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ABSTRACT

Passive quasi-one-dimensional random media exhibit one of the three regimes

of transport – ballistic, diffusive, or Anderson localization – depending on system

size. The ballistic and diffusion approximations assumes particle transport, whereas

Anderson Localization occurs when wave self-interference effects are dominant. When

the system contains absorption or gain, then how the regimes can be characterized

becomes unclear. By investigating theoretically and numerically the ratio of trans-

mission to energy in a random medium in one dimension, we show this parameter

can be used to characterize localization in random media with gain.

Non-conservative media implies a second dimension for the transport param-

eter space, namely gain/absorption. By studying the relations between the trans-

port mean free path, the localization length, and the gain or absorption lengths, we

enumerate fifteen regimes of wave propagation through quasi-one-dimensional non-

conservative random media. Next a criterion characterizing the transition from diffu-

sion to Anderson localization is developed for random media with gain or absorption.

The position-dependent diffusion coefficient, which is closely related to the ratio of

transmission to energy stored in the system, is investigated using numerical models.

In contrast to random structures, deterministic aperiodic structures (DAS)

offer predictable and reproducible transport behaviors while exhibiting a variety of

unusual transport properties not found in either ordered or random media. By ma-

nipulating structural correlations one may design and fabricate artificial photonic

nanomaterials with prescribed transport properties. The Thue-Morse structure is a

prime example of deterministic aperiodic systems with singular-continuous spatial

Fourier spectra. The non-periodic nature of the system makes it notoriously difficult

to characterize theoretically especially in dimensions higher than one. The possibility

of mapping the two-dimensional aperiodic Thue-Morse pattern of micro-cavities onto

a square lattice is demonstrated, making it amenable to the tight-binding description.
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2.3.3 Behavior of T̃ /Ẽ in Passive Random Medium: Spectral Vicinity
of a Resonance . . . . . . . . . . . . . . . . . . . . . . . . . . 37
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1. INTRODUCTION

1.1. MESOSCOPIC LIGHT TRANSPORT

When wave interference effects can be disregarded, the diffusion equation sat-

isfactorily describes light propagation in random media [1, 2]. However, when effects

due to self-interference in multiple scattering become appreciable, change in trans-

port behavior leads to failure of the diffusion model and thus to a new phenomenon,

Anderson localization (AL) [3]. The concept of AL is mathematically defined in the

context of infinite passive random media [4, 5, 6]. For finite systems, signatures of

AL are related to the strict mathematical definition by scaling theory [7, 8, 9]. An

example of the qualitative change in transport behavior is provided by the transition

between diffusion and AL; this transition can be expected to change the dependence

of the average transmission on system length L from 〈T 〉 ∝ ℓtmfp/L for diffusion to

〈T 〉 ∝ exp(−L/ξ) for AL (e.g., [10]). Here, ℓtmfp is the transport mean free path,

and ξ is the localization length (c.f. Appendix A for the definitions of different length

scales).

Historically, the concept of AL originated in condensed matter physics from

the study of electron transport in disordered conductors on the mesoscopic length

scale. This scale refers to a system length L at which quantum wave effects alter

transport behavior when compared to classical particle-based predictions. For sys-

tems in which the phase coherence length Lφ is greater than L, the effect of de Broglie

wave interference on electrons must be accounted for [1, 11, 12, 13]. However, AL

is difficult to observe in transport of electrons due to electron-electron and electron-

phonon interactions. This obstacle can be overcome by sample preparation and by

measuring transport at low temperatures; more importantly, however, researchers
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have realized that the concept of AL as self-interference of waves in random media

applies to any kind of wave, including electromagnetic waves [14, 15].

For AL as a phenomenon of electron propagation, conservation of charge im-

plies that the number of electrons is constant [13], whereas for light, there is no such

constraint. The number of photons in nonconservative media can decrease due to ab-

sorption or increase in the presence of gain. Since actual experiments [1, 16, 17, 18]

take place in finite nonconservative media, it is important to characterize the nature

of transport in these systems and to generalize the concept of AL for such media.

1.2. CRITERIA FOR DIFFUSION-LOCALIZATION TRANSITION

One of the goals of this dissertation is to develop a localization criterion (LC)

in nonconservative random media. To investigate the transition process, a theoret-

ical model for each transport regime is needed. The diffusion equation analytically

describes the diffusion process, but AL cannot be described in that framework. Tran-

sition between diffusion and AL resists analytical treatment because the diffusion ap-

proximation is made based on the assumption that the wavelength λ is much less than

ℓtmfp, whereas AL is expected when kℓtmfp ≈ 1 in three dimensional (3D) random

media [19]. Here, k is equal to 2π/λ. Thus, AL cannot use the same particle-based

models as diffusion. Although much work has been done with 3D systems, finite

quasi-one-dimensional (quasi-1D) media are sufficiently complex to capture the tran-

sition from diffusion to AL.

This work investigates localization criteria in nonconservative random media,

as described below, using the numerical models of waveguides outlined in Section 1.5.

Interest in quasi-1D systems is driven by experiments [20] and the feasibility of the

numerical model capable of demonstrating AL and diffusion phenomena.
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Before establishing an LC, transport regimes in nonconservative media must

be defined (see Section 1.6). With the systemization of transport behavior, an LC

describes which behavior can be expected. In experiments with random media [21, 22]

an LC can determine when lasing is due to strong localization rather than to diffusive

random lasing [23]. Although this work focuses on the transition in the context of

light, the results apply to any self-interference of waves in nonconservative media

such as acoustics [24, 25, 26].

To determine whether AL or diffusion (or neither) describes transport of light

in passive systems, three regimes are defined. When few scattering events occur in

transmission, the ballistic regime is characterized by the average distance between

scatterers (ℓscat). If a wave encounters a sufficient number of scatterers such that the

original direction is completely randomized (see definition of ℓtmfp in Appendix A),

then diffusive transport behavior is observed. Finally, the localized regime is en-

countered when the system is longer than the localization length ξ. In this case,

cumulative scattering leads to coherent self-interference of waves that halts diffu-

sion. A single-parameter can determine which of these three transport regimes a

passive experiment is in. The term “parameter” refers here to an observable that

varies in relation to change in the transport phenomena. For transport of electrons,

the ensemble-averaged dimensionless conductance∗ g [7] is the parameter, and for

electromagnetic waves the ensemble-averaged transmission 〈T 〉 is equivalent to g.

Diffusion occurs when this conductance is greater than 1; conductance of less than

1 indicates AL. For passive random media, single-parameter scaling holds that any

parameter can determine the applicable transport regime as long as it has one-to-one

correspondence with unitless conductance g. Transmission T in photonic systems,

∗Conductance G = e
2

h
Tr(t̂t̂+) = e

2

h
g [27]
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the optical counterpart of the electronic conductance [27, 28, 29], is

T =
∑

a,b

|tab|2 (1.1)

where tab represents transmission amplitude and phase of the wave for each trans-

verse channel a at output b of the waveguide. For electronic systems, g is the ex-

perimentally accessible quantity, whereas in photonic systems one can also measure

incident-channel resolved transmission Ta and speckle Tab:

Ta =
∑

b

|tab|2

Tab = |tab|2
(1.2)

A nonconservative medium presents an exception to single-parameter scaling

because it breaks this one-to-one correspondence [30]. Although measurement of

transmission yields a value, it does not necessarily correspond to a specific transport

regime. Transmission greater than 1 may be due to the presence of gain in localized

media [31, 32], and transmission of less than 1 may be due to absorption present in

media in the diffusive regime [16, 33]. Thus, a two-parameter space is required to

describe the LC in nonconservative media, i.e., to determine the strength of gain or

absorption in the medium, and to determine what transport regime the equivalent

passive system would be in. A criterion, relevant only once specific transport be-

haviors are well-defined, is needed to characterize an experiment as being in either a

diffusive or AL regime.

1.3. PASSIVE CRITERIA CURRENTLY AVAILABLE

Currently, there exist a number of LC for passive media. For example, Thou-

less [34] showed that the ratio of average width of transmission peak in spectrum
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δω for open passive systems to average energy level separation ∆ω in closed systems

returns a unitless number indicating whether the experiment is described by AL or

diffusion:

δω

∆ω
= g(Thouless). (1.3)

Just as for g, when δω/∆ω is less than 1, then AL occurs. However, this is not a

valid criterion in nonconservative media because the addition of gain also decreases

transmission peak width.

Another approach to finding an LC is to recall that the transition from dif-

fusion to AL implies a cessation of the applicability of the diffusion description.

The self-consistent theory of AL [35] was developed to modify the diffusion equa-

tion to account for wave interference. Without self-interference of waves, the dif-

fusion coefficient D0 is constant throughout the medium. However, when the path

of a wave crosses itself and can coherently self-interfere, the diffusion coefficient de-

creases. Since path loops cannot form near the boundary of a sample, the diffusion

coefficient becomes position dependent D(z). Thus, the change from constant D0 to

position-dependent D(z) signifies the transition to AL. However, this extension of the

application of diffusion has not been shown to fully describe AL for finite systems.

Besides conductance, D(z), and the Thouless criteria, other possible LC in-

clude correlation functions [36] of observables, the inverse participation ratio, and

transmission fluctuations. A diversity of criteria facilitates experimental measure-

ment. All the aforementioned criteria are equally valid in passive media due to

single-parameter scaling. However, the proposed correlation functions and transmis-

sion fluctuations were developed specifically for nonconservative photonic random

media. For example Ref. [16] presents a ratio var(T/〈T 〉) in the context of an ex-

periment with microwaves in waveguides with disordered absorbing media. However,

this ratio may not be useful in media with gain since 〈T 〉 is not well defined. When
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gain is present in media, given a sufficient number of disordered realizations, a few

will lase, and the average or higher moments of T are ill-defined. To avoid this issue,

this dissertation uses conditional statistics to disregard the small number of lasing

realizations. A second problem with the var(T/〈T 〉) ratio as a criterion is that T

diverges as the amount of gain in a medium increases. Section 1.4 presents an LC

that addresses these issues.

1.4. T/E AS DIFFUSION-LOCALIZATION CRITERION

In media with gain, transmission T of light theoretically diverges as the gain

approaches the random lasing threshold (RLT). (Since a saturation mechanism is

model specific, models here are restricted to having gain below the RLT.). To elimi-

nate the divergence T can be normalized by the energy in the medium E . Although

both quantities diverge at the RLT, combining the diffusion equation in nonconser-

vative media [37] and conservation of energy show that the ratio T/E approaches

a constant. Starting from conservation of energy (E =
∫ L

0
W(z)dz) with respect to

flux J ,

∂W
∂t

+ ~∇ · ~J =
Wc

ℓg
+ J0δ(z − zp) (1.4)

where zp is penetration depth, J0 is incident flux, ℓg is gain length, and c is the speed

of light. Assuming a steady state in one dimension,

dJz
dz

=
Wc

ℓg
+ J0δ(z − zp). (1.5)

Both sides are then integrated with respect to z over the length of the medium to get

the equation for conservation of energy for a nonconservative medium:

T +R− 1 = E c

ℓgJ0
. (1.6)
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In the limit that gain length ℓg approaches RLT (critical gain length ℓgcr), both T

and R go to infinity. Assuming T ≈ R,

T

E =
c

2ℓgcrJ0
. (1.7)

This constant is disorder-specific due to ℓgcr , so T/E must be determined before

averaging or higher moments.

For gain below RLT, by comparing the 〈T/E〉 measured in an experiment to

the value predicted by diffusion, the deviation would be due to wave interference

effects (and thus constitute a signature of AL). For passive media, deviation from the

diffusion prediction for 〈T/E〉 is related [37] to the well-established [38] D(z) based

on the self-consistent theory of AL (see Appendix C):

〈
T

E

〉
≈ 1

J0

2D0

L2

(
1

L

∫ L

0

D0

D(z)
dz

)−1

. (1.8)

Since 〈T/E〉 is related toD(z), then experimentally 〈T/E〉 should behave asD(z) does

with respect to D0 for passive media; that is, it should decrease as self-interference

of waves increases. Therefore, 〈T/E〉 appears to be a good LC in nonconservative

media since it is measurable, does not diverge in media with gain, and is related to

an established passive criterion D(z).

1.5. METHOD OF STUDY OF CRITERIA FOR DIFFUSION- LOCAL-
IZATION TRANSITION

When P. W. Anderson initiated the field of localization due to self-interference

of waves, he did so using a new model for solid state transport, the Anderson tight-

binding Hamiltonian [3], which applies to arbitrary medium size and dimension. For
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quasi-1D geometry, random matrix theory (RMT) [39, 40, 41] is widely used. How-

ever, neither of these approaches is able to describe the electric field (and thus the

total energy E) inside a random medium.

To study the AL phenomenon in nonconservative random media, the present

work has developed two numerical models. The first is a one-dimensional (1D) set

of layers of dielectric material with random widths separated by empty space. This

model was developed to find transmission (T ) and energy inside the medium (E) as

a possible criterion T/E for nonconservative media [37, 42]. The ratio T/E has been

verified as nondivergent, even as the amount of gain approaches the lasing threshold

(as expected). The 1D system was used because AL is known to occur in this system

and diffusion is not possible; thus, the effects cannot be due to diffusion. Since diffu-

sion is not possible in 1D systems, a planar quasi-1D metallic waveguide model with

randomly-placed scattering potentials was developed to study the simplest diffusion-

AL transition and to investigate the other listed criteria (D(z), inverse participation

ratio, T/E). This model is necessary since, even for passive systems, the literature

offers no plot of D(z) in the diffusive regime (c.f. Fig. 1.1).

To develop numerical models that can simulate wave transport in nonconserva-

tive media for individual realizations of disorder, this work implements the transfer

matrix method [8, 43, 44] for the entire waveguide. Essentially, the transfer ma-

trix method matches boundary conditions before and after an event in a system

where wave modes are quantized. Not only is the quasi-1D geometry experimen-

tally viable [45], it also provides a convenient theoretical framework [46, 47]. Here,

waveguides described as “quasi-1D” have the following characteristics: (1) quantized

transverse modes due to boundary conditions, expressed as E(y = 0,W ; ∀z) = 0 as

for metallic edges, (2) waveguide widthW less than ℓtmfp so that no significant trans-

verse propagation occurs, and (3) aspect ratio (L :W ) is not fixed (i.e., W is constant
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Figure 1.1: Position-dependent diffusion coefficient D(z) as predicted by self-
consistent theory of localization (smooth red curves) and numeric results
(rough blue lines) for quasi-1D waveguides with randomly-placed pas-
sive scattering potentials for varying system length L, constant scatterer
density, and width W . Very good agreement for ballistic (L = 100λ), dif-
fusive, and localized (L = 800λ) regimes. The term ℓ is transport mean
free path, and z0 is penetration depth.
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when L is increased, with a fixed disorder density). Further, the propagation is con-

fined to two dimensions in order to study a single polarization of electromagnetic

radiation.

As shown in Appendix B, the differential wave equation

∇2E(~r) = −ω
2

c2
E(~r) (1.9)

can be separated into perpendicular and parallel components (resolving wave vector

~k into k⊥ and k‖). Once the electric field solution is found, scattering potentials are

introduced, initially as δ functions. The derivation of the transfer matrix method

is ab initio based on Maxwell’s equations [48], and no assumption about transport

mean free path is made.

For light waves, transverse wave quantization means that the modes of an

electric field and its derivative can be written in the form of a vector. The transla-

tion of that field in vector form through a dielectric-filled space or past a scattering

potential is described by a matrix, the rank of which is dependent on the number

of transverse modes of the waveguide (c.f. Appendix B). In 1D, the transfer matrix

method takes the initial electric field E0 and its derivative E ′
0 and translates to the

field and its derivative over distance ∆x:




t11 t12

t21 t22







E0

E ′
0


 =




E∆x

E ′
∆x


 . (1.10)

Multiple scattering events are combined as T̂total =
∏

i T̂i. The product describes the

effect of the medium on the transport of the incident light. Since the transfer matrices

have finite rank, the scattering potentials used are actually a finite summation of

Fourier components of the δ function. Although the purpose of the numerical model
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Figure 1.2: Magnitude of electric field inside a quasi-1D waveguide for passive media
in the diffusive regime. Midsection of waveguide is shown (from z/L =
80/200 to z = 120/200) for a resonant frequency (higher than average
transmission). Spatially varying field intensity (with continuous wave
incident flux) demonstrates interesting microscopic behavior, even though
the system is in the diffusive regime.

is a study of photonic transport in nonconservative media, the resulting electric field

magnitude, plotted in Fig. 1.2, is a secondary benefit.

The transfer matrix method is used in the field of transport [49], but its ap-

plication is usually limited either to RMT for perturbative study or directly only

to the diffusive regime. These limitations are due to the fact that multiplication of

numerical matrices results in inaccuracy due to divergent eigenvalues in the prod-

uct [50]. The numerical inaccuracy is detectable since each transfer matrix has deter-

minant unity. The product of the matrices must retain a determinant of unity since

det(Â)det(B̂) = det(ÂB̂). A self-embedding technique renormalizes the divergent

eigenvalues and make this approach feasible [51, 52]. The reliability of the transfer
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Figure 1.3: Theoretical prediction based on supersymmetric approach for average
unitless conductance g versus variance of g for quasi-1D waveguide [53]
compared to results from numerical simulations described in Section 1.5.
No fitting parameters are used and good agreement is found. The 15/2
accounts for the geometry of the waveguide. Many realizations of random
media for each waveguide determined 〈g〉 and var(g) for waveguides of two
different widths (with the number of open channels Nopen determined by
W ) and varying system length L. The supersymmetry-based approach
assumes the limit of an infinite number of propagating modes, but Nopen

equal to 10 and 20 is sufficient.

matrix method with self-embedding is demonstrated by comparing numerical simula-

tion results of average unitless conductance 〈g〉 versus variance var(g) to data yielded

by a theoretical supersymmetry-based approach [53]. With no fitting parameters,

there is very good agreement (c.f. Fig. 1.3). Similarly, the diffusion coefficient from

numerical simulation of passive media matches expected D(z) (c.f. Fig. 1.1).
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1.6. OUTLINE OF TRANSPORT REGIMES

To guide the study of the extension of the three passive regimes in nonconser-

vative media, a two-parameter diagram (c.f. Fig. 1.4) enumerates types of transport

behavior. The first parameter is system length L, which varies in relation to con-

stant disorder density and waveguide width for passive media. The second parameter

is gain or absorption strength. The two-parameter plot is needed to define specific

signatures of diffusion and AL. The chapters that follow use the numerical model

of waveguides to verify transitions between types of transport and to characterize

behavior of LC such as the proposed T/E in nonconservative random media.

A single-valued parameter such as T/E is useful even in this two-parameter

space because it indicates only whether diffusion or AL descriptions apply to trans-

port. However, not all single-valued LC are applicable for these systems due to the

divergence of most observable parameters as RLT is approached with increased gain.

Before determining which side of diffusion or AL is characterized by T/E , the behav-

ior on both sides must be defined. Currently, no clear definitions of AL or diffusive

behavior exist for nonconservative random media.

Figure 1.4 describes types of transport in quasi-1D waveguides with random

media; it has three passive regimes: ballistic (B), diffusive (D), localized (L) on the

horizontal axis and gain (G) or absorption (A) strength on the vertical axis. The

two-letter combinations on the plot denote a regime of specific behavior. The passive

regime transitions (B/D/L) are characterized by the transport mean free path ℓtmfp

and localization length ξ, as described in Section 1.2. All lengths are normalized by

wavelength λ.

The absorption (gain) rate γa,g is the average number of absorption events per

unit time, where an event refers to the particle removed (doubled) along a specific

path. The absorption (gain) rate is the inverse of the absorption (gain) lifetime,
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Figure 1.4: Various types of transport phenomena denoted by two-letter abbrevia-
tions (see text for explanation). Each region is a permutation of the
inequality of relevant characteristic lengths. Passive (conservative) trans-
port regimes are on the horizontal axis, assuming constant disorder den-
sity and varying system length L. Plotted vertically, amounts of absorp-
tion or gain (nonconservative media) increase with distance away from
the passive system horizontal axis.

γa,g = 1
τa,g

, where τa,g is the average propagation time of the particle before it is

absorbed (doubled). The averaging is over many random particle paths. Given a

characteristic time τa,g, the characteristic absorption or gain length is ℓa,g = τa,gc,

where c is the propagation speed of the particle. This characteristic length is the

average distance prior to absorption (doubling) with respect to the path length. The
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ℓa,g is determined from the time-dependent diffusion equation in one dimension,

D
∂2I

∂z2
=
∂I

∂t
, (1.11)

to be

ℓa,g =

(
d

π2

)
L2

ℓtmfp
. (1.12)

However, ℓa,g is already defined in the ballistic regime as the average length after

which the particle is no longer present in a ballistic system due to absorption (doubled

when gain is present). The system length L (how far the particle would have gone

along a ballistic path) should be replaced by a new diffusive-regime length, ξa,g.

Eq. 1.12 can then be solved for ξa,g:

ξa,g =

√
ℓa,gℓtmfp

d
. (1.13)

Physically, ξa,g is the average length after which the particle is no longer present in a

multiple-scattering system. To distinguish the two absorption (gain) lengths, ξa,g is

measured with respect to system length L (rather than path length LD), whereas ℓa,g

is measured with respect to path length LD. If L is equal to LD, then no diffusion is

occurring and ℓa,g is equal to ξa,g. Usually, the literature does not distinguish between

measurement of an absorption length with respect to diffusive path LD or measuring

it with respect to system length L. There are two reasons for this ambiguity: first,

experimentally, LD is harder to measure than L; second, the regime to which various

lengths apply to is generally not specified.

For localized systems, it no longer makes sense to measure lengths with respect

to path length since wave effects are dominant (i.e., ray optics do not apply). In this

regime ξa,g is used, but it is not defined in terms of ℓa,g as in Eq. 1.13. The transition

indicating whether or not absorption affects AL or not is set by ξa = ξ (the horizontal
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line between AD3 and AL3 in Fig. 1.4). This transition in the diffusive regime is found

by applying Eq. 1.13 to ξa,g = ξ = Nopenℓtmfp and solving

N2
openℓ

2
tmfp =

ℓtmfpℓa,g
d

(1.14)

to get ℓa,g = dN2
openℓtmfp. For the diffusive regime, this line indicates how much

absorption (gain) is necessary to distinguish transport behavior from a passive system.

The remaining curves in Fig. 1.4 are derived from the density of state transitions,

rather than the characteristic lengths.

For passive media, the width of peaks in transmission with respect to frequency

(δω of the Thouless criterion in Eq. 1.3) is inversely proportional to the escape lifetime

(the average time until an input leaves the system). To account for absorption or gain,

an additional term is needed [36] in the form of a rate: δω+γa,g. Although the width of

DOS ∆ω also changes as a function of gain due to the Kramers-Kronig relation [48],

the perturbation can be disregarded since the amount of gain and absorption of

interest is small. The Thouless criterion is adapted to nonconservative media by

inclusion of the gain (sometimes referred to as negative absorption [54]) or absorption

rate γa,g = ∓ c/ℓa,g:

δ′ =
δω + γa,g

∆ω
; (1.15)

it is plotted as the red curve δ′ = 1. Physically, this boundary signifies whether the

width of quasi-modes or separation of spectral peaks is larger. An additional bound-

ary introduced by inclusion of nonconservative media occurs when absorption or gain

overcomes radiative leakage of an average quasi-mode of the system, as plotted by

the black curve ±γ = δω. Although each region is separated by a line in Fig. 1.4, the

transition between regimes is actually continuous due to the use of many realizations

of randomly placed scatterers. Given the boundaries between each region, two-letter

abbreviations are defined for each unique transport behavior.
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In the ballistic regime GB1, gain below ballistic lasing threshold is not ex-

pected to change transport behavior (and similarly for AB1 when ℓa < L). For a

small amount of absorption or gain in regions AD1 and GD1, the diffusive trans-

port is also expected to remain similar to passive media. The use of conditional

statistics [36] eliminates a small number of lasing media. With sufficient absorption,

signatures of diffusion are reduced (AD2) and suppressed (AD3). In contrast, gain

enhances fluctuations (GL1) and leads to lasing (GL2) on average for many real-

izations [54]. Transport in region GD2 is the equivalent of “negative absorption”

in region AD2. The remaining absorption regimes signify transition from distinct

spectral peaks and leakage due to radiation (AL1) to distinct spectral peaks with

absorption dominating leakage (AL2) to a continuous spectrum due to absorption

with weak localization (AL3).

To verify the boundaries and transport behaviors specified in Fig. 1.4, the

numerical model for waveguides with random media is used to measure the crite-

rion T/E . In addition to determining the applicability of other LC such as D(z),

correlation functions, and the inverse participation ratio, this system makes possible

the study of myriad other interesting topics. Examples include the effect of closed

channels with gain [55], wave front shaping [56] to change transmission or focus field

inside the medium, eigenmodes of transmission [57], and the visualization of Poynt-

ing vector field loops. The numerical model developed serves as a robust method

for a comprehensive approach to investigating the transition from diffusion to AL for

waveguides with nonconservative random media.

In this dissertation, each of the chapters are either published or in the pro-

cess of submission to a peer-reviewed journal. Thus each chapter has an abstract,

introduction, and conclusion. The first paper, Chapter 2, describes the applicability

of the ratio of transmission to energy stored in a random media as a criterion for

localization. Although both of these parameters diverge in the presence of optical
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gain, the ratio for each random medium does not. This criterion is developed in the

context of a diffusive slab and also a numerical model of one dimensional layers of

dielectric material. Since the lowest dimension for which the transition from diffu-

sion to Anderson localization occurs in quasi-1D, there is a need for how to describe

transport regimes with non-conservative media exists. The second paper, Chapter 3,

details the development of boundaries between transport regimes in the two dimen-

sional phase space for random media with gain and absorption. Another complication

of the quasi-1D geometry is the inclusion of evanescent channels, which is studied in

Chapter 4. We find that the effect of inclusion of evanescent channels is equivalent to

renormalizing the transport mean free path. The last paper on random media in this

dissertation, Chapter 5, demonstrates the validity of the position dependent diffusion

coefficient D(z) in the localized regime and in systems with absorption.

The remaining two chapters cover media with correlated disorder. Although

random media exhibits unusual behavior, reproducibility is desirable for manufac-

turing. Thus algorithms specifying the non-random disorder (deterministic aperiodic

systems) are of interest. The Thue-Morse pattern has a singular continuous Fourier

spectrum, but this does not directly predict what transport properties are expected.

In Chapter 6 a mapping of the two dimensional Thue-Morse pattern is made to

the tight-binding model. Then Chapter 7 covers the anomalous transport proper-

ties, i.e. coexistence of localized and extended states, exhibited by the Thue-Morse

pattern.
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2. RELATION BETWEEN TRANSMISSION AND ENERGY STORED
IN RANDOM MEDIA WITH GAIN

Ben Payne1, Jonathan Andreasen2, Hui Cao2, and Alexey Yamilov1

1Department of Physics, Missouri University of Science & Technology,

Rolla, MO 65409

2Department of Applied Physics, Yale University, New Haven, CT 06520

ABSTRACT∗

In this work, we investigate a possibility of using the ratio between optical

transmission, T , and energy stored inside the system, E , as a quantitative measure of

the enhanced mesoscopic corrections to diffusive transport of light through a random

medium with gain. We obtain an expression for T/E as a function of amplification

strength in the diffusive approximation and show that it does not a have tendency

to diverge when the threshold for random lasing is approached, as both T and E

do. Furthermore, we find that a change in T/E signifies a change in the electric field

distribution inside the random medium. In the localization regime, we also investigate

the correlations between transmission and energy stored in the medium with and

without amplification. Our results suggest that T/E is a promising parameter which

can help characterize the nature of wave transport in random medium with gain.

∗Published in Physical Review B 82 104204 (2010).



20

2.1. INTRODUCTION

Anderson localization [3] (AL) is a wave phenomenon [14, 15, 19] that leads to

a breakdown of diffusion[13, 35]. First conceived in electronic systems, it originates

from a repeated self-interference of de Broglie waves during their propagation in a

random potential. Conservation of number of carriers, enforced because the electrons

possess an electric charge, lies in the foundation of the concept of AL.

Understanding the effect of absorption [14], ubiquitous in optical systems,

turned out to be essential for proper physical description and interpretation of ex-

perimental studies of light localization [16, 17, 58, 59, 60, 61]. It also prompted

the search[16] for an alternative criterion of localization in absorbing media. Coher-

ent amplification, which leads to an altogether new physical phenomenon of random

lasing[22], demands further refinement of the concept of AL and its criteria in active

random media.

In the case of absorption, an alternative criterion, based on the magnitude

of fluctuations of transmission normalized by its average, was put forward [16]. In

random media with gain, this quantity (as well as any other statistically averaged

quantity) becomes ill-defined [36]. This is because there always exists a non-zero

probability of encountering a special realization of disorder within the statistical en-

semble where the given value of the gain parameter exceeds the threshold for random

lasing[22]. Without saturation effects, such a realization will have an infinite contri-

bution to a statistical average. Inclusion of the saturation introduces a dependence

on system- and material-specific parameters which are not associated with wave-

transport properties of the random medium. To avoid such dependence, and at the

same time to regularize the statistical ensemble, in Ref. [36] we introduced conditional

statistics by excluding the diverging contributions. Such an approach indeed turned

out to be fruitful in studies of enhanced fluctuations and correlations in mesoscopic
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transport of the electromagnetic waves through random medium with optical ampli-

fication [31, 32, 36]. These investigations also motivated us to explore an intriguing

possibility of localization by gain – enhancement of the mesoscopic phenomena with

an increase of the amplification strength.

In this work, we investigate the properties of the ratio between transmission

T and the energy inside a random medium E , with the goal of formulating a criterion

of AL which would be applicable in the presence of gain. Both parameters should

be experimentally accessible in planar systems, e.g. perforated dielectric films, in

which the spatial field distribution inside the medium can be obtained via near-field

scanning optical microscopy.

In Section 2.2, to motivate our choice of the parameter in the form T/E , we

consider random medium in regime of diffusive transport. First we note that when

taken separately, both transmission and the energy inside the system E exhibit an

expected tendency to increase with an increase of the gain strength and to diverge

when threshold for random lasing is approached (no saturation mechanism is as-

sumed). However, when taken in a form of a ratio, the divergence is eliminated

and the tendency to increase is greatly reduced. Secondly, we show that in passive

systems the ratio can be related to the spatially-dependent diffusion constant D(z).

The latter concept has been recently invoked [38, 62] in the self-consistent theory of

AL to extend the applicability of diffusion approximation into the localized regime.

The connection between T/E and D(z) demonstrates that the former can, indeed,

be used as a quantitative measure of the contribution of localization (interference)

phenomena in transport through disordered systems.

In Section 2.2.4 we obtain an expression for T/E from the solution of the

diffusion equation in a random medium (using the slab geometry) with gain. This

establishes a baseline – a decrease of the parameter T/E below the diffusion prediction
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obtained in this section can be used to quantify the extent to which the gain promotes

the localization effects.

In order to further assess the usefulness of T/E as a localization criterion, in

Sec. 2.3 we also consider random medium in the localized regime where we investigate

the correlations between the transmission and stored energy in the same disorder

configuration. We show that the ratio strongly depends on the spatial location of

localization center. This introduces an additional (geometrical) source of fluctuation

which is not present in the transmission coefficient alone. Interestingly, this effect

leads to profound gain-induced modification of the electric field distribution inside

the system that is studied in Sec. 2.3.4.

Discussion of the obtained results and an outlook is given in Sec. 2.4.

2.2. ANALYSIS OF T/E : DIFFUSIVE REGIME

2.2.1. Model Description. In weakly scattering random media it is com-

mon to disregard the wave nature of carriers (electrons, photons, etc) and to describe

the transport in terms of the phase-less diffusion equation. Under this condition, the

ensemble-averaged diffusive flux 〈J(r, t)〉 and the energy density 〈W(r, t)〉 are related

via[63]

〈J(r, t)〉 = −D(r)∇〈W(r, t)〉. (2.1)

The diffusion approximation amounts to D(r) ≡ D0 = vEℓ/3, where ℓ is transport

mean free path and vE is the energy transport velocity [64]. In the following we will

neglect resonant scattering effects and will assume that vE is equal to the speed of

light in vacuum.

Vollhardt and Wölfle [35] laid out a theory which allows one to account for

wave interference effects while retaining diffusive-like formalism. With recent refine-

ments [38, 62], it is currently believed that allowing for renormalization and spatial
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dependence of the diffusion coefficient D(r) provides an adequate description of trans-

port through random medium of finite size even beyond the diffusive regime. At the

same time, deviation (reduction) of D(r) from the constant value of D0 is interpreted

as a manifestation of the developing localization effects.

Eq. (2.1) has to be complemented by the energy conservation condition

∂〈W(r, t)〉
∂t

+ div〈J(r, t)〉 = c

lg
〈W(r, t)〉+ J0δ(z − zp), (2.2)

where lg is gain length and we assume that the coherent flux of an incident plane

wave is converted into diffusive flux J0 at z = zp ∼ ℓ, the penetration depth [65], near

the left boundary. The above description can be similarly applied to both for the

scalar (e.g. acoustic) waves with W(r, t) = ε(r) |dψ(r, t)/dt|2 /(2c2) + |∇ψ(r, t)|2 /2

and the electromagnetic waves with W(r, t) = ε(r) |E(r, t)|2 /2 + µ |H(r, t)|2 /2 [63].

In the former case c/ε1/2(r) has the physical meaning of local propagation speed of

the elastic wave field ψ(r) and in the latter, ε(r) is the dielectric function and E(r, t),

H(r, t) are the electric and magnetic fields.

Throughout this work we consider the case of linear gain. Such an approx-

imation is justified for values of gain up to the threshold for random lasing when

nonlinear and dynamical effects[22, 66, 67, 68, 69] become crucial.

We consider a 3D random medium in the shape of a slab of thickness L, where

we explicitly separate the coordinate z normal to the slab from the perpendicular

component ρ as r = (ρ, z). Under a plane-wave illumination at normal incidence,

the dependence on ρ can be neglected. In this case Jz(z) should be understood as

the longitudinal component of the flux per unit of cross-sectional area of the slab.

We will also limit our consideration to a continuous wave (CW) regime where the

energy density W(z) is stationary: ∂〈W(z)〉/∂t = 0. Under the above assumptions,
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the boundary conditions

Jz(z = 0) = −J0R, Jz(z = L) = J0T (2.3)

together with Eqs. (2.1,2.2) completely specify the problem.

2.2.2. Asymptotic Behavior of T/E : Passive System Limit. In Appx. 2.6.1

we demonstrate that Eqs. (2.1,2.2,2.3) allow one to obtain the following expression

for the ratio between T and E in the passive limit 1/lg → 0:

T

E ≃ 1

J0
× 2D0

L2
×
[
1

L

∫ L

0

D0

D(z)
dz

]−1

, (2.4)

where the energy stored inside the random medium E is formally defined as

E =

∫ L

0

〈W(z)〉dz. (2.5)

We note that in the process of deriving Eq. (2.4), terms on the order of ∼ ℓ/L ≪ 1

were dropped.

Eq. (2.4) establishes a relationship for passive media between the parameter

we put forward in this work and the self-consistent diffusion coefficient. As it has

been determined theoretically [35, 38], localization effects lead to a steady slow-down

of diffusion inside the random medium. Because it results in a monotonic decrease

of T/E parameter below its diffusion-predicted value, we conclude that the proposed

parameter may indeed be used to assess the importance of the localization corrections

in wave transport through disordered media.

Neglecting the localization corrections in Eq. (2.4) by assuming D(z) ≡ D0

gives the expected result

T

E ≃ 1

J0
× 2D0

L2
. (2.6)
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The quantity D0/L
2 coincides with the reciprocal of diffusion time tD – the time re-

quired for a pulse to propagate through the slab of random medium. This connection

offers a clear physical interpretation of the considered parameter T/E as a character-

istic time scale of transport through the medium. The reduction of D(z) < D0 leads

to a decrease of T/E , as expected in passive systems.

2.2.3. Asymptotic Behavior of T/E : Strong Gain Limit. Under the

assumptions specified in Sec. 2.2.1, the integration of Eq. (2.2) over the interval

z ∈ [0, L] with the boundary conditions given by Eq. (2.3) gives

(T +R− 1)× J0 = E × (c/lg). (2.7)

This is essentially an energy conservation condition. Hence, it should be fulfilled in

any approximation regardless of whether the interference effects are neglected or fully

accounted for. We note that in absence of gain 1/lg → 0, Eq. (2.7) reduces to familiar

T +R = 1 (see Eq. (2.3) for the definitions of T,R).

As we will discuss in detail below in Sec. 2.2.4, close to some critical value of

gain length lg,cr the transmission and reflection coefficients tend to diverge. Impor-

tantly, because the contribution of the incident flux to the overall energy density is

small, T and R become comparable T ≃ R ≫ 1. Under such conditions, Eq. (2.7)

yields

T

E ≃ 1

J0
× c

2lg
→ 1

J0
× c

2lg,cr
. (2.8)

This shows that the studied ratio T/E , indeed, remains finite. Its limiting value is

directly proportional to the critical gain parameter 1/lg,cr. In the next section we will

obtain an analytical expression for T/E at an arbitrary value of gain parameter. It

will also help justify the approximations (such as T ≃ R above) made in arriving to

the expressions in this and the previous sections – Eq. (2.8) and Eq. (2.6) respectively.
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2.2.4. Intermediate Gains. In this section, we investigate the effect of am-

plification on T/E for an optically thick (ℓ ≪ L) slab of 3D random medium under

assumption specified in Sec. 2.2.1. We consider a sample with parameters not too

close to the Anderson localization transition[19], i.e. kℓ ≫ 1, so that the condition

D(z) = D0 can be reasonably well satisfied. A combination of Eqs. (2.1,2.2) results

in a stationary diffusion equation

0 = D0∇2
z〈W(z)〉 + c

lg
〈W(z)〉 + J0δ(z − zp). (2.9)

The solution of the diffusion equation for the case of absorption in slab geometry

has been obtained in Ref. [2, 65]. The related gain solution can be directly inferred

through formal substitution la = −lg. Such treatment of gain in a scattering problem

has become known as the “negative absorption” model. It has been successfully used

to describe turbid amplifying media such as incoherent random lasers [54, 70, 71].

The transmission and reflection coefficients can be directly obtained from the

solution in Refs. [2, 65] by employing the definition of diffusive flux[63]

〈J±(z)〉 =
c

4
〈W(z)〉 ∓ D0

2

d〈W(z)〉
dz

(2.10)

where 〈J−〉 and 〈J+〉 are the fluxes propagating along negative and positive z-directions

respectively. Evaluating 〈J−(0)〉 and 〈J+(L)〉 we find the following expressions for

reflected and transmitted fluxes

〈J−(0)〉 = J0
sin(α(L− zp)) + αz0 cos(α(L− zp))

(1− α2z20) sin(αL) + 2αz0 cos(αL)
(2.11)

〈J+(L)〉 = J0
sin(αzp) + αz0 cos(αzp)

(1− α2z20) sin(αL) + 2αz0 cos(αL)
, (2.12)
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where z0 = 2ℓ/3 ∼ ℓ is the extrapolation length [72], and α−1 =
√
ℓlg/3. Ensemble-

averaged electromagnetic energy inside the sample can be also determined by inte-

grating the energy density over the entire system, c.f. Eq. (2.5)

E =
J0

D0α2

[
sin(αzp) + sin(α(L− zp)) + αz0(cos(αzp) + cos(α(L− zp))

(1− α2z20) sin(αL) + 2αz0 cos(αL)
− 1

]
.

(2.13)

It is easy to verify that energy conservation Eq. (2.7) is satisfied.

In Fig. 2.1a,b we plot Eqs. (2.11,2.12,2.13) for a slab of thickness L/ℓ = 100.

As expected, we observe the divergence of the transmission and reflection fluxes,

c.f. Fig. 2.1a, when diffusive random lasing threshold (RLT) is approached (α →

αcr = π/(L + 2z0) ≃ π/L) with an increase of gain parameter α or, equivalently, a

decrease of gain length lg toward lg,cr ≃ 3L2/(π2ℓ). The asymptotic dependence is

then

〈J−(0)〉 ≃ 〈J+(L)〉 ≃ J0
z0 + zp
π

α2
cr

αcr − α
. (2.14)

Similar critical behavior is obtained when the system size L is increased towards

critical length, Lcr(α),while keeping the gain parameter α fixed.

In Fig. 2.1b we also plot the ratios of reflection to energy 〈J−(0)〉/E ≡ J0R/E

and transmission to energy 〈J+(L)〉/E ≡ J0T/E obtained from Eqs. (2.11,2.12,2.13).

One can observe that both R/E and T/E indeed remain finite at αcr with the same

limiting value given by Eq. (2.8). Although the leading terms in Laurent series in

powers of (αcr − α), Eq. (2.14), are same for both reflection and transmission, the

second order terms (not shown) are not. This explains different slopes of R/E and

T/E in approach to lasing threshold in Fig. 2.1b.

By making assumption that ℓ/L≪ 1, we find a compact analytical expression

for T/E with an arbitrary value of gain parameter α:

T

E ≃ D0α
2

2J0 sin
2 (αL/2)

. (2.15)
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Figure 2.1: (a) Transmission 〈J+(L)〉 (dashed line) and reflection 〈J−(0)〉 (solid line)
given by Eqs. (2.11,2.12) are plotted for increasing gain (thick lines) and
absorption (thin lines) coefficients for a slab of random medium of thick-
ness L/ℓ = 100. In panel (b) we plot the same quantities as in (a) but
normalized by the value of total energy stored inside random medium E ,
c.f. Eq. (2.13). The divergence in the vicinity of RLT is prevented as
both curves approach the same limiting value given by Eq. (2.8). T/E
obtained by evaluating the approximate expression Eq. (2.15) is shown
with open circles. For the chosen L/ℓ = 100 ≫ 1 the deviation from the
exact result is indiscernible.
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Figure 2.2: Diffuse energy density distribution 〈W(z)〉 inside the slab of random
medium with thickness L/ℓ = 100 from Eq. (2.13). Thick solid line cor-
responds to the sample with gain (α/αcr = 0.8), dashed line – to passive
sample, whereas thin solid line – to the sample with absorption(|α/αcr| =
1). Absorption curve is shown for comparison.

Fig. 2.1b shows that this approximate expression (open circles) gives an excellent

agreement with the exact results of Eqs. (2.12,2.13). It is also easy to check that

the limiting expressions of T/E Eqs. (2.6,2.8) obtained in the previous sections follow

immediately from the above expression.

Based on our observations above, we make the following conclusions that will

also inform our investigations in the following Sec. 2.3:

(a) Sufficiently close to the lasing threshold, the reflection and transmission fluxes

diverge and become almost equal, c.f. Eq. (2.14). This signifies the fact that the

system approaches the regime when the gain alone can sustain its energy, without

relying on the incident flux;

(b) When normalized by the total energy in the slab defined by Eq. (2.5), both R/E

and T/E do not diverge when the RLT is approached. Instead, they converge to the

finite value of c/(2lg,cr) ≡ 2D0/L
2 × (π2/4), c.f. Eq. (2.8). Note that the effect of

gain is to increase this parameter by a factor π2/4 ≃ 2.5 compared to the value in

the passive system, c.f. Eq. (2.6);
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(c) The change of the quantities R/E and T/E is related to modification of the inten-

sity distribution inside the volume of random medium, c.f. Fig. 2.2c. When energy

density 〈W(z)〉 assumes the limiting profile given by the lowest order diffusion mode

〈W(z)〉 ∝ sin(πz/L) the ratios R/E and T/E saturate;

(d) In Sec. 2.2.2 we showed, c.f. Eq. (2.4), that wave interference effects in passive sys-

tem tend to make the parameter T/E smaller then its diffusion prediction, Eq. (2.6).

We expect the same trend to continue in random media with gain. Thus, Eq. (2.15)

plays an important role as it establishes a baseline, with downward deviations from

which may be attributed to the enhancement of the wave phenomena.

As we are interested in the interplay between the effects of gain and light lo-

calization, in the following we acknowledge the limitations of the diffusive description

of this section:

(i) The diffusion approximation (no renormalization of diffusion coefficient is as-

sumed) fails when wave phenomena such as localization or coherent random lasing

become important. Proper treatment of electric field and its phase becomes neces-

sary;

(ii) Increase in gain or scattering strength is expected to lead to an increase of fluc-

tuations of both transport coefficients [36] and random lasing threshold [73]. Thus

T/E in the form of a ratio between the average values of two quantities will no longer

adequately represent the ratio between the transmission T̃ and energy-stored Ẽ in

any given realization. Instead, it may need to be replaced with 〈T̃ /Ẽ〉 which would

account for correlation between two quantities in the same sample;

(iii) With further increase of gain toward RLT, the divergence of fluctuations of T̃

may necessitate the consideration of higher moments
〈(
T̃ /Ẽ

)n〉
or, perhaps, its en-

tire distribution;

(iv) At the onset of random lasing, nonlinear and dynamical processes[22, 66, 67, 68,
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69] become essential for proper description of the system properties and, thus, a CW

quantity such as T/E may no longer be suitable.

2.3. ANALYSIS OF T/E : LOCALIZED REGIME

2.3.1. Model Description. In this section we investigate how fluctuations

effects (i-iii) from Sec. 2.2.4 influence T̃ /Ẽ . We remind that the tilde is used to

denote the transmission and stored energy in the given sample whereas T and E are

reserved for the ensemble-averaged quantities. Compared to Sec. 2.2, we consider

the other extreme case – the regime of localized transport – where the fluctuations

play the dominant role even in a passive system. For this purpose a one-dimensional

(1D) model is already sufficient. Indeed, long enough 1D systems are necessarily

in localized regime and, therefore, the fluctuation effects will be essential even at

small values of gain. Despite the reduced dimensionality, there are a number of

experimental systems [74, 75, 76, 77] for which the considered one-dimensional model

is applicable directly.

We consider a passive system having alternating layers of dielectric material

(ǫ = 1 and 1.2), and width a. This pair of layers is repeated to create 1000 pairs. One

last ǫ = 1 layer is added to the end to create a stack of 2001 layers. Then the total

sample has length L. Randomness is introduced by varying the width of each ǫ = 1.2

layer. The disorder strength and frequency range are chosen so that the system is in

the regime of locally weak disorder (a≪ ξ); the localization length ξ ∼ L/5 to L/10,

and single parameter scaling is applicable[78]. Gain or absorption can be included

via the imaginary part of the dielectric constant.

We consider an electromagnetic wave of unit magnitude incident on the sys-

tem. We will distinguish between the cases when the wave is incident from the left

and from the right, as defined by the following asymptotic behavior of the electric
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field:





EL(x < 0, ω) = exp[iωx/c] + rL(ω) exp[−iωx/c]

EL(x > L, ω) = tL(ω) exp[iωx/c]
(2.16)





ER(x < 0, ω) = tR(ω) exp[−iωx/c]

ER(x > L, ω) = exp[−iωx/c] + rR(ω) exp[iωx/c]
(2.17)

Here, rL,R(ω), tL,R(ω) are the corresponding amplitude reflection and transmission

coefficients; T̃ = |t|2 and R̃ = |r|2. Wave propagation through the system is modeled

using 2× 2 transfer matrices[79, 80, 81]

t̂i =




cos(kniai) n−1
i sin(kniai)

−ni sin(kniai) cos(kniai)


 (2.18)

which act on the two-element vector expressing the values of the electric field and its

derivative taken at the boundary between the dielectric slabs. Here ni = ǫ
1/2
i is the

refractive index and ai is the width of the i′th slab.

We use this numerical model to simulate CW response of the random system

within certain spectral range. Fig. 2.3 shows a typical distribution of electric field

inside random medium and the corresponding transmission and energy E obtained

in a single realization. Subsequently, this simulation is repeated for a number of

random configurations. In Sections 2.3.2–2.3.3 the system is assumed to be passive.

The effect of linear gain is considered in Section 2.3.4.

2.3.2. Correlations Between T̃ and Ẽ. Motivated by our analysis in Sec-

tion 2.2.4, we would like to study the dependence of the ratio between transmission

and stored energy in the above wave-model. Fig. (2.3b) shows T̃ and Ẽ as a function

of frequency in a single disordered realization. We notice that these two parameters

are not closely correlated in the localized regime. Indeed, one can see that unlike the
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Figure 2.3: (a) The spatially-resolved electric field in a disordered sample plotted
for a range of frequencies. Five clear resonant tunneling states can be
identified. (b) Transmission (solid line, right y-axis) as a function of
frequency, T̃ (ω), is compared to the total energy (dashed line, left y-axis)
in the sample Ẽ(ω) for one random realization of disorder. No one-to-one
correspondence between resonant peak structures is observed.
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transmission peaks, the peaks in energy are highly dissimilar with some being almost

indiscernible. This disparity is an additional source of fluctuation in the ratio T̃ /Ẽ .

The goal of this section is to understand this behavior.

The field distribution inside the sample gives a clue why the energy may

differ from resonance to resonance. At the off-resonant frequencies one observes

nearly exponential decay. Whereas at or in the vicinity of a tunneling resonance, two

qualitatively distinct behaviors are observed. They are illustrated in Fig. 2.4.

In the first scenario, c.f. bold line in Fig. 2.4, the electric field grows expo-

nentially from the incident boundary towards the localization center x0 and falls off

after it. For both segments the characteristic length in the exponential dependencies

is set by the localization length. Such behavior is attributed[82] to the phenomenon

of resonant tunneling via a localized state centered at x0.

In the other case, c.f. thin line in Fig. 2.4, an additional negative exponential

segment can be identified (notice the change in the direction of incidence, see figure

caption). Because this type of behavior leads to significantly less energy stored inside

the system, the resonances of this type do not show a pronounced spectral peak in

Ẽ . Although the localized states with spatial profiles as the one shown in bold in

Fig. 2.4 were studied in Ref. [82], the second scenario exemplified by the thin line in

Fig. 2.4 was not described in that or subsequent studies by Azbel and coworkers.

We note that multi-peaked spatial intensity distribution is expected in case

of so-called necklace states[74, 83, 84] when two or more resonant states coexist at

(almost) the same energy in the given disorder realization. Such realizations, however,

become less probable deep into the localization regime L ≫ ξ and are not directly

relevant in the current context.

We find that, on average, roughly a half of all spectral peaks in transmission

do not have the corresponding peak in Ẽ . As it will become evident from the following
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discussion, the difference in two types of behavior in Fig. 2.4 originates from the spa-

tial location of the localized state. Indeed, we find that at the frequencies where peaks

in transmission and energy occur simultaneously, the center of localization is located

close to the incident boundary of the sample. The field distribution is qualitatively

similar to the one shown in bold in Fig. 2.4. In contrast, at the frequencies where

the peak in transmission has a significantly less pronounced (or non-distinguishable)

peak in energy, the center of localization is located in the second half of the sample

(closer to the exit boundary). The field distribution is qualitatively similar to the

one depicted with a thin line in Fig. 2.4.

Realizing that our system is invariant under the time reversal transformation,

one is led to the following observation. A sample with a localized state 0 < x0 <

L/2 automatically yields the L/2 < x0 < L state in the mirror-image sample or,

equivalently, by illuminating the same system from the other end as in Fig. 2.4. The

reciprocity of the system makes the transmission coefficient the same in both cases.

However, the spatial field distribution inside the system and, thus, energy stored, is

dramatically different. In Appx. 2.6.2 we show that the effect can be traced to a

simple deterministic quantum model and is not specific to random systems. Indeed,

the behavior observed in the models described in this section and in Appx. 2.6.2

(c.f. Figs. 2.4,2.9) can be also obtained in other models. We checked a periodic stack

of dielectric slabs as in Sec. 2.3.1, but with no disorder. Electric field distribution for

the defect state created by changing the width of a single slab in the stack, appear

equivalent to that in Fig. 2.9.

We conclude this section with a summary of our findings: (i) Based on the

analytical models we determine that the position of the center of localization (x0)

directly affects how much energy is stored in the system. (ii) This variation of stored

energy based on the position of the center of localization explains why peaks in energy
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Figure 2.4: Two types of the on-resonance electric field distribution inside a passive
random medium with the center of localization x0 in the first half (bold
lines) and the second half (thin lines) of the sample (x0/L ≈ 0.25). The
second case is realized by shining the light onto the same system from
the right, which is equivalent to switching boundary conditions from
Eq. (2.16) to Eq. (2.17). Due to reciprocity, the value of transmission
coefficient for both cases is exactly the same. However, the amount of
energy stored inside the system is exponentially smaller in the second
case. The latter resonance does not show noticeable peak in Ẽ(ω). The
dashed lines are the schematic envelope functions formed from segments
with exp(±x/ξ) spatial dependences. The parameters of the system are
given in Sec. 2.3.1.
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do not always correspond to the peaks in transmission. (iii) The presence of a peak

in energy can be taken as an indication that the center of localization is located close

to incident side of the sample. And otherwise, a peak in transmission without its

counterpart in energy is indicative t the center of localization lies closer to the exit

boundary.

2.3.3. Behavior of T̃ /Ẽ in Passive Random Medium: Spectral Vicin-

ity of a Resonance. In this section we employ the knowledge of the spatial profiles

of the resonant states gained in Sec. 2.3.2 and Appx. 2.6.2 to obtain a closed analyt-

ical expression which qualitatively describes the behavior of T̃ /Ẽ in the vicinity of a

transmission resonance in terms of relevant system parameters.

In the localization regime, transmission of electromagnetic waves through a

random medium occurs via tunneling or, when there exists appreciable spectral over-

lap with a resonant state inside the sample, via resonant tunneling. Thus, the starting

point in our consideration is the simplified expression for frequency-dependent trans-

mission coefficient in the spectral vicinity of a resonance:

T̃ (ω) =
t20

[2(k − k0)∆]2 + t20 cosh
2 |L− 2x0|

ξ

(2.19)

where k = ω/c and t0 = exp(−L/ξ) determines the value of the transmission away

from the resonance at k0. ∆ is a quantity with the dimensionality of length. It has

the physical meaning of the characteristic spatial extent of the region which serves

as the resonant “cavity”[85]. ∆ is a model dependent quantity which is related to

the cavity width in deterministic models, see e.g. [79, 86]. In the case of random

media, ∆ is the length of the locally transparent region in the sample which serves

as a cavity created due to random fluctuation of the disorder. In this system ∆ is

comparable to the localization length[87].
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Figure 2.5: The dependencies of T̃ (ω) (a,b); envelope of the electric field E(x) (c,d);
and energy in the system Ẽ(ω) (e,f), are plotted in the spectral vicinity
of a transmission resonance associated with a defect in the periodic stack
of alternating dielectric layers. The plots (a,c,e) and (b,d,f) are obtained
for the defect located at x0 = L/4 and x0 = 3L/4 respectively. In the
latter case was realized by changing the direction of illumination to that
given by Eq. (2.17) – wave incident from the right – for easy comparison
with Figs. 2.4,2.9. In the first case, the defect center is closer to the
incident boundary whereas in the second case it is closer to the exit
boundary. Three sets of E(x) in (c,d) are computed at the frequencies
marked with dots in (a,b,e,f). The envelopes illustrate the on- and off-
resonance field profiles and confirm the applicability of our approximation
in Eqs. (2.20,2.21,2.22,2.23). For the second case when the defect center
is located near the exit boundary, the amount of energy stored inside
the medium is dramatically lower. In this case, unlike T̃ (ω), Ẽ(ω) does
not exhibit any noticeable features around ω0, compare (e) and (f). This
effect leads to the asymmetry between 0 < x0 < L/2 and L/2 < x0 < L
in the T̃ /Ẽ as discussed in Sec. 2.3.2 and Appx. 2.6.2.
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Of course, even within framework of the simplistic model of Appx. 2.6.2 the

true expression for the transmission coefficient is more complex than Eq. (2.19).

However, the latter adequately captures the functional dependence on such param-

eters as k − k0, x0, ξ and ,L: Eq. (2.19) follows from the exact solution in the limit

|k − k0| ≤ δk and L ≫ ξ (which also leads to δk ≪ k0 condition). Here δk is the

spectral width of the resonance.

Qualitative analogy between a disordered 1D random medium and a determin-

istic quantum model similar to that in Appx. 2.6.2 was demonstrated in Ref. [87].

Therefore, we expect Eq. (2.19) to be also qualitatively applicable in the random

layered medium of Sec. 2.3.1.

We note two important properties of Eq. (2.19). First, the maximum (reso-

nant) value of the transmission at ω = ω0 is determined by the location of the cavity

as T̃ (ω0) = cosh−2 (|L− 2x0| /ξ). It turns to unity when x0 = L/2. Secondly, when

the frequency of the incident light is detuned from the resonance |ω − ω0| ≫ δω, the

above expression loses it validity – the presence of the other resonant states must be

accounted for.

From analysis of random and deterministic models in Sec. 2.3.2 and Appx. 2.6.2,

c.f. Figs. 2.4,2.9, we approximate the envelope of the on-resonance electric field dis-

tribution as

E(x, ω0) =





B(ω0, x0) exp[(x− x0)/ξ] 0 < x < x0

C(ω0, x0) exp[−(x− x0)/ξ] x0 < x < L
(2.20)

for x0 < L/2; and

E(x, ω0) =





A(ω0, x0) exp[−x/ξ] 0 < x < xT (ω0)

B(ω0, x0) exp[(x− x0)/ξ] xT (ω0) < x < x0

C(ω0, x0) exp[−(x− x0)/ξ] x0 < x < L

(2.21)
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Figure 2.6: The solid line plots Ẽ(ω0, x0) from Eq. (2.23). The energy stored inside
a random medium falls off sharply (exponentially) when the center of
localization x0 increases beyond L/2 and reaches the off-resonant value
for x0 > 2L/3. The dashed line with the right y-axis represents the ratio
between T̃ (ω0, x0) in Eq. (2.19) and Ẽ(ω0, x0) in Eq. (2.23). The ratio
peaks at the same value of x0/L = 2/3. The latter value does not depend
on either the localization length ξ or the system length L.

for x0 > L/2. Here A,B,C are constants to be determined from the continuity con-

ditions. At the boundaries we set E(x = 0) = 1 and E(x = L) = T̃ 1/2(ω0). Noticing

that E(x = L, ω0) ≈ exp [−|2x0 − L|/ξ] yields the following expression for the loca-

tion for the turning point, xT (ω0) = 2x0−L, in the case of Eq. (2.21). In the context

of light propagation in random media, such as in Sec. 2.3.1, the Eqs. (2.20,2.21) have

the meaning of the typical envelope of the true spatial distribution of the electric field

in the random systems with the same values of the parameters (ω−ω0), x0, ξ, and L.

In both cases above, away from the resonant frequency k0, we see three distinct

regions:

E(x) =





A(ω, x0) exp[−x/ξ] 0 < x < xT (ω)

B(ω, x0) exp[(x− x0)/ξ] xT (ω) < x < x0

C(ω, x0) exp[−(x− x0)/ξ] x0 < x < L

(2.22)
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where xT (ω) again has to be determined from the boundary conditions E(x = 0) = 1

and E(x = L) = T 1/2(ω). Fig. 2.5 illustrates the obtained electric field distribution

for both x0 < L/2 and x0 > L/2 cases. It also makes it clear that the energy stored

inside the sample varies from resonance to resonance due to the position of the center

of localization x0. Indeed, integrating Eqs. (2.20,2.21) gives us the sought expression

for Ẽ(ω). At ω = ω0 it simplifies to

Ẽ(x0) ∝





2T̃ (ω) exp [2(L− x0)/ξ]− 1− T̃ (ω) 0 < x0 < L/2

2T̃ (ω) exp [2(L− x0)/ξ] + 1− 3T̃ (ω) L/2 < x0 < L
(2.23)

This expression is plotted in Fig. 2.6. It shows dramatic disparity between the cases

x0 < L/2 and x0 > L/2. Eq. (2.23) also shows that even at the frequency of the

resonance the amount of energy stored inside the system becomes essentially the same

as an off-resonant case for x0 > 2L/3. The latter value of x0 is independent of any

other parameters of the systems such as ξ, L, etc.

When expressions in Eqs. (2.19,2.23) are combined to form the ratio T̃ /Ẽ , one

obtains highly asymmetric dependence on the position of the center of localization x0,

c.f. Fig. 2.6. The ratio increases approximately exponentially for 0 < x0 < 2L/3 and

falls off also exponentially in the interval 2L/3 < x0 < L. This observation confirms

our previous conclusion on the sensitivity of the T̃ /Ẽ on x0. In the next section we

study the effect of (linear) optical amplification on this quantity.

2.3.4. Behavior of T̃ /Ẽ in Active Random Medium. As we observed in

Sec. 2.2.4, a change in T/E with gain is indicative of a modification of the intensity

profile inside a diffusive slab. Similar conclusions can be made in the localized regime.

Our simulations demonstrate that a change in T̃ /Ẽ indeed signifies the modification

of the field distribution inside the random medium. Interestingly, we find that such

modifications can be very dramatic in the localization regime.
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Figure 2.7: An illustration of the effect gain on the electric field distribution in a 1D
random medium. A periodic stack of alternating dielectric layers with
a defect at x0 = L/4 is considered. As discussed in Sec. 2.3.2, such a
model qualitatively describes the field profiles (such as those in Fig. 2.4) in
random media. Panels (a) and (b) show the field envelopes obtained when
the system is illuminated (at resonant frequency) from the left and right
respectively. Dashed lines correspond to the passive medium. The solid
curves (from bottom up) are obtained for lg,cr/lg equal to 0.5, 0.9, 0.99 in
(a) and 0.85, 0.95, 0.98, 0.99 in (b). The field distribution in (b) shows
a dramatic modification with an increase of gain.
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To illustrate the effect of linear gain on the spatial profile of the EM field,

we employ the deterministic (non-random) model of the periodic stack of alternating

dielectric layers with a defect (see Sec. 2.3.3). The gain is simulated by adding

a spatially constant imaginary part to the dielectric constant of the medium as

ǫ(x) → ǫ(x) + iα. As previously discussed in Sec. 2.1, such modeling of stimulated

amplification is justified for values of gain up to the threshold for random lasing.

The results of our simulations are plotted on Fig. 2.7. One can see the strong

enhancement of the electric field in the vicinity of the center of localization for the

defect located in the farther half of the sample. Such enhancement is accompanied by

the shift of the turnaround point xT , where the negative exponential crosses over to

the positive exponential behavior, towards the sample boundary. At a certain value

of the gain parameter, the negative exponential segment of the E(x) disappears and

the field profile assumes the limiting shape which coincides with that under excitation

from the opposite boundary of the system. The above observations also hold in the

random medium model of Sec. 2.3.2.

At first glance, the modification of the field profile due to gain seems to disagree

with the conclusions in Refs. [88, 89, 90] where (in localized regime) little or no

change in the field pattern was found with an increase of amplification. The apparent

discrepancy can be explained if one compares the methods used to excite the system.

In our work, we consider the transmission experiment setup, whereas in the previous

works [88, 89, 90] the system is excited throughout its entire volume or relatively

close to the center of localization. Under such excitation conditions, the situation

shown in Fig. 2.7a is always realized [42]. We also note that the mode distribution

in Fig. 2.7b is observed to converge to that in Fig. 2.7a when the gain approaches

its critical value. Then the field distribution is maintained by the gain with little

reliance on the incident energy.
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Figure 2.8: Panel (a) plots EL,R(x, ωc) ≡ E(L,R)(x, ωc, α = 0) defined by the boundary
conditions in Eqs. (2.16,2.17), see text for notations. For non-zero gain,
α > 0, the electric field distributions E(L,R)(x, ωc, α) are found to be
qualitatively similar to those in Fig. 2.7. We decompose them in terms
of the functions shown in (a), and the resulting coefficients C

(L)
L,R(α) and

C
(R)
L,R(α), defined in Eq. (2.25), are plotted in (b) and (c) respectively. We

find that the close resemblance between EL(x, ωc) and E(c)(x, ωc) (the
solution in the closed system) makes it the dominant limiting profile in
the vicinity of threshold for random lasing, regardless of the direction
of excitation. In all three panels, thick / thin curve and large / small
symbols refer to EL(x, ωc) / ER(x, ωc).

Below we provide a simple physical picture for the modification of the electric

field with an increase of optical gain.

We start by considering the passive system. We recall that our sample is an

open system where a wave is incident onto the system and one observes the scattered

(reflected and transmitted) signals. Under these conditions a continuous wave (CW)

solution of the Maxwell equations with the given frequency is a complex function.

The complex conjugate of such a solution is also a (linearly independent) solution for

the same frequency. In general, any two (because Maxwell’s equation is the second

order differential equation) linearly independent solutions can be used as a basis for

expressing any other solution at the same frequency ω.

Now we would like to consider two particularly important solutions of the

Maxwell equation in the random 1D sample with the boundary conditions defined by

Eqs. (2.16,2.17). They correspond to the left- and right-incident cases respectively as
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considered in Sec. 2.3.2 and Appx. 2.6.2 with rL,R(ω), tL,R(ω) being the corresponding

amplitude reflection and transmission coefficients. To check the linear independence

of these two solutions it suffices to verify that their Wronskian (it is independent of

x in our model of disorder ǫ(x)) is non-zero for one particular value of x. At x = 0

the Wronskian can be computed from the boundary conditions Eqs. (2.16,2.17) as

−2itR(ω)ω/c 6= 0.

At some special frequencies ωc, a linear combination E(c)(x, ωc) = C
(c)
L EL(x, ωc)+

C
(c)
R ER(x, ωc) can be formed such that conditions E(c)(x = 0, ωc) = 0 and E(c)(x =

L, ωc) = 0 are satisfied simultaneously. Such ωc’s correspond to the true eigen-modes

of the closed system – the system defined by ǫ(0 ≤ x ≤ L) with zero (reflecting)

boundary conditions at x = 0, L. We numerically obtained such solutions in our 1D

random model and found that the single cusp solution (similar to EL(x, ωc) depicted

with thick lines in Figs. (2.4,2.9)) makes the dominant contribution to E(c)(x, ωc).

This may explain why the other profile with the negative exponential tunneling seg-

ment (similar to ER(x, ωc) depicted with thin lines in Figs. (2.4,2.9)) is not seen

under uniform excitation as in Refs. [88, 89, 90].

We now turn to the case of random medium with gain, α > 0, and con-

sider the spatial field distribution obtained when system is illuminated from the left,

E(L)(x, ωc, α), and from the right E(R)(x, ωc, α), c.f. Fig. 2.7. In this case, the dis-

tributions can no longer, strictly speaking, be expressed in terms of EL,R(x, ωc) ≡

E(L,R)(x, ωc, α = 0). However, in the regime of localized transport considered here,

α < αcr ≪ ωc, the deviation from completeness of the basis EL,R(x, ωc) are to remain

small so that the dependence of E(x, ωc, α) on gain can be still reliably approximated

by α-dependent CL(α),CR(α):

E(x, ωc, α) ≃ CL(α)EL(x, ωc) + CR(α)ER(x, ωc). (2.24)
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The applicability of the approximation in Eq. (2.24) is verified numerically by com-

puting

C
(L,R)
L,R (α) =

∫ L

0

E(L,R)(x, ωc, α)E
∗
L,R(x, ωc)dx. (2.25)

Figs. 2.8b,c show C
(L)
L,R(α) and C

(R)
L,R(α) respectively. Here we select a random re-

alization with a localization center at x0 ∼ L/4 where passive profiles, depicted in

Fig. 2.8a, show the two characteristic shapes considered in Figs. 2.4,2.9,2.7. When

gain is added to the system, we observe that E(L)(x, ωc, α) ∝ EL(x, ωc) for all values

of gain, c.f. Fig. 2.8b. In contrast, E(R)(x, ωc, α) exhibited a crossover behavior from

E(R)(x, ωc, α) ∝ ER(x, ωc) for small α, to E(R)(x, ωc, α) ∝ EL(x, ωc) in the vicinity

of lasing threshold. This result corroborates the findings of the previous Sec. 2.3.4,

c.f. Fig. 2.7, that the modification of the electric field distribution with an increase of

amplification strength is possible in the localized regime. Here we have shown that it

occurs due to the existence of two possible mode profiles (at the same frequency), of

which only one strongly resembles the solution of the system with closed-boundaries.

It is the function with no turning point which defines the lasing mode in the vicinity

the threshold for random lasing.

Finally, we note that the solutions EL,R(x, ω) should not be confused with

the quasi-mode E(x, ωc + iε) of the system with the outgoing boundary conditions

obtained at the complex frequency ωc+ iε where e.g. transmission becomes singular.

Such quasi-modes are often invoked in discussion of modes involved in random lasing.

However, for a uniform gain in the form ǫ(x)(1 + iα) the dominant mode profile

E(L)(x, ωc, αcr) does indeed coincide with the quasi-mode due to equivalence between

ǫ(x)(1 + iα)ωc/c and ǫ(x)(ωc + iε)/c.
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2.4. DISCUSSION AND OUTLOOK

In this work we have studied the relationship between transmission of light

through passive and active random media and the amount of the electromagnetic

energy stored in it. The ratio of these two quantities does not show a tendency

to diverge with an increase of the gain strength and, thus, is a good candidate for a

parameter which can quantify the enhancement of the mesoscopic phenomena random

medium with amplification [31, 32, 36].

In Sec. 2.2 we established a connection between the ratio of the ensemble-

averaged quantities T/E and the spatially dependent diffusion coefficient, Eq. (2.4),

in a passive random medium. This relation implies that a deviation (decrease) of T/E

from the value given by that expression with the classical un-renormalized diffusion

coefficient D(z) ≡ D0 = cℓ/3 may be attributed to the localization effects.

In Sec. 2.2.4 we obtained the expressions for T and E in the diffusive random

medium with amplification. Drawing an analogy with the passive systems, we con-

jecture that the decrease in T/E below the level established by Eq. (2.15) may be

interpreted as a manifestation of an enhancement of mesoscopic correction in trans-

port in systems with gain. We plan to examine the validity of this conjecture in

future work.

We argue that in random media with strong sample-to-sample fluctuations,

such as systems with large gain or strongly scattering media, the ratio between T̃ and

Ẽ from the same disorder realization needs to be formed before performing statistical

averages. This led us to investigate the relationship between these two parameters

in systems in the localized regime, c.f. Sec. 2.3. Although the ratio T̃ /Ẽ does not

tend to diverge when gain is added, it exhibits additional fluctuations due to the

sample orientation (or, equivalently, the direction of the incident wave) even in the

passive system, c.f. Sec. 2.3.2. In Sec. 2.3.3,2.6.2 we attribute the fluctuations to
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the dependence on the position of the localization center inside the system. This is

unlike the transmission T̃ , which is independent of direction of illumination (because

of reciprocity) – it is the same for both field distributions depicted in Fig. 2.4. One

possibility to generalize the transmission in the active random media, while retaining

the desired cancellation of the divergence in the vicinity of the threshold for random

lasing, is to consider the modified parameter similar to the one studied in this work:

T̃G(α) =
(
T̃ (α)/Ẽ(α)

)
× Ẽ0. Here Ẽ0 ≡ Ẽ(α = 0) is the energy stored in the ran-

dom medium with no gain. All quantities entering the expression for T̃G should be

evaluated for each disorder realization prior to any statistical analysis. By construc-

tion, T̃G(α) reduces to the transmission in a 1D system without gain (α → 0) and

can be generalized in the higher dimensional systems as the (average) dimensionless

conductance upon statistical averaging. Hence, one can refer to TG as generalized

transmission (conductance).

In future, we plan to investigate both theoretically and experimentally the

statistical properties of both T̃ (α)/Ẽ(α) and TG(α) in random medium with gain.

Experimentally, all quantities entering their definition can be determined from near-

field scanning measurements in two-dimensional random media – structurally disor-

dered semiconductor films. This opens up a possibility to corroborate and extend the

results of this study.
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2.6. APPENDIX

2.6.1. Derivation of Equation (2.4). We consider a slab geometry, where

we explicitly separate the coordinate z normal to the slab from the perpendicular

component ρ as r = (ρ, z). Assuming no dependence on ρ allows us to rewrite

Eq. (2.1) in the form

〈Jz(z)〉 = −D(z)
d〈W(z)〉

dz
. (2.26)

Independence of ρ is insured for the plane-wave illumination boundary condition

which we assume here.

In the CW regime when the energy density W(z) is stationary, ∂〈W(z)〉/∂t =

0, it follows from Eq. (2.2) that the z-component of flux is constant for z > zp ∼ ℓ.

The value of the constant can be obtained from the boundary condition at z = L as

〈Jz(z)〉 =





〈Jz(L)〉 ≡ J0T, zp < z < L

〈Jz(0)〉 ≡ −J0R, 0 < z < zp

(2.27)

where T is the transmission coefficient. Furthermore, by integrating Eq. (2.2) over

the entire system we obtain the flux conservation 〈Jz(L)〉−〈Jz(0)〉 = J0T−(−J0R) =

J0(T +R) = J0.

After establishing Eq. (2.27), we can return to finding the energy stored inside

the system from Eq. (2.26). An integration over z gives

∫ L

z

〈Jz(z′)〉dz′
D(z′)

= −〈W(L)〉 + 〈W(z)〉. (2.28)

The energy density 〈W(L)〉 at the right boundary can be expressed in terms of right-

and left-propagating fluxes 〈J+(L)〉 = J0T , 〈J−(L)〉 = 0 using Eqs. (2.10). We obtain

〈W(L)〉 = 2J0T/c. To take advantage of the fact that 〈Jz(z)〉 is piecewise constant,

c.f. Eq. (2.27), we have to neglect by 0 < z < zp contribution. This introduces an
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error ∝ zp/L ∼ ℓ/L ≪ 1, but at the same time allows one to factorize T and D(z)

contributions as

J0T

[∫ L

z

dz′

D(z′)
+ 2/c

]
= 〈W(z)〉. (2.29)

Before proceeding further, we note that the second term in the brackets is of the

same order ∼ ℓ/L as the term omitted in arriving to the above expression. Hence,

2/c contribution has to be dropped as well.

A subsequent integration of Eq. (2.29) gives

J0T

∫ L

0

∫ L

z

1

D(z′)
dz′dz =

∫ L

0

〈W(z)〉dz ≡ E (2.30)

Taking advantage of the system symmetry, D(z) = D(L− z), the double integration

can be further simplified as

∫ L

0

∫ L

z

1

D(z′)
dz′dz =

1

2

∫ L

0

∫ L

0

1

D(z′)
dz′dz

=
L

2

∫ L

0

1

D(z)
dz. (2.31)

After normalizing the integral so that it yields unity in the case when the wave

interference effects are neglected, D(z) = D0 ≡ cℓ/3, we obtain Eq. (2.4).

2.6.2. Dependence of T̃ /Ẽ on Position of the Defect State: Non-ran-

dom Model. In this section we show that the origin of orientation-dependent energy

content as in Fig. 2.4 can be traced to a quantum mechanical tunneling problem in

the system which is comprised of a potential well surrounded by two barriers of finite

height.

A clarification is in order. There is no one-to-one analogy between the solutions

of Schrödinger and Helmholtz equations[91]. Indeed, John [92] pointed out that the

effective energy of photons always exceeds the highest effective potential barrier so

that concept of quantum mechanical tunneling cannot be, strictly speaking, applied to
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the electromagnetic waves. However, in the dielectrics with an inherent periodicity[93]

(e.g. disordered photonic crystals), the negative energy and, thus, tunneling regime

can be recovered. To achieve this formally, the periodicity has to be eliminated via a

suitable effective-medium transformation, as in e.g. Refs [87, 94, 95].

Here we consider the potential which consists of two barriers separated by

a well. In particular, we will be interested in comparing spatial dependence of the

wavefunction for the well located in the first (at x0 = L/4) and the second (at

x0 = 3L/4) half of of the system. The potential profile is shown with dashed line

in Fig. 2.9. As in Sec. 2.3.2, x0 = 3L/4 is realized by changing the direction of

illumination.

The straightforward solution of the Schrödinger equation leads to a trans-

mission resonance (due to resonant tunneling via quantum state in the well) at the

energy below the barriers height. Fig. 2.9 plots the corresponding wave functions at

the energy of the resonance. As it is clearly visible in logarithmic scale, the trans-

mission through the barrier is the same for the well at L/4 and 3L/4, despite of the

drastically different amplitude of the wave function in the sample. The structure of

the wavefunctions is qualitatively similar to that of the periodic-on-average random

medium defined in Sections 2.3.1,2.3.2. In the case of x0 = 3L/4 defect, the exponen-

tial decay extends from the incident boundary through xT , where xT is the turning

point. The position of xT is determined by ensuring that the transmission coefficient

remains the same in both cases shown in Fig. 2.9, as required by the reciprocity of

the problem.

The non-monotonic behavior of the wavefunction can be understood intuitively

as follows. In the barrier regions there exist two eigen-solutions with exponentially

increasing and exponentially decreasing amplitudes (in the electromagnetic problem,

the envelope of the electric field plays the role of the amplitude). Balance between

these two components is determined from the boundary conditions. It appears that in
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Figure 2.9: Solution of the Schrödinger equation for a potential barrier shown with
the dashed line. The wavefunction is plotted at resonant energy of the
quasi-bound state associated with the well inside the potential barrier.
The obtained spatial dependence in cases of the wave incident from the
left (thick line) and the right (thin line) are qualitatively similar to those
in Fig. 2.4.

the x0 = 3L/4 case, the exponentially increasing component has very small magnitude

at the incident boundary, but becomes dominant at the turning point xT . In contrast,

when the defect lies close to the incident side, the exponentially increasing component

is dominant starting at boundary of the sample.

The above observation confirms our results obtained using the random model

in Sec. 2.3.
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3. CLASSIFICATION OF REGIMES OF WAVE TRANSPORT IN
QUASI ONE-DIMENSIONAL NON-CONSERVATIVE RANDOM

MEDIA

Alexey Yamilov1 and Ben Payne1

1Department of Physics, Missouri University of Science & Technology,

Rolla, MO 65409

ABSTRACT∗

Passive quasi-one-dimensional random media are known to exhibit one of the

three regimes of transport – ballistic, diffusive or localized – depending on the system

size. In contrast, in non-conservative systems the physical parameter space also in-

cludes the gain/absorption length scale. Here, by studying the relationships between

the transport mean free path, the localization length, and the gain/absorption length,

we enumerate fifteen regimes of wave propagation through quasi-one-dimensional ran-

dom media with gain or absorption. The results are presented graphically in a form

of a phase diagram. Of particular experimental importance, in absorbing random

medium we identify three different regimes which bear signatures of the localized

regime of the passive counterpart. We also review the literature and, when possible,

assign experimental systems to a particular regime on the diagram.

∗Published in Journal of Modern Optics (2010)
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3.1. INTRODUCTION

Discovery of Anderson localization (AL) [3] served as a catalyst for interest in

wave propagation through random media for over fifty years [1]. AL is a wave phe-

nomenon [96] that results in cessation of diffusion [97]. First conceived in electronic

systems, it originates from repeated self-interference of de Broglie waves during their

propagation in a random potential. Conservation of number of carriers, enforced be-

cause the electrons possess a charge, lies in the foundation of the concept of AL [13].

Understanding the effect of absorption [14], ubiquitous in optical systems,

turned out to be essential for proper physical description and interpretation of ex-

perimental studies of localization of light [16, 17, 58, 59, 60, 61] and other classical

waves such as ultrasound [26, 98]. It also prompted [16] the search for alternative

criteria of localization in absorbing media. Furthermore, the effect opposite to the

absorption, coherent amplification, leads to an altogether new wave phenomenon of

random lasing with a host of potential applications [22, 23]. The multitude of the

observed phenomena in realistic disordered optical systems, which are inevitably ab-

sorbing or can even be made amplifying, suggests that AL phenomenon is intrinsically

more complex in non-conservative random media. It motivates refinement of the very

concept of AL and its criteria in such systems [42].

In this work, with the goal of establishing a criterion of Anderson localization

in non-conservative quasi-one-dimensional (quasi-1D) random media, such as disor-

dered waveguides, we map out the two-dimensional parameter space of the problem

that consists of the system size and gain or absorption length. In quasi-1D geome-

try the transition to AL lacks sharp features (mobility edges) observed in even more

complex three-dimensional systems. Thus, Section 3.2 is devoted to a discussion

of Anderson localization in quasi-1D random media. In Section 3.3 we review and

formally define the parameters that characterize quasi-1D non-conservative systems.
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In Section 3.4, by studying the relationships between these parameters we identify

fifteen different regimes of wave transport in the parameter space. Furthermore, we

review the available publications on the subject and, when published data is suffi-

cient, assign them to a particular region on our phase-diagram. We conclude with a

discussion of the results obtained in Section 3.5.

3.2. LOCALIZATION IN QUASI-1D NON- CONSERVATIVERANDOM
MEDIA

3.2.1. Localization in Finite Passive Random Media. Anderson local-

ization can be defined in a strict mathematical sense in random media with infinite

dimensions [99]. In experimentally relevant situations, one usually deals with finite

systems that are characterized by non-zero wave flux at the boundaries. Thus, a

study of localization in finite systems is an analysis of transport through random

media.

The dimensionless conductance averaged over an ensemble of macroscopically

equivalent, but microscopically different disorder realizations, g, can be used as a

criterion that defines the onset of localization [34]. According to scaling theory of

localization [7], g uniquely determines evolution of its entire distribution with an

increase of the system size, formally described by the scaling function [100]. Thus,

the scaling theory provides an important link between finite and the infinite systems.

3.2.2. Localization in Finite Random Media With Gain or Absorp-

tion. Transmittance is the electromagnetic counterpart of conductance [27]. This

analogy with mesoscopic electronic transport makes it tempting to adopt the local-

ization criteria (LC) based on g in optical systems. However, the LC developed

for passive systems are not necessarily applicable for non-conservative random me-

dia, where the extrapolation to infinite size becomes problematic [10]. The scaling

function is no longer a single parameter function [30]. Indeed, in absorbing systems
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g ≪ 1 may not be indicative of the presence of localization [16, 33], and g ≫ 1 in

an amplifying random medium may not necessarily preclude occurrence of certain

effects characteristic of localized systems [31, 32]. Therefore, studies of localization

in non-conservative systems concentrated on detecting the signatures of AL such as

enhanced fluctuations [16, 32, 101, 102, 103, 104, 105], rounding of the coherent back

scattering cone [106, 107, 108], anomalous diffusion [17, 26, 45, 58, 61, 109] and others.

In the case of absorption, a quantitative criterion, based on the magnitude

of fluctuation of transmission normalized by its average, was put forward [16]. Al-

though it described the experiment well, the assumed critical value of fluctuations is

somewhat subjective. In view of the fact that single parameter scaling is no longer

applicable in presence of absorption [30], it remains an open question whether the

same criterion would be suitable for systems with different values of absorption.

In randommedia with gain, the situation is further complicated because within

the statistical ensemble there always exists a non-zero probability of encountering a

special realization of disorder where the given value of the gain parameter exceeds

threshold for random lasing. Without saturation effects, such a realization will have

an infinite contribution to the statistical average. Inclusion of saturation introduces

dependence on system- and material-specific parameters which are not associated

with wave-transport properties of the random medium. To regularize the statistical

ensemble, conditional statistical averaging was introduced by excluding the diverging

contributions [36]. Such an approach turned out to be fruitful in studies of enhanced

fluctuations and correlation in mesoscopic transport of the electromagnetic waves

through random media with optical amplification [31, 32, 36]. It was found that the

correlation linewidth δω [110] obtained in such an ensemble can be used to define the

Thouless parameter δ = δω/∆ω in random media with gain. Here ∆ω is the average

mode spacing which is equal to the reciprocal of the density of states in the system.

Reduction of δ correlates well [36] with the enhancement of mesoscopic fluctuations –
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another signature of AL. These investigations motivated us to explore an intriguing

possibility of localization by gain – enhancement of the mesoscopic phenomena with

an increase of the amplification strength. Because the dimensionless conductance and

Thouless parameter exhibit opposite trends with an increase of gain, the relationship

g = δ is no longer valid in non-conservative media. This observation exemplifies added

complexity in description of wave propagation in open random media with gain (or

absorption), even when such effects as gain saturation or spontaneous emission noise

(see e.g. Refs. [111, 112]) are not accounted for.

3.2.3. Disordered Waveguide (Wire) Geometry. Because of quantiza-

tion of the transverse component of momentum, the transport properties in quasi-1D

(waveguide) geometry can be conveniently described in terms of a transfer matrix [40].

Assuming that this transfer matrix has random entries with only flux and symme-

try conservation turned out to be a fruitful approach [81] which yielded some exact

analytical results [53, 113].

In passive quasi-1D systems the transition from ballistic to diffusive and then

to localized regimes occurs as a function of the system size L only (and not the

strength of disorder as in three-dimensions, 3D), even if the system is weakly scat-

tering kℓ ≫ 1. The diffusion regime is only a transitive regime which, unlike in

3D systems, does not persists in the limit L → ∞. Therefore, quasi-1D systems

[16, 32, 33, 49, 103, 105, 114, 115, 116, 117, 118, 119, 120, 121] do not exhibit critical

behavior at the size-driven transition from diffusive to localized transport. However,

because we set out to consider the non-conservative systems for which L → ∞ may

not be easily defined, quasi-1D geometry is sufficiently complex to capture both diffu-

sive and localized behavior in systems of finite size. As shown below, it is expected to

exhibit very complex parameter space, c.f. Fig. 3.3. Furthermore, due to the avail-

ability of the ever more powerful computational resources, it has recently become
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Figure 3.1: Classification of regimes of wave transport in quasi-1D non-conservative
random media; upper panel.

possible to perform systematic numerical investigations of the entire parameter space

of the quasi-1D non-conservative random media.

Although an interplay between the effects of amplification and localization has

been subject of continuous research effort (see e.g. Refs. [31, 32, 36, 62, 67, 68, 69,

73, 77, 101, 102, 103, 104, 106, 122, 123, 124, 125, 126]), a systematic study which

would rationalize different theoretical and experimental observations has not yet been

attempted. Below, we present such a systematic analysis of the parameter space for

quasi-1D non-conservative random media.

3.3. DEFINITIONS OF PARAMETERS IN QUASI-1D NON- CONSER-
VATIVE RANDOM MEDIA

In passive volume-disordered waveguides, the transition from ballistic to diffu-

sive and then to the localized regime occurs when the length of the system is increased

above ℓ and ξ = N × ℓ respectively. Here ℓ is the transport mean free path, N is the

number of waveguide channels, and ξ is the localization length [40]. In waveguides
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filled with a non-conservative random medium, the parameter space becomes two-

dimensional: beside the system size L, it also includes the gain or absorption length

scale ℓg,a. Fig. 3.3 shows this two-parameter phase space.

The boundaries between different regions in Fig. 3.3 are based on relationships

between a subset of parameters which can be expressed in terms of length or time

scales. The length parameters include L, ℓ, ξ, and (ballistic) absorption/gain lengths

ℓa/ℓg. The other set of boundaries are more physically transparent when expressed in

the spectral domain in terms of the following parameters: the average mode spacing

∆ω ∝ (NL)−1; the passive average mode linewidth δω (∝ DL−2 in diffusive regime

ℓ < L < ξ); and gain or absorption rate γg,a = ∓c/ℓg,a ≡ ∓τ−1
g,a (negative in the case

of gain). Here, c is speed of light and D is the diffusion constant. Based on these

parameters the following relationships can be established:

• L ∼ ℓ signifies the transition from ballistic to multiple-scattering regime.

No other significant changes are expected in the region of moderate ab-

sorption/gain ℓ < ℓg,a shown in the middle panel in Fig. 3.3;

•Generalized Thouless parameter δω(γ)/∆ω ≃ (δω+γ)/∆ω describes [36]

the transition from spectrally overlapping quasi-modes to the resonance-

dominated behavior. Here δω ≡ δω(γ = 0). In the case of passive system

γ = 0, the ratio reduces to δ = g;

• |γ| = δω curves signify the transition to the regime when the gain or

absorption overcomes the radiative leakage of an average quasi-mode in

the system;

• Long self-crossing Feynman paths give rise to weak localization correc-

tion. In quasi-1D, the probability of such paths becomes equal to unity at

L = ξ, their length is given by L2/ℓ = ξ2/ℓ. Therefore, we estimate that

the weak localization corrections become susceptible to gain or absorption

when ℓg,a becomes comparable to this length scale;
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• Condition ℓ = ℓg,a marks the onset of the regimes of very strong absorp-

tion/gain shown in the upper/lower panel in Fig. 3.3. Here, the ballistic

regimes become limited by the condition ℓg,a = L.

The distinctions between different regions are only valid in the statistical sense be-

cause the sample-to-sample fluctuations are inherent in a random medium. When

gain is present, the statistical ensemble is assumed to be conditional [36], which ex-

cludes the non-physical solutions [127]. Furthermore, the considered (open) system

is of a finite size and, therefore, the transitions between different “phases” are ex-

pected to be smooth. Hence, our diagrams should only be used as a guide to identify

qualitatively different regimes of wave transport.

3.4. “PHASES” OF WAVE TRANSPORT THROUGH
NON-CONSERVATIVE RANDOM MEDIA

The regions in Fig. 3.3 are labeled with two letters and a subscript. The first

letter, A/G, stand for absorption/gain and is common for all regions above/below

the horizontal axis. The second letter in the labels, B, D or L, is attributed to the

regimes where some signatures of the ballistic, diffusive, and localized transport are

expected to occur. Based on the list of separatrices listed above, one can identify the

following regions:

• GB1, AB1: Random systems with parameters in these regions are ex-

pected to behave similar to their passive counterparts. Note that in the

regime of very strong gain or absorption, ℓ−1
g,a > ℓ−1, the ballistic region

becomes bounded by L < ℓg,a;

• GD1, AD1: With exception of anomalously localized states [13, 53, 122,

128, 129, 130], the gain or absorption is not expected to be sufficient to
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appreciably modify the diffusive behavior in these regions;

• GD2: Such systems were successfully treated with the “negative absorp-

tion” diffusive approach often invoked in discussion of random lasers [21,

54, 70, 71, 131, 132, 133, 134, 135]. Systems in this regime also are

expected to exhibit the enhanced mesoscopic fluctuations and non-local

correlations [31, 32, 36];

• GL1: Random media with such strong gain, δω(γ)/∆ω < 1, are ex-

pected to exhibit resonant features in spectrum with strong sample-to-

sample fluctuations [73, 136]. Retaining the contribution from only the

physical solutions becomes essential [127, 137] for the systems with the

parameters in this region;

• GL2: The condition γg = −δω(γ = 0) signifies lasing of an average

mode and, in diffusive systems, is equivalent to the onset random lasing

as predicted by Letokhov [54];

• AL1, AL2, AL3: These regimes represent the systems which would for-

mally be localized if the absorption could be removed. Of these, AL1 is

the most favorable case because the systems in this regime have spectrum

of separated resonances, δω(γ)/∆ω ≃ (δω(γ = 0) + γ)/∆ω < 1, with the

radiative leakage being the dominant relaxation mechanism (possibly, ex-

perimental systems of [16] belong to this parameter “phase”). The latter

is no longer true for AL2 regime. AL3 describes an intriguing type of

a random medium with a continuous spectrum due to strong absorption

which has washed out the individual resonances, but still exhibiting the

weak localization corrections;

• AD2, AD3: Systems in these regimes of moderate and strong absorption

are expected to exhibit suppressed localization effects [33]. For strong ab-

sorption, even the diffusion propagation is suppressed on long scales. The
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majority of experimental systems are expected to fall in one of these two

regions;

• AB2: This regime is marked by the dominant effect of absorption when

ℓa is the shortest of all length-scales. Because it also implies ℓ−1
a > ℓ−1,

diffusion-like propagation does not sets in;

• GL3, GL4: In these regimes, similar to GL2, it is more meaningful to

ascribe L notation to lasing. In contrast to the very strong absorption

counterpart AB2, we separated ℓ−1
g > ℓ−1 region into ℓg < ℓ < L (GL3)

and ℓg < L < ℓ (GL4). In the latter regime, one can justify neglecting

scattering. Thus, GL4 encompasses lasing phenomena in Fabry-Perot ge-

ometry. In contrast, in GL3 the scattering can provide the dominant feed-

back as it has been very recently demonstrated experimentally [138, 139].

3.5. DISCUSSION AND OUTLOOK

As it was discussed in the previous section, the parameter space in volume-

disordered waveguides becomes two-dimensional when the medium is no longer as-

sumed passive. Importantly, the coherent amplification/absorption non-trivially af-

fects the interferences of multiply-scattered waves and, thus, can promote/suppress

localization phenomena. This observation has motivated us to begin to systematically

explore an intriguing possibility of localization by gain enhancement of the mesoscopic

phenomena with an increase of the amplification strength [31, 32, 36, 37, 42, 73, 136].

Furthermore, in the experimental studies of localization of light, the importance of

the proper account of absorption has been widely appreciated [16, 17, 18, 59, 109].

In finite passive random media, the prevalence of the localization effects can be

assessed with a number of criteria: averaged dimensional conductance, its mesoscopic
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fluctuations relative to the mean value, Thouless parameter, renormalization of the

diffusion coefficient, inverse participation ratio, spatial correlations and others. Single

parameter scaling theory of localization may be used to establish the relationships

between different criteria. These relationships will not necessarily hold in the non-

conservative media. We believe that our analysis of the parameter space in Sec. 3.4

will be instrumental in generalizing the concept of AL and establishing a robust

criterion for its observation in non-conservative random media [37, 42].
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ABSTRACT∗

Evanescent coupling between scatterers in the course of wave propagation

through random media is a notoriously difficult problem. Commonly these near-

field effects are not considered explicitly. Instead, a phenomenological parameter,

transport mean free path, is introduced. This treatment is sufficient to describe the

macroscopic wave transport as exemplified by the success of Dorokhov and Mello,

Pereyra, and Kumar (DMPK) theory.

4.1. INTRODUCTION

One approach to describing transport in waveguides is to define a set of discrete

channels. This basis is useful since the transport properties can then be calculated

in terms of channels and converted to spatially-resolved values.

Evanescent channels are usually neglected in calculations of conductivity with

passive media since the wave propagation decays exponentially [46, 47]. Another

∗In preparation for Physical Review B (2012).
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justification is that if the field detector is far from the media then the evanescent

channels will not be measured and cannot contribute significantly to propagation

properties. These two arguments are distinct as the first applies to interscatterer

transport, whereas the second applies to measurements outside the sample. Inside

the medium it has been shown for single scatterers [140, 141] that not including

evanescent channels is equivalent to renormalizing scattering length. Additionally, if

the density of scatterers is low enough, then there is sufficient separation between

scatterers that evanescent channels do not contribute to interaction.

Our motivation in revisiting the issue of evanescent channels is two-fold. First,

when studying the regime of Anderson localization [1, 3, 142] scatterers are densely

packed [19]. Second, we have developed a numerical model to investigate propaga-

tion of light waves which can include gain and absorption; evanescent waves may

be expected to play an important role in media with gain. Optical gain enhances

interaction between scatterers [126, 143], so the importance of evanescent channels

will increase in multiply-scattering media. In this letter, only passive media are

considered; the role of gain (and absorption) will be presented separately.

This letter covers passive random disorder and multiple scatterers, which is

treated theoretically by Dorokhov [46] and Mello, Pereyra, and Kumar [47] (DMPK).

For waveguides DMPK theory assumes (1) all propagating channels are the same, and

(2) evanescent channels are not included. We have previously found that propagating

channels are not equivalent [144], and here show that evanescent channels do have a

role in conductance. Compared to a system with only propagating channels, including

evanescent channels is equivalent to renormalizing transport mean free path ℓtmfp.

The renormalization does not effect the validity single parameter scaling [7].

The transfer matrix method [8, 43, 44] used in our numerical model requires

the presence of evanescent channels to be explicitly included, whereas DMPK specif-

ically excludes them. A third class of models implicitly include evanescent channels;
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for example the position-dependent diffusion coefficient [145, 146], finite-difference

time-domain simulations, and descriptions using the local density of states [147, 148,

149]. These include evanescent channels because the channels carry energy.

The quasi-one dimensional (quasi-1D) geometry of a waveguide is useful for

studying wave transport because transverse channels are quantized. The compo-

nent of wave number k = ω/c perpendicular to the direction of propagation is

k⊥n = (nπ)/W , where W is the width of the waveguide, n is the channel index,

ω is frequency, and c is the speed of the wave. The component of k parallel to the

direction of propagation, k‖n =
√

(ω/c)2 − (nπ/W )2, can have imaginary values for

sufficiently large channel index n with fixed W . Here width W is chosen such that

the system is not close to the singularity k‖ = 0 [150]. Channels with real-valued k‖n

are “open” when the waveguide is empty, and channels for which k‖ is imaginary are

referred to as “closed.” For waveguides with scatterers, channels either propagating

or evanescent, respectively.

Since work on including evanescent channels has been done previously for sin-

gle scatterers [49, 140] and results of DMPK are well demonstrated [40], the purpose

of this paper is to bridge the gap between renormalization of scattering length ℓ and

ℓtmfp. Physically, ℓ characterizes the exponential decay length of ballistic attenuation

whereas ℓtmfp is the distance over which direction of propagation is randomized. For

strongly scattering media, ℓtmfp ≈ ℓ; otherwise ℓtmfp = ℓ/(1 − 〈cos θ〉) in bulk me-

dia. This reduces to ℓtmfp = ℓ/
(
1− 〈k‖n/k〉

)
for quasi-1D systems since only discrete

directions are available. Isotropic scattering in quasi-1D means ℓtmfp = ℓ when no

closed channels are present. However renormalization of ℓtmfp cannot be extrapolated

from a single scatterer because ℓ does not account for interaction between scatterers.

The ℓtmfp is a function of scatterer density, scattering strength, waveguide width, and

number of evanescent channels.
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In this paper near-field analysis of single scatterers is quickly reviewed, then

coupling of two scatterers by evanescent channels is studied analytically in Section 4.2.

In Section 4.3 the scattering length definition is modified by inclusion of evanescent

channels. A robust numerical model is described in Section 4.4, then simulation

results are presented in Section 4.5. Numeric modeling of multiple scatterers demon-

strates the effect of including evanescent channels while maintaining single parameter

scaling by renormalization of ℓtmfp.

4.2. ANALYTICAL RENORMALIZATION OF SCATTERERS WITH
EVANESCENT CHANNELS

When modeling waveguides with disorder, a single scatterer is described by

transfer matrices [8, 43, 44] with the strength of the scatterer and position as param-

eters. The effect of additional scatterers on transport properties cannot be extrap-

olated from this information since there are no parameters for interaction between

scatterers. A minimum of two scatterers are needed to correctly account for interac-

tion and scatterer density.

For system with multiple scatterers, each single scattering matrix can be an-

alytically reduced from rank 2(Np + Ne) to 2Np, where Np and Ne are the number

of propagating and evanescent channels respectively, by applying the boundary con-

dition of no transmission from evanescent channels [140]. This partial solving of the

linear set of equations is referred to as “folding,” as the algorithm recursively folds in-

formation into other matrix elements resulting in reduced rank. There is conservation

of information in that the information stored in the original rank 2(Np +Ne) matrix

is still contained within the new “folded” rank 2Np matrix, albeit with increasingly

complicated elements. By induction (using the developed recursion relation) a ma-

trix of rank 2Np can account for Np propagating channels and an infinite number of

evanescent channels.
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In the transfer matrix approach, Bagwell and coworkers [140, 141] have shown

the scattering matrix can be “folded,” reducing the rank from 2(Np+Ne) to 2Np. The

scattering matrix Γ is related to the scattering length by ℓ(M) = 1/
(∑

a,b
1
4
1
d

1
k‖ak‖b

〈Γ2
a,b〉

)

where a, b are input, output channels and d is average separation between scatterers

along the direction of propagation [49]. The 〈· · · 〉 denotes an average over a disor-

dered ensemble, Similar analytic “folding” of scattering matrices applies to multiple

scatterers. Folding the matrix for a single scatterer has scatterer strength as a param-

eter, and for multiple scatterers an additional parameter is introduced: interaction

between adjacent scatterers. The interaction between scatterers is where the effect

of evanescent channels becomes relevant to transport. In order to model interaction

of scatterers by both the propagating and evanescent channels, the reduced transfer

matrices for at minimum two scatterers needs to be derived, as is done in Ref. 151.

Here we assume transmission information will be a far-field measurement (no

transmission measured in evanescent channels). Then there are two distinct methods

of applying the folding algorithm. In the first method, the rank of each scatterer

matrix is reduced analytically to propagating channels only, then standard matrix

multiplication of the scatterer and free space matrices (which are also rank 2Np and

do not need to be folded) is performed [81]. The second method is to perform the

multiplications of scatterer and free space matrices with evanescent channels, then

fold (analytically reduce) the product. Between these two extrema are compromises

of varying order; for instance folding pairs of scatterers, or three scatterers. The

question arises as to whether folding the product is equivalent to folding each matrix,

or some subset of matrices. Mathematically, the two are not equal, since the operation

of “fold then multiply” loses information about transport by evanescent channels.

The first method, “fold-combine,” is computationally desirable since the trans-

fer matrices being multiplied are of lower rank, translating to slower growth in nu-

merical error and faster computation. Although the folding procedure conserves
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information for each scattering matrix, information about density (interaction be-

tween scatterers) is lost in propagation. The second approach, “combine-fold,” loses

no information. The propagation includes all channel information, and folding occurs

after the total propagation matrix is known.

This question of equivalence of folding and multiplying order is addressed

using an analytical model comparing two scatterers. A finite number of propagating

and evanescent channels is modeled. The separation between the two scatterers is

fixed and interaction strength is varied.

The result from this analytical two-scatterer model is that interaction be-

tween scatterers in evanescent channels does play a role in transport for sufficient

interaction strength. However, transport models with no evanescent channels such

as DMPK have successfully matched experiments by using ℓtmfp as a fitting param-

eter. This is probably due to systems being in the density regime where the single

scatterer approximation is valid. Then the density d and scattering cross-section σ

yield ℓtmfp = 1/(d σ), where scattering cross-section is proportional to the square of

scatterer strength. However, for sufficiently dense or strong scattering, ℓtmfp is not

characterized by that relation since the single scattering approximation is invalid. In

this new regime adjacent scatterers are coupled by evanescent channels.

4.3. RENORMALIZATION OF SCATTERING LENGTH DUE TO
EVANESCENT CHANNELS

In this section we show, using an analytical model of two scatterers in a

quasi-1D waveguide, that scattering length is renormalized by inclusion of evanescent

channels. This system is in the ballistic regime since there is very little scattering

between channels; transmission matrices with diagonal elements of roughly unity are

found. This is an independent numerical validation of the folding procedure of the

previous section.
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The scattering length characterizes exponential attenuation of intensity for

a ballistic source. In a quasi-1D waveguide, this decay length is distinct for each

channel. Thus although the ballistic component is similar to a single exponential

decay, it is actually an accumulation of the contributions of each channel. This can

be observed by fitting the ballistic component of the conductance gb with

gb =

Np∑

a=

Np∑

b=1

|〈ta,b〉|2 =
Np∑

n=1

exp

( −L
ℓ k‖n/k

)
(4.1)

Here 〈· · · 〉 again refers to the average over a disordered ensemble, ta,b are elements of

the complex-valued transmission matrix, and L is the length of the waveguide.

An alternative (non-equivalent) definition of scattering length for any incident

channel a by measuring the reflection in channels b has been defined by Mello et

al [151] to be

ℓ(M) =
Np d∑
a,b 〈Ra,b〉

(4.2)

Here ℓ(M) is the scattering length in terms of the reflection matrix elements Ra,b

summed over Np incident channels a and Np output channels b, with the average

distance d between scatterers along the axis of propagation. This definition can be

used analytically, solving for R with one or two scatterers and few channels, and

used with a numerical model since the reflection matrix for and arbitrary number of

scatterers and channels can be found for an ensemble of scatterer positions.

The reflection matrix can be approximated as an expansion about ε; the second

order correction includes propagating channels only. Here we find the third order

corrections to Ra,b and thus include evanescent channels. When scatterer strength

averages to zero, then the third order correction of the expansion is zero. Thus, for

electronic systems the renormalization of ℓ due to evanescent channels is smaller than

photonic systems.
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To find the expansion of R we start with a single scattering matrix which

includes evanescent channels. Each element in the matrix is of the form εΓa,b (input

channel a, output channel b). This matrix is reduced in rank using the folding

procedure leaving just propagating channels. Reflection matrix R is calculated using

the folded scattering matrix, then we let ε → 0 and find the series expansion of R.

The zeroth-order term of the expansion is 0 since as scattering strength goes to 0 then

R goes to 0. The first order term is also 0 when average scattering strength is 0, as

for scattering in electronic systems.

In photonic transport the first non-zero term of the expansion is of second

order, which includes only propagating channel elements from the scattering matrix.

The third-order term of expansion of R contains the evanescent channel tunneling:

1

4
Γ2
ip,jpε

2 − 1

4

(
Γip,jpΓip,jeΓie,jp

)
ε3 +O[ε4]. (4.3)

In the second and third order terms (as denoted by ε), we have Γip,i′p for flux from

propagating channel ip to propagating channel i′p. The other two factors in the third

order term represent “propagating-to-evanescent” and “evanescent-to-propagating”

channel mixing. Higher order expansion terms have more complex tunneling se-

quences, all of which include evanescent channels. Our expansion can be used to

predict the coupling sequences for any number of propagating and evanescent chan-

nels, and for any order of ε.

In contrast to photonic transport, media scattering electrons have first and

second-order terms which do not depend on evanescent channels. This demonstrates

why systems describing electron transport may be less sensitive to evanescent chan-

nels.

There are four important assumptions in ℓ(M): (1) the single scatter approx-

imation, (2) the weak scattering approximation, (3) all reflected flux is ballistic,
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and (4) the inverse scattering length is average of the inverse scattering lengths per

channel. The single scatterer approximation is based on the assumption that each

scattering event can be treated individually. Scatterers are sufficiently far apart such

that evanescent channel contributions are negligible. However, if scatterers in a finite

waveguide have perfectly random positions, then there is a significant chance that

there will be two adjacent scatterers sufficiently close to void the single scatterer

approximation.

One can have random scatterer position while maintaining minimum separa-

tion by ensuring that no two adjacent scatterers are closer than
√
W L/M , where M

is the number of scatterers. This requirement becomes exponentially harder as the

number of scatterers is increased for a given area.

Separation between scatterers deserves clarification on whether one means the

separation along the propagation axis, as prescribed by Mello, or the actual separation

distance between scatterers D =
√
z2 + y2 which is to relevant to wave interaction.

For quasi-1D systems, the separation along the z-axis d is used in scattering length

Eq. 4.3. In the analytic two-scatterer model, one can fix d or the absolute separa-

tion D. When D is fixed, then d = D sin(φ). To compare d used in the analytical

model to density of the numeric model, the average propagation distance 〈d〉 = L/M

is used, with a minimum D =
√
W L/M .

The second assumption of ℓ(M) is the weak scattering approximation (|Γa,b|2 <<

k‖ak‖b in Ref. 49). This breaks down in the presence of evanescent channels since

scattering light into a evanescent channel is equivalent to having a stronger scatterer.

The purpose of assuming weak scatterers is to be able to neglect the contribution of

non-incident transmission channels.

The third assumption of Eq. 4.2 is that all reflected flux is ballistic. This

definition neglects flux transmitted in non-incident channels. Each scatterer dis-

tributes flux isotropically into channels, thus Ra,b = Ta,b for b 6= a. Further, the flux
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transmitted in the incident channel (Ta,a) is composed of ballistic and non-ballistic

components (distinguishable by the consistency of the phase). Thus, to account for

all the ballistic components of flux, the denominator of Eq. 4.2 should be doubled.

Lastly (assumption four), by expanding the summation in Eq. 4.1 for channels

n, it is apparent that 1/ℓ 6= ∑
n(1/ℓn), where ℓn = ℓ k‖n/k. There is an exponen-

tial decay associated with each channel, characterized by ℓn. The complete ballistic

component is then a sum of the attenuating flux.

Now that the scattering length has been discussed for few scatterers, the next

progression is to a many scatterer system, where transport mean free path is rele-

vant. To better understand the role of evanescent channels in real systems, a nu-

merical model described below is used in order to simulate thousands of scatters

(instead of a few). The analytical folding technique described above is not used in

the numerical simulation of evanescent channels. The purpose of investigating the

folding algorithm was to measure interaction between scatterers and renormalization

of multiple-scatterer lengths.

4.4. NUMERICAL SIMULATION MODEL DESCRIPTION

An ab initio numerical model based on the Helmholtz equation is used to

investigate wave transport in a waveguide with many scatterers. The second-order

differential wave equation for the s-polarized electric field is solved using the transfer

matrix method [8, 43, 44]. Initially a point scatterer of strength α is introduced at

position y0, z0 in the waveguide by replacing the dielectric ǫ = 1 with ǫ = 1+α δ(y−

y0, z−z0). When strength parameter α is real then the medium is passive (no energy

lost or gained). Two types of transfer matrices are developed in this section: one

which matches the electric field and derivative of field before and after the scatterer,

and one which propagates the field through an empty waveguide over the distance
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between scatterers. To fully resolve the δ function using discrete channels transfer

matrices would need to have infinite rank (Np propagation channels plus an infinite

number of evanescent channels Ne). By including only a finite number of evanescent

channels the effective dielectric for each scatterer is a finite sum of Fourier components

1+α
∑
fn(y0) forNp+Ne channels. Thus the numeric model has scattering potentials

rather than point scatterers. The number of propagating channels Np depends on

the width of the waveguide, and the number of evanescent channels Ne is a freely

adjustable parameter.

4.4.1. Effective Refractive Index. Models of electronic systems have scat-

terers whose average strength is zero (attractive and repulsive scatterers) [49]. In

contrast, photonic systems have scatterers which are only repulsive. The numerical

model presented here can have any distribution of scatterer strength by setting α

to be a positive or negative fixed value with equal probability (binary distribution

for electronic), or the scatterers can be of fixed strength (photonic) with constant α.

When average scattering strength is zero the effective refractive index of the medium

is n = 1 since we assume empty space between scattering potentials. (The motivation

for this choice is that when gain is later added, we want to avoid lasing in a media

without scatterers.)

When average scattering strength 〈α〉 is not zero, then the refractive in-

dex is changed by the following amount. Assuming there are M δ-function scat-

terers each with strength α, the Sellmeier equation for average dielectric is ǫ =

1+α
∑M

i=1 δ(z− zi, y− yi). To eliminate the δ function in the limit of a large waveg-

uide, integrate over the area of the waveguide and normalize both sides by waveguide

area LW ; then the effective dielectric constant is ǫ = 1+ α M
LW

Since a finite number

of evanescent channels are included, the actual value is closer to unity. For a specific
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waveguide configuration the refractive index can be found by summing the aforemen-

tioned Fourier components and averaging over all scatterer positions. This effective

refractive index η =
√
ǫ has the effect of making the wavelength smaller by λ = λ0/η.

4.4.2. Transfer Matrices. Scatterering in the waveguide is determined by a

scattering potential; then propagation of electric field through the quasi-1D waveguide

is described using transfer matrices [81]. The rank of the matrices is dependent on

the number of propagating and evanescent channels of the waveguide. Electric field

E and its derivative dE/dz = E ′ in propagating channels moving through distance

∆z in free space are found from the solution to the wave equation for the nth channel:

En(z + q) = En(z) cos(k‖nq) + k−1
‖nE

′

n(z) sin(k‖nq)

k−1
‖nE

′

n(z + q) = −En(z) sin(k‖nq) + k−1
‖nE

′

n(z) cos(k‖nq)

(4.4)

For evanescent channels in free space the equations are similar to Eq. 4.4 except k

is replaced by the imaginary iκ and hyperbolic functions are used. These sets of

equations form a free space matrix of 2 (Np +Nc) by 2 (Np +Nc) which depends on

distance p (between scatterers).

A second matrix is needed for translation of E and E ′ across the scattering

potential. The electric field before and after each scattering potential must be equal,

En(z +∆) = En(z), in the limit that ∆ → 0. The first derivative is

E
′

n(z +∆) = E
′

n(z)− α

(
ω2

c2

)Np+Ne∑

m=1

2

W
sin(k⊥ny) sin(k⊥my)Em(z) (4.5)

The channel-indexed equations can be written as a set of linear equations; thus wave

propagation can be described by matrices of rank 2(Np+Ne) of two types: free space

matrices (Eq. 4.4) and scattering matrices (Eq. 4.5; second term defines Γm,n). These

matrices (c.f. Fig. 4.1) are multiplied to form a total matrix which describes propaga-

tion of the continuous wave (CW) electric field through the waveguide. This transfer
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Figure 4.1: (a) General form of empty waveguide transfer matrices for propaga-
tion of electric field E and E ′ over distance ∆z between scatterers.
(b) Scattering matrices, based on Eq. 4.5, where Γnm denotes non-zero
terms which can be complex valued. Each matrix is separated into four
Np + NexNp + Ne quadrants (long dashed lines), each containing in-
formation from propagating-to-propagating channels (upper left short-
dashed subquadrants) as well as evanescent-to-evanescent (lower right
short dashed subquadrants).

matrix method can be used to calculate the reflection and transmission coefficients

for each channel.

When choosing the width of the waveguide, a singularity of wave speed occurs

for certainW since the speed of transmission is zero for the largest channel (k‖,n=Np
=

0). To avoid this phenomenon we set W = (Np + 1/2)λ/2. The offset of Np by half

puts the width between singularities [150].

4.4.3. Self-Embedding. The computation of the simple product of individ-

ual matrices is a straight-forward approach to field propagation but is not numer-

ically stable over many multiplications, as the eigenvalues in the product become

divergent [50]. The self-embedding method derived in Ref. 51 is used to change

the growth of error inherent in numerical matrix multiplication from exponential to

linear. Deviation caused by diverging eigenvalues is corrected by renormalizing the

products. This is critical as it allows the transfer matrix method to be used in the

diffusive and localized regimes.
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Without self-embedding, exponential divergence of eigenvalues is commonly

used to measure localization length. Self-embedding technique increases the number

of matrix multiplications that can be performed prior to the product matrix becom-

ing unstable. Numerical instability grows linearly rather than exponentially, though

computational time is increased compared to plain transfer matrix multiplication.

Here numerical stability is defined by conservation of flux; found by checking that

the determinant of the product is unity.

With this numerical model we can determine the effect including evanescent

channels on conductance. We show that single parameter scaling is obeyed; thus

results extend to all other transport properties.

4.5. NUMERICAL SIMULATION RESULTS

To verify that the renormalizing effect of evanescent channels on transport

mean free path does not affect single parameter scaling [7], the ratio of average unitless

conductance g ≡
〈∑Np

a,b |ta,b|2
〉
to variance of unitless conductance is computed by

numerical simulation of quasi-1D waveguides. Once g is known, single parameter

scaling predicts all other transport properties are fixed (i.e., variance of conductance).

Numerical results are compared to predictions from the non-linear sigma model [53],

which assumes Np → ∞ and no evanescent channels. When no evanescent channels

are present in our numerical model, the simulation results obey single parameter

scaling and match non-linear sigma theory, c.f. Fig. 4.2. No fitting parameters are

used; the factor of 15/2 is to account for the quasi-1D geometry of the waveguide. The

use of self-embedding technique for renormalization of the transfer matrix method

allows the numerical model to give results in the diffusive (g > 1) and localized

(g < 1) regimes.
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Figure 4.2: Variance of unitless conductance g versus average g: comparison of quasi-
1D numerical simulation results with non-linear sigma theory [53] (solid
green line) with no fitting parameters. Waveguide results for with 10
(blue crosses) and 20 (black x) propagating channels and no evanescent
channels when system length L/λ is varied and W/λ is constant. Very
good agreement with the non-linear sigma model is found. Both nu-
merical simulation and theory extend from diffusive (g > 1) to localized
(g < 1) regime. The 15/2 coefficient for variance is due to waveguide
geometry.

The variance of the conductance distribution decreases deeper into the local-

ization regime; c.f. Fig. 4.2. This is specific to the orthogonal universality class; in

contrast, variance increases with L for symplectic and unitary models in the diffusive

regime.

When a finite number of evanescent channels are added, c.f. Fig. 4.3, the

average conductance decreases. However, the ratio of average conductance to vari-

ance of conductance remains consistent with single parameter scaling since variance

also decreases. As more evanescent channels are included, the ratio monotonically

decreases. Again, no fitting parameters are needed. There are two important obser-

vations from Fig. 4.3. First, the average conductance decreases when more evanescent

channels are present because ℓtmfp is renormalized. More channels are available at
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Figure 4.3: Same data as in Fig. 4.2 (Np = 10 blue crosses and Np = 20 black x for
varying system length L). Added here is L/λ = 100, Np = 10 with 0 to
10 evanescent channels (brown triangles) and L/λ = 200, Np = 10 with 0
to 8 evanescent channels (red squares). No fitting parameters used. Here
the primary conclusion, that evanescent channels renormalize ℓtmfp while
retaining the property of single parameter scaling, is apparent.

each scatterer for incident waves to scatter into, and there is increased propagation

between adjacent scatterers. Analytically, renormalization of ℓ is accounted for by

the folding procedure. Thus DMPK theory is valid even though no evanescent chan-

nels are included: when compared to other theories or experiment, ℓtmfp is a fitting

parameter. Therefore the effect of evanescent channels is undetectable. The second

observation is that because ℓtmfp is renormalized, single parameter scaling remains

valid whether or not evanescent channels are included. Numerical models that do

not include evanescent channels give valid transport descriptions for passive media.

In real experimental systems, scatterers are finite sized. This means there is a

finite number of evanescent channels needed to describe the wave around a scatterer.

The closer any two scatterers are, the more evanescent channels that are needed to

accurately describe wave propagation. Delta-function scatterers would be resolved by
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Figure 4.4: Transport mean free path ℓtmfp/λ (blue dots, solid line) renormalized
as more evanescent channels (Ne) are included. Red dashed line with
diamonds is the scattering length defined by Eq. 4.1. Both characteristic
lengths are renormalized by inclusion of closed channels. No asymptotic
value is apparent.

an infinite number of evanescent channels, but saturation would occur for finite-sized

scatterers.

Statements above concerning renormalization of ℓtmfp above have only included

the first two moments of conductance. To investigate whether all the moments are

renormalized, we can find the entire distribution of conductance using the numerical

model; c.f. Fig. 4.5. When evanescent channels are included for a given waveguide

geometry, the entire distribution changes (observed earlier as a change in both first

and second moments). However, the system which includes evanescent channels has

the same distribution as a longer waveguide with only propagating modes. Effectively,

the presence of evanescent channels decreases ℓtmfp, which is equivalent to increasing

system length L since g ∝ Npℓtmfp/L.
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Figure 4.5: Distribution of unitless conductance P (g) for three waveguides; each with
10 propagating channels. P (g) from numerical simulation of waveguide
system length L/λ = 200 with no evanescent channels, black triangles is
significantly distinct from P (g) for same geometry and 8 evanescent chan-
nels (red x). However, the system with evanescent channels is equivalent
to a longer system, L/λ = 300, since P (g) matches (green squares). The
inclusion of evanescent channels renormalizes ℓtmfp to be shorter, which
is the equivalence of having a longer waveguide.

4.6. CONCLUSION

The characteristic length for transport properties in random media with mul-

tiple scattering is ℓtmfp. Using analytical and computational analysis we have shown

the renormalization of ℓtmfp due to evanescent channels. For the analytical portion,

the transfer matrix folding technique used by Bagwell and coworkers for single scat-

terers extends to multiple scatterers, which include density information. Thus ℓtmfp

is renormalized due to evanescent channels.

Using a numerical transfer-matrix model of quasi-1D waveguides with densely

packed, randomly-placed scatterers the effect of evanescent channels on conductivity

was simulated. The number of matrices multiplied is limited by numerical accuracy,

and has been extended using self-embedding technique [51]. Transfer matrices can
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include a finite number propagating and evanescent channels. The number of evanes-

cent channels was varied and single parameter scaling remained valid. Comparison

with theoretical predictions agreed with no fitting parameters. However, the first and

second moments of conductance decreased as more evanescent channels were added.

This can be attributed to the shorter ℓtmfp.

The distribution of conductance changes when the number of evanescent chan-

nels is varied but is equivalent to a system with no evanescent channels and longer L

or a shorter ℓtmfp. The renormalization of ℓtmfp due to evanescent channels explains

how DMPK theory, in which ℓtmfp is used as a fitting parameter, can agree with

experimental measurements which necessarily include evanescent channels.

The results of our ab initio numerical model are be explained by the folding

procedure which analytically reduces the rank of transfer matrices to propagating

channels only. We demonstrated renormalization applies to multiple scatterers, thus

including interaction between scatterers, by finding ℓtmfp as a function of the number

of evanescent channels. Folding a single scatterer matrix renormalizes ℓ, but inclusion

of multiple scatterers is necessary to renormalize ℓtmfp. Since single parameter scaling

is valid and average conductance is g ∝ Nℓtmfp/L, then the entire distribution of

conductance is reshaped.

These effect of evanescent channels on transport properties is expected to be

important in media with gain. We have shown using numerical simulations that

evanescent channels renormalize ℓtmfp, which includes interaction between scatterers.
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ABSTRACT∗

We show that the recently developed self-consistent theory of Anderson local-

ization with a position-dependent diffusion coefficient is in quantitative agreement

with the supersymmetry approach up to terms of the order of 1/g20 (with g0 the di-

mensionless conductance in the absence of interference effects) and with large-scale

ab-initio simulations of the classical wave transport in disordered waveguides, at least

for g0 & 0.5. In the latter case, agreement is found even in the presence of absorption.

Our numerical results confirm that in open disordered media, the onset of Anderson

localization can be viewed as position-dependent diffusion.

∗Published in Physical Review B 82 024205 (2010).
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5.1. INTRODUCTION

Anderson localization is a paradigm in condensed matter physics [3]. It con-

sists in a blockade of the diffusive electronic transport in disordered metals due to

interferences of multiply scattered de Broglie waves at low temperatures and at a suffi-

ciently strong disorder. This phenomenon is not unique to electrons but can manifest

itself for any wave in the presence of disorder, in particular for classical waves, such as

light and sound [14], and, as shown more recently, for matter waves [152]. Although

the absence of decoherence and interactions [96] for classical waves is appealing in

the context of the original idea of Anderson, serious complications appear due to

absorption of a part of the wave energy by the disordered medium [18]. Extracting

clear signatures of Anderson localization from experimental signals that are strongly

affected by — often a poorly controlled – absorption was the key to success in recent

experiments with microwaves [16, 153], light [154] and ultrasound [26].

Classical waves offer a unique possibility of performing angle-, space-, time-

or frequency-resolved measurements with excellent resolution, the possibility that

was not available in the realm of electronic transport. In a wider perspective, they

also allow a controlled study of the interplay between disorder and interactions, as

illustrated by the recent work on disordered photonic lattices [61]. Interpretation of

measurements requires a theory that would be able to describe not only the gen-

uine interferences taking place in the bulk of a large sample but also the modifica-

tion of these interferences in a sample of particular shape, of finite size, and with

some precise conditions at the boundaries. Such a theory has been recently devel-

oped [38, 145, 155, 156] based on the self-consistent (SC) theory of Vollhardt and

Wölfle [35]. The new ingredient is the position dependence of the renormalized dif-

fusion coefficient D(r) that accounts for a stronger impact of interference effects in

the bulk of the disordered sample as compared to the regions adjacent to boundaries.
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This position dependence is crucial in open disordered media [157]. D(r) also ap-

pears in the supersymmetry approach to wave transport [158], which confirms that

this concept goes beyond a particular technique (diagrammatic or supersymmetry

methods) used in the calculations.

The SC theory with a position-dependent diffusion coefficient was successfully

applied to analyze microwave [155] and ultrasonic [26] experiments. The predictions

of the theory [156] are also in qualitative agreement with optical experiments of

Störzer et al. [154]. However, it remains unclear whether the position dependence

of D is just a (useful) mathematical concept or if it is a genuine physical reality. In

addition, the extent to which predictions of SC theory are quantitatively correct is

not known. Obviously, the last issue is particularly important once comparison with

experiments is attempted.

In the present paper we compare the predictions of SC theory of localization

with the known results obtained previously using the supersymmetry method [53]

and with the results of extensive ab-initio numerical simulations of wave transport

in two-dimensional (2D) disordered waveguides. We demonstrate, first, that the

position-dependent diffusion is a physical reality and, second, that SC theory agrees

with the supersymmetry approach up to terms of the order of 1/g20 (with with g0 the

dimensionless conductance in the absence of interference effects) and with numerical

simulation at least for g0 & 0.5. In the latter case, the agreement is found even in

the presence of absorption.

5.2. SELF-CONSISTENT THEORY OF LOCALIZATION

We consider a scalar, monochromatic wave u(r)e−iωt propagating in a 2D

volume-disordered waveguide of width w and length L ≫ w. The wave field u(r)
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obeys the 2D Helmholtz equation:

{
∇2 + k2 [1 + iǫa + δǫ(r)]

}
u(r) = 0. (5.1)

Here k = ω/c is the wavenumber, c is the speed of the wave in the free space, ǫa is

the imaginary part of the dielectric constant accounting for the (spatially uniform)

absorption in the medium, and δǫ(r) is the randomly fluctuating part of the dielectric

constant. Assuming that δǫ(r) is a Gaussian random field with a short correlation

length, it is easy to show that the disorder-averaged Green’s function of Eq. (5.1),

〈G(r, r′)〉, decays exponentially with the distance |r − r′| [96]. The characteristic

length of this decay defines the mean free path ℓ. In this paper we consider quasi-1D

waveguides defined by the condition w . ℓ ≪ L. The intensity Green’s function

of Eq. (5.1), C(r, r′) = (4π/c)〈|G(r, r′)|2〉, obeys self-consistent equations that can

be derived following the approach of Ref. 38. In a quasi-1D waveguide, all position-

dependent quantities become functions of the longitudinal coordinate z only and the

stationary SC equations can be written in a dimensionless form:

[
β2 − ∂

∂ζ
d(ζ)

∂

∂ζ

]
Ĉ(ζ, ζ ′) = δ(ζ − ζ ′), (5.2)

1

d(ζ)
= 1 +

2

g̃0
Ĉ(ζ, ζ). (5.3)

Here Ĉ(ζ, ζ ′) = (wD0/L)C(r, r
′), D0 = cℓ/2 is the Boltzmann diffusion coefficient,

ζ = z/L is the dimensionless coordinate, d(ζ) = D(z)/D0 is the normalized position-

dependent diffusion coefficient, β = L/La is the absorption coefficient (with La =
√
ℓℓa/2 and ℓa = 1/kǫa the macro- and microscopic absorption lengths, respectively),

and g̃0 = (π/2)Nℓ/L with N = kw/π the number of the transverse modes in the
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waveguide. These equations should be solved with the following boundary conditions:

Ĉ(ζ, ζ ′)∓ z0
L
d(ζ)

∂

∂ζ
Ĉ(ζ, ζ ′) = 0 (5.4)

at ζ = 0 and ζ = 1. Similarly to the 3D case [38], these conditions follow from the

requirement of vanishing incoming diffuse flux at the open boundaries of the sample.

z0 is the so-called extrapolation length equal to (π/4)ℓ in the absence of internal

reflections at the sample surfaces [2]. We will use z0 = (π/4)ℓ throughout this paper.

When Eqs. (5.2–5.4) are solved in the diffuse regime g̃0 ≫ 1, the dimensionless

conductance of the waveguide is found to be g0 = (π/2)Nℓ/(L+ 2z0) [2, 40] which

is close to g̃0 for z0 ≪ L.

In the absence of absorption (β = 0) we can simplify Eq. (5.2) by introducing

τ = F (ζ) =
∫ ζ

0
dζ1/d(ζ1):

− ∂2

∂τ 2
Ĉ(τ, τ ′) = δ(τ − τ ′), (5.5)

with the boundary conditions (5.4) becoming

Ĉ(τ, τ ′)∓ τ0
∂

∂τ
Ĉ(τ, τ ′) = 0, (5.6)

and τ ′ = F (ζ ′), τ0 = z0/L. Equations (5.5) and (5.6) are readily solved:

Ĉ(τ, τ ′) =
(τ< + τ0)(τmax + τ0 − τ>)

τmax + 2τ0
, (5.7)

where τ< = min(τ, τ ′), τ> = max(τ, τ ′) and τmax = F (1). We now substitute this

solution into Eq. (5.3) to obtain

1

d(τ)
≡ dτ

dζ
= 1 +

2

g̃ 0

× (τ + τ0)(τmax + τ0 − τ)

τmax + 2τ0
. (5.8)
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This differential equation can be integrated to find τ as a function of ζ . Using

d(ζ) = (dτ/dζ)−1 we finally find

d(ζ) = {g̃0
√
p cosh(

√
pζ/g̃0)

− [g̃0 + τ0(1− p)] sinh(
√
pζ/g̃0)}2

×
{
p[(g̃0 + τ0)

2 − τ 20 p]
}−1

, (5.9)

where p is the solution of a transcendental equation

2g̃0√
p
arctanh

{
1√
p

[
1− τ0

g̃0
(p− 1)

]}
= 1. (5.10)

Solving the last equation numerically and substituting the result into Eq. (5.9) we

can find the profile d(ζ) at any g̃0 and τ0 = z0/L. In contrast, for β > 0 Eqs. (5.2–

5.4) do not admit analytic solution and we solve them by iteration: we start with

D(z) = D0, solve Eq. (5.2) numerically with the boundary conditions (5.4) and then

find the new D(z) from Eq. (5.3). This procedure is then repeated until it converges

to a solution. In typical cases considered in this paper the convergence is achieved

after 10–20 iterations.

The simplest object that Eqs. (5.7–5.9) allows us to study is the average

conductance of the waveguide 〈g〉. Indeed, the average transmission coefficient of the

waveguide is found as

T = −D(L)
dC(z, z′ = ℓ)

dz

∣∣∣∣
z=L

= − 1

w
× dĈ(τ, τℓ)

dτ

∣∣∣∣∣
τ=τmax

=
1

w
× τℓ + τ0
τmax + 2τ0

, (5.11)
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where τℓ = F (ℓ/L). For the waveguide we have 〈g〉 ∝ T . A ratio that emphasizes the

impact of localization effects is 〈g〉/g0 = T/T0, where T0 is the average transmission

coefficient found in the absence of localization effects (i.e., for d ≡ 1): T0 = (ℓ +

z0)/w(L+ 2z0). We find

〈g〉
g0

=
L+ 2z0
ℓ+ z0

(τℓ + τ0)
p− 1

2g̃0
. (5.12)

Simple analytic results follow for z0 = 0, when g0 = g̃0. Equation (5.9) yields

d(ζ) =

[
sinh(

√
pζ/g0)√
p

− cosh(
√
pζ/g0)

]2
(5.13)

and we find

τℓ =
g0√

p cotanh(
√
pℓ/Lg0)− 1

. (5.14)

In the weak localization regime g0 ≫ 1 the solution p of Eq. (5.10) can be found as

a series expansion in powers of 1/g0: p = 2g0 + 1/3 + 2/45g0 − 17/540g20 + . . .. If we

keep only the first term p = 2g0, substitute it into Eq. (5.13) and expand in powers

of 1/g0 ≪ 1, we obtain D(z) ≃ D0[1 − (2/g0)(z/L)(1 − z/L)]. Keeping terms up to

1/g20 in the expression for p and substituting it into Eqs. (5.14) and (5.12), expanding

the result in powers of 1/g0 and then taking the limit of L/ℓ→ ∞, we obtain

〈g〉
g0

≃ 1− 1

3g0
+

1

45g20
+

2

945g30
+ . . . . (5.15)

This result coincides exactly with Eq. (6.26) of Ref. [53] obtained by Mirlin using

supersymmetry approach, except for a factor of 2 due to two independent spin states

of electrons in Ref. [53]. We therefore proved the exact equivalence between SC theory
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and the supersymmetry approach for the calculation of the average conductance 〈g〉

up to terms of the order of 1/g20.

Deep in the localized regime g0 ≪ 1 and Eq. (5.10) can be solved approxi-

mately to yield p = 1+4 exp(−1/g0) (always for z0 = 0 and hence for g0 = g̃0). If we

substitute this p into Eq. (5.13), we obtainD(z) ≃ D0{exp(−z/ξ)+exp[−(L−z)/ξ]}2,

where ξ = g0L is the localization length. Equations (5.14) and (5.12) then yield

〈g〉
g0

≃ 2

g0
exp

(
− 1

g0

)
, (5.16)

where we made use of the fact that L/ℓ≫ 1 andN ≫ 1. In contrast to Eq. (5.15), this

result differs from the one obtained using the supersymmetry approach [see Eq. (6.29)

of Ref. [53]]. Even though the exponential decay of conductance with 1/g0 = L/ξ

— expected in the localized regime — is reproduced correctly, both the rate of this

decay and the pre-exponential factor are different. We thus conclude that SC theory

does not provide quantitatively correct description of stationary wave transport in

disordered waveguides in the localized regime.

It is worthwhile to note that the breakdown of SC theory for g0 ≪ 1 is not

surprising and could be expected from previous results. Indeed, it has already been

noted that for the time-dependent transmission, SC theory does not apply after the

Heisenberg time tH [155]. The stationary transmission coefficient T of Eq. (5.11) is

an integral of the time-dependent transmission T (t): T =
∫∞

0
dt T (t), with the peak

of T (t) around the Thouless time tD = L2/π2D0 [155]. When g0 ∼ tH/tD ≫ 1, the

integral is dominated by t < tH where SC theory applies. The integration thus yields

the correct T . However, when g0 ≪ 1, tH is smaller than tD and the main part of

pulse energy arrives at t > tH . Such long times are beyond the reach of SC theory,

hence its breakdown for small g0.
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5.3. NUMERICAL MODEL

To test the predictions of the SC model discussed in the previous section we

solve Eq. (5.1) numerically using the method of transfer matrices defined in the basis

of the transverse modes of the empty waveguide [49, 55]. To this end, we represent

δǫ(r) as a collection of M randomly positioned “screens” perpendicular to the axis z

of the waveguide and characterized by random functions fν(y) =
∑N

n=1 χn(y)χn(yν):

δǫ(r) = α
M∑

ν=1

δ(z − zν)fν(y). (5.17)

Here χn(y) = (2/w)1/2 sin(πny/w) are the transverse modes of the waveguide and yν

are chosen at random within the interval (0, w). zν represent random positions of the

screens, whereas α measures their scattering strength. Absorption can be included

in the model by making α complex.

In the limit N → ∞, fν(y) becomes a delta-function δ (y − yν), mimicking a

point-like scatterer. By the choice of fν(y) in Eq. (5.17) we narrowed the basis to N

right- and N left-propagating modes with real values of the longitudinal component of

the wavevector. Such modes are often termed “open channels” in the literature [49].

Hence, the total transfer matrix of the system is a product of M pairs of 2N × 2N

scattering matrices corresponding to the random screens positioned at zν and the

free space in between them, respectively [55]. Because the numerical computation

of products of a large number of transfer matrices (∼ 102–105 for the results in

this paper) is intrinsically unstable, we implement a self-embedding procedure [51]

which limits the errors in flux conservation to less than 10−10 in all cases. The

system is excited by illuminating the waveguide with N unit fluxes (one in each right

propagating mode) and the wave field u(r) is computed [51, 55] for a given realization

of disorder [see the inset of Fig. 5.1(a)]. To compute statistical averages, ensembles

of no fewer than 107 realizations are used.
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Figure 5.1: The average (a) and the variance (b) of the conductance g of disordered
waveguides supporting N = 10 (circles) and N = 20 (squares) modes are
shown versus the inverse of g0. The solid lines marked as SUSY are fits
using Eq. (6.23) of Ref. [53], derived using the supersymmetry approach,
with ℓ = 15.7λ as the only fit parameter. The solid line marked as SC in
(a) is obtained using the self-consistent theory [Eq. (5.12)]. Inset in (a):
for a given realization of disorder, wave “trajectories” found by connecting
local Poynting vectors are superimposed on the distribution of intensity
|u(r)|2 in a disordered waveguide with w = 10.25λ and L = 50λ. Only
trajectories that traverse the waveguide are shown.

To estimate the mean free path ℓ of waves in our model system we perform a set

of simulations for different disorder strengths and waveguide lengths, exploring both

the regime of classical diffusion (g0 > 1) and that of Anderson localization (g0 < 1).

The results of the simulations are used to compute the dimensionless conductance g,

equal to the sum of all outgoing fluxes at the right end of the waveguide, and then

to study its average value 〈g〉 and variance var(g) [32]. The dependencies of 〈g〉 and

var(g) on g0 are fitted by the analytic expressions obtained by Mirlin [53] using the

supersymmetry approach, with ℓ as the only fit parameter (Fig. 5.1) [55]. The best

fit is obtained with ℓ = (15.7±0.2)λ. In Fig. 5.1(a) we also show Eq. (5.12) following

from SC theory. As could be expected from the discussion in the previous section,

the prediction of SC theory coincides with both the results of the supersymmetry

approach and numerical simulations only for large g0 & 0.5.
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5.4. POSITION-DEPENDENT DIFFUSION COEFFICIENT

The wave field u(r) that we obtain as an outcome of the numerical algorithm

allows us to calculate the energy density W(r) and flux J(r) [63]:

W(r) =
k2

2
|u(r)|2 + 1

2
|∇u(r)|2 , (5.18)

J(r) = −kc Im [u(r)∇u(r)] . (5.19)

These two quantities formally define the diffusion coefficient D(z) which, in general,

may be position-dependent:

D(z) = − 〈Jz(r)〉
d
dz
〈W(r)〉

, (5.20)

where the averages 〈. . .〉 are taken over a statistical ensemble of disorder realizations

as well as over the crossection of the waveguide. Eq. (5.20) can be used only at

distances beyond one mean free path ℓ from the boundaries of the random medium

because more subtle propagation effects of non-diffusive nature start to be important

in the immediate vicinity of the boundaries [96].

We first consider non-absorbing disordered waveguides described by ǫa = 0

in Eq. (5.1) and real α in Eq. (5.17). In Fig. 5.2 we compare numerical results for

D(z) with the outcome of SC theory for waveguides of different lengths but with

statistically equivalent disorder. Quantitative agreement is observed for L = 100–

800λ, corresponding g0 ≈ 0.3–2. For the longest of our waveguides (L = 1600λ,

g0 ≈ 0.16), deviations of numerical results from SC theory start to become visible in

the middle of the waveguide, which is particularly apparent in the logarithmic plot of

Fig. 5.2(b). The mean free path ℓ = 17.5λ corresponding to the best fit of SC theory

to numerical results is only about 10% higher than ℓ = 15.7λ obtained from the fits

in Fig. 5.1.
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Figure 5.2: (a) Position-dependent diffusion coefficient D(z) in 2D waveguides sup-
porting the same number N = 10 of transverse modes (width w = 5.25λ)
but having different lengths L. Disorder is the same for all lengths.
Symbols show the results of numerical simulations, whereas solid lines
are obtained from the self-consistent theory with the mean free path
ℓ = 17.5λ. Dashed lines show the approximate results for g0 ≫ 1 (shown
for L = 100λ) and g0 ≪ 1 (shown for L = 1600λ), with D(0) substituted
for D0, see text. (b) Same as (a) but in the logarithmic scale.
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We checked that the results of numerical simulations are not sensitive to the

microscopic details of disorder: D(z) obtained in two runs with different scattering

strengths α and different scatterer densities, but equal mean free paths ℓ turned out

to be the same.

5.5. EFFECT OF ABSORPTION

The linear absorption is modeled by introducing a non-zero ǫa in Eq. (5.1) and

making α in Eq. (5.17) complex. A link between ǫa and α can be established using

the condition of flux continuity. Indeed, for continuous waves considered in this work

the continuity of the flux leads to

〈∇ · J(r)〉 = (c/ℓa) 〈W(r)〉 , (5.21)

where ℓa = 1/kǫa. We checked that within numerical accuracy of our simulations

the proportionality factor c/ℓa indeed remains constant independent of z. Therefore,

Eq. (5.21) allows us to determine the microscopic absorption length ℓa as c〈W(r)〉/〈∇·

J(r)〉 obtained numerically at a given α.

Figure 5.3 demonstrates the effect of absorption on the position-dependent

diffusion coefficient for a waveguide of length L = 400λ, which is about 25 mean free

paths. For this waveguide g0 ≃ 1.3 and the localization corrections are important.

We observe that absorption suppresses the localization correction to the position-

dependent diffusion coefficient. This clearly demonstrates that the absorption non-

trivially affects the transport by changing the way the waves interfere. Nevertheless,

we observe good agreement between numerical results (symbols) and SC theory (solid

lines). The predictions of SC theory start to deviate from numerical results only for

strong absorption (La/L . 0.4). Once again, the mean free path ℓ = 17.1λ obtained
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Figure 5.3: The effect of absorption on the position-dependent diffusion coefficient.
Symbols are results of numerical simulations in a 2D waveguide of length
L = 400λ, width w = 10.25λ (N = 20) and several values of the macro-
scopic absorption length La indicated on the figure. Lines are obtained
from SC theory with ℓ = 17.1λ adjusted to obtain the best fit for the
case of no absorption (lower curve). Dashed line shows D(z) following
from the self-consistent theory with the same ℓ = 17.5λ as in Fig. 5.2 and
illustrates the sensitivity of D(z) to the exact value of ℓ.

from the fit of SC theory to the lower curve of Fig. 5.3 is within 10% of the value

estimated from the variance of dimensionless conductance.

5.6. CONCLUSIONS

Two important results were obtained in this work. First, we convincingly

demonstrated that the position-dependent diffusion coefficient is not an abstract

mathematical concept but is a physical reality. The results of numerical simula-

tions of scalar wave transport in disordered 2D waveguides unambiguously show that

the onset of Anderson localization manifests itself as position-dependent diffusion.

The reduction of the diffusion coefficient D(r) is much more important in the middle

of an open sample than close to its boundaries, in agreement with predictions of the

self-consistent theory of localization. Second, we established that for monochromatic
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waves in 2D disordered waveguides predictions of the self-consistent theory of localiza-

tion are quantitatively correct provided that the dimensionless conductance in the ab-

sence of interference effects g0 is at least larger than 0.5. Moreover, the self-consistent

theory yields a series expansion of the average conductance 〈g〉 in powers of 1/g0 that

coincides exactly with the expansion obtained using the supersymmetry method [53]

up to terms of the order of 1/g20. This was not obvious a priori because of the nu-

merous approximations involved in the derivation of self-consistent equations [38].

The agreement between theory and numerical simulations is good in the presence of

absorption as well, which has a particular importance in the context of the recent

quest for Anderson localization of classical waves that heavily relies on confrontation

of experimental results with the self-consistent theory [26, 153, 154, 155, 156]. Deep

in the localized regime (g0 < 0.5), the self-consistent theory loses its quantitative

accuracy, but still yields qualitatively correct results (exponential decay of conduc-

tance with the length of the waveguide and of the diffusion coefficient D with the

distance from waveguide boundaries). It would be extremely interesting to see if the

ability of the self-consistent theory to provide quantitative predictions still holds in

three-dimensional systems where a mobility edge exists. In particular, the immediate

proximity of the mobility edge is of special interest.

Note added. After this paper was submitted for publication, a related preprint

appeared [159]. In particular, the authors of that work show that the self-consistent

theory does not apply to 1D disordered media, which is consistent with our results

because g0 ∼ ℓ/L is always small in 1D, provided that the condition L≫ ℓ assumed

in this paper is fulfilled.
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ABSTRACT∗

Deterministic aperiodic structures, such as those obtained via the Thue-Morse

algorithm, exhibit a variety of unusual transport properties not found in either or-

dered or random media. The non-periodic nature of this system makes it notori-

ously difficult to characterize theoretically, especially in dimensions higher than one.

Here, we demonstrate the possibility of mapping the two-dimensional aperiodic Thue-

Morse pattern of micro-cavities onto a square lattice, making it easily amenable to

the tight-binding description. We also show that only three distinct nearest and three

next-nearest micro-cavity arrangements exist. An implementation of this mapping

procedure in Matlab is provided.

∗In preparation for Journal of Physics A (2012).
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6.1. INTRODUCTION

Deterministic aperiodic structures (DAS) [160] lie between periodic and ran-

dom, ranging from quasi-crystals to pseudo-random arrangements. Unlike crystals,

they do not have translational symmetry. In contrast with random media, DAS are

defined by mathematical rules and have long-range order. Photonic deterministic

aperiodic nano-structures can now be routinely prepared with a variety of nano-

fabrication techniques [161].

An exhaustive classification of quasi-periodic and aperiodic systems can be ac-

complished based on an analysis of the structure factor [162]. Quasiperiodic (e.g. Fi-

bonacci sequence) arrangements are characterized by a pure point spectrum. Ex-

hibiting higher levels of complexity, aperiodic structures can be further subdivided

into those having either a singular continuous spectrum or an absolutely continuous

spectrum [163]. The prominent example in the former class is the Thue-Morse [164]

sequence – the focus of this study.

Previous studies of Thue-Morse structures revealed highly anomalous trans-

port properties and unusual energy spectra with self-similar features [165, 166]. One-

dimensional (1D) photonic Thue-Morse structures [167, 168, 169, 170, 171, 172] are

amenable to a variety of theoretical treatments [160, 162]. Higher dimensional struc-

tures are predicted to display richer behaviors [161], just as wave transport in two-

dimensional (2D) random media is more complicated than in 1D [7]. This observa-

tion is indeed supported by the theoretical [173, 174] and experimental studies on 2D

Thue-Morse DAS that recently appeared in literature [168, 172, 175, 176, 177, 178].

Despite the practical interest in the 2D systems, the increased complexity (compared

to the 1D counterparts) limits the availability of analytical approaches. The tight

binding approximation is generally unavailable in photonic systems, contributing to

the problem.
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Two-dimensional Thue-Morse DAS can be created by selectively removing

particles from a 2D square lattice [161, 177]. This process generates a pattern of 2×

2 micro-cavities, c.f. Fig. 6.1, which exhibits self-similar structure on progressively

larger scales. These micro-cavities can support confined modes [173, 174], similar to

whispering gallery modes of micro-disk resonators. Patterns of coupling between the

cavity modes in the Thue-Morse structure plays an important role in determining the

lasing mode profile [178].

The goal of this work is to demonstrate the possibility of mapping the micro-

cavity array in the 2D aperiodic Thue-Morse structure onto a square lattice. We

provide a Matlab numerical code which identifies exactly four nearest and four next-

nearest neighbors of each cavity. It is demonstrated that only three types of neighbor-

ing arrangements exist in the Thue-Morse structure, allowing assignment of nearest

and next-nearest neighbor coupling coefficients to each micro-cavity. Thus, we ac-

complish the reduction of 2D aperiodic Thue-Morse array to the periodic square array

of micro-cavities with aperiodic couplings. Our finding opens up the possibility of a

thorough theoretical investigation based on the tight binding Hamiltonian descrip-

tion [160].

6.2. MAPPING MICRO-CAVITIES IN 2D THUE-MORSE ARRAY
ONTO SQUARE LATTICE

Construction of the 2D Thue-Morse pattern is accomplished in two steps [179].

Step 1: The 1D Thue-Morse sequence is generated by starting with letter A (genera-

tion g = 0) and repeatedly applying the inflations rules A→ AB and B → BA. After

repeating the procedure g times the number of elements in the binary sequence is 2g.

The complimentary system is defined as A → B and B → A. Step 2: Using the 2g

elements of the 1D sequence obtained in Step 1 as seeds, we build 1D Thue-Morse

sequences of g’th generation along the second dimension of the structure. A elements
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(a)

(b)

(c)

Figure 6.1: (a) The 2D Thue-Morse structure of generation g = 6 (64×64 elements).
After populating the 2D square lattice with binary elements A and B via
the inflation procedure A → AB and B → BA; A is interpreted as the
positions of scatters. (b) Same as (a) with the 2×2 clusters regions void of
scatters highlighted. These regions play the role of optical micro-cavities
in the experiment [178]. (c) The array of micro-cavities in (b) after the
collapse procedure of removing rows and columns void of cavities, see
text. The collapsed structure is a periodic square lattice rotated by 45◦;
it facilitates identification of the neighboring cavities.
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in the resulting 2g × 2g array define the position of the “particles,” e.g. cylindrical

holes in a dielectric membrane [178].

Figure 6.1(a) shows the 2D Thue-Morse structure with g = 6 obtained using

the above procedure. We observe the occurrence of micro-cavities formed at the places

missing 2×2 holes. Holes surrounding a cavity in the dielectric membrane [178] create

a mismatch in the effective refractive index between the inside and outside regions.

Hence, the micro-cavity regions can support cavity modes and play an important role

in determining transport properties of the system [173, 174].

Figure 6.1(b) highlights the cavity regions in the 2D Thue-Morse structure.

The cavities occur only in the columns with identical adjacent seeds, c.f. Step 1 in

the construction procedure above. Indeed, by construction, the columns generated

from a pair of dissimilar seeds (i.e. . . . AB . . . or . . . BA . . .) can never contain 2 × 2

clusters. The same argument can also be made regarding the rows in the pattern

depicted in Fig. 6.1. Hence, the following collapse procedure can be performed: one

drops all columns and all rows void of the 2× 2 clusters. The result of this operation

is a perfectly periodic square lattice of cavities rotated by 45◦, c.f. Fig. 6.1(c). In this

state one can uniquely identify exactly four nearest and four next-nearest neighbors

of each cavity. In the next section, we revert to the original structure expansion

procedure to study the patterns in arrangements of the neighbors.

6.3. EXHAUSTIVE ENUMERATIONOF INTER-CAVITY ARRANGE-
MENTS

After identifying neighboring cavities in the previous section, c.f. Fig. 1(c),

we now turn to the analysis of coupling. The collapse procedure introduced above

demonstrates that the furthest separation between next nearest neighbors is equal to

six (in the units of lattice constant of the original structure). This observation, and

the fact that the Thue-Morse structure by construction contains a finite number of
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(a) (b)

Figure 6.2: (a) Nearest neighbor and (b) next-nearest neighbor arrangements of
micro-cavities in 2D Thue-Morse pattern. The identification of a neigh-
boring cavity is based on Fig. 6.1c and the coupling type is determined
from Fig. 6.1b.

distinct blocks of a given size, leads to the conclusion that the number of distinct cav-

ity couplings should also be finite. Indeed, we find that there are only three distinct

nearest and three distinct next-nearest neighbor configurations, c.f. Fig. 6.2 and 6.3.

All cavity configurations can be obtained from these sets by rotation or mirror sym-

metry transformations.

The physical significance of a finite number of cavity neighbor arrangements in

the Thue-Morse structure is that it results in a finite number of inter-cavity couplings

in the tight binding description of the system. The tight-binding model [180] has

been a powerful tool in studies of DAS [160]. The Thue-Morse pattern has been

treated with the tight-binding model in 1D, where neighbors are clearly defined [181].

Applying the tight-binding model in 2D is expected to be a fruitful approach in

describing transport in the Thue-Morse system [178]. At the eigenfrequency of the

cavity mode, transport is dominated by the coupling between microcavities. Thus,

we write

E0 ψij +
∑

i′j′

cij,i′j′ ψi′j′ = E ψij, (6.1)

where E0 is the energy of an isolated cavity and ψij is the field amplitude of the

ij’th cavity. Indices i and j enumerate the cavities based on the collapse procedure

shown in Fig. 6.1(c). Further, cij,i′j′ denote the couplings between the cavities lo-

cated at ij and i′j′. The analysis of physical proximity in the Thue-Morse structure,
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c.f. Fig. 6.1(b), allows us to limit the consideration to two types of coupling – nearest

(i′ = i ± 1 and j′ = j, or i′ = i and j′ = j ± 1) and next-nearest (i′ = i ± 1 and

j′ = j±1) couplings only. From Fig. 6.2 it follows that cij,i′j′ can take one of only six

possible values, three of each type. This constitutes the main result of this work. As

an example, we used the numerical code described in the next section to generate the

color-coded pattern of nearest and next-nearest couplings (four of each type) for the

2D Thue-Morse structure of generation g = 6, c.f. Fig. 6.3. Thus, the structural com-

plexity in the arrangement of cavities in the original pattern has been reduced to the

complexity in connectivities between the elements of the ordered array in Eq. (6.1).

6.4. DESCRIPTION OF MATLAB CODE

The supplied code is an implementation of the described algorithm in the

Matlab scripting language. Inputs to the primary function are the generation g,

complementarity, and a boolean for creating plots. The generation of the Thue-Morse

pattern must be a positive integer; values of g up to 12 have been verified. However,

when g is less than 5 the pattern is too small to show nearest neighbor coupling.

The second input, complementarity, allows one to generate the standard Thue-Morse

pattern or its complimentary obtained by simultaneous replacement A → B and

B → A throughout the pattern – values 0 or 1 respectively. The last input parameter

is a boolean switch defining whether or not to generate graphical representations of

the results and takes values 0 or 1. After input values are specified by the user, the

2D Thue-Morse pattern is created. The initial size is a square with sides of length 2g.

For each site in the 2D array, the surrounding pattern is used to determine

whether the site is part of a micro-cavity, or if it is part of the buffer in one of three

nearest neighbor coupling arrangements. The specific local pattern of the neighboring

sites for any given site has only four possible outcomes, the result of which is stored
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(a)

(b)

Figure 6.3: Four corners of each cavity represent four nearest (a) or four next-nearest
(b) couplings of the 2 × 2 micro-cavities in the 2D Thue-Morse array of
generation g = 6. The results are obtained using the provided Matlab
code.
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to a three dimensional array of size 2g×2g×6. The first layer has four possible values

to denote whether a site is part of a micro-cavity or one of the three nearest-neighbor

coupling types. The second of the six layers describes whether a site within a 2 × 2

microcavity is locally in the top, left, right, or bottom position. In the third layer, the

nearest neighbor coupling type is recorded for each micro-cavity, c.f. Fig. 6.2a, and

the next-nearest coupling type is in the fourth layer of the storage array. Lastly, the

original x and y coordinates of each site are in the fifth and sixth layers, respectively.

To determine next-nearest neighbor coupling, micro-cavities sufficiently far

from the edges of the 2D array are found. Then, for each micro-cavity, the four next-

nearest neighbors are located based on the site arrangement, c.f. Fig. 6.2b, similar

to the nearest neighbor procedure above. This result is recorded in layer four of the

storage array.

At this stage, all relevant information has been determined. Next, only rows

and columns containing micro-cavities are retained, whereas the edges of the 2D Thue-

Morse system containing neither nearest nor next-nearest neighbors are discarded.

Two arrays, each of size 2g × 2g, are returned by the main function. These arrays

specify nearest and next-nearest coupling types, respectively.

6.5. CONCLUSION

In this work, we demonstrated the possibility of mapping the array of micro-

cavities in the 2D Thue Morse deterministic aperiodic system onto a periodic square

lattice. Such mapping allowed us to uniquely identify and exhaustively enumerate

the configurations of nearest and next-nearest neighbors. We found that only three

configurations of each type exist. Thus, we accomplished the reduction of the original

aperiodic structure to the periodic structure with aperiodic arrangement of the limited

set of pairings. We developed and provided with this paper a Matlab simulation code
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which performs this cavity identification and mapping procedure. The results will

be used for future investigations of novel transport properties expected in 2D DAS

structures.
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ABSTRACT∗

We report on a study of optical properties of a two-dimensional array of

micro-cavities spatially arranged according to the Thue-Morse sequence. The Thue-

Morse structure is a prime example of deterministic aperiodic systems with singular-

continuous spatial Fourier spectra. In a realistic system we establish applicability

of the tight-binding description. This description is employed to investigate coexist-

ing localized and delocalized states and their scaling dependence on the size of the

structure.
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7.1. INTRODUCTION

Non-periodic structures occupy the place between periodic and random struc-

tures, ranging from quasi-crystals to pseudo-random structures [163]. These deter-

ministic aperiodic structures (DAS) are obtained iteratively according to some prede-

termined rules, and have long-range order [160]. The structural complexity of DAS is

measured by their spatial Fourier spectra or structure factor. The three major classes

of DAS, with increasing degree of complexity, have singular, singular-continuous, and

absolutely continuous spectra [163]. Hence, DAS span the entire hierarchy of com-

plexity. Because of their structural distinction and unusual physical properties, the

aperiodic systems have been called the third form of solid matter [162]. Photonic

deterministic aperiodic nano-structures can now be routinely prepared with a variety

of nano-fabrication techniques [161].

The Thue-Morse sequence [164] has a singular-continuous spatial Fourier spec-

trum, combining the properties of both periodic and random media. Previous studies

of Thue-Morse structures revealed highly anomalous transport properties, such as co-

existence of extended and localized states [182] as well as the appearance of spectral

windows of complete optical transparency [183]. Related to the above is an unusual

self-similar energy spectrum [165, 166].

One-dimensional (1D) photonic Thue-Morse structures [167, 168, 169, 170,

171, 172] are readily amenable to a variety of theoretical treatments [160, 162].

Higher dimensional structures are predicted to display richer behaviors [161], just

as wave transport in two-dimensional (2D) random media is more complicated than

in 1D [7]. This observation is indeed supported by both the theoretical [173, 174]

and the experimental studies on 2D Thue-Morse DAS that recently appeared in lit-

erature [168, 172, 175, 176, 177, 178, 179].
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Despite practical interest in the 2D systems, the increased complexity (com-

pared to their 1D counterparts) limits the availability of analytical approaches. Adapt-

ing the methods for 1D systems, e.g., trace map analysis [166, 167, 184, 185, 186, 187],

time evolution method [188], perturbation approach [189], renormalization group

method [190, 191, 192], and numerical transfer matrix analysis [169, 183, 193, 194,

195, 196], to higher dimensional systems is not straightforward.

The goal of this work is to demonstrate the possibility of studying light

transport in 2D photonic Thue-Morse DAS with the tight-binding model. The

tight-binding model, which yielded such enormously important theoretical results

as demonstration of Anderson localization [1, 3], has been a powerful tool in studies

of electronic properties of quasi-crystals [197]. Because photons, unlike electrons, can-

not be easily confined by single scattering centers, a tight-binding description is not

usually applicable. This limitation can be overcome by creating optical cavities with

structural defects inside a photonic crystal. Photons may be confined in individual

cavities and tunnel to adjacent cavities.

2D Thue-Morse DAS are created by selectively removing particles from a 2D

square lattice [161, 177]. The process generates a pattern of 2 × 2 micro-cavities,

c.f. Fig. 7.2(a), that exhibits self-similar structure on progressively larger scales.

These micro-cavities can support confined modes [173, 174]. Patterns of coupling

between the cavity modes in the Thue-Morse structure plays an important role in de-

termining the lasing mode profile [178]. Previously we have shown that the complexity

in the spatial arrangement of the micro-cavities can be replaced by the complexity of

correlated couplings in a (periodic) square lattice of micro-cavities [198]. We employ

this mapping procedure to obtain and diagonalize the tight-binding Hamiltonian al-

lowing us to make predictions regarding the nature of the eigenmodes and their finite

size scaling properties.
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Figure 7.1: Left: top-view SEM image of a 2D Thue-Morse array of air holes in
the GaAs membrane. Right: tilt-view SEM image of a cleaved sample
showing the perforated GaAs membrane free standing in air. White scale
bars from left to right are 2µm and 500nm.

In this work we demonstrate that under realistic experimental conditions, the

tight-binding treatment can be applicable to a 2D Thue-Morse based array of micro-

cavities. In Section 7.2 we describe construction of a 2D Thue-Morse based array

of micro-cavities and demonstrate the applicability of the tight-binding description

under realistic conditions in Ref. 178. In Sec. 7.3 we investigate both the size scaling

of the density of states and the inverse participation ratio within the framework of

the tight-binding model. We conclude with a discussion of implications of our results

in Sec. 7.4.

7.2. STRUCTURE DESIGN AND OPTIMIZATION

The 2D Thue-Morse pattern is usually constructed in two steps [179]. First,

the 1D Thue-Morse sequence is generated by starting with letter A (generation g = 0)

and repeatedly applying the inflation rules A→ AB and B → BA. After g iterations

the number of elements in the binary sequence is 2g. The complimentary system is

obtained by simultaneous replacements of A → B and B → A. In the second step,

using the 2g elements of the 1D sequence obtained previously as seeds, we build 1D

Thue-Morse sequences of g’th generation along the second dimension of the structure.
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A elements in the resulting 2g × 2g array define the position of the “particles,” such

as e.g. cylindrical holes in a dielectric membrane, c.f. Fig. 7.1.

Figure 7.2(a) depicts the 2D Thue-Morse structure with g = 6 obtained using

the above procedure. We observe the occurrence of clusters formed at the places

of missing 2 × 2 holes. Holes surrounding a cavity in the dielectric membrane [178]

create a mismatch in the effective refractive index between the inside and outside

regions. Hence, in certain spectral ranges the cluster regions can support cavity

modes and thus play an important role in determining transport properties of the

system [173, 174, 178]. In the structure shown in Fig. 7.2(a), however, a number of

modes exist that are not directly associated with the 2 × 2 clusters. This is because

(i) the structure contains other (2×1 and 1×1) voids, and (ii) the 2×2 clusters can

occur in corner-sharing arrangements. The latter can cause strong hybridization due

to excessive coupling.

With the goal of obtaining a 2D DAS amenable to tight-binding description

hereafter we propose to use a Thue-Morse-based array of micro-cavities constructed

as follows. First, in the original Thue-Morse array shown in Fig. 7.2(a) we retain only

2×2 clusters as shown in Fig. 7.2(c). Second, to avoid occurrence of multiple modes we

reduce the size of the clusters from 2× 2 to obtain 1× 1 micro-cavities. In addition,

we insert an extra row/column between the adjacent cavities to prevent excessive

inter-cavity coupling. The obtained array of micro-cavities, shown in Fig. 7.2(e),

has a similar spatial Fourier spectrum when compared with the original Thue-Morse

structure, thus retaining the structural characteristics of the DAS, c.f. Fig. 7.2(b,d,f).

We use finite difference frequency domain (FDFD) calculations in the commer-

cial package Comsol to calculate the resonant mode in an uncoupled cavity formed

by one missing hole in a square lattice, and verify that it indeed supports only one

tightly confined mode with an eigenfrequency inside the photonic bandgap of the

underlying square lattice, c.f. Fig. 7.3(a), with the ratio between radius of the hole
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Figure 7.2: Construction of Thue-Morse based array of micro-cavities. First, all
1 × 1 and 2 × 1 voids in the original 2D Thue-Morse structure are filled
to obtain (c). Then 2× 2 clusters are reduced to 1× 1 and separated by
an additional row/column of holes (e). (b,d,f) show the spatial Fourier
spectra of the structures shown in (a,c,e), respectively.
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Figure 7.3: (a) Cavity mode used as the basis in the tight-binding description of the
Thue-Morse optical cavity array structure shown in Fig. 7.2(e). (b) shows
an example of an eigenmode computed by Comsol FDFD simulations
with closed boundary conditions. The eigenmode is composed of the
hybridized modes of the individual cavities.

and the lattice spacing r/a = 0.35. The photonic band structures of the 2D square

lattice can be computed with the readily available simulation package MPB [199].

The effective refractive index neff = 2.7 of 2D structure is found by comparing 3D

bandgap calculations of the experimentally realized GaAs membrane in Fig. 7.1 with

thickness t = 400nm; wavelength is assumed to be λ = 800nm.

To provide further support of applicability of the tight-binding description we

found all eigenstates in a portion of Thue-Morse based DAS in Fig. 7.2(e) contain-

ing forty micro-cavities. As an example, one of exactly forty eigenstates is shown

in Fig. 7.3(b) demonstrating that it is indeed a superposition of the modes of the

individual cavities. Moreover, we find that frequencies of all eigenstates lie inside the

photonic gap of the underlying square lattice. In the next section we will employ the

tight-binding approximation to study the spatial confinement of these eigenstates.

7.3. TIGHT BINDING ANALYSIS

The tight-binding model [180] has been a powerful tool in studies of DAS [160].

The Thue-Morse pattern has been studied in the framework of the tight-binding

approach in 1D, where neighbors are clearly defined [181]. As we have shown in the
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previous section, a purposefully designed 2D photonic Thue-Morse system can be

described in the basis of individual cavity modes. Next, we investigate the pattern

of inter-cavity coupling in this aperiodic structure.

Recently, in Ref. 198 we demonstrated the possibility of mapping the array

of 2 × 2 clusters, c.f. Fig. 7.2(c), in 2D Thue-Morse DAS onto a periodic square

lattice where we can use a pair of indices i and j to uniquely enumerate each micro-

cavity. Such mapping allowed us to identify all configurations of nearest and next-

nearest neighbors. We found that only three configurations of each type exist. Thus,

the mapping reduces the original aperiodic structure to the periodic structure with

aperiodic arrangement of the limited set of pairings. Because the structure considered

in this work, c.f. Fig. 7.2(e), is isomorphic to that shown in Fig. 7.2(a), the mapping

procedure can also be performed here. Figures 7.4(a,b) show the patterns of the

nearest c
(nn)
1−3 and next-nearest neighbor c

(nnn)
1−3 couplings, respectively. The numerical

values of the pairwise coupling coefficients are found from 2D Comsol simulations.

Eigenfrequencies of a two cavity system are the solutions of

det




ω0 c

c ω0


 = 0, (7.1)

which yields ω± = ω0 ± c. Thus, the frequency splitting between two eigenstates in

Comsol simulations give directly 2c. Numerical values describing the experimental

system of Ref. 178 are listed in Table 7.1. Out of six possible couplings only three

appear to be important including one next-nearest coupling. The latter corresponds

to coupling between the diagonal cavities in the diamond arrangement in Fig. 7.2(e).
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Figure 7.4: Squares at the location of each micro-cavity have four colored corners.
The color of a corner specifies one of three possible the kinds of nearest
(a) and next-nearest (b) coupling in Thue-Morse based array (g = 6) from
Fig. 7.2(e). Because we have established applicability mapping between
this structure and a square lattice, there are always four nearest and four
next-nearest neighbors.

Table 7.1: Coupling coefficients for nearest and next-nearest pairings

c
(nn)
1 c

(nn)
2 c

(nn)
3 c

(nnn)
1 c

(nnn)
2 c

(nnn)
3

0.004105 0.000915 0.000238 0.002034 0.000736 0.000261

Coupling coefficients, c.f. Fig. 7.4, in the tight-binding description of the system shown
in Fig. 7.2(e). Numerical values are found from Eq. (7.1) in 2D Comsol simulation
of the structure with neff = 2.7, r/a = 0.35. ω0 is found to be 2π/a× 0.3266.
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Hybridization of the modes of individual micro-cavities is obtained by the

diagonalization of the tight-binding Hamiltonian

ω0 ψij +
∑

i′j′

cij,i′j′ ψi′j′ = ωψij , (7.2)

where ω0 is the energy of the stand-alone cavity, ψij is the field amplitude of the

ij’th cavity. Here the indexes i and j enumerate the cavities based on the mapping

procedure in Ref. 198. Furthermore, cij,i′j′ denotes the coupling coefficient between

the cavities located at ij and i′j′. Based on the analysis of physical proximity in

the Thue-Morse structure, c.f. Fig. 7.2(e), we limit the consideration to two types

of coupling – nearest (i′ = i ± 1 and j′ = j, or i′ = i and j′ = j ± 1) and next-

nearest (i′ = i ± 1 and j′ = j ± 1) couplings only. As discussed above, cij,i′j′ can

take one of only six possible values, three of each type, c.f. Fig. 7.4. Therefore, the

structural complexity in the arrangement of cavities in the original structure has been

reduced to the complexity in connectivities between the elements of the ordered array

in Eq. (7.2).

Having found the pattern of inter-cavity couplings we now analyze the spec-

trum of eigenfrequencies ω(m) and the corresponding eigenstates ψ
(m)
ij in Eq. (7.2).

Importantly, our tight binding analysis enables thorough theoretical investigations of

e.g. hierarchical structure, existence of multiple length scales, and their effects on

localization in DAS. Fig. 7.5 shows the optical density of states (DoS) defined as

DoS(ω) =
∑

n

δ(ω − ω(m)). (7.3)

It exhibits complex structure with dense sets of coexisting confined and extended

states. This can be directly witnessed by computing the inverse participation ratio
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Figure 7.5: Density of states (a,c,e) and the inverse participation ratio (b,d,f) are
computed from Eqs. (7.3,7.4) for N × N 2D Thue-Morse based arrays
of optical micro-cavities in Fig. 7.2(e) in the framework of the 2D tight-
binding model defined by Eq. (7.2). Nearest and next-nearest neighbor
couplings in Figs 7.4(a,b) and Table 7.1 are extracted from FDFD Com-
sol simulations of the experimental system in Ref. 178. The complex
structure of the spectrum emerges with an increase of N with extended
(Veff(ω

(m))/V ∼ 1) and localized (Veff(ω
(m))/V ≪ 1) states coexisting

in very narrow frequency windows.
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Figure 7.6: Extended (nearly-constant throughout the entire volume, red squares)
and localized (blue circles) eigenstates supported by 40 × 40 2D Thue-
Morse based array of optical micro-cavities. Arrows and circle,square at
bottom of Fig. 7.5 indicate the location of these eigenstates.

(IPR)

IPR(ω(m)) ≡ Veff(ω
(m))

V
=



V ×

∑
ij

∣∣∣ψ(m)
ij

∣∣∣
4

(∑
ij

∣∣∣ψ(m)
ij

∣∣∣
2
)2




−1

, (7.4)

where Veff(ω
(m))/V defines the fraction of the total (2D) volume occupied by the

eigenstate ψ
(m)
ij . Figs. 7.5(b,d,f) demonstrate that, while some states become pro-

gressively more localized as the size of the system increases, the others remain ex-

tended: Veff(ω
(m))/V ∼ 1. Furthermore, the spatial profiles of some of the extended

states maintain a nearly constant intensity distribution across the entire structure,

c.f. Fig. 7.6.

7.4. CONCLUSIONS

In this work we demonstrated the applicability of the tight binding approach

in a deterministic aperiodic array of photonic micro-cavities. Using an isomorphic

mapping, complex structural correlations characteristic of the Thue-Morse sequence
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with singular-continuous spatial Fourier transform were replaced with aperiodic cou-

plings in a square lattice. Under realistic conditions, we observed hybridization of

the modes of individual micro-cavities into the eigenstates of the entire array. Our

work adds the tight binding approach to the arsenal of theoretical tools for studying

of 2D Thue-Morse structures as well as for design and analysis of experiments.

Results obtained above with the tight-binding model further reinforce the

conclusions reached in previous works about anomalous optical transport properties

in Thue-Morse DAS. The tight binding model allows us to investigate the size scaling

of the density of the optical states in large N × N arrays of optical micro-cavities;

monitor the evolution of the spectra; and to study spatial properties of the eigenstates

via e.g. the inverse participation ratio. The tight-binding model allows us to consider

very large 2D DAS to obtain general (model-independent) results. Realistic systems,

such as those in Ref. 178, with the size of up to 150µm× 150µm can be studied.

In the system considered here, the spectrum shows very peculiar hierarchi-

cal structure with photonic gaps being populated with an increase of system size.

The inverse participation ratio shows coexistence of localized and extended states in

the same spectral regions. Some of the extended states have nearly constant inten-

sity across the entire sample. This property makes the considered system extremely

promising for practical applications in optical control of light propagation via e.g.

wave-front shaping.
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8. CONCLUSIONS

8.1. CHARACTERIZATIONOF TRANSPORTREGIME TRANSITIONS
IN NON-CONSERVATIVE RANDOM MEDIA

The purpose of the first portion of this dissertation was to characterize the

effect of absorption and gain in ballistic, diffusive, and localized transport regimes.

Particle and wave-based transport models were studied in one dimension (1D) and

quasi-1D geometries.

An investigation of the ratio of transmission to energy in the system, T/E ,

was performed in 1D using theoretical and numerical methods [37]. The numerical

model uses the transfer matrix method [8] with self-embedding [51] to simulate layers

of dielectric material with random widths. Since diffusion cannot occur in 1D, the

response of the parameter T/E in the regime of Anderson localization when gain

is present was found. A decrease of T/E from the value given by the classical un-

renormalized diffusion coefficient may be attributed to wave-interference localization

effects. Although T/E does not diverge as the random lasing threshold is approached,

there is a dependence on the position of the center of localization. This position

dependence is closely related to the existance of necklace states [83].

To investigate the transition from diffusion to Anderson localization, the pre-

vious numerical model was extended to quasi-1D geometry. To guide our efforts we

developed a phase space diagram with 15 different transport regimes [200]. A way of

characterizing which regime a given system is in was clearly needed. In the process

of using the numerical model in this geometry, we showed that evanescant channels

do not need to be included in simulations of passive media [55]. The effect of evanes-

cant channels is renormalize the transport mean free path while conforming to single

parameter scaling.
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A parameter related to T/E , the position dependent diffusion coefficient D(z),

was investigated for use in characterizing the multiple transport regimes in quasi-1D

non-conservative random media [62]. Our results indicate that D(z) may serve as a

useful criterion for the enumerated transport regimes.

8.2. ANALYSIS OF DETERMINISTIC APERIODIC STRUCTURES

Although random media produces novel features, these systems lack easy re-

producibility. For applications such as photonic integrated circuits we are interested

in novel features unavailable to periodic media while maintaining reproducibility.

Thus media correlated disorder is a natural avenue of pursuit. The numerical model

used in this dissertation can simulate any arrangement of scatters, making it amenable

to aperiodic media.

In the studies of deterministic aperiodic structures (DAS) we focused on the

Thue-Morse pattern. This generation algorithm yeilds a singular continuous Fourier

transform spectrum with self-similar features. We demonstrated the possibility of

mapping the array of micro-cavities in the two dimensional (2D) Thue Morse DAS

onto a periodic square lattice [198]. Such mapping allowed us to uniquely identify and

enumerate the configurations of nearest and next-nearest neighbors. Thus the original

aperiodic structure is reduced to the periodic structure with aperiodic arrangement

of the limited set of pairings.

Once this step was completed, we demonstrated the applicability of the tight

binding approach in a deterministic aperiodic array of photonic micro-cavities. Un-

der realistic conditions, we observed hybridization of the modes of individual micro-

cavities into the eigenstates of the entire array. Our work adds the tight binding

approach to the arsenal of theoretical tools for studying of 2D Thue-Morse structures

as well as for design and analysis of experiments.
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The tight binding model allows us to investigate the size scaling of the density

of the optical states in large arrays of optical micro-cavities; monitor the evolution

of the spectra; and to study spatial properties of the eigenstates via e.g. the inverse

participation ratio. The inverse participation ratio shows coexistence of localized

and extended states in the same spectral regions. Some of the extended states have

nearly constant intensity across the entire sample. This property makes the consid-

ered system extremely promising for practical applications in optical control of light

propagation via e.g. wave-front shaping.
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Table A.1: Length scales used in this dissertation

Symbol Name Description
λ wavelength Wavelength of incident light
L system length Length of waveguide along direction of propa-

gation (z-axis)
W system width Dimension of waveguide perpendicular to direc-

tion of propagation (y-axis)
Lφ phase coherence

length
Length over which phase remains coherent.
Equivalent to Linelastic[27, 57]. Applicable only
to electron transport.

LD path length How far a particle (i.e. ray optics) travels in the
media in ballistic and diffusive regimes

ℓscat scattering length Average distance between scattering events.
Often referred to as ℓmfp (mean free path) or
the inelastic length[14], or extinction length[10].

ℓtmfp transport mean free
path

Average distance over which phase and direc-
tion are randomized. ℓtmfp = ℓscat

1−〈cos θ〉
. Some-

times referred to as elastic mfp[92]. Measured
with respect to L.

ξ localization length Probability of diffusive path forming loop is 1.
ξ = N ℓtmfp. Measured with respect to L.

ℓa,g ballistic absorp-
tion/gain length

Average distance over which intensity decreases
by two/increases by two.

ξa,g absorption/gain
length

How far, on average, a particle travels in the
diffusive regime before being absorbed (or dou-
bled), measured with respect to path length LD

in the diffusive regime
zp penetration depth Applies to diffusive regime only. zp ≈ ℓtmfp

All length scales (except λ) are normalized by wavelength.
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In the following derivation, the transfer matrix method[8][43][44] is developed

from Maxwell’s equations[48] for metallic waveguides with scatterers. Before starting,

assumptions necessary for the derivation are enumerated.

• Metallic boundaries for the surfaces of the waveguide result in no leakage of

electric field at the edges. These boundaries occur in the direction perpendicular

to propagation y, which extends from y = 0 to y = Wλ. In the direction of

propagation along z, the waveguide has open boundaries at z = 0 and z = L/λ.

The metallic boundaries are infinite along direction x.

• Scattering potentials are initially assumed to be δ-functions, and are later re-

duced to a finite sum of Fourier components. This scattering potential de-

scription gives rise to transport behavior similar to that in physical disordered

media.

• No inelastic scattering occurs; there is no energy loss due to scattering, and

phase can remain coherent.

• No noise (spontaneous emission) is included. The primary interest in the mod-

eling the transition from phenomena described by diffusion to that of Anderson

localization.

• Only transverse-magnetic (TM) waves are assumed incident. The electric field

oscillates perpendicular to the plane of the 2D waveguide [201].

• The absorption and gain mechanism is purely mathematical: no atomic level

modeling is included. This is the appeal of working in the mesoscopic regime,

namely that atomic-based scattering descriptions are not necessary.

No input beam properties are initially assumed. The incident energy can be a plane

wave, or any other distribution.
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The wave equation can be derived from Maxwell’s equations (not shown),

yielding

∇2E =
1

c2
∂2 ~E

∂t2
(B.1)

where µ0ǫ0 =
1
c2
.

TIME INDEPENDENT WAVE EQUATION

Assuming electric field variables are separable,

E(~r, t) = E(~r)eiωt (B.2)

the field is simplified by also assuming monochromatic and continuous wave (CW).

Substituting Eq. B.2 into the right side of Eq. B.1, time dependence can be canceled.

∇2E(~r) = −ω
2

c2
E(~r) (B.3)

where ω
c
= k. Although the following results will appear to be “time independent,”

the time dependence can be reintroduced by multiplying both sides by eiωt. Effectively

the same as assuming t = 0.

SEPARATION OF VARIABLES

Convert from general ~r to two-dimensional Cartesian coordinates (since the

transfer matrices for a planar quasi-1D waveguide are desired): ~r = zî + yĵ. Let

W ≡ width and L ≡ length of waveguide.

The z and y components of the field are independent, the separation of vari-

ables applies spatially.

E(~r) = E(z, y) =

∞∑

n=1

En(z)χn(y) (B.4)
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where the sum is over all channels. For δ-function scatterers, there can be an infinite

number of closed channels.

Now the wave equation (Eq. B.3) is

∇2E(z, y) = −ω
2

c2
E(z, y) (B.5)

Apply Laplacian and separation (Eq. B.4)

∞∑

n=1

[
∂2En(z)

∂z2
χn(y) + En(z)

∂2χn(y)

∂y2

]
= − ω2

c2

∞∑

n=1

En(z)χn(y) (B.6)

PERPENDICULAR COMPONENT SOLUTION

The solution to the differential equation perpendicular to the direction of

propagation is found from the auxiliary equation for each channel

(
∂2

∂y2
+ k2⊥n

)
χn(y) = 0 (B.7)

Boundary conditions for metallic waveguide: Electric field E is zero at the boundaries,

χn(0) = χn(W ) = 0. The normalized solution is the familiar

χn(y) =

√
2

W
sin(k⊥ny) (B.8)

where k⊥n ≡ nπ
W
. As a check of normalization, for m = n

∫ W

0

χ2
n(y)dy =

2

W

∫ W

0

sin2(k⊥ny) =
2

W

1

2
W = 1 (B.9)

and if m 6= n, solutions are orthogonal

∫ W

0

χn(y)χm(y)dy = 0 (B.10)
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Thus, for general n and m,

∫ W

0

χn(y)χm(y)dy = δn,m (B.11)

PARALLEL COMPONENT SOLUTION

For the solution parallel to the direction of propagation of Eq. B.5, the z-

component starts with

∂2En(z)

∂z2
− k2⊥nEn(z) = −ω

2

c2
En(z) (B.12)

Re-arrange and introduce a new variable

∂2En(z)

∂z2
+ k2‖nEn(z) = 0 (B.13)

where

k2‖n ≡ ω2

c2
− k2⊥n (B.14)

Note: k2‖n can be positive (corresponding to open channels) or negative (closed chan-

nels). If negative, then k‖n is imaginary, denoted k‖n = iκ‖n for n > Nopen. Open

channels propagate forward, with velocity decreasing as channel index increases.

Closed channels decrease in amplitude exponentially.

Separate electric field components into left(-) and right (+) traveling plane

waves (two solutions to the second order differential equation)

Open: En(z) = E+
n exp(ik‖nz) + E−

n exp(−ik‖nz)

Closed: En(z) = E+
n exp(−κ‖nz) + E−

n exp(κ‖nz)

(B.15)

where iκ ≡ k
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WAVEGUIDE WITH SCATTERERS

Up to this point, an empty waveguide has been considered. For scattering,

replace ω2

c2
of the wave equation B.5 with a spacial Sellmeier equation

ω2

c2
(1 + αδ(z − z0, y − y0)) (B.16)

where δ(z − z0, y − y0) ≡ δ(z − z0)δ(y − y0) is the scattering potential and α is the

scattering strength. α can be complex; then the real part is the strength and the

imaginary component is gain or absorption.

To determine transport of light past a scattering potential, apply continuity of

electric field E and its derivative. The following carries out matching component-wise

derivative.

Assuming the scattering potential is located at cross-section z (inside the

waveguide 0 < z < L), and the electric field just before or after the scatterer (at

z ±∆) is a sum of independent channel components.

E(z ±∆, y) =

∞∑

n=1

En(z ±∆)χn(y) (B.17)

Applying Eq. B.16 to Eq. B.13, the wave equation becomes

∞∑

n=1

(
E ′′

nχn + k2‖nEnχn + α
ω2

c2
δ(z − z0, y − y0)Enχn

)
= 0 (B.18)

Multiply Eq. B.18 by χm and
∫W

0
dy. By applying Eq. B.11 and letting

Am,n(y0) = χm(y0)χn(y0),

∞∑

n=1

(
E ′′

nδnm + k2‖nEnδnm + α
ω2

c2
Enδ(z0)Anm(y0)

)
= 0 (B.19)
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Apply the summation over n, which eliminates the Kronecker deltas.

E ′′
m + k2‖mEm + α

ω2

c2
Enδ(z − z0)

∞∑

n=1

Anm(y0) = 0 (B.20)

Integrate over z from (z −∆) to (z +∆) and let ∆ → 0.

∫ z0+∆

z0−∆

E ′′
m(z)dz + k2‖m

∫ z0+∆

z0−∆

Em(z)dz+

α
ω2

c2

∞∑

n=1

An,m(y0)

∫ z0+∆

z0−∆

δ(z0)Endz = 0

(B.21)

To do the second term integration, assume that for small ∆, E(z) ≈ E(z0).

E ′
m(z0 +∆)−E ′

m(z0 −∆) + k2‖mEm(z0)2∆ + α
ω2

c2

∞∑

n=1

An,m(y0)En(z0) = 0 (B.22)

Since ∆ → 0, then 2∆ is really small, so that term is dropped.

To conclude, for a given channel m, electric field and the field derivative on

both sides of the scatterer must match

Em(z0 +∆) = Em(z0 −∆)

E ′
m(z0 +∆) = E ′

m(z0 −∆)− α
ω2

c2

∞∑

n=1

An,m(y0)En(z0)
(B.23)

Note that the δ function scatterer has been eliminated, and An,m can form an

array (the “scattering matrix”).




Î 0

−αω2

c2
Amn(y0) Î







E1..Nmax
(z0 −∆)

1
κ‖1..Nmax

E ′
1..Nmax

(z0 −∆)


 =




E1..Nmax
(z0 +∆)

1
κ‖1..Nmax

E ′
1..Nmax

(z0 +∆)




(B.24)
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Due to the form of the matrix, the determinant is always unity (only the diagonal

contributes non-zero terms) regardless of the elements in the lower left quadrant.

Elements of the lower left quadrant are

− α
ω2

c2
2

W
sin(k⊥my0) sin(k⊥ny0) (B.25)

Note that the scattering matrix is real unless α or ω are complex.

FREE SPACE PROPAGATION OF OPEN CHANNELS

For open channels (n ≤ No), field En and derivative of field 1
k‖n
E ′

n are more

convenient basis than “left traveling” E−
n (z) and “right traveling” E+

n (z). First, the

connection between the two basis is found. Starting from Eq. B.15, electric field E(z)

is the solution to a second order differential equation, so it has two solutions.

En(z) = E+
n exp(ik‖nz) + E−

n exp(−ik‖nz)

E ′
n(z) = ik‖nE

+
n exp(ik‖nz)− ik‖nE

−
n exp(−ik‖nz)

(B.26)

Solving for left- and right-traveling wave components,

E+
n (z) =

1

2

(
En(z) +

1

i

1

k‖n
E ′

n(z)

)
exp(−ik‖nz)

E−
n (z) =

1

2

(
En(z)−

1

i

1

k‖n
E ′

n(z)

)
exp(ik‖nz)

(B.27)

To preemptively clear up notation confusion, in previous steps ∆ was used to

denote a small (∆ → 0) distance from the scatterer. Here ∆z will be used to signify

a finite displacement in position along the z axis.
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The field and derivative of field is translated over distance ∆z from the original

position z. First, substitute the shift into Eq. B.26

En(z +∆z) = E+
n exp(ik‖n(z +∆z)) + E−

n exp(−ik‖n(z +∆z)) (B.28)

Then substitute Eq. B.27

En(z +∆z) =
1

2

(
En(z) +

1

i

1

k‖n
E ′

n(z)

)
exp(ik‖nz)+

1

2

(
En(z)−

1

i

1

k‖n
E ′

n(z)

)
exp(−ik‖nz)

(B.29)

Reducing leaves how to shift an electric field over distance ∆z.

En(z +∆z) = En(z) cos(k‖n∆z) +
1

k‖n
E ′

n sin(k‖n∆z) (B.30)

Similarly,

1

k‖n
E ′

n(z +∆z) = iE+
n exp(ik‖n(z +∆z))− iE−

n exp(−ik‖n(z +∆z)) (B.31)

Then substitute Eq. B.27

1

k‖n
E ′

n(z +∆z) =
i

2

(
En(z) +

1

i

1

k‖n
E ′

n(z)

)
exp(ik‖nz)−

i

2

(
En(z)−

1

i

1

k‖n
E ′

n(z)

)
exp(−ik‖nz)

(B.32)

1

k‖n
E ′(z +∆z) = −En(z) sin(k‖n∆z) +

1

k‖n
E ′

n cos(k‖n∆z) (B.33)
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FREE-SPACE PROPAGATION OF CLOSED CHANNELS

For closed channels (n > No), change of i results in hyperbolic trig functions.

En(z) = E+
n exp(−κ‖nz) + E−

n exp(κ‖nz)

E ′
n(z) = −κ‖nE+

n exp(−κ‖nz) + κ‖nE
−
n exp(κ‖nz)

(B.34)

Recalling that k‖n = iκ‖n, then

E+
n (z) =

1

2

(
En(z)−

1

κ‖n
E ′

n(z)

)
exp(κ‖nz)

E−
n (z) =

1

2

(
En(z) +

1

κ‖n
E ′

n(z)

)
exp(−κ‖nz)

(B.35)

Shifting the field by ∆z

En(z +∆z) = En(z) cosh(κ‖n∆z) +
1

κ‖n
E ′

n(z) sinh(κ‖n∆z) (B.36)

and

1

κ‖n
E ′

n(z +∆z) = En(z) sinh(κ‖n∆z) +
1

κ‖n
E ′

n(z) cosh(κ‖n∆z) (B.37)

To summarize,

En(z +∆z) = En(z) cosh(κ‖n∆z) +
1

κ‖n
E ′

n(z) sinh(κ‖n∆z)

1

κ‖n
E ′

n(z +∆z) = En(z) sinh(κ‖n∆z) +
1

κ‖n
E ′

n(z) cosh(κ‖n∆z)

(B.38)

From Eq. B.30, B.33, and B.38 the “free space propagation matrix” can be

constructed. The array would be of rank 2nmax (nmax = No +Nc). The determinant

of this matrix is alway unity (regardless of argument) because terms can be factored

into sin2 x + cos2 = 1 for each channel. Thus, for both free and scattering matrices,
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the determinant is unity regardless of free space separation ∆z or real (passive) and

complex (active media) dielectric values.

With this description of matrices for scattering planes and for free space prop-

agation, the transmission of electric field and its derivative can be computed for a

metallic waveguide containing arbitrarily placed scatterers. The set of matrices is

multiplied together to form a matrix Ŝ of size 2nmax. Then the vector describing the

initial incident field and derivative of field for each channel n is multiplied by Ŝ to

give the transmission and reflection matrices (one vector for each channel n).

This approach of multiply matrices together inherently results in numerical

instability [50] due to the limited precision of computational devices. Therefore, the

self-embedding technique [51, 52] is used to periodically renormalize the product.



APPENDIX C

RELATION OF T/E TO D(Z)
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This is an expansion of Appendix section 2.6.1. As in that section we assume

a slab geometry. The z coordinate normal to the slab is separated from the perpen-

dicular component ρ as r = (ρ, z). Again assuming no dependence on ρ allows us to

give the ensemble-averaged diffusive flux 〈 ~J(~r, t)〉 and the energy density 〈W(~r, t)〉

are related via [63]

〈 ~J(~r, t)〉 = −D(~r)~∇〈W(~r, t)〉 (C.1)

The diffusion approximation amounts to D(~r) ≡ D0 = cℓtmfp/3, where c is the speed

of light and ℓtmfp is the transport mean free path.

We consider a 3D random medium in a shape of a slab of thickness L, where

we explicitly separate the coordinate z normal to the slab from the perpendicular

component ρ as r = (ρ, z). Under a CW plane-wave illumination at normal incidence,

the dependence on ρ and t can be neglected.

〈 ~Jz(z)〉 = −D(z)
d

dz
〈W(z)〉 (C.2)

Integration over z gives

∫ L

z

〈Jz(z′)〉dz′
D(z′)

= −〈W(L)〉 + 〈W(z)〉 (C.3)

where the energy stored inside the random medium E is formally defined as

〈E〉 =
∫ L

0

〈W(z)〉dz. (C.4)

thus

〈E〉 =
∫ L

0

(
〈W(L)〉+

∫ L

z

〈Jz(z′)〉
D(z′)

dz′
)
dz (C.5)

The remaining work is to factor out transmission T in order to find the relation

between T/E and D(z). The energy density 〈W(L)〉 at the right boundary can
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be expressed in terms of right- and left-propagating fluxes. From the definition of

diffusive flux [63]

〈J±(z)〉 =
c

4
〈W(z)〉 ∓ D0

2

d〈W(z)〉
dz

(C.6)

where 〈J−〉 and 〈J+〉 are the fluxes propagating along negative and positive z-directions

respectively. Since 〈J+(L)〉 = J0T and 〈J−(L)〉 = 0, using Eqs. C.6 to eliminate D0

yields

〈J+(L)〉+ 〈J−(L)〉 = 2
c

4
〈W(L)〉 (C.7)

Therefore 〈W(L)〉 = 2J0T/c and the energy can be re-written as

〈E〉 =
∫ L

0

(
2J0T/c+

∫ L

z

〈Jz(z′)〉
D(z′)

dz′
)
dz (C.8)

Next, we reduce 〈Jz(z′)〉 to find an approximately equivalent transmission.

In the CW regime when the energy density W(z) is stationary, ∂〈W(z)〉/∂t =

0, it follows from energy conservation condition for flux ~J and energy W

∂〈W(~r, t)〉
∂t

+ ~∇ · 〈 ~J(~r, t)〉 = c

ℓg
〈W(~r, t)〉+ J0δ(z − zp) (C.9)

that the z component of flux is constant for z > zp ∼ ℓ. The value of the constant

can be obtained from the boundary condition at z = L as

〈Jz(z)〉 =





〈Jz(L)〉 ≡ J0〈T 〉, zp < z < L

〈Jz(0)〉 ≡ −J0〈R〉, 0 < z < zp

(C.10)

where T (R) is the transmission (reflection) coefficient. As a check, by integrating

Eq. (C.9) over the entire system we obtain the standard (passive) flux conservation

〈Jz(L)〉 − 〈Jz(0)〉 = J0〈T 〉 − (−J0〈R〉) = J0(〈T 〉 + 〈R〉) = J0. To take advantage

of the fact that 〈Jz(z)〉 is piecewise constant, c.f. Eq. (C.10), we have to neglect by



142

0 < z < zp contribution. Then a constant can be substituted for Jz(z
′),

〈E〉 =
∫ L

0

(
2J0〈T 〉/c+

∫ L

z

J0〈T 〉
D(z′)

dz′
)
dz (C.11)

This introduces an error ∝ zp/L ∼ ℓ/L≪ 1. Factoring T from the integrands,

〈E〉 = J0〈T 〉
∫ L

0

(∫ L

z

dz′

D(z′)
+ 2/c

)
dz (C.12)

Note that the second term is of the same order ∼ ℓ/L as the term omitted in arriving

to the above expression. Hence, 2/c contribution has to be dropped as well.

〈E〉 = J0T

∫ L

0

∫ L

z

1

D(z′)
dz′dz (C.13)

Taking advantage of the system symmetry, D(z) = D(L − z), the double

integration can be further simplified as

∫ L

0

∫ L

z

1

D(z′)
dz′dz =

1

2

∫ L

0

∫ L

0

1

D(z′)
dz′dz

=
L

2

∫ L

0

1

D(z)
dz. (C.14)

After normalizing the integral so that it yields unity in the case when the wave

interference effects are neglected, D(z) = D0 ≡ cℓ/3, for passive media

〈T 〉
〈E〉 ≃ 1

J0

2D0

L2

(
1

L

∫ L

0

D0

D(z)
dz

)−1

, (C.15)

We note that in process of deriving Eq. (C.15), we dropped the terms on the order

of ∼ ℓ/L≪ 1.
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Dropping the localization corrections leaves

〈T 〉
〈E〉 ≃ 1

J0

2D0

L2
(C.16)

Any deviation from Eq. C.16 in passive diffusive media can be attributed to localiza-

tion corrections.
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Sáenz. Conductance distributions in quasi-one-dimensional disordered wires.
Phys. Rev. Lett., 89, 2002.

[118] P. Markos and C. M. Soukoulis. Intensity distribution of scalar waves propa-
gating in random media. Phys. Rev. B, 71, 2005.

[119] A. Z. Genack and A. A. Chabanov. Signatures of photon localization. J. Phys.
A, 38:10465–10488, 2005.

[120] L. C. Botten, A. A. Asatryan, N. A. Nicorovici, R. C. McPhedran, and C. M.
de Sterke. Generalisation of the transfer matrix formulation of the theory of
electron and photon conductance. Physica B, 394:320–324, 2007.



152

[121] C. J. S. de Matos, L. de Menezes, A. M. Brito-Silva, M. A. M. Gamez, A. S. L.
Gomes, and C. B. de Araujo. Random fiber laser. Phys. Rev. Lett, 99, 2007.

[122] H. Cao, J. Y. Xu, D. Z. Zhang, S. H. Chang, S. T. Ho, E. W. Seelig, X. Liu,
and R. P. H. Chang. Spatial confinement of laser light in active random media.
Phys. Rev. Lett., 84:5584–5587, 2000.

[123] Q. Li, K. Ho, and C. Soukoulis. Mode distribution in coherently amplifying
random media. Physica B: Cond. Matt., 296:78–84, 2001.

[124] C. Vanneste and P. Sebbah. Selective excitation of localized modes in active
random media. Phys. Rev. Lett., 87, 2001.

[125] V. M. Apalkov, M. E. Raikh, and B. Shapiro. Light intensity correlations in
optically active media. J. Phys. A, 38:10545–10548, 2005.

[126] J. Heinrichs. Transmission, reflection and localization in a random medium
with absorption or gain. J. Phys. Cond. Matter, 18:4781–4792, 2006.

[127] C. K. Nam and Z. Q. Zhang. Light amplification and localization in random
amplifying layered media: Statistics from physical solutions. Phys. Rev. B, 66,
2002.

[128] B. A. Muzykantskii and D. E. Khmelnitskii. Nearly localized states in weakly
disordered conductors. Phys. Rev. B, 51:5480–5483, 1995.

[129] V. M. Apalkov, M. E. Raikh, and B. Shapiro. Random resonators and prelo-
calized modes in disordered dielectric films. Phys. Rev. Lett., 89, 2002.

[130] A. L. Burin, H. Cao, G. C. Schatz, and M. A. Ratner. High-quality optical
modes in low-dimensional arrays of nanoparticles: Application to random lasers.
J. Opt. Soc. Am. B, 21:121–131, 2004.

[131] S. John and G. Pang. Theory of lasing in a multiple-scattering medium. Phys.
Rev. A, 54:3642–3652, 1996.

[132] D. S. Wiersma and A. Lagendijk. Light diffusion with gain and random lasers.
Phys. Rev. E, 54:4256–4265, 1996.

[133] M. Siddique, R. R. Alfano, G. A. Berger, M. Kempe, and A. Z. Genack. Time-
resolved studies of stimulated emission from colloidal dye solutions. Opt. Lett.,
21:450–452, 1996.

[134] S. V. Frolov, Z. V. Vardeny, and K. Yoshino. Stimulated emission in high-gain
organic media. Phys. Rev. B, 59:R5284–R5287, 1999.

[135] L. Florescu and S. John. Photon statistics and coherence in light emission from
a random laser. Phys. Rev. Lett., 93, 2004.



153

[136] A. A. Burkov and A. Y. Zyuzin. Correlations in transmission of light through
a disordered amplifying medium. Phys. Rev. B, 55:5736–5741, 1997.

[137] X. Jiang, Q. Li, and C. M. Soukoulis. Symmetry between absorption and
amplification in disordered media. Phys. Rev. B, 59:R9007–R9010, 1999.

[138] X. Wu, W. Fang, A. Yamilov, A. Chabanov, A. A. Asatryan, L. C. Botten, and
H. Cao. Lasing with coherent feedback in weakly scattering media. Phys. Rev.
A, 74, 2006.

[139] X. Wu, W. Fang, A. Yamilov, A. Chabanov, and H. Cao. Laser resonators
formed by two nanoparticles. Proc. SPIE, 2006.

[140] P. F. Bagwell. Evanescent modes and scattering in quasi-one-dimensional wires.
Phys. Rev. B, 41:10354–10371, 1990.

[141] A. Kumar and P. F. Bagwell. Resonant tunneling in a quasi-one-dimensional
wire: Influence of evanescent modes. Phys. Rev. B, 43:9012–9020, 1991.

[142] E. Abrahams. Fifty years of Anderson Localization. World Scientific, 2010.

[143] J. Heinrichs. Light amplification and absorption in a random medium. Phys.

Rev. B, 56:8674–8682, 1997.

[144] A. Yamilov. Relation between channel and spatial mesoscopic correlations in
volume-disordered waveguides. Phys. Rev. B, 78, 2008.

[145] B. A. van Tiggelen, A. Lagendijk, and D. S. Wiersma. Reflection and transmis-
sion of waves near the localization threshold. Phys. Rev. Lett., 84:4333–4336,
2000.

[146] N. Cherroret and S. E. Skipetrov. Microscopic derivation of self-consistent
equations of anderson localization in a disordered medium of finite size. Phys.
Rev. E, 77, 2008.

[147] B. A. van Tiggelen and S. E. Skipetrov. Fluctuations of local density of states
and c0 speckle correlations are equal. Phys. Rev. E, 73, 2006.

[148] M. D. Birowosuto, S. E. Skipetrov, W. L. Vos, and A. P. Mosk. Observation
of spatial fluctuations of the local density of states in random photonic media.
Phys. Rev. Lett., 105, 2010.

[149] C. Chicanne, T. David, R. Quidant, J. C. Weeber, Y. Lacroute, E. Bourillot,
A. Dereux, G. Colas des Francs, and C. Girard. Imaging the local density of
states of optical corrals. Phys. Rev. Lett., 88, 2002.

[150] B. Edwards, A. Alu, M. Young, M. Silveirinha, and N. Engheta. Experimental
verification of epsilon-near-zero metamaterial coupling and energy squeezing
using a microwave waveguide. Phys. Rev. Lett., 100, 2008.



154
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