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ABSTRACT

The dynamical state of the young star-forming cluster Rho Ophiuchi is considered,

with emphasis on the L1688 cloud. Radial velocities are derived for 32 YSOs, with some

being multi-epoch, using Markov-Chain Monte Carlo routines based upon the package

emcee. Sources are chosen based upon their spectral index to focus on the earlier stages

of star formation, in this case, Class I and Flat spectrum objects, and compared with a

sample of Class II and III objects from the same embedded cluster. It is found that the

radial velocity dispersion for these younger objects is ∆v = 2.8 ± 0.6 km s-1 which is about

2σ higher than the dispersion for Class II and III objects. The implication is that there are

either small number statistics at play, or the cluster’s dispersion is being increased as an

inverse function of the distance from the center of the cluster due to a collapse-and-rebound

phase that has been proposed in recent simulations.
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1. INTRODUCTION

Stars are among the oldest astronomical objects to be studied by scientists. While

there has been a significant amount of information learned about their nature, especially in

the last century, there are still many details that are not yet known about the life cycles of

stars. While we now know that the majority of stars form out of molecular clouds of gas and

dust in what are called embedded clusters (Lada and Lada, 2003), there are still many details

regarding the formation and early evolution of stars that need to be filled in. Understanding

stars and the environments in which they form in is critical to fully understand how the

universe works, as the specifics of these processes have implications for both planet and

galaxy formation. This section will broadly cover the current ideas behind the mechanisms

responsible for both the birth of individual stars as well as the formation and evolution of star

clusters. In addition, recent observations of specific, nearby star clusters will be discussed

and how those studies led to the motivation for the research presented here regarding the

Rho Ophiuchi embedded cluster.

1.1. STAR FORMATION AND EVOLUTION

Since individual stars are some of the most basic building blocks of galaxies and of

the universe, it is important to understand how a singular star comes to be. The material that

goes into creating a star is almost entirely hydrogen and helium. These elements comprise

over 99% of the interstellar medium. While in most places the interstellar medium has a

very low density of approximately one atom per cubic centimeter, there are areas of denser

clouds of molecular gas and dust that form. Within these environments it is possible that

the density becomes high enough (> 106 cm-3) for this gas and dust to begin to collapse into

a star (Shklovskii, 1978). Specifically, the amount of mass that will result in a molecular

cloud collapsing is called the Jeans Mass (Jeans, 1902). This is the point at which the
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gravitational forces of the cloud have overcome the internal gas pressure and is given by

MJ = 1.0M�(
T

10K
)(

nH2

104cm3 )
− 1

2 (1.1)

whereT is the temperature of the cloud and nH2 is the number density ofmolecular hydrogen.

It is clear then that either a higher temperature or lower density will result in the need for a

higher mass in order to start the collapse of the cloud. Once the collapse begins, there will

inevitably be regions of the molecular cloud that are significantly denser than others. These

areas are referred to as dense cores. A subset of these dense cores will be gravitationally

bound tightly enough that they will undergo the star forming process and are called prestellar

cores (Ward-Thompson et al., 2007). At this stage of evolution, there is still no centralized

hydrostatic protostellar object within the core. The lifetime of a typical prestellar core is on

the order of millions of years, with those cores with higher densities having shorter lifetimes

(André et al., 2000).

Between the formation of a prestellar core and a star triggering nuclear fusion

(the main sequence phase where it spends most of its life) there are four general stages of

evolution of a young stellar object (YSO) with a mass less than about 3 times the Sun’s mass.

These are classified based on the YSO’s spectral energy distribution and are known as Class

0, Class I, Class II, and Class III. While these stages of evolution are, from a theoretical

standpoint, distinct, the classification of real protostars can be imprecise. This is because of

the fact that direct observation of these objects is often difficult, and so indirect indicators

are relied upon when attempting to categorize them. It has only been with relatively recent

developments in infrared astronomy that it has been possible to observe the characteristics

of some of the more deeply embedded, and therefore younger, protostars.

The end of the prestellar core stage is marked by the condensation of a protostellar

object within the core, referred to as a Class 0 protostar. These objects are defined as

having their mass less than the envelope of material surrounding it. They can be detected
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observationally by looking for three different signatures: a centimeter radio continuum

source or CO outflow indicating the possible presence of a protostar, extended submillimeter

continuum emission due to a spheroidal cloud, or a high ratio of submillimeter to bolometric

luminosity, since the surrounding cloud should be cooler than the protostar itself (André

et al., 1993). The spectral energy distribution (SED) of a Class 0 object should resemble a

single temperature blackbody at about 10-30 K. Class 0 objects have lifetimes on the order

of about 105 years (Dunham et al., 2014). This stage of protostellar evolution is also known

as the main accretion phase, as this is when most of the mass collapses onto the YSO at the

center of the dense core. The time scale for this phase can be estimated by the free-fall time

for a cloud to collapse under its own self-gravity, given by

τ f f = (
3π

32Gρ
)

1
2 (1.2)

where ρ is the cloud density. For a cloud with nH2 = 106 cm-3, τ f f = 3 × 104 years.

After the majority of the matter has centralized, the YSO is considered to be a Class

I object. Physically, the main differences between Class 1 and Class 0 objects is that the

remaining cloud of gas and dust around the central object is a much smaller fraction of the

total mass since most of the mass has been accreted onto the star, and that this material is

starting to form into a protoplanetary disk due to the conservation of angular momentum.

The result is that the temperature of the YSO at the center of the cloud is much higher than it

was during the Class 0 phase, and there is amuch larger range of temperatures observed since

photons from the YSO are absorbed by dust and re-radiated at longer infrared wavelengths.

Therefore, it is no surprise that the SED for a Class I source is also much broader and the

energy radiated by the dust over that of the central blackbody is called an infrared excess.

Observationally, these objects should also produce a CO outflow, but the outflow should be
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significantly broader and slower in nature than Class 0 sources (André, 1994). The typical

lifetime of the Class I stage of evolution is on the order of 5 × 105 years (Barsony and

Kenyon, 1992; Dunham et al., 2014).

As an object transitions from Class I to Class II, it is now that a protostar is nearly

finished accreting matter. The infalling envelope that had surrounded the younger Class I

object is dispersed by the outflow or collapses into a circumstellar disk. At this intermediate

stage, the infrared excess is reduced and the spectral energy distribution no longer rises into

the far-infrared but appears flat. YSOs in this phase are referred to as Flat-spectrum, or

Class F, sources. As the envelope is finally dispersed, an optically-thick disk surrounds the

central object, but this has only a small fraction of the total mass, on the order of 0.01 M�.

Objects in this phase display Class II SEDS and include the classical T Tauri Stars. These

types of objects were first observed a few decades before the introduction of the current

classification system because this stage of stellar evolution is one of the earliest that is

potentially observable in the visible spectrum, assuming it is not obscured by its own disk

and the molecular cloud that it is embedded in. Lifetimes for this stage of stellar evolution

are on the order of 2× 106 years, however, the transitional phase between Class II and Class

III objects appears to be fast since there are a relatively small number of transition objects

detected between these two stages.

Once this circumstellar disk has all but completely dissipated, the object is classified

as a Class III source. A Class III object is nearly a fully formed main sequence star. It is

no longer self-embedded and its circumstellar disk is either non-existent or very thin. The

faint presence of a disk has been detected in these types of objects before, but this is usually

in cases very favorable for detection, i.e.; the source is somewhat close and the disk is being

viewed edge on. The lifetime of this stage of stellar evolution is on the order of 107 years

(André and Montmerle, 1994). The SED for a Class III YSO closely resembles that of a

single temperature blackbody. The timescale for the overall length of the Class II and Class
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III phases together is given by the Kelvin-Helmholtz contraction time

τK−H =
GM2

RL
(1.3)

where R is the radius of the star and L the luminosity. For a 1 M� star it takes about 30

million years to reach the main sequence . Higher mass stars will take a shorter time, and

lower mass stars will take a longer time. At this point, the star has reached temperatures

and pressures high enough to begin the fusion of hydrogen into helium within its core, and

it is considered to be on the main sequence.

The classification scheme derived above was first developed by Lada (1987) and has

been refined by several others since. While the different classes themselves are qualitative

descriptions of a continuous process, there is a quantitative observational basis for distin-

guishing one class from another. This is done by defining a spectral index as the slope of

the near- to mid-infrared SED for a given object. The reason this works is that the infrared

excess for a YSO will change as the shape, structure, and mass of the circumstellar material

surrounding it changes and evolves over time. The spectral index is given by

α =
d log(λFλ)

d log(λ)
(1.4)

where λ is the wavelength and Fλ is the flux density at λ. The wavelength region measured

for this index is between 1 and 20 microns. Class 0 sources have α > 1.5, for Class I

sources 1.5 > α > 0.3, for Flat-spectrum sources 0.3 > α > −0.3, for Class II sources

−0.3 > α > −1.6, and for Class III sources α < −1.6 (André and Montmerle, 1994; Greene

et al., 1994; White et al., 2007). Figure 1.1 shows qualitative illustrations of the stages of

YSO evolution next to an example of what the corresponding SED might look like.

Again, a protostar is said to transition to a fully formed star once nuclear fusion

begins to take place within the core. Within the cores of stars is where nearly all elements

heavier than hydrogen and helium and up to iron are produced, depending on the size of the
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Figure 1.1 Conceptual drawings of the various phases of protostellar evolution (André,
1994).

star, and there are many different nuclear reactions that take place to make this happen. The

two most important and most common processes, however, are the proton-proton chain,

and the CNO (carbon-nitrogen-oxygen) cycle. The proton-proton chain starts with two

protons fusing to create deuterium. Then the deuterium fuses with another proton to create
3He. Finally, two 3He nuclei will collide to produce one 4He nucleus and two protons.

The carbon-nitrogen cycle starts with a proton fusing with a 12C nucleus and creating the

nitrogen isotope 13N. This isotope then undergoes beta decay, leaving behind 13C to fuse
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with another proton, resulting in 14N. Another proton will then fuse with the 14N nucleus

and create 15O. 15O will then beta decay into 15N. Ultimately, this 15N nucleus will fuse

with another proton, resulting in 12C and 4He being produced. In each step of each process,

a large amount of energy is released. It is this energy from the nuclear fusion reactions that

pushes outward, and opposes the force of gravity. While the protostar had been collapsing

for its whole life, these reactions within the core of the star stop this process, finally bringing

it to near equilibrium (Shklovskii, 1978).

Not surprisingly, the main sequence is where a star will spend the majority of its life.

The amount of time that a star will spend on the main sequence and its subsequent evolution

vary greatly and depend almost solely upon the star’s mass. The relationship between

lifetime and mass is inversely proportional (M−2.5), so while higher mass stars have more

material to fuse, the higher temperatures and pressures within these stars means that they

burn through it much more quickly. On the other hand, low mass stars will burn their fuel

much more slowly, and are able to stay on the main sequence for much longer than their

high mass counterparts. In particular, some of the smallest and most abundant stars in our

galaxy, red dwarf stars (M ≈ 0.08 − 0.4 M�), will remain physically small for their entire

life, slowly becoming smaller and hotter and evolving into what are sometimes called blue

dwarfs. While they will eventually run out of hydrogen to fuse, the main sequence could

last as long as a few trillion years, at which point they will likely start to fade and contract

to become a white dwarf, meaning that it will be electron degeneracy pressure, instead

of thermal gas pressure, that is pushing against gravity and preventing further collapse.

Obviously, this has never been observed since the universe is only about 13.7 billion years

old (Adams et al., 2005).

For intermediate mass stars (M ≈ 0.4 − 8.0 M�) it is common that they will evolve

into the red giant category of stars after spending somewhere on the order of a few billion

years on the main sequence. These stars are characterized as having relatively low surface

temperatures while being very large in size, sometimes having a radius on the order of a few
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hundred or even thousand times larger than the Sun. Internally, these stars have exhausted

the hydrogen in their cores, and now have a shell of hydrogen fusion taking place around the

helium core. As the red giant phase continues, the star pushes its outer layers further and

further away, eventually leaving a white dwarf surrounded by a large cloud of the ejected

material known as a planetary nebula. The various elements and chemical compounds

that formed within the star throughout its life can then go on and influence the chemical

evolution of the interstellar medium, and potentially future embedded clusters (Iben, 2013;

Laughlin et al., 1997; Maciel et al., 1991).

For more massive stars (M > 8.0 M�) there are several different possible outcomes.

Depending on just how massive these stars are, it is possible that their time spent on the

main sequence may be on the order of only a few million years or even just a few hundred

thousand years. The most interesting outcome for these most massive stars is when they

become supernovae. There are a few different mechanisms by which this can happen,

including thermal runaway and core collapse. For a massive star at the end of its life, core

collapse is the mechanism that will drive the supernova explosion. This happens when the

remaining core that would normally produce a white dwarf exceeds the Chandrasekhar mass

limit of about 1.4 M�. When this happens the electron degeneracy pressure is not strong

enough to sustain the white dwarf, and it collapses and subsequently explodes. Supernovae

can often be bright enough to outshine the total luminosity of the rest of the galaxy that

they are in. This obviously pushes out an incredible amount of highly energetic material.

The rate of supernovae is approximately one per galaxy per century, and these massive

explosions are thought to be one possible mechanism that triggers the collapse of nearby

molecular clouds, thus setting off the star formation process once again. In addition to the

shockwaves they create, supernovae also manufacture and release large amounts of heavy

elements, including silicon, which helps create more interstellar dust, which then helps
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create more molecular clouds. In this way, the deaths of some of the largest stars could be

the catalyst to the star formation process beginning again (Heger et al., 2017; Krebs and

Hillenbrandt, 1983).

1.2. CLUSTER FORMATION AND EVOLUTION

In the previous section, the focus was on the formation and evolution of a single

star, following it from the collapse of a gas cloud and inception as a protostellar object, all

the way to the end of its life. It should come as no surprise, however, that this process does

not often happen in isolation. When there is enough gas and dust to begin to collapse into

one star, there is usually enough to form several stars. When multiple stars are forming and

evolving together and gravitationally interacting with one another in the same region, it is

called a star cluster. Specifically, they are defined as groups of stars whose observed stellar

mass volume density is sufficiently large enough to render the group stable against tidal

disruption by the galaxy (Bok, 1934) and by passing interstellar clouds (Spitzer, 1958). It is

now clear that themajority of stars formwithin clusters. The threemain types of clusters that

are observed are (from youngest to oldest) embedded clusters, open clusters, and globular

clusters. The youngest of these, the embedded clusters, have only been observed relatively

recently, that is, since the advent of infrared astronomy. Before this, embedded clusters

were just that: deeply embedded within gas and dust, causing most of their members to be

unobservable at visible wavelengths. Technological advancements have allowed these types

of environments to be studied in much greater detail than before and as a result have helped

reveal many details about the early life of clusters themselves, as well as the individual

members that make them up (Lada and Lada, 2003).

As stated before in Equation (1.1), the Jeans Mass is the condition that needs to be

met in order to start the collapse of a molecular cloud. But one aspect of the star formation

process that still isn’t entirely clear is what causes this condition to be met in the first place.

Two different mechanisms that have been proposed for this are turbulent fragmentation of
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the molecular cloud due to gravity, and, as mentioned at the end of the previous section,

some type of external triggering event that could condense the cloud and start the collapse.

It is known that giant molecular clouds that form from the interstellar medium are highly

turbulent, and it seems that on a global scale, this turbulence might serve to stabilize the

cloud against collapse. However, locally, numerical simulations suggest that turbulent flows

can collide and dissipate energy, causing a subsection of the cloud to become gravitationally

unstable and begin to collapse (Klessen et al., 2000). If a large enough segment of the cloud

becomes gravitationally unstable, this could lead to the production of an embedded cluster.

There have also been observations of OB associations (groups of very large, hot, short-lived

stars) that suggest that star formation can occur in sequential bursts. Since there appear to

be spatially separate subgroups of OB stars within several associations where the age of the

OB stars correlates with the distance from the associated molecular cloud that form them,

the implication is that some sort of shockwave traveled through the region, triggering the

formation of these stars as it went. Hence the idea has been forwarded that the shockwaves

produced by supernovae could compress otherwise stable sections of molecular clouds and

start their collapse (Elmegreen and Lada, 1977).

Once a cluster begins forming stars, it has usually set a fairly short lifetime for

itself. Despite the fact that there is an incredibly large range of masses of stars that can

form out of these embedded clusters (a range spanning a few orders of magnitude) the

time in which these clusters exist only spans about 5 × 106 years. This is because the star

formation process itself is inherently a destructive one for the cluster. Stellarwinds, radiation

pressures, and, most importantly, jets and outflows produced by embedded protostars work

together to disperse the gas out from the cluster. This happens before most of the mass of

the cluster has gone into forming stars, and as such, much of the binding mass of the cluster

gets dispersed along with it. The result is that the star formation process is an incredibly

inefficient one. Typically, less than 10% of the mass of the original molecular cloud actually

goes into creating new stars. Once the gas has been dispersed after a fewmillion years, most



11

clusters will no longer be gravitationally bound, and the members will expand and disperse

into the general population of the galaxy (Matzner and McKee, 2000; Whitworth, 1979).

When comparing the birthrate of embedded clusters to the observed numbers of bound and

open clusters, it appears as though roughly 95% of embedded clusters do not survive the

gas removal phase. It is only the most massive 5% that are potentially able to stay bound

after this happens, and even in these cases, they are likely to lose a significant number of

their members (Lada and Lada, 1991, 2003). Constraining the time it takes for the gas in

a given cluster to disperse is important because it is usually also tied to the lifetime of the

cluster itself. Thus, the time to remove the gas, τgr , gives an estimate for how long the

members of a given cluster are both forming and dynamically interacting with one another.

Based on observations, the upper limit of τgr is approximately five million years. However,

there is certainly a lot of variance in this number, depending upon the size of the cluster and

the types of stars that are forming. If there are O stars forming within the cluster, τgr could

even be on the order of only about 104 years (Lada and Lada, 2003).

For those clusters massive enough to maintain some structure after the gas removal

phase and evolve into open clusters, it is possible they do not fit the strict definition of a

star cluster that was mentioned earlier. This means that some clusters that survive the gas

removal may only be weakly gravitationally bound. They could be broken apart by external

gravitational forces, if not from the tidal forces of the galaxy itself, but from other nearby

clusters or molecular clouds. Open clusters can contain anywhere from a few dozen to a few

thousand members, and are typically smaller than a few parsecs in diameter. The observed

ages of open clusters currently range from about 1 million years up to a few billion years,

implying that these types of clusters are still being formed, which is consistent with the idea

that they evolve from embedded clusters (Binney and Merrifield, 1998).

Studying various properties of clusters can also help explain properties of stars as

well. For instance, it is important to study the internal structure and physical distribution

of stars within clusters, and especially within embedded clusters. In addition to learning
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about the present conditions of the cluster, their structure can shed light on the types of

processes that created them in the first place. In particular, the fact that some clusters show

signs of mass segregation while others do not is important for understanding how clusters

evolve and how their members interact. Essentially, if a cluster is mass segregated, it just

means that the higher mass objects are distributed differently than lower mass objects. The

most basic explanation for how this structure could arise is that over time, as all of the

cluster members interact gravitationally with one another, the lower mass objects end up

with higher velocities, and the higher mass objects with lower velocities. This would cause

the lower mass objects to be generally found towards the edges of the cluster, while the

higher mass objects would reside more centrally. However, there are questions as to whether

or not embedded clusters have lifetimes long enough for this to happen through dynamic

interactions (Bonnell and Davies, 1998). This is related to the ratio of a cluster’s crossing

time, τcross, to τgr . The crossing time is given by

τcross =
2R
v

(1.5)

where R is the radius of the cluster and v the typical speed of cluster members as measured

by the velocity dispersion. Typically, τcross is on the order of one million years, and as

mentioned before, τgr is almost always less than five million years. Given the variance in

τgr , it is possible that some embedded clusters could live long enough to dynamically mass

segregate, whereas others could not. Another issue is that observed mass segregation could

have been present in the dense molecular cores as the embedded cluster was forming, in

which case it would be observed no matter how young the cluster was. Currently there are

very young clusters that have been observed to show signs of mass segregation (Elmegreen

et al., 2000; Hillenbrand and Hartmann, 1998), some clusters that have shown no signs of

mass segregation (Carpenter et al., 1997), and some that show the higher mass stars found

towards the edges of the cluster, as well as the center (Herbig and Dahm, 2002).
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The environments in which embedded clusters form must also have a significant

impact on the initial mass function (IMF). The IMF is simply the distribution of the initial

masses at which stars form and given by dN
d log M∗

. This is important to study since the

birth mass of a star is the single most important parameter when it comes to determining

the life of a star. Understanding the distribution of masses at which stars form is critical

to understanding how clusters and galaxies form and evolve over time. By studying the

IMF of individual clusters, it is possible to begin to build a picture of the “universal” IMF.

Traditionally, there have been two methods for measuring an IMF. The first is by measuring

directly the luminosity function of a cluster, and then deriving the mass function from that,

via the equation
dN
dmk

=
dN

d log M∗
×

d log M∗
dmk

(1.6)

where mk is the apparent (near-infrared) stellar magnitude and M∗ is the mass. The second

is by obtaining spectra of many different sources and placing those individual objects on a

Hertzsprung-Russell Diagram (HRD) and comparing their locations to a set of theoretical

mass tracks and isochrones. The first method was originally used by Salpeter (1955) when

deriving the IMF of field stars, but the method is not as simple when deriving the IMF

of embedded clusters. This is because, for pre-main sequence objects, d log M∗
dmk

is time

dependent and therefore much more difficult to model. In order to use the second technique

for measuring a cluster’s IMF, the luminosity and effective temperature of each cluster

member must be known. With this knowledge it is possible to place each member on

the HRD and get a snapshot of the current distribution of objects within the cluster as

well as estimates for their mass. While the end result is a very detailed picture of the

cluster, the practical issue with this method is simply telescope time. Obtaining detailed

photometric and spectroscopic data for each object within a cluster is incredibly time

consuming. Both techniques, despite being complex, have been used successfully in the

past to yield reasonable estimates for a cluster’s IMF (Erickson et al., 2011; Muench et al.,

2000).
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It is clear that in order to form a complete picture of the star formation process,

there must also be in-depth study of cluster formation and evolution. It is not possible to

completely decouple one from the other. Since stars do not form in isolation, formulating

a theory of star formation requires that embedded star clusters are studied as well.

1.3. MOTIVATIONS AND OBJECTIVES

The main focus of this project is to estimate the velocity dispersion of YSOs (Class

I-III objects) within the Rho Ophiuchi embedded cluster. Velocity dispersions can be

computed in the plane of the sky using long time-baseline astrometric observations or

along the line of sight from the Doppler shift of absorption lines in very high-resolution

spectra. The goal is to investigate the possible role of dynamical interactions between

YSOs during the star formation process. These interactions could play a role in determining

several observed properties of star formation, such as shaping the IMF through competitive

accretion and ejection (Bonnell et al., 2007), determining the fraction of stars in multiple

systems (Reipurth et al., 2014), influencing the formation and evolution of circumstellar

disks through disk truncation, and ultimately, the formation of planetary systems (Clarke

and Pringle, 1993; Kobayashi and Ida, 2001).

The main reason for choosing the Rho Ophiuchi cluster and, specifically, the L1688

cloud (Figure 1.2), is that it is one of the closest active star- forming regions, making it one of

the best places to study both star formation and embedded cluster evolution. It is estimated

to be 137 ± 1.2 pc away (Loinard et al., 2008; Lombardi et al., 2008; Mamajek, 2008;

Ortiz-León et al., 2017) and is located near the Sco-Cen OB association. This embedded

cluster appears to have started its star formation via an external trigger about two million

years ago (De Geus, 1992; Erickson et al., 2011). The trigger itself seems to be the passage

of an expanding shell from a nearby subgroup of massive OB stars. There are over 300

known YSOs within the cluster covering the whole range from Class 0 to Class III objects,

and in addition to this, there have been about 55 starless cores identified within the cloud
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Figure 1.2 A combined Spitzer IRAC/MIPS image of L1688 with red representing emission
in the 24 µm band, green the IRAC 8 µm band, and blue the IRAC 4.5 µm band (image by
Robert Hurt) (Wilking et al., 2008). Boxes have been added to indicate fields observed for
the proper motion study.

that could be in the process of collapsing. The Rho Ophiuchi star-forming region is also

known for its population of very low mass objects and brown dwarf candidates. A brown

dwarf is essentially a failed star; it formed from a dense core within a molecular cloud,

but never accreted enough material to become massive enough and hot enough to start

burning hydrogen into helium. This makes Rho Ophiuchi a great place to study how and

why these objects form and what the implications are for the IMF (Wilking et al., 2008).

Since this region has almost only low mass stars forming within it, it necessarily means that

this project is focused specifically on the formation and evolution of low mass stars. The

sources studied and properties derived may only apply to stars of about 1 M� or less, which

is the case for most objects in Rho Ophiuchi.
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There have also been recent studies of several nearby star-forming regions, including

Rho Ophiuchi, regarding the velocity dispersions of dense cores. Studies of the Rho

Ophiuchi, NGC 1333, and NGC 2264 molecular clouds by Peretto et al. (2006), André

et al. (2007), and Kirk et al. (2010) have shown that the dense cores in these regions have

velocity dispersions between 0.4 and 0.8 km s-1 and are most likely subvirial. The virial

theorem states that for a stable, self-gravitating distribution of objects

2T = −V (1.7)

where T is the total kinetic energy and V is the gravitational potential energy. In other

words, the velocities of these dense cores are lower than expected for a self-gravitating

distribution of objects and are perhaps restrained by magnetic fields. However, for some of

these same star-forming regions, it has been shown that the velocity dispersions of YSOs

are significantly higher than that of the dense cores. This would imply that sometime after

the cores have collapsed, these YSOs were dynamically interacting with one another and

converting some potential energy into kinetic energy (Foster et al., 2015). Indeed, this idea

has theoretical backing as some simulations of cloud collapse indicate a higher rate of stellar

interactions while the objects are still embedded (Bate, 2009; Bate et al., 2003; Proszkow

and Adams, 2009). If stellar interactions are responsible for the higher velocity dispersions

of the YSOs relative to the dense cores, then one might expect to observe a steady increase

in velocity dispersion as YSOs emerge from the dense cores and evolve toward hydrogen

burning.

For this project, radial velocity and proper motion data of Rho Ophiuchi members

have been collected from infrared telescopes or archival data with the goal of measuring

the velocity dispersion. Data have been acquired from the US Naval Observatory (USNO)

in Flagstaff, Arizona (Wilking et al., 2015), the Near-Infrared Spectrometer (NIRSPEC)

(Doppmann et al., 2005) on the Keck telescope in Hawaii, the Cryogenic High-Resolution
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Infrared Echelle Spectrograph (CRIRES) on the Very Large Telescope (VLT) in Chile from

Viana Almeida et al. (2012) and Cottaar (2012, unpublished data; Program ID 089.C-

0753(A)), the Cryogenic Near-Infrared Facility Spectrograph (CSHELL, this study) on

the Infrared Telescope Facility (IRTF) in Hawaii, and the Immersion Grating Echelle

Spectrograph (iSHELL, this study) also on the IRTF. The focus for the radial velocity

sample was the least evolved YSOs, Class I/Flat spectrum sources, while the proper motion

sample was not biased by evolutionary state.

The proper motion study played a large part in the initial motivation for this study.

As mentioned before, proper motion data was acquired by Fred Vrba from 2001–2006

and then again from 2011–2012 using ASTROCAM on the USNO 1.55 m telescope. This

instrumentwas able to produce propermotions on the order ofmas yr-1. Aswell as producing

proper motions, the images from ASTROCAM also allowed for infrared photometry to be

performed on all the objects observed in order to check for variability in the infrared. In

total, 111 objects over four different fields of view within the L1688 cloud as indicated in

Figure 1.2 were observed. Using a straightforward χ2 analysis, 18 sources were identified

with possible variability in the infrared that had not been included in previous surveys, four

of which had not been previously identified as YSOs and are likely cluster members.

The results of the proper motion study (Table 1.1, Figure 1.3) then started to show

some evidence of a dispersion that varies as a function of evolutionary state. Velocity

dispersions were obtained for 65 YSOs by measuring their relative proper motions, meaning

that a background reference frame was unable to be established and the average proper

motion in each field for each direction (R.A. and Dec.) was defined to be zero. This sample

was then split into the more evolved (Class II/III) and less evolved (Class I/F) objects. Two

velocity dispersions were obtained for each group: one for motion in right ascension (RA)

and one for their motion in declination (Dec). While the dispersions were nearly identical in

RA, there was a significant difference between the two groups in Dec. The dispersion for the

Class I/F objects was found to be∆v = 0.71±0.09 km s-1 while for Class II/III objects it was



18

Table 1.1. Velocity Dispersion from Relative Proper Motions

Sample No. of Sources ∆vR.A. ∆vDec.
(km s-1) (km s-1)

Fields 1 and 2 44 0.82 ± 0.10 0.97 ± 0.10
All Fields 65 0.88 ± 0.10 0.96 ± 0.09
SED Class I/F 29 0.84 ± 0.11 0.71 ± 0.09
SED Class II/III 28 0.88 ± 0.08 1.28 ± 0.26

∆v = 1.28 ± 0.26 km s-1. This is a preliminary indication that there could be a relationship

between the velocity dispersion and evolutionary state for low mass YSOs. In addition to

this, a radial velocity dispersion recently derived for 47 Class II/III objects in Rho Ophiuchi

has been obtained by Rigliaco et al. (2016) and was measured to be 1.14 ± 0.35 km s-1.

In other words, the radial velocity dispersion is in agreement with that for objects from the

proper motion study. This value was found to be consistent with the sources being in virial

equilibrium.

Since the Class I/Flat sources are more deeply embedded, it is necessarily more

difficult to obtain precise radial velocities for them, so the sample of these objects will

inevitably be smaller than any sample of Class II/III objects because there is no multi-object

infrared spectrograph capable of the necessary precision. The goal is to use the radial

velocities found for the Class I/F objects to compare to that of Class II/III YSOs. Then

one can investigate if there is any evidence that the velocity dispersion is a function of

the evolutionary state. A velocity dispersion that changes significantly with how evolved

these YSOs are would indicate that they are undergoing dynamical interactions while also

undergoing their initial formation and accretion of mass.

Alternatively, a velocity dispersion that does not vary with how evolved the YSOs

are could indicate that stellar encounters are occurring very early on, possibly even before

the Class I phase, and therefore on a very short timescale. Given the disparity between
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Figure 1.3 Velocity dispersion for proper motion samples separated by both SED (Class I/F
on left, Class II/III on right) and also in RA (top) and Dec (bottom) (Wilking et al., 2015).

the velocity dispersions of the dense cores and that of the Class II/III protostars, it seems

that these interactions must be taking place at some point between the two stages of star

formation. Figuring out when this might be happening could provide evidence for the many

ideas regarding observed properties of star-formation that are dependent upon dynamical

interactions.

The rest of this dissertation will be organized as follows: Section 2 will cover all

the relevant observations made regarding this project, including the rationale for source

selection, specific telescopes and instruments used, all the objects and standards that were

observed, and the data reduction procedures. Section 3 will explain the analysis done on

these sources, including details regarding the Markov-Chain Monte Carlo technique being

used to simultaneously fit various observed parameters for all of the objects studied. Section
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4 will present the results of this analysis and the measured radial velocities and velocity

dispersions. Section 5will include a discussion of the results and their implications. Section

6 will summarize the entire work and discuss options for continuing this research in the

future.



21

2. OBSERVATIONS

Four data sets were used to derive radial velocities for a collection of young stellar

objects (YSOs) in L1688, mostwith Flat-spectrumorClass I spectral energy distributions. A

few Class II sources were also observed along with radial velocity standards. A summary of

the YSO observations is presented in Table 2.1 with source positions, dates of observation,

wavelength coverage, integration times, and signal-to-noise estimates. Similar data for

radial velocity standards are presented in Table 2.2.

2.1. SOURCE SELECTION

Sources were selected based upon their spectral index, α, as defined in Section 1,

to be Class I, Flat, or Class II sources. The focus is primarily on as many Class I and Flat

sources as possible, with some Class II sources. In addition to this, sources are biased by

their Kmag (infrared magnitude at λ = 2.2 µm) depending on the instrument and telescope

that was used for the observation. For NIRSPEC and CRIRES this resulted in sources with

Kmag ≤ 11; for CSHELL and iSHELL Kmag ≤ 10. The sample presented here is assumed

to be biased towards slightly more massive YSOs, since these objects will be brighter

and easier to observe. Figure 2.1 shows the physical location of these objects within the

Rho Ophiuchi cluster, showing that the sample is concentrated within the L1688 cloud in

subclusters corresponding to cores A (northwest), B (northeast), and E/F (south).

2.2. CSHELL

Observations were made using CSHELL on NASA’s 3 meter Infrared Telescope

Facility (IRTF) on the summit of Mauna Kea in Hawaii. Seven first-half nights in 2016

June 23, 29, 30, and July 10, 11, 13, 14 were used to observe 10 YSOs and 5 radial velocity
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Figure 2.1 The location of YSOs for which radial velocities were derived is shown relative to
the distribution of cold dust in L1688 as measured from the 1.3 mm continuum observations
of Motte et al. (1998). The (0,0) position corresponds RA(2000) = 16h 27m and Dec(2000)
= -24d 30’. The source symbols represent their SED class: circles, Class I; triangles, Flat
Spectrum; diamonds, Class II. The figure is adapted from Ossenkopf et al. (2008).

standards. Observations from June 29 and 30 were made through some cirrus cloud cover.

CSHELLwas an infrared echelle spectrograph with a 256 spectral by 160 spatial pixel array

(Greene et al., 1993). The 1.0 arcsecond wide slit was used providing a spectral resolving

power of 21,500. Seven YSOs were observed at a central wavelength of 2.298 µm, three

at 2.2935 µm, and one at both. Each setting covered a wavelength range of approximately

50 Å. The 2.298 µm setting was chosen to detect nine prominent absorption lines from the

CO v = 2− 0 bandhead. The 2.2935 µm setting was chosen to detect the bandhead itself in

sources where the longer wavelength absorption lines might be too faint to detect.
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Exposures were taken at various integration times depending on the source, but in

each case the objects were nodded 15 arcseconds along the slit in an ABBA pattern. Offset

guiding was possible for most, but not all, sources. Telluric standards were taken every time

the airmass had changed by approximately 0.2.

Data reductionwas performed using ImageReduction andAnalysis Facility (IRAF1).

Master flats were made using dark-subtracted frames, and the data were then flat-fielded

before being corrected for bad pixels. Due to the nodding, data images were subtracted in

their AB pairs and this subtraction ensured that dark current as well as the sky background

in the data images themselves was removed. Spectra were then extracted, normalized, and

divided by the telluric standards. The final step was to wavelength calibrate the spectra

using 10 telluric methane lines identified from the HITRAN database (Gordon et al., 1992).

2.3. iSHELL

Further observations were conducted using the new instrument iSHELL on NASA’s

3 meter IRTF the following year (Rayner et al., 2016). Three second-half nights in 2017

April 26-28 were used to observe twelve YSOs and 4 radial velocity standards, focusing on a

different group of slightly fainter objects than what was possible using CSHELL. iSHELL is

a 1.1−5.3 µm cross-dispersed high-resolution echelle spectrograph. For these observations

a 0.75 arcsecond slit was used yielding a spectral resolving power of R = 35, 000. The K2

setting was selected for each object and covered a wavelength range of 2.09− 2.38 µm over

32 orders, ensuring that once again, the CO v = 2 − 0 bandhead as well as the 3 − 1 and

4 − 2 bandheads were observed plus various atomic absorption lines (Rayner, 2017).

1IRAF is distributed by the National Optical Astronomy Observatory, which is operated by the Association
of Universities for Research in Astronomy, Inc., under cooperative agreement with the National Science
Foundation.
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Total integration times on sources brighter than Kmag = 9 were 30 minutes, while

fainter sources were observed for 60 minutes. The slit used was only 5 arcseconds long

and therefore no nodding was done. Flats, calibration lamps, and telluric standards were

observed at regular intervals. Observing efficiency was aided by guiding with an infrared

slit viewing camera.

Data reduction was performed using iSHELL Tool, a program developed byMichael

Cushing for the specific purpose of reducing iSHELL data based on an earlier program for

a cross-dispersed spectrograph (Cushing et al., 2004). The first step in this process was to

create master darks and flats. The program would then generate a wavelength calibration

solution using Thorium-Argon arc lamp images that were taken as close in time to the data as

possible. Following identification of the apertures for spectral extraction, dark subtraction,

flat-fielding, background subtraction, spectral extraction, and wavelength calibration would

all be performed automatically. The next step was to apply these same steps to the telluric

standards, divide out the telluric lines, and clean up any bad pixels. It should be noted

that during the telluric division, a small shift was applied to the telluric based on the

cross-correlation of the YSO spectrum and the telluric in order to improve telluric division.

This implies a small uncertainty in the wavelength calibration solution that varies for each

source. The shift was always less than 0.5 pixels and was recorded for the spectrum of each

source.

2.4. NIRSPEC

In addition to our ownobservations, high-resolution infrared spectrawere generously

provided by Dr. Thomas Greene from the 10-meter Keck II telescope on Mauna Kea,

Hawaii, using the NIRSPEC multi-order cryogenic echelle facility spectrograph (McLean

et al., 1998). Observations were made on 2000 May 30, 2001 July 7, 8, and 10, and,

2003 June 20-21 and published by Doppmann et al. (2005). Fifteen Class I and Flat-

spectrum YSOs within the L1688 region were observed, usually having Kmag ≥ 10. The
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0.58 arcsecond slit was used, providing a spectral resolving power of R = 16, 400. Several

orders were obtained in the original data, but for this project, only order 33, containing the

CO v = 2 − 0 bandhead, was analyzed. This covered a wavelength range of 2.270 − 2.303

µm.

All data were reduced by Doppmann et al. (2005) using IRAF. Images were cleaned

of bad pixels and cosmic rays, flat-fielded, and sky-subtracted. Extracted spectra were

then wavelength calibrated and co-added with spectra at the same slit position and similar

airmasses. Integration times varying from 6 minutes to 120 minutes were used depending

upon the brightness of each object. High SNR (typically > 100) was achieved for nearly all

objects. Further details can be found in the original paper.

2.5. CRIRES

Data for seven YSOs were also reduced from the European Southern Observatory

archive taken with the Cryogenic Infrared Echelle Spectrograph (CRIRES), which is an

adaptive optics assisted spectrograph mounted on the 8 meter VLT UT1 (Antu) located at

Paranal Observatory, Chile (Käufl et al., 2004). Data were fromViana Almeida et al. (2012)

(Program ID 081.C-0395(A)), Viana Almeida (2012, unpublished data; Program ID 089.C-

0539(A)), and Cottaar (2012, unpublished data; Program ID 089.C-0753(A)). CRIRES is

capable of delivering a spectral resolving power of up to 100,000 in the 960 − 5200 nm

wavelength range. Light is projected onto four detectors that are each 4096 × 512 pixels.

Viana Almeida et al. (2012) chose to cover a wavelength range of 2.2542 − 2.3047 µm

using a 0.3 arcsecond slit to achieve a resolution of 60,000. This put the CO v = 2 − 0

absorption bands on detector 4, but CO bands were placed on detectors 1 and 3 for other

sets of observations. Spectra were collected in an ABBA nodding pattern allowing a very

similar reduction process to that which was used for CSHELL as described above including

wavelength calibration using telluric methane lines.
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Table 2.1. Log of YSO Observations

Source Namea Other Name RA(J2000) DEC(J2000) Date λcentr al λr ange Int. Time SNRb

(hhmmss.s) (◦ ′ ′′ ) (µm) (µm) (min)

CSHELL
WLY 2-3 16 25 39.6 -24 26 34.9 2016 Jul 10 2.2980 2.2956-2.3006 16 8
VSSG 1 EL 2-20 16 26 18.9 -24 28 19.7 2016 Jul 10 2.2980 2.2956-2.3006 32 35

2016 Jul 13 2.2935 2.2906-2.2958 36 50
SR 24N WSB 41 16 26 58.4 -24 45 31.9 2016 Jul 14 2.2935 2.2908-2.2959 48 45
SR 24S WSB 42 16 26 58.5 -24 45 36.9 2016 Jul 14 2.2935 2.2908-2.2959 48 55
GY 235 WLY 2-32b 16 27 13.8 -24 43 31.7 2016 Jul 14 2.2935 2.2908-2.2959 64 15
WL 20W 16 27 15.7 -24 38 43.4 2016 Jul 11 2.2980 2.2956-2.3006 60 10
WL 20E 16 27 15.9 -24 38 43.4 2016 Jul 11 2.2980 2.2956-2.3006 60 9
WLY 2-42 GY 252 16 27 21.5 -24 41 43.1 2016 Jul 11 2.2980 2.2956-2.3006 68 7
VSSG 17 WLY 2-47 16 27 30.2 -24 27 43.4 2016 Jun 23 2.2980 2.2956-2.3006 64 25
GY 314 WSB 52 16 27 39.4 -24 39 15.5 2016 Jun 23 2.2980 2.2956-2.3006 24 100
WLY 2-51 GY 315 16 27 39.8 -24 43 15.1 2016 Jul 10 2.2980 2.2956-2.3006 44 30
iSHELL
VSSG 1 EL 2-20 16 26 18.9 -24 28 19.7 2017 Apr 26 2.2916 2.2835-2.2997 30 100
GY 33 16 26 27.5 -24 41 53.5 2017 Apr 28 2.2916 2.2835-2.2997 60 90
SR 24N WSB 41 16 26 58.4 -24 45 31.9 2017 Apr 26 2.2916 2.2835-2.2997 30 180
SR 24S WSB 42 16 26 58.5 -24 45 36.9 2017 Apr 26 2.2916 2.2835-2.2997 30 100
GY 235 WLY 2-32b 16 27 13.8 -24 43 31.7 2017 Apr 27 2.2916 2.2835-2.2997 60 50
WL 20W 16 27 15.7 -24 38 43.4 2017 Apr 27-28 2.2916 2.2835-2.2997 60 70
WL 20E 16 27 15.9 -24 38 43.4 2017 Apr 28 2.2916 2.2835-2.2997 60 50
WL 4 GY 247 16 27 18.5 -24 25 05.9 2017 Apr 27 2.2916 2.2835-2.2997 30 30
WLY 2-42 GY 252 16 27 21.5 -24 41 43.1 2017 Apr 27 2.2916 2.2835-2.2997 60 50
GY 284 16 27 30.8 -24 24 56.0 2017 Apr 27-28 2.2916 2.2835-2.2997 60 20
WLY 2-51 GY 315 16 27 39.8 -24 43 15.1 2017 Apr 26 2.2916 2.2835-2.2997 30 90
WLY 2-54 GY 378 16 27 51.8 -24 31 45.5 2017 Apr 26 2.2916 2.2835-2.2997 30 90
CRIRES
GSS 26 16 26 10.3 -24 20 54.8 2008 Apr 28 2.2998 2.2949-2.3047 8 20
GY 23 GSS 32 16 26 24.0 -24 24 48.1 2008 Apr 28 2.2998 2.2949-2.3047 2 50
WL 17 GY 205 16 27 06.8 -24 38 15.0 2012 Aug 30 2.3012 2.2948-2.3075 40 30
GY 224 16 27 11.2 -24 40 46.6 2008 May 11 2.2998 2.2949-2.3047 18 50
WLY 2-44 YLW 16A 16 27 28.0 -24 39 33.5 2012 Aug 31 2.3012 2.2948-2.3075 10 65
VSSG 18 WLY 2-45 16 27 28.4 -24 27 21.0 2008 Apr 28 2.2998 2.2949-2.3047 8 35

2012 Aug 18 2.3010 2.2960-2.3060 4 30
VSSG 17 WLY 2-47 16 27 30.2 -24 27 43.4 2012 Aug 30 2.3012 2.2948-2.3075 10 70
NIRSPEC
GSS 29 16 26 16.8 -24 22 23.3 2003 Jun 21 2.2867 2.2705-2.3029 4 200
CRBR 12 ISO-Oph 21 16 26 17.2 -24 23 45.4 2003 Jun 20 2.2867 2.2705-2.3029 50 50
GY 21 16 26 23.6 -24 24 39.5 2001 Jul 10 2.2865 2.2699-2.3032 16.7 170
GY 30 16 26 25.5 -24 23 01.6 2003 Jun 19 2.2866 2.2691-2.3040 120 50
ISO-Oph 51 16 26 36.8 -24 15 51.9 2001 Jul 10 2.2865 2.2699-2.3032 15 100
GY 91 16 26 40.5 -24 27 14.5 2003 Jun 21 2.2866 2.2705-2.3028 40 55
WL 12 GY 111 16 26 44.2 -24 34 48.4 2001 Jul 07 2.2871 2.2705-2.3037 87.3 215
WL 1 GY 192 16 27 04.1 -24 28 29.9 2000 May 30 2.2846 2.2685-2.3008 30 35
GY 197 16 27 05.3 -24 36 29.8 2003 Jun 21 2.2865 2.2691-2.3040 90 20
WL 17 GY 205 16 27 06.8 -24 38 15.0 2001 Jul 10 2.2865 2.2699-2.3032 30 140
WL 10 GY 211 16 27 09.1 -24 34 08.1 2003 Jun 20 2.2866 2.2692-2.3041 20 200
GY 224 16 27 11.2 -24 40 46.6 2001 Jul 10 2.2865 2.2699-2.3032 50 150
WL 19 16 27 11.7 -24 38 32.1 2000 May 30 2.2846 2.2671-2.3022 20 150
WL 3 GY 249 16 27 19.2 -24 28 43.8 2001 Jul 10 2.2865 2.2699-2.3032 40 95
WLY 2-43 GY 265 16 27 26.9 -24 40 50.8 2001 Jul 07 2.2869 2.2706-2.3032 73.3 330
WLY 2-44 YLW 16A 16 27 28.0 -24 39 33.5 2001 Jul 8 2.2871 2.2705-2.3037 38 170
VSSG 17 WLY 2-47 16 27 30.2 -24 27 43.4 2001 Jul 10 2.2865 2.2700-2.3030 6 160
WLY 2-51 GY 315 16 27 39.8 -24 43 15.1 2003 Jun 20 2.2870 2.2705-2.3035 4 330

aSources names from optical studies by (SR) Struve and Rudkjobing (1949), (WSB) Wilking et al. (1987), and infrared studies by (GSS)
Grasdalen et al. (1973), (VSSG) Vrba et al. (1975), (EL) Elias (1978), (WL) Wilking and Lada (1983), (YLW) Young et al. (1986), (WLY)
Wilking et al. (1989), (GY) Greene and Young (1992), (CRBR) Comeron et al. (1993), (ISO-Oph) Bontemps et al. (2001).

bCentral wavelengths, wavelength ranges, and SNRs for iSHELL are for order 226 which contains the CO v = 0 − 2 bandhead.
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Table 2.2. Log of Radial Velocity Standards

Source Name RA(J2000) DEC(J2000) Date λr ange Sp. Ty. RV (Pub.)a RV (this study)
(hhmmss.s) (◦ ′ ′′ ) (µm) (km s−1) (km s−1)

CSHELL
HD 111631 12 50 43.6 -00 46 05.2 2016 Jun 29 2.2956-2.3006 M0.5 V 4.48±0.15 2.5±1.5
HD 122120 13 59 19.4 +22 52 11.1 2016 Jul 10 2.2956-2.3006 K5 V -58.04±0.37 -57.1±1.5
HD 147776 16 24 19.8 -13 38 30.0 2016 Jul 13 2.2908-2.2959 K2 V 7.20±0.18 5.5±1.5
HD 156026 17 16 13.4 -26 32 46.1 2016 Jul 14 2.2908-2.2959 K5 V -0.04±0.22 1.2±1.5
iSHELL
HD 122120 13 59 19.4 +22 52 11.1 2017 Apr 26 2.2835-2.2997 K5 V -58.04±0.37 -56.80±0.37
HD 156026 17 16 13.4 -26 32 46.1 2017 Apr 26 2.2835-2.2997 K5 V -0.04±0.22 1.24±0.37
HD 165222 18 05 07.6 -03 01 52.7 2017 Apr 27 2.2835-2.2997 K4/5 V 32.26±0.19 32.36±0.37
HD 173818 18 47 27.2 -03 38 23.4 2017 Apr 28 2.2835-2.2997 K5 V 15.33±0.17 16.28±0.37
CRIRES
HD 129642 14 45 09.7 -49 54 58.6 2008 Apr 28 2.2949-2.3047 K2 V -6.47±0.20 -6.28±0.12
NIRSPEC
GJ 806 20 45 04.1 +44 29 56.6 2003 Jun 19 2.2705-2.3029 M2 V -24.84±0.31 -24.3±1.3
HD 201091 21 06 53.9 +38 44 57.9 2003 Jun 19 2.2705-2.3029 K5 V -64.94±0.14 -65.8±1.3

aRadial velocities from the Gaia DR2 data release Soubiran et al. (2018)
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3. MARKOV-CHAIN MONTE CARLO METHODS

In order to model much of the data for this project, a Markov-Chain Monte Carlo

(MCMC) routine developed by Foreman-Mackey et al. (2013) was used to fit various

physical parameters of the objects observed. This was achieved using synthetic spectra

obtained from the Göttingen Spectral Library based on the PHOENIX stellar atmosphere

code (Husser et al., 2013), which were veiled, rotated, and Doppler shifted until they closely

matched the observed spectra. The use of MCMC routines in astronomy is relatively new,

however these techniques are becoming more and more common due to how powerful they

can be. The reason these kinds of routines are used is because they are very good at

exploring multi-dimensional parameter spaces with degeneracy, which is exactly the case

for the problem of fitting models to spectra given the various ways these parameters can

affect the shapes of absorption lines detected. This section will cover some of the general

Bayesian statistics behind how these programs work and why they are so useful. It will then

cover the specifics of the program used for this project (emcee) and how it was used to fit

the parameters of interest for this study. The code used for this project was run in Python

2.7 using a Jupyter notebook and has been included as Appendix A.

3.1. BAYESIAN STATISTICS

Bayesian probability theory can be derived from the sum rule and product rule. The

sum rule simply states that the probability of something being true plus the probability of it

not being true must be one. The product rule is a little more complicated, but can be written

as

p = (H,D |I) = p(H |D, I)p(D |I) = p(D |H, I)p(H |I). (3.1)
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In other words, the probability of H and D being true given I is true is equivalent to the

probability of H being true given D and I multiplied by the probability of D being true

given I, and vice versa. Rearranging this equation gives us Bayes’s theorem:

p(H |D, I) =
p(D |H, I)p(H |I)

p(D |I)
(3.2)

The first term on the right side of the equation, p(D |H, I) is known as the likelihood, or as

the probability of observing the data D, given that the hypothesis, H, is true. The second

term, p(H |I), is called the prior and represents any previous knowledge about H being

true. The denominator, p(D |I), is a constant and serves to normalize the distribution. The

left side, p(H |D, I), is called the posterior distribution and, conceptually, is the updated

probability of the hypothesis being true given the data (Cox, 1946; Sharma, 2017).

3.2. BAYESIAN STATISTICS WITH MCMC

This theorem can be very useful when trying to fit a model to some data, which is

exactly what needs to be done for this project. A relevant example for howBayesian statistics

can be utilized by MCMC routines is the problem of trying to fit a straight line given by the

equation y = mx + c to some data points (Foreman-Mackey, 2013). The goal is to construct

the likelihood and priors to generate the posterior distribution. However, in many cases

the posterior distribution is very large and multidimensional and so cannot be computed

directly. This is where the MCMC routines come in so as to sample the distribution in a

representative way, without the need to explore the entire distribution space. For a straight

line we can write the likelihood as

p(y |x, σ,m, c) = Σ
1

2πσ2 exp[ −
(yi − mxi − c)2

2σ2 ] (3.3)
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This assumes that the uncertainty, σ, of each data point is the same value. To construct the

prior it is possible to use what are called “uninformative” priors. It means that upper and

lower boundaries are provided for the parameters to be fit, in this case m and c. Essentially

this serves to just say what are and are not acceptable values of m and c to sample, otherwise

there would be infinite possible options. With this information the MCMC routine is able

to sample the posterior distribution and search for areas where the values of m and c have

the highest probability, i.e., trying to find the line that most likely describes the data. In

addition to this, the MCMC routines will also explore the areas of the distribution near, but

not necessarily at, the most likely values, and in doing so can provide uncertainties on each

parameter (Sharma, 2017).

3.3. emcee AND MCMC SAMPLING ALGORITHMS

The next question is then how exactly MCMC programs, and in particular emcee,

are exploring this distribution space. Monte-Carlo simulations make use of randomwalkers

to move about the distribution space, while MCMC routines put some constraints on these

walkers and try to provide them with more direction. This direction comes from what is

called a Markov-Chain. A Markov-Chain is a sequence of random variables where the

probability of moving to the next state is only dependent upon the current state, and not any

previous states. When combined with Monte-Carlo techniques, the result is that the random

walkers are no longer purely randomly sampling the distribution space, but instead are more

likely to go towards areas with higher probability, and less likely to walk towards areas with

lower probability. The most commonly used MCMC algorithm is known as the Metropolis-

Hastings Algorithm (Hogg et al., 2010). In this algorithm, a givenwalker starting at position

X(t) samples a proposed positionY based upon X(t). This proposed position is often drawn

from a Gaussian distribution centered on X(t). If this step is accepted then X(t + 1) = Y ,

otherwise X(t + 1) = X(t). The probability of this step being accepted is based upon

comparing the probabilities of the two positions within the distribution space. In other
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words, the step is more likely to be accepted if the proposed position has a higher likelihood

of matching the data than the current position. This ensures that as t approaches infinity,

the algorithm will converge to a stationary set of samples from the posterior distribution.

While useful in its most basic form, the Metropolis-Hastings Algorithm can be

improved upon and has been within the open source emcee program. Specifically, the

authors of emcee have modified what they call the “stretch move” which was originally

developed by Goodman and Weare (2010). In the stretch move, instead of sampling the

proposedmoves for walkers from some distribution around the current position of the walker

itself, proposed moves are based upon the positions of other walkers and upon a random

variable, Z , from a distribution, g(z), that satisfies

g(
1
z
) = zg(z) (3.4)

such that, for some walker at position Xk , and the position of another random walker X j ,

the propose move Y is given by

Y = X j + (Z(Xk(t) − X j) (3.5)

This proposed move is then accepted based upon the relative probability of Y and Xk and

upon the random variable Z . The advantage of this algorithm is that it is affine invariant,

meaning that it is not affected by covariances among parameters. The improvement to this

method by Hogg et al. (2010) is that they were able to have this algorithm run in parallel

by simultaneously updating the positions of half the walkers at a time, instead of one at a

time, thus improving the overall efficiency of the program.
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3.4. emcee APPLIED TO INDIVIDUAL HIGH-RESOLUTION SPECTRA

As mentioned above, for this project emcee is being used to modify and fit synthetic

spectra to real spectra taken at various telescopes. This problem is actually very similar

to the example of fitting data to a straight line that was covered earlier. Instead of trying

to figure out the slope and intercept (m and c), the program is being used to try and find

the most likely values for rotational velocity, veiling, radial velocity, and temperature of

each object. In addition to this the surface gravity (log(g)) is chosen before the program is

run depending on whether the object in question is a YSO or radial velocity standard. The

general procedure is to read in both the data and the synthetic as (x, y) pairs and then bin

the synthetic to the same wavelength range and resolution as the data. Then the likelihood

and priors are constructed. When using this program, however, instead of working with

regular probabilities, computations are done with the log of the probabilities in order to

ensure certain values remain positive. The log of the likelihood is then given by

ln[ p(y |σ,m)] = −
1
2

∑
[
(yi − mi)

2

σ2 + ln(2πσ2)] (3.6)

where now yi represents a data point and mi represents a point on the model, and σ is the

value of the data point divided by the approximate SNR. The next step is to construct the

priors, which is done by setting up acceptable ranges in which the walkers in emcee are

allowed to go. This amounts to finding physically reasonable ranges for each parameter

informed by physical constraints and by previous estimates in the literature when possible.

For instance, the rotational velocity and veiling cannot be negative as they are defined, and

the radial velocity is unlikely to be more than a few dozen km s-1 away from zero. With

this information, the log of the probability can be calculated which is then used by emcee

when sampling the distribution. The end result is then relative probability distributions for

each of the four parameters being fit, as well as their 1σ uncertainties.
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As mentioned previously, the four parameters being fit are the veiling, rotational

velocity, radial velocity, and temperature. For the program being used to run correctly, the

synthetic and object spectrum both need to be normalized and have the same resolution

and number of channels. De-reddening the spectra was not necessary given the narrow

wavelength range of each order. For the wavelength range covered by most of the data,

the vast majority of lines being fit are CO bandheads and absorption lines from the v =

2 − 0 energy level transition. Physically, the veiling is a measure of the emission from

circumstellar gas and dust. The effect on the spectra is that there is extra continuum

emission of infrared light, resulting in shallower absorption lines when compared with an

unveiled star. The way this is measured is through the veiling coefficient, rk . The relation

between an unveiled spectrum and the same spectrum veiled by an amount rk is

Fv =
F + rk

1 + rk
(3.7)

where Fv is the veiled spectrum, and F the unveiled spectrum. For example, for rk = 1,

the absorption line depth is half of that compared to rk = 0 (Stahler and Palla, 2004).

Due to the sensitivity of rk to the normalization, the veiling coefficient returned by the

program is only accurate to first order. That being said, it is not irrelevant, and it is still

important that the program is able to vary the depth of the absorption lines of the synthetic

as this helps fit the other parameters of interest. The rotational velocity, or vsini, of the

synthetic is modified by using a simple rotational broadening kernel from the PyAstronomy

package called rotBroad(). This function simply takes in an unrotated synthetic spectrum

smoothed to the resolution of the spectrometer and a value of vsini in km s-1, and returns

the broadened spectrum. A higher value of vsini will result in the observation of broader

and shallower absorption lines. This is because the difference in the Doppler shift of one

edge of the star moving away from the observer and one edge moving towards the observer

broadens the wavelength range able to be absorbed. The important point, however, is that
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changing the vsini does not change the area of the absorption lines, unlike rk . The most

important parameter for this study being fit is the radial velocity. The effect this has is to

simply shift the spectrum to bluer or redder wavelengths, depending on how fast the object

is moving towards or away from Earth. This is modeled as a simple fractional pixel shift,

assuming that there is a linear variation in normalized flux between each pixel. Because

the shift is measured in pixels, the radial velocity measurement is sensitive to the resolution

of the instrument being used. For this reason, the uncertainties in the radial velocities

being measured are directly correlated with the resolution of the instrument. CRIRES and

iSHELL data produce the most precise results, with NIRSPEC data being the least precise.

An equation describing the modeling of these parameters is given by

Fmodel[i] = rotBroad(
FTavg,log(g)[i + dx] + rk

1 + rk
, vsini) (3.8)

where Fmodel is the broadened, veiled, and shifted synthetic spectrum, FTavg,log(g) is the

unbroadened, unveiled, and unshifted synthetic spectrum corresponding to a certain log(g)

and Te f f , dx is the pixel shift, rk is the veiling factor, vsini is the rotational velocity in

km s-1, and the rotBroad() function is a convolution determined by vsini.

In addition to these parameters, the surface gravity (log(g)) and effective temperature

(Te f f ) can also be constrained for this study. The effect of increasing log(g) on the spectrum

of a star is to increase the pressure in the gas in the atmosphere, and therefore broaden

the absorption lines. Increasing Te f f increases the velocity distribution of the gas and

again causes the lines to broaden. For both of these parameters it is possible, although

difficult, to model them continuously. For this project, the choice was made to vary

Te f f continuously within the program, while log(g) was held constant. This was done by

averaging together two synthetics from the library in order to estimate a synthetic with an

intermediate temperature to the models. For instance, several synthetics were read into the

program with varying temperatures, but all with the same log(g). The program was then
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able to create weighted averages of these synthetics to fill in the gaps and better model the

temperature of the spectra. It is possible to interpolate both log(g) and Te f f and allow the

program to create synthetics of any combination of log(g) and Te f f , however, this was not

done for this project. One reason is that first averaging spectra of a given log(g) to constrain

the temperature and then averaging those together to constrain the log(g) results in less

accurate synthetics, since the Te f f and log(g) are not allowed to change together. While the

uncertainties introduced into the synthetics by this method would most likely be too small

to significantly impact the results, it was found that for this program, emcee would not

adequately explore both dimensions. Instead it would pick the highest available log(g) and

then adjust the other parameters accordingly. For these reasons the decision was made to

just let Te f f vary, while log(g) was fixed for a given run. For sources believed to be YSOs,

it was assumed that log(g) = 3.5 which is typical for YSOs. For radial velocity standards

log(g) = 4.5 which is characteristic for these main sequence stars.

As a check for errors associated with assuming a standard log(g), separate runs were

made for a range of values in Te f f (±500 K) and log(g) (2.5 − 4.5) while not letting either

be a free parameter in the program. For a given source, the derived vsini would decrease as

log(g) increased and rk would decrease asTe f f increased and CO lines weakened. However,

these variations had little effect on the pixel shift and derived radial velocity, making the

most important parameter from the model fits the most reliable.

Because each of these parameters can change the size and shape of the absorption

lines in various ways, there will be some degeneracy in the possible solutions. But it is

because of this degeneracy that using a Markov-Chain Monte-Carlo routine, such as emcee,

is so helpful. For a given log(g), the program is able to vary each of the above parameters

and explore the full distribution space.
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3.5. emcee APPLIED TO RADIAL VELOCITY DATASETS WITH VELBIN

In addition to using emcee to model individual sources, it was also used to analyze

the entire sample in order to derive values for the mean velocity of the cluster, the intrinsic

velocity dispersion, and the binary fraction. This is necessary because single epochs of

radial velocity data are likely to have their results affected by the presence of binaries.

If a source with a close binary companion happens to be observed in such a way that a

component of the binary orbital motion is directed towards or away from Earth, then the

observed radial velocity will be offset from the source’s true motion through the cluster.

The overall effect on the sample is to increase the measured radial velocity dispersion of

the cluster. For clusters with higher intrinsic velocity dispersions, this effect may be small,

however, for clusters with dispersions smaller than a few km s-1, the effect can greatly

increase the measured dispersion (Gieles et al., 2010; Kouwenhoven and de Grijs, 2008,

2009; McConnachie and Côté, 2010). The way this has been accounted for in this project

is by using the program Velbin (Cottaar et al., 2012) in conjunction with emcee.

In order to use these two programs together, the following information is required:

a set of N radial velocity observations (vobs,i), each with the associated uncertainties (σobs,i)

and mass estimates (mi), and assumptions about the binary period, mass ratio, and eccen-

tricity distributions. Velbin interprets the radial velocity observations as being randomly

drawn from a dynamical model describing the intrinsic velocity distribution. Free parame-

ters for the dynamical model include the mean velocity (vmean) and the velocity dispersion

(vdisp). The intrinsic distribution is assumed to be Gaussian. Then, for a certain subset of

stars, a velocity offset is added to vobs based upon the binary fraction ( fbin). This offset is

labeled as vbin since it is the velocity due to the binary motion. The likelihood function for

observing a specific radial velocity for a given star can then be written as

Li(vobs,i) = (1 − fbin)Ldyn,i(vobs,i) + fbin

∫ +∞

−∞

Ldyn,i(vobs,i − vbin)Lbin,i(vbin)dvbin (3.9)
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This results in fitting the three free parameters vmean, vdisp, and fbin. The dynamical model

of Velbin takes into account all of the assumptions regarding the binary period, mass ratio,

and eccentricity distributions, in addition to the mass estimates and errors for the individual

stars and the likelihood of the added velocity due to binary motion being in the direction

of line of the sight. The overall likelihood function for the entire sample can then be

computed by multiplying the individual likelihood functions. From there, Velbin computes

the log-likelihood function and then the process is very similar to using emcee as before.

The log-likelihood function is combined with the priors to compute the probability and fed

into emcee which then returns relative probability distributions for how likely the given

radial velocity dataset is described by vmean, vdisp, and fbin.
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4. RESULTS

In total, there are 34 different sources that have been observed for this study. Of

these, 32 have yielded precise radial velocity measurements which are presented in Table

4.1. Twenty-three of these are classified as either Class I or Flat spectrum objects. The

location of these YSOs in the L1688 cloud relative to the distribution of cold dust is shown in

Figure 2.1. Eleven sources were observed using the instrument CSHELL on NASA’s IRTF

during the summer of 2016. Twelve sources were observed using iSHELL in the spring of

2017, eleven of which yielded precise radial velocity measurements. In addition to the data

taken specifically for this project, data from previous studies were obtained and reanalyzed

using the same technique developed for the CSHELL and iSHELL data outlined in Section

3. Data were obtained from Doppmann et al. (2005) who used NIRSPEC on the Keck

telescope; radial velocities were derived from these data for fourteen sources. And finally,

data obtained from the ESO archive taken by Viana Almeida et al. (2012) or Cottaar (2012

unpublished data) using CRIRES on the VLT resulted in radial velocity measurements for

seven sources. Between all the instruments and data runs, there were five sources for which

radial velocities were derived for two epochs.

4.1. MEASURING RADIAL VELOCITIES WITH emcee

To measure the radial velocities of the sources observed, all of the spectra obtained

were run through the MCMC routine described in Section 3. It was found that to explore

adequately the full four-dimensional parameter space (rotational velocity, veiling, radial

velocity, and temperature) the program needed 100 walkers to run for 500 steps. The

output for each run was then a corner plot of the positions of these walkers along their

steps, resulting in relative probability distributions. The corner plots themselves show
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Table 4.1. Best Fit YSO Parameters for log(g) = 3.5

Source Namea SED Classb Instr. Te f f Vhelio vsini orders
(K) (km sec−1) (km sec−1)

GSS 26 II CRIRES 4400±20 -7.58±0.14 19.0±0.1 1
GSS 29 II NIRSPEC 4360±40 -6.7±1.4 36.6±0.4 1
CRBR 12 I NIRSPEC 3460±20 -12.9±1.5 40.5±0.7 1
VSSG 1 II iSHELL 4370±300 -3.26±0.64 15.0±0.4 2
GY 21 FS NIRSPEC 4340±100 -7.9±1.5 20.3±1.0 1
GY 23 II CRIRES 4120±20 -7.81±0.14 20.9±0.2 1
GY 30 I NIRSPEC 3140±20 -7.5±1.5 33.5±1.1 1
GY 33 FS iSHELL 4220±20 -3.67±0.81 13.1±0.7 3x2
ISO-Oph 51 FS NIRSPEC 4500±180 -4.8±1.9 34.8±2.1 1
GY 91 I NIRSPEC 3450±20 -7.8±1.4 9.6±0.2 1
WL 12 I NIRSPEC 3420±140 2.3±2.3 31.6±2.7 1
SR 24N II iSHELL 3380±20 0.89±0.42 9.5±0.8 3
SR 24S II iSHELL 4900±80 -0.27±0.61 28.5±0.5 3
WL 1 FS NIRSPEC 3420±20 -25.1±1.4 13.3±0.4 1
GY 197 I NIRSPEC 3220±20 -7.7±1.5 49.8±1.1 1
WL 17 I NIRSPEC 3360±60 -3.8±1.5 3.1±2.9 1

CRIRES 3120±20 -3.87±0.18 14.56±0.08 1
WL 10 II NIRSPEC 4580±140 -7.6±1.5 39.0±0.9 1
GY 224 FS NIRSPEC 4400±210 -5.8±1.5 9.9±2.8 1

CRIRES 5420±50 -5.54±0.39 23.0±0.8 1
WL 19 FS NIRSPEC 3680±380 -27.4±1.7 22.7±1.9 1
GY 235 FS iSHELL 3360±20 -5.4±1.2 12.1±0.1 2
WL 20W FS iSHELL 3380±20 -1.96±0.82 25.6±0.2 1
WL 20E FS iSHELL 4840±60 0.00±0.55 41.1±0.3 1
WL 4 FS iSHELL 3260±20 0.33±0.38 17.0±0.2 1
WL 3 I NIRSPEC 4320±30 -6.9±1.4 40.7±0.4 1
WLY 2-42 FS iSHELL 4420±20 -5.46±0.37 22.1±0.2 1
WLY 2-43 I NIRSPEC 4920±190 -8.0±3.2 47.0±3.6 1
WLY 2-44 I NIRSPEC 4360±380 -8.3±1.8 28.9±1.6 1

CRIRES 5300±60 -4.37±0.41 29.1±0.6 1
VSSG 18 FS CRIRES (08) 3800±20 -4.85±0.14 23.61±0.05 1

CRIRES (12) 4100±20 -3.37±0.15 22.2±0.1 1
VSSG 17 FS NIRSPEC 4160±90 -6.2±1.5 41.2±0.5 1

CRIRES 4040±40 -5.48±0.36 43.4±0.5 1
GY 284 FS iSHELL 3440±20 -3.78±0.71 6.1±0.5 3x2
GY 314 II CSHELL 3220±20 -5.5±1.5 16.9±0.5 1
WLY 2-51 FS NIRSPEC 4660±230 -3.5±2.3 42.3±2.0 1

aSources names same as Table 1
bSpectral energy distribution class as defined by the spectral index from 2.2-24 µm
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the probability distribution for each parameter separately along the diagonal and the off-

diagonal plots show correlations between each pair of parameters. Approximately the first

100 steps were excluded from the corner plots as this was found to be the “burn in” time

for the program to settle on what it thought were the most likely values. This results in

the corner plots themselves being approximately Gaussian distributions centered on the

most likely values for each parameter. These center values were then exactly calculated by

finding the value that was higher than 50% of the positions of the walkers and used to create

a synthetic to plot over the original data to ensure that the program was returning physically

meaningful results. A sample corner plot and overlay of GY 33 taken from iSHELL can be

seen in Figures 4.1 and 4.2. Parameters derived for YSOs are presented in Table 4.1, and

radial velocities for radial velocity standards are in Table 2.2.

Corner plots and overlays for each source observed can be found in Appendix B.

When looking at the corner plots, the first two parameters (vsini and rk) correspond directly

to the physical quantities of the rotational velocity and the veiling. However, dx corresponds

to the shift in the spectrum measured in pixels, meaning that this value still needs to be

converted to a heliocentric radial velocity via the dispersion of the instrument and detector,

as well as corrected for the Earth’s motion around the Sun depending on the date and time of

the observation (as has been done in Table 4.1). The last parameter, Te f f , is a measurement

of the effective surface temperature of the star, but the actual value of Te f f returned by

the program corresponds to the weighted average of two synthetics represented by their

array index, as discussed in Section 3. In case of GY 33, the Te f f of 5.8 corresponds to a

temperature of about 4260 K. The uncertainties in the fit parameters quoted in Table 4.1 are

from the 16th and 84th percentile of the marginalized distributions. While the veiling of

each source was measured, and does correspond to a physical quantity, it was found to be

a nuisance parameter for this study. Since the veiling affects the depths of the absorption

lines, the value returned by emcee was found to be very sensitive to the normalization of

the spectra. Since the exact location of the continuum is often poorly constrained for these
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spectra, especially those with low SNRs or high rotational velocities, the measured veiling

was found to have a wide variance for the sources that were observed multiple times, or even

across multiple orders of the same spectrum for those sources observed using iSHELL. For

this reason the veiling parameter has been left out of the results in Table 4.1.

With the radial velocities for each of these sources measured, a histogram of these

velocities with 1.5 km s-1 bins (corresponding approximately to the largest uncertainty for

a given radial velocity) has been constructed and is shown in Figure 4.2. This histogram

would indicate a velocity dispersion of 2.9 ± 0.8 km s-1. This is significantly higher than

what was expected for this cluster based upon previous studies. However, at this point no

correction for binaries has been made, which means this should be higher than the intrinsic

velocity dispersion given the high binary fraction measured for younger stars. It is also clear

from this figure that the distribution itself is rather non-Gaussian, making the calculation of

a velocity dispersion much more difficult. As described in Section 3, the program Velbin

was used to analyze these data and attempted to correct for the presence of binaries. The

details of this analysis are discussed in Section 4.3.

4.2. ERROR ANALYSIS

As can be seen in Figure 4.1, one advantage of emcee is an estimation of the errors.

However, the 1σ statistical error in the radial velocity returned by emcee, while related to

the SNR of our spectrum, underestimates the total error of the radial velocities presented in

Table 4.1. Since the program did not vary the surface gravity, there will be an uncertainty

associated with assuming a surface gravity (log(g) = 3.5 for YSOs, log(g) = 4.5 for radial

velocity standards). For several sources, we fixed the temperature and varied log(g) from

2.5 to 4.5 in steps of 0.5. Variations in log(g) resulted in slight variations on the best fit

pixel shifts, and an error of 0.1 pixels was adopted for this effect. This means, of course,

that this error is proportional to the resolution of the instrument. In addition to this, there
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were several other contributions to the error which were dependent upon the instrument

and all added in quadrature with the error from emcee and log(g) that are discussed in the

following section.

In the case of CSHELL, there was only one YSO for which a radial velocity was

derived, GY 314. The largest contribution to the error appears to be from the wavelength

calibration arising from small shifts between the source and the telluric standard fromwhich

the calibration was determined. This error has been estimated to be 1.5 km s-1 based on

comparisons between the four radial velocity standards that were observed with CSHELL

(Table 2.2) and radial velocities measured for those same stars by the Gaia DR2 survey

(Soubiran et al., 2018). This is the dominant source of uncertainty for the CSHELL radial

velocities.

For NIRSPEC, due to the lower spectral resolution, the error from emcee is larger

than that from the other spectrographs. To estimate our systematic errors, radial velocity

standards fromNIRSPECwere used in place of the synthetics for a few sources. This allowed

for a comparison of the pixel shift of a given YSO measured against the synthetics vs. the

standards. It was found that the average difference was 0.3 pixels which corresponds to an

uncertainty of about 1.3 km s-1. This uncertainty is attributed to the wavelength calibration

and noting that the spectra were calibrated using arc lamps available on NIRSPEC that do

not contain very many bright lines near the CO bands. When this is added in quadrature

with the uncertainties from the program itself and log(g), the typical error is around 1.5 km

s-1. This is nearly the same error that was quoted by Covey et al. (2006) for this data set

obtained by comparing their derived radial velocities to 15 spectral standards with published

values.

CRIRES has the highest spectral resolution of all the spectrographs used and yielded

the smallest errors on average. This should not be a surprise since the emcee routine

developed for this project is ultimately measuring pixel shifts, which are then converted

into radial velocities. It is also the case that the wavelength calibration for CRIRES spectra,
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using well-resolved telluric lines, was the most accurate out of all the instruments. The

same method as described above, using a radial velocity standard in place of a synthetic

and comparing the shifts, was used with CRIRES data as well. The difference in the shifts

between the two methods was found to be, on average, less than 0.1 pixels. With the

high resolution of CRIRES, this only corresponds to an uncertainty of about 0.1 km s-1.

Consequently, the main contributors to the radial velocity errors were the error returned by

emcee, and the error due to the assumed value of log(g).

Finally for the iSHELL data, the errors quoted in Table 4.1 are mainly due to the

wavelength calibration. During the reduction process, iSHELL Tool allows the user to have

the program automatically shift the telluric by a very slight amount in order to minimize

the presence of telluric lines in the final spectrum. The average shift was about 0.5 pixels

and was always less than 1.0 pixel. A similar shift was seen from running emcee with a

YSO and a radial velocity standard in place of the synthetic. As a check, it was possible

to compare the difference in the radial velocities measured across multiple orders, across

the course of a given night, and across multiple nights. For several sources the CO bands

were strong enough to be seen in three orders. In the case of GY 33, it was observed at

two different times on the same night at different air masses. And in the case of GY 284,

it was observed on two successive nights. The derived radial velocities across multiple

orders, multiple airmasses, and multiple nights are consistent within the errors computed

considering contributions from emcee, the wavelength calibration, and log(g). This, and

the agreement between the radial velocity standards in Table 2.2 with their published values,

suggests that no major sources of error have been neglected.

4.2.1. Comparisons with Published Data. It should be pointed out, however, that

many of the radial velocity measurements in Table 4.1 do not always agree with those

published by Viana Almeida et al. (2012). Of the four sources retrieved from the ESO

archive, only the radial velocity of GSS 26 is close to their published value. It is not clear

why their results do not match up with the ones presented here, but, as a check, the one
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available radial velocity standard in their data was again compared with the result obtained

by the Gaia DR2 survey. As shown in Table 2.2, the result derived from emcee agrees very

well the Gaia DR2 value but not with that derived by Viana Almeida et al. (2012).

When looking at the NIRSPEC data, the results presented here can also be compared

to the results obtained by Doppmann et al. (2005) when the data were originally published

and to the results published by Covey et al. (2006) when reanalyzing the data. Generally,

the results presented here match up better with the results obtained by Covey et al. (2006)

within the mutual uncertainties, although there are a few sources where this is not true. The

largest discrepancy is regarding WL 12. The best explanation is that this source has a low

SNR and is probably heavily veiled, leading to a very washed out and not well-defined CO

v = 2 − 0 bandhead. This makes it difficult for the program to line up exactly where the

bandhead should be, and with the low resolution of the instrument, these effects could lead

to a large error. That being said, the radial velocity standards analyzed from the NIRSPEC

data agree well with the results from the Gaia DR2 data release.

The only source with a derived radial velocity from CSHELL, GY 314, has been

observed before by Prato (2007), and agrees well within the mutual errors.

4.2.2. Radial Velocity Variables. While most of the data here is single-epoch,

there are seven sources with multi-epoch datasets. Within the stated uncertainties, GY 314,

WL 17, GY 224, and VSSG 17 do not show evidence for radial velocity variability. In the

case of WLY 2-44, VSSG 18, and SR 24S, there is reason to believe that these sources have

variable radial velocities. For SR 24S, it is clear that it has a wide companion in SR 24N,

which was also observed. However, there is evidence that this might be an even higher

order star system. According to the measurements made from both the iSHELL data and

the Rigliaco et al. (2016) dataset, SR 24S may have its own companion with subarcsecond

separation. Rigliaco et al. (2016) measured the radial velocity in 2012 to be −8.2 ± 0.33

km s-1 while the iSHELL data taken from the spring of 2017 shows a radial velocity of

−0.27 ± 0.61 km s-1. This is a relatively bright source with high SNR data and so the
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most likely explanation for this discrepancy would be that the radial velocity is variable.

WLY 2-44 was observed by NIRSPEC in 2002 and CRIRES in 2008, and is known to have

one, or perhaps two, subarcsecond companions (Plavchan et al., 2013; Terebey et al., 2001).

The NIRSPEC data showed a radial velocity of −8.3 ± 1.8 km s-1, while the CRIRES data

indicated a radial velocity of −4.37 ± 0.41 km s-1. Finally, VSSG 18 was observed by

CRIRES in 2008 and again in 2012. In this case, the difference is small with the 2008 data

indicating a radial velocity of −4.85 ± 0.14 km s-1 and the 2012 data a radial velocity of

−3.37±0.15 km s-1. The higher precision of CRIRES and thorough error analysis indicates

that these measurements are outside each other’s uncertainties. Once again, the most likely

explanation for this difference is that VSSG 18 does in fact have a variable radial velocity,

implying the presence of a subarcsecond companion.

4.3. MEASURING CLUSTER PROPERTIES WITH VELBIN

After having established radial velocity measurements for 32 sources within the

L1688 cloud, the next step is to try to learn about the properties of the cluster as a whole. To

do this, the program Velbin was used in order to constrain the cluster’s velocity dispersion,

binary fraction, and mean velocity as outlined in Section 3. In order to use Velbin, the

program requires a radial velocity, the error in the radial velocity measurement, and a mass

estimate for each source. The radial velocities and errors have been presented in the previous

section, which leaves themass estimate for each source to still be determined. Theway this is

done for young stars is to model their mass depending upon their location in a Hertzprung-

Russell diagram relative to theoretical pre-main sequence tracks and isochrones. This

means that the accuracy of these mass estimates is dependent upon the accuracy of intrinsic

luminosity and temperature measurements. Temperature estimates have been obtained from

the emcee routine used to model all the sources and those have been used when estimating

masses. However, luminosity measurements are much more difficult to obtain.
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Due to the deeply embedded nature of these YSOs within the cloud, and the large

infrared excesses (veiling), intrinsic luminosities are difficult to estimate. The excesses lead

to overestimates of the luminosity and often imply ages younger than the earliest model

isochrones. Nevertheless, for small infrared excesses, luminosity estimates can be made

to within a factor of a few. (J-H) colors were available for 22 of our 32 sources from

the 2MASS catalog (Cutri et al., 2003) and de-reddened using the reddening law of Yuan

et al. (2013) and intrinsic colors for main sequence stars from Pecaut and Mamajek (2013).

Adding the appropriate bolometric correction to the dereddened absolute J magnitude

yielded the intrinsic luminosity assuming a distance of 137 pc. There were three different

theoretical models used to produce mass estimates including ones developed by D’Antona

and Mazzitelli (1997), Palla and Stahler (1999), and Siess et al. (2000). When running

Velbin, the estimates produced by the D’Antona & Mazzitelli model were used. While

other, more recent models are seemingly more accurate, there is very little difference in

the various models for stars that are near one solar mass or less (Herczeg and Hillenbrand,

2015). Published mass estimates for 8 objects from this study range from 0.2 − 1.7 M�

and the mass estimates from this study agree with these to within a factor of two (Correia

et al., 2006; Erickson et al., 2011; Ressler and Barsony, 2001; Rigliaco et al., 2016; Simon

et al., 2017). As the mass estimates scale roughly with logTe f f , for sources that could not

be de-reddened we have assigned masses of 1.5, 1.0, 0.5, or 0.2 M� based on their logTe f f .

For the mass range in this sample, variations in mass do not have a large effect on the results

of Velbin. As a check to this, Velbin was run several times, with various mass estimates. It

was found that even assuming all the sources in this study were 1.5 M� the values returned

by Velbin were nearly identical to the ones returned using the mass estimates from the

models.

The corner plot from running Velbin on all 32 sources can be seen in Figure 4.3. In

addition to this, because of the large uncertainties in mass estimates, Velbin was also run on

the same dataset, but with the masses set to uniformly be 0.5 M�, 1.0 M�, or 1.5 M�. The
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Table 4.2. Velbin Results for Various Masses

Source Masses vmean vdisp fbin

(M�) (km s-1) (km s-1)

From Modelsa −4.9 ± 0.6 2.8 ± 0.6 0.7 ± 0.3
0.5 −4.8 ± 0.6 2.8 ± 0.6 0.7 ± 0.3
1.0 −4.9 ± 0.6 2.7 ± 0.6 0.6 ± 0.3
1.5 −4.9 ± 0.6 2.5 ± 0.6 0.6 ± 0.3

From Modelsa −4.9 ± 0.6 2.5 ± 0.7 fbin = 1.0b

aMass Estimates for sources computed frommodels created
by D’Antona and Mazzitelli (1997).

bFor this run fbin was not allowed to be a free parameter, but
set to 1.0 to see how far down this would push the dispersion.

results of these runs can be seen in Table 4.2. The results from this program point towards a

velocity dispersion of about ∆v = 2.8± 0.6 km s-1 and a binary fraction of fbin = 0.7± 0.3.

It is clear that the mass estimates do have some effect on the results, with higher masses

resulting in a lower velocity dispersion. But it can be seen that this effect is overall very

small for masses within the range expected for these sources.

This same program was used by Rigliaco et al. (2016) to analyze their dataset of

mostly Class III objects. The dispersion measured by this same program for those data

is much smaller (∆v = 1.14 ± 0.35 km s-1) than what is found here for a different set of

objects in the central regions of the cluster. Moreover, the binary fraction measured here is

slightly larger than fbin = 0.56 found by Rigliaco et al. (2016), although consistent within

the 1σ errors. There are several potential reasons why these measured dispersions do not

agree, including problems with sample size, error size, or miscalculated binary fractions,

and these will be discussed in greater detail in Section 5.



48

4.4. ADDITIONAL INFORMATION REGARDING SPECIFIC SOURCES

While the main focus of this project was to derive precise radial velocities from the

data, there is a wealth of information that can be obtained from the spectra. In particular,

the iSHELL data covered a very large wavelength range that included 3 CO bandheads

(v = 2 − 0, 3 − 1, 4 − 2), Brγ (2.166 µm), and a number of atomic lines. Brγ emission is

of interest because it is associated with accretion; the Brγ luminosity is correlated with the

accretion luminosity and can be used to estimate accretion rates for YSOs (Muzerolle et al.,

1998). Brγ emission was detected in the spectra of VSSG 1, SR 24S, GY 235, WLY 2-51,

and WLY 2-54. In addition, emission from shocked molecular hydrogen at 2.12 µm was

detected in SR 24S, GY 235, andWLY 2-54. This is usually associated with energetic mass

outflows.

Another notable feature was found in the spectrum of WLY 2-54. The spectrum

itself is basically devoid of any photospheric absorption lines, but along with Brγ and H2

emission, there were very narrow interstellar absorption lines from the low R and P branch

of the CO v = 2 − 0 transition. The source itself worked out to be a featureless template

that allowed for the identification of these lines in 10 other YSOs in our sample. With

this information, it should be possible to estimate the temperature and optical depth of the

foreground gas, and a different group is already analyzing these data as an independent

project.

There are further notes regarding individual sources that can be found in Appendix

C.
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Figure 4.1 Relative probability distributions and correlations for the four fit parameters
returned by emcee to best match the iSHELL spectrum of order 225 of object GY 33
corresponding to T = 4260 ± 20 K, vsini = 13.3 ± 0.08 km s-1, rk = 0.29 ± 0.02, and
dx = −15.57 ± 0.04.
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Figure 4.2 Synthetic overlay (blue) on top of the data (orange) for the four fit parameters returned by emcee
to best match the iSHELL spectrum of order 225 of object GY 33 corresponding to T = 4260 ± 20 K,
vsini = 13.3 ± 0.08 km s-1, rk = 0.29 ± 0.02, and dx = −15.57 ± 0.04.
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Figure 4.3 Histogram of 32 sources from the L1688 cloud with overlaid Gaussian fit of 30
sources. The two outliers between −25 and −30 km s-1 have been excluded from the fit.
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Figure 4.4 Corner plot showing the relative probability distributions of the fit parameters
for the sample of 32 YSOs as measured by Velbin corresponding to vmean = −4.9 ± 0.6
km s-1, vdisp = 2.8 ± 0.6 km s-1, fbin = 0.7 ± 0.3.
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5. ANALYSIS AND DISCUSSION

The original motivation for this work was to attempt to learn more details about

the environment in which low mass stars form. As discussed in Section 1, it is clear that

the dense cores out of which these stars are forming are in a subvirial state (André et al.,

2007; Kirk et al., 2010; Peretto et al., 2006), while studies of more evolved Class II and

III YSOs show signs of being near virial equilibrium (Rigliaco et al., 2016). The initial

hypothesis was that the less evolved Class I and Flat spectrum sources would show a velocity

dispersion somewhere in between the dense cores and the more evolved sources as they

had experienced fewer stellar encounters. As can be seen from the results in the previous

section, this appears not to be the case.

In this section, a few ideas for how to interpret these results will be discussed. Since

the results here do not match up with the results of the proper motion study byWilking et al.

(2015), it is important to discuss the differences between them. It is also important to discuss

any possible biases in the sample itself. One way to end up with a higher than expected

dispersion would be to have a sample that is biased towards low mass stars, which would

have higher velocities. Another factor that must be taken into account is the limitations and

assumptions made by Velbin when calculating the intrinsic dispersion. The program does

not take into account higher order systems such as triple systems, of which there are at least

a few in this sample. Velbin may also not be able to precisely determine the likelihood of

a binary companion due to some of the larger errors for sources observed by NIRSPEC

and CSHELL thus leading to a higher dispersion. If the binary fraction were higher than

expected, it would also help explain the higher velocity dispersion. The age of this sample

compared to the relaxation time could also affect the results, and push the dispersion higher

or cause the distribution of velocities to be non-gaussian as the younger sources observed

here have not had time to dynamically interact as often as some of the more evolved YSOs.
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Finally, simulations suggest it is possible that as these objects evolve, they move from a

subvirial state to a supervirial state, and then settle into a virial state (Kuhn et al., 2018;

Sills et al., 2018). In this scenario, shortly after the YSOs form, subclusters would need to

collapse towards one another and then rebound very quickly before settling into a virialized

state in order to explain the both the results of the Rigliaco et al. (2016) study as well as

this one. These ideas or some combination of them are almost certainly responsible for the

results derived in Section 4 and will be discussed in this section.

5.1. COMPARISON WITH PROPER MOTION STUDY

In total, there are 32 YSOs for which radial velocities were derived for this study. In

comparison, Rigliaco et al. (2016) had a sample size of 47. When looking at the difference

between velocity dispersions derived between this study and that of Rigliaco etal ., the

results are in agreement to within 2σ errors. Certainly, some of this discrepancy could be

from the smaller sample size, however, the proper motion study (Wilking et al., 2015) done

before this project indicates that it is unlikely to explain the entire difference. The proper

motion study had a larger sample, but it could be split up nearly evenly into two groups:

a group of 29 Class I and Flat spectrum objects, and a group of 28 Class II/III objects.

These groups then each had a relative 1-D velocity dispersion derived from their RA and

Dec motions (Figure 1.3). The results from the proper motion study are similar to what

was expected for this study, i.e., the dispersions are all at or around the dispersions of the

more evolved objects. So there is already a sample of about 30 Class I and Flat spectrum

objects within L1688 that has a 1-D velocity dispersion that appears to be consistent with

the Rigliaco et al. (2016) radial velocity study but inconsistent with this study.

This contradiction implies a possible problem with the data in either the proper

motion study or this one. The proper motion study was only able to derive relative proper

motions by assuming the average proper motion in each of four fields in both RA and Dec

was the same. Two fields were centered on the core E/F subcluster, one on core B, and one
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on Core A. If this assumption is not correct, and the average proper motion for each field

of view was different, then it would have the effect of underestimating the true dispersion.

This could explain some of the discrepancy in the results between the studies.

One advantage of the proper motion study is that the effect of binaries on the

dispersion is minimized. Since the proper motions are being derived over decade long

baselines, any effects due to binaries would either be averaged out over several periods, or

be too small to have a significant impact on the measured motion.

5.2. LOW MASS BIAS

Another possible explanation for a higher than expected dispersion would be that the

sample in question is not unbiased. If the sample presented here is somehow biased towards

lower mass objects within the cluster, then it is possible that these objects would have higher

velocities than average due to interactions with higher mass objects, and as such, inflate the

measured velocity dispersion. This explanation does not seem very likely, because while the

sample here might be biased, it would more likely be biased towards higher mass objects,

and any effect due to this would be to underestimate the velocity dispersion. The reason is

simply because objects were chosen that were bright enough to observe and achieve a high

SNR in order to resolve the number of lines necessary to produce precise radial velocities.

One caveat to this is that it is possible for lower mass YSOs to appear brighter due

to emission from active accretion. In order for this to cause the sample to be biased towards

low mass objects, these objects would require a high accretion rate and likely be heavily

veiled, displaying weak or absent absorption lines. This would make deriving a radial

velocity impossible or problematic. Another issue with this idea is that these objects may

be too young to have gained a noticeably larger velocity by this time. The ages of these

objects are all on the order of the crossing time calculated for Rho Ophuchi, which is about

1 Myr. In order to have higher velocities, they would need to have dynamically interacted

with other objects.
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Overall, it does not appear that there is a low mass bias in the sample. In addition

to this, the mass range presented here is nearly identical to the mass range for the sample of

Class II/III objects studied by Rigliaco et al. (2016), which is about 0.2 − 1.7 M�.

5.3. ASSUMPTIONS MADE WHEN USING VELBIN

SinceVelbin is being used to calculate the intrinsic velocity dispersion, it is important

to look at all the assumptions that go into this calculation. Since the errors for some sources

are large ( 1.5 km s-1) compared to the dispersion being measured, it is possible that these

errors are increasing the measured dispersion. Velbin does attempt to account for the errors,

but when the errors are about the same size as, or larger than, the dispersion being measured,

it becomes much more difficult to learn the details of the dispersion itself.

Another possibility is that the assumed mass and period distributions of binaries

provided by Velbin do not match up as well as with less evolved YSOs. The distributions

for mass ratios (Reggiani and Meyer, 2011) and periods (Raghavan et al., 2010) used in

this study are the same used by Rigliaco et al. (2016), but these distributions have been

derived for main sequence stars and may have better agreement with more evolved YSOs

than with those less evolved. However, the most likely cause of any problems with Velbin

would be the fact that Velbin does not consider any triple or higher order systems, only

binaries. There are likely at least a few triple systems in this sample, with SR 24N having

a known companion, and SR 24S seeming to have a subarcsecond companion. In fact, the

fraction of binary systems that may be even higher order has been found to be relatively

high. Stassun et al. (2014) found that six of thirteen pre-main sequence eclipsing binaries

they studied were, in fact, triple systems. This would imply an overall fraction of triple

systems for young stars to be on the order of 0.25.

Finally, Velbin makes its calculations by assuming that the intrinsic dispersion is

Gaussian in nature. As can be seen from the histogram of velocities in Section 4 (Figure 4.2)

this distribution is only vaguely Gaussian in shape. With a larger sample size, it is likely that
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the distribution would appear to be more Gaussian. However, the apparent non-Gaussian

sample provided to Velbin could at least introduce uncertainty and cause the program to

either miscalculate the cluster properties or to assign larger errors and overestimate the

dispersion. It should be noted that according to the Shapiro-Wilk test, this sample is likely

Gaussian (p − value = 0.11) with the two outliers between −25 and −30 km s-1 left out.

This is a simple statistical test to check whether or not a distribution is normal or not, but

does not take into account the errors associated with each radial velocity.

5.4. RELAXATION TIME

The relaxation time for a cluster is defined as

τrelax

τcross
=

N

6ln(N2 )
(5.1)

where N is the number of stars in the cluster. For N > 100, τrelaxτcross
≈ 4. In the case of Rho

Ophiuchi, τrelax appears to be about 4 Myr. Estimates of the age of the cluster itself place it

at about 2 − 3 Myr old. The Class II and Class III objects within the Rigliaco et al. (2016)

sample have most likely been around for nearly the entire age of the cluster, while the Class

I and Flat spectrum sources have ages that are probably no more than 1Myr (Dunham et al.,

2014). The relaxation time is an estimate of how long the cluster will take to virialize, and

so it can be seen that these younger YSOs are going to have had fewer dynamic interactions

and this could contribute to the non-gaussian distribution seen in the results in Section 4.

So while the possible lack of interactions may help explain the non-gaussian nature of the

dispersion, it probably does not explain why the dispersion is so large, as a lack of dynamical

interactions should result in a smaller dispersion.
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5.5. UNDERESTIMATING THE BINARY FRACTION

It is currently thought that the binary fraction of YSOs is higher than for main

sequence stars (Reipurth et al., 2014), and this is what was found by Rigliaco et al. (2016).

From that study, using Velbin, they measured the binary fraction to be fbin = 0.56. For the

data from this study, Velbin estimates a binary fraction of about fbin = 0.7 ± 0.3. Both of

these results are in line with the results found by Reipurth et al. (2014) regarding the fraction

of young stars that appear to be in multiple systems. Their estimates were that about 2/3 of

Class 0 protostars are multi-star systems, and that this multiplicity frequency slowly drops

off as the objects evolve towards the main sequence. However, they also note that due to

the difficulty in resolving very close protobinaries, it is possible that the fraction is nearly

1. This could be part of what is being observed in this study. Obviously there are no Class

0 protostars in the sample, but it is not unreasonable to think that the binary fraction could

be significantly closer to 1 than the Rigliaco et al. (2016) sample, which would increase the

observed dispersion. However, since the dispersion measured here is still about 2σ away

from agreement with the Rigliaco et al. (2016) sample, it would seem that a high binary

fraction probably does not account for the entire difference. Running Velbin while setting

the binary fraction to 1 results in a slight smaller dispersion of vdisp = 2.5 ± 0.7 km s-1 as

seen in Table 4.2. This then implies that while an underestimation of the binary fraction

could account for some of the increased dispersion, it probably does not account for all of

the difference.

5.6. SUPERVIRIAL STATE

It is also possible that the observed velocity dispersion is pointing towards a su-

pervirial state for the cluster. It has been calculated that for this cluster to be in virial

equilibrium the velocity dispersion should be about 1 km s-1. Assuming that there are not

unaccounted for affects artificially increasing the measured dispersion, these data suggest
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a picture whereby these YSOs formed from subvirial cores, quickly became supervirial

during the Class I/F phase, and settled back down into a virial state as they continued to

evolve. Past simulations have shown that during the first crossing time of a cluster, it could

become slightly supervirial as the objects begin to fall towards the center (Proszkow and

Adams, 2009). However, more recent studies and simulations have shown that these effects

may be greater than first thought. Kuhn et al. (2018) and Sills et al. (2018) have shown

through simulations that it is possible that clusters start to collapse very quickly after they

begin to form stars. According to these simulations, by the time a cluster is 3 Myr old it

has collapsed and rebounded, greatly changing the velocity dispersion as it undergoes this

process. The dispersion can start out relatively small, then increase rapidly until peaking

after about 2 Myr, before decreasing nearly as quickly over the next 1 Myr, until finally

settling into a nearly virialized state. In addition to this, they were able to show that the

velocity dispersion is the greatest towards the center of the cluster, and smaller towards the

edges. This would imply a process of collapse towards one another and speeding up by

the YSOs shortly after they form, then passing by each other and slowing down until they

virialize. All of these results are broadly in agreement with both the results found by this

study and with the results found by Rigliaco et al. This is clear when looking at the spatial

distribution of this sample compared to the Rigliaco et al. sample, as can be seen in Figure

5.1. The Rigliaco et al. sample of more evolved YSOs lies at the periphery of L 1688 with

a dispersion consistent with virial equilibrium.

Finally, it needs to be noted that Rigliaco et al. (2016)measured a velocity gradient in

their sample corresponding to increasing velocities from the northwest towards the southeast

of the cluster. This gradient was calculated to be about 1 km s-1 pc-1. This gradient is not

attributed to the rotation of the cluster, but is thought to be a real gradient such that the

northwest section of the cluster is moving towards the Earth, while the southeast section is

moving away from the Earth. To check this for the sample presented here, the YSOs can

be roughly split up into subgroups of 8 sources that lie in the northwest quadrant of Figure
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2.1, 15 that lie in the southeast quadrant, and 5 that lie in the northeast. The average radial

velocity in the northwest quadrant is vavg,NW = −7.4±2.6 km s-1, the average velocity for the

southeast quadrant is vavg,SE = −3.6± 3.3 km s-1, and the average velocity for the northeast

quadrant is vavg,NE = −4.3 ± 2.8 km s-1. The separation of the northwest and southeast

subgroups is about 1 pc. Certainly these samples are much smaller, but there is a definite

trend of increasing velocity towards the southeast. This would suggest that the velocity

gradient of this sample is potentially significantly larger than the gradient of the Rigliaco

et al. (2016) sample, but in roughly the same direction. According to the simulations of

Proszkow and Adams (2009), a real velocity gradient will only be observed when there

is either collapse or expansion happening in a non-spherical cluster that is tilted at some

angle relative to the Earth. It is clear from the shape of the L1688 cloud that the cluster is

elongated in roughly the same direction as the velocity gradient measured by Rigliaco et al.

(2016). Distance measurements to different parts of the L1688 cloud have been made by

Ortiz-León et al. (2017), but this was only done for 11 sources, and there is no orientation

of the cloud that is discernible from these data. Nevertheless, all of the results derived by

this study regarding less evolved YSOs lying towards the center of the cluster and the study

performed by Rigliaco et al. (2016) regarding more evolved YSOs located radially outward

from the center are consistent with the results of simulations by both Proszkow and Adams

(2009) and the studies and simulations of Kuhn et al. (2018) and Sills et al. (2018). This

interpretation of the data provides the best physical explanation for the observed results

without assuming there is something wrong with the data itself. This could indicate that

L1688 may be on either side of a collapse-and-rebound process during the first 2 − 3 Myr

of its life.

While these simulations generally agree with the results, there are some issues

that need to be considered. The main difference between the simulations by Kuhn et al.

(2018) and Sills et al. (2018) and the Rho Ophiuchi cloud complex is the number of cluster

members. Kuhn and Sills ran simulations for clusters that consist of thousands of stars,
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while Rho Ophiuchi only has > 300 members. With fewer members and less total mass

involved, the collapse-and-rebound may not be as pronounced as it is in larger clusters.

Small number statistics could again be playing a role in the data on a larger scale than just

the sample size provided, in that this collapse-and-rebound process may look different for

clusters with only a few hundred members.

5.7. DISCUSSION

While there are several reasons why this measured dispersion is higher than antici-

pated, it is likely a combination of several effects. The results of the simulations from Kuhn

and Sills are very compelling regarding the observed velocity dispersion and gradient. But

it is also clear that the binary fraction is probably underestimated. It is also important to

not say that these results confirm the simulation results because the observed distribution

of radial velocities is not very gaussian to begin with. This could mean that measuring

a dispersion from the data is not very meaningful without a larger sample. Nevertheless,

the collapse-and-rebound idea has merit, and can help explain the small gap in dispersions

being measured at various parts of the cluster. Further study is needed to definitively say

whether or not this is a real effect being observed.
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Figure 5.1 Map of the L1688 cloud with the Rho Ophiuchi cluster showing the locations of
the sources in the Sullivan sample (red crosses) comparedwith the locations of the sources in
the Rigliaco sample (blue triangles). Contours represent the 13CO column density computed
from Loren (1989) assuming LTE and Te f f = 25 K and are in units of cm-2 with 6 × 1014,
3 × 1015, and 1.5 × 1016 from lowest to highest. Visible stars including SR 3, HD 147889,
and Rho Ophiuchi can be seen as well (black stars).
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6. SUMMARY AND FUTURE WORK

This section will briefly summarize the work and explain what the next steps should

be to continue this project.

6.1. SUMMARY

The majority of stars form within embedded star clusters (Lada and Lada, 2003). It

is then clear that in order to form a full picture of star formation, the dynamics and evolution

of these clusters must be studied. This project has focused on the nearby (137 ± 1.2 pc)

star forming cluster Rho Ophiuchi, which is thought to be about 2 − 3 Myr old and actively

forming relatively low mass stars (De Geus, 1992; Erickson et al., 2011; Loinard et al.,

2008; Lombardi et al., 2008; Mamajek, 2008; Ortiz-León et al., 2017; Wilking et al., 2008)

Radial velocities were derived for 32 sources within the Rho Ophiuchi cluster, all

located in or near the L1688 cloud from data taken on the instruments CSHELL, iSHELL,

CRIRES, and NIRSPEC. In addition, the majority of these sources are Class I/F objects

and are thought to be less than 1 Myr old (Dunham et al., 2014). Radial velocities were

derived using a Markov-Chain Monte Carlo routine developed by using the Python package

emcee. The velocity dispersion was derived using the program Velbin. This dispersion was

measured to be ∆v = 2.8 ± 0.7 km s-1. This was found to be significantly higher than both

the dispersion of the dense cores from which these stars have formed (André et al., 2007;

Kirk et al., 2010; Peretto et al., 2006) and the dispersion of the more evolved Class II/III

objects located within this same cluster (Rigliaco et al., 2016).

Possible explanations for the discrepancy between the velocity dispersions include

small number statistics, incorrect assumptions about YSO and embedded cluster properties

(mass ratios, binary fractions, etc.), a low mass bias, and relaxation time considerations.



64

However, the most compelling explanation would be that the dispersion is real, and cor-

responds to a collapse-and-rebound phase described by Kuhn et al. (2018) and Sills et al.

(2018) in their recent simulations.

6.2. FUTURE WORK

This study alone is unable to definitively answer key questions regarding the dynam-

ical state of the Rho Ophiuchi cluster and the star formation process in general. The results

presented here do provide some early observational evidence of the collapse-and-rebound

proposed by the simulations of Sills et al. but more work must be done to shed more

light on this idea. A study similar to the initial proper motion study that motivated this

work (Wilking et al., 2015) would be very helpful. This proper motion study included

infrared astrometric observations of several different fields of view in Rho Ophiuchi. The

main limitation of that study was that these fields were too include background stars as an

astrometric frame of reference. This only allowed for relative proper motions to be derived,

and thus less robust measurements of the velocity dispersion. The solution to this is to use

an instrument that allows for very precise infrared astrometric observations over a much

wider field of view, that can cover at least the entire L1688 cloud, and possibly more. Doing

this over a sufficiently long baseline of time would yield a two-dimensional dispersion of

about 400 YSOs. In addition to the dispersion, the relative directions of these objects

could be determined, which would yield information as to whether or not this cluster is

collapsing, rebounding, or neither. In the short term, it is possible to use the GAIA DR2

database which has proper motions for about 100 objects thought to be in the cloud. These

are mostly Class II/III objects, but would provide a larger sample. Longer term, the best

option for this is to wait for the Wide Field Infrared Survey Telescope (WFIRST) to launch

in the mid 2020s. WFIRST will have Hubble Space Telescope resolution with an infrared

imager that covers 22.5× 45 arcminutes. This telescope will be able to do exactly what was

described previously, and do so with a very high precision over a much shorter baseline
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of time than many proper motion studies to date. Another option would be to continue to

increase the radial velocity sample size for Rho Ophiuchi sources. This could even be done

by reobserving some of the NIRSPEC sources presented here using CRIRES on the Very

Large Telescope in order to reduce some of the errors. A larger and more precise sample

size will allow the dispersion to be constrained much better, and help answer any questions

about the current dynamics of the cluster. These steps are not just applicable to the Rho

Ophiuchi star forming cluster, but can be be applied to many other young embedded clusters

in order to continue progress towards a complete theory of star formation.



APPENDIX A.

PYTHON SOURCE CODE
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1. SOURCE CODE FOR DERIVING RADIAL VELOCITIES

#Procedure for Deriving Radial Velocities from iSHELL Data Order 225
#Different Synthetics are used depending on the instrument, otherwise
#program works nearly the same across various instruments. Code was
#based upon a different MCMC routine developed and provided by Tom Greene

#Import necessary packages
%matplotlib inline
import matplotlib
import matplotlib.pyplot as plt
from matplotlib.ticker import MultipleLocator
import numpy as np
import scipy.optimize as op
from astropy.convolution import Gaussian1DKernel, convolve
from astropy import units as u
from astropy.analytic_functions import blackbody_lambda
from PyAstronomy import pyasl
import emcee
import corner
import math

##### Read data in from a text file as columns for x and y and plot
data = np.loadtxt(’ishell/errorchecks/gy284/o225/gy284.o225.2n.n.txt’,
usecols=(0,1))

data[:,0] = data[:,0]/1.0
ndata = len(data)
x = data[:,0]
y = data[:,1]
yerr = y/100

#data2 = np.loadtxt(’nirspec/wl17/wl17.co.crnbh.txt’, usecols=(0,1))
#data2[:,0] = data2[:,0]/10000.0
#ndata2 = len(data2)
#x2 = data2[:,0]
#y2 = data2[:,1]

fig, ax = plt.subplots(figsize=(16,10))
majorLocator = MultipleLocator(0.001)
minorLocator = MultipleLocator(0.01)
ax.set_xlabel("Wavelength (microns)")
ax.set_ylabel("Relative Intensity")

ax.set_ylim([.5, 1.5])
ax.xaxis.set_major_locator(majorLocator)
ax.xaxis.set_minor_locator(minorLocator)
ax.get_xaxis().get_major_formatter().set_useOffset(False)
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# matplotlib inline
ax.plot(x,y)
#ax.plot(x2,y2)

print ndata

#Create a function to bin the synthetic to the same wavelength solution as
the spectra

def binnedsynth(synthfile):
fstar = open(synthfile, ’r’)
header1 = fstar.readline()
header1 = header1.strip()
columns = header1.split()
Teff = int(columns[0])
logg = float(columns[1])
Metals = float(columns[2])
print Teff, logg

header2 = fstar.readline()
header2 = header2.strip()
columns = header2.split()
npoints= int(columns[0])

nlambdalines = npoints
nfluxlines = npoints

listlambda = []
listflux = []
for i in range(0, npoints):
line = fstar.readline()
currentline = line.split()
listlambda.append(float(currentline[0]))
listflux.append(float(currentline[1]))

wavelen = np.array(listlambda)/1000.0

F_lam = np.array(listflux)

fstar.close()

model_wavelen = np.copy(wavelen)
model_F_lam = np.copy(F_lam)
nmodel = len(model_wavelen)

i = 0
ndata = len(data)
mod_flux = np.empty(ndata)
wavelen = data[0,0]
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dlam = data[1,0] - data[0,0]
while (wavelen < data[(ndata-1),0]):
mod_flux[i] = 0.0
j = 0
for k in range(0, nmodel):
if (abs(model_wavelen[k] - wavelen) <= dlam/2):
mod_flux[i] = model_F_lam[k] + mod_flux[i];
j+=1

if (j == 0):
print ’ACK! - Model sampling is too low’

mod_flux[i] = mod_flux[i] / (j * 1.0)
wavelen = wavelen + dlam
i+=1
if (wavelen < data[(ndata-1),0]):
dlam = data[i,0] - data[i-1,0]

return mod_flux

#Read in grid of synthetics based on T and Log(g)
synthgrid = np.empty((12,ndata))
synthgrid[0] =
binnedsynth(’synthetics/ishell/k2sm5/o225/ishell.o225.3100.35.sm5.txt’)

synthgrid[1] =
binnedsynth(’synthetics/ishell/k2sm5/o225/ishell.o225.3300.35.sm5.txt’)

synthgrid[2] =
binnedsynth(’synthetics/ishell/k2sm5/o225/ishell.o225.3500.35.sm5.txt’)

synthgrid[3] =
binnedsynth(’synthetics/ishell/k2sm5/o225/ishell.o225.3700.35.sm5.txt’)

synthgrid[4] =
binnedsynth(’synthetics/ishell/k2sm5/o225/ishell.o225.3900.35.sm5.txt’)

synthgrid[5] =
binnedsynth(’synthetics/ishell/k2sm5/o225/ishell.o225.4100.35.sm5.txt’)

synthgrid[6] =
binnedsynth(’synthetics/ishell/k2sm5/o225/ishell.o225.4300.35.sm5.txt’)

synthgrid[7] =
binnedsynth(’synthetics/ishell/k2sm5/o225/ishell.o225.4500.35.sm5.txt’)

synthgrid[8] =
binnedsynth(’synthetics/ishell/k2sm5/o225/ishell.o225.4700.35.sm5.txt’)

synthgrid[9] =
binnedsynth(’synthetics/ishell/k2sm5/o225/ishell.o225.4900.35.sm5.txt’)

synthgrid[10] =
binnedsynth(’synthetics/ishell/k2sm5/o225/ishell.o225.5100.35.sm5.txt’)

synthgrid[11] =
binnedsynth(’synthetics/ishell/k2sm5/o225/ishell.o225.5300.35.sm5.txt’)

#Remove the last pixel of each binned synthetic to remove unrealistic
binning artifact, and plot

#the synthetics as a sanity check
ndata = ndata - 1
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x = np.delete(x,ndata)
y = np.delete(y,ndata)
synthgrid = np.delete(synthgrid, ndata, 1)
yerr = np.delete(yerr, ndata)

fig, ax = plt.subplots(figsize=(16,10))
majorLocator = MultipleLocator(0.001)
minorLocator = MultipleLocator(0.01)
ax.set_xlabel("Wavelength (microns)")
ax.set_ylabel("Relative Intensity")

ax.set_ylim([.4, 1.1])
ax.xaxis.set_major_locator(majorLocator)
ax.xaxis.set_minor_locator(minorLocator)
ax.get_xaxis().get_major_formatter().set_useOffset(False)

for i in range(0,12):
ax.plot(x,synthgrid[i])

\begin{lstlisting}
#Set initial "guesses" for each parameter
vsini0 = 10.0
rk0 = 0.0
dx0 = -16.0
teff0 = 1.0

#Define the model for the three parameters: veiling, rotational velocity,
radial velocity (in pixels)

synth = [0.0]*(ndata)
veiled = [0.0]*(ndata)
broadened = [0.0]*(ndata)
shifted = [0.0]*(ndata)
def model(vsini, rk, dx, teff):
#define temp variables for model
dxfl = int(math.floor(dx))
dxcl = int(math.ceil(dx))
if teff < 0.0:
tefffl = int(0)
teffcl = int(0)

elif teff > 11.0:
tefffl = int(11)
teffcl = int(11)

else:
tefffl = int(math.floor(teff))
teffcl = int(math.ceil(teff))

teffdec = teff - tefffl

#average temperature dependent synthetics
for i in range(0,ndata):
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synth[i] = synthgrid[tefffl][i]*(1-teffdec) +
synthgrid[teffcl][i]*(teffdec)

#veil the spectra
for i in range(0, ndata):
veiled[i] = (synth[i] + rk)/(1 + rk)

#broaden the spectra
broadened = pyasl.rotBroad(x, veiled, 0.6, abs(vsini))

#shift the spectra
if dx == 0.0:
return broadened

if dx > 0.0:
dxdec = dx - float(dxfl)
for i in range(dxcl, ndata):
shifted[i] = broadened[i - dxfl] + (broadened[i - dxcl] -
broadened[i - dxfl])*dxdec

for i in range(0, dxcl):
shifted[i] = 1.0

return shifted
if dx < 0.0:
dxdec = float(dxcl) - dx
for i in range(0, ndata + dxfl):
shifted[i] = broadened[i - dxcl] + (broadened[i - dxfl] -
broadened[i - dxcl])*dxdec

for i in range(ndata + dxfl, ndata):
shifted[i] = 1.0

return shifted

#Then the likelihood function and initial params: use log
def lnlike(theta, x, y, yerr):
vsini, rk, dx, teff = theta
return -0.5* np.sum(((y-model(vsini, rk, dx, teff))/yerr)**2 +
np.log(2.0 * np.pi * yerr**2))

nll = lambda *args: -lnlike(*args)
result = op.minimize(nll, [vsini0, rk0, dx0, teff0], args=(x, y, yerr))
vsini_ml, rk_ml, dx_ml, teff_ml = result["x"]
#result["x"] = vsini0, rk0, dx0, teff0

# Now define the priors: use log
def lnprior(theta):
vsini, rk, dx, teff = theta
if 0.0 < vsini < 100.0 and -0.5 < rk < 15.0 and -50.0 < dx < 30.0 and
0.0 < teff < 11.0:
return 0.0

return -np.inf
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# Combine likelihood & priors to get probability:
def lnprob(theta, x, y, yerr):
lp = lnprior(theta)
if not np.isfinite(lp):
return -np.inf

return lp + lnlike(theta, x, y, yerr)

print vsini_ml, rk_ml, dx_ml, teff_ml

#Set up and initialize walkers:
ndim, nwalkers = 4, 100
pos = [result["x"] + 1e-2*np.random.randn(ndim) for i in range(nwalkers)]
#Set up and run sampler
#100 walkers and 500 steps takes ~20 minutes for a 1000 channel spectrum

sampler = emcee.EnsembleSampler(nwalkers, ndim, lnprob, args=(x, y, yerr),
threads =4)

sampler.run_mcmc(pos, 500)

samples = sampler.chain[:, 100:, :].reshape((-1, ndim))
#Display relative probablility distributions
fig = corner.corner(samples, labels=["$vsini$","$r_k$","$dx$","$teff$"])
#take out truths

fig.savefig("Output.png")

#Print out most likely values for each parameter and one sigma uncertainty
vsini_mcmc, rk_mcmc, dx_mcmc, teff_mcmc = map(lambda v: (v[1], v[2]-v[1],
v[1]-v[0]),

zip(*np.percentile(samples, [16,50,84],
axis=0)))

print vsini_mcmc
print rk_mcmc
print dx_mcmc
print teff_mcmc

#Plot the modified synthetic against the original data to compare
fig, ax = plt.subplots(figsize=(16,10))
majorLocator = MultipleLocator(0.001)
minorLocator = MultipleLocator(0.01)

ax.set_ylim([.5, 1.2])
ax.xaxis.set_major_locator(majorLocator)
ax.xaxis.set_minor_locator(minorLocator)
ax.set_xlabel("Wavelength (microns)")
ax.set_ylabel("Relative Intensity")
ax.get_xaxis().get_major_formatter().set_useOffset(False)
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ax.plot(x, model(vsini_mcmc[0], rk_mcmc[0], dx_mcmc[0], teff_mcmc[0]))
#Plot a modified synthetic by hand picking values to get approximate
initial "guesses"

#ax.plot(x, model(10.95, 2.25, -13.46, 1.5, 4.0))
ax.plot(x,y)

2. SOURCE CODE FOR DERIVING DISPERSIONS WITH VELBIN

#Code provided by Elisabetta Rigliaco

#python libraries scipy, velbin, and emcee
import velbin
%matplotlib inline
import matplotlib
import matplotlib.pyplot as plt
from matplotlib.ticker import MultipleLocator
import numpy as np
import scipy as sp
import emcee
import corner
import math

##### load in data
data = np.loadtxt(’MCMCResults/subclusters/MCMC_rv_err_mass.txt’,
usecols=(0,1,2))

data[:,0] = data[:,0]
ndata = len(data)
velocities = data[:,0]
sigvel = data[:,1]
mass = data[:,2]

sumv = 0
for i in range(0, ndata):
sumv = sumv + velocities[i]

vmean0 = sumv/ndata
#vdisp0 = np.std(velocities)
vdisp0 = 1.1
fbin0 = 0.5

print vmean0, vdisp0, fbin0
print velocities

# initialize MCMC
p0 = [vmean0, vdisp0, fbin0]
prand = sp.randn(1000, 3) * 0.01 + p0
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log_likelihood = lambda params: fitter(*params) if abs(params[-1] - 0.5) <
0.5 and params[1] > 0.0 else -sp.inf # ensure binary fraction is
between 0 and 1

# generate binaries
binaries = velbin.solar(1000000)
binaries.draw_mass_ratio(’Reggiani13’)
binaries.draw_period(’Raghavan10’)
binaries.draw_eccentricities(’thermal’)

# prepare calculation of log-likelihood
fitter = binaries.single_epoch(velocities, sigvel, mass)
# run MCMC
sampler = emcee.EnsembleSampler(1000, 3, log_likelihood)
sampler.run_mcmc(prand, 400)
samples = sampler.chain[:, 100:, :].reshape((-1, 3))
fig = corner.corner(samples, labels=["$vmean$","$vdisp$","$fbin$"]) #take
out truths

fig.savefig("Rig_Velbin.png")

vmean_mcmc, vdisp_mcmc, fbin_mcmc = map(lambda v: (v[1], v[2]-v[1],
v[1]-v[0]),

zip(*np.percentile(samples, [16,50,84],
axis=0)))

print vmean_mcmc
print vdisp_mcmc
print fbin_mcmc



APPENDIX B.

CORNER PLOTS AND OVERLAYS OF INDIVIDUAL SOURCES
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The followingAppendix contains corner plots and overlays for all spectra analyzed in

this study. They are organized first by instrument (NIRSPEC, CSHELL, CRIRES, iSHELL)

and then alphabetically.
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Figure 1 Relative probability distributions and correlations for the four fit parameters re-
turned by emcee to best match the NIRSPEC spectrum of object CRBR 12 corresponding
to T = 3460 ± 20 K, vsini = 40.5 ± 0.7 km s-1, rk = 0.89 ± .02, and dx = −0.76 ± 0.13.
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Figure 2 Synthetic overlay (blue) on top of the data (orange) for the four fit parameters returned by emcee to
bestmatch theNIRSPEC spectrum of object CRBR12 corresponding toT = 3460±20K, vsini = 40.5±0.7
km s-1, rk = 0.89 ± .02, and dx = −0.76 ± 0.13.
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Figure 3 Relative probability distributions and correlations for the four fit parameters re-
turned by emcee to best match the NIRSPEC spectrum of radial velocity standard GJ 806
corresponding toT = 3760±40K, vsini = 2.2±1.5, rk = 0.15±0.01, and dx = −8.56±0.02.
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Figure 4 Synthetic overlay (blue) on top of the data (orange) for the four fit parameters returned by emcee
to best match the NIRSPEC spectrum of radial velocity standard GJ 806 corresponding to T = 3760 ± 40
K, vsini = 2.2 ± 1.5 km s-1, rk = 0.15 ± 0.01, and dx = −8.56 ± 0.02.
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Figure 5 Relative probability distributions and correlations for the four fit parameters re-
turned by emcee to best match the NIRSPEC spectrum of object GSS 29 corresponding to
T = 4360 ± 40 K, vsini = 36.6 ± 0.4 km s-1, rk = 0.3 ± 0.02, and dx = 0.84 ± 0.08.
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Figure 6 Synthetic overlay (blue) on top of the data (orange) for the four fit parameters returned by emcee to
best match the NIRSPEC spectrum of object GSS 29 corresponding to T = 4360±40 K, vsini = 36.6±0.4
km s-1, rk = 0.3 ± 0.02, and dx = 0.84 ± 0.08.
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Figure 7 Relative probability distributions and correlations for the four fit parameters re-
turned by emcee to best match the NIRSPEC spectrum of object GY 21 corresponding to
T = 4340 ± 100 K, vsini = 20.3 ± 0.9 km s-1, rk = 1.91 ± 0.09, and dx = 2.42 ± 0.09.
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Figure 8 Synthetic overlay (blue) on top of the data (orange) for the four fit parameters returned by emcee to
best match the NIRSPEC spectrum of object GY 21 corresponding toT = 4340±100 K, vsini = 20.3±0.9
km s-1, rk = 1.91 ± 0.09, and dx = 2.42 ± 0.09.
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Figure 9 Relative probability distributions and correlations for the four fit parameters re-
turned by emcee to best match the NIRSPEC spectrum of object GY 30 corresponding to
T = 3140 ± 20 K, vsini = 33.5 ± 1.1 km s-1, rk = 1.39 ± 0.02, and dx = 0.38 ± 0.15.
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Figure 10 Synthetic overlay (blue) on top of the data (orange) for the four fit parameters returned by emcee
to best match the NIRSPEC spectrum of object GY 30 corresponding toT = 3140±20K, vsini = 33.5±1.1
km s-1, rk = 1.39 ± 0.02, and dx = 0.38 ± 0.15.
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Figure 11 Relative probability distributions and correlations for the four fit parameters
returned by emcee to best match the NIRSPEC spectrum of object GY 91 corresponding to
T = 3540 ± 20 K, vsini = 9.6 ± 0.2 km s-1, rk = 0.32 ± 0.01, and dx = 0.48 ± 0.02.
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Figure 12 Synthetic overlay (blue) on top of the data (orange) for the four fit parameters returned by emcee
to best match the NIRSPEC spectrum of object GY 91 corresponding toT = 3540±20 K, vsini = 9.6±0.2
km s-1, rk = 0.32 ± 0.01, and dx = 0.48 ± 0.02.
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Figure 13 Relative probability distributions and correlations for the four fit parameters
returned by emcee to best match the NIRSPEC spectrum of object GY 197 corresponding
to T = 3220 ± 20 K, vsini = 49.8 ± 1.1 km s-1, rk = 0.43 ± 0.01, and dx = 0.52 ± 0.15.



90

Figure 14 Synthetic overlay (blue) on top of the data (orange) for the four fit parameters returned by emcee to
best match the NIRSPEC spectrum of object GY 197 corresponding toT = 3220±20 K, vsini = 49.8±1.1
km s-1, rk = 0.43 ± 0.01, and dx = 0.52 ± 0.15.
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Figure 15 Relative probability distributions and correlations for the four fit parameters
returned by emcee to best match the NIRSPEC spectrum of object GY 224 corresponding
to T = 4400 ± 210 K, vsini = 9.9 ± 2.8 km s-1, rk = 5.03 ± 0.45, and dx = 2.81 ± 0.12.
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Figure 16 Synthetic overlay (blue) on top of the data (orange) for the four fit parameters returned by
emcee to best match the NIRSPEC spectrum of object GY 224 corresponding to T = 4400 ± 210 K,
vsini = 9.90 ± 2.8 km s-1, rk = 5.03 ± 0.45, and dx = 2.81 ± 0.12.
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Figure 17 Relative probability distributions and correlations for the four fit parameters
returned by emcee to best match the NIRSPEC spectrum of radial velocity standard
HD 201091 corresponding to T = 4360 ± 40 K, vsini = 2.2 ± 1.5 km s-1, rk = 0.14 ± 0.02,
and dx = −18.52 ± 0.02.
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Figure 18 Synthetic overlay (blue) on top of the data (orange) for the four fit parameters returned by
emcee to best match the NIRSPEC spectrum of radial velocity standard HD 201091 corresponding to
T = 4360 ± 40 K, vsini = 2.2 ± 1.5 km s-1, rk = 0.14 ± 0.02, and dx = −18.52 ± 0.02.
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Figure 19 Relative probability distributions and correlations for the four fit parameters re-
turned by emcee to best match the NIRSPEC spectrum of object ISO-Oph 51 corresponding
to T = 4500 ± 180 K, vsini = 34.8 ± 2.1 km s-1, rk = 2.65 ± 0.26, and dx = 3.13 ± 0.29.
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Figure 20 Synthetic overlay (blue) on top of the data (orange) for the four fit parameters returned by
emcee to best match the NIRSPEC spectrum of object ISO-Oph 51 corresponding to T = 4500 ± 180 K,
vsini = 34.8 ± 2.1 km s-1, rk = 2.65 ± 0.26, and dx = 3.13 ± 0.29.
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Figure 21 Relative probability distributions and correlations for the four fit parameters
returned by emcee to best match the NIRSPEC spectrum of object VSSG 17 corresponding
to T = 4160 ± 90 K, vsini = 41.2 ± 0.5 km s-1, rk = 0.51 ± 0.03, and dx = 2.81 ± 0.10.
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Figure 22 Synthetic overlay (blue) on top of the data (orange) for the four fit parameters returned by
emcee to best match the NIRSPEC spectrum of object VSSG 17 corresponding to T = 4160 ± 90 K,
vsini = 41.2 ± 0.5 km s-1, rk = 0.51 ± 0.03, and dx = 2.81 ± 0.10.
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Figure 23 Relative probability distributions and correlations for the four fit parameters
returned by emcee to best match the NIRSPEC spectrum of object WL 1 corresponding to
T = 3420 ± 20 K, vsini = 13.3 ± 0.4 km s-1, rk = 0.36 ± 0.01, and dx = −5.63 ± 0.03.
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Figure 24 Synthetic overlay (blue) on top of the data (orange) for the four fit parameters returned by emcee
to best match the NIRSPEC spectrum of object WL 1 corresponding toT = 3420±20K, vsini = 13.3±0.4
km s-1, rk = 0.36 ± 0.01, and dx = −5.63 ± 0.03.
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Figure 25 Relative probability distributions and correlations for the four fit parameters
returned by emcee to best match the NIRSPEC spectrum of object WL 3 corresponding to
T = 4320 ± 30 K, vsini = 40.7 ± 0.4 km s-1, rk = 0.19 ± 0.02, and dx = 2.58 ± 0.08.
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Figure 26 Synthetic overlay (blue) on top of the data (orange) for the four fit parameters returned by emcee
to best match the NIRSPEC spectrum of object WL 3 corresponding toT = 4320±30K, vsini = 40.7±0.4
km s-1, rk = 0.19 ± 0.02, and dx = 2.58 ± 0.08.
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Figure 27 Relative probability distributions and correlations for the four fit parameters
returned by emcee to best match the NIRSPEC spectrum of object WL 10 corresponding
to T = 4580 ± 140 K, vsini = 39.0 ± 0.9 km s-1, rk = 0.88 ± 0.12, and dx = 0.51 ± 0.13.
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Figure 28 Synthetic overlay (blue) on top of the data (orange) for the four fit parameters returned by
emcee to best match the NIRSPEC spectrum of object WL 10 corresponding to T = 4580 ± 140 K,
vsini = 39.0 ± 0.9 km s-1, rk = 0.88 ± 0.12, and dx = 0.51 ± 0.13.
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Figure 29 Relative probability distributions and correlations for the four fit parameters
returned by emcee to best match the NIRSPEC spectrum of object WL 12 corresponding
to T = 3420 ± 140 K, vsini = 31.6 ± 2.7 km s-1, rk = 6.3 ± 0.26, and dx = 4.43 ± 0.40.
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Figure 30 Synthetic overlay (blue) on top of the data (orange) for the four fit parameters returned by
emcee to best match the NIRSPEC spectrum of object WL 12 corresponding to T = 3420 ± 140 K,
vsini = 31.6 ± 2.7 km s-1, rk = 6.3 ± 0.26, and dx = 4.43 ± 0.40.
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Figure 31 Relative probability distributions and correlations for the four fit parameters
returned by emcee to best match the NIRSPEC spectrum of object WL 17 corresponding
to T = 3360 ± 60 K, vsini = 3.1 ± 2.9 km s-1, rk = 6.11 ± 0.21, and dx = 3.29 ± 0.12.
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Figure 32 Synthetic overlay (blue) on top of the data (orange) for the four fit parameters returned by emcee
to best match the NIRSPEC spectrum of object WL 17 corresponding toT = 3360±60K, vsini = 3.1±2.9
km s-1, rk = 6.11 ± 0.21, and dx = 3.29 ± 0.12.
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Figure 33 Relative probability distributions and correlations for the four fit parameters
returned by emcee to best match the NIRSPEC spectrum of object WL 19 corresponding
to T = 3680 ± 380 K, vsini = 22.7 ± 1.7 km s-1, rk = 4.80 ± 0.11, and dx = −6.12 ± 0.21.
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Figure 34 Synthetic overlay (blue) on top of the data (orange) for the four fit parameters returned by
emcee to best match the NIRSPEC spectrum of object WL 19 corresponding to T = 3680 ± 380 K,
vsini = 22.7 ± 1.9 km s-1, rk = 4.80 ± 0.11, and dx = −6.12 ± 0.21.
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Figure 35 Relative probability distributions and correlations for the four fit parameters
returned by emcee to best match the NIRSPEC spectrum of objectWLY 2-43 corresponding
to T = 4920 ± 190 K, vsini = 47.0 ± 3.6 km s-1, rk = 4.71 ± 0.85, and dx = 2.03 ± 0.65.
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Figure 36 Synthetic overlay (blue) on top of the data (orange) for the four fit parameters returned by
emcee to best match the NIRSPEC spectrum of object WLY 2-43 corresponding to T = 4920 ± 190 K,
vsini = 47.0 ± 3.6 km s-1, rk = 4.71 ± 0.85, and dx = 2.03 ± 0.65.
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Figure 37 Relative probability distributions and correlations for the four fit parameters
returned by emcee to best match the NIRSPEC spectrum of objectWLY 2-44 corresponding
to T = 4360 ± 380 K, vsini = 28.9 ± 1.6 km s-1, rk = 3.25 ± 0.39, and dx = 2.15 ± 0.24.
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Figure 38 Synthetic overlay (blue) on top of the data (orange) for the four fit parameters returned by
emcee to best match the NIRSPEC spectrum of object WLY 2-44 corresponding to T = 4360 ± 380 K,
vsini = 28.9 ± 1.6 km s-1, rk = 3.25 ± 0.39, and dx = 2.15 ± 0.24.
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Figure 39 Relative probability distributions and correlations for the four fit parameters
returned by emcee to best match the NIRSPEC spectrum of objectWLY 2-51 corresponding
to T = 4660 ± 230 K, vsini = 42.3 ± 2.0 km s-1, rk = 2.32 ± 0.49, and dx = 1.41 ± 0.39.
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Figure 40 Synthetic overlay (blue) on top of the data (orange) for the four fit parameters returned by
emcee to best match the NIRSPEC spectrum of object WLY 2-51 corresponding to T = 4660 ± 230 K,
vsini = 42.3 ± 2.0 km s-1, rk = 2.32 ± 0.49, and dx = 1.41 ± 0.39.
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Figure 41 Relative probability distributions and correlations for the four fit parameters
returned by emcee to best match the CSHELL spectrum of object GY 314 corresponding
to T = 3220 ± 20 K, vsini = 16.9 ± 0.5 km s-1, rk = 1.07 ± 0.02, and dx = 2.37 ± 0.09.
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Figure 42 Synthetic overlay (blue) on top of the data (orange) for the four fit parameters returned by emcee
to best match the CSHELL spectrum of object GY 314 corresponding toT = 3220±20K, vsini = 16.9±0.5
km s-1, rk = 1.07 ± 0.02, and dx = 2.37 ± 0.09.
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Figure 43 Relative probability distributions and correlations for the four fit parameters re-
turned by emcee to bestmatch the CSHELL spectrum of radial velocity standardHD111631
corresponding to T = 3400 ± 20 K, vsini = 8.1 ± 0. km s-1, rk = 0.00 ± 0.01, and
dx = 12.32 ± 0.02.
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Figure 44 Synthetic overlay (blue) on top of the data (orange) for the four fit parameters returned by emcee
to best match the CSHELL spectrum of radial velocity standard HD 111631 corresponding toT = 3400±20
K, vsini = 8.1 ± 0.1 km s-1, rk = 0.00 ± 0.01, and dx = 12.32 ± 0.02.
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Figure 45 Relative probability distributions and correlations for the four fit parameters re-
turned by emcee to bestmatch the CSHELL spectrum of radial velocity standardHD122120
corresponding to T = 3940 ± 20 K, vsini = 8.8 ± 0.1 km s-1, rk = 0.00 ± 0.01, and
dx = −12.72 ± 0.02.
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Figure 46 Synthetic overlay (blue) on top of the data (orange) for the four fit parameters returned by emcee
to best match the CSHELL spectrum of radial velocity standard HD 122120 corresponding toT = 3940±20
K, vsini = 8.8 ± 0.1 km s-1, rk = 0.00 ± 0.01, and dx = −12.72 ± 0.02.
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Figure 47 Relative probability distributions and correlations for the four fit parameters re-
turned by emcee to bestmatch the CSHELL spectrum of radial velocity standardHD147776
corresponding to T = 3920 ± 50 K, vsini = 5.4 ± 0.1 km s-1, rk = 0.71 ± 0.02, and
dx = 10.62 ± 0.03.
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Figure 48 Synthetic overlay (blue) on top of the data (orange) for the four fit parameters returned by emcee
to best match the CSHELL spectrum of radial velocity standard HD 147776 corresponding toT = 3920±50
K, vsini = 5.4 ± 0.1 km s-1, rk = 0.71 ± 0.02, and dx = 10.62 ± 0.03.
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Figure 49 Relative probability distributions and correlations for the four fit parameters re-
turned by emcee to bestmatch the CSHELL spectrum of radial velocity standardHD156026
corresponding to T = 4280 ± 50 K, vsini = 5.7 ± 0.1 km s-1, rk = 0.31 ± 0.01, and
dx = 6.84 ± 0.02.
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Figure 50 Synthetic overlay (blue) on top of the data (orange) for the four fit parameters returned by emcee
to best match the CSHELL spectrum of radial velocity standard HD 156026 corresponding toT = 4280±50
K, vsini = 5.7 ± 0.1 km s-1, rk = 0.31 ± 0.01, and dx = 6.84 ± 0.02.
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Figure 51 Relative probability distributions and correlations for the four fit parameters
returned by emcee to best match the CRIRES spectrum of object GSS 26 corresponding to
T = 4400 ± 20 K, vsini = 19.0 ± 0.1 km s-1, rk = 0.28 ± 0.01, and dx = −18.82 ± 0.06.
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Figure 52 Synthetic overlay (blue) on top of the data (orange) for the four fit parameters returned by emcee
to best match the CRIRES spectrum of object GSS 26 corresponding toT = 4400±20K, vsini = 19.0±0.1
km s-1, rk = 0.28 ± 0.01, and dx = −18.82 ± 0.06.
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Figure 53 Relative probability distributions and correlations for the four fit parameters
returned by emcee to best match the CRIRES spectrum of object GY 23 corresponding to
T = 4120 ± 20 K, vsini = 20.9 ± 0.2 km s-1, rk = 0.52 ± 0.01, and dx = −18.98 ± 0.06.
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Figure 54 Synthetic overlay (blue) on top of the data (orange) for the four fit parameters returned by emcee
to best match the CRIRES spectrum of object GY 23 corresponding to T = 4120±20 K, vsini = 20.9±0.2
km s-1, rk = 0.52 ± 0.01, and dx = −18.98 ± 0.06.
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Figure 55 Relative probability distributions and correlations for the four fit parameters
returned by emcee to best match the CRIRES spectrum of object GY 224 corresponding to
T = 5240 ± 50 K, vsini = 23.0 ± 0.8 km s-1, rk = 0.6 ± 0.13, and dx = −12.10 ± 0.29.
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Figure 56 Synthetic overlay (blue) on top of the data (orange) for the four fit parameters returned by emcee
to best match the CRIRES spectrum of object GY 224 corresponding toT = 5240±50K, vsini = 23.0±0.8
km s-1, rk = 0.6 ± 0.13, and dx = −12.10 ± 0.29.
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Figure 57 Relative probability distributions and correlations for the four fit parameters re-
turned by emcee to best match the CRIRES spectrum of radial velocity standard HD 129642
corresponding to T = 4600 ± 20 K, vsini = 0.7 ± 0.3 km s-1, rk = 0.13 ± 0.01, and
dx = −11.48 ± 0.01.
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Figure 58 Synthetic overlay (blue) on top of the data (orange) for the four fit parameters returned by emcee
to best match the CRIRES spectrum of radial velocity standard HD 129642 corresponding toT = 4600±20
K, vsini = 0.7 ± 0.3 km s-1, rk = 0.13 ± 0.01, and dx = −11.48 ± 0.01.
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Figure 59 Relative probability distributions and correlations for the four fit parameters
returned by emcee to best match the CRIRES spectrum of object VSSG 17 corresponding
to T = 4040 ± 40 K, vsini = 43.4 ± 0.5 km s-1, rk = 0.34 ± 0.01, and dx = 15.13 ± 0.20.
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Figure 60 Synthetic overlay (blue) on top of the data (orange) for the four fit parameters returned by emcee to
best match the CRIRES spectrum of object VSSG 17 corresponding toT = 4040±40 K, vsini = 43.4±0.5
km s-1, rk = 0.34 ± 0.01, and dx = 15.13 ± 0.20.
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Figure 61 Relative probability distributions and correlations for the four fit parameters
returned by emcee to best match the CRIRES spectrum of object VSSG 18 from 2008
corresponding to T = 3800 ± 20 K, vsini = 23.61 ± 0.05 km s-1, rk = 0.12 ± 0.01, and
dx = −11.34 ± 0.06.
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Figure 62 Synthetic overlay (blue) on top of the data (orange) for the four fit parameters returned by emcee
to best match the CRIRES spectrum of object VSSG 18 from 2008 corresponding to T = 3800 ± 20 K,
vsini = 23.61 ± 0.05 km s-1, rk = 0.12 ± 0.01, and dx = −11.34 ± 0.06.
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Figure 63 Relative probability distributions and correlations for the four fit parameters
returned by emcee to best match the CRIRES spectrum of object VSSG 18 from 2012
corresponding to T = 4100 ± 20 K, vsini = 22.2 ± 0.1 km s-1, rk = 0.29 ± 0.01, and
dx = 20.40 ± 0.06.
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Figure 64 Synthetic overlay (blue) on top of the data (orange) for the four fit parameters returned by emcee
to best match the CRIRES spectrum of object VSSG 18 from 2012 corresponding to T = 4100 ± 20 K,
vsini = 22.2 ± 0.1 km s-1, rk = 0.29 ± 0.01, and dx = 20.40 ± 0.06.
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Figure 65 Relative probability distributions and correlations for the four fit parameters
returned by emcee to best match the CRIRES spectrum of object WL 17 corresponding to
T = 3120 ± 20 K, vsini = 14.56 ± 0.08 km s-1, rk = 0.66 ± 0.01, and dx = 16.26 ± 0.05.
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Figure 66 Synthetic overlay (blue) on top of the data (orange) for the four fit parameters returned by emcee to
best match the CRIRES spectrum of object WL 17 corresponding toT = 3120±20 K, vsini = 14.56±0.08
km s-1, rk = 0.66 ± 0.01, and dx = 16.26 ± 0.05.
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Figure 67 Relative probability distributions and correlations for the four fit parameters
returned by emcee to best match the CRIRES spectrum of object WLY 2-44 corresponding
to T = 5300 ± 60 K, vsini = 29.1 ± 0.6 km s-1, rk = 0.38 ± 0.17, and dx = 15.78 ± 0.24.
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Figure 68 Synthetic overlay (blue) on top of the data (orange) for the four fit parameters returned by
emcee to best match the CRIRES spectrum of object WLY 2-44 corresponding to T = 5300 ± 60 K,
vsini = 29.1 ± 0.6 km s-1, rk = 0.38 ± 0.17, and dx = 15.78 ± 0.24.
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Figure 69 Relative probability distributions and correlations for the four fit parameters
returned by emcee to best match the iSHELL spectrum of order 224 of object GY 33
corresponding to T = 4640 ± 20 K, vsini = 15.49 ± 0.07 km s-1, rk = 0.00 ± 0.01, and
dx = −16.47 ± 0.05.
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Figure 70 Synthetic overlay (blue) on top of the data (orange) for the four fit parameters returned by emcee
to best match the iSHELL spectrum of order 224 of object GY 33 corresponding to T = 4640 ± 20 K,
vsini = 15.49 ± 0.07 km s-1, rk = 0.00 ± 0.01, and dx = −16.47 ± 0.05.
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Figure 71 Relative probability distributions and correlations for the four fit parameters
returned by emcee to best match the iSHELL spectrum of order 226 of object GY 33
corresponding to T = 3640 ± 20 K, vsini = 12.04 ± 0.08 km s-1, rk = 0.04 ± 0.01, and
dx = −15.90 ± 0.04.
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Figure 72 Synthetic overlay (blue) on top of the data (orange) for the four fit parameters returned by emcee
to best match the iSHELL spectrum of order 226 of object GY 33 corresponding to T = 3640 ± 20 K,
vsini = 12.04 ± 0.08 km s-1, rk = 0.04 ± 0.01, and dx = −15.90 ± 0.04.



149

Figure 73 Relative probability distributions and correlations for the four fit parameters
returned by emcee to best match the iSHELL spectrum of order 224 of object GY 235
corresponding to T = 3460 ± 20 K, vsini = 12.45 ± 0.32 km s-1, rk = 1.42 ± 0.04, and
dx = −19.00 ± 0.50.
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Figure 74 Synthetic overlay (blue) on top of the data (orange) for the four fit parameters returned by emcee
to best match the iSHELL spectrum of order 224 of object GY 235 corresponding to T = 3460 ± 20 K,
vsini = 12.45 ± 0.32 km s-1, rk = 1.42 ± 0.04, and dx = −19.00 ± 0.50.
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Figure 75 Relative probability distributions and correlations for the four fit parameters
returned by emcee to best match the iSHELL spectrum of order 225 of object GY 235
corresponding to T = 3260 ± 20 K, vsini = 12.09 ± 0.14 km s-1, rk = 1.60 ± 0.01, and
dx = −17.00 ± 0.50.
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Figure 76 Synthetic overlay (blue) on top of the data (orange) for the four fit parameters returned by emcee
to best match the iSHELL spectrum of order 225 of object GY 235 corresponding to T = 3260 ± 20 K,
vsini = 12.09 ± 0.14 km s-1, rk = 1.60 ± 0.01, and dx = −17.00 ± 0.50.
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Figure 77 Relative probability distributions and correlations for the four fit parameters
returned by emcee to best match the iSHELL spectrum of order 224 of object GY 284
corresponding to T = 3500 ± 20 K, vsini = 5.90 ± 0.14 km s-1, rk = 35 ± 0.01, and
dx = −16.20 ± 0.02.
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Figure 78 Synthetic overlay (blue) on top of the data (orange) for the four fit parameters returned by emcee
to best match the iSHELL spectrum of order 224 of object GY 284 corresponding to T = 3500 ± 20 K,
vsini = 5.90 ± 0.14 km s-1, rk = 35 ± 0.01, and dx = −16.20 ± 0.02.
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Figure 79 Relative probability distributions and correlations for the four fit parameters
returned by emcee to best match the iSHELL spectrum of order 225 of object GY 284
corresponding to T = 4260 ± 20 K, vsini = 5.32 ± 0.07 km s-1, rk = 0.39 ± 0.02, and
dx = −15.48 ± 0.02.
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Figure 80 Synthetic overlay (blue) on top of the data (orange) for the four fit parameters returned by emcee
to best match the iSHELL spectrum of order 225 of object GY 284 corresponding to T = 4260 ± 20 K,
vsini = 5.32 ± 0.07 km s-1, rk = 0.39 ± 0.02, and dx = −15.48 ± 0.02.
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Figure 81 Relative probability distributions and correlations for the four fit parameters
returned by emcee to best match the iSHELL spectrum of order 226 of object GY 284
corresponding to T = 3560 ± 20 K, vsini = 4.96 ± 0.07 km s-1, rk = 0.43 ± 0.01, and
dx = −16.24 ± 0.02.
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Figure 82 Synthetic overlay (blue) on top of the data (orange) for the four fit parameters returned by emcee
to best match the iSHELL spectrum of order 226 of object GY 284 corresponding to T = 3560 ± 20 K,
vsini = 4.96 ± 0.07 km s-1, rk = 0.43 ± 0.01, and dx = −16.24 ± 0.02.
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Figure 83 Relative probability distributions and correlations for the four fit parameters
returned by emcee to best match the iSHELL spectrum of order 224 of radial velocity
standard HD 122120 corresponding to T = 4660 ± 20 K, vsini = 1.38 ± 0.11 km s-1,
rk = 0.00 ± 0.01, and dx = −41.80 ± 0.01.



16
0

Figure 84 Synthetic overlay (blue) on top of the data (orange) for the four fit parameters returned by emcee
to best match the iSHELL spectrum of order 224 of radial velocity standard HD 122120 corresponding to
T = 4660 ± 20 K, vsini = 1.38 ± 0.11 km s-1, rk = 0.00 ± 0.01, and dx = −41.80 ± 0.01.
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Figure 85 Relative probability distributions and correlations for the four fit parameters
returned by emcee to best match the iSHELL spectrum of order 225 of radial velocity
standard HD 122120 corresponding to T = 4500 ± 20 K, vsini = 1.60 ± 0.20 km s-1,
rk = 0.00 ± 0.01, and dx = −41.97 ± 0.01.
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Figure 86 Synthetic overlay (blue) on top of the data (orange) for the four fit parameters returned by emcee
to best match the iSHELL spectrum of order 225 of radial velocity standard HD 122120 corresponding to
T = 4500 ± 20 K, vsini = 1.60 ± 0.20 km s-1, rk = 0.00 ± 0.01, and dx = −41.97 ± 0.01.
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Figure 87 Relative probability distributions and correlations for the four fit parameters
returned by emcee to best match the iSHELL spectrum of order 226 of radial velocity
standard HD 122120 corresponding to T = 4480 ± 20 K, vsini = 0.59 ± 0.40 km s-1,
rk = 0.00 ± 0.01, and dx = −42.06 ± 0.01.
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Figure 88 Synthetic overlay (blue) on top of the data (orange) for the four fit parameters returned by emcee
to best match the iSHELL spectrum of order 226 of radial velocity standard HD 122120 corresponding to
T = 4480 ± 20 K, vsini = 0.59 ± 0.40 km s-1, rk = 0.00 ± 0.01, and dx = −42.06 ± 0.01.



165

Figure 89 Relative probability distributions and correlations for the four fit parameters
returned by emcee to best match the iSHELL spectrum of order 224 of radial velocity
standard HD 156026 corresponding to T = 4460 ± 20 K, vsini = 1.25 ± 0.06 km s-1,
rk = 0.15 ± 0.01, and dx = −16.75 ± 0.02.
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Figure 90 Synthetic overlay (blue) on top of the data (orange) for the four fit parameters returned by emcee
to best match the iSHELL spectrum of order 224 of radial velocity standard HD 156026 corresponding to
T = 4460 ± 20 K, vsini = 1.25 ± 0.06 km s-1, rk = 0.15 ± 0.01, and dx = −16.75 ± 0.02.
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Figure 91 Relative probability distributions and correlations for the four fit parameters
returned by emcee to best match the iSHELL spectrum of order 225 of radial velocity
standard HD 156026 corresponding to T = 4520 ± 20 K, vsini = 0.61 ± 0..9 km s-1,
rk = 0.17 ± 0.01, and dx = −16.65 ± 0.01.
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Figure 92 Synthetic overlay (blue) on top of the data (orange) for the four fit parameters returned by emcee
to best match the iSHELL spectrum of order 225 of radial velocity standard HD 156026 corresponding to
T = 4520 ± 20 K, vsini = 0.61 ± 0..9 km s-1, rk = 0.17 ± 0.01, and dx = −16.65 ± 0.01.
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Figure 93 Relative probability distributions and correlations for the four fit parameters
returned by emcee to best match the iSHELL spectrum of order 226 of radial velocity
standard HD 1560262 corresponding to T = 4340 ± 20 K, vsini = 0.68 ± 0.48 km s-1,
rk = 0.24 ± 0.01, and dx = −15.57 ± 0.01.
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Figure 94 Synthetic overlay (blue) on top of the data (orange) for the four fit parameters returned by emcee
to best match the iSHELL spectrum of order 226 of radial velocity standard HD 156026 corresponding to
T = 4340 ± 20 K, vsini = 0.68 ± 0.48 km s-1, rk = 0.24 ± 0.01, and dx = −15.57 ± 0.01.
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Figure 95 Relative probability distributions and correlations for the four fit parameters
returned by emcee to best match the iSHELL spectrum of order 224 of radial velocity
standard HD 165222 corresponding to T = 3780 ± 20 K, vsini = 2.37 ± 0.03 km s-1,
rk = 0.19 ± 0.01, and dx = 8.15 ± 0.02.
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Figure 96 Synthetic overlay (blue) on top of the data (orange) for the four fit parameters returned by emcee
to best match the iSHELL spectrum of order 224 of radial velocity standard HD 165222 corresponding to
T = 3780 ± 20 K, vsini = 2.37 ± 0.03 km s-1, rk = 0.19 ± 0.01, and dx = 8.15 ± 0.02.
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Figure 97 Relative probability distributions and correlations for the four fit parameters
returned by emcee to best match the iSHELL spectrum of order 225 of radial velocity
standard HD 165222 corresponding to T = 3620 ± 20 K, vsini = 2.05 ± 0.25 km s-1,
rk = 0.14 ± 0.01, and dx = 8.35 ± 0.01.
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Figure 98 Synthetic overlay (blue) on top of the data (orange) for the four fit parameters returned by emcee
to best match the iSHELL spectrum of order 225 of radial velocity standard HD 165222 corresponding to
T = 3620 ± 20 K, vsini = 2.05 ± 0.25 km s-1, rk = 0.14 ± 0.01, and dx = 8.35 ± 0.01.
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Figure 99 Relative probability distributions and correlations for the four fit parameters
returned by emcee to best match the iSHELL spectrum of order 226 of radial velocity
standard HD 165222 corresponding to T = 4100 ± 60 K, vsini = 2.39 ± 0.04 km s-1,
rk = 0.30 ± 0.01, and dx = 8.33 ± 0.02.
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Figure 100 Synthetic overlay (blue) on top of the data (orange) for the four fit parameters returned by emcee
to best match the iSHELL spectrum of order 226 of radial velocity standard HD 165222 corresponding to
T = 4100 ± 60 K, vsini = 2.39 ± 0.04 km s-1, rk = 0.30 ± 0.01, and dx = 8.33 ± 0.02.
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Figure 101 Relative probability distributions and correlations for the four fit parameters
returned by emcee to best match the iSHELL spectrum of order 224 of radial velocity
standard HD 173818 corresponding to T = 4360 ± 20 K, vsini = 1.29 ± 0.09 km s-1,
rk = 0.21 ± 0.01, and dx = −7.72 ± 0.02.
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Figure 102 Synthetic overlay (blue) on top of the data (orange) for the four fit parameters returned by emcee
to best match the iSHELL spectrum of order 224 of radial velocity standard HD 173818 corresponding to
T = 4360 ± 20 K, vsini = 1.29 ± 0.09 km s-1, rk = 0.21 ± 0.01, and dx = −7.72 ± 0.02.
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Figure 103 Relative probability distributions and correlations for the four fit parameters
returned by emcee to best match the iSHELL spectrum of order 225 of radial velocity
standard HD 173818 corresponding to T = 4400 ± 20 K, vsini = 2.37 ± 0.02 km s-1,
rk = 0.12 ± 0.01, and dx = −7.57 ± 0.01.
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Figure 104 Synthetic overlay (blue) on top of the data (orange) for the four fit parameters returned by emcee
to best match the iSHELL spectrum of order 225 of radial velocity standard HD 173818 corresponding to
T = 4400 ± 20 K, vsini = 2.37 ± 0.02 km s-1, rk = 0.12 ± 0.01, and dx = −7.57 ± 0.01.
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Figure 105 Relative probability distributions and correlations for the four fit parameters
returned by emcee to best match the iSHELL spectrum of order 226 of radial velocity
standard HD 173818 corresponding to T = 4200 ± 20 K, vsini = 2.38 ± 0.03 km s-1,
rk = 0.20 ± 0.01, and dx = −7.58 ± 0.01.
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Figure 106 Synthetic overlay (blue) on top of the data (orange) for the four fit parameters returned by emcee
to best match the iSHELL spectrum of order 226 of radial velocity standard HD 173818 corresponding to
T = 4200 ± 20 K, vsini = 2.38 ± 0.03 km s-1, rk = 0.20 ± 0.01, and dx = −7.58 ± 0.01.
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Figure 107 Relative probability distributions and correlations for the four fit parameters
returned by emcee to best match the iSHELL spectrum of order 224 of object SR 24N
corresponding to T = 3520 ± 40 K, vsini = 9.74 ± 0.32 km s-1, rk = 3.64 ± 0.09, and
dx = −13.22 ± 0.16.
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Figure 108 Synthetic overlay (blue) on top of the data (orange) for the four fit parameters returned by emcee
to best match the iSHELL spectrum of order 224 of object SR 24N corresponding to T = 3520 ± 40 K,
vsini = 9.74 ± 0.32 km s-1, rk = 3.64 ± 0.09, and dx = −13.22 ± 0.16.
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Figure 109 Relative probability distributions and correlations for the four fit parameters
returned by emcee to best match the iSHELL spectrum of order 225 of object SR 24N
corresponding to T = 3380 ± 20 K, vsini = 10.78 ± 0.31 km s-1, rk = 3.47 ± 0.05, and
dx = −13.26 ± 0.11.
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Figure 110 Synthetic overlay (blue) on top of the data (orange) for the four fit parameters returned by emcee
to best match the iSHELL spectrum of order 225 of object SR 24N corresponding to T = 3380 ± 20 K,
vsini = 10.78 ± 0.31 km s-1, rk = 3.47 ± 0.05, and dx = −13.26 ± 0.11.
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Figure 111 Relative probability distributions and correlations for the four fit parameters
returned by emcee to best match the iSHELL spectrum of order 224 of object SR 24S
corresponding to T = 4900 ± 70 K, vsini = 36.73 ± 0.95 km s-1, rk = 1.80 ± 0.15, and
dx = −12.56 ± 0.60.
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Figure 112 Synthetic overlay (blue) on top of the data (orange) for the four fit parameters returned by
emcee to best match the iSHELL spectrum of order 224 of object SR 24S corresponding to T = 4900± 70
K, vsini = 36.73 ± 0.95 km s-1, rk = 1.80 ± 0.15, and dx = −12.56 ± 0.60.
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Figure 113 Relative probability distributions and correlations for the four fit parameters
returned by emcee to best match the iSHELL spectrum of order 225 of object SR 24S
corresponding to T = 4420 ± 100 K, vsini = 26.29 ± 0.71 km s-1, rk = 5.24 ± 0.28, and
dx = −14.10 ± 0.39.
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Figure 114 Synthetic overlay (blue) on top of the data (orange) for the four fit parameters returned by emcee
to best match the iSHELL spectrum of order 225 of object SR 24S corresponding to T = 4420 ± 100 K,
vsini = 26.29 ± 0.71 km s-1, rk = 5.24 ± 0.28, and dx = −14.10 ± 0.39.
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Figure 115 Relative probability distributions and correlations for the four fit parameters
returned by emcee to best match the iSHELL spectrum of order 226 of object SR 24S
corresponding to T = 4940 ± 230 K, vsini = 26.13 ± 0.76 km s-1, rk = 4.04 ± 0.27, and
dx = −15.68 ± 0.53.
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Figure 116 Synthetic overlay (blue) on top of the data (orange) for the four fit parameters returned by emcee
to best match the iSHELL spectrum of order 226 of object SR 24S corresponding to T = 4940 ± 230 K,
vsini = 26.13 ± 0.76 km s-1, rk = 4.04 ± 0.27, and dx = −15.68 ± 0.53.
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Figure 117 Relative probability distributions and correlations for the four fit parameters
returned by emcee to best match the iSHELL spectrum of order 224 of object VSSG 1
corresponding to T = 4680 ± 100 K, vsini = 13.43 ± 0.7 km s-1, rk = 3.99 ± 0.35, and
dx = −16.77 ± 0.27.
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Figure 118 Synthetic overlay (blue) on top of the data (orange) for the four fit parameters returned by emcee
to best match the iSHELL spectrum of order 224 of object VSSG 1 corresponding to T = 4680 ± 100 K,
vsini = 13.43 ± 0.7 km s-1, rk = 3.99 ± 0.35, and dx = −16.77 ± 0.27.
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Figure 119 Relative probability distributions and correlations for the four fit parameters
returned by emcee to best match the iSHELL spectrum of order 225 of object VSSG 1
corresponding to T = 4060 ± 120 K, vsini = 17.26 ± 0.57 km s-1, rk = 4.99 ± 0.21, and
dx = −16.20 ± 0.17.
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Figure 120 Synthetic overlay (blue) on top of the data (orange) for the four fit parameters returned by emcee
to best match the iSHELL spectrum of order 225 of object VSSG 1 corresponding to T = 4060 ± 120 K,
vsini = 17.26 ± 0.57 km s-1, rk = 4.99 ± 0.21, and dx = −16.20 ± 0.17.
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Figure 121 Relative probability distributions and correlations for the four fit parameters
returned by emcee to best match the iSHELL spectrum of order 225 of object WL 4
corresponding to T = 3260 ± 20 K, vsini = 16.97 ± 0.17 km s-1, rk = 0.57 ± 0.01, and
dx = −13.37 ± 0.07.
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Figure 122 Synthetic overlay (blue) on top of the data (orange) for the four fit parameters returned by
emcee to best match the iSHELL spectrum of order 225 of object WL 4 corresponding to T = 3260 ± 20
K, vsini = 16.97 ± 0.17 km s-1, rk = 0.57 ± 0.01, and dx = −13.37 ± 0.07.
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Figure 123 Relative probability distributions and correlations for the four fit parameters
returned by emcee to best match the iSHELL spectrum of order 225 of object WL 20E
corresponding to T = 4840 ± 60 K, vsini = 41.1 ± 0.3 km s-1, rk = 0.02 ± 0.04, and
dx = −18.10 ± 0.20.
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Figure 124 Synthetic overlay (blue) on top of the data (orange) for the four fit parameters returned by emcee
to best match the iSHELL spectrum of order 225 of object WL 20E corresponding to T = 4840 ± 60 K,
vsini = 41.1 ± 0.3 km s-1, rk = 0.02 ± 0.04, and dx = −18.10 ± 0.20.
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Figure 125 Relative probability distributions and correlations for the four fit parameters
returned by emcee to best match the iSHELL spectrum of order 225 of object WL 20W
corresponding to T = 3380 ± 20 K, vsini = 25.6 ± 0.2 km s-1, rk = 0.95 ± 0.01, and
dx = −15.00 ± 0.05.
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Figure 126 Synthetic overlay (blue) on top of the data (orange) for the four fit parameters returned by emcee
to best match the iSHELL spectrum of order 225 of object WL 20W corresponding to T = 3380 ± 20 K,
vsini = 25.6 ± 0.2 km s-1, rk = 0.95 ± 0.01, and dx = −15.00 ± 0.05.
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Figure 127 Relative probability distributions and correlations for the four fit parameters
returned by emcee to best match the iSHELL spectrum of order 225 of object WLY 2-42
corresponding to T = 4420 ± 20 K, vsini = 22.1 ± 0.2 km s-1, rk = 0.00 ± 0.01, and
dx − 18.38 ± 0.04.
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Figure 128 Synthetic overlay (blue) on top of the data (orange) for the four fit parameters returned by emcee
to best match the iSHELL spectrum of order 225 of object WLY 2-42 corresponding to T = 4420 ± 20 K,
vsini = 22.1 ± 0.2 km s-1, rk = 0.00 ± 0.01, and dx − 18.38 ± 0.04.
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• GSS 26 – Our radial velocity of -7.58±0.14 km s−1, derived from a reanalysis of 2008

August CRIRES data obtained by Viana Almeida et al. (2012), is more negative than

their published value -6.95±0.03 km s−1. A dynamical mass of 1.5 M� and a radial

velocity of -6.44 km s−1 were derived based on observations of its disk (Simon et al.,

2017). Our derived temperature, suggesting a K5 spectral type with low veiling, is

counter to previous estimates but consistent with its observed variability in veiling

and brightness (Greene and Lada, 2000; Luhman and Rieke, 1999).

• VSSG 1 – Our best fit temperature of 4430 K suggests a mid-K spectral type. In

addition to the photospheric absorption lines, the iSHELL spectrum shows Brackett

gamma in emission.

• GY 21 – Best fit temperature is warmer and vsini smaller than derived from the

CSHELL spectrum of Greene and Lada (1997) but in better agreement with those

derived from the same spectrum by Doppmann et al. (2005).

• GY 23/Source 2 - Spectral classifications vary from K5-M0 (Doppmann et al., 2005;

Erickson et al., 2011;Greene andLada, 1997; Luhman andRieke, 1999). Temperature

and vsini are in good agreementwithGreene andLada (1997). Our best fit temperature

and low veiling favor the mid-K classification of Erickson et al. (2011). Our modeling

of the 2008 April CRIRES spectrum obtained by Viana Almeida et al. (2012) yields

a radial velocity that is not in agreement with theirs and calls into question their

identification of this source as a radial velocity variable.

• GY 30 – The Class I source is associated with a fan-shaped near-infrared nebula and

a molecular outflow (Kamazaki et al., 2003).

• ISO-Oph 51 – The resolved circumstellar disk displays an asymmetry indicative of

planet formation (Cox et al., 2017).
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• GY 91 – Millimeter continuum observations exhibit a disk/envelope structure char-

acteristic of an embedded source and have resolved an r = 80 AU disk with three

dark lanes suggestive of planet formation (Sheehan and Eisner, 2018).

• SR 24 – SR 24N (SR 24B) and SR 24S (SR 24A) form a wide binary with a separation

of ∼6′′ within a circumbinary disk (Fernández-López et al., 2017; Mayama et al.,

2010; Struve and Rudkjobing, 1949). SR 24N itself is a close binary with a projected

separation of 100 mas with an orbital period of 78 to 216 years and a total mass of

1.24±0.24 M� (Correia et al., 2006; Schaefer et al., 2018; Simon et al., 1995).

• SR 24S – Our radial velocity from 2017 of -0.27±0.32 km s−1 is significantly different

than that derived from optical spectra in 2012 of -8.19±0.33 by Rigliaco et al. (2016),

suggesting a binary companion. This velocity variation is much larger than would

be expected to arise from interactions with SR 24N. In addition to the photospheric

absorption lines, the iSHELL spectrum shows both Brackett gamma and molecular

hydrogen (2.12 µm) in emission.

• SR 24N - In addition to the photospheric absorption lines, the iSHELL spectrum

shows molecular hydrogen in emission at 2.12 µm.

• WL 1- A binary with a 0.8′′ projected separation (Haisch et al., 2002). The primary

(WL 1S), which is 0.1 mag brighter at K, was presumably centered in the 0.58′′

NIRSPEC slit. The radial velocity of -25 km s-1 is far from the median value for our

sample.

• GY 197 – Deep near-infrared images reveal a bipolar outflow cavity centered on the

source (Hsieh et al., 2017).

• WL 17 – The radial velocities we derive from spectra obtained in 2001 and 2012

are in good agreement but not consistent with the values reported by Viana Almeida

et al. (2012). High spatial resolution ALMA images reveal a transition disk in
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a disk/envelope system suggesting planets can form at an early embedded stage

(Sheehan and Eisner, 2017). Dynamical clearing by a close companion seems to be

ruled out by the lack of variability in the radial velocity.

• GY 224 – The radial velocities from spectra obtained in 2001 and 2008 are consistent.

• WL 19- The radial velocity of -27 km s−1 is far from the median value for our sample.

The weak mid-infrared emission and lack of compact dust and gas emission has led

to the suggestion it is not an embedded source but a heavily reddened Class III object

behind the molecular cloud (Bontemps et al., 2001; Van Kempen et al., 2009). It is,

however, an X-ray source (Imanishi et al., 2001) suggesting it is a cluster member.

• GY 235 – Our best fit temperature agrees very well with that derived from moderate

resolution infrared spectra (Manara et al., 2015)(Manara et al. 2015). In addition to

the photospheric absorption lines, the iSHELL spectrum shows both Brackett gamma

and molecular hydrogen (2.12 µm) in emission.

• WL20 – Two components of this triple system,WL 20E andWL 20W,were observed.

They were easily resolved with a projected separation of 3.2′′(Ressler and Barsony,

2001). Our best fit for WL 20E is warmer than reported by Barsony et al. (2002).

• WL 4 – A periodic variable has been modeled as an equal brightness triple system

(Plavchan et al., 2008) with a heretofore unobserved close binary (WL 4a/4b, 0.47

AU) and a known 0.176′′ companion WL 4C at 120 AU, Ratzka et al. (2005).

• WL 3 – Our derived value for vsini of 41 km s−1is higher than that of Greene and

Lada (1997) but consistent with that derived from the same spectrum by Doppmann

et al. (2005).

• WLY 2-43/YLW 15 – VLA observations show this to be a 0.6 ′′ binary also observed

in the mid-infrared (Curiel et al., 2003). Our fits suggest a K3 spectral type.
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• WLY 2-44/YLW 16a – Infrared imaging reveals two components of equal brightness

at 3.8 µm with a projected separation of 0.3′′ (Plavchan et al., 2013; Terebey et al.,

2001). A possible third component is suggested from the periodic photometric

variability. Radial velocities derived from spectra in 2001 and 2012 show evidence

for variability.

• VSSG 18/WLY 2-35 – Radial velocities derived in 2008 and 2012 suggest it is a radial

velocity variable, however, our velocity from 2008 does not agree with Viana Almeida

et al. (2012). Luhman and Rieke (1999) assigned a spectral classification of K6.5

which is consistent with our best fit temperature.

• VSSG17/WLY2-47 - This source is a subarcsecond binarywith a projected separation

of 0.25′′ (Costa et al., 2000). Radial velocities derived from spectra in 2001 and

2012 do not show evidence of variability. Spectral classifications vary from K8-M2

(Greene and Lada, 1997; Luhman and Rieke, 1999). Our MCMC results favor the

late K classification. Our vsini of 41 km s−1 agrees well with previous estimates of

43-47 km s−1 (Doppmann et al., 2005; Greene and Lada, 1997).

• GY 314/WSB 52 – Spectral classifications vary fromK5-M3 (Doppmann et al., 2005;

Greene and Lada, 1997; Luhman and Rieke, 1999). Our MCMC results favor the

later spectral classification.

• WLY 2-51 –A faint companion (∆K = 3.5 mag) with a projected separation of 1.6′′

has been reported by Ratzka et al. (2005). The iSHELL spectrum suggests weak

Brackett gamma emission.

• WLY 2-54 – The iSHELL spectrum is devoid of photospheric absorption lines but

does show Brackett gamma and molecular hydrogen (2.12 µm) in emission. The

spectrum also displays narrow interstellar absorption lines from low R and P branch

lines from the CO v = 0 − 2 transitions.
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1. PERMISSION FOR FIGURE 1.1 FROM PHILIPPE ANDRÉ

Dear Tim Sullivan,

Thank you for your e-mail. You did not specify where you intend to reproduce the figure

but, yes, you have my permission to use this figure (provided a reference to "The Cold

Universe" paper is included).

[ Incidentally, youmay possibly be interested in this version of the figure, including prestellar

cores: http://cdsads.u-strasbg.fr/abs/2002EAS.....3....1A]

With best wishes,

Philippe André

2. PERMISSIONS FOR FIGURE 2.1 FROM VOLKER OSSENKOPF-OKADA
AND FREDERIQUE MOTTE

Dear Tim Sullivan,

For this particular case, I am the wrong person to ask, because for that figure I got the data

from Frederique Motte. I am fine with using my particular version, but you should rather

get permission from her.

Best regards

Volker Ossenkopf-Okada

Dear Timothy,

Sorry for the delay in answering. . . I hereby give you permission to reproduce the Fig. 1

of my 1998 paper (such an old paper!). One question about your rho Oph study: do you

study the dynamical state of the cloud? of protostars? or even of stars?

Cheers,

Fred
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