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ABSTRACT

Flow cytometry is a popular analytical cell-biology instrument that uses specific wavelengths of

light to profile heterogeneous populations of cells at the individual level. Current cytometers have

the capability of analyzing up to 20 parameters on over a million cells, but despite the complexity of

these datasets, a typical workflow relies on subjective labor-intensive manual sequential analysis.

The research presented in this dissertation provides two machine learning methods to increase the

objectivity, efficiency, and discovery in flow cytometry data analysis.

The first, a supervised learning method, utilizes previously analyzed data to evaluate new flow

cytometry files containing similar parameters. The probability distribution of each dimension in a

file is matched to each related dimension of a reference file through color indexing and histogram

intersection methods. Once a similar reference file is selected the cell populations previously clas-

sified are used to create a tailored support vector machine capable of classifying cell populations

as an expert would. This method has produced results highly correlated with manual sequential

analysis, providing an efficient alternative for analyzing a large number of samples.

The second, a novel unsupervised method, is used to explore and visualize single-cell data in an

objective manner. To accomplish this, a hypergraph sampling method was created to preserve

rare events within the flow data before divisively clustering the sampled data using singular value

decomposition. The unsampled data is added to the discovered set of clusters using a support

vector machine classifier, and the final analysis is displayed as a minimum spanning tree. This tree

is capable of distinguishing rare subsets of cells comprising of less than 1% of the original data.
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CHAPTER 1: INTRODUCTION

Over the last century and a half, our understanding of the function and structure of the human im-

mune system has grown tremendously. However, in the last 50 years, this knowledge has exploded

due to the development of high dimensional flow cytometry. Flow cytometry is a popular analyt-

ical cell-biology technique that uses specific wavelengths of light to profile cell suspensions on a

single cell basis. Most other analytical techniques are only capable of a population level analysis,

while flow cytometry is capable of analyzing up to 20 parameters on a single cell. This high-

resolution dataset arguably makes flow cytometry the most powerful tool to study cell phenotypes,

identify antigen-specific cells, tumor-specific cells, understanding cell physiology, and developing

new vaccines and therapeutics. However, there are drawbacks.

Despite the complexity of cytometry datasets, a typical workflow relies on subjective labor-intensive

manual sequential analysis. In this method, one-dimensional histograms or two-dimensional dot

plots of the data are generated. Within these plots, the researcher visually identifies the populations

of interest. A gate (polygon) is drawn, simply using a mouse on the computer screen, to encom-

pass the cells that require further analysis. While there are a plethora of different computational

methods that can produce similar results none fully replicate the manual gating that has been the

standard for over half a century. Because of this investigators still rely on manual methods of

data analysis to keep statistics consistent over decades of historical experiments. We developed a

histogram matched support vector machine gating method to overcome this.

Histogram matched support vector machine, a supervised learning method, utilizes the vast amount

of previously analyzed data to analyze new flow cytometry files containing similar parameters. The

probability distribution of each dimension in a file to be analyzed is matched to each related dimen-

sion of a reference file through color indexing and histogram intersection methods. Once a similar
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reference file is selected the cell populations previously classified are used to create a tailored

support vector machine capable of classifying cell populations as an expert analyst would. This

method has produced results that are highly correlated with those of manual sequential analysis,

providing an efficient alternative for analyzing a large number of samples.

Illustrating the usefulness of the histogram matching support vector methodology a cell viability

analysis algorithm is presented. Using the light scattering properties of the cells (forward and

side scatter) measured by the flow cytometer, live cell events can be classified and viable cells per

mL are calculated. This method counted viable cells with a correlation coefficient of 0.97 and

less than a 20% difference compared to manual cell viability counting. This method was also the

most reproducible when compared to three commercially available instruments with less than a 5%

coefficient of variation.

Another drawback of high-dimensional flow cytometry data analysis is the lack of data exploration.

Manual gating is performed on only one or two dimensions at a time, limiting the ability to explore

every cell population over all dimensions fully. This restricts the possibility of discovering new

cell phenotypes. Current visual methods that aim to explore and visualize the dataset rely on user-

defined parameters such as the number of cell populations. These methods also use sampling or

clustering methods that introduce stochastic variation into the results making them unreproducible

from run to run. The second machine learning method presented aims to address these problems.

A novel unsupervised method is used to explore and visualize single-cell data in an objective

manner that is free of user-defined parameters. A variety of exploratory gating techniques have

been investigated in the past but have seen slow acceptance due to memory resource restrictions,

consistency of results, and the need to rely on user-defined parameters. The goal of this method was

to allow for this exploration of data to be processed on a typical desktop computer. To accomplish

this, the proposed method uses a hypergraph sampling method to preserve rare events within the
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flow cytometry data file before clustering the sampled events using singular value decomposition

as a method to divisively cluster cell populations.

Demonstrating the usefulness of this method files were analyzed from an in vitro culture system

aimed to generated antigen-specific human CD4+ T cell responses. It was possible to differentiate

and visualize the heterogeneity of effector CD4+ T helper cells responding to three different vac-

cine conditions. Th1 and Th17 T helper cells can be visualized within different datasets. These

rare cell populations comprised less than 2% of the cells collected in a 300, 000 event cytometry

file. This novel method should provide a more reliable and standardized approach for the analysis

of today’s high-resolution flow cytometry datasets.

The remainder of the document is organized as followed. Chapter 2 gives background information.

Briefly, the human immune system will be introduced, describing the different cell populations,

cell types, and cellular markers that will be discussed throughout this document. The technique

of flow cytometry including components, traditional data analysis, and common computational

methods will be addressed. Chapter 3 will focus on a supervised learning method called Histogram

Matching Support Vector Machine Gating to capture cell populations as a trained analysis would.

Chapter 4 presents an unsupervised exploratory flow cytometry analysis method able to discover

rare subsets of cells within a dataset visually. Finally, we will take a look at the overall results of

both machine learning methods and explore a few open problems for future work.
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CHAPTER 2: BACKGROUND

Immunology

The immune system is a collection of molecules, cells, and tissues that work together to prevent and

eradicate infections from foreign invaders, such as bacteria, viruses, and parasites. The immune

system can be separated into two distinct lines of defense, innate and adaptive immunity. Innate

immunity is the first to assault an intruder and offers initial protection from pathogens. Epithelial,

phagocytes, natural killer cells, plasma proteins, stomach acidity, and enzymes are all players of

the innate immune system poised to prevent an attack. Adaptive immunity is the second line of

defense against infection. It develops more slowly, but it is capable of a tailored specific attack.

The cells of the adaptive immune system called lymphocytes can specifically recognize at least one

billion different foreign substances called antigens. It is this group of cells that is often the subject

of flow cytometry analysis.

There are two types of adaptive immunity called humoral immunity and cellular immunity, me-

diated by distinct cell populations in defending against extracellular and intracellular pathogens

respectively. Humoral immunity is mediated by proteins called antibodies or immunoglobulins

produced by B lymphocytes. These proteins are capable of neutralizing and eliminating microbes

and toxins. B lymphocytes mature in the bone marrow expressing a unique membrane-bound im-

munoglobulin generated from a random rearrangement of a series of gene segments. If a naı̈ve

B cell is fortunate enough to encounter a foreign antigen capable of binding its immunoglobulin

receptor the signal produced initiates its activation. Once activated, the lymphocyte divides rapidly

and differentiates into an antibody-secreting effector cell. The antibodies generated by these B

cells are very efficient in eliminating extracellular threats, but they do not have access to microbes

that live and divide within cells.
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Defense against intracellular microbes is the territory of cell-mediated immunity and is mediated

by T lymphocytes. T cells, like B cells, also arise in the bone marrow but migrate to the thymus to

mature. T cells consist of two distinct subpopulations; T cytotoxic and T helper cells characterized

by surface cluster differentiation (CD) glycoproteins. T cytotoxic cells display CD8 glycoprotein

on their surface and exhibit cell-killing or cytotoxic activity. Cells infected with intracellular mi-

crobes are killed by CD8+ T cytotoxic cells to eliminate reservoirs of infection. Identified by the

expression of the CD4 glycoprotein on their surface, T helper or TH cells, are involved in activat-

ing macrophages to kill phagocytosed microbes, in the activation and growth of CD8+ T cells, and

in B cell activation. Most T cells have specific receptors that can only recognize foreign antigen

bound to cell membrane proteins called major histocompatibility complex (MHC). Naı̈ve T cells

recognize the antigen-MHC complex on a professional antigen presenting cells (APC), such as

dendritic cells or B cells. These cells express MHC class II molecules on their surface and can

deliver the costimulatory signal necessary for CD4+T cell activation [1, 26, 35].

In a primary immune response, some proliferating B and T cells migrate into a primary lymphoid

follicle where they continue to divide and form a germinal center. Proliferating B cells comprise

the majority of the germinal center lymphocytes with antigen-specific T cells making up approxi-

mately 10%. With T cell help, B cells undergo critical modifications, including somatic hypermu-

tation (altering the variable regions of B cells), affinity maturation (selecting cells with high affinity

for an antigen), and isotype switching (forming antibodies of one of the five different classes). The

surviving B cells of a germinal center reaction then differentiate into plasma cells or memory cells.

Plasma cells secrete antibody at a high rate and eventually migrate to the bone marrow. Memory

B cells are long-lived cells that do not emit antibody but are prime for a secondary attack against

the same antigen [1,26,35]. In addition to their critical role in the adaptive immune system B cells

are also used to generate the specific antibodies needed for flow cytometry.

T cells become activated in response to being presented with peptide antigens by MHC molecules
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expressed on the surface of APCs. When T cells become activated, they divide and produce pro-

teins that modulate the immune system called cytokines. The patterns of cytokines a T cell pro-

duces can be used to differentiate them into different lineages. TH cells, typically express CD4

and can be grouped into at least four lineages. These lineages include TH1, TH2, TH17, and

Treg [17,35,63]. The first two major lineages discovered by Mosmann and Coffman were the TH1

and TH2 subsets [34]. TH1 cells can be identified by their high level of IFN-γ as well as moderate

amounts of IL-2 and TNF-α production. TH1 cells are produced to protect against intracellular

infections. TH2 cells do not produce IFN-γ but tend to produce IL-4, IL-5, TNF-α and to a lesser

degree IL-2. The Th17 lineage was not described until 2003 and are characterized by IL-17 pro-

duction [24, 41]. While these cytokine production profiles are good basic classifications, it has

been shown that the heterogeneity of cytokine patterns within each TH lineage is tremendous and

that differentiation into one lineage dose not preclude the T cell from acquiring the ability to pro-

duce other TH specific cytokines [39]. Cytokine production along with the expression of CD154

or CD40 ligand is associated with the antigen-specific activation of CD4+ T cells. CD154 binds

to CD40 on the surface of APCs, a critical cell to cell interaction for the development of T cell ef-

fector function. The combination of CD154 and cytokines production by T cells during activation

is an essential area of research for vaccine development. Polyfunctional CD4+ T cells, a subset

of antigen-specific CD4+ cells, simultaneously produce multiple effector cytokines and CD154

in response to activation have repeatedly been linked to the positive clinical outcome of vaccine

trials [16, 19, 40, 53]. Identifying and visualizing the differences within the small population of

effector T cells is an important step in further correlating in vitro results to clinical trial outcomes.

Throughout this document many of these cell types will be revisited within the context of an in

vitro, taking place outside of a living organism, human cell culture. While detailed knowledge of

immune cell activation, antibody production, and germinal center formation is not critical for the

continued understanding of this text, it is essential to have an appreciation of the broad diversity of
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different cell types of the immune system and the sophisticated technology that we use to categorize

them.

Flow Cytometry

This popular analytical cell-biology technique uses specific wavelengths of light to profile hetero-

geneous populations of cells at the individual level. Most other analytical methods are capable

only of measuring samples on a population level, highlighting flow cytometry as a unique and in-

dispensable tool in research and clinical applications. Flow cytometers are used ubiquitously in

biomedical research labs (immunology, cancer biology, neurobiology, molecular biology, microbi-

ology), diagnostic laboratories (HIV/AIDS, transplant, tumor immunology), medical engineering

(protein engineering, nanoparticles), and marine and plant biology [13, 18, 38, 44].

Modern flow cytometers consist of three main components; the fluidics system (sheath), optics

(light source lasers, optical path filters, and light collection detectors), and electronics (detector

signal processing, computer interface, data storage, and output). Once cells have been labeled

with specific monoclonal antibodies that have been conjugated to fluorochromes. The fluidics

system takes a suspension of single cells and hydrodynamically focuses it within a stream of fluid

called the sheath. This steam of fluid then intersects the path of the lasers within the optic system.

Detectors built to register specific wavelengths of light collect the light emitted from the fluorescent

particles that label specific physical or chemical characteristics of a cell. These signals are then

amplified and covered to a digital signal that a computer can display for analysis. The emitted light

recorded from each cell creates a pattern of singles unique for different cell types based on what

cellular marker each fluorochrome-antibody combination refers to.

While the hardware and reagents associated with this technology have undergone rapid advance-
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ments over the last several decades, the software used to analyze these dense multidimensional

data sets has not seen the same advancement. In addition to the slower development of analysis

tool, there has been an even slower rate to adopt these techniques stifling this technology from

reaching its full potential.

Figure 2.1: Dot plot of Forward (FSC) versus Side Scatter (SSC). Each dot in this plot repre-
sents a single cell that has been characterized by its size and granularity. These light scattering
characteristics alone can classify multiple cell populations.

Scatter Parameters

Included in the possible 20 or more parameters a flow cytometer is capable of analyzing are sim-

ple light scattering properties of the cell. The ratio between the size of the cell and the laser’s

wavelength alters the scatter of light before reaching the detector. A cell larger than the laser’s

wavelength will show a higher intensity of scattering compared to a call smaller than the wave-

length of the laser. Light scatter measured in the same path as the laser is referred to as forward
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scatter (FSC). FCS is correlative to the diameter of the cell. The second light scatter measurement

is taken as a 90◦ angle to the laser and is called side scatter (SSC). SSC gives information about

the homogeneity or granularity of the cell. Intracellular components of the cell cause light to re-

fract increasing the SSC intensity [55]. By using these two intrinsic characteristics of a cell, it is

possible to classify many cell types of the immune system. Figure 2.1 illustrates this.

Antibodies and Fluorochrome Conjugation

Cell types such as CD4 and CD8 cells have been discussed previously but what does ’CD’ mean?

CD is short for Cluster of Differentiation. Cluster of differentiation or sometimes called cluster

designation or classification determinant is a protocol used to identify cell surface markers to aid

in the phenotyping of immune cells. The discovery of CD markers specific for cell function has

been a primary force in pushing for the increase in flow cytometry dimensionality. CD markers

function for the cells in numerous ways, often as a receptor or ligand. A receptor is a protein

molecule that receives chemical signals to initiate some form of cellular response. A receptor only

binds with ligands of a specific structure, similar to how a lock only accepts a specifically shaped

key. When a ligand of the corresponding structure to a receptor binds, it activates or inhibits some

biochemical pathway. A ligand is a substance that joins with a biomolecule to serve a biologi-

cal purpose. This identification of receptors and ligands associated with cellular functions (cell

signaling, cell adhesion, cell activation, cell inhibition) lead to CD nomenclature we use today.

Established in 1982 to create a universal system of Human Leukocyte Differentiation Antigens

(HLDA) classification [11,14], this method uses monoclonal antibodies (mAbs) generated against

specific epitopes of receptors and ligands of cells. An epitope is an area of an antigen that is rec-

ognized by the immune system. In the context of flow cytometry, this pertains to the ability of

an antibody produced by a B cell to bind to a specific epitope or portion of the target of interest.

Currently, more than 370 CD markers have been identified [64]. A CD marker is identified and
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assigned a number designation once two specific mAb are shown to bind the molecule. CD marker

identification has been a crucial part of the flow cytometry technology. The knowledge of what

makers are or are not present on cells of specific function allows for immunophenotyping.

B cells, a component of the adaptive immune system discussed previously, can create proteins

called antibodies to millions of different epitopes with a broad range of specificity. It is this adap-

tive ability that allows mammals to fight off and resist infection and is also the basis for immun-

odiagnostic assays such as flow cytometry. B cells produce immunoglobulin in five classes: IgG,

IgM, IgA, IgE, and IgD with IgG being used most frequently in flow cytometry and other immune-

based assays. The IgG immunoglobulin is composed of two types of protein chains: light and

heavy. Each IgG molecule consists of two identical light, and heavy chains joined with disulfide

bridges. The two chains can be further broken down into variable and constant regions. The vari-

able domains of the light chain and heavy chain form the antigen binding site. When an animal’s

immune system detects and antigenic substance, the production of polyclonal antibodies is the re-

sult. These antibodies can bind to multiple epitopes of an antigen to offer better detection of the

pathogen by the immune system. However, this ability is a hindrance for immune assays due to

the wide range of binding specificities. To overcome this non-specificity and to reduce the back-

ground of assays monoclonal antibodies were developed. Monoclonal antibodies, in contrast, are

the product of one B cell clone. The antibodies produced by a particular clone will have the same

amino acid sequence in the variable regions of the antigen binding site. Therefore every antibody

will behave identically in an immuno-based assay [18, 35, 55].

Conjugating, or attaching, particles that illuminate under specific wavelengths to monoclonal an-

tibodies is what gives flow cytometry the power to phenotype individual cells of a heterogeneous

mixture. A fluorochrome is a molecule that absorbs light energy of a specific wavelength and

then reemits light of a longer wavelength. When a photon of energy from the laser of the flow

cytometer hit a fluorescent molecule, an electron of the fluorochrome is promoted from its ground

10



energy state (S0) to a higher unstable energy state (S1). In this brief process, the electron loses

some of the absorbed energy as heat (vibrational energy) as it begins to fall back to (S0). As the

electron returns completely to (S0), light is emitted at a longer wavelength than was absorbed [30].

The difference in the wavelength of light causing excitation and the wavelength of light emitted

from the fluorochrome is called the Stokes shift. Fluorochromes are engineered to have a specific

Stokes shift to utilize one laser but emit at wavelengths different enough to be detected as inde-

pendent signals by the detectors [55]. It is crucial to select fluorochromes whose excitation and

emission spectra work optimally together with the particular laser/detector combinations of the

flow cytometer. The use of multiple lasers each surrounded by many detectors able to record the

emission of these chemically engineered fluorochromes is what gives flow cytometers the ability

to measure multiple parameters on or in a single cell.

Data Pre-processing

Data output from the Flow Cytometer is organized into a file termed Flow Cytometry Standard

(FCS) data file. The FCS file format has been developed and maintained by the International

Society for Advancement of Cytometry (ISCA) [6]. The raw data within the FCS file is saved as

a two-dimensional array. Each event (cell) forms the rows and with their raw fluorescence and

scatter data represented as floating point or double precision floating point values in the columns.

A second two-dimensional array is also stored within this data file representing the fluorescence

spillover matrix needed for compensation.

All of the following pre-processing steps outlined in the following subsections have been applied

to the flow cytometry data presented within this document.
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Compensation

Each fluorochrome molecule used in flow cytometry has an excitation and an emission spectra.

The excitation spectrum is the range of wavelengths that will cause the molecule to emit light.

The emission spectrum is the range of wavelengths of this emitted light. It would be wonderful

if every fluorochrome’s excitation and emission spectra both consisted of a very narrow range

of the light; however, fluorochrome chemistry is not perfect. Fluorochromes can be excited by

multiple wavelengths and have emission picked up by multiple detectors causing spectral overlap.

Fluorochrome combinations can be optimized to minimize this spectral overlap, but when using a

high dimensional staining panel fluorochromes will often contribute signal on more than only their

intended detector. To combat this, it is vital that with each analysis a series of control samples

stained with only one of the fluorochromes used in the analysis is run on the cytometer. This

quantifies unintended signal contributions from each fluorochrome on every detector. From this

data, a matrix of relative spectral overlaps of each fluorochrome can be calculated. This data is

typically stored within the FCS data file as a spillover matrix. This matrix specifies the values to

calculate the compensated data from the raw fluorescence values held in the main data array. Each

cell recorded by the cytometer is then multiplied by the inverse of this spectral overlap matrix to

obtain its corrected emission estimates for each fluorochrome [48, 50]. However, cells with none

or very low emission levels can be corrected to have negative fluorescence calculations. It is this

characteristic of flow cytometry data that necessitates the need for data transformation.

Data Transformation

Most flow cytometry applications that use parameters beyond light scatter, FCS and SSC, require

some method of data transformation to display cell populations adequately. After compensation

is applied to account for spectral overlap, it is possible for values at the low end of the fluores-
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cence range to become negative. Due to this a simple log transformation cannot accommodate

these negative or zero values, and cell populations with low values appear squished to the axis.

To display these cell populations accurately, a subset of biexponential functions called a Logicle

scaling function has been developed for use in flow cytometry [42]. This transformation allows

negative values and those close to zero to be displayed in the linear range [18, 37, 42, 56]. This

method of data transformation is available and implemented as the default transformation function

on analysis software such as FlowJo, Bioconductor, and Cytobank [21, 27].

Doublet Discrimination

Doublet events are the consequence of two cells becoming physically attached to each other, or

two cells passing through the cytometer so close together that they are processed as a single event.

When this happens with two cells of different phenotypes a population of cells can be produced

that becomes misleading when interpreting the data. Therefore, doublets should be removed to

generate the most accurate and sensitive analysis. The optical detectors that are used to detect

fluorescence are called photomultiplier tubes (PMTs). PMTs read the light scatter of a cell or the

light emitted from a fluorochrome. The PMT voltage can be increased or decreased to adjust for

cell size or fluorescence intensity. A voltage pulse is processed by a detector for every cell that

flows through the cytometer and is defined by area (A), height (H), and width (W ). W is the

time that the cell took to go through the laser’s path and is proportional to the cell’s size and the

duration of the signal but is not impacted by PMT voltage. H is the intensity of the signal and is

impacted by the PMT voltage. By using A = H ×W doublets can be discriminated by detecting

discrepancies between H , W , and A [62]. Seen in the first dot plot of figure 2.2 doublets (events

outside of the polygon gate) have approximately double the A while H is the same.
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Data Standardization

While data standardization is not a necessity in manual flow gating, it is generally required when

using computational and machine learning methods. Light scattering parameter values typically

fall on a scale of zero to 250, 000 while fluorochrome values, after compensation, will typically

be on a scale exceeding these boundaries. For example, the average range of the fluorochrome

parameters scale in figure 2.2 is−2, 000 to 265, 000. However, even the scales of the fluorochrome

parameters can differ due to PMT voltage settings, fluorochromes used, and compensation. Having

the scale of all data parameters standardized ensures that every parameter is viewed equally in

subsequent computational steps such as support vector machine classification and singular value

decomposition. Because in singular value decomposition we are interested in what components

contribute most to the variance of the data z-score shown in equation 2.1 was selected over other

methods of standardization such as Min-Max scaling. The z-score of a single value x is calculated

by finding the mean, µ, and the standard deviation, σ, of all data points for a parameter. This

standardization is done for every parameter of the dataset.

z =
x− µ
σ

(2.1)

Manual Sequential Gating

The most popular method of flow cytometry analysis is manual sequential gating or hierarchical

gating. This method uses one-dimensional histograms or two-dimensional dot or contour plots to

visualize the data. From these plots, a researcher manually identifies populations of interest. A

gate (polygon) is drawn, using a mouse on the computer screen, to encompass cells that require

further analysis. Figure 2.2 shows an example gating strategy used in a ten-parameter FCS file
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to analyze the CD4+ T cell population’s cytokine production profile. During this analysis, the

researcher must draw on previous experience and knowledge of cellular markers and function to

choose what parameters will best define the final cell population of interest during each hierarchal

step of the analysis. Due only to the subjectivity of this analysis method, variation in the final

quantitative cell population statistics has been shown to be between 17− 44% [7].

Figure 2.2: Manual analysis path is describing the gating strategy of a ten-parameter FCS file. The
black polygon gates where drawn manually. The events captured within these gates are then se-
lected to move to the next hierarchical gating step with the final goal of visualizing what cytokines
are being produced by live, activated, CD4+ T cells. These effector T cells are seen in the double
positive quadrants of the second row of dot plots.

In addition to being a main contributing factor of experimental variability, manual gating can not

truly explore all possible event populations within a high dimensional data set. If two-dimensional

plots are used to explore a ten-dimensional data set, there will be 45 possible combinations for
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gating the fist population alone. Every subsequent analysis step offers the same number of combi-

nations to explore. The number of theoretical analysis pathways grows quickly to reach thousands

of possibilities even with a modest number of sequential analysis steps. Seen in figure 2.3 are

CD4+ T cells displayed using Cytokine vs. CD154 dot plots. Using this method of analysis and

visualization, it is impossible to determine what T cells are simultaneously making what combi-

nation of cytokines. This highlights the need for computational exploratory analysis methods as

means of novel cell population discovery.

Figure 2.3: By only using dot plots it is not possible to display T cell ploy-functionality.
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Current Computational Analysis Methods

Technological advances in lasers, detectors, monoclonal antibodies, and fluorochromes have al-

lowed for the generation of flow cytometry data many orders of magnitude larger than in the past.

Despite great analytical advancements, the adoption of computational analysis methods has been

slow. While the numbers of parameters that can be measured on a signal cell have been increasing

the primary method of analysis used in research is still simple manual sequential gating. This it-

erative process plots cells as two-dimensional scatterplots and based on experience, intuition, and

a little bit of luck, the user defines a population of cells to be the focus of further analysis. This is

done iteratively until the anticipated cell population is discovered. Manual analysis has been shown

as the major source of variability in flow cytometry analysis. In a published study analyzing the

causes of variability of flow cytometry, cells were identically cultured and stained and distributed

to 15 laboratories to be acquired on their cytometers and for the resulting data to be analyzed. The

coefficient of variation (CV) between the laboratories was 17-44% [7]. With this amount of vari-

ation coming from identical samples, it should be apparent why standardized automated analysis

techniques need to be adopted. Despite such a clear need, the lack of easily accessible, executable,

and understandable automated analysis methods has made researchers reluctant to switch practices.

Clustering

Clustering methods seek to identify a natural grouping of objects or with flow cytometry data, cells

that have some shared combination of characteristics. Identifying a cluster is not a simple task due

to that no definitive definition for a cluster even exists. Just as seen in a manual analysis of flow

cytometry data, one person’s or algorithm’s interpretation of what defines a cluster can differ from

another’s.
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K Means

The K means algorithm was the first in the literature to be used for the automated analysis of

flow cytometry data [36]. While this method is easy to implement, quick to classify items into

populations, and used with promising results in many fields, its application in flow cytometry

analysis is limited. In its most simplistic implementation, it is limited in that the number of clusters

must be specified by the user and the clusters discovered are limited to spherical populations.

FlowPeaks and flowMean modified the traditional K means algorithm to allow the cluster number

to be discovered and to create non-spherical cell populations [4, 20].

FLOw Clustering without K (FLOCK) uses a density-based clustering method to identify cell

populations similar to K means. FLOCK uses a grid-based partitioning method to identify the

densities of data points within the multidimensional data space of the FCS file [3,46]. This method

has seen greater use and is now part of the Immunology Database and Analysis Portal (ImmPort:

http://www.immport.org). It is the main FCM analysis software developed in the context of the

Bioinformatics Integration Support Contract (BISC) by the NIH National Institute of Allergy and

Infectious Diseases [12].

Model-Based Methods

The vast majority of automated gating approaches rely on modeling the data by using some para-

metric representation of its distribution. This is typically done with an unsupervised learning

algorithm such as expectation maximization to fit the data to the model parameters. The methods

follow a similar methodology of assuming the data is a collection of a finite number of populations

(many times with this number input by the user), and that the data within each population can

be defined using a standard statistical model. The use of a Gaussian mixture model (GMM) in

18



conjunction with an expectation-maximum (EM) algorithm is a conventional model-based cluster-

ing approach that has shown advantages over manual gating. Algorithms that use a model-based

method to identify cell populations include FLAME, flowClust, flowMerge, flowGM, immuno-

Clust and SWIFT [31, 45].

Visualization

Methods that aid in both visualization and population discovery have been the most well-adopted

among flow cytometry computational methods. Often still used in parallel with manual gating,

these methods have aided in the discovery of new cell types and have helped us better understand

of the heterogeneity of immune cells.

SPICE

SPICE is an analysis software developed for the quantitative analysis of polychromatic flow cy-

tometry data and is used in conjunction with manual sequential analysis [49]. Despite its reliance

on manual gating, this method is among the top methods to visualize and quantify phenotypic

profiles within cell populations. Using basic Boolean logic (AND, NOT) over several markers of

a cell population during manual gating analysis, it is possible to determine the co-expression of

these markers. This method is often used in vaccine research and development to quantify poly-

functional CD4+ or CD8+ T cells, due to their presence correlating positively to protection after

vaccination [17,40,53]. Figure 2.4 shows piecharts generated by SPICE from manually gated FCS

files with Boolean logic gating. Here CD4+ T cell cultures are analyzed for effector function. The

slices of the pie charts represent the number of different cytokines (1-5) T cells are producing, and

the arcs identify the specific cytokines. These charts display the same data as in figure 2.3 but with

the ability to visualize T cell polyfunctionality.
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Figure 2.4: Graphical output from the SPICE analysis software. The pie charts in the second row
represent the total CD4+CD154+ T cell population of each culture condition. The pie charts in the
first row show the small fraction of these T cells which are also producing cytokines.

SPADE

Spanning-tree progression analysis of density-normalized events or SPADE is an unsupervised

visualization method that converts multidimensional single-cell data down to a two-dimensional

network of a user-defined number of interconnected cell populations. This method contains four
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analysis steps. First, SPADE samples the dataset using user-defined thresholds for the cell density

within the multidimensional space that identifies an outlier verses a cell population or target den-

sity. Cells that fall below the specified outlier density are not sampled, cells falling between outlier

and target densities are all sampled, and those with a local density above the target density are

randomly sampled to meet the target density. Next, a hierarchical amalgamative clustering method

is used to iteratively group similar cells (based on distance matrix) into clusters until the number

of clusters matches that which the user has defined. Third, a minimum spanning tree is created

from the discovered clusters based on their median marker values. Finally, SPADE places all the

cell from the original data into the cell cluster that its nearest neighbor belongs to [47]. Figure 2.5

shows the SPADE tree representation of the same data manually gated in figure 2.2. The target and

outlier density was set so 10, 000 events would be sampled from the LVS FCS file, and the number

of clusters was set to 100.

viSNE

viSNE currently is the most widely used method to visualize flow cytometry data. Using a tech-

nique called t-stochastic neighbor embedding (t-SNE), data points in high dimensional space are

assigned a new position within a two or three-dimensional space [61]. In brief, the computational

steps include [61]:

1. Uniform random sampling of 6, 000 - 12, 000 cells

2. Calculation of a pairwise distance matrix in high-dimensional space

3. Transformation of the distance matrix to a similarity matrix based on the probability that Xi

will be a neighbor with Xj

4. Random mapping of data points into a two or three-dimensional space calculating its simi-
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larity matrix

5. Minimization of the divergence between the high and low probability distributions using

gradient descent to generate the final two or three-dimensional mapping

Figure 2.6 shows viSNE’s representation of the same data manually gated in figure 2.2. These data

plots were generated using Cytobank, a subscription cloud-based flow cytometry analysis tool,

implementation of the viSNE algorithm [27]. The FCS data was gated previous to this analysis

to exclude doublets, dead cells, and debris. The number of events selected for uniform random

sampling was set at 10, 000 from the remaining 272, 030 of the FCS file.
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Figure 2.5: Graphical output from the SPADE algorithm implemented in Cytoscape. The target
and outlier density was set so 10, 000 events were sampled from the LVS FCS file, and the number
of clusters was set to 100. Data was gated previous to this analysis to exclude doublets, dead cells,
and debris.
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Figure 2.6: Graphical output from the viSNE algorithm implemented in Cytoscape using 10, 000
sampled data points of the LVS in vitro culture FCS file. viSNE uses a uniform random sampling
of FCS data in high dimensional and maps it to a two-dimensional space. The cluster dot plots that
are produced are colored to display areas marker intensity. Data was gated previous to this analysis
to exclude doublets, dead cells, and debris.
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CHAPTER 3: HISTOGRAM MATCHED SUPPORT VECTOR MACHINE

Many computational methods aim to discover cell populations within flow cytometry data. Varia-

tions of K means clustering and model-based methods are the most commonly used. While they

have been shown to be able to identify cell populations more consistently than manual gating

they still have seen little adoption in clinical and research labs. The populations discovered by

these methods do not faithfully recapitulate the populations that a researcher aims to detect. Over

decades of flow cytometry use both clinical and research scientists have developed specific flow

cytometry staining panels and systematic hierarchical gating paths to discover cell populations and

interpret the outcome of a diagnosis or experiment. When using computational methods, these

populations, and therefore their population statistics are no longer comparable to historical data.

Learning how to interpret this new information, correlating the results to past outcomes, and vali-

dating the experimental procedure is too much of an undertaking for many research labs and would

impose even further restrictions on clinical work. Because of this much of flow cytometry gating

is still done manually despite it presenting a bottleneck in analysis and the potential of added

variability.

This histogram matched support vector machine method aims to use expertly gated data to cre-

ate support vector machines that can gate flow cytometry data and produce the same population

statistics as manual gating. Using this method, the data generated can be directly interpreted to a

clinical or experimental outcome just as it has been for decades. As a practical method to test the

histogram matched support vector machine we use a flow cytometer’s light scatter properties (FSC,

SSC) to extract live and dead cell counts from culture samples. This will not only fulfill the goal of

testing the accuracy of population gating using a histogram matched support vector machine, but

also will automate another manual, tedious and error-prone process, microscopic cell counting.
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Introduction

Cell counts for viability is a fundamental measurement made in many biological experiments.

Its accuracy is imperative when correlating live cell numbers to parameters of a biological func-

tion. Despite the many automated cell counting methods available today, manual counting using

a hemocytometer, a specialized microscope slide, is still the most commonly used method [2, 57].

A cell culture suspension is injected into space between the slide and coverslip and relies on the

analyst's ability to evaluate a cell's attributes, usually in the presence of a stain such as Trypan

Blue. Trypan Blue exclusion method is based on the principle that an intact cell membrane sur-

rounding a living cell is capable of excluding the dye while a compromised cell membrane of a

non-viable cell allows the dye to enter causing a blue appearance. This type of manual evaluation

is time-consuming which prohibits a large number of samples to be analyzed at one time. Manual

counting methods have also been shown to be subject to inter and intra-user variation of 15 and

35% respectively. Figure 3.1 shows the variation of three trained researchers in our laboratory

counting three replicates of the same four samples using Trypan Blue.

Many automated cell counting instruments are commercially available. Examples of such sys-

tems are the Luna (Logos BioSystems, Annandale, VA), the Cellometer (Nexcelom Bioscience,

Lawrence, MA), and the Celigo (Nexcelom Bioscience). In general, these automated instruments

consist of a camera and image analysis software to detect and count viable cells. The Luna and

Cellometer use Trypan Blue on a proprietary slide requiring the user to focus a camera before

imaging the slide to evaluate cell viability. The Celigo also uses imaging as a means for detecting

live/dead cells but has the additional capability of using fluorescent viability dye to aid in their de-

tection on a 96 well plate. These automated methods work very well for cell cultures that display

uniform morphology such as established cell lines, but when used to count heterogeneous longterm

primary in vitro cultures they have difficulty generating consistent and accurate counts. Histogram
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matched support vector machine method can count viable cells without the use of viability dye with

a correlation coefficient to Trypan Blue of over 0.90 as well as increasing the counting consistency.
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Figure 3.1: Three trained laboratory analysis counted four separate long-term in vitro human cell
cultures in triplicate. The inter-user variation was approximately 15%, and the intra-user variation
was 35%.

Scatter Properties vs. Live Dead Stain

Although it is established that dead and apoptotic cells decrease in forward scatter and increase

in side scatter compared to viable cells we wanted to verify that these changes in light scattering

properties of the cell could discriminate between live and dead populations with enough accu-

racy for our purpose. To test this, we stained 12 day old in vitro lymphocyte cell cultures with a
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membrane permeability dead cell apoptosis kit containing PO-PRO and 7-Aminoactinomycin D

(7-AAD) (Invitrogen, Carlsbad, CA). These reagents stain apoptotic and dead cells respectively.

Sixteen longterm in vitro primary cell cultures were stained in duplicate and acquired on a BD

Frortessa. Using Flow-Jo analysis software live and dead cells were manually separated from each

other on the premise of being stained with both Po-Pro and 7-AAD. A separate manual analysis

on the same FCS files, gated live and dead cells based on expected dead/apoptotic FCS and SSC

patterns without using the viability stains. Cell counts for each were exported from FlowJo and

compared. Data in figure 3.2 shows for both live and dead cell population the correlation was

greater than 0.98, demonstrating that a viability stain is not required for the accurate discrimina-

tion of live and dead cells. Once it was determined that a viability stain was not needed to exclude

live from dead lymphocytes the next step was to overcome the fluctuations in scattering profiles

due to different cell morphology brought on by different culture conditions, activation states, and

donor to donor variation.

Training Data

For the initial training set, six different stimulation conditions were used to generate a variety of

activation states within a human in vitro assay. These different activation states translated into

a variety of forward and side scatter profiles. 150 FCS files containing forward and side scatter

data were generated using 25 donors over six simulation conditions: no stimulation, CEF peptide,

seasonal Flu vaccine, PHA/PMA, PWM, and IL-2 addition. Fifteen donor’s results over the six

stimulation conditions were gated for live, dead, and debris populations to be used as the initial

training files for the SVM classifier. This gave the initial run of the algorithm 90 possible forward

and side scatter profiles to select from when choosing the optimal FCS file for the creation of the

classifier.
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Figure 3.2: Sixteen separate twelve day old human in vitro lymphocyte cultures were stained for
viability and acquired on a flow cytometer in duplicate. The resulting FCS files were gated using
the viability dye as well as using forward, and side scatter.
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Figure 3.3: Process chart outlines the creation of the SVM vector list from a gated bank of FCS
files.

Optimal Support Vector Machine Selection Using Histogram Matching

Due to routine analysis of datasets using the same gating patterns to separate cell populations by

visual boundaries it seems probable that a SVM would be a good fit flow cytometry classification.

However, SVM have not seen much utilization in flow cytometry analysis. One reason may be that

populations size, shape, density, and location can vary significantly from sample to sample. Popu-

lation variation is due to the phenotypic difference in the cells, variations in sample preparations,

stimulation conditions, and other laboratory differences. If a SVM was given a set of training data
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to generalize all possible FCS files the chances are that it would not be a proper fit to gate every file

presented. To overcome this, a simple image matching technique is used to select the most similar

SVM (previously gated FCS training file) to the current sampling being counted.

Selecting Number of Bins

Histograms are an intuitive non-parametric density estimator. While simple, the estimation of a

sample’s probability density is highly dependent on the choice of the number of bins and in the case

of uniform bin-width histograms the bin width. The width of the bins must be sufficiently small to

capture all major features of the data but also be large enough to ignore the small fluctuations in the

data. There is no best answer to the number of bins to use to generate a histogram. Depending on

the data distribution a variety of bin widths may be appropriate to accurately create an estimation

of the probability distribution, for this work when a histogram is needed as an estimation of the

probability distribution the Freedman-Diaconis rule shown in equation 3.1 is used to determine the

bin width and therefore the number of bins. Where IQR is the interquartile range of the dataset x,

and n is the number of data points in the set.

h = 2
IQR(x)

n1/3
(3.1)

Creating the SVM Vector List

For each FCS file in the training set, histograms descriptive of the forward and side scatter dis-

tributions are created. The proportion of events within each bin of these histograms is saved as a

vector. An overview of this step can be seen in figure 3.3. This procedure is performed for the

setup of the initial, and subsequently each time a new FCS file is added to the bank of files that can
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be used to create a SVM.

Histogram Matching and Color Indexing

Color indexing is a computer vision technique developed in 1991 by Swain and Ballard for quick

visual skills to allow robots to react in real time to their environment [58]. It was shown that using

color histograms as a representation of an image was an efficient and accurate method of image

matching. Here a method based on this process is used to select the optimal SVM classifier for the

discrimination of live from dead cells in long-term cell cultures. With traditional color indexing, a

color space is a specific color axis; red, green, or blue for example. A color histogram is created by

breaking one color axis into a set of discrete bins and counting the number of pixels that fall into

each of these distinct bins. Discretizing the FCS and SSC values from an absolute minimum and

maximum, a histogram analogous to that of one created for a color axis can be created. To identify

the scatter ’image’ that most closely matches the scatter plot from the FCS file to be counted, a

method to analyze this similarity called histogram intersection is used. This intersection value is

the number of events from the model (reference file) that has corresponding events in the same

scatter axis as the sample file. Given a pair of histograms representing FSC, for example, each

containing n bins the intersection of the histograms is:
n∑

j=1

min(Ij,Mj) [58, 59]. Because all flow

files could and probably do have different event numbers and distribution statistics to compute

the percentage match the intersection value is normalized by the number of events in the model

histogram (equation 3.2), resulting in the final similarity or intersection score.

H(I,M) =

n∑
j=1

min(Ij,Mj)

n∑
j=1

Mj

(3.2)
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Figure 3.4: The dot plots show live (green), dead (red), and debris (blue) gates for one FCS SVM
file using varying γ and C parameters. The heat map displays average classification accuracy over
the 90 FCS file in the original training set over exponentially spaced γ and C parameters.

SVM Creation

Using scikit-learn, a machine learning Python package, we trained a non-linear SVM using a

radial basis function (RBF) Kernel, exp(−γ||x−x′||2) [15,43]. To determine the most appropriate

values for γ of the RBF and C, a parameter used in all SVM kernels to justify a smooth decision

boundary over misclassification to avoid overtraining, we conducted a cross-validation study of

exponentially spaced parameter values. Figure 3.4 shows the results of this study. Using the

average best parameters over the 90 FCS training files a γ value of 0.001 and a C of 10, 000 was

used for all subsequent classifications.
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Histogram Mismatch Threshold

To assess the gating accuracy and to determine the threshold of similarity where the SVM classifier

differs enough from the data to be classified that an accurate count is no longer possible we ran

the remaining ten donors FCS files using the best, worst, and three randomly selected classifiers

on each sample. 300 images depicting the classification (live, dead, debris) were generated and

analyzed to determine if the populations classified by the SVM were accurate or not. Figure 3.5

shows what was classified as a correct or incorrect gate as well as the distribution of similarity

scores. It was discovered that any score above a 0.63 similarity always resulting in correct gating.

This became the minimum threshold required to constitute a file match.

Figure 3.5: Ten donors FCS files were gated for live, dead and debris using the best, worst, and
three randomly selected classifiers. From the 300 FSC vs. SSC plots generated the gating was
classified as correct or incorrect if all three populations were captured correctly. A similarity score
of 0.63 or higher was associated with always gating a sample correctly.
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Figure 3.6: A dilution series of calibrated bead samples were run on the cytometer. The result-
ing FCS files were analyzed for bead counts to calculate the precise volume in µL analyzed the
cytometer.

Bead Calibration

The high throughput system (HTS) on some flow cytometers allows the user to enter acquisition

volume (µL) and speed (µL/second) that will be used to run the sample through the cytometer's

fluidics and laser systems. Typically this setting is used to ensure a slow enough flow rate for cells

to pass one by one through the cytometer's fluidics system. In this application, however, this flow

rate must be finely tuned to produce an accurate cell count. To determine the exact volume in µL

that passes through the cytometer’s fluidics and detector systems during sample acquisition we used

AccuBeads (Hamilton Thorne Inc, Beverly, MA) which have been verified by the manufacturer to

contain 2.5X106 beads / mL. Three separate 1 : 2 serial dilutions were performed in triplicate
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starting at 2.5X106, 2.0X106, and 1.5X106 beads/ml over four dilutions each. This corresponded

to a bead range per mL of 2.5X106 to 93, 750. The HTS was set to acquired 20µL of each sample

at a flow rate of 2.5µL/sec. After the samples were run on the cytometer, the beads were manually

gated in FlowJo and their counts exported. Figure 3.6 shows the beads gated fro the FCS files and

the known bead amount are strongly correlated with a r value greater than 0.98. A dilution series

similar to this was used with every counting run on the cytometer to ensure accuracy, with the fitted

linear function serving to calculate exact cells per mL.

Results

This cell counting method was tested using 11 long-term in vitro human cell cultures. Each sample

was counted in triplicate by a laboratory analysts and the histogram matching SVM. The average

counts calculated by each method are plotted against each other in figure 3.7. The counts were

strongly correlated with a r value of 0.931.

Six separate long-term in vitro cell cultures were analyzed in triplicate using Trypan Blue, Luna,

Cellometer, or the Celigo with and without viability stain. The average coefficient of variation was

calculated for all six sampled over all the counting methods. The flow histogram matching SVM

had the least variation over the six samples tested.

Discussion

As new FCS files are counted using this method it is possible that a file will not find a match within

the specified similarity threshold. If this occurs, the user can be prompted that the discovered

forward and side scatter profile of this sample is unique enough to warrant using its manually

gated file to create another SVM. Expanding the database in this fashion can be done over time as
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new cell types or new culture conditions cause a change in the forward and side scatter parameters

that have been previously seen.

While what presented here is an analysis in two dimensions (FSC and SSC), this application can

be applied to any flow cytometry analysis where expertly gated training data is available. Future

work will use this same process over a hierarchical gating scheme to identify a greater diversity of

cell populations over many more dimensions. Preliminary work has been done to identify thirteen

populations over eight dimensions with results similar to manual gating.

Figure 3.7: Counts from 11 in vitro cell cultures were analyzed for viable cells per mL using
the histogram matching support vector machine method. These cell counts are compared to an
average of three analysis using the Trypan Blue exclusion method. A strong correlation between
to the methods was seen.
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Figure 3.8: Histogram matching SVM flow cytometry method had the lowest variation among all
the cell counting methods tested.
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CHAPTER 4: EXPLORATORY ANALYSIS: DIVISIVE CLUSTER

DISCOVERY AND VISUALIZATION OF ADAPTIVE ANTIGEN

SPECIFIC T HELPER CELL RESPONSE

This method contains four modules. First, a hypergraph sampling method is used to reduce the

number of data points in a FCS file while preserving rare and possibly essential events. Using ran-

dom sampling as opposed to a method such as this could result in the loss of this subset of the data

that may be essential in the determining the outcome of the diagnosis/experiment. Next, singular

value decomposition (SVD) is used to deconvolute the subset of FCS data from the first module.

The three matrices produced by SVD, (U ,Σ,V T ) are used as a mechanism to split the data into

related clusters divisively. This clustering method uses the direction of the most prominent leading

vector of the U matrix to group the sampled FCS data into meaningful clusters. This divisive clus-

tering step is halted after reaching a designated threshold based on the amount of information the

user requests to capture based on the values contained in the Σ matrix. Due to hypergraph sam-

pling, rare events are not overpowered by the abundant events within the dataset, and therefore can

be distinguished into their own populations. The third step uses the sampled subset of data along

with the newly defined clusters to create, train, and test a support vector machine (SVM). Using

this SVM, the events that were not selected to be used in the second and third computational steps

are classified into one of the discovered clusters. The final fourth module uses the median value

of each parameter for each discovered cell clusters to form a minimum spanning tree. Finally, an

XML file for trees visualization in the open source complex network analysis tool Cytoscape is

created. Using Cytoscape the nodes of the network can be annotated and colored to dynamically

reflect a markers relative intensity. Within this network, one can visualize antigen-specific poly-

functional CD4+ T helper cells generated by an in vitro human immune culture system. Figure 4.1

gives a general overview of the computational modules of this method.
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Figure 4.1: Overview of the computational modules for this unsupervised exploratory network
analysis.
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In Vitro Generation of Antigen-Specific Responses

Donor PBMC Isolation

Donor peripheral blood mononuclear cells (PBMC) were collected from healthy donors using

leukapheresis. PBMCs were isolated from this enriched apheresis product using a Ficoll-Paque

PLUS(GE Healthcare Bio-Sciences, Piscataway, NJ) density gradient [8, 33]. The interface of

PBMCs was removed, washed, and cryopreserved in IMDM media (Lonza, Walkersville, MD)

containing DMSO (Sigma-Aldrich, St. Louis, MO), and autologous serum.

Cytokine-Derived Dendritic Cells

Dendritic cells (DC) were prepared as previously described [33, 52]. Briefly, monocytes are pu-

rified from cryopreserved PBMCs by positive CD14 magnetic bead separation (Miltenyi Biotec,

Auburn, CA). The separated CD14+ cells were cultured in X-VIVO 15 media (Lonza) for six

days in the presence of 100ng/mL GM-CSF (R&D Systems, Minneapolis, MN) and 25ng/mL IL-4

(R&D Systems). After Incubation the DCs were either left untreated (no antigen control), pulsed

with a 1 : 250 dilution of the commercially available Yellow Fever Vaccine YF-VAX®(sanofi

pasteur), pulsed with 1µg/mL of killed Francisella tularensis SCHU4, or invected with the live

attenuated investigational Live Vaccine Strain (LVS) of Francisella tularensis at a 1 : 10 bacteria

to DC ratio. DCs were left to incubate with antigen overnight.

CD4+ T Cell Stimulation

Autologous CD4+ T cells were purified from cryopreserved PBMCs by negative magnetic bead

selection (Miltenyi Biotec). The isolated CD4+ T cells were then cultured with either untreated,
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YF pulsed, SCHU4 pulsed, or LVS invected DCs at a ratio of 60 : 1, CD4+ T cells to DCs. These

co-cultures were left to incubate for 12 days at 37◦C and 5% CO2 in X-VIVO 15 media (Lonza).

Following incubation, the cultures were harvested and evaluated for effector T cell activity using an

intracellular cytokine staining assay (ICCS). This method uses autologous DCs prepared as previ-

ously described to restimulate any effector T cells that were generated during the 12-day co-culture.

The T cells and target DCs were cultured for 6 hours in the presence of 1µg/mL of brefeldin A

(Sigma-Aldrich) to inhibit protein transport in the Golgi apparatus and cause an accumulation of

intracellular proteins. After incubation, cells were labeled with a Live/Dead Fixable Stain (Invit-

rogen, Carlsbad, CA), permeabilized with cytofix/cytoperm and permwash (BD Biosciences, San

Jose, CA) and labeled with antibodies specific for human CD4 (SK3), CD154 (TRAP1), IFNγ

(B27), TNFα (MAb11), IL-2 (MQ1-17H12), IL-5 (TRFK5), and IL-17A (N49-653) (eBioscience,

San Diego, CA). The samples were then acquired on a BD LSRFortessa (BD Biosciences).

Flow Cytometry Data Preparation

In preparation for computational analysis, the FCS files were pre-processed as described in 2. The

files were also gated using the analysis software FlowJo (TreeStar, CA) to remove doublets, dead

cells, and debris. This gating removes artifacts that due to non-specific binding can interfere with

further analysis.

Hypergraph Sampling

The first module of this unsupervised exploratory analysis samples a flow dataset in a manner to

preserve rare events over all dimensions/parameters. Flow cytometry files can contain anywhere

from thousands to millions of events, each being individually described by three to 20 parameters.
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With datasets of this size and dimensionality, computation time and memory requirements for

analysis can quickly become prohibitive, even when using a method of modest computational

complexity. For example, for a one million event file, a distance matrix describing the relationship

of every data point to one another using four bytes per entry would approach four terabytes of

memory using a conventional adjacency matrix. While a sparse matrix or linked list could be

used to represent this data structure and limit the memory used, such a representation would still

be impractical to be used on a typical desktop computer. To overcome this memory constraint a

representative sample of events that ensures the preservation of rare events is necessary.

Due to the nature of flow cytometry data, it is not in the best interest of the analysis to merely take

a random sample. In many experiments, the reason the cell sample is of interest to be analyzed

using flow cytometry is to identify and phenotype a rare subset of the data. This subset, although

small, represents a very informative set in many experiments. These rare events in our hands and in

published experimental results are often seen at a rate of one in a 1, 000 to one in 10, 000 events. If

the rare events are present in the sample at a rate of one to 10, 000 within a FCS file of 1, 000, 000

events, the chances of gathering all 100 events that compose this population are improbable with

random sampling. To generate a subset that contains rare events as well as those in abundance, the

density of events surrounding each cell in the d dimensional space is needed. This, however, this

distance calculation is not practical. To alleviate this need in computational power and memory a

hypergraph sampling method was developed. The graph constructed here is in the context of graph

theory, the study of mathematical structures that are used to model pairwise relationships between

objects, or in our case flow cytometry events. A graph in this context is made up of vertices or

nodes (V ) and connected by edges (E). A hypergraph is then a generalization of this type of graph

where a single edge can connect any number of vertices.
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Hypergraph Creation

The first step in the creation of the sampling hypergraph is to place a limit on the maximum

number of edges that can be used to represent the flow dataset. The hyperedges of the graph

represent a portion of the data’s probability distribution at a specific area of the multidimensional

space. Once the graph is created the weights of its edges, or the number of flow cytometry events

contained in each edge is directly used to extrapolate the events to use in the sampled dataset. If a

relevant maximum edge number is not selected it could be possible for every event within the file

to be contained by a unique edge. However will not help in distinguishing the rare from abundant

events. On the other extreme, all events in the file could be connected using a single edge. This

leads to each event being viewed to fall within the same area of multidimensional flow data space

and will lead us to essentially taking a random sample of the dataset. To ensure that neither of

these two extremes occur we limit the possible number of edges that can be created during the

hypergraph sampling based on the average number of events that need to be seen to detect a rare

event. With the dataset explored in this document (polyfunctional CD4+ T cells) typically a ratio

of 1, 000 common events to one rare (CD4+CD154+Cytokine+) is seen. While 1, 000 : 1 ratio

is quite common in the literature rare event rates of 10, 000 : 1 to even 1, 000, 000 : 1 have been

reported and this parameter should be tuned for the estimated rarity of the cell population(s) of

interest. For the purpose of our analysis however the rare event ratio of 1, 000 : 1 will be used as it

best describes our dataset.

The rare event ratio is used to calculate the position and volume within the multidimensional flow

space a hyperedge occupies. If r is the number of events needed to statistically have a chance of

detecting a rare event and d is the number of parameters (markers) describing the events of the

FCS file we calculate b, the number of discrete value ranges per parameter using equation 4.1. In

the dataset presented seven parameters (CD4, CD154, IFNγ, TNFα, IL-2, IL-5, and IL-17) are
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used to create the hypergraph. These parameters with the 1000 : 1 rare event rate requires three

discrete value ranges per parameter. If the number of parameters is high in relation to proportion

of rare events, for example 11 parameters measured on a 100, 000 : 1 rare event estimate, limiting

the number of value ranges per parameter at less than 3 then a minimum constant of 3 data ranges

is used per dimension. Even with data sets of lower dimensions (5 or fewer) 3 bins has been tested

to yield expectable sampling results that translate into meaningful populations at the conclusion of

the exploratory analysis.

b = d( d
√
r)e (4.1)

The boundaries of each discrete value range are calculated independently for each parameter just

as in the creation of a simple one dimensional histogram. Each event is processed on each dimen-

sion to determine what value range for each dimension best describes it. An events combination

of data value ranges corresponds to the hyperedge that will contain it. Events are added to the

hypergraph either by creating a new hyperedge if one has not yet been generated for the events

unique combination of ranges or it is placed into an existing hyperedge. Once all events within the

FCS file are placed within their descriptive hyperedge the dataset can now be sampled so the rare

events are preserved.

Event Sampling

Fortunately, flow cytometry data is not uniformly distributed within its data space. This is the

basis of why the most simplistic form of flow analysis, sequential manual gating, is so popular

and what we leverage when using hypergraph sampling. Once all needed hyperedges are created,

and all events have been placed within the edge most descriptive to its place within the data space,
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a representative subset of the original data can be extracted. Edges with a low weight, or few

events, contain rare events while edges with a higher weights contain events present in greater

abundance within the dataset. A higher proportion of hyperedges contain very few events and a

low proportion of hyperedges contain a large number of events. The hyperedges containing a low

number of events represent areas of the multidimensional space where events are scarce. These

events could be the rare cells of interest that despite their low frequency are crucial to analysis.

In the example presented here these events maybe antigen specific polyfunctional effector CD4+

T cells. On the other extreme, hyperedges containing a high number of events represent a very

common cell type, in context of this analysis, CD4+ T cells that are not responding to the given

antigen. The number of events per hyperedge therefore generally follows a negative exponential

distribution, an example of which can be seen in figure 4.2. In calculating what constitutes a rare

event and at what threshold edge weight do all events within the hyperedge need to be sampled

we fit the data to the exponential probability function, λ exp(−λx) ,using least-squares fit. This

method aims to minimize the sum of squared residuals, or the difference between an observed value

and the fitted value given by the model. Once the exponential function is estimated we can use the

computed value of λ with Tukey’s criteria for anomalies to calculate at what weight do hyperedges

begin to contain an anomalous number of events [32, 60]. Tukey’s criteria for anomalies is a

method commonly used in box plots where the interquartile range is used as a measure to describe

the extent to which a distribution is spread. An outlier is considered a data point outside the IQR by

one and a half times the IQR. Therefor we use equation 4.2 to determine the cut off where outliers,

heavily weighted hyperedges begin or in the context of this flow cytometry data where common

events are grouped together. Hyperedges at or under this calculated threshold, t, have all their

events sampled. Hyperedges above this threshold must have the number of events they contribute

the final subset reduced to this number. While random events could be sampled per edge this

would add in a stochastic element to the algorithm leading to the possibility of generating alternate

exploratory networks in the final analysis. To chose the same subset of events every this algorithm
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is run a hyperedge over the event limit t is analyzed. Within the subset of events contained within it

the most variable parameter is calculated and t events are sampled uniformly along this parameter.

t =

⌈
ln(4)

λ
+ 1.5

ln(4)

λ

⌉
= dQ3 + 1.5× IQRe (4.2)

Sampling Results

To test hypergraph sampling a simulated flow cytometry ’like’ data set was initially explored.

Using a synthetic dataset gave us control over the frequency of the parameters expressed on each

event as well as eliminated biological variation of the human in vitro data. The simulated data set

was generated to contain 300, 000 events in three dimensions; P1, P2, and P3. Each dimension

or parameter varied in frequency and co-expression. This was used to mimic flow cytometry data

where a rare event must often be found by several hierarchical gating steps. Events could be

’positive’ or ’negative’ for a particular parameter. Positive values were generated randomly from

a Gaussian distribution with a mean of 0.8 and a standard deviation of 0.2. Negative values were

represented by values with a mean of 0 and a standard deviation of 0.2. Parameter P1 was used to

simulate a common cell type. Fifty percent of the events were assigned to belong to a population

positive for P1. Of the events selected to represent a negative P1 population 20% of these events

at random were selected to be positive for P2. Finally 1% of those events who were both P1

negative and P2 positive were randomly selected to be P3 positive. Figure 4.3 shows the results of

random sampling of this data versus hyperedge sampling. Hyperedge sampling, over the synthetic

dataset faithfully retained the rare events. As shown by P2 vs P3 and P1 vs P3 dot plots. The

small P3+ population represents 0.1% of the dataset. This rare population is well preserved with

hyperedge sampling while it is nearly completely lost when sampling the same number of random

events. In addition to preserving this obvious rare population the events along the boundaries of
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all populations are also preserved. In a subsequent analysis step a SVM is used to classify the cells

not used in this sampling step into discovered clusters. Due to SVMs using the boundary events to

create optimal decision boundaries between populations this feature of the sampling may also help

with classification accuracy.

Figure 4.2: This is the edge weight topology of the hypergraph created during the analysis of LVS
stimulated in vitro cell culture. The first graph shows all edges within the hypergraph. The second
shows the edges containing rare events. In this analysis t from equation 4.2 equals seven. Meaning
seven events are sampled at maximum from each edge of the hypergraph. Figure 4.4 shows the
results of this sampling.

This same sampling method was then used with the human in vitro culture samples. This FCS data
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was sampled over seven parameters: CD4, CD154, IFNγ, TNFα, IL-2, IL-5, and IL-17. Figure 4.4

shows the results of sampling the LVS culture’s FCS file. The data shown is for CD154 and TNFα,

typically a cytokine while still rare is produced in higher amounts, and IL-17 the least abundant

cytokine produced in this dataset. While populations within flow cytometry data are known to

deviate from a Gaussian distribution this method was still able to preserve these important effector

T cells while reducing the amount of data by over 99%.

Figure 4.3: Example of sampling a simulated flow data set of 300, 000 events over three dimen-
sions. The sampled data is approximately 3% of the original dataset while preserving the rare
events that make up 0.1% of the data.
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Figure 4.4: Comparing the original dataset over two parameters that illustrate the rare/critical
events to this CD4 T cell analysis. Using random sampling we greatly reduce the CD154+TNFα+

population and nearly eliminate the CD154+IL-17+ population. Using a hypergraph to sample the
same number of events both of these populations remain present in the sampled data.

SVD Clustering

The second computational step uses singular value decomposition as an objective clustering algo-

rithm to group related data points together without the use of a user-defined cluster number. Using

SVD the sampled FCS data is divisively split to uncover cell populations in a top-down fashion.

This method allows for the discovery of clusters by defining by variation in the data as opposed to

being explicitly stated by the user.

Singular value decomposition (SVD) is a widely used linear algebra technique that takes a high

dimensional and variable set of vectors and reduces it to a lower dimensional space where the

structure of the original dat is preserved. SVD has been used in many fields such as neuroimaging,
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complex systems, text reconstruction, sensory analysis, image compression, and genetics. SVD is

the core to many statistical techniques including PCA , correspondence analysis, multidimensional

scaling, and partial least squares. This technique can be used to achieve three main objectives:

1. Transform correlated variables into a set of uncorrelated ones that better expose the various

relationships of the original data.

2. Order dimensions by increasing variation in the data set.

3. Finding the best approximation of the original data points while using fewer dimensions.

Every n cell/event within the cytometry file is represented by a vector of real numbers of length m,

the number of parameters. This vector is comprised of the standardized fluorescence values from

each parameter. The equation for SVD is the following M = UΣV T , where U is a n×m matrix,

Σ is a n×m diagonal matrix, and V T is a m×m matrix. The columns of U are the left singular

vectors, uk, and form an orthonormal basis for the marker expression profiles of the events. The

rows of V T contain the elements of the right singular vectors, vk, and form an orthonormal basis for

the parameters. The elements of Σ are only non-zero on the diagonal, and are called the singular

values, Σ = diag(σ1, . . . σm). The ordering of the singular vectors is determined by high to low

sorting of singular values, with the highest value in the upper left index of the Σ matrix. Left

singular vectors, the columns of U , can be referred to as the eigen-Markers and the right singular

vectors as the eigen-Events. For this application we are interested in the expression of the marker

profiles of the sample to understand the relations among the cells.

Division Number

By setting the error e(r) in equation 4.3, to the desired similarity and solving for k, the number

of singular values along the diagonal of matrix Σ that allows you to reach the needed similarity,
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cell populations can be found. This number of σ values, k, then represents the number of divisive

iterative splits of matrixM that are needed. These iterative splits are done using the direction of the

left singular vectors ofU . Each column of theU matrix, uk, contains n data points corresponding to

an event from the original matrix M . The direction (+ or−) of uk1 to ukn directs what population

that event will be in after iterative spilt k.

Depending on the desired similarity requested by the user k may correspond to using all principal

components of the dataset. However, typically the top principal components are able to explain a

large proportion of the original matrix data structure. As a visual example of how this method is

applied to lossy image compression see figure 4.5. By using only 40 of the 1, 100 vectors of the

original dataset the compressed image still retains 85.5% of the original data. For our example in

vitro dataset, clustering was done using a 0.90 value for e(r). In other words requesting that at least

90% of the original data was preserved in the final network. This led to using the top 6 singular

values or 6 = k divisive splits.

e(r) = 1−

√√√√ k∑
1

σ2
i /

n∑
1

σ2
i

(4.3)

Classification

The third step of this exploratory analysis classifies the remaining data that was not sampled into

one of the cell populations discovered during the preceding clustering step. Classification using a

Support Vector Machine (SVM) produced a classification accuracy of over 95% on average during

testing. This method uses the LIBSVM implementation of a non-linear SVM using the RBF kernel

[15, 43].
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Figure 4.5: MeMurton demonstrates the use of SVD in the context of image compression. If every
row of pixels is considered a vector the original image contains 1, 100 vectors. Using only the
top vectors an image capturing 85.5% of the information contained in the original image can be
constructed using only the top 40 vectors. This same idea is used when clustering flow cytometry
data.

Other visualization methods either do not use the complete dataset such as viSNE where between

6, 000 to a maximum of 30, 000 uniformly sampled events are used for analysis and visualiza-

tion [5]. Or in other methods the remaining data is reintroduced to in to the final visualization

using K nearest neighbor algorithm, assigning an event of unknown classification to the cluster

that its nearest neighbor belongs to [47]. During development of this algorithm we discovered

first hand that simple distance measures that serve us well in three-dimensional space, such as Eu-

clidean distance, often yield sub-optimal results when used in higher dimensional space. This is

not a new finding. The expression ’Curse of dimensionality’ was coined by Richard E. Bellman

in 1961 to refer to the fact that many algorithms that worked well in low dimensions become in-
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tractable when the input is high-dimensional [10]. This is because when dimensionality increases

the volume of the space that the data points exist in increases so fast (exponentially) that the data

points that inhabit this space become very sparse [9, 10]. This ’curse’ may be what seems to limit

the classification accuracy of K nearest neighbor algorithm on our dataset. To increase classifica-

tion accuracy a non-linear SVM to classify the subset of data not sampled. Table 4.1 shows the

classification accuracy of SVM classification compared to K nearest neighbor classification. The

SVD clustered data was split with 80% used for training the the remaining 20% used for testing

for all the methods shown. The accuracy shown is the average of 5 of these testing and training

experiments using the LVS in vitro data. SVM classification outperformed K nearest neighbor

classification by over 20%.

Table 4.1: Classification accuracy as a proportion of the testing set classified as correct according
to where they were grouped using SVD clustering method. SVM using radial basis function with
C of and gamma of compared with commonly used K nearest neighbor of two, five, seven, and ten
nearest neighbors.

Clustering Accuracy
Method Mean Std deviation
SVM 0.953 0.0056
K nearest 2 0.707 0.0118
K nearest 5 0.745 0.011642
K nearest 7 0.754 0.1203
K nearest 10 0.750 0.012505

Visualization

Once all events are assigned to their corresponding clusters the median of each parameter for each

cluster is calculated. This measurement is used to calculate a distance matrix. A distance matrix

is a squared matrix N × N in size, where N is the number of elements in the set, in this case the

discovered clusters. Each cluster of cells represents a node of the minimum spanning tree with
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each cluster represented by the median of mean value for each cell marker, therefore each cluster

is represented by a m length vector, where m is the number of parameters per file. The distance

to each cluster is calculated and a fully connected network with edge weights corresponding to

the Euclidean distance is used for edge weights. A minimum spanning tree is then constructed

using NetworkX’s implementation of Kruskal's algorithm [22]. The network is then exported

using NetworkX to an XML file that open source complex network tool Cytoscape can read and

display [22, 54]. The minimum spanning trees are rendered with arbitrary node angles and edge

lengths; therefore the positions of the nodes does not impact the meaning of the network itself.

The node size however is representative to the proportion of events found to fall within that cluster

from the cytometry file, and the color or the nodes is normalized for marker intensity. Nodes are

colored according to the magnitude of the difference in their median responses relative the files

being compared. This effectively eliminates the subjectivity of manual classification and improves

the resolution of the heat map. When comparing multiple flow files as in the case in the figure.

The fluorescence intensities are normalized over all the files in order for the color to represent the

overall intensity of each marker across all files. Networks created to by this method to describe the

in vivo cell cultures are seen in figures 4.6 and 4.7.

Results

The nodes of the minimum spanning trees seen in figure 4.6 display areas in red to orange where

the high values a marker was found. The areas outlined in small dashes indicate CD4+ areas of

the network. In the second column of networks the populations outlined by the large dash show

CD4+ T cells that are also expressing CD154. Because CD154 is critical for the development of

T cell effector function, these areas are where we should focus to visualize cytokine production

in response to the antigen treatments [19]. Figure 4.7 retains the CD4+CD154+ annotations of
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the networks but displays marker intensity based on the five cytokines profiled. The no antigen

control as expected has very few nodes of intensity for any cytokine. SCHU4 however displays a

variety of effector T cell function. IFNγ, IL-2, and TNFα can be seen being co-produced in many

nodes indicating a TH1 response. Of further interest is that two nodes show high expression of

IL-17 while also being negative for the production of IL-2. IL-2 has been shown to inhibit the

differentiation of T cells into TH17 indicating that what we are detecting within these networks is

truly representative of T cell activation and differentiation [28, 29].

Another interesting thing to note is that within the no antigen network the populations are much

more uniform in size than any of the networks produced by a stimulated culture. This could poten-

tially indicate CD4 proliferation and differentiation into effector cells. While this is a speculative

hypothesis it sparks and interesting idea for future research into different topological features of

the networks and how they could be quantified to add further value to this exploratory analysis

pathway. What could the number of nodes at a set similarity threshold tell from sample to sam-

ple? What does the node size, homo or heterogeneity, and branching within cell populations tell

us about immune activity?
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Figure 4.6: Areas of the network indicated by the small dash lines in the first column show CD4+

T cells. Those indicated by the larger dashed lines in the second column indicate activated T cells
responding to antigen.
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Figure 4.7: Within the networks areas of different TH cell subsets can be found.
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CHAPTER 5: CONCLUSION

Histogram Matching Support Vector Machine Gating

The histogram matching support vector machine (HMSVM) gating of flow cytometry data proved

to be both accurate for the quantification of live cells per volume and exhibited the least variation

among the commercially available cell counters tested. With a correlation coefficient of greater

than 0.98 with manual counting and a coefficient of variation between counts of approximately 5%,

this method has proved to be a highly valuable asset to the lab. This procedure saves staff-hours as

well as adding consistency to experimental results. To date, this method has been used within our

lab to count thousands of samples, normalizing cultures for CD4 and CD8 ICCS polyfunctional T

cell readouts. However, there are two open problems within this analysis method that I would like

to address. The first is to determine if the histogram mismatch threshold discovered gating live and

dead lymphocytes using FCS and SSC holds true for other two-dimensional gates. The second is

to create an appropriate method to select the best FCS files to create a gate and remove those not

needed to reduce the time to search for the best match.

Despite these open questions, preliminary work had been done using a hierarchical implementa-

tion of this method on a multi-dimensional quality control PBMC dataset. Because this method

is intended to be used on experiments that have a set flow cytometry staining panel as well as an

established analysis gating pathway, this group of experiments seemed perfect for this application.

Within our laboratory over 1, 000 human leukapheresis donations have been processed over the

last 16 months. To ensure that when these stocks of cells are needed for experiments that they

will produce valid experimental results a quality control experiment is conducted on every sam-

ple. This experimental protocol involves thawing a cryopreserved PBMC donation and labeling

them with CFSE, a fluorescent staining dye to monitor cell proliferation. Next, four stimulation
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conditions: no treatment, PMA/PHA, PHA, or Cytostim are added to the PBMCs, and they are

incubated for five days. At the end of the incubation, the four samples are stained for flow cy-

tometry evaluation using PO-PRO to asses viability, CD4, CD19, CD8, to analyze CD4 TH cell, B

cell, CD8 cytotoxic cell proportions, and CD25 to identify cellular activation. The analysis of the

resulting four FCS data files is processed by a similar hierarchical gating scheme as seen in figure

2.2. Briefly, lymphocytes are gated, then live lymphocytes are selected from this population for

further analysis. From the live lymphocyte population CD4+, CD8+, and CD19+ cells are isolated

into distinct populations. Each lymphocyte population is then analyzed for increases in CD25 in-

dicating activation and decreases in CFSE showing cell proliferation. An example of the HMSVM

results of one donor’s PBMC QC assay is shown in figure 5.1. Once this analysis including the

dot plots and populations statistics is complete, the researcher must use this information to classify

if the donation is fit for use in further experiments or not. This pass or fail classification in itself

is also a somewhat subjective process. The researcher looks at cell viability, the proportions of

lymphocytes as well as comparing their lack of response in the no antigen control to the activation

and proliferation in the cultures containing stimulus.

The final goal in implementing HMSVM gating for a multidimensional dataset such as this will be

to use another classification method to output the end result of an analysis. In this case a quality

pass or fail. Preliminary testing using 50 pass and 50 fail PBMC QC donations were run using the

analysis method that produced the results in figure 5.1. A decision tree was trained using the pop-

ulation statistics from these 100 QC experiments using the Python package scikit-learn [43]. The

testing set comprised of 30 new passing samples and 20 new failing QC experiments. The results

from this classification were very encouraging with an 82% classification accuracy compared to

the researcher’s classification. Of the 18% or 9 donations that were classified incorrectly 3 were

classified falsely as failing QC and 6 were classified falsely as passing QC.
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Figure 5.1: Example of a PBMC quality control analysis generated using HMSVM gating. Each
row of plots shows a stimulation condition: No antigen control, PMA/PHA, PHA, and Cytostim.
From these four sample’s flow cytometry dot plots a researcher decides if a donation passes or
fails quality inspections. We aim to automate the gating process as well as the final pass or fail
classification.

Exploratory Network

Leveraging the nature of flow cytometry data, that events cluster together and are not uniformly

distributed, we could sample the data quickly to preserve rare events. Using a hypergraph, rare

events were distinguished from common events, and the distribution of hyperedge weights pro-

duced the sampled subset of FCS data. Then using the U and Σ matrices of SDV the events could

be clustered without the need of a user-defined cluster number. The clustered data was then used
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to create, train, and validate a SVM to classify the remaining data from the FCS file not selected

in the sampling step. Finally, a minimum spanning tree was created where the visualization of TH

subsets was possible. Comparing the normalized marker intensities over networks created using

different vaccine treatments we were able to see that LVS and SCHU4 were capable of generating

a TH 17 response in the donor tested while YF-VAX did not for example, however, what else can

we learn from these networks? Additional research is needed to determine what the topology of

these networks can teach us about the cell cultures. For example, the no antigen control sample

in figure 4.7 has nodes much more uniform in size throughout the entire network compared to the

samples treated with vaccine or antigen. This could potentially indicate the lack of CD4 prolifera-

tion and differentiation in the no antigen culture. The vaccine and antigen-stimulated cultures, in

contrast, have large CD4+CD154− nodes which could indicate naive CD4 expansion. While this

is a speculative hypothesis, it sparks an interesting avenue of future research. Running this anal-

ysis over many more files an average network topology could be discovered leading to a possible

classification method of vaccine immunogenicity for example.

The second problem for additional focus is how to use multiple FCS files to create one descriptive

network. It would be simple to append many FCS files together, creating a large FCS file of

multiple donors over the same culture condition for analysis using this algorithm. However, this

would only produce valid results if the samples were run using the same antibody-fluorochrome

lots, cytometer settings, and specific staining protocol. Small variations in the experimental setup,

not to mention biological variations, could cause a shift in populations and lead to a network that

was not truly representative of the average of the files. For this type of network to be implemented

normalization in the position of populations would need to occur before the algorithm was run.

There has been some work on this in the past. Methods include gaussNorm and fdaNorm both

available in the open source toolkit Bioconductor [21, 23]. These use density estimates of the

data to match relevant population peaks between samples and transform the data to minimize the
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distance between these landmarks [23]. These methods were tested using the polyfunctional CD4

in vitro dataset shown previously. Both methods tended to view the rare subset of T cells as outliers

moving the populations closer to the median value for all cytokine markers, effectively eliminated

them from the dataset. We have explored our own methods of population alignment, with the most

successful being an implementation of derivative dynamic time warping [25, 51], but much more

work is needed in this area to faithfully normalize population peaks within the data space without

losing essential data.
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