
University of Central Florida

Electronic Theses and Dissertations Masters Thesis (Open Access)

JML Template Generation
2017

Kushal Raghav Poojari
University of Central Florida

Find similar works at: https://stars.library.ucf.edu/etd

University of Central Florida Libraries http://library.ucf.edu

Part of the Computer Sciences Commons

This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Electronic Theses and
Dissertations by an authorized administrator of STARS. For more information, please contact lee.dotson@ucf.edu.

STARS Citation

Poojari, Kushal Raghav, "JML Template Generation" (2017). Electronic Theses and Dissertations. 5372.
https://stars.library.ucf.edu/etd/5372

https://stars.library.ucf.edu?utm_source=stars.library.ucf.edu%2Fetd%2F5372&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu?utm_source=stars.library.ucf.edu%2Fetd%2F5372&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd?utm_source=stars.library.ucf.edu%2Fetd%2F5372&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd
http://library.ucf.edu
http://network.bepress.com/hgg/discipline/142?utm_source=stars.library.ucf.edu%2Fetd%2F5372&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd/5372?utm_source=stars.library.ucf.edu%2Fetd%2F5372&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:lee.dotson@ucf.edu
https://stars.library.ucf.edu?utm_source=stars.library.ucf.edu%2Fetd%2F5372&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu?utm_source=stars.library.ucf.edu%2Fetd%2F5372&utm_medium=PDF&utm_campaign=PDFCoverPages

JML TEMPLATE GENERATION

by

KUSHAL RAGHAV POOJARI

B.S. Jawaharlal Nehru Technological University, 2015

A thesis submitted in partial fulfillment of the requirements

for the degree of Master of Science

in the Department of Computer Science

in the College of Engineering and Computer Science

at the University of Central Florida

Orlando, Florida

Spring Term

2017

 ii

 2017 KUSHAL RAGHAV POOJARI

 iii

ABSTRACT

The Java Modeling Language (JML) is a behavioral interface specific language designed

to specify Java modules (which are Java classes and interfaces). Specifications are used to

describe the intended functionality without considering the way it is implemented. In JML, if a

user wants to write specifications for a Java file, he or she must undertake several steps. To help

automate the process of creating annotations for method specifications, a tool Jmlspec was

created. Jmlspec generated a file that refines the source file and has empty placeholders in which

one can write specifications. Although Jmlspec worked with older versions of Java, it does not

work with the current version of Java (Java 8). This thesis describes the implementation of a new

version of the Jmlspec tool that is compatible with newest versions of Java. This tool will be

more maintainable than the older version of Jmlspec and easier to extend.

 iv

I dedicate this thesis to my parents P. Satyanarayana and E. Renuka Devi, who have

loved me unconditionally and whose good examples have taught me to work hard for the things

that I aspire to achieve.

 v

ACKNOWLEDGMENTS

Firstly, I would like to extend most profound appreciation to my advisor, Dr. Gary T.

Leavens, for his encouragement and excellent guidance. Without his support, this thesis would

not have been possible. I would also like to thank the members of my thesis committee,

Professors Damian Dechev and Damla Turgut for their advice and guidance during the entire

process. Special thanks to my brother, Kumar Raghav Poojari, who has been a constant source of

support and encouragement during the challenges of graduate school and life.

 vi

TABLE OF CONTENTS

LIST OF FIGURES ... viii

LIST OF ACRONYMS .. x

CHAPTER ONE: INTRODUCTION ... 1

Background on JML ... 1

The Need for JML Template Generation .. 4

JMLSPEC ... 4

Problem with Jmlspec ... 5

Approach for New Design .. 6

Overview of the Thesis ... 7

CHAPTER TWO: THE PROBLEM .. 8

CHAPTER THREE: THE SOLUTION APPROACH ... 10

Introduction ... 10

Why ANTLR? ... 10

Architecture... 11

ANTLR Generated Java Lexer ... 11

ANTLR Generated Java Parser ... 14

Design of the Tool .. 16

UI of the tool ... 16

Core ... 20

Code .. 23

 vii

Tests .. 25

CHAPTER FOUR: DISCUSSION ... 27

Organization of code ... 27

Other issues ... 27

Future Work .. 27

CHAPTER FIVE: CONCLUSION... 29

APPENDIX: SOURCE CODE ... 30

REFERENCES ... 44

 viii

LIST OF FIGURES

Figure 1 Pre-and post-conditions for sqrt method (adapted from [2]) .. 2

Figure 2 Normal post-conditions for square root method (adapted from [2]) 3

Figure 3 Exceptional post-conditions example (adapted from [3]) .. 3

Figure 4 JML Template Generation Design ... 7

Figure 5 Lexer rule for a Comment .. 11

Figure 6 Example of a lexical rule where a skip command is used .. 12

Figure 7 Example that uses a condition to prevent generation of the token or hide the token from

parser. .. 12

Figure 8 mComment() method generated for the Lexer ... 13

Figure 9 Basic Parser rule ... 14

Figure 10 Parser rule with alternatives ... 15

Figure 11 Parser rule with an empty alternative. .. 15

Figure 12 Class Hierarchy of Swing GUI classes (adapted from [9]) .. 16

Figure 13 JML Template Generation UI - using JFC ... 17

Figure 14 Final JML Template generated ... 18

Figure 15 JML Template generated for selected portion of Java source code. 19

Figure 16 JML Template generated and saved using Save button ... 19

Figure 17 JML Template generated and saved using Export File button 20

Figure 18 Simple Java source code example .. 21

Figure 19 AST generated for Java source code in Figure 18. ... 22

Figure 20 AST of Figure 18 after inserting annotations ... 25

 ix

Figure 21 A JUnit test for the Template generated in Figure 14 .. 25

Figure 22 JUnit test results for Figure 21 ... 26

Figure 23 Source code MainCore.java.. 31

Figure 24 Source code JavaTransformer.java Part a .. 32

Figure 25 Source code JavaTransformer.java Part b .. 33

Figure 26 Source code JavaTransformer.java Part c .. 34

Figure 27 Source code JavaTransformer.java Part d .. 35

Figure 28 Source code JavaTransformer.java Part e .. 36

Figure 29 Source code JavaPrinter.java .. 37

Figure 30 Source code MainDisplay.java Part a ... 38

Figure 31 Source code MainDisplay.java Part b ... 39

Figure 32 Source code MainDisplay.java Part c ... 40

Figure 33 Source code MainDisplay.java part d ... 41

Figure 34 Source code JOpenFileDialog.java .. 41

Figure 35 Source code JSaveFileDialog.java ... 42

Figure 36 Source code JButtonMenu.java .. 43

 x

LIST OF ACRONYMS

ANTLR ANother Tool for Language Recognition

AST Abstract Syntax Tree

AWT Abstract Windowing Toolkit

BISL Behavioral Interface Specific Language

DBC Design by Contract

EBNF Extended Backus-Naur Form

IDE Integrated Development Environment

JDK Java Development Kit

JFC Java Foundation Classes

JML Java Modeling Language

UI User Interface

 1

CHAPTER ONE: INTRODUCTION

The Java Modeling Language (JML) is a behavioral interface specific language (BISL) designed

to specify Java modules. JML is based on the Design by Contract (DBC) approach and model-

based specification approach of Larch family of interface specification languages [1]. The JML

Template Generation tool generates specification skeletons for the Java files and is compatible

with the newest versions of Java. This chapter gives a brief description of JML background, need

for the JML Template Generation Tool, the old Jmlspec tool, and the problem with it and the

approach for new design.

Background on JML

Specifications are used to describe the intended functionality of the software. JML specifications

are written for Java modules like Java classes and interfaces. Specifications are a contract

between a class and the clients of the class. In this contract, the client guarantees some conditions

to be satisfied before calling the method of the class, and in return the class guarantees some

conditions that will be satisfied after the call. So, a contract is written by specifying a methods

pre-conditions and its post-conditions. Using JML specifications to describe the intended

behavior of methods and classes adds the advantage of finding bugs easily.

JML specifications are written by adding special annotation comments to the Java code.

These special annotation comments start with an at-sign (@). Single line annotations are of the

form //@ and multi-line annotations are of the form /*@...@*/. These special annotations are

placed within Java comments so they will be ignored by a Java Compiler whereas any

specifications written with these special annotations are used by the JML compiler. The JML

 2

Compiler outputs code that raises a runtime exception if the code’s behavior does not match the

specifications written. The @ must be right next to the // in //@, otherwise the comment (e.g.,

one beginning with // @) will be ignored by the JML compiler. Similarly, one should use /*@

as /* @ will also be ignored by JML. An example of JML specification with single and multi-

line annotations is shown in Figure 1.

Figure 1 shows pre-conditions and post-conditions written for a method, sqrt that takes a

number and returns the square of the number.

Figure 1 Pre-and post-conditions for sqrt method (adapted from [2])

A method’s pre-conditions specify the conditions on the program state that must be

satisfied to call the method. JML uses the keyword requires to introduce preconditions. Figure

1 says that the precondition for sqrt() is that x should be a non-negative value. A method’s

post-conditions specify the method’s responsibilities; that is, after the method returns, the post-

conditions must be true. JML uses the keyword ensures to introduce post-conditions. Post-

conditions can be distinguished into normal post-conditions and exceptional post-conditions.

Normal post-conditions specify the conditions that must be true when the method returns without

throwing an exception. For example, normal post-conditions for sqrt() is specified as follows.

 3

Figure 2 Normal post-conditions for square root method (adapted from [2])

Exceptional post-conditions use a signals or a signals_only clause, which must be

true when a method terminates with an exception. Java allows a class or method to throw a

runtime exception, but JML allows a method to throw a runtime exception only if it is specified

in method’s header (in method’s throw clause) or if specified in method contract’s

signals_only clause. The default signals_only clause is to allow the exceptions that are

specified in method’s throws clause to be thrown. In Figure 1 there is no throws clause in

method’s header which prohibits the method from throwing an exception. An example of a

method with an exceptional post-condition is shown in Figure 3.

Figure 3 Exceptional post-conditions example (adapted from [3])

 4

JML does not expect one to specify behavior completely. A specification case is where a user

decides to describe the specifications either shortly assuming defaults or precisely including

exceptional behaviors. JML has two styles of method specification cases: lightweight and

heavyweight. Lightweight specification cases are used to give partial specifications, in which the

user only describes what he is interested in and heavyweight specifications are used to give a

complete specification for some pre-condition [4]. In heavyweight specification cases, JML

expects that the user is aware of the defaults involved and omits the part of specification where

defaults are appropriate. Lightweight specifications can be used for documentation purposes.

Heavyweight specifications can be used with runtime assertion checking and static checking

(including verification).

The Need for JML Template Generation

Automation is everywhere. When you are at a stoplight, the lights change from red to green

automatically without a person acting as a light operator. Automation of mundane programming

tasks can make programming more pleasant and productive. So it is with the automation of

specification generation for JML. The User should go through steps like selecting the file,

opening it in an IDE, adding annotations for methods where he or she wants to write

specifications to, saving the file while editing the extension to be .jml. These mundane tasks can

be automated with the use of the JML Template Generation tool.

JMLSPEC

Jmlspec is a tool designed to automate the process of adding the annotations for methods

to write specifications. Jmlspec and the graphical user interface (GUI) version Jmlspec-gui have

 5

two major modes: generation of specification skeleton and comparing specification files [5].

Jmlspec without –diff option selects the generation mode, whereas Jmlspec with a diff option

sets the comparison mode.

In generation mode, for each Java source file given on the command-line,

Jmlspec generates a file that refines the given source file and has an empty placeholder for one to

write in the specifications [5]. In the old version of Jmlspec, a file with the generated

specification skeleton had the name same as the Java source file but with a .refines-spec

extension. For example, if the Java source file is HelloWorld.java then the file with the

generated specification skeleton using jmlspec will be named HelloWorld.refines-spec.

The user had to edit the .refines-spec file (HelloWorld.refines-spec) file to add the

desired JML specifications.

In comparison mode, Jmlspec found all the matching files in the user’s CLASSPATH and

compared the declarations in those files to each file that was given on the command line. After

the comparison was done, it printed the differences found.

Problem with Jmlspec

The original version of the Jmlspec was built on MultiJava compiler. MultiJava is an

extension to the Java programming language that adds symmetric multiple dispatch and open

classes which allow programmers to add methods to existing classes without editing those

classes, or even having their source code [6]. The latest version of MultiJava released is version

1.3.2 in August 2006. This compiler does not support the Java 5 source language. So, the old

version of Jmlspec works with the older versions of Java but not with the newest versions (like

 6

Java8). Another problem with Jmlspec is that it generates wrong suffix for files, .refines-

spec, the refines-spec extension is no longer supported by JML.

The problem is to create a new JML Template Generation tool that automates the process

of generating skeleton specifications for Java files and that works with the newest version of

Java.

Approach for New Design

JML Template Generation design is a four-phase process. First, a Java source file is passed as

input to the tool. A Lexer takes this input and converts it into tokens. In the second phase, the

Parser asks for the tokens which are generated by the Lexer. Tokens generated by the Lexer are

passed into the Parser as input. The Parser then generates an Abstract Syntax Tree (AST) and

passes this AST to the Tree Parser which checks the syntax of the source code and validates it.

Each leaf node in the AST is a token passed from the Lexer phase. In the next phase, the AST

along with tokens are passed into a Transformer which modifies the AST by adding annotation

blocks (nodes or tokens) to the AST. Tokens modified in the Transformer phase are passed into a

Printer which formats the program’s indentation and prints the resulting output. This output is

saved as a .jml file.

 7

Figure 4 JML Template Generation Design

Overview of the Thesis

Chapter Two explains more details about the need for JML Template Generation. Chapter Three

discusses the implementation details of the JML Template Generation tool proposed in this

thesis. The Organization of the implementation’s code is discussed in Chapter Four. A discussion

about future work, alternate designs proposals and contributions are presented in Chapter Five.

 8

CHAPTER TWO: THE PROBLEM

The old Jmlspec tool generates specification skeletons for files, but it does not support the

newest versions of Java, as it was built on the old MultiJava compiler. The MultiJava compiler

does not support the Java 5 source language, so Jmlspec also does not support any of the newest

versions of Java. The new JML Template Generation tool supports the newest versions of Java as

the Lexer, and the Parser are generated using a grammar file for Java’s newest version. In

addition, the new JML Template Generation tool will be able to support any upcoming version of

Java by replacing the Lexer and the Parser with an updated version of grammar file. Tree Parser

can also be replaced with an updated version of the Parser file generated with an updated

grammar file for the Tree Parser (TreeParser.g).

The JML Template Generation tool will generate annotations as tokens in the transformer

phase and sends the entire source code as a stream of tokens to the Printer. The Printer then

converts these tokens to strings, adds indentation to it and prints the output. Care must be taken

to place the annotation tokens at the correct position so that they appear exactly above method

and variable declaration and with the correct amount of indentation. This can be done by

traversing through each node and finding the method nodes and variable nodes, then adding

these annotation tokens as a child node to the method node or variable node just before the

existing tokens of the method or variable nodes.

Annotations must contain @also in the child class method, if same method exists in

parent class and child class. This can be done by keeping track of all the classes in parent and

child classes and their methods. If a same method exists in parent and child class, then a prefix

 9

also is added to the block annotation generated. If no common method exists in parent and child

class, then the prefix defaults to an empty string.

 10

CHAPTER THREE: THE SOLUTION APPROACH

Introduction

This chapter discusses the key implementation details of JML Template Generation. ANother

Tool for Language Recognition (ANTLR) is used to generate a Lexer, a Parser, and a TreeParser

and to transform the AST generated after the parsing phase.

ANTLR is a tool that generates the parser that uses LL(*) parsing. In order to generate

these, ANTLR takes a context-free grammar expressed using EBNF as input that specifies a

language.

Why ANTLR?

The JML Template Generation tool is designed using ANTLR, thus making it a standalone tool.

ANTLR is self-contained with several methods to modify the AST with ease. The main

alternative to building a standalone tool would be to build the tool using the OpenJML

infrastructure. However, designing a tool with OpenJML makes it depend on other parts of

OpenJML. If the tool has to be updated in future, these dependencies would make it harder to

update the tool. On the other hand, if OpenJML must be updated in any case, making the tool

depend on OpenJML may be a way to have the tool stay in sync with updates to Java (and

OpenJML). On the other hand, it is easier to maintain a software with fewer dependencies on it

when compared to a software with more dependencies. Maintaining and updating this tool

designed with ANTLR will be easier, as updating the tool only requires one to replace the Lexer,

 11

the Parser and the TreeParser files with an updated version of these files generated with an

updated grammar file.

Architecture

Key components of JML Template Generation are a Lexer, a Parser, a TreeParser which are

generated by ANTLR and a Transformer which adds annotations as tokens and a Printer which

adjusts positioning and spacing of the JML file.

ANTLR Generated Java Lexer

The ANTLR generated Java Lexer is built on top of the lexical rules present in the grammar file

which is passed to ANTL. A Lexer breaks an input stream of characters sent to it into tokens.

In the grammar file used to generate a Lexer, lexical rules are defined. These rules

defined in the lexical grammar are implicitly matched to the input stream of characters. The

following rule defines a rule called COMMENT, if the characters are matched to this rule then they

are ignored.

Figure 5 Lexer rule for a Comment

This rule, defined in the grammar file, will generate a part of the Lexer. The generated code

would appear as a method called mCOMMENT(). The generated method is shown in Figure 8.

The above lexical rule treats text in between /* and */ as a comment. {greedy=false;}

implies the author wants the sub-rules that loop, which appear as (..)* and (..)+, to not exit

 12

until they see a lookahead consistent with what follows the loop [7]. The notation

$channel=HIDDEN tells ANTLR to have the lexer generate a token, but to hide the token from

the parser by adding it to a hidden channel.

In a lexer, typically white spaces, comments and any other content which does not have a

semantic value are removed by the Lexer. In lexical rules, a skip command notifies the Lexer to

throw out the current text and get the next token. A lexical rule where the skip command is used

is shown in Figure 7.

Figure 6 Example of a lexical rule where a skip command is used

The skip command prevents the generation of a token, unlike $channel=HIDDEN, which

generates the token but hides it from the parser. In some grammar files, $channel=HIDDEN and

skip are enabled using a condition. The user must change the condition values to either generate

the token or hide the token from the Parser.

Figure 7 Example that uses a condition to prevent generation of the token or hide the token from

parser.

 13

Figure 8 mComment() method generated for the Lexer

 14

ANTLR Generated Java Parser

The job of the ANTLR generated parser is to determine what sequences of tokens are valid. The

Parser receives the stream of tokens and organizes these tokens into a sequence as defined in the

grammar. If the language is used as defined in the grammar, then the Parser will recognize the

series of tokens and group them together to make ASTs. An error is issued if the series of tokens

issued by the parser does not match the grammar.

The Parser converts these valid sequences of tokens into an AST. Symbol tables are

generated by the Parser that contains information about the tokens. Symbol tables are used for

type checking and generation of object code.

The Parser consists of a set of rules defined in the grammar file passed to ANTLR. A rule

may be a basic rule or the one which may contain alternatives. A rule is defined by one or more

alternatives terminated with a semicolon. A Basic rule is defined by one. For example, a basic

rule is shown in Figure 9. A rule with more alternatives is shown in Figure 10.

Figure 9 Basic Parser rule

 15

Figure 10 Parser rule with alternatives

Alternatives can be a basic rule, a list of rules or empty. A rule with an empty alternative is

shown in Figure 11.

Figure 11 Parser rule with an empty alternative.

A TreeParser is generated by ANTLR from a grammar for the TreeParser

(TreeParser.g). This TreeParser uses the AST generated by the TokenParser to traverse it and

check for syntax errors. The TreeParser expects the AST generated from the TokenParser (which

is generated using Java.g) as an input.

AST and tokens are passed into JavaTransformer to modify the AST and add

annotation blocks to the code before variable and method declarations. JavaTransformer will

be discussed in details in later sections.

 16

Design of the Tool

For convenience, the design of the tool is categorized into the design of the User Interface (UI)

and the design of the core part of the tool. Each is covered in a separate subsection below.

UI of the tool

The UI of the tool is designed using Java Foundation Classes (JFC). JFC is a Graphical User

Interface Toolkit which is the successor of Abstract Windowing Toolkit (AWT). AWT and

Swing are used to develop the UI of the tool. Swing is a Graphical User Interface Widget Toolkit

for Java [10].

Figure 12 Class Hierarchy of Swing GUI classes (adapted from [9])

Figure 12 shows the class hierarchy of Swing GUI classes. There are two groups of classes

Containers and Components. A container holds components and other classes. JFrame,

JDialog and JApplet are three top-level containers in Swing.

 17

Figure 13 JML Template Generation UI - using JFC

Figure 13 shows the UI of the tool. This UI contains a Frame (title set to JML Template

Generator), MenuBar, text component and a button. MenuBar provides options to open existing

Java files located in the file system and to save the JML Template generated to the file system

with a .jml extension (done using JFileChooser which is a swing component). Input is

provided by selecting a desired Java file from the file system. Once the input is provided, then

the JML Template is created by pressing the “Create Template” button (done using JButton, a

swing component). Figure 14 shows the JML Template generated. The User can either get the

annotations for the entire Java source code provided or get annotations for only a selected

portion of the code. Annotations for the entire source code are generated by default. If a specific

portion of the Java source code is selected and then Create template button is clicked, then the

annotations are generated for only the selected portion of the Java source code.

 18

Figure 14 Final JML Template generated

Figure 15 shows the JML Template generated for the selected portion of the source code.

After the template is generated it can be exported and saved as a .jml file in the file system by

clicking on the Save button on the MenuBar. Clicking on the Save Button creates a .jml file

with the same name as the Java source file provided as input and is saved in the same directory

as the Java source file. If a different name or different location has to be provided for the .jml

file, it can be done by clicking on the Export File button in the MenuBar. Figure 16 shows the

template being saved as a .jml file when Save button is clicked and Figure 17 shows the

template being saved as a .jml file when Export File button is clicked.

After selecting a specific location for the file to be saved, a new file is created at the

location and the contents of the text component where annotations are generated are taken and

written into the newly created file and then saved with the file name as given by the user.

 19

Figure 15 JML Template generated for selected portion of Java source code.

Figure 16 JML Template generated and saved using Save button

 20

Figure 17 JML Template generated and saved using Export File button

Core

The Core of the tool’s architecture consists of the classes and methods used to add annotations to

the Java source code. This process runs in the background as soon as the user provides the input

and clicks on the Create Template button.

Once the Create Template button is clicked, the input from the text component is

provided to the convert() in Maincore.java. If a specific portion of the Java source code is

selected and the Create Template button is clicked, then the entire input from the text component

along with the starting line number from which the code is selected and the ending line number

are sent to the convert() in Maincore.java. If the code is not selected, then the entire Java

source code and -1 and -1, which indicates the entire Java source code to be converted, are sent

as the starting line and ending line to convert() in Maincore.java.

 21

The Java source code is passed into convert() as a string. This string is passed into

ANTLRStringStream which takes the string and copies it into a local array and the values from

the array are taken and converted into a CharStream, a source of characters for an ANTLR

Lexer. CharStream input is passed to the JavaLexer, further this Lexer is consumed by

TokenRewriteStream as a TokenSource (a source to provide the sequence of tokens).

TokenRewriteStream gives the flexibility to modify tokens. TokenRewriteStream

provides a stream of tokens, accessing tokens from a TokenSource, this stream of tokens is

consumed by the JavaParser.

CommonTree tree = (CommonTree) parser.javaSource().getTree();

This line of code generates the AST. For example, let us take a simple Java source code shown in

Figure 18. The AST for this Java source code is shown in Figure 19.

Figure 18 Simple Java source code example

 22

Figure 19 AST generated for Java source code in Figure 18.

Once the AST is generated it has to be passed to the TreeParser to validate it. TreeParser

(JavaTreeParser) consumes a stream of tokens as input. The generated AST is passed into

CommonTreeNodeStream and then converted into TokenStream (stream of tokens) using

setTokenStream() of CommonTreeNodeStream., an error is thrown if there are any syntax

errors. If there are no syntax errors then the tree (AST), tokens along with the starting line

number and ending line number of the source code are passed to the JavaTransformer where

the AST is modified by inserting annotations as tokens. Once the AST is modified the stream of

tokens are passed to the JavaPrinter. These tokens are then converted to a string; indentation is

provided and then printed to the UI.

 23

Code

The Heart of the JML Template Generation tool is the JavaTransformer which modifies the

AST by adding the annotation tokens before variable and method declarations. The AST is

modified by passing the tree, tokens, starting line number and ending line number of the selected

Java source code to JavaTransformer and then invoking the modifyTree().

The method isClassNode() returns a boolean. If the current node is a class node, then it

returns true.

The method isMethodNode() returns a boolean. If the current node is a method node, then it

returns true.

The method isInSelectedCode() return a boolean. It checks whether the current node is

among the selected lines of code.

The method genBlockComment() and genLineComment() are used to generate single line

and multi-line annotations as tokens.

On invoking modifyTree(), that method initializes a HashMap where the key is expected to be

the name of the class and the value is the set of methods in that particular class. To get the list of

methods for each class, the tree and the HashMap are passed to getAllClassMethods(). This

method traverses through the entire tree and checks for class nodes using isClassNode(). If

the node is a class node then it’s child nodes are traversed to find the list of methods, it checks

for a method node using isMethodNode(). If it is a method node then it is added to the set

which contains the list of methods for the specific class, if the node is a class node then

getAllClassMethods() is called. getAllClassMethods() is called recursively until all

the methods for each class is added into the set. Once all the methods for each class is added into

 24

the HashMap buildComment() is called. This method traverses through the entire tree and

checks if the current node is a method node or a constructor node using isMethodNode() and

isConstructorNode(). If the node is a method or constructor, then it checks if the current

node is among the selected lines of code using isInSelectedCode() or else it checks if the

current node is a variable node using isVariableNode() and if it is true it checks whether the

current node is among the selected lines of code. If the current node is found out to be a method

node or a constructor node or a variable node, then the first token of that node is grabbed using

getFirstToken() and annotations are generated using genBlockComment() and

genLineComment() based on the node and these annotations are inserted as token before the

first token. If the current node is found out to be a method or a constructor node and is among the

selected lines of code, then the node is checked to see if the same method exists in the parent

class of the node using isOverriddenMethodNode(). If the parent class method exists then a

prefix also is added to the block comment token. These tokens can be modified easily as these

tokens are an instance of TokenRewriteStream. The AST for Figure 18 after inserting

annotations are shown in Figure 20. The modified stream of tokens is then passed to the Printer.

In the Printer, these tokens are converted into strings and indentation is added to the string and

printed on the UI.

 25

Figure 20 AST of Figure 18 after inserting annotations

Tests

JML Template Generation is tested by writing JUnit tests. Tests are written to check whether

annotations are generated before variable and method declaration. A JUnit test for the Template

generated in Figure 14 is shown in Figure 21.

Figure 21 A JUnit test for the Template generated in Figure 14

 26

Result for the JUnit test is shown in Figure 21 is shown in Figure 22.

Figure 22 JUnit test results for Figure 21

 27

CHAPTER FOUR: DISCUSSION

Organization of code

The JML Template Generation project has source files organized into src, lib and test

folders. src contains three packages: jml.template.core where all the core code like the

Lexer, the Parser, the Transformer and the Printer is placed, jml.template.ui contains the

code for UI, jml.template.test contains test cases for the Java programs place in the test

folder of the project. Lib folder contains a set of external jar files used for the project and test

folder contains few examples of Java programs that will be used for the Junit tests.

Other issues

The JML Template Generation tool can be made to work with next versions of Java by

generating Lexer and Parser with the updated grammar file (Java.g). By generating a Lexer and

a Parser from the updated grammar file (Java.g) all the rules for the Lexer and the Parser are

updated. The TreeParser can also be updated by using an updated grammar file for the

TreeParser (TreeParser.g) and then generating TreeParser with the updated grammar file.

Future Work

The JML Template Generation tool creates a template for Java files. This tool accepts Java files

as input and generates annotations for all the method declarations and variable declarations. This

work can be extended by adding the feature of generating missing annotations for JML files. A

JML file can be given as an input; the output is a JML file with missing annotations generated

for methods and variables declared. Another feature that can be added in future would be,

 28

generating specification skeleton files for an entire directory that contains Java files. The

directory where the Java files are present are to be passed as input, and the JML Template

Generation tool should generate specification skeleton files for the Java files present in the

directory and saved with the file name same as the Java file name but with a .jml extension.

 29

CHAPTER FIVE: CONCLUSION

The JML Template Generation tool automates the mundane task of going through several steps

to add annotations to variables and methods. Annotations can be even generated for the selected

part of Java source code. As it is a standalone tool, future works can be easier to implement and

the cost of implementing the future work, cost of maintaining the JML Template Generation tool

would be relatively less when compared to the other tools.

 30

APPENDIX: SOURCE CODE

 31

Figure 23 Source code MainCore.java

 32

Figure 24 Source code JavaTransformer.java Part a

 33

Figure 25 Source code JavaTransformer.java Part b

 34

Figure 26 Source code JavaTransformer.java Part c

 35

Figure 27 Source code JavaTransformer.java Part d

 36

Figure 28 Source code JavaTransformer.java Part e

 37

Figure 29 Source code JavaPrinter.java

 38

Figure 30 Source code MainDisplay.java Part a

 39

Figure 31 Source code MainDisplay.java Part b

 40

Figure 32 Source code MainDisplay.java Part c

 41

Figure 33 Source code MainDisplay.java part d

Figure 34 Source code JOpenFileDialog.java

 42

Figure 35 Source code JSaveFileDialog.java

 43

Figure 36 Source code JButtonMenu.java

 44

REFERENCES

[1] Gary T. Leavens, Albert L. Baker, and Clyde Ruby. Preliminary design of JML: A

behavioral interface specification language for Java. Technical Report 98-06i, Iowa State

University, Department of Computer Science, February 2000. See

www.cs.iastate.edu/~leavens/J ML.html.

[2] Gary T. Leavens, Yoonsik Cheon. Design by Contract with JML.

[3] Gary T. Leavens, Erik Poll, Curtis Clifton, Yoonsik Cheon, Clyde Ruby, David Cok,

Peter Müller, Joseph Kiniry, Patrice Chalin, and Daniel M. Zimmerman. JML Reference

Manual (DRAFT), May, 2013.

[4] Patrice Chalin, Joseph R. Kiniry, Gary T. Leavens, and Erik Poll. Beyond Assertions:

Advanced Specification and Verification with JML and ESC/Java2. In Formal Methods

for Components and Objects (FMCO) 2005, Revised Lectures, pages 342-363. Volume

4111 of Lecture Notes in Computer Science, Springer Verlag, 2006.

[5] JMLSPEC tool : http://www.eecs.ucf.edu/~leavens/JML-release/docs/man/jmlspec.html

[6] MultiJava Project : http://multijava.sourceforge.net/

[7] ANother Tool for Language Recognition Reference Manual:

http://www.antlr3.org/share/1084743321127/ANTLR_Reference_Manual.pdf

[8] Using ANTLR: https://theantlrguy.atlassian.net/wiki/display/ANTLR3/Using+ANTLR

[9] Java Foundation Classes: https://docs.oracle.com/javase/tutorial/uiswing/

[10] Swing (Java): https://en.wikipedia.org/wiki/Swing

[11] Eclipse Help: Formatting Java code.

[12] Graph visualization software: https://mdaines.github.io/viz.js/

http://www.cs.iastate.edu/~leavens/J%20ML.html
http://www.eecs.ucf.edu/~leavens/JML/jmldbc.pdf
http://www.eecs.ucf.edu/~leavens/JML/jmlrefman/jmlrefman_toc.html
http://www.eecs.ucf.edu/~leavens/JML/jmlrefman/jmlrefman_toc.html
http://www.eecs.ucf.edu/~leavens/JML-release/docs/man/jmlspec.html
http://multijava.sourceforge.net/
http://www.antlr3.org/share/1084743321127/ANTLR_Reference_Manual.pdf
https://theantlrguy.atlassian.net/wiki/display/ANTLR3/Using+ANTLR
https://docs.oracle.com/javase/tutorial/uiswing/
https://en.wikipedia.org/wiki/Swing
http://help.eclipse.org/neon/index.jsp?topic=%2Forg.eclipse.jdt.doc.isv%2Fguide%2Fjdt_api_codeformatter.htm
https://mdaines.github.io/viz.js/

	University of Central Florida
	
	JML Template Generation
	2017
	Kushal Raghav Poojari
	STARS Citation

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF ACRONYMS
	CHAPTER ONE: INTRODUCTION
	Background on JML
	The Need for JML Template Generation
	JMLSPEC
	Problem with Jmlspec

	Approach for New Design
	Overview of the Thesis

	CHAPTER TWO: THE PROBLEM
	CHAPTER THREE: THE SOLUTION APPROACH
	Introduction
	Why ANTLR?
	Architecture
	ANTLR Generated Java Lexer
	ANTLR Generated Java Parser

	Design of the Tool
	UI of the tool
	Core

	Code
	Tests

	CHAPTER FOUR: DISCUSSION
	Organization of code
	Other issues
	Future Work

	CHAPTER FIVE: CONCLUSION
	APPENDIX: SOURCE CODE
	REFERENCES

