BC to 1550AD 0 10 to 99 1 3        1 

112628 Unspecific 9500 BC to 1550AD 0 10 to 99  4      1 1 1 

112629 Unspecific 9500 BC to 1550AD 0 10 to 99  4        1 

112632 Unspecific 9500 BC to 1550AD 0 10 to 99          1 

112633 Unspecific 9500 BC to 1550AD 0 10 to 99          4 

112634 Unspecific 9500 BC to 1550AD 0 10 to 99          2 

112635 Unspecific 9500 BC to 1550AD 0 100 to 999          1 

112636 Unspecific 9500 BC to 1550AD 0 10 to 99  1        1 

112637 Unspecific 9500 BC to 1550AD 0 10 to 99          1 

112638 Unspecific 9500 BC to 1550AD 1 to 9 100 to 999          1 

112639 Historic 0 1000 to 9999  1        2 

112995 unknown 0 10 to 99 5         1 
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113067 excavated           4 1 

113503 Late Pithouse to Late Pueblo 900AD to 1400AD, Historic 1 to 9 10 to 99 1         2 

113504 Unspecific 9500 BC to 1880AD 0 10 to 99  7        4 

113505 Unspecific 9500 BC to 1550AD 0 100 to 999          1 

113528 Unknown 0 10 to 99          1 

113534 Late Pueblo 1200AD to 1400AD 0 1 to 9    1      1 

113535 Early Pueblo to Late Pueblo 1075AD to 1375AD           2 1 

113537 Late Pithouse to Late Pueblo 900AD to 1400AD 0 10 to 99  1        1 

113538 Unspecific 9500 BC to 1550AD 0 100 to 999          2 

113539 Unspecific 9500 BC to 1550AD 0 0  7 1       2 

113563 Unspecific 9500 BC to 1550AD 0 10 to 99          2 

113606 Unspecific 9500 BC to 1550AD 0 0 1 2        1 

113995 Unspecific 9500 BC to 1550AD 0 10 to 99          1 

114090 Unspecific 9500 BC to 1550AD 0 10 to 99          2 

114091 Unspecific 9500 BC to 1880AD 0 10 to 99          2 

114134 Unknown 25000 BC to 1997 AD 0 Unknown 3         1 

114136 Unknown 25000 BC to 1997 AD 0 1 to 9 5         1 

114137 Unknown 25000 BC to 1997 AD Unknown Unknown 1         1 

114139 Unknown 25000 BC to 1997 AD, LA 111215 & 114139 both are part of 
much enlarged site. See LA 114139 site visit comments. 

1 to 9 0  4        1 

114140 Unknown 25000 BC to 1997 AD Unknown Unknown 2         1 

114141 Unknown 25000 BC to 1997 AD Unknown Unknown 1         2 

114145 Unknown 9500 BC to 1997 AD 0 1 to 9  5        2 

114146 Historic 0 10 to 99          1 

114147 Late Archaic 100BC to 900AD 0 10 to 99  6        2 

114148 Unknown 25000 BC to 1997 AD Unknown Unknown  1        1 

114149 Late Pithouse to Late Pueblo 1100AD to 1500AD 1 to 9 10 to 99 3         3 

114184 Late Pithouse to Late Pueblo 950AD to 1350AD 0 10 to 99 2         1 

114193 Unknown 25000 BC to 1997 AD Unknown 1 to 9 8         1 
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114194 Late Pithouse 900AD to 1400AD 1 to 9 100 to 999  1        3 

114195 Unknown 25000 BC to 1997 AD Unknown Unknown  1        1 

114196 Unknown 25000 BC to 1997 AD Unknown Unknown  8        4 

114197 Late Pithouse to Late Pueblo 900AD to 1400AD 0 100 to 999 4 4        1 

114198 Early Pueblo to Late Pueblo 1100AD to 1350AD            2 

114286 Unspecific 9500 BC to 1550AD 0 10 to 99          1 

114487 Unknown 25000 BC to 1996 AD Unknown Unknown  2        1 

114533 Unspecific 9500 BC to 1550AD 0 10 to 99          1 

114739 Unknown 25000 BC to 1997 AD 0 10 to 99 1 1        1 

114741 Unknown 25000 BC to 1997 AD Unknown Unknown  7        1 

114749 Unspecific 9500 BC to 1550AD 0 100 to 999  2        1 

114983 Early Pithouse to Late Pueblo 350AD to 1400AD            1 

115031 Unspecific 9500 BC to 1550AD 0 10 to 99          1 

115242 Unspecific 9500 BC to 1550AD 0 1 to 9  2        1 

115569 Early Pithouse to Late Pueblo 650AD to 1400AD            1 

115570 Unspecific 500 AD  to 1750AD 0 1 to 9  1        1 

115706 Historic 10 to 99 100 to 999 3 7  2  1    3 

115707 Historic 0 100 to 999  1        4 

115708 Historic 1 to 9 10 to 99 1 2        1 

115864 Unspecific 9500 BC to 1550AD 0 10 to 99          2 

115865 Unspecific 9500 BC to 1550AD 0 1 to 9  7       1 1 

115866 Unspecific 9500 BC to 1550AD 0 10 to 99          1 

115908 Unspecific 9500 BC to 1997AD 0 100 to 999          1 

116027 Unspecific 9500 BC to 1550AD 0 10 to 99          1 

116373 Unspecific 9500 BC to 1880AD 0 10 to 99          2 

116398 Unknown 25000 BC to 1997 AD Unknown Unknown 4 1        2 

116399 Unspecific 9500 BC to 1550AD 0 0  1        1 

116400 Unknown 25000 BC to 1997 AD 0 Unknown  2        1 

116403 Historic 0 100 to 999  8        3 
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116404 Unknown 25000 BC to 1997 AD 0 Unknown 1         1 

116405 Unknown 25000 BC to 1997 AD 0 Unknown  2        1 

116470 Unspecific 9500 BC to 1870AD 0 100 to 999  24        3 

116471 Late Archaic 500BC to 200AD, Early Pueblo to Late Pueblo AD 1100-1400 0 1000 to 9999 5         2 

116472 Historic 1 to 9 100 to 999  11        3 

116480 Early Pueblo to Late Pueblo 1100AD to 1400AD           1 1 

116523 Unspecific 9500 BC to 1880AD 0 1 to 9  1        1 

116524 Early Pueblo to Late Pueblo 1100AD to 1400AD           1 2 

116525 Unspecific 9500 BC to 1550AD 0 1 to 9          1 

117294 Late Pithouse to Late Pueblo 950AD to 1300AD, Historic  1 to 9  2        2 

117366 Unspecific 9500 BC to 1880AD 0 10 to 99          2 

117367 Unspecific 9500 BC to 1999AD 0 10 to 99          1 

117368 Unspecific 9500 BC to 1999AD 0 100 to 999          1 

117369 Unspecific 9500 BC to 1999AD 0 10 to 99  1        1 

117370 Early Pithouse to Late Pueblo 2000AD to 1400AD           1 1 

117371 Unspecific 9500 BC to 1550AD 0 10 to 99          1 

117372 Unspecific 9500 BC to 1550AD 0 10 to 99          1 

117373 Unspecific 9500 BC to 1550AD 0 100 to 999          1 

117374 Late Archaic 1800BC to 200AD 1 to 9 1000 to 9999  14        1 

117375 Unspecific 9500 BC to 1550AD 0 1000 to 9999          1 

117376 Unspecific 9500 BC to 1550AD 0 100 to 999          1 

117377 Unspecific 9500 BC to 1550AD 0 100 to 999         2 1 

117445 Unspecific 9500 BC to 1550AD 0 100 to 999  1        1 

117590 Unspecific 9500 BC to 1550AD 0 100 to 999          1 

117591 Unspecific 9500 BC to 1550AD 0 100 to 999          2 

117693 Unspecific 9500 BC to 1550AD 0 0  1        1 

118059 Unspecific 9500 BC to 1550AD 0 100 to 999  1        1 

118237 Late Pithouse to Late Pueblo 900AD to 1450AD 0 0  1        1 

118565 Unspecific 9500 BC to 1840AD 0 10 to 99 1 2        3 
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119364 Early Pueblo to Late Pueblo AD 1100-1400           8 1 

119406 Historic 0 10 to 99          1 

119407 Unspecific Archaic 5500BC-200AD 0 10 to 99  4        3 

119408 Historic 1 to 9 1000 to 9999  2        1 

119410 Late Pithouse to Late Pithouse  (750 AD) to (1100 AD) 10 to 99 100 to 999 5 8    1    1 

119411 Unspecific Jornada 200AD to 1400AD 0 10 to 99  2        2 

119791 Unspecific 9500 BC to 1550AD 0 0  2        1 

119792 Unspecific 9500 BC to 1550AD 0 0  1        1 

119793 Early Pueblo to Late Pueblo 1100AD to 1400AD           2 1 

119794 Unspecific Archaic 5500BC to 200AD, Unspecific Jornada 200AD to 
1400AD 

Unknown Unknown 1 1        1 

119795 Unspecific Archaic 5500BC to 200AD 1 to 9 100 to 999  1        2 

119796 Late Pithouse to Late Pueblo 750AD to 1400AD 1 to 9 10 to 99  1        2 

119797 Unspecific Jornada 200AD to 1400AD 0 100 to 999          1 

119798 Unspecific 9500 BC to 1999AD 0 10 to 99          1 

119799 Unspecific Jornada 900AD to 1400AD 0 100 to 999  2        1 

119800 Unspecific Jornada 900AD to 1400AD 1 to 9 10 to 99  2        1 

119802 Historic 0 10 to 99          2 

119803 Unspecific 9500 BC to 1999AD 0 10 to 99          1 

119804 Unspecific 9500 BC to 1999AD 0 10 to 99  3        1 

119805 Unspecific 9500 BC to 1550AD 0 0  2        1 

119806 Historic 0 10 to 99          1 

119808 Unspecific Jornada 200AD to 1400AD 0 10 to 99  3        1 

119809 Unspecific 9500 BC to 1550AD 0 100 to 999          1 

119810 Unspecific 9500 BC to 1550AD 0 10 to 99          2 

119961 Unspecific 9500 BC to 1550AD 0 100 to 999 5 5       3 1 

120233 Unspecific 9500 BC to 1550AD 0 10 to 99          1 

120234 Unspecific 9500 BC to 1550AD 0 100 to 999 1 1        2 

120235 Unspecific 9500 BC to 1550AD 0 10 to 99 2 1        1 
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120236 Unspecific 9500 BC to 1550AD 0 10 to 99 2 1        1 

120237 Unspecific 9500 BC to 1550AD 1 to 9 1000 to 9999          1 

120238 Late Pithouse 850AD to 1000AD Unknown Unknown  2      1  3 

120239 Late Archaic 1800BC to 200AD, Late Pithouse to Late Pueblo 900AD to 
1400AD 

Unknown 1 to 9  2        3 

120240 Unspecific Jornada 200AD to 1400AD 0 1000 to 9999  11        1 

120241 Late Pithouse to Late Pithouse 850AD to 1000AD 100 to 999 100 to 999 2 27       2 2 

120242 Unspecific Jornada 200AD to 1400AD 0 10 to 99  2        1 

120243 Unspecific 9500 BC to 1880AD 0 10 to 99          1 

120244 Unspecific 9500 BC to 1880AD 0 1 to 9          2 

120245 Unspecific Jornada 200AD to 1400AD 0 1 to 9  1        1 

120246 Unspecific 9500 BC to 1550AD 0 10 to 99          1 

120247 Unspecific 9500 BC to 1550AD 0 100 to 999          1 

120248 Unspecific 9500 BC to 1550AD 0 10 to 99          1 

120249 Unspecific 9500 BC to 1550AD 0 100 to 999          1 

120250 Unspecific 9500 BC to 1550AD 0 10 to 99          1 

120251 Historic 0 100 to 999          2 

120252 Late Archaic 1000BC to 200AD, Late Pithouse to Late Pueblo 900AD to 
1400AD 

10 to 99 100 to 999  1        1 

120302 Late Archaic 1800BC to 200AD Unknown Unknown  2        1 

120303 Unspecific 9500 BC to 1999AD 0 0  1        1 

120304 Late Pithouse to Early Pueblo 1000AD to 1200AD 1 to 9 1000 to 9999 3 6      1 5 5 

120305 Unknown 9500 BC to 1999 AD 0 10 to 99          1 

120306 Unspecific 9500 BC to 1550AD 0 10 to 99          1 

120307 Unspecific 9500 BC to 1550AD 0 1 to 9 1 1    1    1 

120308 Unspecific 9500 BC to 1550AD 0 1 to 9          1 

120309 Late Archaic 1800BC to 200AD, Late Pithouse 850AD to 1000AD Unknown Unknown  2        1 

120310 Historic 0 10 to 99          1 

120311 Unspecific Jornada 200AD to 1400AD 10 to 99 10 to 99         2 1 
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120312 Unspecific 9500 BC to 1999AD 0 100 to 999          1 

120313 Unspecific 9500 BC to 1999AD 0 1 to 9  1        1 

120314 Middle to Late Archaic 3000BC to 200AD Unknown Unknown  1        1 

120315 Early Pithouse to Late Pueblo 1000 AD to 1400AD           1 1 

120316 Middle to Late Archaic 2000BC to 200AD Unknown Unknown 1         1 

120317 Unspecific 9500 BC to 1999AD 0 10 to 99  1        1 

120318 Unspecific Jornada 200AD to 1400AD 10 to 99 100 to 999  10        2 

120319 Unspecific Archaic 5500BC to 200AD, Unspecific Jornada 200AD to 
1400AD 

Unknown Unknown          2 

120320 Unspecific 9500 BC to 1550AD 0 10 to 99  1        2 

120321 Unspecific 9500 BC to 1999AD 0 10 to 99          1 

120377 Unspecific Jornada 200AD to 1400AD 1 to 9 100 to 999  2        2 

120378 Historic 0 10 to 99  1        1 

120379 Unspecific 9500 BC to 1550AD 0 10 to 99 7 1        1 

120380 Unspecific Jornada 200AD to 1400AD 1 to 9 100 to 999  2        1 

120381 Unspecific Jornada 200AD to 1400AD 1 to 9 10 to 99  1        1 

120382 Unspecific 9500 BC to 1550AD 0 1 to 9  1        1 

120383 Unspecific Jornada 200AD-1400AD 10 to 99 100 to 999  1        1 

120384 Unspecific Jornada 200AD to 1400AD 1 to 9 100 to 999  2        1 

120385 Unspecific 9500 BC to 1550AD 0 Unknown 1 1    1    2 

120386 Unspecific Jornada 200AD to 1400AD 1 to 9 100 to 999  4        1 

120387 Unspecific Jornada 200AD to 1000AD 0 10 to 99          2 

120388 Unspecific Jornada 200AD to 1400AD 10 to 99 100 to 999  1        1 

120389 Late Pithouse to Late Pueblo  (1000 AD) to (1300 AD) 1 to 9 100 to 999  41        5 

120390 Unspecific 9500 BC to 1999AD 0 0         1 1 

120391 Unspecific 9500 BC to 1999AD 0 10 to 99          2 

120392 Unspecific 9500 BC to 1550AD 0 1 to 9 2         2 

120393 Late Archaic 1800BC to 200AD 1 to 9 10 to 99  2       6 1 

120394 Unspecific Jornada 200AD to 1400AD 1 to 9 100 to 999  2        1 
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120395 Late Archaic 1800BC to 200AD 0 100 to 999          2 

120396 Early Pueblo to Late Pueblo 1100AD to 1400AD           1 1 

120498 Late Paleoindian 8000BC to 6600BC Unknown Unknown          1 

120512 Unspecific 9500 BC to 1999AD 0 10 to 99          1 

120513 Late Pithouse to Late Pueblo 1000AD to 1200AD 0 100 to 999 2 1        6 

120514 Unknown 9500 BC to 1999 AD 0 10 to 99          4 

120645 Early Pithouse to Late Pueblo 200AD to 1400AD           8 2 

120646 Historic 0 1000 to 9999  5        2 

120716 Late Archaic 1000BC to 200AD 0 100 to 999  1        2 

120717 Unspecific 9500 BC to 1550AD 0 1 to 9      1    1 

120719 Late Pithouse to Late Pueblo 900AD to 1400AD             

120720 Early Pithouse to Late Pueblo 1AD to 1375AD           1 1 

120943 Unspecific 9500 BC to 1880AD 0 10 to 99          1 

121074 Late Pithouse to Late Pueblo 900AD to 1450AD 0 1 to 9 1 14        1 

121075 Unspecific 9500 BC to 1999AD 0 10 to 99 5         1 

121118 Unspecific 9500 BC to 1550AD 0 10 to 99          1 

121119 Unspecific 9500 BC to 1550AD 0 1 to 9  2        2 

121138 Unspecific 9500 BC to 1880AD 0 10 to 99          1 

121206 Late Pithouse to Late Pueblo 900AD to 1400AD 0 10000 to 
99999 

      1   3 

121207 Unspecific 9500 BC to 1880AD 0 10 to 99          1 

121289 Middle Archaic to Late Archaic 3000BC to 200AD 0 10 to 99          1 

121290 Late Pithouse to Late Pueblo 750AD to 1400AD Unknown Unknown  8        1 

121291 Late Pithouse to Late Pueblo 900AD to 1400AD 0 100 to 999          2 

121292 Late Pithouse to Late Pueblo 900AD to 1450AD 0 0  3        3 

121294 Unspecific 9500 BC to 1880AD 0 100 to 999          2 

121499 Unspecific 9500 BC to 1880AD 0 100 to 999  1        1 

121500 Unspecific 9500 BC to 1880AD 0 10 to 99          2 

121703 Unspecific 9500 BC to 9999 AD 1 to 9 1000 to 9999  13        1 
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121704 Unspecific 9500 BC to 1840AD 0 1 to 9 1
6 

2        2 

121708 Early Pithouse to Late Pithouse 500AD to 1000AD           1 1 

121709 Late Archaic 1AD to 1000AD 10 to 99 10 to 99 1 8  3      2 

121856 Unspecific 9500 BC to 1880AD 0 10 to 99          2 

121857 Early Pueblo to Late Pueblo 1100AD to 1350AD             

121969 Unspecific 9500 BC to 1880AD 0 0 1         1 

122138 Unspecific 9500 BC to 1880AD 0 1 to 9  5        5 

125151 Apache 1850 AD to 1879AD         2   1 

125281 Unspecific 9500 BC to 1880AD 0 10 to 99 1         1 

125721 Apache 1867AD to 1875AD         1  1
4 

3 

125722 US Territorial 1880AD to 1899AD 0 0         1 1 

126113 Early Pueblo to Late Pueblo 1100AD to 1500AD           1 1 

126114 Unspecific 9500 BC to 1880AD 0 1 to 9  3        2 

126115 Unspecific 9500 BC to 1880AD 0 0  1        2 

126160 Unspecific 9500 BC to 1880AD 0 10 to 99          1 

126161 Unspecific 1300 AD to 1600AD 0 0  1        1 

126257 Unspecific 9500 BC to 9999 AD 1000 to 9999 1000 to 9999  7       2 3 

126562 Unknown 9500 BC to 9999 AD 0 10 to 99          1 

126563 Unknown 25000 BC to 9999 AD Unknown Unknown          1 

126587 Unspecific 9500 BC to 1880AD 0 1 to 9 6         2 

126588 Unknown 25000 BC to 9999 AD 0 0 2 2        1 

126611 Unspecific 9500 BC to 1880AD 0 10 to 99  8        1 

126612 Unspecific 9500 BC to 1880AD 0 1 to 9 1         2 

126613 Unspecific 9500 BC to 1880AD 0 10 to 99          1 

126614 Late Archaic 200BC to 600AD 100 to 999 100 to 999  1        1 

126637 Unspecific 9500 BC to 1880AD 0 100 to 999  3        1 

126639 Middle Archaic to Late Archaic 3000BC to 200AD 0 10 to 99          3 
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127013 Late Pithouse to Late Pueblo 900AD to 1400AD Unknown Unknown           

127014 Unspecific 9500 BC to 1550AD, A.D. 900 to A.D. 1400. Unknown Unknown    1  1    3 

127015 Late Pithouse to Late Pueblo 900AD to 1400AD 0 0  1        2 

127182 Unspecific 9500 BC to 1550AD Unknown Unknown 1         2 

127183 Unspecific 9500 BC to 1550AD 0 1 to 9  1        1 

127785 Middle Archaic 3000BC to 1800BC 0 100 to 999 1
0 

13        1 

128124 Unspecific 9500 BC to 1880AD 0 1 to 9  1        1 

128356 Late Pithouse to Late Pueblo 750AD to 1400AD 0 10 to 99 1 1        1 

128358 Unspecific 9500 BC to 1880AD 0 1 to 9  1        1 

128361 Unspecific 9500 BC to 1880AD 0 100 to 999  1        1 

128438 Unspecific 9500 BC to 1850AD, Historic 10 to 99 100 to 999  2        3 

128491 Unspecific 9500 BC to 1550AD 0 Unknown    2  1    1 

128496 Unknown 9500 BC to 9999 AD 0 10 to 99           

128502 Unknown 9500 BC to 9999 AD 0 100 to 999  2        2 

128656 Unspecific 9500 BC to 1850AD 0 1000 to 9999  10
6 

      1 2 

128683 Unspecific 9500 BC to 1880AD, Historic 10 to 99 100 to 999 1 1        2 

128825 Unspecific 9500 BC to 1550AD Unknown Unknown  1  1      1 

129361 Unspecific 9500 BC to 1550AD 0 Unknown    1      2 

129362 Late Archaic 0AD to 900AD 0 10000 to 
99999 

      1   1 

129363 Unspecific 9500 BC to 1550AD Unknown Unknown   1 1      1 

129364 Late Archaic 1800BC to 200AD, Early Pithouse to Late Pueblo 200AD to 
1200AD 

Unknown Unknown   1 1      1 

129365 Unspecific 9500 BC to 1550AD 0 Unknown    1      2 

129366 Unspecific 9500 BC to 1550AD Unknown Unknown  1  1    1  1 

129367 Unspecific 9500 BC to 1550AD 1 to 9 10 to 99  3  1  1    3 

129396 Early Pueblo to Late Pueblo AD 1100-1400           4 1 

129397            3 3 
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129398 Historic 0 10 to 99 3 1       1 2 

129405 Unspecific 9500 BC to 1840AD 0 0  1        1 

129440 Unspecific 9500 BC to 1840AD 0 0  1        1 

129441 Unspecific 9500 BC to 1840AD 0 1 to 9  5        1 

129464 Historic 0 1 to 9  1        1 

129465 Unspecific 9500 BC to 1850AD 1 to 9 100 to 999 5 52  1    4  2 

129466 Late Paleoindian 8000BC to 6600BC 10 to 99 10 to 99 2 4       1 4 

129478 Unspecific 9500 BC to 1880AD 0 10 to 99          1 

129583 Unspecific 9500 BC to 1880AD 0 1 to 9  1        2 

129584 Unspecific 9500 BC to 1880AD 0 1000 to 9999          1 

129599 Late Pithouse to Late Pueblo 900AD to 1350AD, Historic 0 10 to 99 1 1        4 

129788 Unspecific 9500 BC to 1850AD 0 10 to 99 2 3        2 

130082 Unspecific 9500 BC to 1840AD 0 10 to 99          1 

130083 Unspecific 9500 BC to 1840AD 0 100 to 999  13        4 

130133 Late Pithouse 850AD to 1000AD Unknown Unknown  7        1 

130402 Unspecific 9500 BC to 1880AD 0 10 to 99  3        1 

130415 Unspecific 9500 BC to 1840AD 0 10 to 99 1         4 

130416 Unspecific 9500 BC to 1840AD Unknown Unknown  1        2 

130417 Late Archaic 1000BC to 500AD, Late Pithouse to Late Pueblo 750AD to 
1400AD 

100 to 999 100 to 999          1 

130460 Late Archaic 1800 BC to 200AD 1 to 9 1000 to 9999  37        3 

130469 Historic 0 10 to 99 1         1 

130485 Late Pithouse to Late Pueblo 750AD to 1400AD 1 to 9 1000 to 9999  1        1 

130591 Late Pithouse 900AD to 1100AD 1 to 9 10 to 99 3         1 

130684 Late Pithouse to Late Pueblo 900AD to 1350AD 0 10 to 99          4 

130685 Historic 0 10 to 99          2 

130686 Unspecific 9500 BC to 1880AD 0 10 to 99          1 

130687 Unspecific 9500 BC to 1880AD 0 10 to 99          2 

130688 Historic 0 10 to 99          1 
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130689 Early Archaic 5500 BC to 3000 BC           1 2 

130690 Unspecific 9500 BC to 1880AD 0 10 to 99  2        1 

130691 Late Pueblo 1275AD to 1400AD 0 10 to 99    1     1 1 

130692 Unspecific 9500 BC to 1880AD 0 1000 to 9999  6        1 

130693 Late Archaic 1800BC to 700AD 10 to 99 1000 to 9999  2       1 2 

130694 Unspecific 9500 BC to 1880AD 0 100 to 999  5        1 

130696 Unspecific 9500 BC to 1880AD 0 10 to 99  1        1 

130733 Historic 0 10 to 99           

130734 Unspecific 9500 BC to 1880AD 0 10 to 99 1         1 

130744 Historic 0 1000 to 9999  22        1 

130745            1 1 

130746 Unspecific 9500 BC to 1840AD 0 10 to 99          1 

130747 Late Archaic 1000BC to 200AD 1 to 9 10 to 99 1 1        2 

130748 Unspecific 9500 BC to 1840AD 0 100 to 999  8        1 

130803 Unspecific 9500 BC to 1880AD 0 10 to 99  3        1 

130804 Middle Archaic to Late Archaic 2500BC to 1000BC 0 1 to 9 1         1 

130805 Unspecific 9500 BC to 1880AD 0 10 to 99  2        1 

130806 Unspecific 9500 BC to 1880AD 0 1 to 9  2       1 1 

130807 Unspecific 9500 BC to 1880AD 0 10 to 99 1 3        1 

130808 Unspecific 9500 BC to 1880AD 0 10 to 99         2 2 

130846 Unspecific 9500 BC to 1860AD 0 100 to 999 1
1 

        2 

130848 Historic 0 100 to 999  1        1 

130849 Unspecific 9500 BC to 1880AD 0 10 to 99 1 7        3 

130850 Unspecific 9500 BC to 1880AD 0 1 to 9  1        1 

130851 Unspecific 9500 BC to 1880AD 0 10 to 99 3        3 2 

130852 Unspecific 9500 BC to 1880AD 0 1 to 9  2        4 

130853 Unspecific 9500 BC to 1880AD 0 10 to 99  4        2 

130854 Unspecific 9500 BC to 1880AD 0 10 to 99  6        2 
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130855 Historic 0 Unknown  5        1 

130856 Unspecific 9500 BC to 1880AD, Historic Unknown Unknown  1  1    1  1 

130857 Late Archaic 1800BC to 200AD 1 to 9 100 to 999          2 

130858 Unspecific 9500 BC to 1950AD 0 0    1      2 

130859 Unspecific 9500 BC to 1850AD Unknown Unknown  10       1 5 

130949 Late Pithouse to Late Pueblo 900AD to 1350AD 0 100 to 999 1
5 

4        1 

130972 Late Archaic 1800BC to 200AD 1 to 9 10000 to 
99999 

 24      4
9 

5 5 

131110 Unspecific Archaic 5500 BC to 200AD 0 10 to 99          1 

131111 Unspecific Jornada 200AD to 1400AD 0 10 to 99  1        1 

131112 Historic Unknown 1 to 9  4        3 

131215 Unspecific 9500 BC to 1850AD 0 1 to 9  4       4 2 

131222 Unspecific 9500 BC to 1880AD 0 1 to 9  2        2 

131263 Plains Woodland to Panhandle Aspect 250AD to 1400 AD 0 10 to 99  3        1 

131359 Historic  10 to 99  7       1 4 

131361 Early Pueblo to Late Pueblo AD 1100-1400           3 1 

131362 Unspecific 9500 BC to 1880AD 0 10 to 99          2 

131366 Unspecific 9500 BC to 1840AD 0 1 to 9  2        1 

131367 Unspecific 9500 BC to 1840AD 0 10 to 99  1        1 

131686 Middle Archaic to Late Archaic 3000BC to 200AD 0 100 to 999          2 

131687 Unspecific 9500 BC to 1880AD 0 10 to 99 3         1 

131763 Unspecific 9500 BC to 1840AD 0 10 to 99 1         1 

131764 Unspecific 9500 BC to 1840AD 0 1 to 9  4        1 

131765 Unspecific 9500 BC to 1880AD 0 100 to 999 1 5        3 

131766 Unspecific 9500 BC to 1840AD 0 100 to 999  1        1 

132037 Unspecific 9500 BC to 1880AD 0 1 to 9  2        1 

132127 Unspecific 9500 BC to 2001AD Unknown 100 to 999          1 

132233 Early Pueblo to Late Pueblo 1100AD to 1400AD            1 
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132271 Late Pithouse to Late Pueblo 900AD to 1400AD 0 0  1        1 

132354 Late Archaic 800BC to 600AD Unknown Unknown  1 7       2 

132516 Historic 0 10 to 99          1 

132517 Unspecific 9500 BC to 1880AD 0 100 to 999 2 1        4 

132607 Historic 0 10 to 99  2        1 

132608 Unspecific 9500 BC to 1880AD 0 10 to 99          1 

132609 Unspecific 9500 BC to 1880AD 0 10 to 99  10        3 

132610 Unspecific 9500 BC to 1880AD 0 100 to 999          1 

132800 Unspecific 9500 BC to 1840AD 0 10 to 99 1 1        2 

132801 Unspecific 9500 BC to 1840AD 0 10 to 99 1         1 

132802 Unspecific 9500 BC to 1840AD 0 10 to 99  7        2 

132803 Unspecific 9500 BC to 1840AD 0 10 to 99          1 

133778 Unspecific 9500 BC to 1840AD 0 10 to 99          1 

133905 Unspecific 9500 BC to 1850AD 0 10 to 99         7 4 

133967 Historic 0 10 to 99  3        2 

133968 Late Pueblo 1175AD to 1500AD 0 10 to 99          1 

134105 Unspecific 9500 BC to 1880AD 0 100 to 999          4 

134106 Unspecific 9500 BC to 1880AD 0 100 to 999          2 

134107 Unspecific 9500 BC to 1880AD 0 1 to 9 2 1        1 

134216 Unspecific 9500 BC to 1880AD 0 0  2        1 

134274 Unspecific 9500 BC to 1840AD 0 10 to 99  1        1 

134275 Unspecific 9500 BC to 1840AD 0 10 to 99  1        1 

134276 Unspecific 9500 BC to 1840AD 0 100 to 999  1        2 

134277 Unspecific 9500 BC to 1880AD 0 10 to 99  1        1 

134451 Unspecific 9500 BC to 1840AD 0 1000 to 9999       1   1 

134510 Historic 0 10 to 99  11        1 

134638 Middle Archaic to Late Archaic 3000BC to 200AD Unknown Unknown 1         1 

134690 Early Pueblo 1100AD to 1200AD           1 1 

134712 Unspecific 9500 BC to 1550AD 0 1 to 9    1    3  1 
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134713 Unspecific 9500 BC to 1550AD 0 Unknown  3  1      1 

134714 Unspecific 9500 BC to 1550AD 0 10 to 99    1      1 

134715 Unspecific 9500 BC to 1550AD 0 Unknown       1   1 

134716 Unspecific 9500 BC to 1550AD 0 Unknown 1 1   1     2 

134717 Unspecific 9500 BC to 1550AD 0 Unknown 1 1        1 

134718 Unspecific 9500 BC to 1550AD 0 0  1        1 

134719 Unspecific 9500 BC to 1550AD 0 Unknown  1        3 

134810 Late Pithouse to Early Pueblo 750AD to 1200AD 1 to 9 10 to 99  1        1 

134920 Unspecific 9500 BC to 1880AD 0 10 to 99 4         2 

134930 Unspecific 9500 BC to 1880AD 0 10 to 99 1 2        1 

134931 Unspecific 9500 BC to 1880AD 0 10 to 99  8        1 

134946 Late Pithouse to Late Pueblo 850AD to 1200AD 0 1000 to 9999  4        1 

135222 Unspecific 9500 BC to 1880AD 0 10 to 99          1 

135223 Unspecific 9500 BC to 1880AD 0 10 to 99  1        1 

135279 Unspecific 9500 BC to 1840AD Unknown 10 to 99          2 

135280 Unspecific 9500 BC to 1880AD 0 100 to 999 1 9        1 

135281 Unspecific 9500 BC to 1880AD 0 10 to 99 2         1 

135282 Unspecific 9500 BC to 1840AD 0 100 to 999  3        1 

135283 Late Archaic 1800BC to 200AD 1 to 9 10 to 99          2 

135284 Unspecific 9500 BC to 1840AD 0 0  1        2 

135286 Unspecific 9500 BC to 1840AD 0 1 to 9  4        1 

135287 Unspecific 9500 BC to 1840AD 0 0  1        1 

135288 Unspecific 9500 BC to 1840AD, Historic 10 to 99 10 to 99  8        3 

135312 Unspecific 9500 BC to 1550AD 0 10 to 99 2 13    1    5 

135313 Late Archaic 1800BC to 200AD Unknown Unknown  2 1 1  1    1 

135320 Unspecific 9500 BC to 1880AD 0 10 to 99 5         1 

135416 Unspecific 9500 BC to 1840AD 0 10 to 99          1 

135417 Unspecific 9500 BC to 1880AD 0 0         1 1 

135418 Late Archaic 1800BC to 200AD 0 100 to 999          3 
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135594 Unspecific 9500 BC to 1880AD 0 10 to 99  4        1 

135596 Unspecific 9500 BC to 1880AD 0 10 to 99  2        1 

135597 Historic 0 10 to 99  15        1 

135600 Unspecific 9500 BC to 1550AD 0 1 to 9  1        1 

135790 Unspecific 9500 BC to 1880AD 0 1 to 9  2        1 

135813 Unspecific 9500 BC to 1550AD 0 10 to 99  5        2 

136257 Unspecific 9500 BC to 1840AD 0 1 to 9  1        2 

137409 Late Archaic 1800BC to 900AD 1 to 9 100 to 999  9  1     4 1 

137410 Unspecific 9500 BC to 1840AD 0 1 to 9  36       1 4 

137426 Unspecific 9500 BC to 1840AD Unknown 1 to 9  2        1 

137427 Unspecific 9500 BC to 1880AD 0 10 to 99  1        1 

137428 Unspecific 9500 BC to 1840AD 0 100 to 999          1 

137661 Unspecific 9500 BC to 1840AD 0 10 to 99        1
2 

 3 

137662 Unspecific 9500 BC to 1840AD Unknown Unknown  1 6 3      1 

137698 Unspecific 9500 BC to 1840AD 0 0    1    1 1 2 

137778 Unspecific 9500 BC to 1880AD 0 10 to 99  4        1 

138753 Late Archaic 1800BC to 200AD 0 10 to 99 1 3        2 

138771 Late Archaic 1000BC to 500AD 1 to 9 100 to 999  1        1 

138786 Unspecific 9500 BC to 1880AD 0 10 to 99  3        1 

139072 Unspecific 9500 BC to 1880AD 0 100 to 999  12       4 1 

139073 Late Archaic 1800BC to 950AD Unknown Unknown    1  1    1 

139107 Early Pithouse to Late Pueblo 200AD to 1400AD            2 

139186 Early Archaic to Middle Archaic 5500BC to 1800AD           3 3 

139891 Unspecific 9500 BC to 1550AD 0 Unknown          1 

139892 Late Archaic 1800BC to 200AD 1 to 9 10 to 99 4 11        5 

139951 Late Pithouse to Late Pueblo 750AD to 1400AD 0 10 to 99 2 5        4 

139973 Unspecific 9500 BC to 1880AD 0 10 to 99  7        1 

140785 Historic 0 100 to 999  22        1 
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140826 Late Pithouse to Late Pueblo  (700 AD) to (1500 AD) Unknown Unknown    1  1    1 

140828 Unspecific 9500 BC to 1880AD 0 1 to 9  1        1 

140829 Unspecific 9500 BC to 1880AD 0 10 to 99  1       2 1 

140830 Unspecific 9500 BC to 1880AD 0 10 to 99  8        1 

140831 Unspecific 9500 BC to 1880AD 0 1 to 9  16        1 

140832 Unspecific 9500 BC to 1880AD 0 1 to 9  13        1 

140833 Unspecific 9500 BC to 1880AD 0 10 to 99  30       1 2 

140834 Unspecific 9500 BC to 1880AD, Historic past NM Statehood Unknown Unknown    2      2 

140835 Unspecific 9500 BC to 1880AD 0 10 to 99  5        1 

140836 Unspecific 9500 BC to 1880AD 0 10 to 99  3        1 

140837 Unspecific 9500 BC to 1880AD 0 10 to 99  5        1 

140838 Unspecific 9500 BC to 1880AD 0 10 to 99  1        1 

140839 Unspecific 9500 BC to 1880AD 0 1 to 9  6       1 1 

140840 Unspecific 9500 BC to 1880AD 0 100 to 999 4         1 

140841 Unspecific 9500 BC to 1880AD 0 10 to 99 8         1 

140842 Unspecific 9500 BC to 1880AD 0 100 to 999          1 

140843 Unspecific 9500 BC to 1880AD 0 10 to 99  4        1 

140844 Unspecific 9500 BC to 1880AD 0 1 to 9  5        1 

140845 Unspecific 9500 BC to 1880AD 0 1 to 9  16        1 

140846 Unspecific 9500 BC to 1880AD, Historic 0 100 to 999 4 9       1 2 

140847 Unspecific 9500 BC to 1880AD 0 1 to 9  8        1 

140848 Unspecific 9500 BC to 1880AD 0 10 to 99  3        1 

140849 Late Pithouse to Late Pueblo 900AD to 1400AD 0 0  4        1 

140850 Unspecific 9500 BC to 1880AD 0 10 to 99  3        1 

140851 Unspecific 9500 BC to 1880AD 0 10 to 99  9        1 

140852 Historic 0 10 to 99          2 

140853 Unspecific 9500 BC to 1880AD 0 1 to 9          1 

140856 Unspecific 9500 BC to 1880AD 0 10 to 99          1 

140857 Unspecific 9500 BC to 1880AD 0 10 to 99  3        1 
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140858 Unspecific 9500 BC to 1880AD 0 10 to 99  3        2 

140859 Unspecific 9500 BC to 1880AD 0 10 to 99  2        2 

140863 Unspecific 9500 BC to 1880AD 0 10 to 99  1       1 1 

140864 Unspecific 9500 BC to 1880AD 0 10 to 99  1        1 

140865 Unspecific 9500 BC to 1880AD 0 10 to 99  2        1 

140866 Late Archaic 1800BC to 200AD 0 10 to 99  1        2 

140867 Unspecific 9500 BC to 1880AD 0 10 to 99  5        1 

140868 Unspecific 9500 BC to 1880AD 0 100 to 999  4        1 

140869 Unspecific 9500 BC to 1880AD 0 10 to 99  5        1 

140870 Late Archaic 1800BC to 900AD 10 to 99 1000 to 9999 1 19       1 2 

140872 Late Archaic 2300BC to 1100AD Unknown Unknown  1  1      2 

140873 Unspecific 9500 BC to 1880AD 0 10 to 99  1        1 

140874 Unspecific 9500 BC to 1880AD 0 100 to 999  4        1 

140875 Unspecific 9500 BC to 1880AD 0 10 to 99  5       1 1 

140876 Late Archaic 1800BC to 900AD Unknown Unknown 1   1  1    2 

140877 Late Archaic 200AD to 900AD Unknown 100 to 999    2  1  1  1 

140878 Unspecific 9500 BC to 1880AD 0 1 to 9  2        1 

140879 Late Archaic 1800BC to 900AD Unknown Unknown    1      2 

140880 Unspecific 9500 BC to 1880AD 0 100 to 999  23        1 

140881 Unspecific 9500 BC to 1880AD 0 10 to 99  5        1 

140882 Late Pithouse to Late Pueblo  (900 AD) to (1350 AD) 1 to 9 Unknown    1      2 

140883 Unspecific 9500 BC to 1880AD 0 100 to 999  5        1 

140884 Unspecific 9500 BC to 1880AD 0 10 to 99  8        1 

140885 Late Archaic 1800BC to 900AD, Historic 0 100 to 999          1 

140889 Late Archaic 200BC to 900AD 10 to 99 1000 to 9999 7 2        3 

140890 Unspecific 9500 BC to 1880AD 0 1 to 9           

140891 Unspecific 9500 BC to 1880AD 0 10000 to 
99999 

 37
0 

      4 1 

140892 Historic 0 10 to 99          1 
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140893 Historic 10 to 99 10 to 99  1 1
0 

1    1  2 

140894 Unspecific Archaic 4850 BC to 110AD, Late Pithouse to Late Pueblo 
900AD to 1400AD 

1 to 9 10000 to 
99999 

 15
0 

     1
0 

7 1
1 

140895 Unspecific 9500 BC to 1880AD 0 10 to 99          2 

140896 Historic 0 10 to 99  2        1 

140897 Unspecific 9500 BC to 1880AD, Historic 1 to 9 10 to 99          1 

140898 Unspecific 9500 BC to 1880AD 0 10 to 99  3    1    1 

140899 Late Archaic 200AD to 900AD Unknown Unknown   1 1  1    1 

140900 Unspecific 9500 BC to 1880AD, Historic 100 to 999 1 to 9          1 

140901 Unspecific 9500 BC to 1880AD 0 1 to 9 6 2        2 

140902 Unspecific 9500 BC to 1880AD 0 10 to 99 1
3 

1        1 

140903 Unspecific 9500 BC to 1880AD 0 10 to 99 2         1 

140904 Historic 0 100 to 999  2      1 1 1 

140905 Unspecific 9500 BC to 1880AD 0 1 to 9 3        1 1 

140906 Late Pithouse 900AD to 1100AD 1 to 9 100 to 999  5        2 

140919 Unspecific 9500 BC to 1880AD 0 101 to 999  9        1 

140920 Unspecific 9500 BC to 1880AD 0 100 to 999  9       2 1 

140921 Unspecific 9500 BC to 1880AD 0 1 to 9  2        1 

140922 Unspecific 9500 BC to 1880AD 0 100 to 999  12        1 

140942 Middle Archaic to Late Archaic 4850BC to 100AD, Late Pithouse to Late 
Pueblo  (900 AD) to (1400 AD) 

1 to 9 10 to 99          3 

140943 Unspecific 9500 BC to 1880AD 0 10 to 99  1        1 

140944 Unspecific 9500 BC to 1880AD 0 10 to 99  5        1 

140945 Unspecific 9500 BC to 1880AD 0 0  1        1 

140946 Unspecific 9500 BC to 1880AD 0 100 to 999  4        1 

141421 Unspecific 9500 BC to 1880AD 0 0  1        1 

141685 Early Pithouse to Early Pithouse 200AD to 950AD 0 0         1 1 

141858 Historic 0 10 to 99          1 
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141859 Early Pueblo 950AD to 1200AD   2         1 

142044 Historic 0 100 to 999 2 19      1  1 

142340 Historic 0 100 to 999  58    1    4 

142341 Historic 0 1000 to 9999  15       1 1 

142530 Late Pithouse to Late Pueblo 750AD to 1400AD 1 to 9 100 to 999          3 

142531 Unspecific 9500 BC to 1880AD 0 0  1        2 

142532 Unspecific 9500 BC to 1880AD 0 0         1 1 

142533 Late Pithouse to Early Pueblo  (750 AD) to (1200 AD) 1 to 9 100 to 999  2        1 

142534 Unspecific 9500 BC to 1880AD Unknown Unknown         1 1 

142814 Unspecific 9500 BC to 1880AD Unknown Unknown 1         1 

143256 Unspecific 9500 BC to 1950AD 0 0    1      1 

146499 Historic Unknown 100 to 999   1
2 

   2 3 1 3 

148614 Unspecific 9500 BC to 1850AD 0 100 to 999 2 2        2 

148619 Historic Unknown Unknown 5 1       1 5 

148988              

153611 Historic 0 10 to 99  1        1 

153612 Historic 1 to 9 100 to 999  21        7 

153613 Historic Unknown 1000 to 9999  50        3 

155665 Unspecific 9500 BC to 1850AD 0 10 to 99          3 

159757 reserved 0 0  8        1 

162057 Unspecific 9500 BC to 9999AD 0 10 to 99          1 

  



Appendix C- NetLogo code from project models. 

 

Water Model Code: 

extensions [ gis ] 

globals [ elevation slope aspect soil mi ma] 

patches-own [ slope-self aspect-self sg CN Q hr-1 day-1 day-2 day-3 day-5 day-7 hiI lowI storage 

stored peak-flow] 

turtles-own [water] 

to setup 

clear-all 

gis:load-coordinate-system ("sa.prj") 

set elevation gis:load-dataset"sa.asc" 

set soil gis:load-dataset "sasoil.asc" 

;;gis:set-world-envelope gis:envelope-of elevation 

gis:set-world-envelope (gis:envelope-union-of (gis:envelope-of elevation)(gis:envelope-of 

soil)) 

 ;;let horizontal-gradient gis:convolve elevation 3 3 [ 1 1 1 0 0 0 -1 -1 -1 ] 1 1 

 ;;let vertical-gradient gis:convolve elevation 3 3 [ 1 0 -1 1 0 -1 1 0 -1 ] 1 1 

let horizontal-gradient gis:convolve elevation 3 3 [ 1 0 -1 2 0 -2 1 0 -1 ] 1 1 

 let vertical-gradient gis:convolve elevation 3 3 [ 1 2 1 0 0 0 -1 -2 -1 ] 1 1 

set slope gis:create-raster gis:width-of elevation gis:height-of elevation gis:envelope-of 

elevation 

 set aspect gis:create-raster gis:width-of elevation gis:height-of elevation gis:envelope-of 

elevation 

 let x 0 

repeat (gis:width-of slope) 

[ let y 0 

 repeat (gis:height-of slope) 

[ let gx gis:raster-value horizontal-gradient x y 

let gy gis:raster-value vertical-gradient x y 

if ((gx <= 0) or (gx >= 0)) and ((gy <= 0) or (gy >= 0)) 

[ let s sqrt ((gx * gx) + (gy * gy)) 

gis:set-raster-value slope x y s 

ifelse (gx != 0) or (gy != 0) 

       [ gis:set-raster-value aspect x y atan gy gx ] 
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[ gis:set-raster-value aspect x y 0 ] ] 

set y y + 1 ] 

set x x + 1 ] 

gis:set-sampling-method aspect 

"NEAREST_NEIGHBOR" 

set mi gis:minimum-of elevation 

set ma gis:maximum-of elevation 

ask patches [ 

 set pcolor scale-color green (gis:raster-sample elevation self) mi ma  

 set slope-self gis:raster-sample slope self 

set aspect-self gis:raster-sample aspect self 

set sg gis:raster-sample soil self] 

reset-ticks 

end 

to reset 

reset-ticks 

clear-turtles 

end 

to test 

 ask patches 

 [NG-run-off] 

end 

to go 

rain 

loop[ 

tick 

ask turtles [ 

if xcor >= (max-pxcor - 1) 

[die ] 

if xcor <= (min-pxcor + 1) 

[ die ] 

if ycor >= (max-pycor - 1) 

[ die ] 

if ycor <= (min-pycor + 1) 
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[ die ] 

if dd = "elevation" 

[let target min-one-of neighbors [ gis:raster-sample elevation self + (sum [water] of turtles-

here)]  

face target 

f (gis:raster-sample elevation target + ((sum [water] of turtles-here) / 39.3701)) 

< (gis:raster-sample elevation self + ((sum [water] of turtles-here) / 39.3701)) 

[ let r ((water / 39.3701) * 55.56) / (55.56 + (2 * (water / 39.3701))) ^ (2 / 3) 

let s ((([slope-self] of patch-here + .00001) / 100) ^ (1 / 2)) 

forward (((r * s / .035) * 300) / 55.56) ]]  ;; manning formula = radius ^ 2/3 * slope ^ 1/2 

divdied by Manning’s roughness coefficient 

if dd = "aspect" 

[set heading [aspect-self] of patch-here 

if (gis:raster-sample elevation patch-ahead 1 + ((sum [water] of turtles-here) / 39.3701)) 

 < (gis:raster-sample elevation self + ((sum [water] of turtles-here) / 39.3701)) 

[ let r ((water / 39.3701) * 55.56) / (55.56 + (2 * (water / 39.3701))) ^ (2 / 3) 

let s ((([slope-self] of patch-here + .00001) / 100) ^ (1 / 2)) 

forward (((r * s / .035) * 300) / 55.56) ] ] 

if dd = "aspect-1" 

[set heading [aspect-self] of patch-here 

let r ((water / 39.3701) * 55.56) / (55.56 + (2 * (water / 39.3701))) ^ (2 / 3) 

 let s ((([slope-self] of patch-here + .00001) / 100) ^ (1 / 2)) 

forward (((r * s / .035) * 300) / 55.56) ] 

 set water (water - ( EV * .7 )) 

if ticks > 12 

[if [storage] of patch-here - [stored] of patch-here > 0 

[set water (water - ([lowI] of patch-here) / 12) 

 ask patch-here[set stored (stored + (lowI / 12) )] ] ] 

 if [peak-flow] of patch-here < sum [water] of turtles-here 

[set peak-flow sum [water] of turtles-here ] 

if water < 0 

[ die ] 

 set color 99 - round(sum [water] of turtles-here) 

if count turtles-here >1 
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[ask patch-here 

[set Q (sum [water] of turtles-here) 

ask turtles-here [die] 

sprout 1 

[set color 99 

set shape "circle" 

set water Q ] 

]  ] 

] 

set-days 

if not any? Turtles 

[ stop ]] 

end 

to no-NG-runoff 

ask patches 

[set Q down-pour] 

end 

to rain 

ask patches 

[if [Q] of self > .001 

[sprout 1 

[set color 99 

 set shape "circle" 

 set water Q ] 

 ] ] 

end 

to set-days 

if ticks = 12 

[ask patches[set hr-1 (sum [water] of turtles-here)] ] 

if ticks = 288 

[ask patches[set day-1 (sum [water] of turtles-here)] ] 

if ticks = 576 

[ask patches[set day-2 (sum [water] of turtles-here)] ] 

if ticks = 864 
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[ask patches[set day-3 (sum [water] of turtles-here)] ] 

if ticks = 1440 

[ask patches[set day-5 (sum [water] of turtles-here)] ] 

if ticks = 2016 

[ask patches[set day-7 (sum [water] of turtles-here)] ] 

end 

to show-days 

ask patches [set pcolor scale-color green (gis:raster-sample elevation self) mi ma] 

if Days = "1 Hr" 

[ask patches [ if hr-1 > 1 [set pcolor scale-color red hr-1 0 10  ]]] 

if Days = "Day 1" 

[ask patches [ if day-1 > 1 [set pcolor scale-color red day-1 0 10  ]]] 

if Days = "Day 2" 

[ask patches [ if day-2 > 1 [set pcolor scale-color red day-2 0 10  ]]] 

if Days = "Day 3" 

[ask patches [ if day-3 > 1 [set pcolor scale-color red day-3 0 10  ]]] 

if Days = "Day 5" 

[ask patches [ if day-5 > 1 [set pcolor scale-color red day-5 0 10  ]]] 

if Days = "Day 7" 

[ask patches [ if day-7 > 1 [set pcolor scale-color red day-7 0 10  ]]] 

end 

to find-dips 

ask patches[ 

 if [gis:raster-sample elevation self] of min-one-of neighbors [ gis:raster-sample elevation self 

] > gis:raster-sample elevation self 

[set pcolor red] 

] 

end 

to show-peak-flow 

ask patches [set pcolor scale-color blue peak-flow 0 20] 

end 

to NG-run-off 

let S 0 

if [sg] of self = 1 and A-veg = "poor" 
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[set CN 63] 

if [sg] of self = 1 and A-veg = "fair" 

[set CN 55] 

if [sg] of self = 1 and A-veg = "good" 

[set CN 49] 

if [sg] of self = 2 and B-veg = "poor" 

[set CN 77] 

if [sg] of self = 2 and B-veg = "fair" 

[set CN 72] 

if [sg] of self = 2 and B-veg = "good" 

[set CN 68] 

if [sg] of self = 3 and C-veg = "poor" 

[set CN 85] 

if [sg] of self = 3 and C-veg = "fair" 

[set CN 82] 

if [sg] of self = 3 and C-veg = "good" 

[set CN 79] 

if [sg] of self = 4 and D-veg = "poor" 

[set CN 88] 

if [sg] of self = 4 and D-veg = "fair" 

[set CN 86] 

if [sg] of self = 4 and D-veg = "good" 

[set CN 84] 

if [sg] of self = 5 

[set CN 100] 

if AMC = "AMCI" 

[ let AI ((4.2 * CN) / (10 - (0.58 * CN))) 

  set CN AI] 

if AMC = "AMCIII" 

[ let AIII ((23 * CN) / (10 - (0.13 * CN))) 

set CN AIII] 

if CN > 0 

[set S ((1000 / CN) - 10) 

 set Q ((down-pour - (.2 * S)) ^ 2 / (down-pour + (.8 * S)))] 
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set stored (down-pour - Q) 

;;if Q > 0.1 

;;[set pcolor green] 

end 

to set-sg 

ask patches 

[ if sg >= 8 and sg < 41 

[set sg 1 set lowI 0 set hiI 0 set storage 0] 

if sg >= 41 and sg < 72 

[set sg 5 set lowI 0 set hiI 0 set storage 0] 

if sg >= 72 and sg < 74 

[set sg 2 set lowI .2 set hiI .6 set storage 9.6] 

if sg >= 74 and sg < 76 

[set sg 4 set lowI 0 set hiI .06 set storage 1.1] 

if sg >= 76 and sg < 84 

[set sg 4 set lowI 0 set hiI .06 set storage 2.6] 

if sg >= 84 and sg < 88 

[set sg 4 set lowI 0 set hiI .06 set storage 1] 

if sg >= 88 and sg < 90 

[set sg 4 set lowI 0 set hiI .06 set storage .8] 

if sg >= 90 and sg < 101 

[set sg 4 set lowI 0 set hiI .06 set storage .7] 

if sg >= 101 and sg < 102 

[set sg 3 set lowI .01 set hiI .06 set storage 1.9] 

if sg >= 103 and sg < 104 

[set sg 3 set lowI 0 set hiI .06 set storage 6.4] 

if sg >= 104 and sg < 105 

[set sg 3 set lowI .01 set hiI .06 set storage 1.3] 

if sg >= 105 and sg < 106 

[set sg 3 set lowI .01 set hiI .06 set storage 1.4] 

if sg >= 106 and sg < 107 

[set sg 2 set lowI .2 set hiI 6 set storage 8.2] 

if sg >= 107 and sg < 108 

[set sg 2 set lowI .2 set hiI .06 set storage 11.9] 
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if sg >= 108 and sg < 111 

[set sg 3 set lowI 0 set hiI .06 set storage 6.4] 

if sg >= 111 and sg < 113 

[set sg 2 set lowI .6 set hiI 2 set storage 8.2] 

if sg >= 113 and sg < 115 

 [set sg 2 set lowI .2 set hiI .6 set storage 10.5] 

if sg >= 115 and sg < 117 

[set sg 4 set lowI .06 set hiI 2 set storage .5] 

if sg >= 117 and sg < 119 

[set sg 2 set lowI .57 set hiI 1.98 set storage 9] 

if sg >= 119 and sg < 120 

[set sg 2 set lowI .06 set hiI 2 set storage 8.2] 

if sg >= 120 and sg < 121 

[set sg 3 set lowI .01 set hiI .6 set storage 1.4] 

if sg >= 121 and sg < 122 

[set sg 2 set lowI 2 set hiI 6 set storage 7.2] 

if sg >= 122 and sg < 123 

[set sg 3 set lowI .01 set hiI .6 set storage 1.4] 

if sg >= 123 and sg < 124 

[set sg 2 set lowI .06 set hiI 2 set storage 8.2] 

if sg >= 124 and sg < 125 

[set sg 4 set lowI 0 set hiI .06 set storage 2.1] 

if sg >= 125 and sg < 126 

[set sg 4 set lowI 0 set hiI .06 set storage 1.3] 

if sg >= 126 and sg < 130 

[set sg 2 set lowI 2 set hiI 6 set storage 8.4] 

if sg >= 130 and sg < 131 

[set sg 4 set lowI .06 set hiI 2 set storage .4] 

if sg >= 131 and sg < 134 

[set sg 2 set lowI .06 set hiI 2 set storage 9.6] 

if sg >= 134 and sg < 137 

[set sg 2 set lowI .2 set hiI .6 set storage 11.9] 

if sg >= 137 and sg < 140 

[set sg 4 set lowI 0 set hiI .06 set storage 6] 
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if sg >= 140 and sg < 142 

[set sg 4 set lowI 0 set hiI .06 set storage 2.1] 

if sg >= 142 and sg < 143 

[set sg 2 set lowI .2 set hiI .06 set storage 10] 

if sg >= 143 and sg < 146 

[set sg 2 set lowI 0 set hiI .06 set storage 4.3] 

if sg >= 146 and sg < 150 

[set sg 3 set lowI .2 set hiI 2 set storage 1.2] 

if sg >= 150 and sg < 151 

[set sg 4 set lowI .06 set hiI 2 set storage .5] 

if sg >= 151 and sg < 152 

[set sg 1 set lowI 2 set hiI 6 set storage 4.3] 

if sg >= 152 and sg < 156 

[set sg 3 set lowI .2 set hiI 2 set storage 1.2] 

if sg >= 156 and sg < 168 

[set sg 2 set lowI 0 set hiI .06 set storage 4.3] 

if sg >= 168 and sg < 173 

[set sg 2 set lowI 2 set hiI 6 set storage 7.2] 

if sg >= 173 and sg < 200 

[set sg 4 set lowI 0 set hiI 0 set storage 0] 

if sg = 1 

[set pcolor scale-color red (gis:raster-sample elevation self) mi ma ] 

if sg = 2 

[set pcolor scale-color blue (gis:raster-sample elevation self) mi ma ] 

if sg = 3 

[set pcolor scale-color black (gis:raster-sample elevation self) mi ma ] 

if sg = 4 

[set pcolor scale-color yellow (gis:raster-sample elevation self) mi ma ] 

if sg = 5 

[set pcolor scale-color green (gis:raster-sample elevation self) mi ma ] 

] 

end 

Least cost code 

extensions [ gis ] 

globals [ elevation slope aspect mi ma ] 
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patches-own [ pcost slope-self aspect-self pmarked fx fy gozone xhome yhome visited] 

turtles-own [tcost] 

breed [walkers walker] 

breed [marks mark] 

breed [RMs RM] 

to setup 

clear-all 

set elevation gis:load-dataset "sa.asc" 

gis:set-world-envelope gis:envelope-of elevation 

 let horizontal-gradient gis:convolve elevation 3 3 [ 1 1 1 0 0 0 -1 -1 -1 ] 1 1 

let vertical-gradient gis:convolve elevation 3 3 [ 1 0 -1 1 0 -1 1 0 -1 ] 1 1 

set slope gis:create-raster gis:width-of elevation gis:height-of elevation gis:envelope-of 

elevation 

set aspect gis:create-raster gis:width-of elevation gis:height-of elevation gis:envelope-of 

elevation 

let x 0 

 repeat (gis:width-of slope) 

[ let y 0 

repeat (gis:height-of slope) 

[ let gx gis:raster-value horizontal-gradient x y 

let gy gis:raster-value vertical-gradient x y 

if ((gx <= 0) or (gx >= 0)) and ((gy <= 0) or (gy >= 0)) 

[ let s sqrt ((gx * gx) + (gy * gy)) 

gis:set-raster-value slope x y s 

ifelse (gx != 0) or (gy != 0) 

[ gis:set-raster-value aspect x y atan gy gx ] 

[ gis:set-raster-value aspect x y 0 ] ] 

set y y + 1 ] 

set x x + 1 ] 

gis:set-sampling-method aspect "bilinear" 

set mi gis:minimum-of elevation 

set ma gis:maximum-of elevation 

 ask patches [ 

 set pcolor scale-color green (gis:raster-sample elevation self) mi ma 
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set slope-self gis:raster-sample slope self 

set aspect-self gis:raster-sample aspect self 

set pcost 10000 

] 

reset-ticks 

end 

to mark-out 

random-seed 584965489 

let exy 10 

let wxy 10 

repeat 86 [ 

set wxy 10 

ask patch max-pxcor exy 

[repeat 86 [ 

 sprout-walkers 1 

[set color red 

set pcost 0] 

ask walkers 

[ while [pxcor > min-pxcor] 

[facexy min-pxcor wxy 

fd 1 

ask patch-here 

[;;set pcolor blue  

 if patch-at-heading-and-distance 0 100 != nobody 

 [ask patch-at-heading-and-distance 0 100 

[set gozone 1 

;;set pcolor red 

]] 

if patch-at-heading-and-distance 180 100 != nobody 

[ask patch-at-heading-and-distance 180 100 

[set gozone 1 

 ;;set pcolor yellow 

]]]] 

die] 
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ask patches with [gozone = 1] 

[ ask neighbors 

[set gozone 1] ] 

set pcost 0 

set pmarked 1 

replicate 

while [[pmarked] of patch min-pxcor wxy < 2 ] 

[ask marks 

[ask patch-here 

[replicate] 

 die 

] 

] 

ask patches with [gozone = 1] 

[set gozone 0] 

ask patch min-pxcor wxy 

[ sprout-RMS 1 

[set color red]] 

ask RMS 

[while [[pcost] of patch-here != 0] 

[ 

 setxy [xhome] of patch-here  [yhome] of patch-here 

 ask patch-here 

[set pcolor red 

set visited visited + 1] ] 

die] 

ask patches with [pmarked > 0] 

[set pcost 10000 

set pmarked 0] 

set wxy wxy + 5 

] 

] 

set exy exy + 5] 

stop 
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end 

to east 

random-seed 584965489 

let exy 20 

let wxy 20 

repeat 40 [ 

set wxy 20 

ask patch min-pxcor exy 

[repeat 40 [ 

sprout-walkers 1 

[set color red 

set pcost 0] 

ask 

walkers 

[ while [pxcor < max-pxcor] 

[facexy max-pxcor wxy 

fd 1 

ask patch-here 

[   ;;set pcolor blue 

if patch-at-heading-and-distance 0 100 != nobody 

[ask patch-at-heading-and-distance 0 100 

[set gozone 1 

;;set pcolor red 

]] 

if patch-at-heading-and-distance 180 100 != nobody 

[ask patch-at-heading-and-distance 180 100 

[set gozone 1 

;;set pcolor yellow 

]]]] 

die] 

ask patches with [gozone = 1] 

[ ask neighbors 

[set gozone 1] ] 

set pcost 0 
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set pmarked 1 

replicate 

while [[pmarked] of patch max-pxcor wxy < 2 ] 

[ask marks  

[ask patch-here 

[replicate] 

 die 

 ] 

] 

ask patches with [gozone = 1] 

[set gozone 0] 

ask patch max-pxcor wxy 

[ sprout-RMS 1 

[set color red]] 

ask RMS 

[while [[pcost] of patch-here != 0] 

[ 

setxy [xhome] of patch-here  [yhome] of patch-here 

ask patch-here 

[set pcolor blue 

set visited visited + 1] ] 

die] 

ask patches with [pmarked > 0] 

[set pcost 10000 

set pmarked 0] 

set wxy wxy + 10 

] 

]set exy exy + 10] 

stop 

end 

to replicate 

let pheading 0 

let sheading 0 

let pc 0 



290 

 

let sc 0 

let hy [pycor] of self 

let hx [pxcor] of self 

let scost [pcost] of self 

let angle 0 

let p patch-at-heading-and-distance angle 1 

repeat 4 [ 

set p patch-at-heading-and-distance angle 1 

if p != nobody and gozone = 0 and [pmarked] of p != 2[ 

set pheading (subtract-headings [aspect-self] of p angle) 

ifelse pheading >= 90 

[set pheading pheading - 90] 

[set pheading (abs (pheading - 90))] 

set pc (6 * (exp (-3.5 * ( abs ( (pheading / 90) * ((gis:raster-sample slope p / 100) + .05)))  ))) 

set sheading (subtract-headings aspect-self angle) 

ifelse sheading >= 90 

[set sheading sheading - 90] 

[set sheading (abs (sheading - 90))] 

set sc (6 * (exp (-3.5 * ( abs ( (sheading / 90) * ((gis:raster-sample slope self / 100) + .05)))  ))) 

if [pcost] of p > (scost + (.5 / pc) + (.5 / sc)) 

[ask p 

[set pcost (scost + (.5 / pc) + (.5 / sc)) 

set xhome hx 

set yhome hy 

set pmarked 1 

if count turtles-here = 0 

[sprout-marks 1 

[set color red]] ]]] set angle angle + 90 ] 

set angle 45 

repeat 4 [ 

set p patch-at-heading-and-distance angle 1 

if p != nobody and gozone = 0 and [pmarked] of p != 2[ 

set pheading (subtract-headings [aspect-self] of p angle) 

ifelse pheading >= 90 
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[set pheading pheading - 90] 

[set pheading (abs (pheading - 90))] 

set pc (6 * (exp (-3.5 * ( abs ( (pheading / 90) * ((gis:raster-sample slope p / 100) + .05)))  ))) 

set sheading (subtract-headings aspect-self angle) 

ifelse sheading >= 90 

[set sheading sheading - 90] 

[set sheading (abs (sheading - 90))] 

set sc (6 * (exp (-3.5 * ( abs ( (sheading / 90) * ((gis:raster-sample slope self / 100) + .05)))  ))) 

if [pcost] of p > (scost + (sqrt .5 / pc) + (sqrt .5 / sc)) 

[ask p 

[set pcost (scost + (sqrt .5 / pc) + (sqrt .5 / sc)) 

set xhome hx 

set yhome hy 

set pmarked 1 

if count turtles-here = 0 

[sprout-marks 1 

[set color red]]  ]]] set angle angle + 90 ] 

set pmarked 2 

end 

to f 

ask patches [set pcolor scale-color 0 (gis:raster-sample elevation self) mi ma] 

ask patches with [visited > 100] 

[set pcolor scale-color red visited 1 1000 ] 

end 

to re-set 

clear-turtles 

clear-patches 

ask patches [set pcolor scale-color green (gis:raster-sample elevation self) mi ma 

set slope-self gis:raster-sample slope self 

set aspect-self gis:raster-sample aspect self 

set gozone 0 

set pcost 10000] 

reset-ticks 

end 
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to c-cost 

clear-turtles 

ask patches 

[set pcolor scale-color green ([pcost] of self) 0 10000] 

end 

to pause 

stop 

end 
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