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ABSTRACT

In this dissertation, three questions, concerning approximation methods for

the eigenvalues of quantum mechanical systems, are investigated: (i) What is a

pseudo–Hermitian Hamiltonian, and how can its eigenvalues be approximated via nu-

merical calculations? This is a fairly broad topic, and the scope of the investigation

is narrowed by focusing on a subgroup of pseudo–Hermitian operators, namely, PT –

symmetric operators. Within a numerical approach, one projects a PT –symmetric

Hamiltonian onto an appropriate basis, and uses a straightforward two–step algorithm

to diagonalize the resulting matrix, leading to numerically approximated eigenvalues.

(ii) Within an analytic ansatz, how can a relativistic Dirac Hamiltonian be decoupled

into particle and antiparticle degrees of freedom, in appropriate kinematic limits?

One possible answer is the Foldy–Wouthuysen transform; however, there are alter-

native methods which seem to have some advantages over the time–tested approach.

One such method is investigated by applying both the traditional Foldy–Wouthuysen

transform and the “chiral” Foldy–Wouthuysen transform to a number of Dirac Hamil-

tonians, including the central-field Hamiltonian for a gravitationally bound system;

namely, the Dirac-(Einstein-)Schwarzschild Hamiltonian, which requires the formal-

ism of general relativity. (iii) Are there are pseudo–Hermitian variants of Dirac

Hamiltonians that can be approximated using a decoupling transformation? The

tachyonic Dirac Hamiltonian, which describes faster-than-light spin-1/2 particles, is

γ5–Hermitian, i.e., pseudo-Hermitian. Superluminal particles remain faster than light

upon a Lorentz transformation, and hence, the Foldy–Wouthuysen program is un-

suited for this case. Thus, inspired by the Foldy–Wouthuysen program, a decoupling

transform in the ultrarelativistic limit is proposed, which is applicable to both sub-

and superluminal particles.
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Figure Page

3.1 The ground-state energy of the anharmonic oscillator Hamiltonian
with imaginary cubic perturbation, as given in equation (3.1), is plot-
ted in the perturbative (weak-coupling) regime in figure (a). The solid
curve represents the results from eighth-order perturbation theory. In
figure (b), the same eigenvalue is plotted in the strong-coupling regime
G > 0. The small dots represent numerical values. . . . . . . . . . . . . . . . . . 27

3.2 Figure (a) displays the complex ground-state wave–function of the
imaginary cubic Hamiltonian (3.1) for G = 1.0. The real part is plot-
ted using solid lines, and the dashed lines plot the imaginary part. The
real part is even, the imaginary part is odd under parity. For the first
excited state (still, G = 1.0), the real part is odd, while the imaginary
part is even under parity (see figure (b)). The second excited state
(figure (c)) has an even real part, while its imaginary part is odd. . . . . 29

3.3 Visualization of the harmonic+cubic potential given in equation (3.2).

The modulus of the potential
(
|V (x)| =

√
x4/4 +G2 x6

)
leads to a

confining mechanism for x → ±∞. The value of G in the plot is
G = 1.0. The shaded area displays the complex phase of the potential
and covers the interval (−π/2, π/2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4 In figure (a), we plot the wave–function of the ground and the first two
excited states of the harmonic oscillator. A “stable” quartic perturba-
tion perturbs the potential in figure (b) and leads to a “confinement”
of the wave–function to the classically allowed region E > V (x). The
eigenenergies of the imaginary cubic perturbation are real and allow
us to plot the complex PT -symmetric eigenfunctions as in figure (c).
The complex phase of the wave–function is displayed in the shaded
region, as in figure 3.3 for the potential. The red curves denote the
wave–functions (figures (a) and (b)), while the blue curves display the
complex phase of the wave–functions. It is perhaps useful to note that
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would clutter the figure. See also the following figure 3.5. . . . . . . . . . . . 33
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3.5 In figure (a) we plot the probability density ρ = |ψ(x)|2 of the quartic
oscillator’s ground state and first two excited states. Along with which
we plotted the complex phase of the wave–functions which is chosen
to be −π when the wave–function is negative and zero when positive.
In figure (b) we investigate the cubic oscillator. The complex phase
of the wave–functions is normalized to zero at the origin by an appro-
priate scaling factor (multiple of the imaginary unit). Notice that the
qualitative features (“humps”) of the quartic oscillator are still present
in the complex (“PT -symmetric”) domain, however the zeros of the
wave–functions are “washed out” and become local minima. . . . . . . . . . 34

3.6 Here we plot the negative of the accumulated phase of the ground state
wave–function from x = 0 to x = 6. The solid line is the large coupling
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3.7 Illustration of the confinement mechanism for the imaginary cubic po-
tential described by the Hamiltonian (3.1), for the ground and the
first excited state. The bulk of the modulus square of the wave–
function is centered in the “allowed” region where the (real rather
than complex) energy E > V (x) = V (G, x) = |W (G, x)|. The po-
tential is plotted in green, the complex moduli of the wave–functions
are plotted in red. The ground state wave–function has a modulus
square |ψ0(x)|2 = |ψ0(G, x)|2 as a function of G and x. As G increases,
the bound-state energy (which is equal to the base line of the wave–
function curve at any given value of G) increases, and the modulus
of the potential forms a more narrow trough to which the ground-
state wave–function is confined. The same is true for the first excited
state. The central minimum of the complex modulus square of the
first-excited state wave–function is clearly visible. . . . . . . . . . . . . . . . . . . 37

4.1 These figures represent the tridiagonalization of a 5× 5 complex sym-
metric matrix, generated by Aij = ii+j+1

i+j+1
. In the first step we choose

our y4 column matrix, as the first 4 elements of the 5th column of
A (outlined in red). We then set v4 = y4 +

√
〈y4, y4〉∗ ê4, construct

Hv4 and finally construct our rotation matrix H4. We then rotate the
matrix into A′ = H4AH4. In doing so we have eliminated the off-
tridiagonal elements in the final column and row. We then repeat the
process, however instead of using the entire matrix to construct H3

we focus only on the part of the matrix that is still not tridiagonal
(outlined in blue). We can now define y3 as the first 3 elements of the
2nd to last column in A′, which we use to create v3 then Hv3 and finally
H3. Then A′′ = H3A

′H3. We repeat the process a final time, giving us
a tridiagonal matrix, A′′′, where, in this case, A′′′ = H2H3H4AH5H3H2. 50
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4.2 This flowchart illustrates the progression of the diagonalization step
for a 5 × 5–matrix. For each step a “bulge” is introduced, and then
chased out. Following this, the appropriate off diagonal elements are
checked for convergence. Not include in this chart is the check for
premature zeroes, and the applied solution. . . . . . . . . . . . . . . . . . . . . . . . 59

5.1 In comparing the HTDQLS algorithm with the LAPACK routine ZGEEVX,
the relative numerical accuracy of the ground state energy of the com-
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ENHANCED ABSTRACT, MOTIVATION, AND INTRODUCTION

It has long been established that in quantum mechanics a Hamiltonian must

be Hermitian, or, more precisely speaking, essentially self-adjoint, guaranteeing that

the resulting spectrum will be real and that the canonical inner product of the wave–

functions is conserved. There are accepted exceptions to this rule. An unstable

particle, for example, has a complex energy spectrum where the imaginary part indi-

cates the decay rate of a given energy state. In many cases, a physical system cannot

be described any more on the basis of a fully Hermitian Hamiltonian once quantum

fluctuations are taken into account. Typically, a Hermitian Hamiltonian describes a

closed system (i.e., there are no gain or loss terms); this restriction severely limits

the kinds of systems which can be represented by this model. Pseudo–Hermiticity

expands on the idea of Hermiticity and by redefining a number of properties; the

generalized inner product is still conserved, however the spectrum is no longer guar-

anteed to be real [1]. The concept of PT -symmetry, as first proposed by Bender and

Boettcher [2], has many similarities to pseudo-Hermiticity, including the necessary

generalization of the inner product. Most cases studied in the literature are both

PT –symmetric and pseudo–Hermitian (examples include [2–14]). As with pseudo–

Hermiticity, PT -symmetry allows for the conservation of a generalized inner product.

It is relatively simple to show that the complex eigenvalues of a PT –symmetric Hamil-

tonian come in complex conjugate pairs, while in the case of exact PT –symmetry,

the eigenvalues are real [15]. The difficulty arises when trying to prove that the PT –

symmetry of a given Hamiltonian is exact, as this generally requires the calculation

of the corresponding wave–functions [3]. Consequently it was numerical evidence,

rather than a formal proof that initially suggested that the eigenvalues of certain
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PT –symmetric Hamiltonians are real [2]. It has since been formally proven that spe-

cific classes of Hamiltonians are exactly PT –symmetric (i.e., all of their eigenvalues

are real) [16–18].

It has been shown that Hermitizing transforms can be applied to an exact

PT –symmetric Hamiltonian H, transforming it into a Hermitian Hamiltonian h, i.e.,

PT –symmetry would then be equivalent to Hermiticity [19]. However, the trans-

forms used turn out to be similarity transforms, which are necessarily not unitary,

thus the equivalence is restricted to the eigenvalues [15]. By examining the metric of

the imaginary cubic oscillator, H = p 2 +ix3, which is exactly PT –symmetric [16,17],

Siegl and Krejc̆ĭŕık found that H cannot be similar to a Hermitian Hamiltonian [21].

Furthermore it is possible to interpret a PT -symmetric system as an open system in

which the gain and loss are “in equilibrium”. All this seems to point to the conclu-

sion that PT -symmetry is an independent concept in its own right. In an attempt to

further this point of view, we perform a numerical analysis of the wave–functions of

a PT -symmetric Hamiltonian. In examining the properties of these wave–functions,

one finds that although they have some similarities to Hermitian wave–functions,

the nonvanishing imaginary contributions to the Hamiltonian (the “gain and loss”

terms) imply that PT -symmetry is in fact an independent concept. In order to per-

form these calculations we draw inspiration from the generalized inner product, and

apply the concept to Householder matrices. This generalization constitutes the first

step in a two step algorithm designed to numerically diagonalize complex symmetric

matrices, which arise from the projection of PT –symmetric Hamiltonians onto an

approximately complete set of basis states, for example.

Complementing the numerical approach from part I of this dissertation, we

next turn our attention to the Foldy–Wouthuysen transformation [22, 23], within an

analytic ansatz focused on traditional, Hermitian Hamiltonians. We begin our in-

vestigation by reviewing the Foldy-Wouthuysen transformation, which is an iterative
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process, designed to approximate Dirac Hamiltonians in the non-relativistic limit.

In reviewing how the transformation is performed, we apply it to a series of Dirac

Hamiltonians, including the free Dirac Hamiltonian, the Dirac-Coulomb Hamiltonian,

and the Dirac–Einstein–Schwarzschild Hamiltonian. We supplement the analysis by

considering Dirac Hamiltonians with scalar potentials and the Dirac Hamiltonian in

a non-inertial reference frame.

Because of its iterative and perturbative nature, the Foldy-Wouthuysen trans-

formation can quickly become rather complicated. In many cases, the Foldy-Wou-

thuysen transformation cannot be carried out exactly (i.e., to all orders in the the mo-

mentum operators). Thus, an alternative “chiral Foldy-Wouthuysen” transformation

has been proposed [24], which takes advantage of a number of deceptively appeal-

ing properties, including a subtle requirement that the chiral operator (J = i γ5 β)

commutes with the input Hamiltonian, which appear to lead to a simpler method

of decoupling the particle and antiparticle degrees of freedom. We apply the chi-

ral Foldy–Wouthuysen transform to the same Hamiltonians to which we applied the

traditional Foldy–Wouthuysen transformation. By comparing the results from both

methods, we find that the results are fundamentally different. Not only are there

discrepancies between some of the prefactors, we additionally find that the chiral

method does not conserve the parity of the system, nor the particle–antiparticle

symmetry. We are left to conclude that the chiral Foldy–Wouthuysen approximation

does not satisfy all consistency requirements for the decoupling of generalized Dirac

Hamiltonians.

Finally, in part III of the dissertation, we combine the concept of pseudo–

Hermiticity, introduced in part I, with the concept of a decoupling transformation,

introduced in part II. Our focus is on fully relativistic, pseudo–Hermitian Hamiltoni-

ans within the framework of relativistic quantum mechanics. The so-called tachyonic

Dirac equation, introduced by Chodos, Hauser and Kostelecky [25], when written in
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noncovariant form, transforms into a generalized Dirac Hamiltonian which exactly

has the property of being γ5–Hermitian (pseudo–Hermitian). Regardless of one’s

personal view as to the existence of tachyons, the Hamiltonians describing them have

an interesting underlying structure. Furthermore, if tachyons do in fact exist, then

the more we understand their physics, the more likely we are to be able to interpret

conceivable experiments in the future.

The tachyonic Dirac Hamiltonian is first and foremost a free-particle Hamilto-

nian. However, generalizations are possible. Much like generalized subluminal Dirac

equations, generalized superluminal Dirac equations describe the interactions of parti-

cles and antiparticles with external potentials. As for the subluminal case, the particle

and antiparticle degrees of freedom in the Hamiltonians are coupled, making it diffi-

cult to interpret their interactions with the external potentials. Unlike the subluminal

case, we cannot apply the Foldy–Wouthuysen transformation to a tachyonic Dirac

Hamiltonian, as it is used to find the nonrelativistic limit, which is nonsensical in the

case of tachyons (namely, tachyons remain superluminal upon a Lorentz transforma-

tion [26–29]). Instead, we must perform the opposite transformation and decouple

the particle and antiparticle states in the high-energy, ultrarelativistic limit. To that

end, we find it advantageous to first transform the Hamiltonian into the Weyl basis

before any such transformation can be applied. Once this has been accomplished,

we find that there is indeed an exact ultrarelativistic decoupling transformation for

both free tardyons and free tachyons. Like the Foldy–Wouthuysen transform, the

ultrarelativistic decoupling transform requires a perturbative approach when applied

to generalized Dirac Hamiltonians. Again, of particular interest is the case of grav-

itational coupling, for both sub- and superluminal particles. In both cases we find

that there is particle–antiparticle symmetry, meaning that particles and antiparticles

are affected by gravity in the same way (e.g., they are both attracted toward a grav-

itational center). Additionally, starting from the ultrarelativistic limit, we find that
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the leading-order gravitational effects are identical for both tardyons and tachyons,

while higher-order corrections reveal differences between how the two interact with

gravity. The somewhat surprising result is that tachyons are attracted by gravity in

the ultrarelativistic limit, much like a beam of light which is bent toward the center of

a massive gravitational central potential. This is somewhat contrary to the classical

result, which states that tachyons are repulsed by gravity [30].

To summarize, once more, for completeness: In part I, we investigate pseudo–

Hermiticity and PT –symmetry, and make a case that they are indeed independent

concepts, and not a variation on Hermiticity. Additionally, we draw inspiration from

the underlying mathematical structures of these Hamiltonians, and describe a ma-

trix diagonalization algorithm designed with PT -symmetric Hamiltonians, which is

used to calculate both the eigenvalues as well as the eigenstates (wave–functions). In

part II, we look at a number of example of generalized Dirac Hamiltonians, and apply

both the traditional, as well as the chiral, Foldy–Wouthuysen transforms. The two

methods produce different results, and the pitfalls of the chiral method are discussed.

Additionally, the study produces some new results, including the nonrelativistic cor-

rections to the Dirac–Einstein–Schwarzschild Hamiltonian, and the associated tran-

sition current. In part III we develop the ultrarelativistic decoupling transformation,

in both its exact and perturbative form. We place special emphasis on the gravita-

tionally coupled tardyon and tachyon, and arrive at a somewhat surprising conclusion

regarding the latter. Finally conclusions are drawn in part IV.
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Part I

Eigenvalues of Pseudo–Hermitian

Hamiltonians
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1. INTRODUCTION

In this part of the dissertation, we endeavor to answer the question: What

is a pseudo–Hermitian Hamiltonian, and how can its eigenvalues be approximated

based on numerical calculations? In one sense the first part of this question has

already been answered, as Pauli defined pseudo–Hermitian Hamiltonians in 1943 [1].

While we know how pseudo–Hermiticity is defined, the concept covers a wide array

of operators, including essentially self–adjoint Hamiltonians. We narrow the scope of

our investigation to non–Hermitian PT –symmetric Hamiltonians, as first discussed

in [2]. Most of the research on PT –symmetry is centered on Hamiltonians of the

form H = p2/(2m) + V [2–14]. As we shall see, it is straightforward to show that

a PT –symmetric Hamiltonian that has the form of H is pseudo–Hermitian under

parity.

The reality of the spectra of exact PT –symmetric Hamiltonians has given rise

to the idea that they are versions of Hermitian Hamiltonians, and Hermitizing trans-

forms have been proposed, which transform an exact PT –symmetric Hamiltonian

into a Hermitian Hamiltonian [19, 31–34]. Under such a transform the spectrum is

left unchanged. However, Hermitizing transforms generally require a perturbative

calculation, leading to much more complicated, and potentially non–local, Hermitian

Hamiltonians [15, 19]. Additionally, the transformation is necessarily non–unitary,

and as such the relations between vector–spaces are not conserved [15, 21]. By nu-

merically evaluating an exactly PT –symmetric Hamiltonian, and examining the re-

sulting wave–functions, we work to build an intuitive picture of PT –symmetric wave–

functions. In doing so, we note some fundamental differences between the Hermitian

and PT –symmetric pictures. Our observations suggest that it would be inconsistent

to interpret the PT –symmetric Hamiltonian as a “compact version” of a Hermitian
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Hamiltonian. This in turn suggests that PT –symmetry forms a class of Hamilto-

nians independent of Hermiticity, and any mapping onto, or identification with an,

“equivalent” Hermitian Hamiltonian might seem a little contrived.

In order to lend a practical meaning to our investigations, we develop a numer-

ical matrix diagonalization algorithm, which profits from the mathematical structure

of the the pseudo–Hermitian Hamiltonians. This generalization turns out to be ideal

when working with PT –symmetric Hamiltonians projected onto appropriate basis

sets. The resulting algorithm is best used when the entire spectrum of a densely pop-

ulated complex symmetric matrix is desired. Using high precision arithmetic, we are

able to obtain high precision energy approximations of PT –symmetric Hamiltonians.

The organization is as follows: In chapter 2 an overview of the subject area

is given. We conduct a basic review of self–adjoint Hamiltonians, and give a basic

discussion of pseudo–Hermiticity and PT –symmetry. We additionally investigate the

importance of boundary conditions, and briefly discuss Hermitizing transforms. In

chapter 3 we build an intuitive picture of the PT –symmetric wave–functions, analo-

gous to the Hermitian case. In chapter 4 we discuss the underlying mathematics of

our matrix diagonalization algorithm. In chapter 5 we discuss an FORTRAN implemen-

tation of the algorithm, which is explicitly found in appendix A. Finally, conclusions

are drawn in chapter 6.
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2. OVERVIEW OF HERMITICITY AND PSEUDO–HERMITICITY

2.1. HERMITIAN OPERATORS

Given a Hamiltonian H, with wave–function |ψ〉, the time–dependent Schrö-

dinger equation is given by

i
d

dt
|ψ〉 = H |ψ〉 , (2.1)

where H is traditionally assumed to be essentially self adjoint, i.e.,

H = H+ , (2.2)

which guarantees that the eigenvalues (i.e., the energies) of H are real. This can

easily be shown as follows; first let H = H+, then

H|ψ〉 = λ|ψ〉 , 〈ψ|H = 〈ψ|λ∗ , (2.3)

where λ ∈ C, and |ψ〉 is an eigenvector of H. We then quickly find that

〈ψ|H|ψ〉 = 〈ψ| (H|ψ〉) = λ〈ψ|ψ〉 , (2.4)

and

〈ψ|H|ψ〉 =
(
〈ψ|H+

)
|ψ〉 = λ∗〈ψ|ψ〉 . (2.5)

Comparing equations (2.4) and (2.5) we see λ = λ∗, and therefore λ ∈ R.
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Furthermore, the self–adjoint nature of H leads to the conservation of the

inner product as follows. Let |ψ〉 and |φ〉 be solutions of (2.1). We want to show that

d

dt
〈ψ|φ〉 = 0 . (2.6)

Using the time–dependent Schrödinger equation (2.1) we quickly find that

d

dt
|ψ〉 = | d

dt
ψ〉 = −iH|ψ〉 , d

dt
〈ψ| = 〈 d

dt
ψ| =

(
d

dt
|ψ〉
)+

= 〈ψ|iH+ . (2.7)

Therefore

d

dt
〈ψ|φ〉 =

(
d

dt
〈ψ|
)
|φ〉+ 〈ψ|

(
d

dt
|φ〉
)

= 〈ψ|iH+|φ〉+ 〈ψ| (−iH|ψ〉)

= i 〈ψ|
(
H+ −H

)
|φ〉 = 0 . (2.8)

Equation (2.8) shows that under time evolution, the inner product of the eigenfunc-

tions of a Hermitian operator is conserved (i.e., it is invariant as it moves through

time).

A typical nonrelativistic one-particle Hamiltonian can be written as

H =
1

2
~p 2 + V (~r, t) , (2.9)

where ~p is the quantum mechanical momentum operator, and V is the potential en-

ergy. Under the condition of self–adjointness, it quickly follows that V (~r, t) = V ∗(~r, t),

meaning that the potential is real. If we consider a time independent potential in one

dimension (2.9) becomes

H = −1

2

∂2

∂x2
+ V (x, t) . (2.10)
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When applied to the time-independent Schrödinger equation we get

Eψ(x) = −1

2

∂2

∂x2
ψ(x) + V (x)ψ(x) . (2.11)

We can then rewrite the equation as

∂2

∂x2
ψ(x) = 2(V (x)− E)ψ(x) . (2.12)

This equation informs on the concavity of the eigenfunctions of Hermitian Hamilto-

nians, and can be broken down as

ψ > 0 , V (x) > E ⇒ ψ̈ > 0 (concave up) ,

ψ > 0 , V (x) < E ⇒ ψ̈ > 0 (concave down) ,

ψ < 0 , V (x) > E ⇒ ψ̈ > 0 (concave up) ,

ψ < 0 , V (x) < E ⇒ ψ̈ > 0 (concave down) .

Thus, when the eigenfunction is in the classically allowed region (E > V ) the eigen-

function is concave towards the x axis and when it is in the classically forbidden

region (E < V ), the eigenfunction is concave away from the x axis. This is know as

the concavity condition.

2.2. PSEUDO-HERMITIAN OPERATORS

While Hermitian Hamiltonians provide us with quite a few advantages, one

might speculate about physically interesting generalizations of the concept of Her-

miticity. In 1943 Pauli introduced pseudo-Hermiticity in which the restrictions im-

posed on Hamiltonians are relaxed [1]. Pseudo-Hermiticity requires H = η−1H+ η,

where η is Hermitian so when η = 1 the Hamiltonian is Hermitian. In this way,

pseudo–Hermiticity expands on the existing framework of Hermiticity. Similarly,
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in 1998 Bender and Boettcher proposed PT -symmetry [2], where P is the parity

operator (x → −x) and T is the time reversal operator (i → −i). By defini-

tion a Hamiltonian H is PT –symmetric when H = PT H T P . The Hamiltonian

H3 = 1
2
p 2+ 1

2
x2+iGx3 (G ∈ R), for example, is both P–Hermitian (pseudo–Hermitian

with η = P) and exactly PT –symmetric. Unlike pseudo-Hermiticity, Hermiticity

does not imply PT -symmetry. While there are Hermitian Hamiltonians that are

PT -symmetric, there exist Hamiltonians that are self-adjoint, yet do not fulfill the

conditions to be PT -symmetric (such as h3 = 1
2
p2 + 1

2
x2 +gx3, where g ∈ R). As such

the PT -symmetric class does not expand on an existing class of viable Hamiltonians,

but instead constitutes a new class to be examined.

First we examine the properties of pseudo-Hermitian operators. For an oper-

ator A to be pseudo-Hermitian it must meet the requirement

ηA = A+η , A = η−1A+η , (2.13)

where η is a Hermitian operator itself. In fact, the operator A would then be defined

as η–Hermitian. For a pseudo-Hermitian Hamiltonian we need to redefine the inner

product. While for a Hermitian Hamiltonian the inner product is 〈·|·〉, for an η-

pseudo-Hermitian Hamiltonian the conserved inner product is defined as

〈·|·〉η = 〈·|η|·〉 . (2.14)

we can show that for such a Hamiltonian the inner product is conserved, i.e.,

d

dt
〈·|·〉η = 0 . (2.15)

Let H be an η–Hermitian Hamiltonian with eigenvectors |ψ〉 and |φ〉. The time inde-

pendent Schrödinger is unaffected by the relaxation of the constraints, and equations
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(2.7) and (2.8) still hold. Then

d

dt
〈ψ|φ〉η =

(
d

dt
〈ψ|
)
η|φ〉+ 〈ψ|η

(
d

dt
|φ〉
)

= 〈ψ|iH+η|φ〉+ 〈ψ| (−i ηH|ψ〉)

= i 〈ψ|
(
H+η − ηH

)
|φ〉 = 0 . (2.16)

We can now examine the spectrum of H. If we assume that |ψ〉 is an eigenvector of

H, where H|ψ〉 = λ|ψ〉 and λ ∈ C, we find

〈ψ|ηH|ψ〉 = 〈ψ|η (H|ψ〉) = λ〈ψ|ψ〉η , (2.17)

and

〈ψ|ηH|ψ〉 =
(
〈ψ|H+

)
η|ψ〉 = λ∗〈ψ|ψ〉η . (2.18)

By comparing equations (2.17) and (2.18) we deduce that provided 〈ψ|ψ〉η 6= 0,

i.e., provided we can normalize the state |ψ〉 in the η norm, then λ = λ∗, i.e., the

eigenvalues of a pseudo–Hermitian Hamiltonian are real.

Let us now turn our attention to PT –symmetry as defined in [2]. For an

operator A to be PT -symmetric, it must fulfill the condition

A = PT A T P , (2.19)

where T is the time reversal operator (i → −i) and P is the the parity operator

(x→ −x). Most nonrelativistic Hamiltonians are of the form

H =
~p 2

2m
+ V , (2.20)
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where the only occurrence of imaginary terms will be in the potential V . When

considering such a Hamiltonian we find T H T = H+. Then if H is PT –symmetric

we find

H = PT H T P = P H+P , (2.21)

which we couple with the knowledge that P is Hermitian, and P−1 = P , to conclude

that H is P–Hermitian. Then provided a PT –symmetric Hamiltonian is of the proper

form, it will also be P–Hermitian. However, if we consider the precise definition of the

time reversal operator, T as the operator that takes i to −i. Then T A T = A∗, which

coupled with the observation that P−1 = P leads us to conclude that PT -symmetry

means

P A = A∗P , (2.22)

which is strictly P-Hermitian. It is still very much a possibility that A is pseudo–

Hermitian is some way. Simply put, PT –symmetry does not imply P–Hermiticity.

It is also worth noting that the conserved PT –symmetric scalar product is

〈ψn|ψm〉∗ = 〈ψn|P|ψm〉 , (2.23)

which we recognize as the P–Hermitian scalar product.

For completeness sake, let us quickly look at the eigenvalues. Give a PT –

symmetric Hamiltonian H, with a wave–function |ψ〉 and eigenvalue λ such that

H |ψ〉 = λ |ψ〉 , (2.24)
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one can easily show that |φ〉 = PT |ψ〉 is wave–function of H with eigenvalue λ∗,

H |φ〉 = (PT H T P)HPT |ψ〉 = PT H |ψ〉 = PT λ |ψ〉 = λ∗PT |ψ〉 = λ∗ |φ〉 .

(2.25)

Thus the eigenvalues of H come in complex conjugate pairs. If the PT –symmetry is

exact, then |ψ〉 is also an eigenfunction of PT , and the eigenvalues will be real. For

example, if PT |ψ〉 = c |ψ〉 then (2.25) quickly yields

H |ψ〉 = λ∗ |ψ〉 , (2.26)

and we conclude that λ = λ∗, meaning that λ is real.

Recent years have seen pseudo–Hermiticity and PT –symmetry gain a foothold

in quantum mechanics and field theories, including the following four areas. (i) Ben-

der, Jones and collaborators [35–37] have revisited several theoretical quantum field

models, that for one reason or another were deemed problematic under the restric-

tions imposed by Hermiticity, using PT -symmetry; they were able to show that

some of the “problems” are remedied under this interpretation. Notably the ghost

state in the Lee model was shown to have a positive norm when reinterpreted using

PT -symmetry [35]. (ii) A standard way to create cosmological models with phan-

tom energy is to use a scalar field with negative kinetic energy. Unfortunately this

method is unstable. Andrianov et al. [38] have studied cosmological models coupling

two fields, one of which has a complex potential while both have a positive kinetic

term. This model is described by a PT -symmetric Lagrangian, and is free of the

instability that plagues the other model. Furthermore, this model may help explain

a number of phenomenological paradoxa in the evolution of the Universe from the

big bang to the “big rip.” (iii) Canonically, the index of refraction is used to describe

the propagation of light through a medium. When said medium is opaque, light is
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absorbed and the index of refraction gains an imaginary term, making the index of

refraction complex. As such the evolution equations of certain waveguides are PT -

symmetric Schrödinger equations. One such example is a double channel waveguide,

where one channel has a loss and the other a gain [39]. Rather than being invariant

in time, the equation is invariant along the direction of propagation. PT -symmetric

photonics honeycomb lattices have also been studied [40–42]. By introducing an

alternating gain-loss structure and a specific deformation a PT -symmetric lattice

is created. If the deformation is not applied, then the PT -symmetry is broken and

wave propagation in such a lattice is related to tachyonic dispersion relations [40]. (iv)

The “tachyonic Dirac Hamiltonian” proposed by Chodos, Hauser and Kostelecky [25]

has recently been identified as a pseudo-Hermitian Hamiltonian [43]; one should be

stressed that current experimental data neither excludes nor confirms neutrino prop-

agation exceeding the speed of light [44,45].

2.3. IMPORTANCE OF BOUNDARY CONDITIONS

As mentioned at the beginning of chapter 2.1, eigenvalues of Hamilton oper-

ators are used to mathematically describe the eigenenergies of quantum mechanical

systems. As such, the energies can be discrete or continuous, as well as finite or

infinite. The spectrum of a Hamiltonian is the set of all possible eigenvalues of said

Hamiltonian. For example, we can consider the Hamiltonian for the quantum har-

monic oscillator (H0 = 1
2
p 2 + 1

2
x2), the solution to which is very well known. The

spectrum of H0 is {n+ 1
2
|n ∈ N} (we have set ~ = ω = m = 1). Similarly, the spec-

trum of a free particle Hamiltonian, H = p 2/(2m), is comprised of all positive real

numbers. Implicit with this very brief discussion of the spectrum are the boundary

conditions imposed on the eigenfunctions of the Hamiltonians. In this case we are

requiring that the eigenfunctions do not diverge as x goes to ±∞, as well as being
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either orthonormal or Dirac orthonormal. Eigenfunctions with a discrete spectrum

will be orthonormal, while eigenfunctions with a continuous spectrum will be Dirac

orthonormal. Throughout this section we are going to investigate the importance of

the boundary conditions and the resulting spectrums. We begin our investigation by

looking at a free particle in one dimension, i.e.,

H =
p 2

2m
= − 1

2m

∂2

∂x2
. (2.27)

Let ψ(x) be an eigenfunction of H with eigenvalue λ, then

Hψ(x) = − 1

2m

∂2

∂x2
ψ(x) = λψ(x) , (2.28)

which has the solution

ψ(x) = ψk(x) =
1√
2π

eikx , (2.29)

where k ∈ R. We can now find the eigenvalues of H

Hψ(x) = − 1

2m

∂2

∂x2

(
1√
2π

eikx

)
= − 1

2m
(−k2)

(
1√
2π

eikx

)
=

k2

2m
ψ(x) . (2.30)

As the spectrum is continuous, we require the eigenfunctions to be Dirac orthonormal:

∫ ∞
−∞

dxψ∗k(x)ψk′(x) =

(
1√
2π

)2 ∫ ∞
−∞

dx e−ikx eik′x =
1

2π

∫ ∞
−∞

dx ei(k′−k)x = δ(k′ − k) .

(2.31)

Thus we have a basis of eigenfunctions that are Dirac orthonormal, as well as a

positive spectrum of eigenvalues for the free particle. This is all dependent on the

implicit boundary condition that the inner product is integrated along the real axis

(
∫∞
−∞ dxψ

∗
k(x)ψk′(x) = δ(k′ − k)). If instead we require that the inner product is
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integrated along the imaginary axis (
∫ i∞
−i∞ dxψ

∗
k(x)ψk′(x), notice that the limits of

integration are now imaginary), the eigenfunctions are then

φ(x) = φk(x) =
1√
2π

ekx . (2.32)

Solving for the eigenvalues we find

Hφ(x) = − 1

2m

∂2

∂x2

(
1√
2π

ekx
)

= − 1

2m
(k2)

(
1√
2π

ekx
)

= − k2

2m
φ(x) . (2.33)

Leaving us with eigenvalues − k2

2m
, where k ∈ R, implying that the eigenvalues are

negative. If we then check the inner product we find

∫ i∞

−i∞
dx φ∗k(x)φk′(x) = i

(
1√
2π

)2 ∫ −∞
∞

du e−iku eiki′u = −iδ(k′ − k) . (2.34)

Thus by changing the boundary conditions on the free particle we have real eigen-

functions that are orthogonal, but no longer Dirac normalizable along the real axis

(the inner product gives an imaginary result), whose energies are negative.

Notice that φk(ix) = ψk(x) for the free particle. Trivially, the same can be

shown for the harmonic oscillator (H0(x) = 1
2
p 2 + 1

2
x2). i.e.,

φn(ix) = ψn(x) . (2.35)

It is well known that H0(x)ψn(x) = (n + 1
2
)ψn(x) (i.e., ε

(0)
n = n + 1

2
), while it is less

well known what ε̃
(0)
n is (where H0(x)φn(x) = ε̃

(0)
n φn(x)). We begin by noting that

if we let x = iχ then the boundary conditions on φn(x) are that φn must be square
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integrable as χ→ ±∞. Thus

H0(x)φn(x) = H0(iχ)φn(iχ) =

(
−1

2

∂2

∂(iχ)2
+

1

2
(iχ)2

)
ψn(χ)

=

(
1

2

∂2

∂χ2
− 1

2
χ2

)
ψn(χ) = −

(
−1

2

∂2

∂χ2
+

1

2
χ2

)
ψn(χ)

= −H0(χ)ψn(χ) = −ε(0)
n φn(iχ) = −ε(0)

n φn(x) . (2.36)

Thus ε̃
(0)
n = −ε(0)

n = −n − 1
2
. So, as with the free particle, the energies of H0 can

be positive or negative depending on the boundary conditions. For the sake of com-

pletion, we should make sure that the eigenfunctions associated with the imaginary

boundary conditions are normalized as well. We already know that

∫ ∞
−∞

dxψ∗n(x)ψn′(x) = δn,n′ . (2.37)

By again letting x = iχ we find

∫ i∞

−i∞
dx φ∗n(x)φn′(x) =

∫ −∞
∞

d(iχ)φ∗n(iχ)φn′(iχ) = −i

∫ ∞
−∞

dχψ∗n(χ)ψn′(χ) = −iδn,n′ .

(2.38)

We might have expected this result based on the above mentioned considerations for

the free particle.

Up to this point, we examined how to change the boundary conditions from

purely real to purely imaginary (x→ iχ, where χ is real). What if instead we rotate

the boundary conditions into the complex plane by some angle θ (a procedure known

as “complex scaling”)? Let us consider the Hamiltonian,

h3 =
1

2
p 2 +

1

2
x2 + g x3 , g ∈ R+ , (2.39)
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which is clearly Hermitian, and as such will have a real energy spectrum. The po-

tential of h3 (V (X) = 1
2
x2 + g x3) presents a problem: While V (x)→∞ as x→∞,

V (x)→ −∞ as x→ −∞, telling us that the eigenvalues of h3 with real eigenenergies

that do not diverge x → ∞, however when x → −∞ the wave–functions diverge.

However, there is an established method to find the complex resonance energies of

the Hamiltonian h3, which allows for tunneling effects (the particle reaches x = ∞

in a finite time, classically. To find the complex resonance eigenvalues of h3 (and in

general), we complex scale the Hamiltonian, i.e.,

x→x ei θ , where 0 < θ <
π

5
,

h3 →
1

2
e−2iθp 2 +

1

2
e2iθx2 + g e3iθx3 . (2.40)

We then construct and diagonalize the corresponding matrix, using the harmonic

oscillator wave–functions as a basis. This results in complex energies of the form

En = Re(En)− i
Γn(g)

2
, (2.41)

where Γn(g) is the decay width of the eigenstates. More details on anharmonic

oscillators, including generalized quantization conditions, have been described in [5,

46,47].

2.4. HERMITIZING TRANSFORMS

In some cases, where one is only interested in the energy levels, a PT –

symmetric Hamiltonian may be considered a compact version of a more complicated

Hermitian Hamiltonian, and to this end, there is a transform which relates the two

Hamiltonians [34,49]. Let h be a Hermitian Hamiltonian and H be a PT -symmetric
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Hamiltonian, then the conjecture suggests that there is some positive-definite, Her-

mitian operator ρ such that

H = ρ−1 h ρ . (2.42)

Notice that ρ takes a Hermitian Hamiltonian to a non–Hermitian Hamiltonian. Thus,

ρ is necessarily not a unitary transform (which would otherwise conserve Hermiticity).

As such, it should come as no surprise that when one considers the wave–functions,

as we do in chapter 3, the PT –symmetric Hamiltonians cannot be similar to any

Hermitian Hamiltonians. This assertion is confirmed by [21], in which it is shown

that the wave–functions of the PT –symmetric Hamiltonian H = p 2 + i x3 do not

from a Riesz basis. Still, Hermitizing transforms are still an interesting concept, and

the back–transformation is

h = ρH ρ−1 . (2.43)

Since ρ is positive definite and Hermitian, the Hermitian adjoint of H is given by

H+ = ρ+h+(ρ−1)+ = ρ h ρ−1 . (2.44)

Working under the assumption that T HT = H+, then

H = ρ−1h ρ = ρ−1(ρ−1ρ)h (ρ−1ρ)ρ = ρ−2(ρ h ρ−1)ρ2 = ρ−2H+ρ2 = ρ−2T HT ρ2 .

(2.45)

We know, from the assumption that H is PT -symmetric that PT H T P = H, which

leads us to the conclusion that a proper choice for the Hermitizing operator ρ might

be ρ2 = P . However P is not positive definite, and neither is
√
P , meaning we have

the wrong operator for ρ, and we need to try a different approach.
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In this approach we will attempt to relate the inner products associated with h

and H. Firstly, let the eigenvectors of h and H be |φ〉 and |ψ〉 respectively. Then, we

can show that they have the same eigenenergies and |φ〉 = ρ|ψ〉. Let H|ψ〉 = E|ψ〉,

then

h|φ〉 =
(
ρHρ−1

)
(ρ|ψ〉) = ρHρ−1ρ|ψ〉 = ρH|ψ〉 = Eρ|ψ〉 = E|φ〉 . (2.46)

We know that the inner product of the eigenvectors of h are positive-definite, however

the inner product of the eigenvectors of H are not necessarily positive-definite. Then

〈φ|φ′〉 ≥ 0, while the same can not be said for 〈ψ|ψ′〉. Furthermore, we need to use

the pseudo–Hermitian inner product as discussed in chapter 2.2. We can modify the

inner product in the following way:

〈ψ|P|ψ′〉 → 〈ψ|CP|ψ′〉 , (2.47)

where the operator C insures the “new” inner product is positive–definite (note that

this C is not the charge conjugation operator). Now,

〈φ|φ′〉 = 〈ψ|(ρ−1)+ρ−1|ψ〉 = 〈ψ|ρ−1ρ−1|ψ〉 = 〈ψ|ρ−2|ψ〉 . (2.48)

We then let

ρ = e−
1
2
Q , (2.49)

from which we deduce that

CP = eQ , (2.50)
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and thus

C = eQP , C−1 = Pe−Q . (2.51)

Determining exactly what C is can be quite involved, as the C operator is not well

known [31,50]. Since C is unitary and commutes with both H and PT we can rather

trivially extend PT -symmetry to CPT -symmetry in which

C PT H T P C−1 = H , (2.52)

and the inner product is

〈ψ|ψ′〉CP = 〈ψ|CP|ψ′〉 . (2.53)

This adds an advantage in that the inner product is now positive-definite.

In principle any PT -symmetric Hamiltonian can be mapped onto a Hermitian

Hamiltonian. But why bother? The PT -symmetric Hamiltonians are far less com-

plicated and therefore more practical. Beyond that, the rotations ρ don’t necessarily

conserve parity (i.e., [ρ,P ] 6= 0) and as we will discuss in chapter 10.8, unless parity is

conserved, the results can become meaningless. In short, while the Hermitizing trans-

forms constitute an interesting theoretical connection between pseudo–Hermiticity

and pure Hermiticity, in practice they are an unnecessary exercise that complicates

an otherwise reasonable representation of a given system.
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3. PSEUDO–HERMITICITY AS AN INDEPENDENT CONCEPT

3.1. OVERVIEW AND ORIENTATION

In the previous chapters, we have discussed pseudo–Hermitian, and PT –sym-

metric, Hamiltonians, and argued that they constitute independent classes of time

derivative operators in quantum mechanics, rather than alternative versions of Her-

mitian Hamiltonians, connected to the “original” Hermitian operator via Hermitizing

transforms. In this chapter we work to further this cause by studying the structure

of the wave–functions of a PT –symmetric Hamiltonian (which also happens to be

P–Hermitian).

Despite the prolific literature on PT -symmetric quantum mechanics [1–14],

where the spectrum of PT –symmetric Hamiltonians has been analyzed in detail, the

properties of the wave–functions corresponding to the eigenstates of the Hamiltoni-

ans are generally overlooked (with the exception of [21], which shows that the wave–

functions are complete for H = p 2 + ix3). This is all the more surprising because

a number of interesting field-theoretical model theories and a streamlined descrip-

tion of phenomenologically important so-called PT -symmetric wave guides rely on

PT -symmetric quantum mechanics and field theory (as discussed in chapter 2.2).

Moreover, the concept of a PT -symmetric Hamiltonian has recently been instrumen-

tal in finding a generalization of the so-called Bender–Wu formulas [51–53] to odd

anharmonic oscillators [5, 12]. An intuitive understanding of the physics involved in

PT -symmetric models is hard to obtain without looking at the wave–functions.

In this context, one may well ask the following question: The Hamiltonian H3

H3 =
1

2
p2 +

1

2
x2 + iGx3 , (3.1)
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involves a manifestly complex potential,

V (x) =
1

2
x2 + iGx3 = |V (x)| ei arg(V (x)) , (3.2)

whose complex modulus tends to infinity as x → ±∞. For ordinary (purely real)

potentials, intuition suggests that the “bulk” of the probability density of the eigen-

state wave–function should be concentrated in the “classically allowed” region, i.e.,

in the region where the eigenenergy E is greater than the potential, E > V (x) (with

V (x) ∈ R). Here we endeavor to generalize this concept to PT -symmetric quan-

tum mechanics. For a manifestly complex potential, the condition E > V (x) (with

V (x) ∈ C) does not make any sense because the complex numbers are not ordered.

It is thus unclear how the concept of a “classically allowed region” should be gener-

alized to the complex domain. We also observe that the eigenstate wave–functions

of a PT -symmetric Hamiltonian do not need to be eigenstates of parity, because the

parity operator does not necessarily commute with the PT -symmetric Hamiltonian.

These observations raise a number of obvious pertinent questions which we attempt

to answer.

Based on the work presented in part III of [54], we proceed by recalling a few

basic facts about eigenvalue perturbation theory in chapter 3.2, analyzing the parity

of eigenstates in chapter 3.3, and continue with a visualization of the manifestly

complex PT -symmetric eigenstates in chapter 3.4. Finally, some conclusions are

drawn in chapter 3.5.

3.2. ASYMPTOTICS OF IMAGINARY CUBIC PERTURBATION

In order to fix ideas, we would first like to recall a few basic facts about eigen-

value perturbation theory and the imaginary cubic perturbation. The Hamiltonian

given in equation (3.1) can easily be split into an unperturbed partH(0) = −1
2
∂2
x+ 1

2
x2



26

and a perturbed part H(1) = iGx3. Starting from the unperturbed harmonic oscil-

lator eigenvalues H(0)|n〉 = ε
(0)
n |n〉, where ε

(0)
n = n + 1

2
, one can develop perturba-

tion theory, either using the classical Rayleigh–Schrödinger approach [55] or using

a complex contour integration of the logarithm of the wave–function [46, 47], which

transforms the Schrödinger equation into a Riccati differential equation. The first

non-vanishing term is of second order,

∆ε(2)
n = −

∑
m 6=n

〈m|H(1)|n〉〈n|H(1)|m〉
ε

(0)
m − ε(0)

n

= G2
∑
m 6=n

|〈m|x3|n〉|2

m− n

=
G2

8

(
30n2 + 30n+ 11

)
+O(G4) . (3.3)

Unlike second-order perturbations involving a Hermitian operator, the second-

order term here is positive and shifts the ground-state energy level upward. Through

fourth order, the result reads as

εn = n+
1

2
+
G2

8

(
30n2 + 30n+ 11

)
(3.4)

− 15

32
G4
(
94n3 + 141n2 + 109n+ 21

)
+O(G6)) .

For the ground state (n = 0), this expression evaluates to 1/2 + 11G2/8−465G4/32,

while going to eighth order we obtain 1/2 + 11G2/8 − 465G4 + 39709G6/128 −

19250805G8/2048 which is plotted against numerical values of the ground-state en-

ergy, as a function of G, in figure 3.1(a). The positive curvature of the ground-state

energy in the weak-coupling regime is clearly visible.

We can also look at the strong-coupling asymptotic as G→∞, for which we

employ a “poor man’s scaling” in which we rotate x→ G−
2
5x. Under this scaling, H3
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Figure 3.1: The ground-state energy of the anharmonic oscillator Hamiltonian with
imaginary cubic perturbation, as given in equation (3.1), is plotted in the perturbative
(weak-coupling) regime in figure (a). The solid curve represents the results from
eighth-order perturbation theory. In figure (b), the same eigenvalue is plotted in the
strong-coupling regime G > 0. The small dots represent numerical values.

is replaced by the following Hamiltonian H ′3, which has the same spectrum as H3,

H ′3 = G
2
5

(
−1

2
∂2
x + ix3 +

1

2
G−

2
5x2

)
→ G

2
5

(
−1

2
∂2
x + ix3

)
, G→∞ (3.5)

The PT -symmetric Hamiltonian H ′3 = G2/5(−1
2
∂2
x+ix3) has its own set of eigenvalues,

which we label as ε′n. Thus, the large-coupling asymptotics for the energies ε′n of H ′3

reads as

ε′n ∼ G
2
5 ε(0)

n , (3.6)

for large G, where the ε
(0)
n are the energies of the Hamiltonian H

(0)
3 , with

H
(0)
3 = −1

2
∂2
x + ix3 → 2−

3
5

(
−∂2

x + ix3
)
. (3.7)

In the last step, we have done the scaling transformation x → 2−
1
5 x. This trans-

formation allows us to connect the strong-coupling asymptotics with the literature,
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notably, with references [2] and [56, 57]. In particular, we have ε
(0)
n = 2−

3
5 ε̃n where

the ε̃n are the energies of the Hamiltonian p2 + ix3.

3.3. PARITY OF EIGENSTATES

We have determined, to high numerical accuracy, the manifestly complex

wave–functions of the ground state and the first two excited eigenstates of the imag-

inary cubic oscillator. The results are displayed in figure 3.2. The parity operator

P does not commute with the Hamiltonian H3, and the eigenstates of H3 are not

eigenstates of parity. Furthermore, because the potential is manifestly complex, we

cannot choose the wave–functions to be purely real. However, numerical evidence

drawn from figure 3.2 suggests that individually, both real as well as imaginary part

of the wave–function are eigenstates of parity. Indeed, we can formally split the

Hamiltonian H3 into a “real part” and a “imaginary part” as follows,

ReH3 = −1
2
∂2
x + 1

2
x2 , ImH3 = iGx3 . (3.8)

If we also split the eigenstate wave–function ψn(x) into real and imaginary parts,

ψn(x) = Reψn(x) + i Imψn(x) , (3.9)

then it is rather easy to show that if Reψn(x) is even under parity and ψn(x) is

an eigenstate of H3 with real eigenvalue of εn, then Imψn(x) has to be parity-odd,

and vice versa. This is accomplished by first constructing the eigenstates as a linear

combination of the eigenstates of the harmonic oscillator, |m〉, i.e.,

|ψn〉 =
∑
m

am |m〉 . (3.10)
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Figure 3.2: Figure (a) displays the complex ground-state wave–function of the imag-
inary cubic Hamiltonian (3.1) for G = 1.0. The real part is plotted using solid lines,
and the dashed lines plot the imaginary part. The real part is even, the imaginary
part is odd under parity. For the first excited state (still, G = 1.0), the real part
is odd, while the imaginary part is even under parity (see figure (b)). The second
excited state (figure (c)) has an even real part, while its imaginary part is odd.

One then finds that

am = iCn (αm am+3 + βm am+1 + βm−1 an−1 + αm−3 am−3) , (3.11)

where

Cm =
G

2
√

2
(
εn −m− 1

2

) , αm =
√

(m+ 1) (m+ 2) (m+ 3) , (3.12a)

βm = (m+ 1)3/2 . (3.12b)

Since the spectrum of H3 is real Cm, αm, βm ∈ R. Considering our results for the

prefactors, along with the fact that |m〉 is even under parity when m is even, and

odd under parity when m is odd, we find that by assuming Reψn(x) is even under

parity, it follows that a2l ∈ R and a2l+1 ∈ I for all l ∈ N, i.e., if Reψn(x) is even under

parity, then Imψn(x) is odd under parity. Similarly, if Reψn(x) is odd under parity

and ψn(x) has a real eigenvalue of εn, then Imψn(x) has to be even under parity. In

references [58], it has been observed that since PT commutes with the Hamiltonian,

the eigenfunctions ofH3 also have to be eigenfunctions of the PT operator. Numerical
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evidence suggests that the appropriate eigenvalues are

PT ψn(x) = ψ∗n(x) = (−1)n ψ(x) (3.13)

(see equation (5) of reference [58]). In the space of eigenfunctions ψn, the conserved

scalar product (2.23) then becomes

〈ψn|ψm〉∗ =

∫
dxψ∗n(x)Pψm(x) =

∫
dx (PT ψn) (x)ψm(x)

= (−1)n
∫

dxψn(x)ψm(x) , (3.14)

where the last line is without complex conjugation. This latter formula shows that

the conserved scalar product for the PT -symmetric imaginary cubic perturbation is

equal (up to a prefactor) to the generalized inner product for complex-scaled Hamil-

tonians as defined in equation (2.4.2) of reference [48], which avoids the complex

conjugation of the first argument. Identifying the PT -symmetric scalar product as

a generalization of the generalized inner product for complex-scaled Hamiltonians

(which otherwise give rise to resonances), we stress once more the connection of the

imaginary cubic perturbation iGx3 to the real cubic perturbation g x3, which gives

rise to manifestly complex resonance energies [5, 12].

3.4. VISUALIZATION OF PT –SYMMETRIC EIGENSTATES

From the investigations [5,9,12], we know that a dispersion relation connects

the energy levels of the imaginary cubic perturbation iGx3 to the “real” cubic per-

turbation g x3. Furthermore, the eigenenergies of the imaginary cubic potential are

real, whereas the resonance and antiresonance energies of the real cubic perturbation

are complex. There is no direct and obvious visualization available for the imaginary
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cubic perturbation. One may well ask in which sense the imaginary cubic pertur-

bation “confines” the eigenstate wave–functions to a “classically allowed” region of

space, it is difficult if not impossible to characterize this “classically allowed” region

because the set of complex numbers C is not ordered.

An intuitive understanding can be obtained if we interpret the potential in

terms of a complex modulus and a phase, which according to equation (3.2) reads as

V (x) =
1

2
x2 + iGx3 = |V (x)| ei arg(V (x)) , (3.15a)

−π ≤ arg(V (x)) < π . (3.15b)

If we then plot the modulus of the complex potential and its complex phase, a “confin-

ing” shape is obtained, which is modulated by a complex phase in the range [−π, π].

This is represented in figure 3.3.

The eigenstate wave–function are plotted in figures 3.4 and 3.5, with the idea

of writing the complex eigenstate wave–functions as

ψn(x) = |ψn(x)| ei arg(ψn(x)) . (3.16)

It is known that for Hermitian operators, the ground-state wave–function al-

ways has maximum symmetry. Furthermore, for both the harmonic oscillator as well

as for the “stable” quartic perturbation, the number of zeros of the wave–function is

equal to the principal quantum number. This is illustrated in figures 3.4(a) and (b). It

has been observed previously [56] that the resonance state wave–function has no zeros

when considered as a complex variable (see figure 4 of reference [56]). In figure 3.4(c),

the plot of the wave–function square |ψn(x)|2 suggests that the same statement holds

for the eigenstate wave–functions of the imaginary cubic perturbation: they carry no
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Figure 3.3: Visualization of the harmonic+cubic potential given in equation (3.2).

The modulus of the potential
(
|V (x)| =

√
x4/4 +G2 x6

)
leads to a confining mech-

anism for x→ ±∞. The value of G in the plot is G = 1.0. The shaded area displays
the complex phase of the potential and covers the interval (−π/2, π/2).

complex zeros. We have used a numerical value of G = 1 in the plot; the abscissa

as plotted covers a range of 0 < V (x) < V0 = 0 < V (x) < 7 for the potential. The

wave–function squares are plotted in arbitrary units; in practical calculations, one

normalizes to
∫

dx|ψn(x)|2 = 1. The complex phase of the wave–function, which

covers the shaded areas in figure 3.4(c), revolves in the complex plane and transits a

number of Riemann sheets, i.e., it jumps from −π to +π several times in our interval

−3 < x < 3. Indeed, we observe that the wave–functions of the imaginary cubic po-

tential have no complex zeros, while the real and imaginary parts, individually, have

a number of zeros. This is evident from figure 3.2. The question then is, how many.

In answer to this question, we refer to the complex phase of the wave–functions as

plotted in the shaded areas of figure 3.4(c).
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(a) (b) (c)

Figure 3.4: In figure (a), we plot the wave–function of the ground and the first two
excited states of the harmonic oscillator. A “stable” quartic perturbation perturbs
the potential in figure (b) and leads to a “confinement” of the wave–function to
the classically allowed region E > V (x). The eigenenergies of the imaginary cubic
perturbation are real and allow us to plot the complex PT -symmetric eigenfunctions
as in figure (c). The complex phase of the wave–function is displayed in the shaded
region, as in figure 3.3 for the potential. The red curves denote the wave–functions
(figures (a) and (b)), while the blue curves display the complex phase of the wave–
functions. It is perhaps useful to note that we use g = 1 and G = 1 for the plot, while
stressing that the main purpose of the plot is to illustrate the qualitative behavior
of the wave–functions of the “stable” perturbations (positive quartic and imaginary
cubic), and the concrete value of G is irrelevant for this illustration and would clutter
the figure. See also the following figure 3.5.

Using a WKB analysis, the wave–functions can be approximated as

ψn(x) =
1

(2m [V (x)− En])1/4

[
γ exp

(
+

∫ x

dx
√

2m [V (x)− En]

)
+ δ exp

(
−
∫ x

dx
√

2m [V (x)− En]

)]
, (3.17)

where γ and δ are arbitrary constants [59]. Here we are only interested in the phase

as |x| → ∞, in which case

∫ x

dx
√

2m[V (x)− En]→
√

2iGm

∫ x

dx x3/2 = C (1 + i)x5/2 , (3.18)

where C =
√
Gm is a positive, real constant. By considering the imaginary part, we

have the asymptotic behavior of our phase, save for a prefactor of ±1, which we de-

termine based on our numerical analysis. Both our numerical results (see figure 3.6),
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Figure 3.5: In figure (a) we plot the probability density ρ = |ψ(x)|2 of the quartic
oscillator’s ground state and first two excited states. Along with which we plotted
the complex phase of the wave–functions which is chosen to be −π when the wave–
function is negative and zero when positive. In figure (b) we investigate the cubic
oscillator. The complex phase of the wave–functions is normalized to zero at the
origin by an appropriate scaling factor (multiple of the imaginary unit). Notice that
the qualitative features (“humps”) of the quartic oscillator are still present in the
complex (“PT -symmetric”) domain, however the zeros of the wave–functions are
“washed out” and become local minima.

as well as a WKB analysis show that the phase of the wave–function has to behave,

asymptotically, as arg(ψn(x)) ∼ −x5/2 for x → +∞ and as arg(ψn(x)) ∼ x5/2 for

x → −∞. Every time the complex phase arg(ψn(x)) (modulo π) attains zero, the

imaginary part of the wave–function vanishes, and whenever arg(ψn(x)) mod π =

π/2, the real part of the wave–function vanishes. So, we conclude that, even for an

infinitesimally small coupling G in the imaginary cubic perturbation iGx3, the real

and imaginary parts of the wave–function, individually, have an infinite number of ze-

ros. This is somewhat surprising. E.g., the above considerations imply, among other

things, that the number of complex zeros of the first-excited-state wave–function

of the imaginary cubic perturbation is a discontinuous function of G. Namely, for

G = 0, we have one complex zero (because the Hamiltonian is equal to the har-

monic oscillator), while for non-vanishing G, the total number of complex zeros of
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Figure 3.6: Here we plot the negative of the accumulated phase of the ground
state wave–function from x = 0 to x = 6. The solid line is the large coupling
θ(x) = −3.837x5/2, while the points denote the numerical value of the complex
phase.

the wave–function vanishes, while both real and imaginary parts of the wave–function

(for non-vanishing G) have an infinite number of zeros.

3.5. CONCLUDING REMARKS

In studying the wave–functions of a PT –symmetric Hamiltonian, we have

developed a number of arguments supporting the conclusion that PT –symmetry

should be viewed as an independent concept: (i) the physical interpretation of a

PT –symmetric Hamiltonian is a system in which the gain and loss terms are “in

equilibrium,” where a Hermitian Hamiltonian describes a closed system. (ii) While

there is an overlap between Hermitian and PT –symmetric Hamiltonians, neither

forms a subset of the other. (iii) The wave–functions of the Hamiltonian we ex-

amined, which is both PT –symmetric and pseudo–Hermitian, cannot be chosen as

real (i.e., they must be complex). Furthermore, the real and imaginary parts of the



36

wave–functions have properties which cannot be reconciled with intuitive concepts we

have when considering Hermitian Hamiltonians. (iv) The counter argument, namely

Hermitizing transforms, require a non–unitary similarity transform, which does trans-

form a PT –symmetric Hamiltonian into a Hermitian Hamiltonian which shares its

eigenvalues with the original Hamiltonian [34, 49], however neither parity, nor the

metric are conserved [20, 21]. With these considerations in mind, it becomes clearer

that PT –symmetry is not an extension of Hermiticity, but an independent concept

in its own right.

Our considerations, reported in figures 3.4, 3.5 and 3.7, suggest that the eigen-

state wave–functions of PT -symmetric Hamiltonians are not as “exotic” as one might

otherwise imagine. An interesting observation, described in chapter 3.4, is as follows:

In a PT -symmetric case, the number of zeros of the wave–function cannot be used

to enumerate the eigenstates. The wave–functions have no complex zeros; yet, quite

contrarily, both the real as well as the imaginary part have an infinite number of ze-

ros, individually. The modulus of the potential, which tends to infinity as |x| → ∞,

is responsible for the confinement of the wave–function of the imaginary cubic Hamil-

tonian to a “classically allowed region” in much the same way as one would expect

from Hermitian quantum dynamics. However, the numerical evidence suggests that

one may be able to enumerate the PT –symmetric wave–functions by considering the

local minima of the modulus of the wave–function in this region. As remarked near

the end of chapter 3.3, the field of PT -symmetric Hamiltonians gives rise to a (still

unanswered) number of theoretical questions, even if the original idea of pseudo-

Hermiticity has been formulated more than 60 years ago [1].

It has been stressed in the literature that the scalar product 〈ψ|φ〉∗ as defined

in equation (2.23) is not positive definite. This has been used as an argument against

the viability of PT -symmetric Hamiltonians for the description of natural phenom-

ena. However, one may counter argue that the same problem persists with regard to
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Figure 3.7: Illustration of the confinement mechanism for the imaginary cubic poten-
tial described by the Hamiltonian (3.1), for the ground and the first excited state. The
bulk of the modulus square of the wave–function is centered in the “allowed” region
where the (real rather than complex) energy E > V (x) = V (G, x) = |W (G, x)|. The
potential is plotted in green, the complex moduli of the wave–functions are plotted
in red. The ground state wave–function has a modulus square |ψ0(x)|2 = |ψ0(G, x)|2
as a function of G and x. As G increases, the bound-state energy (which is equal
to the base line of the wave–function curve at any given value of G) increases, and
the modulus of the potential forms a more narrow trough to which the ground-state
wave–function is confined. The same is true for the first excited state. The central
minimum of the complex modulus square of the first-excited state wave–function is
clearly visible.

the Klein-Gordon equation where the time-like component of the current can become

negative (see chapter 2 of reference [60]). For the Klein-Gordon equation, which de-

scribes a charged scalar field like (a component of) the Higgs field, one therefore has to

reinterpret the zero component of the conserved Noether current as a charge density,

not a probability density. Analogously, in the context of neutrino physics [44], an in-

terpretation of a zero component of a conserved Noether current in a PT -symmetric

theory in terms of a weak interaction density has recently been proposed. No physical

system is known which is directly described by an iGx3 interaction, so the question
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of how to interpret the conserved density ρ∗(x) = ψ(x)+Pψ(x) = ψ(x)+ψ(−x) is

perhaps not as immediate as in the other cases. It has found an application within

physics in the context of generalized Bender–Wu formulas for odd anharmonic oscilla-

tors [5,12]. Still, it is reassuring to observe that quantum theories do not necessarily

have to rely on a conserved positive-definite probability density; the Klein–Gordon

theory is an example, where a re-interpretation of the probability as a charge den-

sity is accepted within the particle physics community and is an integral part of the

accepted description of a fundamental spinless particle within the standard model,

namely, the Higgs particle.
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4. PSEUDO–HERMITICITY AND MATRIX DIAGONALIZATION

4.1. ORIENTATION

A number of powerful matrix diagonalization algorithms are known from the

literature and have been implemented, i.e., in the LAPACK library [61]. Why should

there be yet another effort at constructing numerical matrix diagonalization algo-

rithms? The answer is that the numerical calculations reported in chapter 3 of this

thesis were actually performed using an algorithm for matrix diagonalization, which

is inspired by the physical structure of the pseudo–Hermitian quantum dynamics,

notably the complex inner product (see equations (2.23) and (3.14)). These avoid

the complex conjugation of the first argument.

In quantum mechanics, one often projects the Hamiltonian onto a (necessarily

somewhat incomplete) finite subset of basis vectors, say, composed of eigenstates

of the harmonic oscillator (chapter 7 of [59]). This semi–complete basis is then

used to find approximations to energies and wave–functions of the system. It turns

out that when they are projected onto an appropriate set of basis states, certain

pseudo–Hermitian, or PT –symmetric, Hamiltonians naturally give rise to complex

symmetric matrices. In general, matrix diagonalization algorithms can be specialized

based on the properties of the input matrix, as well as the subset of eigenvalues

and eigenvectors one is interested in. For example, if only a specific eigenvalue of a

sparsely populated matrix is desired, then “shooting” techniques such as the Arnoldi

method, or variants thereof [62, 63], can be applied. For our purposes, we need to

specialize in the diagonalization of complex symmetric matrices. Furthermore, we

want the algorithm to be easily scalable in terms of numerical precision, requiring

that the algorithm not be overly complicated. Arguably, the QL and QR algorithms
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constitute the conceptually simplest approaches to matrix diagonalization, as they

iterate similarity transforms based on the decomposition of the input matrix into

orthogonal (Q) and left triangular (L) or right triangular (R) matrices [64,65], which

eventually converges to a diagonal matrix. It has been shown that, in the event that

the input matrix is an (n× n) tridiagonal matrix, the rate of convergence is λi/λi+1,

for an ordered set of eigenvalues |λ1| < |λ2| < ... < |λn| [66, 67].

Our proposed (and tested) algorithm combines a generalization of the QL–

factorization technique with an initial highly efficient tridiagonalization step, employ-

ing generalized Householder reflections. We refer to this algorithm as “Householder–

based tridiagonalization followed by generalized QL decompositions with an im-

plicit shift,” or HTDQLS for short. The first step of the algorithm is to iteratively

transform the input matrix A into tridiagonal form, utilizing a series of general-

ized Householder reflections. This step can be summarized as T = Z−1AZ, where

Z = Hn−1Hn−2 . . . H2 is an orthogonal (ZT = Z−1) product of n − 2 generalized

Householder reflections. After calculating the tridiagonal matrix T , we employ a

generalization of the “chasing the bulge” strategy (see section 8.13 of [69]). In each

iteration of this step, the algorithm calculates a guess, σ for a specific eigenvalue λ of

T , and calculates the QL decomposition for the tridiagonal matrix T −σ 1n×n = QL,

then T ′ = LQ + σ 1n×n = Q−1T Q. Eventually, this procedure will lead to the diag-

onalization of T , up to machine precision, while preserving the tridiagonal structure

of T in each step. Practically, this procedure manifests itself as the creation of a

“bulge” (an off tridiagonal element), introduced by the initial rotation. The remain-

ing rotations of each iteration are Givens rotations, which “chase”, and eventually

annihilate, the “bulge.” This procedure relies on the super-/sub–diagonal elements

going to zero (to machine precision) in order, starting at the top left corner, and

working down to the bottom right corner. In the event that an element is zeroed

before its turn, then “deflation” techniques are used to subdivide the input matrix
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into two smaller matrices, each of which must be diagonalized separately. For large

matrices it may become necessary to apply the deflation procedure recursively.

Here we go into greater detail than in Part II of [54] in describing the steps

taken by the algorithm. We begin with a discussion of the tridiagonalization step in

chapter 4.2, which includes a discussion of an alternative diagonalization method. In

chapter 4.3 we discuss the diagonalization step, including a discussion of the deflation

procedure. In chapter 4.4 we briefly go over how one might implement the QR version

of the algorithm. Finally in chapter 4.5 we include numerical reference data. In

chapter 5 we include a brief discussion of the implementation of the algorithm, while

an explicit FORTRAN implementation can be found in appendix A.

4.2. TRIDIAGONALIZATION

4.2.1. Householder Reflections and Hermitian Matrices. Before we

discuss the generalization of Householder reflections let us review the traditional (not

generalized) Householder matrices. By definition the Householder reflection is given

as [70]

Hvx ≡ x− 2

〈v, v〉
〈v, x〉v, (4.1)

and can be rewritten as

Hvx = x− 2〈u, x〉u , (4.2)

where

u =
v

|v|
and |x| ≡

√
〈x, x〉 . (4.3)

By definition, the scalar product is 〈x, y〉 = x+y, and x+ = xT∗ = x∗T . From here we

find that

Hv ≡ 1− 2u⊗ u+ , (4.4)
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where 1 is the identity matrix, and ⊗ is the tensor (dyadic) product. We can now

show that Hv is Hermitian,

Hvij = δij − 2ui u
∗
j = δji − 2u∗j ui = (δji − 2uj u

∗
i )
∗ = H∗vji , (4.5)

i.e.,

Hv = H+
v , (4.6)

and subsequently that Hv is unitary

H2
v = HvH

+
v = H+

v Hv =
(
1− 2u⊗ u+

)2
= 1− 4u⊗ u+ + 4u⊗

[
(u+u)u+

]
. (4.7)

Now

u+u =
v+v

|v|2
=
〈v, v〉
〈v, v〉

= 1 , (4.8)

and by plugging this result into (4.7) we quickly find

H2
v = 1 . (4.9)

Now if we set v = y + eiθ|y|ên (where x+ên = x∗n and ê+x = xn, where xn is the nth

element of x), where yn = |yn|eiθ, then

Hvy = y − 2 〈u, y〉u = y − 2

|v|2
v+y v = y −

2
(
y + eiθ|y|ên

)+
y(

y + eiθ|y|ên
)+ (

y + eiθ|y|ên
)v

= y −
2
(
y+ + e−iθ|y|ê+

n

)
y(

y+ + e−iθ|y|ê+
n

) (
y + eiθ|y|ên

)v = y −
2
(
|y|2 + e−iθ|y|yn

)
|y|2 + eiθ|y|yn + e−iθ|y|y∗n + |y|2

v

= y −
2
(
|y|2 + e−iθ|y||yn|eiθ

)
2|y|2 + eiθ|y||yn|eiθ + e−iθ|y||yn|e−iθ

v = y −
2
(
|y|2 + |y||yn|

)
2|y|2 + 2|y||yn|

v = y − v

= − |y|eiθên . (4.10)
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If y is real, as it is when we tridiagonalize real symmetric matrices, then we immedi-

ately have θ = 0, and

Hvy = −|y|ên . (4.11)

These properties (equations (4.10) and (4.11)) are essential when tridiagonalizing a

Hermitian (or real symmetric) matrix [66, 69]. As such, we want the generalization

of the Householder matrices to have a similar property when applied to a complex

symmetric (non–Hermitian) matrix. Implicit within this discussion is that for House-

holder reflections operating on a Hermitian matrix, in addition to (4.10), we also

want y+Hv to reduce so a single element row matrix, which we can easily show it

does:

y Hv =
(
Hvy

)+
= −|y|e−iθê+

n . (4.12)

When considering a complex symmetric matrix, we need Hvy and yTHv to both

reduce to single element row matrices (as we will see in chapter 4.2.4). If we use

the usual definition, we will again find that the former does reduce to the desired

form (4.10), however

yTHv = yTH+
v = (Hvy

∗)+ , (4.13)

and

Hvy
∗ = y∗ − 2 〈u, y∗〉u = y∗ − 2

|v|2
v+y v = y∗ −

2
(
y + eiθ|y|ên

)+
y∗(

y + eiθ|y|ên
)+ (

y + eiθ|y|ên
)v

= y∗ −
2
(
y+ + e−iθ|y|ê+

n

)
y∗(

y+ + e−iθ|y|ê+
n

) (
y + eiθ|y|ên

)v
= y∗ −

2
(
|y|2 + e−iθ|y||yn|e−iθ

)
2|y|2 + eiθ|y||yn|eiθ + e−iθ|y||yn|e−iθ

v = y∗ −
2
(
|y|2 + |y||yn|e−2iθ

)
2|y|2 + 2|y||yn|

v .

(4.14)
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Thus yTHv does not reduce to a single element row matrix and we cannot use House-

holder reflections (as defined in the usual way) to tridiagonalize complex symmetric

matrices.

4.2.2. Generalized Householder Reflections. Drawing inspiration from

the indefinite inner product [see equations (2.23) and (3.14)] which doesn’t have any

complex conjugation, we define the indefinite scalar product, which avoids complex

conjugation, as

〈x, y〉∗ = xTy , (4.15)

for complex matrices. We now modify our definition of the Householder reflections

accordingly, and define the generalized Householder reflection as

Hvx ≡ x− 2

〈v, v〉∗
〈v, x〉∗v . (4.16)

From this result we quickly find that

Hv = 1− 2u⊗ uT , (4.17)

where ⊗ is the tensor (dyadic) product, and

u =
v

|v|∗
and |x|∗ =

√
〈x, x〉∗ . (4.18)

This definition is in agreement with the first (unnumbered) equation in [73] and

equation (1) in [74], the latter of which uses an unnecessary normalization of the

vector v. We can now show that Hv is symmetric,

Hvij = δij − 2ui uj = δji − 2uj ui = Hvji , (4.19)
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i.e.,

Hv = HT
v , (4.20)

and subsequently that Hv is a square root of unity

H2
v =HvH

T
v = HT

vHv =
(
1− 2u⊗ uT

)2
= 1− 4u⊗ uT + 4u⊗

[
(uTu)uT

]
= 1− 4u⊗ uT + 4u⊗ uT = 1 . (4.21)

Now if we set

v = y + |y|∗ên , (4.22)

then

Hvy = y − 2 〈u, y〉u = y − 2

|v|2
vTy v = y −

2
(
y + |y|∗ên

)T
y(

y + |y|∗ên
)T (

y + |y|∗ên
)v

= y −
2
(
yT + |y|∗ê+

n

)
y(

yT + |y|∗êTn
) (
y + |y|∗ên

)v = y −
2
(
|y|2∗ + |y|∗yn

)
2|y|2∗2|y|∗yn

v

= y − v = −|y|∗ên , (4.23)

and

yTHv = yTHT
v = (Hvy)T = −|y|∗êTn . (4.24)

As we will see in the following section, by using the indefinite scalar product it has

become quite simple to tridiagonalize complex symmetric matrices.

(Remark: It should be noted that not all complex symmetric matrices are

diagonalizable, such as  i 1

1 −i

 ,

whose determinant is 0. Our additional implicit assumption is that the matrix we

are working on is diagonalizable.)
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4.2.3. Matrix Diagonalization using solely Householder Reflections.

While the central theme of this chapter is the description of an algorithm designed to

diagonalize complex symmetric (not Hermitian) matrices in two steps (tridiagonal-

ization followed by diagonalization), there is an alternative approach, namely plain

QL and QR decomposition. We take the opportunity to briefly describe the underly-

ing process, while again specializing in complex symmetric (non-Hermitian) matrices.

Both the plain QL and QR decompositions exclusively use generalized Householder

reflections (see chapter 4.2.2) to diagonalize a matrix, and are performed using one

step, in which the following procedure is iterated until the input matrix has been

diagonalized to machine accuracy. Versions of the algorithms have been implemented

using FORTRAN and are included in appendix B. We begin by describing the plain QL

decomposition for an n × n complex symmetric (not Hermitian) matrix A. In the

first step, we set y
n

equal to the final column of A,

y
n

=


A1n

...

Ann

 , (4.25)

from which we construct vn as prescribed by (4.22) and then set Hn = Hvn
which is

defined in (4.16). Then Ln = HnA will have the form

Ln =



(Ln)1 1 . . . (Ln)1n−1 0

...
. . .

...
...

(Ln)n−1 1 . . . (Ln)n−1n−1 0

(Ln)n 1 . . . (Ln)nn−1 −|y
n
|∗


.

We now proceed by setting y
n−1

equal to the first (n− 1) elements of the second to

last column of Ln. The column matrix vn−1 is then calculated, followed by Hvn−1
.
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We then set

Hn−1 =

 Hvn−1

11×1

 , (4.26)

and find Ln−1 = Hvn−1
Hvn

A which will be a left triangular matrix in the last two

columns,

Ln−1 =



(Ln)1 1 . . . (Ln)1n−2 0 0

...
. . .

...
...

...

(Ln)n−1 1 . . . (Ln)n−1n−2 −|y
n−1
| 0

(Ln)n 1 . . . (Ln−1)nn−2 (Ln−1)nn−1 −|yn|∗


. (4.27)

We repeat this procedure, setting y
i

equal to the first i elements of the last column

of Li+1 that is not in the left triangular form. We then calculate vi, from which the

generalized Householder reflection, Hvi
, is constructed. Then, by the application of

the Householder reflection H i =diag(Hvi
,1(n−i)×(n−i)), the matrix Li is generated.

The index i runs from i = n down to i = 2. After a total of (n − 1) Householder

reflections, we will have

L =L2 = H A , H = H2H3 . . . Hn , (4.28a)

A =QL , Q = H−1 = HT = HT
n . . . H

T
2 , (4.28b)

where L is a left triangular matrix. We can now rotate A into A′,

A′ = QTAQ = LQ . (4.29)

In general A′ will not be a diagonal matrix, and as such we need to repeat the decom-

position for A′, following the procedure described above. Once the decomposition is
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performed, we find

A′ = Q′ L′ , A′′ = L′Q′ , (4.30)

and after k QL decompositions,

A(k) = Q(k) L(k) , A(k+1) = L(k) Q(k) . (4.31)

Similarly, we can use the generalized Householder reflections to perform a QR de-

composition of A. For the QR decomposition we begin by setting y
1

equal to the first

column of A,

y
1

=


A11

...

Ann

 , (4.32)

from which calculate v1 = y
1

+ |y|∗ê1, and construct the corresponding Householder

reflection, Hv1
. Then R1 = H1A will be

R1 =



−|y
1
|∗ (R1)1 2 . . . (R1)1n

0
...

. . .
...

... (R1)n−1 2 . . . (R1)n−1n

0 (R1)n 2 . . . (R1)nn


. (4.33)

We then choose y
2

to be the last n− 1 elements of R1, find v2 and Hv2
and set

H2 =

 11×1

Hv2

 , (4.34)

and continue the process as we did for the QL case, only this time i runs from i = 1 to

i = n−1 and we are finding Ri. After the (n−1) generalized Householder reflections
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are performed we find

R =Rn−1 = H A , H = Hn−1Hn−2 . . . H1 , (4.35a)

A =QR , Q = H−1 = HT = HT
1 . . . H

T
n−1 , (4.35b)

where R is a right triangular matrix. After k QR decompositions we have

A(k) = Q(k)R(k) , A(k+1) = R(k) Q(k) . (4.36)

For both cases (QL and QR), after a sufficient number of iterations, m, is performed

A(m) will be a diagonal matrix.

The “plain QL” (PQL) and “plain QR” (PQR) algorithms described above are

not the most efficient way to find the eigenvalues and eigenvectors of a complex sym-

metric (non-Hermitian) matrix, yet they are included here because of their versatility.

These simple routines are very easy to implement, as well as being easily scalable.

Finally they provide for surprisingly robust algorithms. Again, more on this can be

found in appendix B.

4.2.4. Procedure: First Step of the HTDQLS Algorithm. With the prepa-

rations given above, it is possible to now switch to the description of the first step

of our proposed matrix algorithm, HTDQLS (see figure 4.1). Concerning the first step

(tridiagonalization), we should add that in principle, it is possible to use a variety of

methods to bring complex symmetric matrices into tridiagonal form. For instance,

Cullum and Willoughby have shown that it is possible to use the Lanczos method

to tridiagonalize complex symmetric matrices [71, 72], yet we have chosen to employ

generalized Householder reflections to accomplish the same goal (see equation (4.16)

of chapter 4.2.2). These other methods are primarily useful when a subset of eigenval-

ues (e.g., those of largest magnitude) are to be determined. Here, we are specifically
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A

→

A′

→

A′′

→

A′′′

Figure 4.1: These figures represent the tridiagonalization of a 5 × 5 complex sym-
metric matrix, generated by Aij = ii+j+1

i+j+1
. In the first step we choose our y4 column

matrix, as the first 4 elements of the 5th column of A (outlined in red). We then set
v4 = y4 +

√
〈y4, y4〉∗ ê4, construct Hv4 and finally construct our rotation matrix H4.

We then rotate the matrix into A′ = H4AH4. In doing so we have eliminated the
off-tridiagonal elements in the final column and row. We then repeat the process,
however instead of using the entire matrix to construct H3 we focus only on the part
of the matrix that is still not tridiagonal (outlined in blue). We can now define y3 as
the first 3 elements of the 2nd to last column in A′, which we use to create v3 then
Hv3 and finally H3. Then A′′ = H3A

′H3. We repeat the process a final time, giving
us a tridiagonal matrix, A′′′, where, in this case, A′′′ = H2H3H4AH5H3H2.

concerned with the full tridiagonalization of the input matrix, and therefore choose a

generalization of the method of Householder transformations. This method contrasts

the PQL algorithm, as it requires a total of (n − 2) generalized Householder reflec-

tions to tridiagonalize, and subsequently diagonalize, the input matrix, while the PQL

algorithm requires (n− 1) generalized Householder reflections per iteration.

While the concept of using the generalized Householder reflections to tridi-

agonalize a complex symmetric matrix has been mentioned in reference [73, 74], the

implementation of the precise calculation procedure is not always made clear. In

reference [74], because of a lack of true complex arithmetic, the complex symmet-

ric matrix is separated into real and imaginary parts, causing each step to require

two Householder reflections, as well as an additional unitary transform. By contrast,

we here use an algorithm with a single generalized Householder reflection in each

step. In the following, we endeavor to clarify the procedure utilized by our algo-

rithm. While the procedure described here is similar to the PQL procedure described
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in chapter 4.2.3, there are differences between the two. Moreover the procedure de-

scribed in the following is designed to tridiagonalize the input matrix, rather than to

diagonalize it (as in chapter 4.2.3). Despite the similarities, it is worth going through

the tridiagonalization process in detail.

The tridiagonalization of a complex symmetric matrix of rank n can now be

performed using n−2 generalized Householder reflections. Simply because it provides

for clearer notation, we index the steps (in order) as i = n− 1 to i = 2 in steps of 1.

Let A be the matrix we want to tridiagonalize, then in the first step we choose y
n−1

to be the first n− 1 elements of the last column of A,

y
n−1

=



A1n

A2n

...

An−1n


. (4.37)

By defining Bn−1 as an n− 1× n− 1 matrix, where Bij = Aij, we can then write A

as

A =


Bn−1 y

n−1

yT
n−1

Ann


. (4.38)

We then calculate vn−1 as

vn−1 = y
n−1

+ |y
n−1
|∗ên−1. (4.39)
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We now construct Hvn−1
, which will be a Householder matrix of rank n− 1. We then

define Hn−1 as

Hn−1 =

 Hvn−1
0

0 11×1

 . (4.40)

Then

Hn−1A =


Hvn−1

Bn−1 Hvn−1
y
n−1

yT
n−1

Ann


, (4.41)

and thusly

Hn−1AHn−1 =


Hvn−1

Bn−1Hvn−1
Hvn−1

y
n−1

yT
n−1

Hvn−1
Ann


. (4.42)

Using equations (4.23) and (4.24) this reduces to

A′ =



0

B′n−1

...

|y
n−1
|∗

0 · · · |y
n−1
|∗ Ann


, (4.43)

where

A′ = Hn−1AHn−1, B′n−1 = Hvn−1
Bn−1Hvn−1

. (4.44)
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For the second step we choose y
n−2

to be the first n − 2 elements of the second to

last column of A′ (which is the same as the last column of B′n−1),

y
n−2

=



A′1n−1

A′2n−1

...

A′n−2n−1


=



B′1n−1

B′2n−1

...

B′n−2n−1


. (4.45)

We then calculate vn−2, construct Hvn−2
, which will be a Householder matrix of rank

n− 2, and define Hn−2 as

Hn−2 =

 Hvn−2
0

0 12×2

 . (4.46)

Then

A′′ = Hn−2A
′Hn−2 , (4.47)

and

A′′ =



0 0

B′m−1

...
...

|y
n−2
|∗ 0

0 · · · |y
n−2
|∗ A′mm |y

n−1
|∗

0 · · · 0 |y
n−1
|∗ Ann


, (4.48)

where m = n − 1. We then repeat the process, until we have a tridiagonal matrix.

As previously mentioned, this will take a total of n− 2 rotations.

What makes this process so convenient is that at no point do we have to

actually calculate an entire matrix, A′ (or any of the subsequent matrices). Instead,

due to the properties of the Householder reflections we already know what the last
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row and column of the new matrix will be, and only have to consider

B′ = Hv BHv =

(
1− 2

|v2|∗
v ⊗ vT

)
B

(
1− 2

|v|4∗
v ⊗ vT

)
= B − 2

|v|2∗
(v ⊗ vT B +B v ⊗ vT ) +

4

|v|4∗
v ⊗ vT B v ⊗ vT . (4.49)

Introducing p = 1
2
|v|2∗ this becomes

B′ = B − 1

p2
(v ⊗ vT B +B v ⊗ vT ) +

1

p2
v ⊗ vT B v ⊗ vT

= B − v ⊗
(
Bv

p

)T
−
(
Bv

p

)
⊗ vT + v ⊗ vT

p

(
Bv

p

)
⊗ vT . (4.50)

We now define u = Bv
p

and q = vTu
2p

, allowing us to rewrite B′ as

B′ = B − v ⊗ uT − u⊗ vT + 2v ⊗
[(

vTu

2p

)
vT
]

= B − v ⊗ uT − u⊗ vT + 2qv ⊗ vT

= B − v ⊗ (u− qv)T − (u− qv)⊗ vT , (4.51)

and finally we define w = u− qv, from which we get

B′ = B − v ⊗ wT − w ⊗ vT . (4.52)

Armed with this result we can now calculate each step by first choosing y and B.

We then calculate |y|∗ and v then p, u, q and w. We can then find B′ and finally

construct A′.

After we complete n− 2 iterations of this procedure, A will be in tridiagonal

form, i.e.,

T = Z−1AZ , (4.53)

where

Z = Hn−1Hn−2 . . . H2 , (4.54)



55

and

Z−1 = H2H3 . . . Hn−1 . (4.55)

4.3. DIAGONALIZATION

4.3.1. Implicit Shift. Cullum and Willoughby have treated the QL decom-

position in reference [71,75], as well as provided an algorithm in reference [72]. Here

we provide a more illustrative discussion on the procedure implemented in our algo-

rithm.

Now that we have managed to reduce the starting matrix to a tridiagonal

form, we can begin working on the diagonalization of T . Each iteration of this

QL decomposition manifests itself as an implicitly shifted initial rotation, followed

by a series of generalized Givens rotations. We zero out the super-/sub–diagonal

elements, proceeding from the top left corner to the bottom right corner by iterating

the transformation

T (k) − σk 1n×n =Q(k) L(k) , (4.56a)

T (k+1) =L(k)Q(k) + σk 1n×n =
(
Q(k)

)T
T (k)Q(k) . (4.56b)

Thus after each iteration the matrix returns to tridiagonal form. If we do not include

the shift (σi = 0), then the super-/sub–diagonal elements we are focusing on will

converge like

T
(k)
i i+1 ∝

(
λi
λi+1

)k
. (4.57)

If instead we consider a non–zero guess (σk 6= 0), and λi are the eigenvalues of T with

eigenvector xi, then

(T (k) − σk1n×n)xi = (λi − σk)xi , (4.58)
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and our rate of convergence becomes,

T
(k)
i i+1 ∝

(
λi − σk
λi+1 − σk

)k
. (4.59)

Thus the closer our guess, σk, is to λi, the faster the convergence [66,67].

To calculate our shift, let us consider the tridiagonal input matrix, which is

of the form

T =



D1 E1

E1 D2 E2

E2
. . . . . .

. . . Dn−1 En−1

En−1 Dn


. (4.60)

The usual choice for a shift is the Wilkinson shift [66, 67], which is obtained by

calculating the eigenvalues of the 2 × 2 submatrix containing the elements we wish

to zero (Ei), i.e.,  Di Ei

Ei Di+1

 . (4.61)

The eigenvalues of this matrix are

σk = D
(k)
i + E

(k)
i

D(k)
i+1 −D

(k)
i

2E
(k)
i

±

√√√√(D(k)
i+1 −D

(k)
i

2E
(k)
i

)2

+ 1

 . (4.62)
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The shift is chosen by first finding the difference between the possible shifts and Di,

i.e.,

δ+
k = |σ+

k −Di| =

∣∣∣∣∣∣Ei
Di+1 −Di

2Ei
+

√(
Di+1 −Di

2Ei

)2

+ 1

∣∣∣∣∣∣ , (4.63a)

δ−k = |σ−k −Di| =

∣∣∣∣∣∣Ei
Di+1 −Di

2Ei
−

√(
Di+1 −Di

2Ei

)2

+ 1

∣∣∣∣∣∣ . (4.63b)

From here, the shift is chosen as

σk =

 σ+
k for δ+

k ≤ δ−k

σ−k for δ−k < δ+
k

. (4.64)

For larger matrices we observe that a better choice for the shift may be obtained by

considering the 3× 3 submatrix


Di Ei 0

Ei Di+1 Ei+1

0 Ei+1 Di+1

 . (4.65)

It seems as thought this “cubic” shift over compensates, and the time spent finding

the better shifts cancels out the increase in speed that results from finding them. The

extension from the Wilkinson shift to using larger sub-matrices is also utilized in [76],

however in this case a (k × k)-bulge is created, and k shifts are needed to perform

the calculation, as exemplified in (2.1) of [76]. Thus, the use of the eigenvalues

of the trailing (k × k)-matrix is a natural extension of their multi-shift program.

Here, rather than using a larger “bulge”, we use a larger sub-matrix in order to

obtain a (hopefully) better “guess” for the eigenvalue of the matrix toward which

we are iterating. In extensive tests of the algorithm we found that different shifts
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seem to be optimal for different classes of input matrices. The “cubic” shift (based

on the (3 × 3)–submatrix) seems to be better suited for ill conditioned matrices,

while the Wilkinson shift performs better for banded matrices. For the case of well

conditioned matrices the difference in performance between the two is negligible.

Due to the convergence gained by using different shifts, the FORTRAN code included in

appendix A includes a variable SHIFTMODE, with possible values 0 (no shift, σk = 0),

1 (σk = Di), 2 (Wilkinson shift), and 3 (cubic shift). Generally the elimination of

the shift (SHIFTMODE=0) is computationally disadvantageous.

We will never explicitly calculate the shifted matrix (but instead use it, as

the name suggests) implicitly. This works by using the shift only to calculate the

initial rotation, and then subtracting the shift out. We shift back, and the original

eigenvalues are recovered. As such, the only actual calculation we have to do for the

shift is for the C and S in the initial rotation of each iteration, as we will see in (4.66).

4.3.2. Procedure: Second Step of the HTDQLS Algorithm. The diago-

nalization of the symmetric tridiagonal matrix is done using a combination of initial

rotations with an implicit shift and a series of Givens rotations (illistrated in fig-

ure 4.2). In the beginning we are trying to zero the super-/sub–diagonal element E1,

and one starts by calculating the shift σ1, and constructing the initial rotation matrix

R as follows,

R =



1

. . .

1

C S

−S C


,

C =
Dn − σ√

(Dn − σ)2 + E2
n−1

, S =
En−1√

(Dn − σ)2 + E2
n−1

, (4.66)
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T(k) (A′)(k) (A′′)(k) (A′′′)(k)

e
(k)
1 = 0?

T(k) (A′)(k) (A′′)(k)

e
(k)
2 = 0?

T(k) (A′)(k)

e
(k)
3 = 0?

T(k)

e
(k)
4 = 0?

T(k)

k = k + 1
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k = k + 1

no

yes

k = k + 1
no

yes
k = k + 1

no

yes

Figure 4.2: This flowchart illustrates the progression of the diagonalization step for a
5× 5–matrix. For each step a “bulge” is introduced, and then chased out. Following
this, the appropriate off diagonal elements are checked for convergence. Not include
in this chart is the check for premature zeroes, and the applied solution.

where C2+S2 = 1 andRT R = 1n×n. The initial step, which consists in the calculation

of T ′ = RT T R, creates an off tridiagonal element without eliminating any elements,

constitutes the first step in the chasing the bulge program. We notice that the initial

rotation matrix has a form similar to that of either a Jacobi or a Givens rotation.

Jacobi and Givens rotations are defined on page 100 of reference [69] in terms of the

elements they eliminate from a matrix; essentially, a Jacobi rotation eliminates the

same matrix element that was used in the construction of the rotation matrix, whereas

a Givens rotation eliminates a different element. The rotation R creates rather than

eliminates a matrix element, creating a “bulge”. This first rotation is neither a Jacobi
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nor a Givens rotation. Both here as well as in the FORTRAN implementation, we are

using the notation that D is an n-dimensional vector containing the diagonal elements

of our matrix and E is an (n−1)-dimensional vector (with n−1 elements) containing

the sub-diagonal elements of our matrix. Then the first transformed matrix T ′ =

RT T R is of the form

T ′ =



. . . . . .

. . . D′n−3 E ′n−3

E ′n−3 D′n−2 E ′n−2 F ′

E ′n−2 D′n−1 E ′n−1

F ′ E ′n−1 D′n


, (4.67)

with an obvious “bulge” as the off tridiagonal elements T ′n−2n and T ′nn−2 are not

equal to zero. The updated elements are

D′n =C2Dn + 2C S En−1 + S2Dn−1 , (4.68a)

E ′n−1 = (C2 − S2)En−1 + C S(Dn−1 −Dn) , (4.68b)

F ′ =T ′nn−2 = T ′n−2n = S En−2 , (4.68c)

D′n−1 =C2Dn−1 + S2Dn − 2C S En−1 , (4.68d)

E ′n−2 =C En−2 , (4.68e)

while the remainder of the elements remain unchanged (the rest of the elements of

T ′ are the same as in T ). To annihilate the off tridiagonal elements, we use a Givens
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rotation [77], which is constructed as

Gn−2 =



1

. . .

1

C S

−S C

1


, (4.69)

C =
E ′n−1√

E ′2n−1 + T ′2nn−2

, S =
T ′nn−2√

E ′2n−1 + T ′2nn−2

. (4.70)

Notice that C2 +S2 = 1, while for Hermitian matrices the condition would be |C|2 +

|S|2 = 1. We have generalized the Givens rotations in order to preserve the complex

symmetric structure of the matrix. Applying this rotation to our matrix will eliminate

the “bulge,” however a new “bulge” will be created one element up along the off

tridiagonal (T ′′n−1n−3 = T ′′n−3n−1 6= 0). The altered values of T ′′ = GT
n−2T

′Gn−2 are

then

E ′′n−1 =C E ′n−1 + S A′nn−2 , (4.71a)

D′′n−1 =C2D′n−1 + 2CSE ′n−2 + S2D′n−2 , (4.71b)

E ′′n−2 = (C2 − S2)E ′n−2 + CS(D′n−2 −D′n−1) , (4.71c)

F ′′ =T ′′n−1n−3 = T ′′n−3n−1 = SE ′n−3 , (4.71d)

D′′n−2 =C2D′n−2 + S2D′n−1 − 2C SE ′n−2 , (4.71e)

E ′′n−3 =C E ′n−3 . (4.71f)

We can generalize these results, with the off tridiagonal element defined as F for each

step, we find that in step i, where i runs from n − 1 to the element which we are
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diagonalizing, the general Givens rotation are

C =
Ei+1√

E2
i+1 + F 2

, S =
F√

E2
i+1 + F 2

, (4.72)

while the updated elements are

Di+1 =C2Di+1 + 2CSEi + S2Di , Ei+1 =
√
E2
i+1 + F 2 , (4.73a)

Di =C2Di − 2CSEi + S2Di+1 , (4.73b)

Ei = (C2 − S2)Ei + CS(Di −Di+1) , (4.73c)

Ei−1 =CEi−1 , F = SEi−1 . (4.73d)

For the initial rotation (i = n− 1), we note that Ei+1 = En is not really an element

of the matrix, and we therefore set it equal to zero in the scheme defined in (4.73).

After the creation of the bulge, a total of (n − 2) Givens rotations are re-

quired to eliminate the bulge, and return the matrix to tridiagonal form. Practically

speaking, one does not have to recalculate the entire matrix in each step, but instead

must only calculate S, C, and the 6 updated elements. After a sufficient number of

iterations, the matrix will be diagonalized to machine precision. Extensive testing

of the algorithm informs us that in typical cases, less than 30 iterations of this QL

procedure are required to reach machine accuracy for a desired eigenvalue.

4.3.3. Deflation and Partitioning: Reducing the Matrix Size. In prin-

ciple, one might think that the above procedure should constitute a generally appli-

cable algorithm, which diagonalizes any general diagonalizable complex symmetric

input matrix. However, a pitfall must be avoided. Namely, if one encounters a zero

(to machine accuracy) in an off-diagonal element, within the second step described in

chapters 4.3.1 and 4.3.2 then deflation becomes necessary. Put differently, when chas-

ing the bulge as described in chapter 4.3.2, one strives to calculate the eigenvalues of
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the tridiagonal matrix T from the upper left to the lower right, i.e., one subsequently

zeros (to machine accuracy) the elements Ei with i running from 1 to n− 1. In the

sense of equation (4.73), one iterates in ascending transformation orders k in order to

zero the element Ei in the matrix T (k). Let us assume that in this process an element

Ej, with j > i, accidentally becomes equal to zero, within machine accuracy, before

Ei is zeroed. This constitutes an early, or “premature,” zero which requires special

treatment. Namely, if we were to continue the the recursive algorithm of chapter 4.3.2

without any changes, then the bulge would always be annihilated prior to the point

where it would affect Ei, due to the premature zero, in any subsequent iteration. In

fact, reducing the effective size of the matrix is a known technique for speeding up

algorithms [78].

In order to overcome the lock-up, we divide, or “partition” the matrix T into

two smaller matrices,

T =

 T 1 0

0 T 2

 , (4.74)

where T 1 and T 2 are tridiagonal matrices, with columns and rows running over the

indices i = 1, . . . , j − 1 for T 1 and i = j, . . . , n for T 2. We assume that Q
1

and Q
2

diagonalize the matrices T 1 and T 2,

QT

1
T 1Q1

= D1 , QT

2
T 2Q2

= D2 , (4.75)

where Q
1

and Q
2

are the similarity transforms and D1 and D2 are the corresponding

diagonal matrices of T 1 and T 2, respectively. We can then almost trivially construct

the orthogonal transformation

Q =

 Q
1

0

0 Q
2

 , (4.76)
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for which

QTT Q =

 QT

1
0

0 QT

2


 T 1 0

0 T 2


 Q

1
0

0 Q
2

 =

 D1 0

0 D2

 . (4.77)

The tridiagonal matrices T 1 and T 2 are smaller in size than T . One needs to invoke

the iterated, implicitly shifted QL decomposition on both of them, individually. As

such we have “deflated” the matrix T into two smaller matrices. Quite surprisingly,

this problem is rather scarcely treated in the literature. It is discussed very briefly in

section 7.11 of reference [69]. There are further unpublished notes that address the

issue, and the solution is referred to as “deflation” in section 11.4 of reference [79]

and near the end of section 3.6.2 of reference [80]. In section 4.7 of [81], the same

procedure is called “partitioning”.

4.4. COMPLEMENTARY QR ALGORITHM

We now discuss an alternative formulation for the second step of the HTDQLS

algorithm, in which we implement an iterative QR procedure rather then the QL

decompositions. Where the QL decomposition an input matrix into an orthogonal

matrixQ (QT Q = 1) and a left triangular matrix L, the complimentary QR algorithm

uses the same tools to decompose the input matrix into an orthogonal matrix Q

and a right triangular matrix R. When applied in the same manner as the QL

decompositions are in the second step of the algorithm, the QR procedure generates

a “bulge” which is chased from the top left corner, out through the bottom right

corner (while the QL implementation chases the “bulge” from the bottom right up

to the top left). By definition, QL decomposition is given as

A = QL , A′ = LQ , (4.78)
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where L is a left triangular matrix (i.e., only the elements below and including the

diagonal elements are non-zero). By contrast, QR decomposition is given as

A = QR , A′ = AQ , (4.79)

where R is a right triangular matrix (i.e., only the elements above and including the

diagonal elements are non-zero).

While it has not been explicitly shown, the diagonalization step in chapter 4.3

is an application of QL decomposition. Once we have a tridiagonal matrix, we have a

choice to either use a QL or a QR decomposition. It should be noted that the way in

which the matrix is tridiagonalized also speaks to which decomposition we are going

to use, in this case the matrix was tridiagonalized from the bottom right corner up to

the upper left. This implicitly tells us that the next step should be diagonalization

based on QL decompositions. If instead we wanted to use a QR procedure we should

have tridiagonalized the matrix (still using Householder reflections) from the upper

left down to the lower right. Regardless, the option of which decomposition to use for

the diagonalization step is still present. We chose to use a QL decomposition, and this

application manifestes in us chasing the bulge from the lower right out through the

upper left. Had a QR decomposition been used, then the process would still involve

chasing the bulge, however it would have originated in the upper left, and been chased

out through the lower right. Since these techniques are so similar, and work in much

the same way, it is possible to rewrite the algorithm, following the same theory, so

that a QR decomposition is implemented. The method of tridiagonalization is quite

trivial, however there are a few changes to the diagonalization step.

As with the QL implementation, we use an implicit shift when implementing

the QR version. Here, instead of considering the (m×m)–submatrix (m = 0, 1, 2, 3,

depending on SHIFTMODE), in the top left corner, we use the (m ×m)–submatrix in
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the bottom right corner. This is a manifestation of the fact that the QR algorithm

works to zero the super-/sub–diagonal elements Ei starting with En−1, and working

up to E1. As with the QL case, the shift closest to the element we wish to converge is

chosen. We then proceed to create the bulge using a the initial rotation, constructed

as

R =



C S

−S C

1

. . .

1


, (4.80)

C =
D1 − σn√

(D1 − σn)2 + E2
1

, S = − E1√
(D1 − σn)2 + E2

1

. (4.81)

The updated elements of T ′ = RT T R are then

D′1 = C2D1 − 2C S E1 + S2D2 , D′2 = C2D2 + 2C S E1 + S2D1 , (4.82a)

E ′1 = (C2 − S2)E1 + C S (D1 −D2) , E ′2 = C E2 , (4.82b)

F ′ = T ′1 3 = T ′3 1 = −S E2 . (4.82c)

This is then followed by (n − 2) generalized Givens rotations, given by Gi where i

runs from 2 up to (n− 1), and the corresponding updated elements are given as

C =
Ei√

E2
i + F ′2

, S = − F ′√
E2
i + F ′2

, (4.83a)

D′i = C2Di − 2C S Ei + S2Di+1 , D′i+1 = C2Di+1 + 2C S Ei + S2Di , (4.83b)

E ′i−1 =
√
E2
i−1 + F ′2 , E ′i = (C2 − S2)Ei + C S (Di −Di+1) , (4.83c)

E ′i+1 = C Ei+1 , F ′′ = −S Ei−1 . (4.83d)
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The process is then iterated until convergence is achieved, much like we did for the

QL decomposition. The difference being that the order in which the eigenvalues

converge is reversed. A FORTRAN implementation of the QR version of the algorithm

is provided in appendix A.2.

4.5. NUMERICAL REFERENCE DATA

Complex symmetric matrices arise naturally in physics. These occurrences

include, but are not limited to, the projection of a PT -symmetric Hamiltonian onto

an appropriate set of basis states as well as complex scaled Hermitian Hamiltonians.

Let us examine both the real and imaginary cubic perturbations to the harmonic

oscillator,

H3 =
1

2
p2 +

1

2
x2 + iGx3 , (4.84)

h3 =
1

2
p2 +

1

2
x2 + g x3 , x→ x ei θ , 0 < θ <

π

5
, (4.85)

as well as both the real and imaginary quintic perturbations,

H5 =
1

2
p2 +

1

2
x2 + iGx5 , (4.86)

h5 =
1

2
p2 +

1

2
x2 + g x5 , x→ x ei θ , 0 < θ <

π

7
, (4.87)

where ~ = 1. These Hamiltonians have been extensively studied [2,5,8,12,53,56,57],

and as such they are ideally suited as a testbed to generate the reference data found

in tables 4.1 and 4.2. The algorithm is best suited for fully populated complex

symmetric matrices, however, when using the harmonic oscillator wave–functions as

our basis states, these matrices will be sparsely populated. The algorithm is, of

course, still able to diagonalize these matrices, but may not be the most efficient

method. Algorithms that take advantage of the band structure of these matrices
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Table 4.1: Example ground and first excited state energies for H3 and h3,
as defined in equations (4.84) and (4.85) respectively, with different values
of G and g.

G E
(3)
0 (G)

0.8 0.740948971482359671409952387680562989649218672786322029506972
1.0 0.797342607508906189039080960791013163097244534480331157578578
1.2 0.849097066890258015437917408284257146062837108501875662860849

G E
(3)
1 (G)

0.8 2.559093658684295834337630756394908959050331276996157589230549
1.0 2.773524985195379715405817000015530142310848902829685205722959
1.2 2.967273593442652066085730346704529728796925557957963243225577

g ε
(3)
0 (g)

0.8 0.561066208979404775116928166431422687738464300780198739535914
-0.358599844691200673512575409270525983934995081882520287419416 i

1.0 0.612888433307754624258817501988651413733339788307182942066181
-0.408592666932267283159498868767160516270974834438403999097532 i

1.2 0.659471416719299127897719134154497156025222371045692402135959
-0.450150034262365046307565768244376605581927184833450590658757 i

g ε
(3)
1 (g)

0.8 1.991456698898661194884384549965325120089956168185455548446729
-1.369705736282645527841528155126063494834869438727230322025554 i

1.0 2.180413837536348771230161963541741131247172136835058974459041
-1.526207655693032510006853946967495624445906099848804410355220 i

1.2 2.347898333307082484602271828699097353118353897863695684660492
-1.659906360584923744548090528514636695168085721095250043307566 i

tend to be more efficient. Fortunately the point of this is to provide reference data

generated by the HTDQLS algorithm, and as such the emphasis should be placed on

obtaining data which can be collaborated, rather then choosing matrices for which

this algorithm is particularly suited.

The eigenvalues, E
(3)
i , of H3 will be functions of G (with E

(3)
i ≡ E

(3)
i (G)) while

the eigenvalues, ε
(3)
i , of h3 will be eigenvalues of the coupling g (with ε

(3)
i ≡ ε

(3)
i (G)).

Similarly the eigenvalues of H5 and h5 will be functions of G and g, and as such
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Table 4.2: Example ground and first excited state energies for H5 and h5,
as defined in equations (4.86) and (4.87) respectively, with different values
of G and g.

G E
(5)
0 (G)

0.8 0.75389124621589786099337755323420847558308570153373
1.0 0.79140175777864076155860859702017488502261796732061
1.2 0.82455852408502236750428497431837653777269857364975

G E
(5)
1 (G)

0.8 2.72584719948185664152979718639908174280319603142609
1.0 2.87580993584575639268780020627266878199726701715050
1.2 3.00702088732252853807330439861318505358286029883287

g ε
(5)
0 (g)

0.8 0.67450329439700818291896353707548915544787045415294
-0.24497261241861497579575125097610853374744892054504 i

1.0 0.70875699952222315206082074451175354669392841899262
-0.26762943090641375087559443630536242086978935856853 i

1.2 0.73900997993150365467103706748425891486602648607993
-0.28682232235861442117427312071149714709711905229129 i

g ε
(5)
1 (g)

0.8 2.45493787189842310938036792862778581446876990238564
-0.98294115378930202944681413329505028737592346575922 i

1.0 2.59036713329602333960788878304385306013391798261856
-1.06050350702232561922594400015297159643910084409003 i

1.2 2.70878087811349467420450292754718908864089691541160
-1.12701898384173378366059369869202592386004389371268 i

we denote them as E
(5)
i (G) and ε

(5)
i (g), respectively. By projecting the Hamiltoni-

ans onto the first few thousand eigenstates of the harmonic oscillator, and using a

multi-precision implementation [82–85] of the algorithm, we obtain the lowest two

eigenvalues of the Hamiltonians for G = g = 0.8, 1.0, 1.2. These values are given

in tables 4.1 and 4.2. Every digit given is significant and the accuracy is estimated

based on the apparent convergence of the numerical data as the size of the matrix is

increased.
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We can exploit the fact that the HTDQLS algorithm is best suited for densely

populated matrices by using a non–orthogonal basis. We choose a non–orthogonal

basis spanned by the functions

ψm(x) = exp(−a mx2) , m = 1, . . . ,
n

2
, (4.88a)

ψm′(x) =x exp(−a m′ x2) , m′ =
n

2
+ 1, . . . , n , (4.88b)

where n is the (even integer) total number of basis functions and m,m′ serve as

counters. This defines basis functions ψm(x) with m = 1, . . . , n which have even

parity for 1 ≤ m ≤ n/2 and odd parity for n/2 < m ≤ n. We also note that a is

a real, positive number. We then find that the (n × n)-overlap matrix S and the

Hamiltonian matrix H, have the elements

Sij =

∫ ∞
−∞

dxψi(x)ψj(x) = 〈ψi|ψj〉∗ , (4.89)

Hij =

∫ ∞
−∞

dxψi(x)H3 ψj(x) = 〈ψi|H|ψj〉∗ , (4.90)

where H is a PT –symmetric Hamiltonian, and the inner product is denoted as in

equation (3.14). On the basis of the HTDQLS algorithm, we first calculate the square

root of the overlap matrix,

S = QDQT . M = Q
√
DQT , S = M2 . (4.91)

The square root of the diagonal matrix D is easily calculated. We now make the

following ansatz for an eigenvector, expressed in the non-orthogonal basis,

|ψ〉 =
∑
j

cj |ψj〉 . (4.92)
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The eigenvalue problem within the basis,
∑

j cj H |ψj〉 = E
∑

j cj |ψj〉, can then be

formulated as ∑
j

〈ψi|H|ψj〉 cj =
∑
j

E 〈ψi|ψj〉 cj . (4.93)

equivalently, with the coefficient vector c,

H c = E S c . (4.94)

We then define

d = M c , (4.95)

yielding

M−1HM−1 d = E d . (4.96)

A diagonalization of the effective Hamiltonian matrix

Heff = M−1HM−1 (4.97)

then leads to the approximate energies of the input Hamiltonian H. Implementing

this technique, as well as extended arithmetic precision (Bailey’s MPFUN [82–85]), on

the imaginary cubic anharmonic oscillator (4.84), we find the ground state energy to

be

E
(3)
0 (G = 0.8) = 0. 74094 89714 82359 67140 99523 87680 56298 96492 18672 78632

20295 06972 65779 86489 95262 29285 78562 62734 77203 42411 .

(4.98)

This 100-decimal reference value was calculate uses a matrix representation of H3 of

relatively modest size (700× 700).
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5. A FORTRAN IMPLEMENTATION OF THE ALGORITHM

5.1. GENERAL REMARKS

While we have presented the underlying theory of the HTDQLS algorithm in the

previous chapter, and further reading will detail an explicit FORTRAN implementation

(see appendix A), one may ask if a new matrix diagonalization routine is strictly nec-

essary. For example, the ZGEEVX algorithm in LAPACK [61] utilizes the tools provided

by LAPACK to diagonalize complex (not necessarily symmetric) matrices. Further-

more, ZGEEVX is a very robust algorithm, and as such is rather complicated. This

level of complexity makes ZGEEVX a “black box,” by which we mean that it is not

easily scalable in terms of numerical precision. Our algorithm on the other hand is

relatively simple due to its narrow scope, and is easily scalable in terms of numerical

precision. In fact, the explicit FORTRAN implementation included in appendix A is

written using COMPLEX*32 precision, which already exceeds the accuracy utilized in

LAPACK. As seen in chapter 4.5 the precision can be increased further by utilizing a

multi–precision package, such as Bailey’s MPFUN90 [82–85]. We further find, that for

typical applications (matrices around rank 500), that the HTDQLS algorithm tends to

be faster than the publicly accessible ZGEEVX algorithm. With these considerations

in mind, especially the ease of scalability, it becomes clear why there is a need for

the HTDQLS algorithm.

5.2. SPECIFIC ALGORITHMS

Here we discuss the implementation of the algorithm as discussed in chapter 4,

while an explicit FORTRAN implementation can be found in appendix A. All the steps

are presented, save for the initial setup. It is up to the user to create a shell for the
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program, that in some way defines the matrix to be diagonalized. As described in

chapter 4, the algorithm first employs generalized Householder reflections to tridiag-

onalize the matrix, and then employs a generalization of the QL algorithm with an

implicit shift. As such the routine is called HTDQLS, which stands for Householder–

based Tridiagonalization followed by generalized QL decompositions with an implicit

shift.

The algorithm is implemented using separate subroutines for the tridiagonal-

ization and diagonalization steps, along with several other supporting subroutines

and a master subroutine. There are two versions of three of these routines, used to

either calculate solely the eigenvalues or to calculate both the eigenvalues and eigen-

vectors of a given input matrix. These routines are denoted by either a “1” (for the

eigenvalue implementation) or a “2” (for the eigenvalue and eigenvector implemen-

tation) at the end of the subroutine’s name. The master subroutine directs the flow

of the algorithm so that the desired option is implemented. Here we briefly describe

all the subroutines.

The master subroutine HTDQLS(JOBZ, N, A, D, Z, SORTFLAG, SHIFTMODE)

is used to call the other subroutines, as well as determine the order in which they are

used. If JOBZ=‘N’, then only the eigenvalues are calculated, while if JOBZ=‘V’ then

the eigenvalues and eigenvectors are calculated. The rank of the input matrix and

the input matrix itself are denoted by N and A respectively. Upon the completion of

the program, the eigenvalues are stored in ‘D’ and if the eigenvectors were calculated

they are stored in ‘Z’, where the ith column of A is the eigenvector of the input

matrix corresponding to the ith eigenvalue stored in D(i). Upon completion of the

routine, A retains its original values, and may be used to check the results, which is

straightforward when the eigenvectors are calculated. The boolean variable SORTFLAG

determines if the eigenvalues (and corresponding eigenvectors) are sorted according

to the real part of the eigenvalues, and the integer SHIFTMODE can be set to 0, 1, 2,
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or 3 depending on whether zero–shift, linear, quadratic, or cubic (respectively) mode

is desired.

The routines HTD1(N, A, D, E) (similarity transforms are not stored) and

HTD2(N, A, D, E) (similarity transforms are stored) implement the tridiagonaliza-

tion step of the program. Each routine takes the input matrix A of rank N and

tridiagonalizes it as prescribed in chapter 4.2 The tridiagonal matrix is then stored

in D and E. HTD2 stores the similarity transform in A.

The routines QLS1(N, D, E, SHIFTMODE) (does not store the similarity trans-

forms) and QLS2(N, D, E, Z,SHIFTMODE) (does store the similarity transforms in Z)

diagonalize the tridiagonal input matrix stored in the vectors D and E. The calculated

eigenvalues are stored in D. When a premature zero occurs, the routines perform the

deflation step automatically. QLS2 stores the similarity transforms in Z.

The routine SHIFT(N, K, V, D, E, S, SHIFTMODE) calculates the implicit

shift based on the values of SHIFTMODE, as prescribed in section 4.3.1. The input

tridiagonal matrix of rank N is stored in D and E, while K and V are used to determine

the elements used to calculate the possible shifts. After the calculations are complete,

SHIFT chooses the shift whose value is closest to that of the diagonal element which

we wish to converge. The shift is output on S, and returned to the appropriate

version of QLS. Finally, the routines SORT1(N, D) and SORT2(N, D, A) sort the N

eigenvalues stored in D into ascending order of the real part. SORT2 additionally sorts

the eigenvectors to match the position of the associated eigenvalue.

5.3. COMPUTATIONAL PERFORMANCE OF THE ALGORITHM

5.3.1. Numerical Accuracy. In order to gauge the numerical accuracy of

the HTDQLS algorithm, we turn to a complex rotated version of the harmonic oscillator
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Hamiltonian,

H0 = −1

2
∂2
x +

1

2
x2 , x→ x ei θ , ∂x → ∂x e−i θ , θ =

π

16
. (5.1)

The ground-state eigenvalue of the harmonic oscillator is unaffected by the complex

scaling and reads as λ0 = 1
2
. On the other hand, using a projection of the complex

rotated H0 onto a suitable basis, we can generate complex symmetric matrices in

which at least the first eigenvalue is known, namely, λ0. A measure of the numerical

accuracy of the method is given as follows,

err =
|D1 − λ0|

λ0

, (5.2)

where err is the numerical error, and D1 is the ground-state eigenvalue as found by

the corresponding algorithm. The goal is to compare COMPLEX*16 versions (roughly

16 significant decimals) of HTDQLS to ZGEEVX, which is a LAPACK routine [61] that

diagonalizes complex matrices. (The latter does not specialize in complex symmetric

matrices but is a more general solver.) Aside from a single outlier at n = 800, we

found that the HTDQLS algorithm is generally an order of magnitude more accurate

than the LAPACK routine ZGEEVX (see figure 5.1). In typical cases, we find that the final

numerical loss of our method in reproducing known eigenvalues of Hamiltonians does

not exceed 4–5 decimals, consistent with the outlier in figure 5.1. For comparison, we

also plot in figure 5.1 the numerical accuracy obtained using a COMPLEX*32 version

of HTDQLS; such a high-precision version is not available for ZGEEVX.

5.3.2. Speed. In order to test the computational efficiency of HTDQLS, we

again compare the LAPACK routine ZGEEVX with a COMPLEX*16 version of HTDQLS. This

is done with the help of two types of matrices, the first being composed of random

complex numbers, leading to densely populated, complex symmetric matrices, while

the second type of matrices are generated using the harmonic oscillator Hamiltonian
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Figure 5.1: In comparing the HTDQLS algorithm with the LAPACK routine ZGEEVX,
the relative numerical accuracy of the ground state energy of the complex rotated
harmonic oscillator H0 given in equation (5.1) is plotted as a function of the size of
the matrices (see figure (a)). In figure (b), the average ratio of the runtimes, tZ/tH
(where tZ is the runtime of ZGEEVX and tH is the runtime of HTDQLS), is plotted against
the rank of the matrices. Two types of matrices were used, densely populated and
banded ones. Further details are in the text.

with an imaginary cubic perturbation (see equation (3.1)), with random values of G,

resulting in banded, complex symmetric matrices. We then average 150 trials for each

rank (200 to 1000) and find the ratio of the run times (see figure 5.1b). For smaller

matrices we found that HTDQLS runs quite a bit faster, but as the size of the matrices

increases ZGEEVX’s performance improves. By rank 750 ZGEEVX performs faster (albeit

slightly) than HTDQLS for the banded matrices. For the densely populated matrices

on the other hand, HTDQLS is faster for all the matrices we tested.
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6. (PARTIAL) CONCLUSIONS

In this part of the dissertation we considered Hermitian, pseudo–Hermitian,

and PT –symmetric Hamiltonians. From the definition of pseudo–Hermiticity, it is

immediately clear that the set of Hermitian operators is a subset of pseudo–Hermitian

operators. There is certainly some overlap between PT –symmetry and Hermiticity.

The harmonic oscillator, for example, is both PT –symmetric and Hermitian. Neither

the set of PT –symmetric operators, nor the set of Hermitian operators, is a subset of

the other. This is clearly demonstrated by considering two example cases; the imag-

inary cubic anharmonic oscillator (3.1) is PT –symmetric, but not Hermitian, while

the real cubic anharmonic oscillator (2.39) is Hermitian, but not PT –symmetric. We

are left to consider the relationship between PT –symmetry and pseudo–Hermiticity.

If we consider the superluminal Dirac–Hamiltonian ~α·~p+β γ5m [25], we find that it is

not PT –symmetric (see chapter 14), but it has been identified as γ5–Hermitian [43].

We can then conclude that the set of pseudo–Hermitian operators are not a sub-

set of PT –symmetric operators. In chapter 2.2 we found that when considering

Hamiltonians of the form H = ~p 2/(2m) + V , one finds that if H is PT –symmetric

then H is P–Hermitian. The obvious identification would then be that all PT –

symmetric operators are P–Hermitian. This “obvious identification” turns out to be

incorrect. First let us consider the somewhat trivial example of the x momentum

operator/Hamiltonian, Hp = p = −i ∂x, which we can easily show is PT –symmetric

(PT Hp T P = −P pP = p = Hp), but not P–Hermitian (P−1H+
p P = P pP =

−p 6= Hp). However the momentum operator/Hamiltonian is pseudo–Hermitian, as

the momentum operator is known to be Hermitian (1–Hermitian). We can also con-

sider the cases of HA = p + x2 + ix3 and HB = p + ix3, for which it is trivial to

show that both are PT –symmetric, but not P–Hermitian. However, they are both
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trivially M–Hermitian, where M is the mirror operator about the p axis in phase

space (x→ −x, p→ p). When working with typical Hamiltonians (H = ~p 2/2m+V ),

which much of the literature focuses on [2–14], and as we focused on in this part of

the dissertation, one can make the obvious identification that PT –symmetric Hamil-

tonians are P–Hermitian, but one must be careful as this is not always true for more

general PT –symmetric Hamiltonians. In any case, it is clear that the concepts of

pseudo–Hermiticity and PT –symmetry are related, and constitute viable alternatives

to Hermiticity.

Like Hermitian Hamiltonians, exactly PT –symmetric Hamiltonians have a

real spectra. It is this shared property that has lead to the development of Her-

mitizing transforms, which transforms a PT –symmetric Hamiltonian into a Hermi-

tian Hamiltonian utilizing a similarity transform, which is by necessity non–unitary.

The existence of such a procedure has lead to the conclusion that PT –symmetry

is equivalent to Hermiticity [19]. These transforms are perturbative by nature, and

generally lead to a much more complicated, potentially non–local, Hermitian Hamil-

tonian [15, 19]. Due to the fact that the Hermitizing transform is not unitary, the

relation between vector–spaces are not conserved [15,21]. Additionally, we note that

these transforms do not conserve parity. Furthermore, by considering the wave–

functions of the of a PT –symmetric Hamiltonian, we find a number of inconsistencies

when compared to the characteristics of Hermitian wave–functions. Finally, Hermi-

tian Hamiltonians describe closed systems, while PT –symmetric Hamiltonians are

special cases of open systems, in which the gain and loss terms are in equilibrium.

Under these considerations, one is left to conclude that while Hermitizing transforms

do conserve the spectrum of the initial Hamiltonian, PT –symmetry and Hermiticity

are not equivalent.

The wave–functions of Hermitian Hamiltonians have a number of nice char-

acteristics, including nodes which can be used to enumerate the wave–functions, as
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well as the fact that they are governed by the concavity condition. PT –symmetric

wave–functions do not share either of these characteristics. In fact, they do not have

any complex zeroes, but instead have an infinite number of both real and imaginary

zeroes. As for the concavity condition, PT –symmetric wave–functions have complex

potentials, and as such no version of the concavity condition can be claimed.

Despite the obvious differences, the PT –symmetric wave–functions are not as

“alien” as one might initially suspect. The modulus of the potential does confine the

wave–functions to the “classically allowed region,” much like the Hermitian counter-

part. Furthermore, where we would expect to find nodes in the Hermitian case, we

find local minima in the PT –symmetric case, thus providing a potential solution to

the question of how to enumerate the wave–functions.

Finally, we used the inspiration given to us from the study of the pseudo–

Hermitian Hamiltonians, in order to delineate a matrix diagonalization algorithm,

specifically designed for complex symmetric matrices. The key observation is that,

after a suitable projection of the pseudo–Hermitian Hamiltonian onto a finite basis

of Hilbert space vectors, the Householder reflections can be generalized to effectively

tridiagonalize a complex symmetric matrix provided that the inner product is replace

with the indefinite inner product. It then takes only (n− 2) iterations to transform

a fully populated complex symmetric matrix into a symmetric tridiagonal matrix.

Once the tridiagonal form is obtained, one utilizes the obvious generalization of QL

decompositions. The resulting algorithm was used to great effect in determining the

wave–functions used to fuel our earlier discussion, as well as obtaining high precision

eigenvalues.
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Part II

Dirac Hamiltonians and

Foldy–Wouthuysen Transforms
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7. INTRODUCTION

In this part we try to answer the question: How can the eigenvalues and

corresponding wave–functions of relativistic Dirac Hamiltonians, including relevant

degrees of freedom, be rotated onto a decoupled basis, in appropriate limits? To

answer this question we investigate a number of generalized Dirac Hamiltonians, and

employ both the classic Foldy–Wouthuysen transformation [22], as well as the “chiral”

variant [24].

Generalized Dirac equations are used to describe quantum particles moving

at relativistic speeds as they interact with different potentials [23, 60, 86] (also see

appendix C). To answer the central question of this part, we must first and foremost

understand how to derive the Hamiltonians for our example cases. In some cases the

derivation of these Hamiltonians can be rather straightforward, as the correspondence

principle can be applied. Other cases are not so simple, as the use of the correspon-

dence principle neglects to take into account the curvature of space-time, which comes

about when considering, for example, gravitational potentials, and particles in a non–

inertial reference frame. These interactions must be covariantly coupled to the Dirac

equation, resulting in more complicated Hamiltonians.

Once the generalized Dirac Hamiltonians are obtained, we find that the equa-

tions for the particles and antiparticles are entangled, making it difficult to inter-

pret how the potentials affect the particles and antiparticles. Traditionally a Foldy–

Wouthuysen transformation is used to disentangle the two equations, making it sig-

nificantly easier to understand the Dirac Hamiltonians [22,23,87–89]. Unfortunately,

the Foldy–Wouthuysen transformation can only be applied exactly to the simplest of

such equations, the free particle. To perform the transformation on anything more

complicated, one must approximate to the non–relativistic limit. This gives rise to
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a well defined iterative procedure, in which one approximates the Dirac Hamiltonian

up to a desired order. The resulting transformed Hamiltonian then reveals itself in

the familiar form of a Schrödinger equation, with relativistic corrections. Thus the

general Foldy–Wouthuysen transformation both decouples the particles and antipar-

ticles, as well as transforming the Hamiltonians into an easily understandable form.

This is in contrast to the exact transformation, which when applied to the free par-

ticle, still leaves the need for a Taylor series expansion to enter the nonrelativistic

limit.

While the Foldy–Wouthuysen transformation is well defined in terms of its

procedure, it can become a rather complicated computation, especially when higher–

order terms are desired. This, coupled with the inexact nature of the transform has

lead to attempts aimed at finding either an easier method, or a method which yields

an exact result. We will be looking closely at an example of the former. In what

we call the “chiral Foldy–Wouthuysen” transformation, a rather good, if ultimately

unsuccessful attempt is made to simplify the procedure. While it can be used to find

the non-relativistic limit of the free Dirac Hamiltonian, it is shown to be unsuccessful

when applied to a variety of generalized Hamiltonians. Still, it is instructive to

examine the transform in detail, both to appreciate the algebraic properties, as well

as to understand the possible pitfalls of the approach.

In the chapters that follow we will be examining a number of generalized

Dirac equations, and performing both the standard, as well as the chiral Foldy–

Wouthuysen transformations. While most of the Hamiltonians can be obtained using

the correspondence principle, some of them cannot, thus in chapter 8 we shall derive

these Hamiltonians. In chapter 9 we perform the standard transformation on these

Hamiltonians, including the exact and general transformation of a free particle, as

well as the textbook example of the Dirac–Coulomb Hamiltonian, which will serve to

ground the discussion of the transformed Dirac equation coupled to a gravitational
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field. In chapter 10 we perform the chiral transform on the same Hamiltonians, and

compare the results. Finally, concluding remarks are in chapter 11.

Throughout part II of this thesis, we will be using units such that ~ = c =

ε0 = 1.
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8. DIRAC EQUATION IN CURVED–SPACETIME

8.1. SOME BASICS

It is helpful to first clarify our conventions for the indices used through-

out this work, as they pertain to both Lorentz as well as spatial components of

the vectors. Namely, we shall be using lowercase Greek characters for the curved–

spacetime (µ, ν, ... = 0, 1, 2, 3), lower case Latin characters starting at i for curved–

space (i, j, k, ... = 1, 2, 3), capital Latin characters for flat–spacetime, i.e., the an-

holonomic basis (A,B,C, ... = 0, 1, 2, 3), and capital Latin characters starting at I

for anholonomic space (I, J,K... = 1, 2, 3). Additionally, the symbol η will be used

for the Minkowski metric, [ηAB] = diag[1,−1,−1,−1], and g for the curved space

metric, gµν(x). Finally, we shall use γ and γ̃ for the curved– and flat–spacetime

Dirac γ matrices, inspired by the conventions used in [90]. However, as we shall see

below, sometimes, the contraction of indices with Kronecker symbols will induce the

necessity to intertwine the conventions. Using the vierbein, we relate the curved and

flat Dirac γ matrices as

γµ(x) = eAµ (x) γ̃A , γµ(x) = eµA(x) γ̃A . (8.1)

Then

gµν(x) =
1

2

{
γµ(x), γν(x)

}
=

1

2

{
eAµ (x)γ̃µ, e

B
ν (x)γ̃

}
= eAµ (x)eBν (x)ηAB , (8.2)

gµν(x) =
1

2

{
γµ(x), γν(x)

}
=

1

2
{eµA(x)γ̃µ, eνB(x)γ̃} = eµA(x)eνB(x)ηAB . (8.3)

Note: from here on we will be suppressing the “(x)”, i.e., gµν = gµν(x), and have

a similar convention (suppression of the argument) for the vierbein coefficients. We
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know that gµρ gρν = δµν , thus

gµρgρν = eµAe
ρ
Bη

AB eBρ e
C
ν ηBC = eµAe

ρ
Be

B
ρ e

C
ν δ

A
C = eµAe

A
ν e

ρ
Be

B
ρ , (8.4)

since we must find that this expansion is equal to δµν we conclude that the matrices

composed of the vierbein and inverse vierbeins are themselves the inverses of each

other,

(eρB)−1 = eBρ ,
(
eBρ
)−1

= eρB , eµAe
A
ν = δµν , eAµ e

µ
B = δAB . (8.5)

We also define

eµA = eνA gνµ = eBν ηBA , eµA = eAν g
νµ = eνB η

BA . (8.6)

Form (8.2) and (8.3) we easily find

eAµ eνA = gµν , eµA e
νA = gµν , (8.7)

eµA eµB = ηAB , eAµ e
µB = ηAB . (8.8)

8.2. COVARIANT DERIVATIVE OF A SPINOR

We now want to construct the covariant derivative for a spinor in curved space.

The key observation, made by Brill and Wheeler [91] is that in the Dirac equation

going from flat space to curved space, the derivative transforms as

∂µψ → ∇µψ = (∂µ − Γµ)ψ . (8.9)
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The Dirac equation then reads as

ψ [γµ (∂µ − Γµ)−m]ψ = 0 . (8.10)

We will now use the remainder of this section, as well as the following two sections

to determine precisely what the spin connection matrix Γµ is.

As with the flat–space Dirac equation (see appendix C), we require that the

Dirac equation in curved space is Lorentz invariant. A Lorentz transformation in the

“internal” space (flat–space), reads as

e′µA = ΛA
B e

µB , (8.11)

we can then use (8.6), as well as ηCA ΛA
B ηBD = ΛC

D, and multiply the previous

expression by ηCA to find

e′µC = ΛC
D eµD =

(
Λ−1

)C
D
eµD . (8.12)

We now turn our attention to the curved space Dirac γ functions, defined in (8.1).

A Lorentz transform will alter the vierbein, however the structure will remain valid,

i.e.,

γ′µ = e′µA γ̃A = ΛB
A eµB γ̃

A , (8.13)

where we did not use “γ̃′A”, because we know γ̃′A = γ̃A (see appendix C). By including

the spinor representation of the Lorentz transform, we find

γ′µ = S(Λ) γν S(Λ)−1 = ΛB
A eµB γ̃

A . (8.14)



87

This result is similar to the result in flat–space (see appendix C, though we note that

unlike in flat–space, γ′µ 6= γµ). By rewriting the relation (C.43) as

ΛA
B ηAC ΛC

D = ηBD , (8.15)

we can then show that although the curved–space Dirac γ matrices do change under

a Lorentz transformation, the metric g remains constant, i.e.,

g′µν =
1

2
{γ′µ, γ′ν} =

1

2

{
ΛB

A eµB γ̃
A,ΛC

D eνD γ̃
C
}

= eµB e
ν
D ΛA

B 1

2

{
γ̃A, γ̃C

}
ΛC

D

= eµB e
ν
D ΛA

B ηAC ΛC
D = eµBe

ν
Dη

BD = gµν . (8.16)

The same is true for a metric with lower indices, i.e., g′µν = gµν , following a virtually

identical derivation. We can now look at the Dirac equation, which transforms under

a Lorentz transform as

ψ (i γµ∇µ −m)ψ → ψ
′
(i γ′ν ∇′ν −m)ψ′ . (8.17)

We now recall that

ψ′ = S(Λ)ψ , ψ
′
= ψ S(Λ)−1 , (8.18)

in which case (8.17) becomes

ψ S(Λ)−1
[
i
(
S(Λ) γµ S(Λ)−1

)
∇′µ −m

]
S(Λ)ψ

=ψ
[
i γµ

(
S(Λ)−1∇′µ S(Λ)

)
−m

]
ψ . (8.19)
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Then for the curved–space Dirac equation to be Lorentz invariant, we require that

S(Λ)−1∇′µ S(Λ)ψ = ∇µ ψ , (8.20)

i.e.,

∇′µ S(Λ)ψ = S(Λ)∇µ ψ . (8.21)

Furthermore, we do not want the Lorentz transformation to alter the fundamental

structure of the covariant derivative acting on a spinor, i.e.,

∇′µ = ∂µ − Γ′µ . (8.22)

Plugging (8.22) into the l.h.s. of (8.21) we find,

(
∂µ − Γ′µ

)
S(Λ)ψ = (∂µ S(Λ))ψ + S(Λ) ∂µ ψ − Γ′µ S(Λ)ψ

=S(Λ)
[
∂µ + S(Λ)−1 ∂µ S(Λ)− S(Λ)−1 Γ′µ S(Λ)

]
ψ . (8.23)

Comparing this result with the l.h.s. of (8.21), we are left to conclude that

Γµ = S(Λ)−1 Γ′µ S(Λ)− S(Λ)−1 ∂µ S(Λ) , (8.24)

which we can reformulate as

Γ′µ = S(Λ) Γµ S(Λ)−1 + [∂µ S(Λ)] S(Λ)−1 . (8.25)

As discussed in appendix C,

S(Λ) = exp

(
− i

4
ΩABσAB

)
, S(Λ)−1 = exp

(
i

4
ΩABσAB

)
, (8.26)
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where ΩAB are the generators of the Lorentz transformation. Then (8.24) and (8.25)

become

Γµ =S(Λ)−1 Γ′µ S(Λ)− i

4

(
∂µ ΩAB

)
σAB , Γ′µ = S(Λ) Γµ S(Λ)−1 +

i

4

(
∂µ ΩAB

)
σAB .

(8.27)

Despite the fact that the Γµs are changed by Lorentz transformations, their overall

structure should be consistent. As such, based on (8.27) we deduce that

Γµ =
i

4
CAB
µ σAB , (8.28)

where CAB
µ is antisymmetric since ΩAB is antisymmetric (see chapter 13.1 of [126]).

In the following sections we will calculate the CAB
µ coefficients.

8.3. COVARIANT DERIVATIVE OF THE DIRAC γ MATRICES

An obvious extension of the formalism outlined above pertains to the covariant

derivative of Dirac γ matrices which is useful to clarify in a more general context.

We begin with the Dirac equation in curved space,

ψ [iγµ (∂µ − Γµ)−m]ψ = 0 . (8.29)

We then take the adjoint,

ψ+
[
−i
(←−
∂ µ − Γ+

µ

)
(γµ)+ −m

]
ψ

+
= 0 . (8.30)

Regardless of the space we are working in, we define ψ as

ψ ≡ ψ+γ̃0 , (8.31)
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with the flat-space γ̃0, ensuring that ψ transforms with the inverse of the local Lorentz

transform. With this in mind, and the fact that (γ̃0)2 = 1, (8.30) becomes

ψ+γ̃0γ̃0
[
−i
(←−
∂ µ − Γ+

µ

)
(γµ)+ −m

]
γ̃0ψ

=ψ
[
−i
(←−
∂ µ − γ̃0Γ+

µ γ̃
0
)
γ̃0 (γµ)+ γ̃0 −m

]
ψ = 0 . (8.32)

Since γ̃0(γ̃µ)+γ̃0 = γ̃µ, it is trivial to show that γ̃0(γµ)+γ̃0 = γµ. Recall the form of

Γµ as given in (8.28), then

γ̃0 (Γµ)+ γ̃0 = γ̃0

(
i

4
CAB
µ σAB

)+

γ̃0 = − i

4
CAB
µ γ̃0 (σAB)+ γ̃0 , (8.33)

where

γ̃0 (σAB)+ γ̃0 = γ̃0

(
i

2
[γ̃A, γ̃B]

)+

γ̃0 = − i

2
γ̃0
[
(γ̃B)+ , (γ̃A)+] γ̃0

= − i

2

[
γ̃0 (γ̃B)+ γ̃0, γ̃0 (γ̃A)+ γ̃0

]
= − i

2
[γ̃B, γ̃A] =

i

2
[γ̃A, γ̃B] = σAB , (8.34)

where we used

γ̃0 (γ̃A)+ γ̃0 = γ̃0
(
ηABγ̃

B
)+
γ̃0 = ηABγ̃

0
(
γ̃B
)+
γ̃0 = ηABγ̃

B = γ̃A . (8.35)

Plugging this into (8.33) we find

γ̃0Γ+
µ γ̃

0 = − i

4
CAB
µ σAB = −Γµ . (8.36)

Thus (8.32) becomes

ψ
[
−i
(←−
∂ µ + Γµ

)
γµ −m

]
ψ = 0 . (8.37)
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We now equate (8.29) and (8.37) and find

ψ [i γµ (∂µ − Γµ)−m]ψ = ψ
[
−i
(←−
∂ µ + Γµ

)
γµ −m

]
ψ

⇒ψ γµ (∂µ ψ) +
(
∂µ ψ

)
γµ ψ = ψ (γµ Γµ − Γµ γ

µ)ψ

⇒ ∂µ
(
ψ γµ ψ

)
= ψ (∂µ γ

µ)ψ − ψ [Γµ, γ
µ]ψ . (8.38)

Much like in flat–space (as discussed in appendix C), the curved space probability

current is given as

jµ = ψ γµ ψ , (8.39)

and is conserved using the covariant derivative (D.29), i.e.,

∇µ j
µ = 0 . (8.40)

Thus,

∂µ j
µ + Γµµρ j

ρ = ∂µ
(
ψ γµ ψ

)
+ Γµµρ

(
ψ γρ ψ

)
= 0 . (8.41)

We now apply (8.38), yielding

ψ (∂µ γ
µ)ψ − ψ [Γµ, γ

µ]ψ + ψ Γµµρ γ
ρ ψ = ψ δµν

(
(∂µ γ

ν) + Γνµρ γ
ρ − [Γµ, γ

ν ]
)
ψ = 0 .

(8.42)

Because this equation has to be valid for any ψ, we immediately have

δµν (∂µ γ
ν) + Γνµρ γ

ρ − [Γµ, γ
ν ] = δµν ∇µ γ

ν = 0 , (8.43)
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where we define the covariant derivative of a Dirac γ matrix as

∇µ γ
ν = ∂µ γ

ν + Γνµρ γ
ρ − [Γµ, γ

ρ] . (8.44)

8.4. FINALLY SOLVING FOR CAB
µ AND Γµ

In order to find CAB
µ , we impose the restriction that ∇µγ

ν = 0, which of course

still satisfies (8.43), and apply the the vierbein (γµ = eµA γ̃
A) to (8.44), and find

(
∂µ e

ν
B + Γνµρ e

ρ
B

)
γ̃B − eνB

[
Γµ, γ̃

B
]

= ∇µ e
ν
B γ̃

B − eνB
[
Γµ, γ̃

B
]

= 0 . (8.45)

We now multiply by eAν to obtain

eAν ∇µ e
ν
B γ̃

B − eAν eνB
[
Γµ, γ̃

B
]

= ωAµB γ̃
B − δAB

[
Γµ, γ̃

B
]

= ωAµBγ̃
B −

[
Γµ, γ̃

A
]

= 0 .

(8.46)

In order to proceed, we use our ansatz of Γµ (8.28), and (C.67), to find

[
Γµ, γ̃

A
]

=
i

4
CBC
µ

[
σBC , γ̃

A
]

=
i

4
CBC
µ

[
2 i
(
δAC γ̃B − δAB γ̃C

)]
= −1

2

(
CBA
µ γ̃B − CAC

µ γ̃C
)

=
1

2

(
CAB
µ γ̃B + CAC

µ γ̃C
)

= CAB
µ γ̃B = ηBC C

AB
µ γ̃C = ηBC C

AC
µ γ̃B , (8.47)

where we used the assumption that CAB
µ is antisymmetric (CAB

µ = −CBA
µ ). Combin-

ing this result with (8.46) we obtain

ωAµB γ̃
B − ηBC CAC

µ γ̃B = ηBC
(
ωACµ − CAC

µ

)
γ̃B =

(
ωACµ − CAC

µ

)
γ̃B = 0 . (8.48)

We then conclude that

CAB
µ = ωABµ , (8.49)
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and

Γµ =
i

4
ωABµ σAB . (8.50)

We also note that our assumption that CAB
µ is antisymmetric has been validated as

we know ωABµ is antisymmetric (see appendix D). Finally we can write the covariant

derivative operating on a spinor as

∇µψ = (∂µ − Γµ)ψ =

(
∂µ −

i

4
ωABµ σab

)
ψ . (8.51)

In principle, this result is well known [87–98], including a wrong prefactor in the

article of Brill and Wheeler [91], as pointed out by Jentschura in [92], however the

derivations in the literature are not detailed.

8.5. DERIVATION OF CURVED–SPACE DIRAC HAMILTONIANS

Here we will use the tools developed in the preceding sections to derive both

the Dirac Hamiltonians for a particle coupled to a gravitational field, and a particle

in a non-inertial, rotating reference frame. The derivation presented here is a slight

variation on the derivations presented in [87, 92, 94]. While these are not the only

types of interactions we will be examining, they share a unifying concept in that

we cannot simply apply the correspondence principle, in which the potential V (r)

is simply added to the Dirac Hamiltonian for a free particle (H = HF + V (r)).

The curvature of spacetime due to the presence of a gravitational field is not taken

into consideration by the correspondence principle if we simply use the Newtonian

potential −GmM/r for the potential V (r), and neither can the non-inertial nature

of the particle be taken into account by such a simple formula. Fortunately, both

the isotropic Schwarzschild metric, and the uniformly accelerated non-inertial metric,
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can be represented in the form

[gµν ] = diag
(
w2,−v2,−v2,−v2

)
, [gµν ] = diag

(
w−2,−v−2,−v−2,−v−2

)
, (8.52)

where w = w(~r) and v = v(~r) are functions of the spatial coordinates ~r (and are

independent of time, t). Recall that according to (8.2) and (8.3),

gµν = eAµ e
B
ν ηAB , gµν = eµA e

ν
B η

AB .

Each of these equations generates a system of 16 equations, solved by

eA0 =w δA0 , e0
µ = w δ0

µ , eAi = v δAi , eIµ = v δIµ , (8.53)

e0
A =

δ0
A

w
, eµ0 =

δµa
w
, eiA =

δiA
v
, eµI =

δµI
v
, (8.54)

where δ is the Kronecker symbol. We know that the Dirac equation in curved–

spacetime is given as (8.10)

(iγµ∇µ −m)ψ = (iγµ∂µ − iγµΓµ −m)ψ = 0 . (8.55)

By multiplying by γ0 on the left, we can rewrite the curved–space Dirac equation as

i
(
γ0
)2
∂oψ =

(
−iγ0 γi∂i + iγ0 γµ Γµ +m

)
ψ . (8.56)

To proceed we need to calculate the connection matrices Γµ = i
4
ωABµ σ̃AB (equa-

tion (8.50)) explicitly. As we continue, the flat–space and curved–space indices will

start to mix, so we have written the flat–space spin connection matrix with a tilde,“σ̃,”
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to avoid any possible confusion. From equation (D.35) we know

ωABµ = eAν ∇µ e
νB = eAν ∂µ e

ν
C η

CB + eAν Γνµρ e
ρ
C η

CB . (8.57)

We begin by solving for the first term on the r.h.s., i.e.,

eAν ∂µ e
ν
C η

CB = eA0 ∂µ e
0
Cη

CB + eAi ∂µ e
i
Cη

CB = w δA0 ∂µ
1

w
δ0
C η

CB + v δAi ∂µ
1

v
δiCη

CB

= − ∂µw

w
η0B δA0 −

∂µv

v
ηIB δAi . (8.58)

The connection matrix Γµ becomes

Γµ =
i

4

(
−∂µw

w
η0B δA0 σ̃AB −

∂µv

v
ηIB δAi σ̃AB + eAν Γνµρ e

ρ
C η

CB σ̃AB

)
=

i

4

(
−∂µw

w
η0Bσ̃0B −

∂µv

v
ηIBσ̃IB + eAν Γνµρe

ρ
Cη

CBσ̃AB

)
. (8.59)

But by definition, σ̃AB = i
2

[γ̃A, γ̃B], thus if A = B, σ̃AB = 0. Additionally, our metric

η is diagonal, so if A 6= B then ηAB = 0. With this in mind, it is clear that the first

two terms in Γµ must be 0, and (8.59) becomes

Γµ =
i

4
eAν Γνµρ e

ρ
C η

CB σ̃AB . (8.60)

We now need to calculate the Christoffel symbols, and the spin matrices. Let us

begin with the Christoffel symbols, bearing in mind that Γρµν = Γρνµ, and that w, and

v are time independent, and thus ∂0 gµν = 0. We find

Γ0
00 = 0 , Γ0

0i = Γ0
i0 =

∂iw
2

2w2
, Γ0

ij = 0 , Γi00 =
∂iw

2

2v2
, Γi0j = Γij0 = 0 , (8.61a)

Γijk =
1

2v2

(
δik ∂jv

2 + δij ∂kv
2 − δjk∂iv2

)
. (8.61b)
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We now need to consider Γ0 and Γi separately. Setting µ = 0, the expression in

equation (8.60) becomes

Γ0 =
i

4
eAν Γν0ρ e

ρ
C η

CB σ̃AB

=
i

4

(
eA0 Γ0

00 e
0
C + eA0 Γ0

0i e
i
C + eAi Γi00 e

0
C + eAi Γi0j e

j
C

)
ηCB σ̃AB . (8.62)

We now plug our results from (8.61) into this equation to find

Γ0 =
i

4

(
eA0
∂iw

2

2w2
eiC + eAi

∂iw
2

2v2
e0
C

)
ηCB σ̃AB

=
i

4

(
w δA0

∂iw
2

2w2

δiC
v

+ v δAi
∂iw

2

2v2

δ0
C

w

)
ηCB σ̃AB =

i

4

∂iw
2

2wv

(
ηiB σ̃0B + η0B σ̃iB

)
.

(8.63)

We now simplify the bracketed terms,

ηiB σ̃0B + η0B σ̃iB =
i

2

(
ηiB [γ̃0, γ̃B] + η0B [γ̃i, γ̃B]

)
=

i

2

([
γ̃0, γ̃

i
]

+
[
γ̃i, γ̃

0
])

=
i

2

([
γ̃0, γ̃i

]
−
[
γ̃i, γ̃0

])
=

i

2

([
γ̃0, γ̃i

]
+
[
γ̃0, γ̃i

])
= i
[
γ̃0, γ̃i

]
= 2iγ̃0γ̃i , (8.64)

where we used the (somewhat trivial) identities

γ̃0 = η0Aγ̃
A = (1)γ̃0 + (0)γ̃1 + (0)γ̃2 + (0)γ̃3 = γ̃0 , (8.65a)

γ̃1 = η1Aγ̃
A = (0)γ̃0 + (−1)γ̃1 + (0)γ̃2 + (0)γ̃3 = −γ̃1 . (8.65b)

Hence we can show that γ̃I = −γ̃I by generalizing the final equation for γ̃2 and γ̃3.

Thus, equation (8.63) becomes

Γ0 = −γ̃0γ̃i
∂iw

2

4wv
= −γ̃0γ̃i

∂iw

2v
= −~α ·

~∇w
2v

. (8.66)
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We now caculate Γi,

Γi =
i

4
eAν Γνiρ e

ρ
C η

CB σ̃AB

=
i

4

(
eA0 Γ0

i0 e
0
C + eA0 Γ0

ij e
j
C + eAj Γji0 e

0
C + eAj Γjik e

k
C

)
ηCB σ̃AB . (8.67)

As before, we plug in our results form (8.61) to find

Γi =
i

4

(
eA0
∂iw

2

2w2
e0
C + eAj

1

2v2

(
δjk ∂i v

2 + δji ∂kv
2 − δik ∂jv2

)
ekC

)
ηCB σ̃AB . (8.68)

Note that eA0 e
0
Cη

CB = ηAB, which means the first term will be proportional to

ηABσAB = 0 (if A = B then σAB = 0, and if A 6= B then ηAB = 0). Thus,

equation (8.68) becomes

Γi =
i

4

(
vδAj
) 1

2v2

(
δjk ∂iv

2 + δji ∂kv
2 − δik ∂jv2

)(1

v
δkC

)
ηCB σ̃AB

=
i

8v2

(
δjk ∂iv

2 + δji ∂kv
2 − δik ∂jv2

)
ηkB σ̃jB

=
i

8v2

(
ηjB σ̃jB ∂jv

2 + ηkB σ̃iB∂kv
2 − ηBi σ̃jB∂jv2

)
. (8.69)

We again use the fact that ηABσAB = 0, and switch the implicit sum over k in the

second term, to an implicit sum over j, yielding

Γi = i
∂jv

2

8v2

(
ηjB σ̃iB − ηBi ηjA σ̃AB

)
, (8.70)

where we used the fact that

ηBi σ̃jB ∂
j = ηBi σ̃

j
B∂j = ηBi η

jAσ̃AB∂j . (8.71)
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We now look at the bracketed term in (8.70), in which it is clear that if i = j the

term will vanish (as will Γi), so we must assume i 6= j

ηjB σ̃iB − ηBi ηjA σ̃AB =
i

2

([
γ̃i, γ̃

j
]
−
[
γ̃j, γ̃i

])
= i
[
γ̃i, γ̃

j
]

= −i
[
γ̃i, γ̃j

]
. (8.72)

Plugging this result into (8.70) we find

Γi =
∂jv

2

8v2

[
γ̃i, γ̃j

]
=
∂jv

4v

[
γ̃i, γ̃j

]
. (8.73)

We now note that the term involving Γµ in (8.56) is γ0γµΓµ, which we must calculate.

Using our results from (8.66) we begin with

γ0γ0Γ0 =
1

w2
γ̃0γ̃0

(
−~α ·

~∇w
2v

)
= −~α · ∇w

2vw2
. (8.74)

We now use the identity γ̃i[γ̃i, γ̃j] = −2γ̃j where we do not have an implicit sum over

i. With a sum over the index i we find
∑

i γ̃
i[γ̃i, γ̃j] = −4γ̃j (i can take on 3 values,

but when i = j the commutator vanishes, leaving us with two terms). With this in

mind, as well as (8.73) we find

γ0γiΓi =
1

vw
γ̃0γ̃i

(
∂jv

4v

[
γ̃i, γ̃j

])
=

∂jv

4v2w
γ̃0
(
−4γ̃j

)
= −~α ·

~∇v
v2w

. (8.75)

Thus

γ0γµΓµ = γ0γ0Γ0 + γ0γiΓi = −~α ·
~∇w

2vw2
− ~α · ~∇v

v2w
. (8.76)

Let us quickly simplify the l.h.s. of (8.56), i.e.,

i(γ0)2∂0ψ = i
1

w2
(γ̃0)2∂0ψ =

i

w2
∂0ψ . (8.77)
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We now apply (8.76) to the r.h.s. of (8.56), multiply both sides by w2, and utilize

the vierbein connecting the curved– and flat–space Dirac γ matrices to find,

i∂0ψ =w2

(
−i

1

vw
γ̃0γ̃j∂j + i

(
−~α · (

~∇w)

2vw2
− ~α · (~∇v)

v2w

)
+

1

w
γ̃0m

)
ψ

=

(
w

v
~α · ~p+

~α · (~pw)

2v
+
w

v

~α · (~p v)

v
+ wβm

)
ψ , (8.78)

notice that we have parenthesis around “~pw” and “~p v”. This indicates that the

momentum operator ~p is only acting on the function w or v (respectively), and not

on the wave–function ψ. The resulting equation has the familiar form of the time

dependent Schödinger equation, i∂tψ = H ψ, since ∂0 = ∂t. It is then clear that the

Hamiltonian should be identified as

H =
w

v
~α · ~p+

~α · (~pw)

2v
+
w

v

~α · (~p v)

v
+ βmw . (8.79)

However, this form is not Hermitian, and therefore cannot act on a well-defined

Hilbert space of functions. It is possible to massage the Hamiltonian into a more

compact form. To do so we we rescale the wave–function according to

ψ′ = v3/2 ψ , H ′ = v3/2H v−3/2 , (8.80)

and it is immediately clear that the only term in our Hamiltonian that will be affected

is the ~α · ~p term that operates on ψ, i.e.,

v3/2~α · ~p v−3/2 = ~α · ~p+ v3/2~α ·
(
~p v−3/2

)
= ~α · ~p− v3/2 3

2

~α · (~p v)

v5/2
= ~α · ~p− 3

2

~α · (~p v)

v
.

(8.81)
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It then follows that the scaled Hamiltonian is

H ′ =
w

v
~α · ~p− 3

2

w

v

~α · (~p v)

v
+
w

v

~α · (~p v)

v
+
~α · (~pw)

2v
+ βmw

=
w

v
~α · ~p− 1

2
w
~α · (~p v)

v2
+

1

2

1

v
~α · (~pw) + βmw

=
w

v
~α · ~p+

1

2
w ~α ·

(
~p

1

v

)
+ ~α · (~pw) + βmw

=
1

2

w

v
~α · ~p+

(
1

2

w

v
~α · ~p+

1

2
~α ·
(
~p
w

v

))
+ βmw

=
1

2
F ~α · ~p+

1

2
~α · ~pF + βmw =

1

2
{~α · ~p,F}+ βmw , (8.82)

where we defined F = w/v. We now have a general Dirac Hamiltonian in a useful

form, and we need only substitute for v and w. In the case of the Dirac–Einstein–

Schwarzschild we use the Eddington parameterization (see references [92,94,99–101])

of the Schwarzschild metric, which is the isotropic form. Approximating for a small

Schwarzschild radius (rs = 2M G/c, where c = 1 in our coordinate system), we have

w ≈ 1− rs

2r
, v ≈ 1 +

rs

2r
, F =

w

v
≈ 1− rs

r
. (8.83)

Then to the first order in the Schwarzschild radius (rs), the Dirac–Einstein–Schwarzs-

child Hamiltonian is thus found to be

HDS ≈
1

2

{
~α · ~p,

(
1− rs

r

)}
+ β m

(
1− rs

2r

)
. (8.84)

Similarly the functions for a non-rotating, accelerating frame are given as (see [94,

99,101,102])

w = 1 , v = 1 + ~a · ~r , (8.85)
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where ~a is the acceleration of the frame. Using these equations with (8.82), the Dirac

Hamiltonian for a non-rotating non-inertial reference frame is found to be

HNR =
1

2
{~α · ~p, (1− ~a · ~r)}+ β m (1− ~a · ~r) . (8.86)

In reference [103], Mashhoon showed that for a Hamiltonian H in a non-rotating

frame, the same system as viewed by a rotating observer is given by

H ′ = U−1H U − ~ω · ~J , (8.87)

where ~J = ~L+ 1
2
~Σ is the total angular momentum, and

U = exp
(

iω · ~J
)
. (8.88)

We can show that the operator ~α · ~p commutes with the operator ~ω · ~J , i.e.,

[~α · ~p, ~ω · ~J ] =

[
~α · ~p, ~ω ·

(
~L+

1

2
~Σ

)]
= [~α · ~p, ~ω · ~L] +

1

2
[~α · ~p, ~ω · ~Σ]

=αLεIJKωI(pLrJ)pK +
1

2
γ5αIαJ(pIωJ − pJωI)

=αLεIJKωI(−iδLJ)pK +
1

2
γ5(��δ

IJ + iσKεIJK)(pIωJ − pJωI)

= − iεIJKωIαJpK +
i

2
εIJK(γ5σK)(2pIωJ)

= − iεIJKαKpIωJ + iεIJKαKpIωJ = 0 . (8.89)

Thus U−1HNR U = HNR, and the Dirac Hamiltonian for a rotating non–inertial

reference frame is found to be

HNF =
1

2
{~α · ~p, (1− ~a · ~r)}+ β m (1− ~a · ~r)− ~ω ·

(
~L+

1

2
~Σ

)
, (8.90)
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which we recognize as HNR plus the Mashhoon term. The Hamiltonian in equa-

tion (8.90) is explicitly Hermitian, and no further scaling factor for the wave–function

is required. With these results in hand, we are ready to investigate a number of

Foldy–Wouthuysen transformations.
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9. DIRAC EQUATIONS AND FOLDY–WOUTHUYSEN
TRANSFORMS

9.1. ORIENTATION

In 1950, Foldy and Wouthuysen discovered a transformation which decouples

relativistic quantum Hamiltonians into particle and anti-particle components [22].

This transformation can be exact for the free particle, while for other Hamiltonians

we must use a well defined iterative process. While this process is useful in deter-

mining the effects of a given Dirac Hamiltonian in the non-relativistic limit, it does

have drawbacks. Chief among these is that the process of the Foldy-Wouthuysen

transformation can be rather complicated, especially when higher orders of preci-

sion are desired. Despite this drawback, we will use standard Foldy-Wouthuysen

transformation on a number of Hamiltonians, ranging from the simplest, well known

Hamiltonians, such as the free particle, to less well known Hamiltonians, such as the

transformation for the Dirac Hamiltonians in a non-inertial reference frame. Some of

the results below have been discussed in references [87,88], while detailed calculations

are described in the following. For an additional application of the Foldy–Wouthuysen

transformation, in which a linear superposition of two confining potentials are added

to the Dirac–Coulomb Hamiltonian, see references [89].

9.2. FREE PARTICLE

For the free particle, we will discuss two alternative ways of performing the

Foldy-Wouthuysen transformation. The first way, the exact transformation, has been

described in [23], chapter 3, which will lend some context as to how the transformation

works. This will be followed by the iterative procedure of the process, which will
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demonstrate how the Foldy–Wouthuysen transformation works in general. We shall

see that the results given by the general transformation are in fact an approximation

given by the exact transformation.

For the exact Fold-Wouthuysen transformation, we are looking to completely

eliminate the odd operators from the Dirac Hamiltonian of the free particle, which

in its unrotated form is given as

HF = ~α · ~p+ β m . (9.1)

To do this we rotate into H ′ using a unitary transform U = exp[iS], i.e.,

H ′ = U HF U
+ = eiS HF e−iS , (9.2)

where S is Hermitian. For the exact transformation we try the Hermitian operator

S = −i β ~α · ~p θ, thus

U = eβ ~α·~p θ =
∞∑
n=0

(β ~α · ~p θ)n

n!
=

∞∑
m=0

(β ~α · ~p θ)2m

(2m)!
+
∞∑
m=0

(β ~α · ~p θ)2m+1

(2m+ 1)!

=
∞∑
m=0

(−1)m

(2m)!
(p θ)2m + β

~α · ~p
p

∞∑
m=0

(−1)m

(2m+ 1)!
(p θ)2m+1 = cos p θ + β

~α · ~p
p

sin p θ ,

(9.3)

where p = |~p|. To do this calculation, we used (β ~α · ~p)2 = −~p 2. We can now apply

this transformation to H,

H ′ =U H U+ = eβ ~α·~p θ(~α · ~p+ βm)e−β ~α·~p θ

=

(
cos p θ + β

~α · ~p
p

sin p θ

)
(~α · ~p+ βm)

(
cos p θ − β ~α · ~p

p
sin p θ

)
= (~α · ~p+ βm)

(
cos p θ − β ~α · ~p

p
sin p θ

)2

= (~α · ~p+ βm)e−2β ~α·~p θ



105

= (~α · ~p+ βm)

(
cos 2p θ − β ~α · ~p

p
sin 2p θ

)
= ~α · ~p

(
cos 2p θ − m

p
sin 2p θ

)
+ β (m cos 2p θ + p sin 2p θ)

= ~α · ~p cos 2p θ

(
1− m

p
tan 2p θ

)
+ β cos 2p θ (m+ p tan 2p θ) . (9.4)

Then to eliminate the odd part, it becomes necessary to choose θ such that tan 2p θ =

p/m. As illustrated by figure 9.1, cos 2p θ = m/
√
~p 2 +m2. Using this information

we can then finish solving for H ′,

H ′ = β
m√

~p 2 +m2

(
m+ p

p

m

)
= β

~p 2 +m2√
~p 2 +m2

= β
√
~p 2 +m2 . (9.5)

Now that we have exactly solved the Foldy-Wouthuysen transformation for

the free particle, we will move on to the general transformation. For the general

Foldy-Wouthuysen transformation we use the approximation

H ′ = eiS H e−iS ≈ H + i [S,H] +
(i)2

2!
[S, [S,H]] + . . . , (9.6)

2pΘ

m

p

m 2
+ p 2

Figure 9.1: This triangle represents our choice of setting tan 2p θ = p/m, in that the
side opposite the angle is of length p, while the adjacent side is of length m. Thus
the length of the hypotenuse is

√
m2 + ~p 2. This construction is used to aid us in

determining the value of the trigonometric functions in the exact Foldy-Wouthuysen
transformation of the free particle.
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where

S = − i βO
2m

, (9.7)

and O is the odd term in the Hamiltonian. As we know the Hamiltonian for the free

particle is

HF = ~α · ~p+ β m = O + β m . (9.8)

We are going to keep everything to the order (~α ·~p)3, and ignore terms of higher order.

To perform the transformation we use the fact that {β,O} = 0 (i.e., βO = −Oβ),

and O2 = ~p 2. We begin by solving for the single commutator

[S,HF] = − i

2m
[βO,O + β m] = − i

2m
(βOO −OβO + βOβm− βmβO)

= − i

2m
(2βO2 − 2β2Om) = −i

(
β
~p 2

m
−O

)
, (9.9)

followed by the double commutator,

[S, [S,HF]] = − i

2m
(−i)

[
βO, βO

2

m
−O

]
= − 1

2m

(
1

m

(
βOβO2 − βO2βO

)
− βOO +OβO

)
= − 1

2m

(
−2O3

m
− 2βO2

)
=
O3

m2
+ β

~p 2

m
, (9.10)

and finally we calculate the triple commutator, which is the final commutator that

will yield new terms to our desired precision,

[S, [S, [S,HF]]] = − i

2m

[
βO, O

3

m2
+ β
O2

m

]
= − i

2m

(
1

m2

(
βO4 −O3βO

)
+

1

m

(
βOβO2 − βO2βO

))
= − i

2m

(
2βO4

m2
− 2O3

m

)
= i

(
−
�
�
�βO4

m3
+
O3

m2

)
= i
O3

m2
, (9.11)
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where we crossed out the term that is of higher order in (~α · ~p) than we are interested

in. We then find that after the first transformation the Hamiltonian for a free particle

is

H ′ = β m+ β
~p 2

2m
− O

3

2m2
+

1

6

O3

m2
= β

(
m+

~p 2

2m

)
− O

3

3m2
, (9.12)

to our desired precision. Notice that there is still an odd term in the rotated Hamil-

tonian, meaning the particles and antiparticle degrees of freedom are not actually

decoupled. To correct this we perform the rotation again, this time setting

O′ = − O
3

3m2
and S ′ = − iβO′

2m
. (9.13)

We begin by calculating [S ′, H ′],

[S ′, H ′] = − i

2m

[
βO′, β

(
m+

~p 2

2m

)
−O′

]
= − i

2m

(
(βO′β − ββO′)

(
m+

~p 2

2m

)
− (βO′O′ −O′βO′)

)
= − i

2m

(
−2O′

(
m+

~p 2

2m

)
− 2β(O′)2

)
= −i

(
−O′ −O′ ~p

2

2m2
− β (O′)2

m

)
= −i

(
O3

3m2
+
�
�
��O3~p 2

6m4
−
�
�
��

β
O6

9m5

)
, (9.14)

again crossing out terms that are outside our scope of accuracy. We now note that

all the higher order commutators will be of order (~α · ~p)4 or higher, so we find

H
(FW)
F = H ′′ = β

(
m+

~p 2

2m

)
− O

3

3m2
+
O3

3m2
= β

(
m+

~p 2

2m

)
, (9.15)

where we use the superscript “(FW)” to indicate that the Hamiltonian has been full

transformed (to our desired order) using the Foldy–Wouthuysen transform. If we then

perform a Taylor series expansion on the exact transformation from equation (9.5)
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to the same order, we find

β
√
m2 + ~p 2 = β m

√
1 +

~p 2

m2
≈ β

(
m+

~p 2

2m

)
. (9.16)

The two solutions agree. This tests the methodology of the Foldy-Wouthuysen trans-

formation, and certainly helps to validate the power of the generalized transformation.

9.3. DIRAC-COULOMB HAMILTONIAN

The Dirac-Coulomb Hamiltonian is a well known operator, and is treated in a

number of standard works, (including equation (2.91) of reference [60]), and is given

as

HDC = ~α · ~p+ βm− Zα

r
, (9.17)

where Z us the nuclear charge number and α is the fine structure constant. As with

the free particle, the odd part of this operator is just ~α · ~p, thus

O = ~α · ~p , and S = − iβO
2m

, (9.18)

and of course,

HDC = O + βm− Zα

r
. (9.19)

We can now calculate the series of nested commutators, keeping terms to the order

of (Zα)4m, recalling that for atomic systems p ∼ Zαm and r ∼ 1/(Zαm) (see [105,

106]). We begin with the single commutator,

[S,HDC] = − i

2m

[
βO,O + βm− Zα

r

]
= − i

2m

(
2βOO − 2mO − β

[
O, Zα

r

])
= − i

(
β
O2

m
−O − β

2m

[
O, Zα

r

])
, (9.20)
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followed by the double commutator,

[S, [S,HDC]] = − i

2m
(−i)

[
βO, βO

2

m
−O − β

2m

[
O, Zα

r

]]
= − 1

2m

(
−2O3

m
− 2βO2 +

1

2m

[
O,
[
O, Zα

r

]])
=
O3

m2
+ β
O2

m
− 1

4m2

[
O,
[
O, Zα

r

]]
, (9.21)

then the triple commutator,

[S, [S, [S,HDC]]] = − i

2m

[
βO, O

3

m2
+ β
O2

m
−
���

���
���

��1

4m2

[
O,
[
O, Zα

r

]]]
= − i

2m

(
2β
O4

m2
− 2O3

m

)
= −i

(
β
O4

m3
− O

3

m2

)
. (9.22)

where we identified the higher order term early, and crossed it out. Finally we

calculate the quadruple commutator,

[S, [S, [S, [S,HDC]]]] = − i

2m
(−i)

[
βO,

�
�
�

β
O4

m3
− O

3

m2

]
= − 1

2m

(
−β 2O4

m2

)
= β
O4

m3
,

(9.23)

where the canceled term is again outside our scope. From which we find, to our

desired order of precision,

H ′ = βm− Zα

r
+ β
O2

2m
− O

3

3m2
− β O

4

8m3
− β

2m

[
O, Zα

r

]
+

1

8m2

[
O,
[
O, Zα

r

]]
= β

(
m+

O2

2m
− O

4

8m3

)
− Zα

r
+

1

8m2

[
O,
[
O, Zα

r

]]
+O′ , (9.24)

where we have already anticipated the next step, and defined O′. We need to repeat

the entire process so we can eliminate all odd terms, to the desired order, i.e.,

O′ = − O
3

3m2
− β

2m

[
O, Zα

r

]
, and S ′ = − iO′

2m
. (9.25)
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By inspection, it is clear that the only term we will get from this iteration is

[S ′, H ′] = iO′ . (9.26)

Thus the Foldy-Wouthuysen transformation gives us,

H
(FW)
DC = H ′′ = β

(
m+

O2

2m
− O

4

8m3

)
− Zα

r
+
Zα

8m2

[
O,
[
O, 1

r

]]
. (9.27)

We know that O2 = (~α · ~p)2 = ~p 2, and O4 = ~p 4, leaving only the final term in need

of simplification, i.e.,

[
~α · ~p,

[
~α · ~p, 1

r

]]
=

[
~α · ~p, ~α · ~p1

r
− 1

r
~α · ~p

]
=

[
~α · ~p, ~α ·

(
~p

1

r

)
+
�
�
��1

r
~α · ~p −

�
�
��1

r
~α · ~p

]
= ~α · ~p ~α ·

(
~p

1

r

)
− ~α ·

(
~p

1

r

)
~α · ~p

=σIpIσJ
(
pJ

1

r

)
− σI

(
pI

1

r

)
σJpJ

=σIσJ
(
pIpJ

1

r

)
+ σIσJ

(
pJ

1

r

)
pI − σIσJ

(
pI

1

r

)
pJ

=σIσJ
(
pIpJ

1

r

)
+

i

r3
σIσJ(rJpI − rIpJ) , (9.28)

where we used

(
~p

1

r

)
= i

~r

r3
, pI

(
pJ

1

r

)
=

(
pIpJ

1

r

)
+

(
pJ

1

r

)
pI . (9.29)

We will finish by calculating each of the remaining terms individually,

σIσJ
(
pIpJ

1

r

)
= δIJ

(
pIpJ

1

r

)
+
��

���
���

��
iεIJKσK

(
pIpJ

1

r

)
= ~p 2 1

r
= 4πδ(3)(~r) , (9.30)
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and

σIσJ(rJpI − rIpJ) =((((
((((

(
δIJ(rJpI − rIpJ) + iεIJKσK(rJpI − rIpJ)

= iεIJKσK(−rIpJ − rIpJ) = −2iσkεIJKrIpJ

= − 2i~Σ · (~r × ~p) = −2i~Σ · ~L . (9.31)

Putting this all together, we find

[
~α · ~p,

[
~α · ~p, 1

r

]]
= 4πδ(3)(~r) + 2

~Σ · ~L
r3

. (9.32)

Finally we find that the Foldy-Wouthuysen Dirac-Coulomb Hamiltonian is given as

H
(FW)
DC = β

(
m+

~p 2

2m
− ~p 4

8m3

)
− Zα

r
+
Zαπ

2m2
δ(3)(~r) +

Zα

4m2r3
~Σ · ~L . (9.33)

Here the first term is the familiar corrected term for the free Dirac Hamiltonian.

The second term is the Coulomb potential. The next two terms are higher order

corrections, the zitterbewegung term and the Thomas precession, respectively.

9.4. DIRAC HAMILTONIAN WITH A SCALAR POTENTIAL

The Dirac Hamiltonian with a scalar potential [88] is given as

HSP = ~α · ~p+ β

(
m− λ

r

)
, (9.34)

where λ is a coupling parameter. To perform the transformation, we set

O = ~α · ~p , and S = − iβO
2m

, (9.35)
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in which case

HSP = O + β

(
m− λ

r

)
. (9.36)

We can now calculate the nested commutators, keeping terms up to the forth order

in momenta (~p 4), the first order in λ, and up to the second order in momenta when

multiplied by λ (~p 2 λ). We begin by calculating the single commutator,

[S,HSP] =− i

2m

[
βO,O + β

(
m− λ

r

)]
= − i

2m

(
2βO2 −

{
O,m− λ

r

})
=− i

2m

(
2βO2 − 2mO +m

{
O, λ

r

})
= −i

(
β
O2

m
−O +

1

2m

{
O, λ

r

})
,

(9.37)

then the double commutator,

[S, [S,HSP]] =− i

2m
(−i)

[
βO, βO

2

m
−O +

1

2m

{
O, λ

r

}]
= − 1

2m

(
1

m

(
βOβO2 − βO2βO

)
− βOO +OβO

+
1

2m

(
βO

{
O, λ

r

}
−
{
O, λ

r

}
βO
))

= − 1

2m

(
−2O3

m
− 2βO2 +

1

2m
β

{
O,
{
O, λ

r

}})
=
O3

m2
+ β
O2

m
− β 1

4m2

{
O,
{
O, λ

r

}}
, (9.38)

next the triple commutator,

[S, [S, [S,HSP]]] =− i

2m

[
βO, O

3

m2
+ β
O2

m
− β 1

4m2

{
O,
{
O, λ

r

}}]
=− i

2m

(
1

m2

(
βOO3 −O3βO

)
+

1

m

(
βOβO2 − βO2βO

)
− 1

4m2

(
βOβ

{
O,
{
O, λ

r

}}
− β

{
O,
{
O, λ

r

}}
βO
))

=− i

2m

(
β

2O4

m2
− 2O

m
+

1

4m2

{
O,
{
O,
{
O, λ

r

}}})
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=− i

(
β
O4

m3
− O
m2

+
���

���
���

���
��

1

8m3

{
O,
{
O,
{
O, λ

r

}}})

=− i

(
β
O4

m3
− O

3

m2

)
, (9.39)

where we cancel the higher order term. Finally the quadruple commutator,

[S, [S, [S, [S,HSP]]]] =− i

2m
(−i)

[
βO, βO

4

m3
− O

3

m2

]
=− 1

2m

(
1

m2

(
βOβO4 − βO4βO

)
− 1

m2

(
βOO3 −O3βO

))
=− 1

2m

(
−2O5

m3
− β 2O4

m2

)
=
�
�
�O6

m4
+ β
O4

m3
, (9.40)

where the canceled term is of high enough order that we can approximate it to zero.

From which we find

H ′ = β

(
m− λ

r

)
+ β
O2

2m
+

1

2m

{
O, λ

r

}
− O

3

3m2
+ β

1

8m2

{
O,
{
O, λ

r

}}
− β O

4

8m3

= β

(
m+

O2

2m
− O

4

8m3
− λ

r

)
− O

3

3m2
+

1

2m

{
O, λ

r

}
+ β

1

8m2

{
O,
{
O, λ

r

}}
.

(9.41)

Once again there are odd terms in the Hamiltonian, so we must perform the procedure

again, this time

O′ = − O
3

3m2
+

1

2m

{
O, λ

r

}
, and S ′ = − iβO

2m
. (9.42)

By inspection it is clear that the only term of [S ′, H ′] that is of low enough order

that it will not go to zero is

− i

2m
[βO′, βm] =− i

2m
(−2mO′) = iO′ . (9.43)
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This will clearly cancel out the odd term from H ′, leaving us with

H
(FW)
SP = H ′′ = β

(
m+

O2

2m
− O

4

8m3
− λ

r

)
+ β

1

8m2

{
O,
{
O, λ

r

}}
. (9.44)

We now need to calculate {
~α · ~p,

{
~α · ~p, λ

r

}}
.

To do so we will use the following relations

{A, {A,B}} ={A2, B}+ 2ABA , 2ABA = {A2, B} − [A, [A,B]] . (9.45)

Thus {
~α · ~p,

{
~α · ~p, λ

r

}}
= 2

{
~p 2,

λ

r

}
−
[
~α · ~p,

[
~α · ~p, λ

r

]]
, (9.46)

We recall the results found in (9.32), and allowing for the constant λ we find,

{
~α · ~p,

{
~α · ~p, λ

r

}}
= 2

{
~p 2,

λ

r

}
− 4πλδ(3)(~r)− 2

λ

r3
~Σ · ~L . (9.47)

Applying this result to our Hamiltonian we obtain

H
(FW)
SP = β

(
m+

p 2

2m
− p 4

8m3
− λ

r
+

1

4m2

{
~p 2,

λ

r

}
− πλ

2m2
δ(3)(~r)− λ

4m2r3
~Σ · ~L

)
. (9.48)

Here the first three terms represent the the transformed free particle. The fourth

term is the potential. The fifth term is a kinetic correction. The final two terms are

again the zitterbewegung term and a spin orbit coupling term respectively. Notice

that there is a β prefactor for all the terms, giving us particle–antiparticle symmetry

(i.e., both particles and antiparticles will be affected by the scalar potential in the

same way).
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9.5. DIRAC HAMILTONIAN WITH A SCALAR CONFINING POTEN-
TIAL

The Dirac Hamiltonian with a scalar confining potential (for slightly more

complicated variations on such a Hamiltonian see [89,107,108]) is given as

HLC = ~α · ~p+ β
(
m+ α2m2r

)
. (9.49)

where α must be small in order for there to be a physically meaningful non–relativistic

limit. Thus to perform a Foldy–Wouthuysen transformation, we must assume that

α2 r ∼ |~p|. To perform the transformation, we set

O = ~α · ~p , and S = − iβO
2m

, (9.50)

in which case

HLC = O + β
(
m+ α2m2r

)
. (9.51)

We can now calculate the series of nested commutators, keeping terms up to third or-

der in momenta ((~α ·~p)3), bearing in mind that we have assumed α2 r ∼ |~p| (note that

any canceled out terms are being approximated to zero, unless specified otherwise),

[S,HLC] = − i

2m

[
βO,O + β

(
m+ α2m2r

)]
= − i

2m

(
2βO2 −

{
O,m+ α2m2r

})
= − i

2m

(
2βO2 − 2mO − α2m2 {O, r}

)
= −i

(
β
O2

m
−O − α2m

2
{O, r}

)
,

(9.52)

then the double commutator,

[S, [S,HLC]] = − i

2m
(−i)

[
βO, βO

2

m
−O − α2m

2
{O, r}

]
= − 1

2m

(
−2O3

m
− 2βO2 − βα

2m

2
{O, {O, r}}

)
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=
O3

m2
+ β
O2

m
+ β

α2

4
{O, {O, r}} , (9.53)

and finally the triple commutator,

[S, [S, [S,HLC]]] = − i

2m

[
βO, O

3

m2
+ β
O2

m
+ β

α2

4
{O, {O, r}}

]
= − i

2m

(
�
�
��

2β
O4

m2
− 2
O3

m
−
��

���
���

���α2

4
{O, {O, {O, r}}}

)
= i
O3

m2
. (9.54)

Then

H ′ =O + β
(
m+ α2m2r

)
+ β
O2

m
−O − α2m

2
{O, r}

− 1

2

(
O3

m2
+ β
O2

m
+ β

α2

4
{O, {O, r}}

)
+
O3

6m2

= β
(
m+ α2m2r

)
+ β

~p 2

2m
− βα

2

8
{O, {O, r}}+O′ , (9.55)

where O′ is a new odd term. When we repeat the process, we will eliminate the odd

term, without introducing any new terms of order (~α · ~p)3 or lower, i.e.,

H
(FW)
LC = β

(
m+ α2m2r

)
+ β

~p 2

2m
− βα

2

8
{O, {O, r}} , (9.56)

We can now calculate the unknown term:

{O, {O, r}} = {~α · ~p, {~α · ~p, r}} = 2{~p 2, r} − [~α · ~p, [~α · ~p, r]]

= 2{~p 2, r} − (δIJ + iεIJKσK)

(
(pIpJ r) +

i

r
(rIpJ − rJpI)

)
= 2{~p 2, r} −

(
δIJ(pIpJ r)− 1

r
εIJKσK(rIpJ − rJpI)

)
= 2{~p 2, r} −

(
δIJ(pIpJ r)− 2

1

r
εIJKσKrIpJ

)
= 2{~p 2, r} − ~p 2r +

2

r
~Σ · (~r × ~p) = 2{~p 2, r}+

2

r
+

2

r
~Σ · ~L . (9.57)
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Thus

H
(FW)
LC = β

(
m+ α2m2r

)
+ β

~p 2

2m
− βα

2

4
{~p 2, r} − β α

2

4 r
− β α

2

4 r
~Σ · ~L . (9.58)

While the resulting Hamiltonian is not written such that they appear together, the

Hamiltonian does contain the transformed free particle equation. This is contained

in the first two terms, along with the added linear potential. We again find a kinetic

correction term as well as a spin orbit coupling term. Again we note that all the

terms have a β prefactor, again preserving the particle–antiparticle symmetry of the

system.

9.6. DIRAC–EINSTEIN–SCHWARZSCHILD HAMILTONIAN

As we found in chapter 8, the Dirac–Einstein–Schwarzschild Hamiltonian is

given as (see (8.84))

HDS =
1

2

{
~α · ~p,

(
1− rs

r

)}
+ β m

(
1− rs

2r

)
. (9.59)

To perform the transformation, we set

O =
1

2

{
~α · ~p,

(
1− rs

r

)}
, and S = − iβO

2m
, (9.60)

in which case

HDS = O + β m
(

1− rs

2r

)
. (9.61)

We can now calculate the nested commutators, keeping terms up to the forth order in

momentum, the first order in rs, and the second order in momentum when multiplied

by rs. Note that all canceled out terms are of sufficiently high order that we can
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approximate them to be zero. We begin with the single commutator,

[S,HDS] = − i

2m

[
βO,O + β m

(
1− rs

2r

)]
= − i

2m

(
βOO −OβO + βOβ m

(
1− rs

2r

)
− β m

(
1− rs

2r

)
βO
)

= − i

2m

(
2βO2 −m

{
O, 1− rs

2r

})
= − i

2m

(
2βO2 −m {O, 1}+m

{
O, rs

2r

})
= − i

2m

(
2βO2 − 2mO +m

{
O, rs

2r

})
= −i

(
β
O2

m
−O +

1

2

{
O, rs

2r

})
,

(9.62)

followed by the double commutator,

[S, [S,HDS]] = − i

2m
(−i)

[
βO, βO

2

m
−O +

1

2

{
O, rs

2r

}]
= − 1

2m

(
1

m

(
βOβO2 − βO2βO

)
− βOO +OβO

+
1

2

(
βO

{
O, rs

2r

}
−
{
O, rs

2r

}
βO
))

= − 1

2m

(
−2O3

m
− 2βO2 +

1

2
β
{
O,
{
O, rs

2r

}})
=
O3

m2
+ β
O2

m
− β 1

4m

{
O,
{
O, rs

2r

}}
, (9.63)

then the triple commutator,

[S, [S, [S,HDS]]] = − i

2m

[
βO, O

3

m2
+ β
O2

m
− β 1

4m

{
O,
{
O, rs

2r

}}]
= − i

2m

(
1

m2

(
βOO3 −O3βO

)
+

1

m

(
βOβO2 − βO2βO

)
− 1

4m

(
βOβ

{
O,
{
O, rs

2r

}}
− β

{
O,
{
O, rs

2r

}}
βO
))

= − i

2m

(
β

2O4

m2
− 2O

m
+
((((

((((
((((

(1

2m

{
O,
{
O,
{
O, rs

2r

}}})
= − i

(
β
O4

m3
− O

3

m2

)
, (9.64)
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and finally the quadruple commutator,

[S, [S, [S, [S,HDS]]]] =− i

2m
(−i)

[
βO, βO

4

m3
− O

3

m2

]
=− 1

2m

(
1

m2

(
βOβO4 − βO4βO

)
− 1

m2

(
βOO3 −O3βO

))
=− 1

2m

(
−2O5

m3
− β 2O4

m2

)
=
�
�
�O5

m4
+ β
O4

m3
. (9.65)

Putting it together we find

H ′ =β m
(

1− rs

2r

)
+ β
O2

2m
+

1

2

{
O, rs

2r

}
− O

3

3m2
+ β

1

8m

{
O,
{
O, rs

2r

}}
− β O

4

8m3

=β

(
m+

O2

2m
− O

4

8m3

)
− βmrs

2r
− O

3

3m2
+

1

2

{
O, rs

2r

}
+ β

1

8m

{
O,
{
O, rs

2r

}}
.

(9.66)

Once again there are odd terms in the Hamiltonian, so we must perform the procedure

again, this time

O′ = − O
3

3m2
+

1

2

{
O, rs

2r

}
, and S ′ = − iβO′

2m
. (9.67)

By inspection it is clear that the only term of [S ′, H ′] that is of low enough order

that it will not go to zero is

− i

2m
[βO′, βm] =− i

2m
(−2mO′) = iO′ . (9.68)

This will clearly cancel out the odd term from H ′, leaving us with

H
(FW)
DS = H ′′ = β

(
m+

O2

2m
− O

4

8m3

)
− βmrs

2r
+ β

1

8m

{
O,
{
O, rs

2r

}}
. (9.69)



120

We now calculate all terms involving the odd part. We begin by noting

O =
1

2

{
~α · ~p, 1− rs

r

}
= ~α · ~p− 1

2

{
~α · ~p, rs

r

}
. (9.70)

Then to the desired order we find the square of the odd part,

O2 =

(
~α · ~p− 1

2

{
~α · ~p, rs

r

})2

=(~α · ~p)2 − 1

2
~α · ~p

{
~α · ~p, rs

r

}
− 1

2

{
~α · ~p, rs

r

}
~α · ~p+

���
���

��1

4

{
~α · ~p, rs

r

}2

=~p 2 − 1

2

{
~α · ~p,

{
~α · ~p, rs

r

}}
, (9.71)

as well as the odd part to the fourth power,

O4 =

(
~p 2 −

���
���

���
���1

2

{
~α · ~p,

{
~α · ~p, rs

r

}})2

= ~p 4 . (9.72)

We then calculate the nested anticommutator,

{
O,
{
O, rs

2r

}}
=

{
~α · ~p− 1

2

{
~α · ~p, rs

r

}
,

{
~α · ~p− 1

2

{
~α · ~p, rs

r

}
,
rs

2r

}}
=

{
~α · ~p,

{
~α · ~p− 1

2

{
~α · ~p, rs

r

}
,
rs

2r

}}
−
(((

((((
(((

((((
(((

((((
(((

1

2

{{
~α · ~p, rs

2r

}
,

{
~α · ~p− 1

2

{
~α · ~p, rs

r

}
,
rs

2r

}}
=
{
~α · ~p,

{
~α · ~p, rs

2r

}}
−
(((

((((
(((

((((
(({

~α · ~p,
{

1

2

{
~α · ~p, rs

r

}
,
rs

2r

}}
=

1

2

{
~α · ~p,

{
~α · ~p, rs

r

}}
. (9.73)

Plugging these results into our equation for the Hamiltonian we find

H
(FW)
DS = β

(
m+

~p 2

2m
− ~p 4

8m3

)
− βmrs

2r
− 3 β

16m

{
~α · ~p,

{
~α · ~p, rs

r

}}
. (9.74)
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The first two terms of this Hamiltonian are immediately recognizable, leaving us

needing to simplify only the double anticommutator in the final term. To do so we

recall the result found in (9.47), and let λ→ rs, giving us the result

{
~α · ~p,

{
~α · ~p, rs

r

}}
= 2

{
~p 2,

rs

r

}
− 4πrsδ

(3)(~r)− 2
rs

r3
~Σ · ~L . (9.75)

Plugging this result into our equation for the rotated Hamiltonian we find

H
(FW)
DS = β

(
m+

~p 2

2m
− ~p 4

8m3

)
− βmrs

2r

− β 3

8m

{
~p 2,

rs

r

}
+ β

3π rs

4m
δ(3)(~r) + β

3 rs

8m

~Σ · ~L
r3

. (9.76)

Once again, and especially in view of our previous calculations, we find that all of

the terms are recognizable. The first term is the transformed equation for a free

particle, with its corrections up to the fourth order in momenta. The second term is

the gravitational potential, which can be more clearly seen when one considers that

rs = 2GM (c = 1), where G is the universal gravitational constant, and M is the

mass of the gravitational center. With these considerations, the second term becomes

β GM m/r, where the prefactor β ensures that both the particles and antiparticles

will be attracted by gravity. The forth term is a kinetic correction to the gravitational

coupling. The final two terms are the gravitational zitterbewegung term, and the

spin–orbit coupling term, otherwise known as Fokker precession. Furthermore, the

Fokker precession term is in full agreement with the classical result found in [115].



122

9.7. DIRAC HAMILTONIAN IN A ROTATING NON–INERTIAL REF-
ERENCE FRAME

So far all of the Foldy-Wouthuysen transformations we performed consisted

of exactly two iterations of the prescribed procedure. The first revealed the correc-

tion terms to our desired precision, and the second iteration simply eliminated the

remaining odd terms. Based on this, one might be tempted to conclude that working

under the precision that we have, all Foldy–Wouthuysen transformations are done

in two iterations, provided one wants to calculate the correction terms up to the

forth order in momenta. Granted that based solely on the previous examples, this

is a quite an assumption, and as should be expected, an incorrect one. Here we will

look at the Foldy–Wouthuysen transformation for the Dirac Hamiltonian in a rotat-

ing non–inertial frame, and as we will see it takes three iterations. Recall that this

Hamiltonian is given as (see (8.90)),

HNF = (1 + ~a · ~r)βm+
1

2
{1 + ~a · ~r, ~α · ~p} − ~ω ·

(
~L+

1

2
~Σ

)
, (9.77)

and is valid for a reference frame with a uniform acceleration ~a. In addition to the

usual constraints, we will keep both ~a and ~ω to the first order, and keep terms up to

the forth order in momenta (~p 4). The Hamiltonian can be rewritten as

HNF = (1+~a ·~r)βm−~ω ·
(
~L+

1

2
~Σ

)
+O = βm+βm~a ·~r−~ω · ~L− 1

2
~ω · ~Σ+O , (9.78)

where as usual, O is the odd part of the Hamiltonian. It is clear that

O =
1

2
{1 + ~a · ~r, ~α · ~p} = ~α · ~p+

1

2
{~a · ~r, ~α · ~p} , S = − i βO

2m
. (9.79)

We are then ready to perform the transformation, again, we are keeping terms to

the fourth order in momenta, and the first order in ~a. We will additionally use the
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fact that ~α · ~p and ~ω · ~J commute, as shown in (8.89). As in the previous sections,

canceled out terms are of high enough order that they can be approximated to zero.

We begin with the single commutator

[S,HNF] = − i

2m

[
βO , βm+ βm~a · ~r − ~ω · ~L− 1

2
~ω · ~Σ +O

]
= − i

2m

(
−2mO −m{O,~a · ~r} −

���
���

���
���

[
βO , ~ω ·

(
~L+

1

2
~Σ

)]
+ 2βO2

)
= i

(
O +

1

2
{O,~a · ~r} − βO2

m

)
, (9.80)

then the double commutator,

[S, [S,HNF]] = − i2

2m

[
βO , O +

1

2
{O,~a · ~r} − βO2

m

]
=

1

2m

(
2βO2 +

1

2
{O, {O,~a · ~r}}+

2O3

m

)
=
β

m
O2 +

β

4m
{O, {O,~a · ~r}}+

O3

m2
, (9.81)

followed by the triple commutator,

[S, [S, [S,HNF]]] = − i

2m

[
βO , βO

2

m
+

β

4m
{O, {O,~a · ~r}}+

O3

m2

]
= − i

2m

(
−2O3

m
− 1

4m
{O, {O, {O,~a · ~r}}}+

2 βO4

m2

)
= i

(
O3

m2
+

1

8m2
{O, {O, {O,~a · ~r}}} − βO4

m3

)
, (9.82)

and finally we calculate the quadruple commutator,

[S, [S, [S, [S,HNF]]]] = − i2

2m

[
βO , O

3

m2
+

1

8m2
{O, {O, {O,~a · ~r}}} −

�
�
�βO4

m3

]
=

1

2m

(
2βO4

m2
+

β

8m2
{O, {O, {O, {O,~a · ~r}}}}

)
=
βO4

m3
+

β

16m3
{O, {O, {O, {O,~a · ~r}}}} . (9.83)
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The first iteration of the procedure then leads to the Hamiltonian,

H ′ = β m+ β m~a · ~r − ~ω ·
(
~L+

1

2
~Σ

)
+
βO2

2m
− β

8m
{O, {O,~a · ~r}}+

βO4

8m3

+
β

384m3
{O, {O, {O, {O,~a · ~r}}}}+O′ , (9.84)

where

O′ = − 1

2
{O,~a · ~r} − O

3

3m2
+

1

48m2
{O, {O, {O,~a · ~r}}} . (9.85)

For this iteration we use the operator,

S ′ = − i βO′

2m
. (9.86)

Before we begin calculating all the relevant terms, we note that the only term in O′

which does not contain an acceleration term, ~a, (outside of the odd part, O) is of

the third order in momenta. As such most of the terms of [S ′, H ′] can be ignored.

Accordingly, the only terms we explicitly write out will be the (possibly) relevant

terms. We begin with the single commutator,

[S ′, H ′] = − i

2m

[
βO′ , β m+ β m~a · ~r − ~ω ·

(
~L+

1

2
~Σ

)
+
βO2

2m
+O′

]
= − i

2m

(
−2mO′ −m{O′,~a · ~r} −

��
���

���
���

�

β

[
O′, ~ω ·

(
~L+

1

2
~Σ

)]
− 1

2m
{O′,O2}+ 2βO′2

)
= i

(
O′ + 1

2
{O′,~a · ~r}+

1

4m2
{O′,O2} − βO′2

m

)
, (9.87)
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and we follow up with the double commutator,

[S ′, [S ′, H ′]] = − i2

2m

[
βO′,O′ + 1

2
{O′,~a · ~r}+

1

4m2
{O′,O2} − βO′2

m

]
=

1

2m

(
2 βO′2 +

��
���

���
��β

2
{O′, {O′,~a · ~r}} +

���
���

���
��β

4m2
{O′, {O′,O2}} +

�
�
�
�2 βO′3

m

)

=
βO′2

m
. (9.88)

Any additional terms will be of a higher order then we are interested in. Thus after

two iterations of the Foldy–Wouthuysen transformation, the resulting Hamiltonian

reads as

H ′′ = β m+ β m~a · ~r − ~ω ·
(
~L+

1

2
~Σ

)
+
βO2

2m
+

β

8m
{O, {O,~a · ~r}} − βO4

8m3

+
β

384m3
{O, {O, {O, {O,~a · ~r}}}} − 1

4m2
{O′,O2}+

βO′2

2m
. (9.89)

In order to simplify this expression we will express all the terms involving the odd

operator O′ in terms of O, ignoring the higher order terms, i.e.,

1

2
{O′,~a · ~r} = − 1

2

{
O3

3m2
,~a · ~r

}
= − 1

6m3

{
O3,~a · ~r

}
, (9.90)

1

4m2
{O′,O2} = − 1

4m2

{
1

2
{O,~a · ~r},O2

}
= − 1

8m2
{{O,~a · ~r},O2} , (9.91)

βO′2

2m
=

β

2m

(
1

2
{O,~a · ~r} O

3

3m2
+
O3

3m2

1

2
{O,~a · ~r}

)
=

β

12m3
{O3, {O,~a · ~r}} .

(9.92)

As such the twice rotated Hamiltonian becomes,

H ′′ = β m+ β m~a · ~r − ~ω ·
(
~L+

1

2
~Σ

)
+
βO2

2m
− β

8m
{O, {O,~a · ~r}} − βO4

8m3

+
β

384m3
{O, {O, {O, {O,~a · ~r}}}}+

β

12m3
{O3, {O,~a · ~r}}+O′′ , (9.93)
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where

O′′ = 1

6m3
{O3,~a · ~r}+

1

8m2
{{O,~a · ~r},O2} . (9.94)

Notice that every term in O′′ is at least a first-order term in acceleration, and they

are all third-order terms in momenta. As such, it is clear by inspection that the third

iteration of the Foldy–Wouthuysen transformation will serve only to eliminate the

remaining odd part of the Hamiltonian, leading us to conclude that

H
(FW)
NF = β m+ β m~a · ~r − ~ω ·

(
~L+

1

2
~Σ

)
+
βO2

2m
− β

8m
{O, {O,~a · ~r}} − βO4

8m3

+
β

384m3
{O, {O, {O, {O,~a · ~r}}}}+

β

12m3
{O3, {O,~a · ~r}} . (9.95)

We now need to simplify the Hamiltonian by substituting for the odd terms according

to (9.79). We begin with O2,

O2 =

(
~α · ~p+

1

2
{~a · ~r, ~α · ~p}

)2

= (~α · ~p)2 + ~α · ~p 1

2
{~a · ~r, ~α · ~p}+

1

2
{~a · ~r, ~α · ~p} ~α · ~p+

���
���

��1

4
{~a · ~r, ~α · ~p}2

= ~p 2 +
1

2
{~α · ~p, {~α · ~p,~a · ~r}} , (9.96)

which we can use to calculate O4,

O4 =

(
~p 2 +

1

2
{~α · ~p, {~α · ~p,~a · ~r}}

)2

= ~p 4 +
1

2

{
~p 2, {~α · ~p, {~α · ~p,~a · ~r}}

}
+
���

���
���

���1

4
{~α · ~p, {~α · ~p,~a · ~r}}2

= ~p 4 +
1

2
{~p 2, {~α · ~p, {~α · ~p,~a · ~r}}} . (9.97)
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We now need to calculate the double anticommutator in the final term of O2. To do

so we again turn to the relation given in equation (9.45), from which we find

{~α · ~p, {~α · ~p,~a · ~r}} = 2 {~p 2,~a · ~r} − [~α · ~p, [~α · ~p,~a · ~r]] , (9.98)

leaving us with the double commutator, which we calculate using using the fact that

~α · (~p~a · ~r) = −i ~α · ~a,

[~α · ~p, [~α · ~p,~a · ~r]] = [~α · ~p, (~α · ~p~a · ~r − ~a · ~r~a · ~r)] = [~α · ~p,−i ~α · ~a]

= − i
(
αIpIαJaJ − αIaIαJpJ

)
= −iαIαJ

(
aJpI − aIpJ

)
= − i(��δ

IJ + iσKεIJK)
(
aJpI − aIpJ

)
= σkεIJK

(
−aIpJ − aIpJ

)
= − 2εKIJσKaIpJ = −2~Σ · (~a× ~p) . (9.99)

The Kronecker symbols δIJ vanish due to the arithmetic involved. Thus,

{~α · ~p, {~α · ~p,~a · ~r}} = 2{~p 2,~a · ~r}+ 2~Σ · (~a× ~p) , (9.100)

and we plug this result into our equation for O2, leaving

O2 = ~p 2 + {~p 2,~a · ~r}+ ~Σ · (~a× ~p) . (9.101)

Furthermore, these results can be used to simplify O4, i.e.,

{~p 2, {~α · ~p, {~α · ~p,~a · ~r}}} = 2{~p 2, {~p 2,~a · ~r}}+ 2{~p 2, ~Σ · (~a× ~p)}

= 4{~p 4,~a · ~r} −
��

���
���

�:0
2[~p 2, [~p 2,~a · ~r]] + 4~Σ · (~a× ~p)~p 2 ,

(9.102)
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and thus we find,

O4 = ~p 4 + 2{~p 4,~a · ~r}+ 2~Σ · (~a× ~p) ~p 2 . (9.103)

We are now left with only the anticommutators to simplify. Since we are still keeping

the acceleration to the first order, and the odd term O which appears in the anticom-

mutators can be taken as O = ~α · ~p to our desired order, we find that the first double

anticommutator was already solved in (9.100). This result, along with the identities,

[A, [A, {A, {A,B}}]] = [A2, [A2, B]] ,

{A3, {A,B}} = 2{A4, B} − 1

2
[A2, [A2, B]]− 1

2
{A2, [A, [A,B]]} , (9.104)

can then be used to solve the remaining terms, i.e.,

{O, {O, {O, {O,~a · ~r}}}} = {~α · ~p, {~α · ~p, {~α · ~p, {~α · ~p,~a · ~r}}}}

= 2{~p 2, {~α · ~p, {~α · ~p,~a · ~r}}} − [~α · ~p, [~α · ~p, {~α · ~p, {~α · ~p,~a · ~r}}]]

= 2(4{~p 4,~a · ~r}+ 4~Σ · (~a× ~p)~p 2)−
��

���
���:

0
[~p 2, [~p 2,~a · ~r]]

= 8{~p 4,~a · ~r}+ 8~Σ · (~a× ~p) ~p 2 , (9.105)

and

{O3, {O,~a · ~r}} = 2{~p 4,~a · ~r} − 1

2��
���

���:
0

[~p 2, [~p 2,~a · ~r]] − 1

2
{~p 2, [~α · ~p, [~α · ~p,~a · ~r]]}

= 2{~p 4,~a · ~r} − 1

2
{~p 2,−2~Σ · (~a× ~p)}

= 2{~p 4,~a · ~r}+ 2~Σ · (~a× ~p) ~p 2 . (9.106)

Notice that we have used the fact that [~p 2, [~p 2,~a · ~r]] = 0 quite a few times when

solving for the terms. This can be easily verified by solving the commentator nested
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within, i.e.,

[
~p 2,~a · ~r

]
= ~p 2~a · ~r − ~a · ~r ~p 2 = pIpI aJrJ − aIrI pJpJ

= − i pI aJδIJ + pI aJrJ pI − aIrI pJpJ

= − i aIpI − i aJδIJpI + aJrJ pIpI − aIrI pJpJ = −2i~a · ~p , (9.107)

which of course commutes with ~p 2. To reiterate, [~p 2,~a·~r] commutes with ~p 2, thus the

double commutator is zero. Finally we can plug all of our results into our Hamiltonian,

and then simplify, yielding

H
(FW)
NF = β

(
m+

~p 2

2m
− ~p 4

8m3
+m~a · ~r +

1

4m
{~p 2,~a · ~r} − 1

16m3
{~p 4,~a · ~r}

)
+ β ~Σ · (~a× ~p)

(
1

4m
− ~p 2

16m3

)
− ~ω ·

(
~L+

1

2
~Σ

)
. (9.108)

It is immediately obvious that while there are familiar terms, such as the free particle

terms, there are terms here that are unlike the terms found in our other transformed

Hamiltonians. This is due to the fact we are still dealing with a free particle, but it is

as observed from a rotating and accelerating frame. We also notice that the Mashhoon

term is unaffected by the transformation up to the fourth order in momenta. We also

note that all the terms, save for the final Mashhoon term, are decorated with the

prefactor β. We then have particle–antiparticle symmetry.

9.8. GRAVITATIONALLY COUPLED TRANSITION CURRENT

Here we derive the non–relativistic corrections to the gravitationally coupled

transition current J I . The nonrelativistic corrections to the transition current for

emitted photons can be used to calculate the corrections to the interactions when cou-

pling a system to photons, both real and virtual. The coupling to real photons gives

rise to relativistic corrections in atomic physics, while the virtual photons result in
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QED corrections (for more in depth discussions see [23,109–111]). One calculates the

transition current by coupling the Dirac–Einstein–Schwarzschild Hamiltonian (9.76)

to an external electromagnetic field, utilizing the usual replacement ~p → ~p − e ~A,

where ~A is the vector potential. The interaction is known to be Hint = − ~J · ~A. Thus

the gravitationally coupled transition current is found to be

J I =
1

2

{
1− rs

r
, αI ei~k·~r

}
≈
(

1− rs

r

)
αI +

(
1− rs

r

)
αI
(

i~k · ~r
)
− 1

2

(
1− rs

r

)
αI
(
~k · ~r

)2

. (9.109)

By defining

J I0 ≡
(

1− rs

r

)
αI , J I1 ≡

(
1− rs

r

)
αI
(

i~k · ~r
)
, (9.110a)

J I2 ≡ −
1

2

(
1− rs

r

)
αI
(
~k · ~r

)2

, (9.110b)

we can calculate the approximate transformation of J I in three parts (J I ≈ J I0 +J I1 +

J I2 ). For convenience we recall that the first rotation of the transform is

U = eiS , S = −i
βO
2m

, O =
1

2

{
~α · ~p,

(
1− rs

r

)}
= ~α · ~p− 1

2

{
~α · ~p, rs

r

}
. (9.111)

Before continuing on we take note of a few relations

~α · ~v αI = vI − i (~v × ~σ)I = vI + i (~σ × ~v)I , (9.112a)

αI ~α · ~v = vI + i (~v × ~σ)I = vI − i (~σ × ~v)I , (9.112b)

{~α · ~v, αI} = ~α · ~v αI + αI ~α · ~v = 2 vI , (9.112c)

where ~v is an arbitrary vector. Armed with these equations, we are prepared to begin

the first transformation. As with the Dirac–Einstein–Schwarzschild Hamiltonian, we

are keeping terms up to the first order in gravity, to the fourth order in momenta,
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and to the second order in momenta when combined with gravity. Additionally, we

are assuming that the exchanged photons are soft, i.e., |~k| ∼ ~p 2/m. As before, the

canceled out terms are approximated to zero. We begin by calculating the single

commutators. First J I0

[S, J I0 ] = − i

2m

[
β ~α · ~p− β

2

{
~α · ~p, rs

r

}
, αI − αI rs

r

]
= − i β

2m

({
~α · ~p, αI

}
−
{
~α · ~p, αI rs

r

}
− 1

2

{{
~α · ~p, rs

r

}
, αI
}

+
���

���
���

���1

2

{{
~α · ~p, rs

r

}
, αI

rs

r

})
= − i β

2m

(
2pI − ~α · ~pαI rs

r
− αI rs

r
~α · ~p− 1

2

({
~α · ~p, rs

r

}
αI + αI

{
~α · ~p, rs

r

}))
= − i β

2m

(
2pI −

(
~α ·
(
~p
rs

r

)
αI +

rs

r
~α · ~pαI +

rs

r
αI~α · ~p

)
−1

2

(
~α · ~prs

r
αI +

rs

r
~α · ~pαI + αI~α · ~prs

r
+ αI

rs

r
~α · ~p

))
= − i β

2m

(
2pI −

((
p
rs

r

)I
+ i
(
~σ ×

(
~p
rs

r

))I
+
rs

r
{~α · ~p, αI}

)
−1

2

(
{~α · ~p, αI}rs

r
+
rs

r
{~α · ~p, αI}

))
= − i β

2m

(
2pI −

((
pI
rs

r

)
+ 2

rs

r
pI + i

(
~σ ×

(
i
~rrs

r3

))I)

−1

2

(
2pI

rs

r
+ 2

rs

r
pI
))

= − i β

2m

(
2pI −

{
pI ,

rs

r

}
+
rs

r3
(~σ × ~r)I −

{
pI ,

rs

r

})
= − i β

(
pI

m
−
{
pI

m
,
rs

r

}
+

rs

2mr3
(~σ × ~r)I

)
, (9.113)
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then J I1 ,

[S, J I1 ] = − i

2m

[
β~α · ~p− β

2

{
~α · ~p, rs

r

}
, αI(i~k · ~r)− αI rs

r
(i~k · ~r)

]
= − i β

2m

({
~α · ~p, αI(i~k · ~r)

}
−
{
~α · ~p, αI rs

r
(i~k · ~r)

}
−1

2

{{
~α · ~p, rs

r

}
, αI(i~k · ~r)

}
+
((((

((((
(((

((((1

2

{{
~α · ~p, rs

r

}
, αI

rs

r
(i~k · ~r)

})
= − i β

2m

((
i~α · ~pαI~k · ~r + iαI~k · ~r~α · ~p

)
−
(

i~α · ~pαI rs

r
~k · ~r + iαI

rs

r
~k · ~r~α · ~p

)
− i

2

(
~α · ~prs

r
αI~k · ~r +

rs

r
~α · ~pαI~k · ~r + αI~k · ~r~α · ~prs

r
+ αI~k · ~rrs

r
~α · ~p

))
=

β

2m

((
~α · (~p~k · ~r)αI + ~k · ~r~α · ~pαI + αI~k · ~r~α · ~p

)
−
(
~α ·
(
~p~k · ~rrs

r

)
αI + ~k · ~rrs

r
~α · ~pαI + αI

rs

r
~k · ~r~α · ~p

)
−1

2

(
~α ·
(
~p~k · ~r

) rs

r
αI + ~k · ~r~α · ~prs

r
αI +

rs

r
~α ·
(
~p~k · ~r

)
αI

+~k · ~rrs

r
~α · ~pαI + αI~k · ~r~α · ~prs

r
+ αI~k · ~rrs

r
~α · ~p

))
=

β

2m

((
−i~α · ~kαI + 2~k · ~rpI

)
−
(
~α ·
(
~p~k · ~rrs

r

)
αI + ~k · ~rrs

r
~α · ~pαI + ~k · ~rrs

r
αI~α · ~pI

)
−1

2

(
−i~α · ~krs

r
αI − i

rs

r
~α · ~kαI + ~k · ~r

(rs

r
{~α · ~p, αI}+ {~α · ~p, αI}rs

r

)))
=

β

2m

((
(pI~k · ~r)− (~k × ~σ)I + 2~k · ~rpI

)
−
(
pI
rs

r
~k · ~r

)
− i
(
~σ ×

(
~p
rs

r
~k · ~r

))I
−2

rs

r
~k · ~rpI − 1

2

(
−i
rs

r
{~α · ~k, αI}+ 2~k · ~r

{
pI ,

rs

r

}))
=

β

2m

((
{pI , ~k · ~r} − (~k × ~σ)I

)
−
{rs

r
~k · ~r, pI

}
−����

��
��i~k · ~rrs

r3
(~σ × ~r)I

−rs

r
(~σ × ~k)I − 1

2

(
−i2kI + 2~k · ~r

{
pI ,

rs

r

}))
=

β

2m

(
{pI , ~k · ~r} − (~k × ~σ)I − rs

r
~k · ~rpI − pI rs

r
~k · ~r − rs

r
(~σ × ~k)I

−rs

r
pI~k · ~r − ~k · ~rpI rs

r

)
= − i β

(
1

2

{
pI

m
, i~k · ~r

}
− i

2m
(~k × ~σ)I − 1

2

{
i~k · ~r,

{
pI

m
,
rs

r

}}
+

i

2m

rs

r
(~k × ~σ)I

)
, (9.114)
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and finally J I2 ,

[S, J I2 ] = − i

2m

[
β~α · ~p−����

���β

2

{
~α · ~p, rs

r

}
,−1

2
αI(~k · ~r)2 +

1

2
αI
rs

r
(~k · ~r)2

]
=

i β

4m

({
~α · ~p, αI(~k · ~r)2

}
−
���

���
���

��{
~α · ~p, αI rs

r
(~k · ~r)2

})
=

i β

4m

(
~α · (~p(~k · ~r)2)αI + (~k · ~r)2~α · ~pαI + (~k · ~r)2αI~α · ~p

)
= − i β

4m

(
(pI(~k · ~r)2)− i((~p(~k · ~r)2)× ~σ)I + 2(~k · ~r)2pI

)
=

i β

4m

(
{pI , (~k · ~r)2} − 2~k · ~r(~k × ~σ)I

)
= − i β

(
−1

4

{
(~k · ~r)2,

pI

m

}
+

1

2m
(~k · ~r)(~k × ~σ)I

)
. (9.115)

We can now proceed to the double commutators, again starting with J I0 ,

[S, [S, J I0 ]] =
i

2m

[
β~α · ~p− β

2

{
~α · ~p, rs

r

}
, iβ

(
pI

m
−
{
pI

m
,
rs

r

}
+
���

���
��rs

2mr3
(~σ × ~r)I

)]
=

1

2m

({
~α · ~p, p

I

m

}
−
{
~α · ~p,

{
pI

m
,
rs

r

}}
− 1

2

{{
~α · ~p, rs

r

}
,
pI

m

}
+
��

���
���

���
��

��
1

2

{{
~α · ~p, rs

r

}
,

{
pI

m
,
rs

r

}})

= ~α · ~p p
I

m2
− 1

2

{
~α · ~p,

{
pI

m2
,
rs

r

}}
− 1

4

{{
~α · ~p, rs

r

}
,
pI

m2

}
, (9.116)
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followed by J I1 ,

[S, [S, JI1 ]] = − i

2m

[
β~α · ~p− β

2

{
~α · ~p, rs

r

}
,−iβ

(
1

2

{
pI

m
, i~k · ~r

}
− i(~k × ~σ)I

2m

−
��

���
���

���1

2

{
i~k · ~r,

{
pI

m
,
rs

r

}}
+
�
��

�
��irs(~k × ~σ)I

2mr

)]

=
1

2m

(
1

2

{
~α · ~p,

{
pI

m
, i~k · ~r

}}
−

{
~α · ~p, i(~k × ~σ)I

2m

}

−
((((

((((
((((

((((1

4

{{
~α · ~p, rs

r

}
,

{
pI

m
, i~k · ~r

}}
+

1

2

{{
~α · ~p, rs

r

}
,
i(~k × ~σ)I

2m

})

=
1

4

{
~α · ~p,

{
pI

m2
, i~k · ~r

}}
−

{
~α · ~p, i(~k × ~σ)I

4m2

}

+

{{
~α · ~p, rs

r

}
,
i(~k × ~σ)I

8m2

}
, (9.117)

and finally J I2 ,

[S, [S, J I2 ]] = − i

2m

[
β~α · ~p−����

���β

2

{
~α · ~p, rs

r

}
,

−i β

(
−1

4

{
(~k · ~r)2,

pI

m

}
+

1

2m
(~k · ~r)(~k × ~σ)I

)]
=

1

2m

(
−1

4

{
~α · ~p,

{
(~k · ~r)2,

pI

m

}}
+

{
~α · ~p, (~k · ~r)(~k × ~σ)I

2m

})
. (9.118)

These results enable us to press forward to the triple commutators, as before, we

begin with J I0 ,

[S, [S, [S, J I0 ]]] = − i

2m

[
β~α · ~p−����

���β

2

{
~α · ~p, rs

r

}
, ~α · ~p p

I

m2

−
���

���
���

��1

2

{
~α · ~p,

{
pI

m2
,
rs

r

}}
−
���

���
���

��1

4

{{
~α · ~p, rs

r

}
,
pI

m2

}]
= − i β

2m

{
~α · ~p, ~α · ~p p

I

m3

}
= −i β

~p 2pI

m3
. (9.119)
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From here it is clear that the remainder of the triple commutators will yield results

of higher order then we are interested in. As such we can then move on to the next

rotation. Recall that for the Dirac–Einstein–Schwarzschild Hamiltonian (9.67)

O′ = − 1

3m2

(
~α · ~p− 1

2

{
~α · ~p, rs

r

})3

+
1

2

{
~α · ~p−����

���1

2

{
~α · ~p, rs

r

}
,
rs

2r

}
≈ − ~p 2~α · ~p

3m2
+

1

4

{
~α · ~p, rs

r

}
. (9.120)

Furthermore, we know that

(J I)′ = J I0 + J I1 + J I2 + i[S, J I ]− 1

2
[S, [S, J I ]]− i

6
[S, [S, [S, J I ]]] + . . . , (9.121)

Thus by looking at the results that have already been obtained as well as the im-

pending rotation, it becomes clear that the only terms that will be of low enough

order when rotated are J I0 and J I1 . We thus begin the second iteration of rotations,

[S ′, J I0 ] = − i

2m

[
−β ~p 2

3m2
~α · ~p+

β

4

{
~α · ~p, rs

r

}
, αI − αI rs

r

]
= − i β

2m

(
− ~p 2

3m2
{~α · ~p, αI}+

���
���

���
�~p 2

3m2

{
~α · ~p, αI rs

r

}
+

1

4

{{
~α · ~p, rs

r

}
, αI
}

−
���

���
���

���1

4

{{
~α · ~p, rs

r

}
, αI

rs

r

})
= − i β

2m

(
−2~p 2pI

3m2
+

1

2

{
pI ,

rs

r

})
= −i β

(
−~p

2pI

3m3
+

1

4

{
pI

m
,
rs

r

})
, (9.122)

and the final rotation needed for this order,

[S ′, J I1 ] = − i

2m

[
−
�
��

�
��

β
~p 2

3m2
~α · ~p +

β

4

{
~α · ~p, rs

r

}
, αI(i~k · ~r)−����

��αI
rs

r
(i~k · ~r)

]
=

β

2m

(
1

4

{{
~α · ~p, rs

r

}
, αI~k · ~r

})
=

β

8m

(
~α · ~prs

r
αI~k · ~r +

rs

r
~α · ~pαI~k · ~r + αI~k · ~r~α · ~prs

r
+ αI~k · ~rrs

r
~α · ~p

)
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=
β

8m

(
~α ·
(
~p
rs

r
~k · ~r

)
αI +

rs

r
~k · ~r~α · ~pαI +

rs

r
~α ·
(
~p~k · ~r

)
αI +

rs

r
~k · ~r~α · ~pαI

+~k · ~rαI~α ·
(
~p
rs

r

)
+
rs

r
~k · ~rαI~α · ~p+

rs

r
~k · ~rαI~α · ~p

)
=

β

8m

(
2
rs

r
~k · ~r

{
~α · ~p, αI

}
+
(
pI
rs

r
~k · ~r

)
+ i
(
~σ ×

(
~p
rs

r
~k · ~r

))I
+
rs

r

(
pI~k · ~r

)
+ i

rs

r

(
~σ ×

(
~p~k · ~r

))I
+ ~k · ~r

(
pI
rs

r

)
− i~k · ~r

(
~σ ×

(
~p
rs

r

))I)
=

β

8m

(
4
rs

r
~k · ~rpI + 2

(
pI
rs

r
~k · ~r

)
+ i

rs

r
(~σ × (~p~k · ~r))I +

���
���

���
��

i~k · ~r
(
~σ ×

(
~p
rs

r

))I
+i
rs

r
(~σ × (~p~k · ~r))I −

��
���

���
���

i~k · ~r
(
~σ ×

(
~p
rs

r

))I)
=

β

8m

(
2
{rs

r
~k · ~r, pI

}
+ 2

rs

r
(~σ × ~k)I

)
= − i β

(
1

4

{
rs

r
(i~k · ~r), p

I

m

}
− irs

4r

(~k × ~σ)I

m

)
. (9.123)

To finalize the calculation of the current, we throw out the odd terms, set β = 1 and

add all the remaining terms with the appropriate prefactors. For convenience these

are listed below;

i[S, J I0 ] =
pI

m
−
{
pI

m
,
rs

r

}
+
rs

2r

(~σ × ~r)I

mr2
, (9.124a)

i[S, J I1 ] =
1

2

{
pI

m
, i~k · ~r

}
− i

2m
(~k × ~σ)I

− 1

2

{
i~k · ~r,

{
pI

m
,
rs

r

}}
+

irs

2r

(~k × ~σ)I

m
, (9.124b)

i[S, J I2 ] = − 1

4

{
(~k · ~r)2,

pI

m

}
+

(~k · ~r)
2m

(~k × ~σ)I , (9.124c)

− i

6
[S, [S, [S, J I0 ]]] = − pI~p 2

6m3
, (9.124d)

i[S ′, J I0 ] = − pI~p 2

3m3
+

1

4

{
pI

m
,
rs

r

}
, (9.124e)

i[S ′, J I1 ] =
1

4

{
rs

r
(i~k · ~r), p

I

m

}
− irs

4r

(~k × ~σ)I

m
. (9.124f)
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Putting this all together we find

J IFW =
pI

m
− pI~p 2

2m3
− i

2m
(~k × ~σ)I +

1

2

{
pI

m
, i~k · ~r

}
− 1

4

{
(~k · ~r)2,

pI

m

}
+

(~k · ~r)
2m

(~k × ~σ)I

− 3

4

{
pI

m
,
rs

r

}
+
rs

2r

(~σ × ~r)I

mr2
− 1

2

{
i~k · ~r,

{
pI

m
,
rs

r

}}
+

irs

4r

(~k × ~σ)I

m
+

1

4

{
rs

r
(i~k · ~r), p

I

m

}
. (9.125)

In addition to the terms that are already known to the relativistic physics community,

which take up the first two lines, we have a gravitational correction to the dipole

coupling, which is the first term of the third line. There is also a gravitational

correction to the quadrupole coupling (the third term of the third line and the final

term of the fourth line). The other two terms, i.e., the second term of the third

line and first term of the fourth line, are a gravitational correction to the magnetic

coupling. These terms may be used to calculate the relativistic affects of photon

emission of a particle in a gravitational potential.
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10. CHIRAL FOLDY–WOUTHUYSEN TRANSFORMATION

10.1. ORIENTATION

In [24] a new “Foldy–Wouthuysen” transformation is discussed, which rather

then using an iterative process, this proposed method uses an exact transforma-

tion, with an Taylor series approximation of a square root at the end, profiting

from a deceptively innocuous decoupling of “even” and “odd” terms in the origi-

nal Hamiltonian, based on “seductive” properties of the Dirac algebra under certain

parity-breaking transformations. This transformation was investigated recently in

reference [88]. Here, and through the rest of the chapter, we elaborate on the dis-

cussion, and provide greater detail with regards to the derivations. The proposed

method utilizes the rotation

U = U2U1 (10.1)

where

U1 =
1√
2

(1 + J Λ) U2 =
1√
2

(1 + βJ) , (10.2)

and

Λ =
H√
H2

, J = i γ5 β , (10.3)

where H is the Hamiltonian that we are trying to transform. For this transformation

to work, it is essential that

{H, J} = 0 , (10.4)
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in which case J H2 = H2 J , from which it follows J
√
H2 =

√
H2 J . If we use these

proposed rotations on a Hamiltonian where {H, J} 6= 0, then the following proofs

do not hold, and we are no longer working with a unitary transform. On that note,

we can show that provided the discussed condition is met, then the operator U is

unitary,

U U+ =U2 U1 U
+
1 U+

2 = U2
1√
2

(1 + J Λ)

(
1√
2

(1 + J Λ)

)+

U+
2

=U2
1

2
(1 + JΛ)(1 + ΛJ) =

1

2
U2(1 + JΛ + ΛJ + JΛΛJ)U+

2

=
1

2
U2(2 + JΛ + ΛJ)U+

2 =
1

4
(1 + βJ)(2 + JΛ + ΛJ)(1 + Jβ)

=
1

4
(2 + 2βJ + JΛ + βΛ + ΛJ + βJΛJ)(1 + Jβ)

=
1

4
(2 + 2βJ + JΛ + βΛ + ΛJ + βJΛJ + 2Jβ + 2βJJβ

+ JΛJβ + βΛJβ + ΛJJβ + βJΛJJβ) . (10.5)

Let us now take note of a few properties

J2 =1 , β2 = 1 , Jβ = −βJ , JΛ = −ΛJ , (10.6)

in which case (10.5) becomes

UU+ =
1

4
(2 + 2βJ + JΛ + βΛ− JΛ− βΛ− 2βJ + 2− Λβ + βΛJβ

+ Λβ − βΛJβ)

=
1

4
(4) = 1 . (10.7)
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When this rotation is applied to the Hamiltonian H, which was used to construct the

rotation, we find

U H U+ =U2U1H U+
1 U

+
2 =

1

2
U2(1 + JΛ)H(1 + ΛJ)U+

2

=
1

2
U2(H + JΛH +HΛJ + JΛHΛJ)U+

2 =
1

2
U2(H + 2JΛH −H)U+

2

=U2 JΛH U+
2 =

1

2
(1 + βJ)JΛH(1 + Jβ)

=
1

2
(JΛH + βΛH + JΛHJβ + βΛHJβ)

=
1

2
(JΛH + βΛH + ΛHβ − βΛHβJ)

=
1

2
(
√
H2 + β

√
H2β)β +

1

2
(
√
H2 − β

√
H2β)J

=
[√

H2
]

even
β +

{√
H2
}

odd
J . (10.8)

Given an operator A we can find its even and odd parts, in spinor space, using the

definitions

[A]even ≡
1

2
(A+ βAβ) , {A}odd ≡

1

2
(A− βAβ) , (10.9)

thus in the “chiral” rotation is performed by dividing the operator
√
H2 into its even

and odd components in spinor space, and multiplying said components by either β

or J (respectively). We note that J is odd in spinor space, meaning that the rotated

Hamiltonian give in (10.8) is even. To separate the even and odd parts of
√
H2, one

must expand the operator in terms of momenta. This seems like a simple enough

procedure, and it could go a long way in reducing the complexity of the standard

Foldy–Wouthuysen transformation. For the rest of the chapter we shall apply the

chiral transformation to the Dirac Hamiltonians which we investigated in chapter 9.

To somewhat simplify the calculations, we will only keep terms up to the third order

in momenta, except for the case of the free particle.
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10.2. FREE PARTICLE

Recall that the Dirac Hamiltonian for a free particle is given as

HF = ~α · ~p+ βm . (10.10)

Then

H2
F =(~α · ~p+ βm)(~α · ~p+ βm) = ~α · ~p ~α · ~p+ ~α · ~pβm+ βm~α · ~p+m2 = ~p 2 +m2 ,

(10.11)

and √
H2

F ≈ m+
~p 2

2m
− ~p 4

8m3
. (10.12)

From which we calculate

[√
H2

F

]
even

β = β

(
m+

~p 2

2m

)
, (10.13)

and {√
H2

F

}
odd

J = 0 . (10.14)

Thus, expanded to the fourth order in momenta,

H
(CFW)
F = β

(
m+

~p 2

2m
− ~p 4

8m3

)
, (10.15)

where we used the superscript “(CFW)” indicate that the result was derived using

the chiral Foldy–Wouthuysen transform. It is important that this not be confused

with the superscript “(FW),” which was used to indicate that the result was ob-

tained using the standard Foldy–Wouthuysen transform. This matches the result for

the free particle using the standard Foldy–Wouthuysen transformation (see (9.15)),
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and it seems as though performing the transformation is much easier. The chiral

method might have potential, but lets see how it works with the remainder of our

Hamiltonians.

10.3. DIRAC-COULOMB HAMILTONIAN

To further investigate this method we look at how the rotation effects the

Dirac-Coulomb Hamiltonian. We recall that the Hamiltonian is

HDC = ~α · ~p+ βm− Zα

r
. (10.16)

At this point we notice that J HDC 6= −HDC J , and (10.4) is violated. Strictly speak-

ing, the Dirac–Coulomb Hamiltonian does not fulfill a necessary condition for the

application of the chiral transform. Despite this shortcoming, we apply the chiral

Foldy–Wouthuysen transform to HDC, encouraged by the fact that there are cases in

physics and mathematics where necessary conditions for the application of a math-

ematical method are not fulfilled, yet consistent results are attained. For example,

physically consistent results can be attained using asymptotic expansions in a non–

asymptotic regime when suitable resummation prescriptions are utilized [112–114].

With the pitfalls in mind, we proceed with the transformation, first squaring

the Hamiltonian,

H2
DC = m2 + ~p 2 − Zα ~α ·

[
~p,

1

r

]
− 2

Zα

r
~α · ~p− 2βm

Zα

r
+
Z2α2

r2
, (10.17)

and then expand the square root,

√
H2

DC ≈ m+
~p 2

2m
− 1

2m
Zα~α ·

[
~p,

1

r

]
− Zα

mr
~α · ~p− βZα

r
+
�
�
��Z2α2

2mr2
, (10.18)
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Where we ignore the final term as it is of the fourth order in momenta. We then find

[√
H2

DC

]
even

β = β

(
m+

~p 2

2m

)
− Zα

r
+ β

Z2α2

2mr2
, (10.19a){√

H2
DC

}
odd

J = +
Zα

2mr3
β~Σ · ~r − i

Zα

mr
β~Σ · ~p . (10.19b)

Thus

H
(CFW)
DC = β

(
m+

~p 2

2m

)
− Zα

r
+ β

Z2α2

2mr2
+

Zα

2mr3
β~Σ · ~r − i

Zα

mr
β~Σ · ~p , (10.20)

which bears little resemblance to our result in (9.33), even when accounting for the

higher order of the previous calculation. One further observes that there are two

major issues with this result, beyond the fact that the result differs from the well

known result. The first is that the second to last term is a pseudo–scalar, i.e., a

pseudo–vector dotted with a vector, which violates parity, despite the fact that the

original Hamiltonian is parity invariant. Secondly, the final term is not Hermitian.

However, due to the already stated fact that the starting Hamiltonian HDC does not

fulfill the conditions needed to perform the chiral transformation. As a result the

transformation used was not unitary. We cannot rule out the effectiveness of this

transformation on a smaller class of Hamiltonians. This is contrary to the standard

Foldy–Wouthuysen transformation which has a much broader applicability. The fail-

ure of the chiral method on the paradigmatic Dirac–Coulomb Hamiltonian indicates

severe limits on the range of applicability of the method for practically interesting

and phenomenologically important physical systems.
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10.4. DIRAC HAMILTONIAN WITH A SCALAR POTENTIAL

The Dirac Hamiltonian with a scalar potential (discussed above in chapter 9.4,

see also [88]) is given as

HSP = ~α · ~p+ β

(
m− λ

r

)
. (10.21)

Then,

H2
SP = ~p 2 +

(
m+

λ

r

)2

+ ~α · ~pβ
(
m− λ

r

)
+ β

(
m− λ

r

)
~α · ~p

= ~p 2 +m2 − 2m
λ

r
+
�
�
�λ2

r2
+ β

(
~α · ~pλ

r
− λ

r
~α · ~p

)
= ~p 2 +m2 + β

[
~α · ~p, λ

r

]
− 2m

λ

r
. (10.22)

We can then expand the square root of the square,

√
H2

SP ≈m+
~p 2

2m
+
λβ

2m

[
~α · ~p, 1

r

]
− λ

r
= m+

~p 2

2m
+

iλβ

2mr3
~α · ~r − λ

r
. (10.23)

Then the even and odd parts are

[√
H2

SP

]
even

β = β

(
m+

~p 2

2m
− λ

r

)
, (10.24){√

H2
SP

}
odd

J =
iλβ

2mr3
~α · ~rJ = − λ

2m

~Σ · ~r
r3

, (10.25)

and the transformed Hamiltonian is

H
(CFW)
SP = β

(
m+

~p 2

2m
− λ

r

)
− λ

2m

~Σ · ~r
r3

. (10.26)

Again we find that there are a number of differences when comparing the results from

the standard transformation (see (9.48)) with those of the chiral method. Unlike
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the Dirac–Coulomb case, the initial Hamiltonian, HSP, does meet the requirements

imposed by the chiral transform, and the resulting Hamiltonian is indeed Hermitian.

However, we again find that the last term breaks parity.

10.5. DIRAC HAMILTONIAN WITH A SCALAR CONFINING PO-
TENTIAL

The Dirac Hamiltonian with a scalar confining potential (as discussed in chap-

ter 9.5 and [88,107,108]) is given as

HLC = ~α · ~p+ β
(
m+ α2m2r

)
. (10.27)

Then

H2
LC = ~p 2 + (m+ α2m2r)2 + ~α · ~p β(m+ α2m2r) + β(m+ α2m2r) ~α · ~p (10.28)

= ~p 2 +m2 + 2α2m3r + α4m4r2 + β
(
−~α · ~pα2m2r + α2m2r ~α · ~p

)
(10.29)

= m2 + ~p 2 + 2α2m3r + α4m4r2 − βα2m2 [~α · ~p, r] . (10.30)

From here we can find the expansion of the square root, expanded about small mo-

menta

√
H2

LC ≈ m+
~p 2

2m
+ α2m2r +

1

2
α4m3r2 − βα2m

2
[~α · ~p, r] (10.31)

= m+
~p 2

2m
+ α2m2r +

1

2
α4m3r2 − βα2m

2
~α ·
(
− i~r

r

)
(10.32)

= m+
~p 2

2m
+ α2m2r +

1

2
α4m3r2 +

iα2mβ

2 r
~α · ~r . (10.33)
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Then the even and odd (in spinor space) parts are

[√
H2

LC

]
even

β = β

(
m+

~p 2

2m
+ α2m2r +

1

2
α4m3r2

)
, (10.34){√

H2
LC

}
odd

J =
iα2mβ

2 r
~α · ~r J = −α

2m

2 r
~Σ · ~r . (10.35)

Thus,

H
(CFW)
LC = β

(
m+

~p 2

2m
+ α2m2r +

1

2
α4m3r2

)
− α2m

2 r
~Σ · ~r . (10.36)

Again, while there are some similarities, we find that when this transformed Hamil-

tonian is compared to its counterpart, found using the standard transformation

(see (9.58)), there are obvious differences. Additionally, we again find that the fi-

nal term is a parity breaking term.

10.6. DIRAC–EINSTEIN–SCHWARZSCHILD HAMILTONIAN

The chiral Fold–Wouthuysen transformation has been previously performed

in [94]. However the formalism was somewhat different, and it is advantageous

to perform the calculation using our formalism. Recall that the Dirac–Einstein–

Schwarzschild Hamiltonian was previously derived in (8.84) as

HDS =
1

2

{
~α · ~p,

(
1− rs

r

)}
+ β m

(
1− rs

2r

)
. (10.37)

However, the calculation is somewhat easier to perform when written in a more

compact form, i.e.,

HDS = β mw +
1

2
{~α · ~p,F} , (10.38)

w = 1− rs

2r
, v = 1 +

rs

2r
, F =

w

v
≈ 1− rs

r
. (10.39)
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We begin by first squaring the Hamiltonian,

H2
DS =

(
βmw +

1

2
{~α · ~p,F}

)(
βmw +

1

2
{~α · ~p,F}

)
= (βmw) (βmw) + (βmw)

(
1

2
{~α · ~p,F}

)
+

(
1

2
{~α · ~p,F}

)
(βmw)

+

(
1

2
{~α · ~p,F}

)(
1

2
{~α · ~p,F}

)
=m2w2 +

m

2
(βw {~α · ~p,F}+ {~α · ~p,F} βw)

+
1

4
(~α · ~pF + F~α · ~p) (~α · ~pF + F~α · ~p)

=m2w2 +
m

2
{βw, {~α · p,F}}+

1

4

(
−i ~α · ~f + 2F ~α · ~p

)(
−i ~α · ~f + 2F ~α · ~p

)
=m2w2 +

m

2
{βw, {~α · p,F}}

+
1

4

(
−f 2 + 2F(~∇ · ~f) + 4F~Σ · ( ~F × ~p) + F~p 2F

)
=m2w2 +

m

2
{βw, {~α · p,F}}+

1

2
F(~∇ · ~f) + F~Σ · (~f × ~p) + F~p 2F − 1

4
f 2 .

(10.40)

We now focus on the anticommutator term. i.e.,

{βw, {~α · ~p,F}} ={βw, 2F~α · ~p} −����
���

i{βw, ~α · ~f} = βw(2F~α · ~p) + (2F~α · ~p)βw

= 2βwF~α · ~p− 2βF~α · ~pw = 2βF(w~α · ~p− w~α · ~p− ~α · (~pw))

= 2iFβ~α · ~φ = −2F~Σ · iγ5β~φ = −2F~Σ · J~φ . (10.41)

Note that we have been using the definitions

~f =~∇F , ~φ = ~∇w . (10.42)

Plugging our result for the double anticommutator into our expression for H2
DS

H2
DS = m2w2 + F~p 2F +

1

2
F(~∇ · ~f)− 1

4
f 2 + F~Σ · ([~f × ~p]− Jm~φ) . (10.43)
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From which we calculate

√
H2

DS ≈mw +
1

4m
(v−1~p 2F + F~p 2v−1) +

1

2mv
(~∇ · ~f)

− 1

8mw
f 2 +

1

4m
~Σ · ({v−1, [~f × ~p]})− 2Jv−1m~φ) , (10.44)

where we have used the fact that w−1F = v−1. The only term in this equation that

doesn’t commute with β is J , which anticommutes with β. As such

[√
H2

DS

]
even

β =β

(
mw +

1

4m
(v−1~p 2F + F~p 2v−1) +

1

2mv
(~∇ · ~f)

− 1

8mw
f 2 +

1

4m
~Σ · ({v−1, [~f × ~p]})

)
, (10.45)

and {√
H2

DS

}
odd

J = − 1

2m
~Σ · ~φ v−1 . (10.46)

we can now begin identifying all the terms so that our Hamiltonian can be written

in terms of the Schwarzschild radius. We begin by identifying

~φ =
rs

2r3
~r , ~f =

rs

r3
~r , w−1 ≈ 1 +

rs

2r
= v , v−1 ≈ 1− rs

2r
= w , (10.47)

which we then use to simplify the remaining terms, keeping terms only to the first

order in gravity,

mw ≈m−m rs

2r
, v−1 ~p 2F + F ~p 2 v−1 ≈ 2~p 2 , (10.48a)

v−1(~∇ · ~f) ≈ − ~∇2 rs

r
= 4π rs δ

(3)(~r) , f 2 ≈ 0 , (10.48b)

~Σ · ~φ v−1 ≈ rs

2r3
~Σ · ~r , ~Σ · (v−1[~f × ~p ] + [~f × ~p ]v−1) ≈ 2

rs

r3
~Σ · ~L . (10.48c)
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Putting this all together, we obtain the result

H
(CFW)
DS = β

(
m+

~p 2

2m

)
− βmrs

2r
+ β

2π rs

m
δ(3)(~r) + β

rs

2m

~Σ · ~L
r3
− rs

4m

~Σ · ~r
r3

. (10.49)

Yet again we find that the result obtained by the chiral transform differs significantly

from that obtained using the standard method (see equation (9.76)). While the chiral

result does contain similar terms, including the terms for the free particle and the

gravitational potential, the prefactors for the gravitational zitterbewegung term and

the Fokker precession do not match. Furthermore, the particle–antiparticle symmetry

which exists in the standard result, ensuring that both particles and antiparticles

interact with gravity in the same way, is broken by the final term. Additionally, as

we have seen before, the final term breaks parity.

10.7. DIRAC HAMILTONIAN IN A ROTATING NON-INERTIAL REF-
ERENCE FRAME

We will now use the chiral Foldy–Wouthuysen transformation on the Dirac

Hamiltonian in the non-inertial reference frame. Recall that the Hamiltonian is given

by (see (8.90)),

HNF = (1 + ~a · ~r) β m+
1

2
{1 + ~a · ~r, ~α · ~p} − ~ω ·

(
~L+

1

2
~Σ

)
= β m+ β m~a · ~r + ~α · ~p+

1

2
{~α · ~p,~a · ~r} − ~ω ·

(
~L+

1

2
~Σ

)
. (10.50)

As usual we begin the chiral transformation by first squaring the Hamiltonian. As

with the traditional Foldy–Wouthuysen transformation, we are only going to keep

the acceleration and angular rotation frequency (~a and ~ω) to the first order. The

canceled out terms are of high enough order that we can approximate them to be
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zero.

H2
NF = β m

(
β m+ β m~a · ~r + ~α · ~p+

1

2
{~α · ~p,~a · ~r} − ~ω ·

(
~L+

1

2
~Σ

))
+ β m~a · ~r

(
β m+���

��β m~a · ~r + ~α · ~p+���
���

��1

2
{~α · ~p,~a · ~r} −

���
���

��
~ω ·
(
~L+

1

2
~Σ

))
+ ~α · ~p

(
β m+ β m~a · ~r + ~α · ~p+

1

2
{~α · ~p,~a · ~r} − ~ω ·

(
~L+

1

2
~Σ

))
+

1

2
{~α · ~p,~a · ~r}

(
β m+���

��β m~a · ~r + ~α · ~p+���
���

��1

2
{~α · ~p,~a · ~r} −

���
���

��
~ω ·
(
~L+

1

2
~Σ

))
− ~ω ·

(
~L+

1

2
~Σ

)(
β m+���

��βm~a · ~r + ~α · ~p+���
��

���1

2
{~α · ~p,~a · ~r} −

���
���

��
~ω ·
(
~L+

1

2
~Σ

))
=m2 +m2~a · ~r +���

��β m ~α · ~p +
���

���
���β m

2
{~α · ~p,~a · ~r} − β m~ω ·

(
~L+

1

2
~Σ

)
+m2~a · ~r + β m~a · ~r ~α · ~p−����

�
β m ~α · ~p − β m ~α · ~p~a · ~r + ~p 2

+
1

2
~α · ~p{~α · ~p,~a · ~r} − ~α · ~p ~ω ·

(
~L+

1

2
~Σ

)
−
���

���
���β m

2
{~α · ~p,~a · ~r}

+
1

2
{~α · ~p,~a · ~r}~α · ~p− β m~ω

(
~L+

1

2
~Σ

)
−
���

���
���

�

~α · ~p ~ω ·
(
~L+

1

2
~Σ

)
=m2 + 2m2~a · ~r − 2 β m~ω ·

(
~L+

1

2
~Σ

)
+ β m[~a · ~r, ~α · ~p]

+ ~p 2 +
1

2
{~α · ~p, {~α · ~p,~a · ~r}} . (10.51)

Using equation (9.98), as well as the result that

[~a · ~r, ~α · ~p] =~a · ~r ~α · ~p− ~α · ~p~a · ~r = i~a · ~α , (10.52)

we can simplify the squared Hamiltonian to,

H2
NF =m2(1 + 2~a · ~r) +

1

2
{1 + 2~a · ~r, ~p 2}+ ~Σ · (~a× ~p) + iβ m ~α · ~a

− 2β m~ω ·
(
~L+

1

2
~Σ

)
. (10.53)
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Then the expanded square root is

√
H2

NF ≈m(1 + ~a · ~r) +
~p 2

2m
+

1

2m
{~p 2,~a · ~r}+

1

2m
~Σ · (~a× ~p)

+
i β

2
~α · ~a− β ~ω ·

(
~L+

1

2
~Σ

)
, (10.54)

from which we find,

[√
H2

NF

]
even

β = β

(
m+

~p 2

2m
+ ~a · ~rm+

1

2m
{~p 2,~a · ~r}+

1

2m
~Σ · (~a× ~p)

)
,

− ~ω ·
(
~L+

1

2
~Σ

)
{√

H2
NF

}
odd

J =

(
i β

2
~α · ~a

)
J = −1

2
~Σ · ~a . (10.55)

Here we used the following the fact that ~α · ~p and ~ω · ~J commute (see (8.89), as well

as the relations

iβ~α · ~aJ = i γ0γ0γIaI i γ5γ0 = −γIγ5γ0aI = −γ5γ0γIaI = −~Σ · ~a , (10.56)

~α · ~p J = γ0γIpI i γ5γ0 = −i γ0γ5γ0γIpI = −i β ~Σ · ~p . (10.57)

Furthermore, [γ5, ~Σ] = 0, from which it follows

[
~Σ · ~p,

(
~L+

1

2
~Σ

)]
= 0 . (10.58)

We then obtain the chiral Foldy–Wouthuysen transformation of the Dirac Hamilto-

nian in a rotating non–inertial reference frame as

H
(CFW)
NF = β

(
m+

~p 2

2m
+m~a · ~r +

1

2m
{~p 2,~a · ~r}+

1

2m
~Σ · (~a× ~p)

)
− 1

2
~Σ · ~a− ~ω ·

(
~L+

1

2
~Σ

)
. (10.59)
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Again we see a number of familiar terms from the standard method (see (9.108)),

however the prefactors tend not to match. Additionally there is a spurious parity

breaking term (~σ · ~a). Surprisingly, the Mashhoon term seems to be unaffected to

this order. Even so it is clear that the chiral transformation has failed, yet again,

to reproduce the result obtained using the standard method (9.108), the latter being

obtained after a more tedious calculation than the deceptively easy chiral method

would otherwise require.

10.8. ON THE VIOLATION OF PARITY

In the Dirac representation, parity is somewhat more complicated than in non–

relativistic quantum mechanics. In the latter, the parity transform is simply P : x→

−x (and consequently ~p → −~p). In the Dirac representation we must additionally

exchange the left–hand and right–hand spinors, i.e., PD : ψ±(x) → ψ∓(−x), and we

can write the Dirac parity operator as PD = γ0P , while stressing that PD is the

Dirac parity operator, and P serves only change the coordinates. Then, for example,

we can show that the free Dirac Hamiltonian is invariant under parity,

PDHFP−1
D = γ0P (~α · ~p+ β m)Pγ0 = γ0 (−~α · ~p+ β m) γ0

= ~α · ~p+ β m = HF . (10.60)

Indeed, using this methodology, we can show that all the initial Hamiltonians, i.e.,

before they are transformed, are parity invariant. Consequently, under a parity trans-

formation Λ→ Λ, and one can trivially show that J → −J , where Λ and J are defined

as in (10.3). We then find that the chiral rotation as defined in (10.1) and (10.2) is
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not parity invariant, i.e.,

U
(P)
1 =PD U1P−1

D =
1√
2

(1− JΛ) 6= U1 ,

U
(P)
2 =PD U2P−1

D =
1√
2

(1− βJ) 6= U2 ,

U (P) =PD U P−1
D = PD U2P−1

D PD U1P−1
D

=U
(P)
2 U

(P)
1 =

1

2
(1− βJ − JΛ + βΛ) 6= U , (10.61)

where we have used the superscript “(P)” to indicate that the operator is transformed

under parity. If we let H ′ = U H U+, where H fulfills (10.4), and is parity invariant,

then

PDH ′P−1
D =PD U H U+P−1

D = PD U P−1
D PDH P

−1
D PD U

+P−1
D

=U (P)H
(
U (P)

)+
= U

(P)
2 U

(P)
1 H

(
U

(P)
1

)+ (
U

(P)
2

)+

=
1

2
U

(P)
2 (1− JΛ)H (1− ΛJ)

(
U

(P)
2

)+

=
1

2
U

(P)
2 (��H − JΛH −HΛJ +((((

(
JΛHΛJ )

(
U

(P)
2

)+

=U
(P)
2 (−JΛH)

(
U

(P)
2

)+

= −1

2
(1− βJ) JΛH (1− Jβ)

= − 1

2
(JΛH − βΛH − JΛHJβ + βΛHJβ)

=
1

2

(√
H2 + β

√
H2β

)
β − 1

2

(√
H2 − β

√
H2β

)
J

=
[√

H2
]

even
β −

{√
H2
}

odd
J . (10.62)

By comparing this result to equation (10.8), it is clear that the only way the chi-

ral transform will result in a parity invariant Hamiltonian H ′, is if
√
H2 does not

contain any odd terms, i.e.,
{√

H2
}

odd
= 0, as is the case for the free Dirac Hamil-

tonian. Rather than being a condition for the implementation of the chiral method,
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this demonstrates how parity may be accidentally conserved. Since the rotations uti-

lized by the proposed chiral Foldy–Wouthuysen transform do not conserve parity, the

physical interpretation of quantum mechanical operators that result are dubious at

best.
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11. (PARTIAL) CONCLUSIONS

The main results of part II of this thesis can be summarized as follows: (i)

We perform the standard Foldy–Wouthuysen transformation on the Dirac–Einstein–

Schwarzschild Hamiltonian (9.76), and find that the interpretation is rather straight-

forward. The mathematical structure is in fact similar to the structure of the trans-

formed Dirac–Coulomb Hamiltonian, which has been extensively studied [22, 23, 60,

88,116–118]. The second term is instantly recognizable as the gravitational potential

(−GmM/r), when the definition of rs is applied. We additionally find a gravitational

version of the zitterbewegung term, as well as a gravitational spin–orbit coupling

term, otherwise known as Fokker precession. The Fokker precession is in full agree-

ment with the classical result [115], which in turn has been confirmed by Gravity

Probe B [119]. Additionally there is particle–antiparticle symmetry, ensuring that

both particles and antiparticles are affected the same by gravity. This is of course

in contrast to the Dirac–Coulomb case, in which fields that attract particles repel

antiparticles. This is to be expected, as particles and antiparticles have opposite

charges, while their masses are identical, both in terms of the gravitational and in-

ertial mass. (ii) We then find the corrections, to the fourth order in momenta, of a

Dirac Hamiltonian with a scalar potential. Both the particles and antiparticles are

attracted to the center (see equation (9.48)). We find a surprising {~p 2, 1/r} term,

despite the similarities to the Dirac–Coulomb Hamiltonian, which is absent of any

such term. (iii) We also calculate the relativistic corrections, again to the fourth

order in momenta, of the Dirac Hamiltonian with a scalar confining potential (9.58).

This transformed Hamiltonian also exhibits an anticommutator as a kinetic correc-

tion, i.e., {~p 2, r}. (iv) We additionally perform the standard transformation on the

Dirac Hamiltonian in a rotating non-inertial frame, finding a compact representation
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up to the fourth order in momenta (9.108), and verify that the Mashhoon term [103]

is unaltered up to the fourth order in momenta. It is also worth noting that as with

the Dirac–Einstein–Schwarzschild Hamiltonian, all three of these Dirac Hamiltoni-

ans, (9.48), (9.58), and (9.108), have particle–antiparticle symmetry, thus both the

particles and antiparticles behave identically in these potentials. (v) Finally we ap-

ply the rotations used to transform the Dirac–Einstein–Schwarzschild Hamiltonian

to the gravitationally coupled transition current (9.125), finding that in addition to

the known corrections there is an additional gravitational kinetic correction, as well

as gravitational corrections to the magnetic coupling.

While the Dirac Hamiltonian in a rotating non-inertial frame is an interest-

ing equation in its own right, it also serves to contrast the rest of the performed

transformations, which otherwise only require two sweeps of the Foldy–Wouthuysen

program, as an example of a more complicated Hamiltonian, requiring three iter-

ations of the standard Foldy–Wouthuysen program for the calculation. This level

of complexity illustrates why there is a desire to find a simpler, and possibly ex-

act, methodology to reveal the relativistic corrections. One such proposal is the

chiral Foldy–Wouthuysen transform [24], which seeks to simplify the procedure by

decoupling the particle and antiparticle degrees of freedom utilizing some deceptively

appealing properties of Dirac algebra. Rather than including the need to iterate the

procedure, it instead seeks to perform the transformation in a single series of well

defined steps, approximating
√
H2 (where H is the Dirac Hamiltonian we wish to

decouple) using a Taylor series expansion about small momenta. While the proce-

dure seems promising, quickly, if accidentally, solving for the free Dirac Hamiltonian,

it falls apart when applied to other Hamiltonians. Chief among these failures is the

Dirac–Coulomb Hamiltonian, which does not meet the requirements imposed by the

chiral method. It is not a good sign when a proposed procedure fails to work on one

of the most important examples of a generalized Dirac Hamiltonian.
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Setting aside the failings of the chiral transform, in terms of its limited ap-

plicability, the procedure fails to produce results in agreement with a number of

Hamiltonians transformed via the standard method. This is somewhat surprising, as

one would surmise that given a Hamiltonian which fulfills the condition {H, J} = 0,

the resulting transformation is unitary, as is that of the standard Foldy–Wouthuysen

transform. If both transforms are unitary, why then are we getting conflicting results?

The answer lies in the definition of the chiral rotation U (10.1), which breaks parity

and alters one of the fundamental symmetries of the Hamiltonian it is applied to. As

a simple example of a unitary transform that breaks parity, let us consider the uni-

tary transformation U = exp(i ~A ·~r), where ~A is a constant vector, applied to the free

Schrödinger Hamiltonian H = ~p 2/(2m). Then H ′ = U H U+ = (~p− ~A)2/(2m), which

has a term proportional to ~A · ~p, which breaks parity. Thus a parity breaking term is

introduced by a unitary transformation which does not conserve parity. Furthermore,

as shown in [88], the chiral method also changes the physical interpretation of the

spin matrix ~Σ. Thus, despite the elegance and simplicity of the chiral method, the

more complicated, and more widely applicable, standard Foldy–Wouthuysen trans-

formation is the more reliable choice when finding the relativistic corrections resulting

from generalized Dirac Hamiltonians.
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Part III

Pseudo–Hermiticity and

Ultrarelativistic Decoupling
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12. INTRODUCTION

In the current part of the thesis we strive to unify the approaches of parts I

and II, by answering the question: Are there pseudo–Hermitian variants of Dirac–

Hamiltonians whose eigenvalues can be approximated using a decoupling transform?

As it turns out, superluminal particles [25] constitute a class of pseudo–Hermitian

Dirac particles [43]. Unfortunately, the Foldy–Wouthuysen program, which we used

to great effect in chapter 9, is used to find the nonrelativistic limit, and is therefore

unsuited to deal with tachyons (superluminal particles). Inspired by the Foldy–

Wouthuysen transformation, we develop an expansion which follows a fundamentally

different paradigm, in which the particles and antiparticles are decoupled in the

ultrarelativistic limit [93]. While the Foldy–Wouthuysen transformation is performed

in the limit where the mass term dominates the kinetic and potential terms, the

ultrarelativistic decoupling transform is performed in the limit where the kinetic

term dominates. Such a transform is best described in the helicity basis (see chapter

23 of [121]). This is especially clear when considering the massless limit for the cases

of the free Dirac Hamiltonians (both sub- and superluminal), which approach the

Weyl equation (chapter 2.4.2 of [60]), which is known to describe spin-1/2 particles

traveling exactly at the speed of light.

As illustrated in figure 12.1 neither sub- nor superluminal particles can break

the light–speed barrier, i.e., tachyons are forbidden from slowing down to, or below,

c, as infinite energy would be required to slow down to c. One might be inclined to

wonder if the usual Foldy–Wouthuysen program might be used to find the corrections

to the “low energy limit” (which would correspond to the nonrelativistic limit of a

tardyon) of a tachyon. Again, by considering figure 12.1, we realize that as the

energy of a superluminal particle goes to zero, its speed goes to infinity. Thus the
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Figure 12.1: Here we present a plot of the energy vs. speed of a free relativistic
particle, for both the sub- (to the left of c) and superluminal (to the right of c) case.
When v < c we use the equation E = mc2/

√
1− (v/c)2, while when v > c we use

the equation E = mc2/
√

(v/c)2 − 1. In both cases, as the speed of the particle
approaches the speed of light (c), its energy goes to infinity, indicating that there is
a speed barrier at c which the particle cannot cross. Furthermore, we note that for
the superluminal case, as the energy approaches zero, the speed goes to infinity.

“low energy” limit is manifestly non–physical. Thus we are left to consider how to

decouple the particle and antiparticle degrees of freedom in the “high energy,” i.e.,

ultrarelativistic, limit.

This part is organized as follows: In chapter 13 we briefly discuss the free

tachyonic Dirac equation, and in chapter 14 we investigate the pseudo–Hermitian

character of said particles. In chapter 15 we generalize the tachyonic Dirac equa-

tion to include curved space, specifically the tachyonic Dirac equation coupled to a

gravitational center. In chapter 16 we draw inspiration from our work with the Foldy–

Wouthuysen program and construct an exact ultrarelativistic decoupling transform

for the free tardyon and tachyon. Finally, in chapter 17 we investigate the perturba-

tive version of the ultrarelativistic decoupling transformation, and find a somewhat

surprising result concerning tachyons in curved space. Lastly, some conclusions are

drawn in chapter 18.
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13. FREE TACHYONIC DIRAC EQUATION

While we are working with units such that c = 1, for the first part of this chap-

ter we write c into our equations explicitly, as it will serve to enhance the discussion.

As discussed in appendix C, the Dirac equation is a result of the liniarization (with

respect to the time derivative) of the Klein–Gordon equation. The Klein–Gordon

equation is arrived at using the identification that, when moving from the classical

to the quantum level, E → i∂t and ~p → −i~∇. This is of course contingent on the

dispersion relation E2 = c2~p 2 + c4m2
1. Furthermore, this equation is Lorentz invari-

ant, meaning that we can perform a Lorentz boost such that the speed of the particle

exceeds the speed of light (v > c), and retain the same dispersion relation. On the

surface, it would appear that there is no discernible difference between the disper-

sion relation for sub– and superluminal particles, however upon closer examination

it becomes clear that there is in fact a difference.

On the classical level, the relativistic spatial momentum is given as

~p =
m1 ~v√
1− v2

c2

. (13.1)

We then plug this into our dispersion relation to obtain

E2 = c2 m
2
1 v

2

1− v2

c2

+ c4m1 = c4m2
1

(
v2

c2

1− v2

c2

+ 1

)
=

m2
1 c

4

1−
(
v
c

)2 , (13.2)

giving us the equation energy:

E =
m1c

2√
1−

(
v
c

)2
. (13.3)



162

This result applies to both tardyons and tachyons. In the tardyonic case (v < c) the

denominator is real, and the implicit assumption that the mass is real holds. On the

other hand, for the tachyonic case (v > c), we find that the denominator is imaginary.

This creates a bit of a problem, as we require that the energy is real valued. The

only way to resolve this discrepancy is the relation that for a superluminal object,

the mass term is imaginary, i.e.,

m1 = im (13.4)

where m is real. With this realization in hand, one method of obtaining the superlu-

minal Dirac equation is to simply recall the subluminal Dirac Hamiltonian (C.34),

H = ~α · ~p+ β m ,

and have m→ im, yielding

H1 = ~α · ~p+ i β m , (13.5)

which results in a perfectly acceptable result. However, this is not the only possible

result. Instead, let us consider the dispersion relation in the context of (13.4), i.e.,

the tachyonic dispersion relation is

E2 = ~p 2 −m2 . (13.6)

By taking the square root of (13.6) we arrive at the Lorentz invariant equation

E =
√
~p 2 −m2 . (13.7)



163

When we shift to the quantum level, equation (13.6) becomes

(
∂2
t − ~∇2 −m2

)
φ(t, ~r) = 0 , (13.8)

the superluminal Klein–Gordon equation, which can be rewritten as

−∂2
t φ(t, ~r) =

(
−~∇ 2 −m2

)
φ(t, ~r) =

(
~p 2 −m2

)
φ(t, ~r) , (13.9)

which we can interpret as

H2
i = ~p 2 −m2 . (13.10)

It is simple to check that the Dirac Hamiltonian given in (13.5) satisfies this definition,

H2
1 = (~α · ~p− i β m) (~α · ~p− i β m) = (~α · ~p)2 − im {~α, β} · ~p+ i2 β2m2

= ~p 2 −m2 = H2
i , (13.11)

where we used the identities (~α · ~p)2 = ~p 2, {αI , β} = 0 and β2 = 0 (see appendix C).

We also find that the Dirac Hamiltonian

H2 = ~α · ~p+ β γ5m, (13.12)

satisfies (13.10) as well,

H2
2 =

(
~α · ~p+ β γ5m

) (
~α · ~p+ β γ5m

)
= (~α · ~p)2 +

{
~α, β γ5

}
· ~pm+

(
β γ5

)2
m2

= ~p 2 −m2 = H2
i . (13.13)
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To obtain this result we again used (~α · ~p)2 = ~p 2, as well as

{
αI , β γ5

}
=
{
γ0 γI , γ0 γ5

}
= γ0 γI γ0 γ5 + γ0 γ5 γ0 γ5 = γ5 γI − γ5 γI = 0 , (13.14)

and

(
β γ5

)2
= γ0 γ5 γ0 γ5 = −1 , (13.15)

which stems from the relations {γ0 , γ5} = 0 and (γ0)2 = (γ5)2 = 1 Thus we are

left with two viable options for the superluminal free Dirac Hamiltonian. These

Hamiltonians correspond to the Dirac equations

(
iγA∂A − im

)
φ1(x) = 0 ,

(
iγA∂A − γ5m

)
φ2(x) = 0 , (13.16)

where we use the somewhat unconventional notation of Roman characters, keeping in

line with chapter 8.5. As shown in appendix A of [43], there exists a transform which

takes H1 in H2. For our purposes, we will be using H2 to perform our calculations,

and we now define the tachyonic free Dirac Hamiltonian as

HTF = H2 = ~α · ~p+ β γ5m. (13.17)
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14. A PSEUDO–HERMITIAN DIRAC HAMILTONIAN

14.1. ORIENTATION

With the tachyonic free Dirac Hamiltonian in hand, we quickly realize that it

is not in fact Hermitian (HTF 6= H+
TF) due to the fact that (β γ5)+ = γ5 β = −β γ5.

Instead we find that the Hamiltonian is actually γ5–Hermitian [43],

γ5H+
TF γ

5 = γ5
(
~α · ~p+ β γ5m

)+
γ5 = ~α · ~p+ β γ5m = HTF . (14.1)

In short, the tachyonic free Dirac equation (and as we shall see in chapter 15, the

gravitationally coupled tachyonic Dirac equation) are γ5–Hermitian, and adhere to

the same properties as the subluminal pseudo–Hermitian Hamiltonians, as discussed

in chapter 2.

Additionally we find that the tachyonic Dirac equation is invariant under

both CDPD and TD, where CD is the Dirac charge conjugation operator, PD is the

Dirac parity operator, and TD is the Dirac time reversal operator. Under these

considerations, it follows that the superluminal Dirac equation is CPT –symmetric.

Despite the time we spend on showing that the superluminal free Dirac equation

is CPT –symmetric, it is far simpler to use γ5–Hermiticity. This results from the

requirement that the parity, time reversal, and charge conjugation operations use the

Dirac equation, rather than the Dirac Hamiltonian. When we perform the Foldy–

Wouthuysen transformation, we do so using the Hamiltonian form, and we shall

again use said form when performing the ultrarelativistic decoupling transformation

in chapter 16. Still it may be instructive to delve into the particulars of CPT –

symmetry.
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While defining all the operators, we will be working with subluminal example

cases.

Note: all Dirac γ matrices appearing in this chapter are flat–space matrices,

and we forgo the inclusion of the tilde.

14.2. SOME PROPERTIES

Let us go over some relevant, easily verified, properties of the Dirac γ matrices,

γ0 =
(
γ0
)T

=
(
γ0
)+

=
(
γ0
)∗
, γ1 = −

(
γ1
)T

= −
(
γ1
)+

=
(
γ1
)∗
, (14.2a)

γ2 =
(
γ2
)T

= −
(
γ2
)+

= −
(
γ2
)∗
, γ3 = −

(
γ3
)T

= −
(
γ3
)+

=
(
γ3
)∗
, (14.2b)

γ5 =
(
γ5
)T

=
(
γ5
)+

=
(
γ5
)∗
, (14.2c)

From these properties we can additionally deduce that

γ0
(
γA
)+

γ0 = γA , γ0
(
γ5
)+

γ0 = −γ5 , (14.3)

where A = 0, 1, 2, 3. We also take this opportunity to define

ψ ≡ ψ+γ0 . (14.4)

We are now ready to investigate the different operators.

14.3. CHARGE CONJUGATION

There seems to be at least two ways that one can define the charge conju-

gation operator CD (we are using a unconventional notation to distinguish from the

nonrelativistic case). The first is the way in which it is defined in [60], while the

second is found in [23]. Let us begin with the more involved definition.
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It is well know that in relativistic quantum mechanics, we use the covariant

coupling i∂B → i∂B − eAB, where ~A is the vector potential, giving us the electro-

magnetically coupled Dirac equation [23]

[
γB (i∂B − eAB)−m

]
ψ = 0 . (14.5)

Taking the adjoint (transpose and complex conjugation) of this equation we find

ψ+
[(
γB
)+
(
−i
←−
∂ B − eAB

)
−m

]
= 0 . (14.6)

Insertion of the γ0 matrix (multiplying the equation by γ0 on the right, and using

the fact that (γ0)
2

= 1) we obtain

(
ψ+γ0

)
γ0
[(
γB
)+
(
−i
←−
∂ B − eAB

)
−m

]
γ0 = ψ

[
γB
(
−i
←−
∂ B − eAB

)
−m

]
= 0 ,

(14.7)

where we used (14.3). We now take the transpose to obtain

[(
γB
)T

(−i∂B − eAB)−m
]
ψ T = 0 . (14.8)

We now introduce the charge conjugation matrix C, with the defining properties

C
(
γB
)T
C−1 = −γB . (14.9)

One possible choice for this matrix is C = iγ2γ0. Then C−1 = CT = iγ0γ2, i.e.,

C CT = iγ2γ0 iγ0γ2 = −γ2γ2 = 1 . (14.10)
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We now verify that this choice of C fulfills (14.8),

C
(
γ0
)T

C−1 = iγ2γ0
(
γ0
)

iγ0γ2 = −γ2γ0γ2 = −γ0 , (14.11)

C
(
γ1
)T

C−1 = iγ2γ0
(
−γ1

)
iγ0γ2 = −γ2γ1γ2 = −γ1 , (14.12)

C
(
γ2
)T

C−1 = iγ2γ0
(
γ2
)

iγ0γ2 = γ2γ2γ2 = −γ2 , (14.13)

C
(
γ3
)T

C−1 = iγ2γ0
(
−γ3

)
iγ0γ2 = −γ2γ3γ2 = −γ3 . (14.14)

Then by multiplying (14.8) on the left by C, we find

C
[(
γB
)T

(−i∂B − eAB)−m
]
C−1

(
Cψ T

)
=
[
γB (i ∂B + eAB)−m

]
ψC = 0 ,

(14.15)

where ψC = Cψ T . Notice that we have almost recovered the original form of the equa-

tion. The difference being that now the charge term is added rather than subtracted,

hence “charge conjugation.”

Alternately, we begin with the electromagnetically coupled Dirac equation

[
γB (i∂B − eAB)−m

]
ψ , (14.16)

and we complex conjugate the equation, yielding

[(
γB
)∗

(−i∂B − eAB)−m
]
ψ∗ , (14.17)

and introduce the alternate charge conjugation matrix Calt, which is defined by the

property

Calt

(
γB
)∗
C−1

alt = −γB . (14.18)
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A possible choice is Calt = iγ2. Let us verify this choice:

Calt

(
γ0
)∗
C−1

alt = iγ2
(
γ0
)

iγ2 = −γ2γ0γ2 = γ2γ2γ0 = −γ0 , (14.19a)

Calt

(
γ0
)∗
C−1

alt = iγ2
(
γ1
)

iγ2 = 0γ2γ1γ2 = γ2γ2γ1 = −γ1 , (14.19b)

Calt

(
γ2
)∗
C−1

alt = iγ2
(
−γ2

)
iγ2 = γ2γ2γ2 = −γ2 , (14.19c)

Calt

(
γ3
)∗
C−1

alt = iγ2
(
γ3
)

iγ2 = −γ2γ3γ2 = γ2γ2γ3 = −γ3 . (14.19d)

The by multiplying (14.17) on the left by Calt we find

Calt

[
γB (−i∂B − eAB)−m

]
C−1

alt (Caltψ
∗) =

[
γB (i∂B + eAB)−m

]
ψCalt = 0 ,

(14.20)

where ψCalt = Caltψ
∗. We note that the alternate method seems to produce the same

result as the first method, save for a possible difference in the wave–functions. In

fact, it is possible to show that the wave–functions which result from each of the

methods are equivalent,

ψC =Cψ T = iγ2γ0
(
ψ+γ0

)T
= iγ2γ0

(
γ0
)T (

ψ+
)T

= iγ2γ0γ0
(

(ψ∗)T
)T

= iγ2ψ∗ = Caltψ
∗ = ψCalt . (14.21)

Thus the two different methods lead to the exact same result. We have use two

slightly different methods to perform the charge conjugation operation. The first

method is rather involved, and requires that we take the adjoint, multiply by γ0,

take the transpose, and finally perform a matrix multiplication. The alternative

method seems to simplify this process, and requires only that a matrix multiplication

is performed following a complex conjugation. Both seem to be viable options.
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14.4. TIME REVERSAL

Again there are two approaches to the time reversal operation. The first is

found in [60], while the second may be found in [23].

We begin with the the Dirac equation for a free particle,

(
iγB∂B −m

)
ψ (x) = 0 . (14.22)

We then take the adjoint, giving us

ψ+ (x)
(
−i
(
γB
)+←−

∂ B −m
)

= 0 . (14.23)

As we did with the charge conjugation, we multiply the equation by γ0 on the right,

and use the fact that (γ0)
2

= 1, leading to

(
ψ+ (x) γ0

)
γ0
(
−i
(
γB
)←−
∂ B −m

)
γ0 = ψ (x)

(
−iγB

←−
∂ B −m

)
= 0 , (14.24)

where we again used (14.3). We now take the transpose to find

(
−i
(
γB
)T
∂B −m

)
ψ T (x) = 0 . (14.25)

We now introduce the time reversal matrix T , which is defined by the properties

T
(
γ0
)T
T−1 = γ0 , T

(
γi
)T
T−1 = −γi . (14.26)
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We now explicitly show that a possible choice for T is T = iγ5γ2:

T
(
γ0
)T
T−1 = iγ5γ2

(
γ0
)

iγ2γ5 = −γ5γ2 γ0 γ2γ5 = γ0 , (14.27)

T
(
γ1
)T
T−1 = iγ5γ2

(
−γ1

)
iγ2γ5 = γ5γ2 γ1 γ2γ5 = −γ1 , (14.28)

T
(
γ2
)T
T−1 = iγ5γ2

(
γ2
)

iγ2γ5 = −γ5γ2 γ2 γ2γ5 = −γ2 , (14.29)

T
(
γ3
)T
T−1 = iγ5γ2

(
−γ3

)
iγ2γ5 = −γ5γ2 γ3 γ2γ5 = −γ3 . (14.30)

By applying the time reversal matrix T to (14.25) we find

T
(
−i
(
γB
)T
∂B −m

)
T−1

(
Tψ T (x)

)
=
(
−iγ0∂0 + iγi∂i −m

) (
Tψ T (x)

)
= 0 .

(14.31)

Finally we let t → −t, i.e., x = (t, ~x) → xT = (−t, ~x) (this also means that ∂0 →

−∂0), yielding

(
iγB∂B −m

) (
Tψ T (xT )

)
=
(
iγB∂B −m

)
ψT (x) , (14.32)

where ψT (x) = Tψ
T

(xT ). Here we find that the Dirac equation retains its form when

it undergoes time reversal.

Using the alternate approach, we again start with the free Dirac equation

(
iγB∂B −m

)
ψ (x) = 0 , (14.33)

and we complex conjugate

(
−i
(
γB
)∗
∂B −m

)
ψ∗ (x) = 0 . (14.34)



172

We then introduce the alternative time reversal matrix Talt which is defined by the

properties

Talt

(
γ0
)∗
T−1

alt = γ0 , Talt

(
γi
)∗
T−1

alt = −γi . (14.35)

One possible choice is Talt = iγ5γ2γ0. Explicitly:

Talt

(
γ0
)∗
T−1

alt = iγ5γ2γ0
(
γ0
)

iγ0γ2γ5 = −γ5γ2γ0 γ0 γ0γ2γ5 = γ0 , (14.36)

Talt

(
γ1
)∗
T−1

alt = iγ5γ2γ0
(
γ1
)

iγ0γ2γ5 = −γ5γ2γ0 γ1 γ0γ2γ5 = −γ1 , (14.37)

Talt

(
γ2
)∗
T−1

alt = iγ5γ2γ0
(
−γ2

)
iγ0γ2γ5 = γ5γ2γ0 γ2 γ0γ2γ5 = −γ2 , (14.38)

Talt

(
γ3
)∗
T−1

alt = iγ5γ2γ0
(
γ3
)

iγ0γ2γ5 = −γ5γ2γ0 γ3 γ0γ2γ5 = −γ3 . (14.39)

We then apply the alternative time reversal matrix to (14.34),

Talt

(
−i
(
γB
)∗
∂B −m

)
T−1

alt (Taltψ
∗ (x)) =

(
−iγ0∂0 + iγi∂i −m

)
(Taltψ

∗(x)) = 0 .

(14.40)

We again let x→ xT , giving us

(
iγB∂B −m

)
ψTalt(x) = 0 , (14.41)

where ψTalt(x) = Taltψ
∗(xT ). Notice that

ψT (x) =Tψ T (xT ) = iγ5γ2
(
ψ+(xT )γ0

)T
= iγ5γ2

(
γ0
)T (

ψ+(xT )
)T

= iγ5γ2γ0
(

(ψ∗(xT ))T
)T

= Taltψ
∗(xT ) = ψTalt(x) . (14.42)

Again the two different methods lead to the exact same result.
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14.5. PARITY

We already talked about the parity operation in chapter 10.8 but for com-

pleteness, let us apply it to the free Dirac equation,

(
iγB∂B −m

)
ψ(x) = 0 . (14.43)

Under parity x = (t, ~x)→ xP = (t,−~x), i.e.,

(
iγ0∂0 − iγi∂i −m

)
ψ(xP) = 0 . (14.44)

We then introduce the parity matrix P , defined by the properties

Pγ0P−1 = γ0 , PγiP−1 = −γi . (14.45)

A clear candidate is P = γ0. Thus

P
(
iγ0∂0 − iγi∂i −m

)
P−1 (Pψ(xP)) =

(
iγB∂B −m

)
ψP(x) = 0 , (14.46)

where ψP(x) = Pψ(xP). As with the time reversal operation, we find that the form

of the Dirac equation is unchanged under the parity operation. Unlike the charge

conjugation and time reversal operations, there seems to be only the one definition

for the Dirac parity operation.

14.6. C,P,T FOR THE TACHYONIC DIRAC HAMILTONIAN

Although we have looked at two separate definitions of both the charge conju-

gation and time reversal operations, we have seen that both methods lead to the same

result, at least in the subluminal case. We will not show it here, but the same result
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is again achieved when examining the superluminal case. We use the first definition

of both in the section. It is easily verified that when we apply the charge conjugation,

time reversal and parity matrices to the γ5 matrix we obtain

Cγ5C−1 = γ5 , Tγ5T−1 = −γ5 , Pγ5P−1 = −γ5 . (14.47)

We know that the Dirac equation for a free tachyon is given as (13.16)

(
iγB∂B − γ5m

)
ψ(x) = 0 . (14.48)

The initial steps for both charge conjugation and time dilation are identical, and

begin by taking the adjoint of the equation, i.e.,

ψ+(x)
(
−i
(
γB
)+←−

∂ B − γ5m
)

= 0 , (14.49)

we then multiply by γ0 on the right and use the fact that (γ0)2 = 1 to find

(
ψ+(x)γ0

)
γ0
(
−i
(
γB
)+←−

∂ B − γ5m
)
γ0 = ψ(x)

(
−iγB

←−
∂ B + γ5m

)
= 0 , (14.50)

and finally take the transpose, yielding

(
−i
(
γB
)T
∂B + γ5m

)
ψ T (x) . (14.51)

We then apply the charge conjugation matrix to this equation, and find

C
(
−i
(
γB
)T
∂B + γ5m

)
C−1

(
Cψ T (x)

)
=
(
iγB∂B + γ5m

)
ψC(x) . (14.52)

Thus, under charge conjugation the mass term of the tachyonic Dirac equation re-

verses sign. We can now complete the time reversal operation by applying the time
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reversal matrix to (14.51), giving us

T
(
−i
(
γB
)T
∂B + γ5m

)
T−1

(
Tψ T (x)

)
=
(
−iγ0∂0 + iγi∂i − γ5m

) (
Tψ T (x)

)
=
(
iγB∂B − γ5m

)
ψT (x) = 0 , (14.53)

where again ψT (x) = Tψ T (xT ). As with the subluminal free particle, we find that

the superluminal free Dirac equation is unaffected by the time reversal operation.

Finally we investigate the effects of the parity operation, in which we begin by letting

x→ xP , i.e.,

(
iγ0∂0 − iγi∂i − γ5m

)
ψ(xP) = 0 , (14.54)

we now apply the parity matrix and find

P
(
iγ0∂0 − iγi∂i − γ5m

)
P−1 (Pψ(xP)) =

(
iγB∂B + γ5m

)
ψP(x) = 0 , (14.55)

where ψP(x) = Pψ(xP). As with the charge conjugation transform, we find that the

parity transform switches the sign of the mass term. Thus under a charge conjugation

and parity transform, the sign of the mass term will switch twice, restoring the

original equation, and the free tachyonic Dirac equation is then CDPD–symmetric.

Additionally, we have seen that the equation is invariant under the time reversal

operation, thus the equation is TD symmetric. Thus, the superluminal Dirac equation

is CPT –symmetric. This is a somewhat important result, as the violation of CPT –

symmetry would otherwise imply that the equation is not Lorentz invariant [127].



176

15. GRAVITATIONALLY COUPLED TACHYON

Having worked through the derivation of the Dirac–Einstein–Schwarzschild

Hamiltonian in chapter 8.5, we may now consider the gravitationally coupled tachy-

onic Dirac Hamiltonian with ease. As we have seen, the Dirac equation for a free

tachyon in flat space-time is given by equation (13.16)

(
iγ̃A∂A − γ̃5m

)
ψ = 0 . (15.1)

As with a tardyon, the key observation is that the coupling to the gravitational

field is given by the covariant derivative ∂A → ∇µ = ∂µ − Γµ (8.9), where the spin

connection matrix Γµ is defined in (8.50), and the replacement of the flat-space-time

Dirac matrices by their curved-space-time counterparts. Thus the Dirac equation for

a tachyon in curved space is

(
iγµ∇µ − γ5m

)
ψ = 0 . (15.2)

Following the same procedure as in chapter 8.5, we quickly come to the equation

i(γ0)2∂0ψ =
(
(γ0γjpj + iγ0γµΓµ + γ0γ5m

)
ψ , (15.3)

where the γµ matrices and Γµ are all the same as in the subluminal case, thus we can

rewrite the equation in the form i∂tψ = Hψ, where

H =
w

v
~α · ~p+

~α · (~pw)

2v
+
w~α · (~p v)

v2
+ βγ5mw . (15.4)
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We then scale as the Hamiltonian as we did in (8.80), (8.81), and (8.82), obtaining

H ′ =
1

2
{~α · ~p,F}+ βγ5w , F =

w

v
. (15.5)

The final step is to approximate for small rs, just like we did in equation (8.83).

However, for reasons that will become obvious later, we are here going to keep terms

up to the second order in rs. We recall that (see chapter 8.5)

w =
1− rs

4r

1 + rs
4r

, v =
(

1 +
rs

4r

)2

, F =
w

v
. (15.6)

By expanding about a small rs, up to the second order, we find

w = 1− rs

2r
+
r 2

s

8r2
+O(r 3

s ) , v = 1 +
rs

2r
+

r 2
s

16r2
+O(r 3

s ) , (15.7a)

F = 1− rs

r
+

9r 2
s

16r2
+O(r 3

s ) , (15.7b)

resulting in the equation

Htg =
1

2

{
~α · ~p, 1− rs

r
+

9 r2
s

16r2

}
+ β γ5m

(
1− rs

2r
+

r2
s

8r2

)
. (15.8)

At this point we are familiar with all the terms in the Hamiltonian, except for the

curved–space γ5 matrix. According to equation (18) of [91] the flat- and curved–space

γ5 matrices are generalized as

γ5 = (−g)−
1
2 (1/4!)εαβγδγαγβγγγδ , (γ5)2 = −1 , (15.9)

where I have written the equation exactly written by Brill and Wheeler in [91]. Notice

that using this definition we see that the square of γ5 is −1, while we want to work

in a system where (γ5)2 = +1. To accomplish this we simply multiply (15.9) by the
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imaginary unit i, bringing the definition into our notation as

γ̃5 =
i

4!

εαβγδ√
− det g̃µν

γ̃αγ̃βγ̃δγ̃γ , γ̃5 =
i

4!

εαβγδ√
− det g̃µν

γ̃αγ̃βγ̃δγ̃γ , (15.10a)

γ5 =
i

4!

εαβγδ√
− det gµν

γαγβγδγγ , γ5 =
i

4!

εαβγδ√
− det gµν

γαγβγδγγ , (15.10b)

where (γ̃5)2 = (γ̃5)2 = 1 and ε = ε̃ is the flat-space Levi-Civita tensor in all cases,

defined according to equation (2.19) in chapter 4 of [120] as

εαβγδ = εαβγδ =


+1 if α, β, γ, δ is an even permutation of 0, 1, 2, 3

−1 if α, β, γ, δ is an odd permutation of 0, 1, 2, 3

0 otherwise

, (15.11)

where we specialized to the four dimensional case. We know that in flat-space the

metric is g̃µν = g̃µν = diag(1,−1,−1,−1), this
√
− det g̃µν =

√
− det g̃µν = 1 , thus

γ̃5 =
i

4!
εαβδγ γ̃αγ̃βγ̃δγ̃γ , γ̃5 =

i

4!
εαβδγ γ̃

αγ̃βγ̃δγ̃γ . (15.12)

Now, for a diagonal metric (such as both our flat-space and our curved-space metrics)

{γα, γβ} = {γα, γβ} = 0 provided α 6= β, which in the case of our equation for the

gamma 5 matrices is guaranteed by the Levi-Civita tensor. Thus

γ̃5 =
i

4!
εαβδγε0123γ̃αγ̃βγ̃δγ̃γ =

i

4!
δαβδγ0123 γ̃αγ̃βγ̃δγ̃γ = iγ̃[0γ̃1γ̃2γ̃3] = iγ̃0γ̃1γ̃2γ̃3 , (15.13)

where we used ε0123 = ±1 (0123 is an even permutation) in the first step, the identity

δαβδγµνρσ = εαβδγεµνρσ (see equation (2.20) in chapter 4 of [120]) in the second step, and

the fact that the Dirac γ matrices anticommute in the final step. Similarly

γ̃5 = iγ̃0γ̃1γ̃2γ̃3 . (15.14)
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Due to the fact that our curved space metric is diagonal as well, this same process

can be easily applied to the curved space Dirac γ̃5 matrices, yielding

γ5 =
i√

− det gµν
γ0γ1γ2γ3 , γ5 =

i√
− det gµν

γ0γ1γ2γ3 . (15.15)

This is valid for any Dirac γ5 matrix provided the relevant metric is diagonal. Let

us explicitly write out the metric, its inverse and the relation between the flat- and

curved–spacetime Dirac γ matrices,

[gµν ] =



w2 0 0 0

0 −v2 0 0

0 0 −v2 0

0 0 0 −v2


, [gµν ] =



1
w2 0 0 0

0 − 1
v2

0 0

0 0 − 1
v2

0

0 0 0 − 1
v2


, (15.16)

γ0 =w γ̃0 , γi = v γ̃i , γ0 =
1

w
γ̃0 , γi =

1

v
γ̃i , (15.17)

thus

det gµν = − w2v6 , det gµν = − 1

w2v6
, (15.18a)√

− det gµν =w v3 ,
√
− det gµν =

1

w v3
, (15.18b)

γ0γ1γ2γ3 =wv3γ̃0γ̃1γ̃2γ̃3 , γ0γ1γ2γ3 =
1

wv3
γ̃0γ̃1γ̃2γ̃3 . (15.18c)

We then plug these results into (15.15) giving us

γ5 = iγ̃0γ̃1γ̃2γ̃3 = γ̃5 , γ5 = iγ̃0γ̃1γ̃2γ̃3 = γ̃5 . (15.19)

Thus the tachyonic gravitationally coupled Dirac Hamiltonian becomes

Htg =
1

2

{
~α · ~p, 1− rs

r
+

9 r2
s

16r2

}
+ β γ̃5m

(
1− rs

2r
+

r2
s

8r2

)
. (15.20)
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Similarly, we will also need the Dirac–Einstein–Schwarzschild Hamiltonian to the

second order in rs. Using our approximations from (15.7), as well as the exact result

for the Dirac–Einstein–Schwarzschild Hamiltonian (8.82), we quickly find that to the

second order in rs

Hds =
1

2

{
~α · ~p, 1− rs

r
+

9 r2
s

16r2

}
+ β m

(
1− rs

2r
+

r2
s

8r2

)
. (15.21)

Here we anticipate the need for this slight generalization of (8.84) (see chapter 17.1).
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16. EXACT ULTRARELATIVISTIC DECOUPLING TRANSFORM

16.1. INITIAL ROTATION INTO THE WEYL BASIS

We start from the Dirac representation of the γ matrices, both for the tardy-

onic as well as tachyonic Dirac Hamiltonians, and first rotate into a different ma-

trix representation (the helicity basis, see chapter 23 of [121]), before carrying out

the decoupling transformation. For simplicity, we shall consider the free tachyonic

Hamiltonian here, first. All the considerations in this chapter are trivially generalized

to the gravitationally coupled Hamiltonians. Recall that the tachyonic free particle

Hamiltonian is

HTF = ~α · ~p+ β γ5m. (16.1)

Also note that the Hamiltonian is not Hermitian, but is instead γ5-Hermitian. We

consider three possible initial rotations, which shift the Hamiltonian into the Weyl

representation, and prepare it for the ultrarelativistic transform. These rotations are

all unitary, and are

UA =
1√
2

(
β + γ5

)
, (16.2)

UB =
1√
2

(
β − γ5

)
, (16.3)

UC =
1√
2

(
1− βγ5

)
. (16.4)

Let us investigate how all three of them transform the Hamiltonian:

HA =UAHTF U
+
A = β~Σ · ~p− β γ5m, (16.5)

HB =UBHTF U
+
B = −β ~Σ · ~p− β γ5m. (16.6)
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Now, to calculate HC we note that UC = β UB, thus

HC =UC HTF U
+
C = βUBHTF U

+
B β = β HB β = −β ~Σ · ~p+ β γ5m. (16.7)

This final rotation (UC) gives us the form we want, as it has the plus sign in front of

the β γ5 term.

It is known that the Weyl equation describes a massless spin–1/2 particle, and

splits into two equations which describe left–handed and right–handed spinors (see

chapter 23 of [121] and page 87 of [60]),

i ∂t ψL =HL ψL , HL = −~σ · ~p , (16.8)

i ∂t ψR =HR ψR , HR = ~σ · ~p . (16.9)

Under parity a left–handed spinor transforms into a right–handed spinor, and as such

the Weyl equations break parity. However, by “stacking” the helicity spinors, one

can construct the spinor solutions to the Dirac equation [122]. The massless Weyl

spinors (equations (16.8) and (16.9)) correspond to the ultrarelativistic limit for a

massive particle, plus correction terms. We can then expect that our initial rotation

will necessarily break parity, i.e., the γ5–Hermiticity will be broken.

We define the initial rotation U1 as

U1 = UC =
1√
2

(
1− βγ5

)
, (16.10)

and the resulting transformed Hamiltonian for the free tachyon is

H ′TF = HC = βE + β γ5m, (16.11)
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where

E = −~Σ · ~p , (16.12)

is the energy operator for a left–handed neutrino.

We also note that the transformed Hamiltonian is no longer γ5–Hermitian,

instead it is β– or γ0–Hermitian. Given a pseudo–Hermitian Hamiltonian H, which is

A–Hermitian, then the transformed Hamiltonian H ′ = U H U+ (where U is unitary)

will be B–Hermitian, where B = U AU+, i.e.,

(H ′)
+

=
(
U H U+

)+
= U H+ U+ = U AH A−1 U+

= U AU+ U H U+ U A−1 U+ = BH ′ B−1 . (16.13)

Now, U1 is unitary, and U1 γ
5 U1 = −β, thus H ′TF is β–Hermitian. We also note that

β = γ5
W, where γ5

W is the Dirac γ5 matrix in the Weyl representation, thus in the

Weyl representation H ′TF is γ5
W–Hermitian.

16.2. TARDYONIC FREE PARTICLE

Inspired by the exact Foldy–Wouthuysen transform for a free particle, we

apply the same methodology to perform an exact ultrarelativistic transform. The

free Dirac–Hamiltonian (for a tardyon) is given as (C.34)

HF = ~α · ~p+ β m . (16.14)

We must first transform the Hamiltonian into the Weyl basis, as we want the en-

ergy (E) term to be along the diagonal. Applying the initial rotation U1 given in
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equation (16.10) we find

H ′F =U1HF U
+
1 =

1

2

(
1− βγ5

)
(~α · ~p+ β m)

(
1− γ5β

)
=

1

2

(
1− βγ5

) (
~α · ~p+ β m− β γ5~α · ~p+ γ5m

)
=

1

2

(
~α · ~p+ β m− β γ5~α · ~p+ γ5m− β γ5~α · ~p+ γ5m− ~α · ~p− β m

)
= βE + γ5m, (16.15)

where E is defined in (16.12). We then apply a second rotation UF where

UF = eiSF , SF = −iβγ5m

E
θ . (16.16)

Notice SF is Hermitian, ensuring that the transform UF is unitary. We can rewrite

the transform as

UF = exp
(
βγ5m

E
θ
)

=
∞∑
n=0

1

n!

(
βγ5m

E
θ
)

=
∞∑
k=0

1

(2k)!

(
βγ5m

E
θ
)2k

+
∞∑
k=0

1

(2k + 1)!

(
βγ5m

E
θ
)2k+1

=
∞∑
k=0

(−1)k

(2k)!

(
m

|~p|
θ

)2k

+ βγ5 |~p|
E

∞∑
k=0

(−1)k

(2k + 1)!

(
m

|~p|
θ

)2k+1

= cos

(
m

|~p|
θ

)
+ βγ5 |~p|

E
sin

(
m

|~p|
θ

)
. (16.17)
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Then applying it to H ′F we find

UF H
′
F U

+
F =

[
cos Θ + βγ5 |~p|

m
sin Θ

] [
βE + γ5m

] [
cos Θ− βγ5 |~p|

m
sin Θ

]
=
[
βE + γ5m

] [
cos Θ− βγ5 |~p|

m
sin Θ

]2

=
[
βE + γ5m

] [
exp

(
−βγ5m

E
θ
)]2

=
[
βE + γ5m

]
exp

(
−2βγ5m

E
θ
)

=
[
βE + γ5m

] [
cos 2Θ− βγ5 |~p|

E
sin 2Θ

]
= βE cos 2Θ− γ5E |~p|

E
sin 2Θ + γ5m cos 2Θ + βm

|~p|
E

sin 2Θ

= γ5m cos 2Θ

[
1− |~p|

m
tan 2Θ

]
+ β

[
E cos 2Θ +m

|~p|
E

sin 2Θ

]
, (16.18)

where Θ = (m/ |~p|)θ. In order to eliminate the odd terms (the terms with the γ5

prefactor), we choose θ such that

tan 2Θ = tan

(
2
m

|~p|
θ

)
=
m

|~p|
. (16.19)

Therefore

sin 2Θ = sin

(
2
m

|~p|
θ

)
=

m√
~p 2 +m2

, cos 2Θ = cos

(
2
m

|~p|
θ

)
=

|~p|√
~p 2 +m2

,

(16.20)

and we find

HF = UF H U+
F = β

[
E |~p|√

~p 2 +m2
+m
|~p|
E

m√
~p 2 +m2

]

= β
E
|~p|

 ~p 2√
~p 2 +m2

+
�
�
���
1

~p 2

E2

m2√
~p 2 +m2


= β
E
|~p|

~p 2 +m2√
~p 2 +m2

= β
E
|~p|
√
~p 2 +m2 . (16.21)
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In explicit matrix form this is

HF =

 −~σ·~p
|~p|

√
~p 2 +m2 0

0 ~σ·~p
|~p|

√
~p 2 +m2

 . (16.22)

In this notation it is clear that the Hamiltonian has been successfully separated into

a set of left– and right–handed Hamiltonians.

With this result in hand, we would like to note that we are not the first

to consider this type of transform [123–125]. Like our ultrarelativistic decoupling

transformation, the so called Cini–Touschek transformation [123] was designed to

decouple the particle and antiparticle degrees of freedom. However, rather than

rotating into a more appropriate basis, this method eliminates the even elements,

leaving only the off diagonal odd elements. This is in sharp contrast to our method,

which brings the rotated Hamiltonian to diagonal form.

16.3. TACHYONIC FREE PARTICLE

From (16.11) we already know that the free particle Dirac–Hamiltonian (for a

tachyon), rotated to the Weyl representation is given as

H ′TF = βE + β γ5m. (16.23)

where E is the energy operator for a left–handed neutrino as given in (16.12). The

exact transform UTF is then

UTF = eiSTF , STF = −iγ5m

E
θ . (16.24)

Notice that STF is not Hermitian, but is instead β–Hermitian, as discussed at the

end of chapter 16.1, H ′TF is β–Hermitian, and we want to preserve that property of
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the Hamiltonian. Since STF is β–Hermitian i.e.,

S+
TF = iγ5m

E
θ = ββiγ5m

E
θ = β

(
−iγ5m

E
θ
)
β = β STF β , (16.25)

we ensure that the operator UTF is β–unitary, i.e.,

U−1
TF = β U+

TF β , or U+
TFβ UTF = β . (16.26)

which will ensure that H ′′TF = UTFH
′
TF U

−1
TF is unitary. We can now rewrite UTF as

UTF = exp
(
γ5m

E
θ
)

=
∞∑
n=0

1

n!

(
γ5m

E
θ
)n

=
∞∑
k=0

1

(2k)!

(
γ5m

E
θ
)2k

+
∞∑
k=0

1

(2k + 1)!

(
γ5m

E
θ
)2k+1

=
∞∑
k=0

1

(2k)!

(
m

|~p|
θ

)2k

+ γ5 |~p|
E

∞∑
k=0

1

(2k + 1)!

(
m

|~p|
θ

)2k+1

= cosh

(
m

|~p|
θ

)
+ γ5 |~p|

E
sinh

(
m

|~p|
θ

)
. (16.27)

Thus

H′′TF =UTFH
′
TF U

−1
TF

=

[
cosh Θ + γ5 |~p|

E
sinh Θ

] [
βEr + β γ5m

] [
cosh Θ− γ5 |~p|

E
sinh Θ

]
=
[
βE + β γ5m

] [
cosh Θ− γ5 |~p|

E
sinh Θ

]2

=
[
βE + β γ5m

]
exp

(
2γ5m

E
θ
)

= β
[
E + γ5m

] [
cosh 2Θ− γ5 |~p|

E
sinh 2Θ

]
= β

[
E cosh 2Θ− γ5 |~p| sinh 2Θ + γ5m cosh 2Θ− |~p|

E
m sinh 2Θ

]
= β

[
γ5m cosh 2Θ

[
1− |~p|

m
tanh 2Θ

]
+ E cosh 2Θ− |~p|

E
m sinh 2Θ

]
, (16.28)
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where Θ = (m/ |~p|)θ. Then to eliminate the odd terms (γ5 prefactor) we choose θ

such that

tanh Θ = tanh

(
2
m

|~p|
θ

)
=
m

|~p|
, (16.29)

in which case

sinh 2Θ = sinh

(
2
m

|~p|
θ

)
=

m√
~p 2 −m2

, (16.30a)

cosh 2Θ = cosh

(
2
m

|~p|
θ

)
=

|~p|√
~p 2 −m2

. (16.30b)

Then

HTF = β

[
E |~p|√

~p 2 −m2
− |~p|
E
m

m√
~p 2 −m2

]

= β
E
|~p|

 ~p 2√
~p 2 −m2

−
�
�
���
1

~p 2

E2

m2√
~p 2 −m2


= β
E
|~p|

~p 2 −m2√
~p 2 −m2

= β
E
|~p|
√
~p 2 −m2 . (16.31)

Thus we have performed the exact ultrarelativistic decoupling transform on both the

sub- and superluminal free particles. In performing the transformation we managed

to eliminate the odd parts, and fully decouple the particles and antiparticles.
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17. GENERAL ULTRARELATIVISTIC DECOUPLING TRANSFORM

17.1. DIRAC–EINSTEIN–SCHWARZSCHILD HAMILTONIAN

We now want to apply the ultrarelativistic decoupling transform to the Dirac–

Einstein–Schwarzschild Hamiltonian. As with the Foldy–Wouthuysen transforma-

tion, this Hamiltonian is too complex to perform an exact transform (i.e., to all

orders in momenta). Instead we must use a perturbative method. In performing this

calculation we will keep all terms up to the second order in rs, and to the first order in

1/E . Prior to the perturbative transform, we must perform the exact initial rotation

into the Weyl basis. Transforming (15.21) using U1 (16.10) yields

H ′ds = βE − β

2

{
E , rs

r

}
+ β

9

32

{
E , r

2
s

r2

}
+Ods , (17.1)

where we have already introduced the odd term

Ods = γ5m

(
1− rs

2r
+
r 2

s

8r2

)
. (17.2)

We can now construct the operator

Sds = − i
β

4

{
Ods,

1

E

}
= −i

m

2

(
βγ5 1

E
− βγ5 1

4

{
1

E
,
rs

r

}
+ βγ5 1

16

{
1

E
,
r 2

s

r2

})
.

(17.3)

The perturbative calculation is then performed in much the same way as the Foldy–

Wouthuysen program, utilizing the approximation

H ′′ds = H ′ds +
i1

1!
[Sds, Hds] +

i2

2!
[Sds, [Srs, H

′
ds]] + ... , (17.4)
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which is again a series of nested commutators. As before, the canceled terms are of a

sufficiently high order, so that they can be neglected. The single commutator is then

[Sds, H
′
ds] = [Sds, βE ]− 1

2

[
Sds, β

{
E , rs

r

}]
+

9

32

[
Sds,

{
E , r

2
s

r2

}]
+
[
Sds, γ

5m
]
− 1

2

[
Sds, γ

5m
rs

r

]
+

1

8

[
Sds, γ

5m
r 2

s

r2

]
, (17.5)

giving us six terms to calculate. Let us begin by calculating the first term

[Sds, βE ] = − i

4

[
β

{
Ods,

1

E

}
, βE

]
=

i

4

{
E ,
{

1

E
,Ods

}}
=

i

4

{
E , 1

E
Ods +Ods

1

E

}
=

i

4

(
E 1

E
Ods +

1

E
OdsE + EOds

1

E
+Ods

1

E
E
)

=
i

4

(
2Ods +

1

E
OdsE + EOds

1

E

)
=

i

4

(
2Ods +

(
Ods −

1

E
[E ,Ods]

)
+

(
Ods + [E ,Ods]

1

E

))
=

i

4

(
4Ods +

1

E
E [E ,Ods]

1

E
− 1

E
[E ,Ods]

)
=

i

4

(
4Ods +

1

E
[E , [E ,Ods]]

1

E
+

1

E
[E ,Ods]−

1

E
[E ,Ods]

)
= iOds +

i

4��
���

���
�1

E
[E , [E ,Ods]]

1

E
. (17.6)

Notice that we approximated the second term in the final expression to zero, despite

the fact that the double commutator has two instances of the operator E . It may

appear as if the second term is proportional to 1 (in terms of inverse powers of E).

This is in fact not the case, as the commutators ensure that the contained instances

of E will not operate on the wave–function, which would otherwise generate energy

terms. We are working in the high energy limit, and we only get these dominant

terms when the operator E operates on the wave–function, not when it operates on
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any other term. Thus

1

E
[E , [E ,Ods]]

1

E
= O

(
1

E2

)
→ 0 . (17.7)

We now turn our attention to the second term,

[
Sds, β

{
E , rs

r

}]
= − i

m

2

[
βγ5 1

E
− βγ5 1

4

{
1

E
,
rs

r

}
+
��

�
��

��γ5

16

{
1

E
,
r 2

s

r2

}
, β
{
E , rs

r

}]

=
i

2
γ5m

({
1

E
,
{
E , rs

r

}}
− 1

4

{{
1

E
,
rs

r

}
,
{
E , rs

r

}})
. (17.8)

Here it is beneficial to show that for a function f = f(r),

1

E
f E + E f 1

E
=

(
f − 1

E
[E , f ]

)
+

(
f + [E , f ]

1

E

)
= 2f +

1

E
E [E , f ]− 1

E
[E , f ]

= 2f +
���

���
��1

E
[E , [E , f ]]

1

E
+

1

E
[E , f ]− 1

E
[E , f ] = 2f , (17.9)

and we can use this identity to show another,

{
1

E
, {E , f}

}
=

{
1

E
, E f + f E

}
=

1

E
E f + E f 1

E
+

1

E
f E + f E 1

E

= 2f +

(
E f 1

E
+

1

E
f E
)

= 4f , (17.10)

in our approximation. The latter identity will be used to calculate the first anticom-

mutator of the second term for us, leaving only the second anticommutator,

{{
1

E
,
rs

r

}
,
{
E , rs

r

}}
=

{
1

E
rs

r
+
rs

r

1

E
, E rs

r
+
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r
E
}

= 2
r 2

s

r2
+

(
1

E
r 2

s

r2
E + E r

2
s

r2

1

E

)
+

{
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r
,

1

E
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r
E
}

+

{
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r
, E rs

r

1

E

}
= 4

r 2
s

r2
+

{
rs

r
,

(
1

E
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r
E + E rs

r

1

E

)}
= 4

r 2
s

r2
+
{rs

r
, 2
rs

r

}
= 8

r 2
s

r2
, (17.11)
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where we used (17.9) twice. Applying (17.10) and (17.11) to (17.8) we find

[
Sds, β

{
E , rs

r

}]
=

i

2
γ5m

(
4
rs

r
− 2

r 2
s

r2

)
= iγ5m

(
2
rs

r
− r 2

s

r2

)
. (17.12)

Now for the third term, we have

[
Sds, β

{
E , r

2
s

r2

}]
= − i

m

2

[
βγ5 1

E
−
��

���
���

βγ5 1

4

{
1

E
,
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r

}
+
���

���
���

βγ5 1

16

{
1

E
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s
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}
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{
E , r

2
s

r2

}]
=

i

2
γ5m

{
1

E
,

{
E , r

2
s

r2

}}
= 2iγ5m

r 2
s

r2
, (17.13)

where we used (17.10) in the last step. We now calculate the fourth term,

[
Sds, γ

5m
]

= − i
m

2

[
βγ5 1

E
− βγ5 1

4

{
1

E
,
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r

}
+ βγ5 1

16

{
1

E
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r 2

s
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}
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]
= − iβ m2

(
1

E
− 1

4

{
1

E
,
rs

r

}
+

1

16

{
1

E
,
r 2

s

r2

})
. (17.14)

Now the fifth term reads as

[
Sds, γ

5m
rs

r

]
= − i

m

2

[
βγ5 1

E
− βγ5 1

4

{
1

E
,
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r

}
+
��

���
���

�
βγ5 1

16

{
1

E
,
r 2

s

r2

}
, γ5m
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r

]
= − iβ m2

(
1

2

{
1

E
,
rs

r

}
− 1

8

{
rs

r
,

{
1

E
,
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r
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= − iβ m2

(
1
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{
1
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r
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8

{
1
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− 1

4
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E
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)
. (17.15)

Finally the sixth term,

[
Sds, γ

5m
r 2

s

r2

]
= − i

m

2

[
βγ5 1

E
−
���

���
��

βγ5 1

4

{
1

E
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r

}
+
��

���
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{
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}
, γ5m
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]
= − i

2
β m2

{
1

E
,
r 2

s

r2

}
. (17.16)
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Here we also note that

[Sds,Ods] =
[
Sds, γ

5m
]
− 1

2

[
Sds, γ

5m
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r

]
+

1

8

[
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]
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(
1
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2

{
1
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r
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+

3
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{
1
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1

E
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r

)
. (17.17)

Using these results, we find the single commutator to be

[Sds, H
′
ds] = − i

(
−Ods + γ5m

rs

r
− γ5m

2

r 2
s

r2
− γ5 9m

16

r 2
s
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m2

E
− 1

2

{
1

E
,
rs

r
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+β
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{
1
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s
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}
+ β
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8
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r

1

E
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r

)
= − i

(
−Ods + γ5m
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r
− γ5 17m
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s
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+ β

m2
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r

}
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{
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s
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}
+ β
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E
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)
. (17.18)

The last four terms are of order (1/E), so we can ignore them when calculating the

double commutator. Thus

[Sds, [Sds, H
′
ds]] = i

(
[Sds,Ods]−

[
Sds, γ

5m
rs

r

]
+

17

16

[
Sds, γ

5m
r 2

s

r2

])
, (17.19)

where all the commutators are familiar from (17.17), (17.15), and (17.16), respec-

tively. Thus

[Sds, [Sds, H
′
ds]] = −

(
−βm
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E
+ β
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{
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}
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s
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r
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s
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E
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r
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32

{
1
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s
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(
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2

E
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{
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}
−β 27m2
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{
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E
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s
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}
− β 3m2

8
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r

1

E
rs

r

)
. (17.20)
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We do not need to calculate the triple commutator, as is will be of high enough order

that we can neglect it. Then, after the first transformation, the Hamiltonian reads

as

H ′′ds = βE − β

2

{
E , rs

r

}
+ β

9

32

{
E , r

2
s

r2

}
+Ods +

(
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r
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s
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r
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{
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s
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}
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8
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r

1
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r

)
+

1

2

(
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E
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{
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,
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r

}
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{
1

E
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s
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}
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8
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r

)
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(
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2

{
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r

}
+

9

32

{
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r

}
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{
1

E
,
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s

r2

}
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16
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r

1

E
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r

)
+O′ds ,

(17.21)

where

O′ds = γ5m
rs

r
− γ5 17m

16

r 2
s

r2
. (17.22)

The second transform is then performed using

S ′ds = −i
β

4

{
O′ds,

1

E

}
= −i

m

4

(
βγ5

{
1

E
,
rs

r

}
− βγ5 17

16

{
1

E
,
r 2

s

r2

})
. (17.23)

Ignoring the higher–order terms, the single commutator is then

[S ′ds, H
′′
ds] = [S ′ds, βE ]− 1

2

[
S ′ds, β

{
E , rs

r

}]
+ [S ′ds,O′ds] . (17.24)

Using the same argument as (17.6) we find

[S ′ds, βE ] = iO′ds . (17.25)
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The second term is

[
S ′F , β

{
E , rs

r

}]
= − i

m

4

[
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{
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}
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4
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1

E
,
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r

}
,
{
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r

}}
= 2iγ5m

r 2
s

r2
, (17.26)

where we used (17.11) in the last step. The final term is

[S ′ds,O′F ] = − i
m

4

[
βγ5

{
1
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,
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r

}
−
���
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}
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s
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]
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s
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)
. (17.27)

Thus

[S ′ds, H
′′
ds] = −i

(
−O′ds + γ5m

r 2
s

r2
+ β
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4

{
1

E
,
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s

r2

}
+ β

m2

2
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r

1

E
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r

)
. (17.28)

By inspection it is clear that the only term to contribute to the double commutator

will be the first term, i.e.,

[S ′ds, [S
′
ds, H

′′
ds]] = i [S ′ds,O′ds] = −

(
−βm

2

4

{
1

E
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r 2

s
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}
− βm
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2
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r

1

E
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r

)
, (17.29)

where we used the result of (17.27). Thus after two transformations the Hamiltonian

is

H ′′′ds = β

(
E +

m2

2E
− 1

2

{
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r

}
+

9
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+
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)
+
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(
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s
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}
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2
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)
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= β

(
E +

m2

2E
− 1

2

{
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r

}
+

9

32

{
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}
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}
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E
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)
+O′′ds , (17.30)

where

O′′ds = γ5m
r 2

s

r2
. (17.31)

A third transformation is required, and will serve to eliminate the odd term, without

contributing any further terms. Thus after three iterations of the ultrarelativistic

transform we find

Hds = β

(
E +

m2

2E
− 1

2

{
E , rs

r

}
+

9

32

{
E , rs

r

}
− 7m2
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{
1
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,
r 2

s

r2

}
+

3m2

16
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r

1

E
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r

)
,

(17.32)

for the subluminal (tardyonic) gravitationally coupled high–energy Dirac particle.

17.2. TACHYONIC GRAVITATIONALLY COUPLED PARTICLE

We now apply the ultrarelativistic transform to a gravitationally coupled

tachyon, keeping terms to the second order in gravity, i.e., (rs)
2. Utilizing our initial

rotation U1 to transform (15.20) into the Weyl basis we obtain

H ′tg = βE − β

2

{
E , rs

r

}
+

9

32
β

{
E , r

2
s

r2

}
+Otg , (17.33)

where we have already collected the odd terms

Otg = β γ5m

(
1− rs

2r
+
r 2

s

8r2

)
. (17.34)
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We can then construct the operator

Stg = − i
β

4

{
Otg,

1

E

}
= − i

2
m

(
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E
− γ5

4

{
1
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,
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r

}
+
γ5

16

{
1

E
,
r 2

s

r2

})
, (17.35)

and begin the transformation. Again we are keeping terms to the second order in

gravity, and to the first order in the inverse of E . Canceled terms are of high enough

order that they can be neglected. We begin with the single commutator

[
Stg, H

′
tg

]
= [Stg, βE ]− 1

2

[
Stg, β

{
E , rs

r

}]
+

9

32

[
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{
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2
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+
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2
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5m
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r

]
+

1

8

[
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5m
r 2

s

r2

]
, (17.36)

giving us six terms to calculate. Based on our work in the previous chapter the first

term is trivially found to be

[Stg, βE ] = iOtg , (17.37)

for the exact same reason as in equation (17.6). We then turn our attention to the

second term,

[
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r
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2
rs
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)
, (17.38)
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where we used (17.10) and (17.11). We can now move on to the third term
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where we used (17.10) in the last step. We can calculate the fourth term

[
Stg, βγ
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= − i
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2

[
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r
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s
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. (17.40)

Then the fifth term
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. (17.41)

Finally the sixth term,

[
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. (17.42)



199

We now take a moment, and note that the last three terms can be combined to form

the commutator of the operator Stg and the odd part Otg, i.e.,

[Stg,Otg] =
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− 1

2
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+
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+
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)
. (17.43)

The single commutator is then

[Stg, Htg] = − i
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. (17.44)

The last four terms are of order (1/E), so we can ignore them when calculating the

double commutator. Thus

[
Stg,

[
Stg, H

′
tg

]]
= i

(
[Stg,Otg]−

[
Stg, βγ

5m
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r

]
+

17

16

[
Stg, βγ

5m
r 2

s

r2

])
, (17.45)
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where we have seen all of these terms before, i.e., in equations (17.43), (17.41),

and (17.42), respectively. Thus we quickly find that

[
Stg,

[
Stg, H

′
tg

]]
= −

(
β
m2

E
− βm

2

2

{
1

E
,
rs

r

}
+ β

3m2

16

{
1

E
,
r 2

s

r2

}
+β

m2

8

rs

r

1

E
rs

r
− βm

2

2

{
1

E
,
rs

r

}
+ β

m2

8

{
1

E
,
r 2

s

r2

}
+β

m2

4

rs

r

1

E
rs

r
+ β

17m2

32

{
1

E
,
r 2

s

r2

})
= −

(
β
m2

E
− β m2

{
1

E
,
rs

r

}
+ β

27m2

32

{
1

E
,
r 2

s

r2

}
+ β

3m2

8

rs

r

1

E
rs

r

)
.

(17.46)

After the first transformation the Hamiltonian is

H ′′tg = βE − β

2

{
E , rs

r

}
+ β

9

32

{
E , r

2
s

r2

}
+Otg +

(
−Otg + βγ5m

rs

r
− βγ5 17m

16

r 2
s

r2

−βm
2

E
+ β

m2

2

{
1

E
,
rs

r

}
− β 3m2

16

{
1

E
,
r 2

s

r2

}
− βm

2

8

rs

r

1

E
rs

r

)
+

1

2

(
β
m2

E
− β m2

{
1

E
,
rs

r

}
+ β

27m2

32

{
1

E
,
r 2

s

r2

}
+ β

3m2

8

rs

r

1

E
rs

r

)
= β

(
E − m2

2E
− 1

2

{
E , rs

r

}
+

9

32

{
E , r

2
s

r2

}
+

15m2

64

{
1

E
,
r 2

s

r2

}
+
m2

16

rs

r

1

E
rs

r

)
+O′tg , (17.47)

where

O′tg = βγ5m
rs

r
− βγ5 17m

16

r 2
s

r2
. (17.48)

We need to perform a second transformation, with

S ′tg = −i
β

4

{
O′tg,

1

E

}
= −i

m

4

(
γ5

{
1

E
,
rs

r

}
− γ5 17

16

{
1

E
,
r 2

s

r2

})
. (17.49)
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Ignoring all the terms outside our sphere of interest, we find

[
S ′tg, H

′′
tg

]
=
[
S ′tg, βE

]
− 1

2

[
S ′tg, β

{
E , rs

r

}]
+
[
S ′tg,O′tg

]
. (17.50)

By an argument identical to that found in (17.6), we find that

[
S ′tg,O′tg

]
= iO′tg . (17.51)

We then turn our attention to the second term

[
S ′tg, β

{
E , rs

r

}]
= − i

m

4

[
γ5

{
1

E
,
rs

r

}
−
���

���
��

γ5 17

16

{
1

E
,
r 2

s

r2

}
, β
{
E , rs

r

}]
= iβγ5m

4

{{
1

E
,
rs

r

}
,
{
E , rs

r

}}
= 2iβγ5m

r 2
s

r2
, (17.52)

where we used (17.11) for the last step. We now calculate the final term from equa-

tion (17.50),

[
S ′tg,O′tg

]
= − i

m

4

[
γ5

{
1

E
,
rs

r

}
−
���

���
��

γ5 17

16

{
1

E
,
r 2

s

r2

}
, βγ5m
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r
−
��

��
��
�

βγ5 17m

16

r 2
s
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]

=
i

4
β m2

{
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r
,

{
1

E
,
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r
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=

i

4
β m2

({
1

E
,
r 2

s

r2

}
+ 2

rs

r

1

E
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r

)
. (17.53)

Thus

[
S ′tg, H

′′
tg

]
= − i

(
−O′tg + βγ5m

r 2
s

r2
− βm

2

4

{
1

E
,
r 2

s

r2

}
− βm

2

2

rs

r

1

E
rs

r

)
. (17.54)

By inspection it is clear that only the first term will contribute to the double com-

mutator, i.e.,

[
S ′tg,

[
S ′tg, H

′′
tg

]]
= i
[
S ′tg,O′tg

]
, (17.55)
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and we already calculated this commutator (17.53), thus

[
S ′tg,

[
S ′tg, H

′′
tg

]]
= −

(
β
m2

4

{
1

E
,
r 2

s

r2

}
+ β

m2

2

rs

r

1

E
rs

r

)
. (17.56)

Thus after two transformations the Hamiltonian is

H ′′′tg = β

(
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2E
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2

{
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+
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32
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E , r
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+
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E
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)
+O′′tg , (17.57)

where

O′′tg = βγ5m
r 2

s

r2
. (17.58)

A third transformation is required, and will serve only to eliminate the remaining

odd part. Thus after three ultrarelativistic decoupling transforms, we finally find for

the tachyonic gravitationally coupled Dirac Hamiltonian, the expansion

Htg = β

(
E − m2

2E
− 1

2

{
E , rs

r

}
+

9

32

{
E , r

2
s

r2

}
+

7m2

64

{
1

E
,
r 2

s

r2

}
− 3m2

16

rs

r

1

E
rs

r

)
.

(17.59)

Which is similar in structure to the tardyonic example,Hds, with only sign differences.

The first sign difference is the correction term −m2/(2E), and is a result of the tachy-

onic dispersion relation. Additionally the final two term have opposite signs when

compared to the final two terms of Hds, indicating a difference in the gravitational

interaction of tachyons and tardyons. However, the leading order gravitational terms

are identical (1
2

{
E , rs

r

}
), indicating that both tardyons, and somewhat surprisingly,
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tachyons are attracted by a gravitational center, in the high–energy limit, in the same

sense as light beams are gravitationally lensed by heavy stars (see appendix D.6).

A few interesting properties come to light when one considers both of the ultra-

relativistic decoupled, gravitationally coupled Hamiltonians (the subluminal (17.32)

and the superluminal (17.59)). First we note that both equations have a β prefactor,

which indicates that in both cases we have particle–antiparticle symmetry. Second,

when we compare the two equations we find that all the identical terms are propor-

tional to E , as defined in (16.12), and are independent of the mass. On the other

hand, the terms with opposite signs are proportional to the inverse of E , and all have

a factor of mass squared, m2 (note that in both cases m is a real, positive number).

Thus we conclude that the kinetic terms of the equations account for the similarities,

while the gravitational mass terms distinguish the two Hamiltonians.



204

18. (PARTIAL) CONCLUSIONS

In chapters 16 and 17, we introduce the ultrarelativistic decoupling trans-

formation, which can be applied to tachyons as well as tardyons. The underlying

procedure is more complicated than that of the Foldy–Wouthuysen transformation,

as we must first ensure that we are working in a basis which is suited to the ultra-

relativistic decoupling transform, the Weyl basis for example. It may be necessary

to transform into such a basis. When dealing with pseudo–Hermitian Hamiltonians,

such a transform may change the type of pseudo–Hermiticity obeyed by the Hamilto-

nian. In the examples given, the Hamiltonians are transformed from γ5–Hermitian to

β–Hermitian. Although one can say the Hamiltonian went from γ5–Hermitian in the

Dirac representation, to γ5
W–Hermitian in the Weyl basis (see appendix A of [93]).

Like the Foldy–Wouthuysen transformation, we find that an exact ultrarel-

ativistic decoupling transform exists for free tachyons as well as free tardyons (see

chapter 16). However, it seems as if that is as far as the applicability of the exact

transform goes. For more complicated Hamiltonians, a perturbative method must

be employed, as we demonstrated with both the gravitationally coupled tardyon and

tachyon.

Surprisingly, we have found that in the high energy limit tachyons are attracted

by gravity. This is in sharp contrast to the classical result, in which tachyons are

repulsed by gravity. The disparity may result from the fact that in the high energy

limit, the tachyons are light–like, i.e., the momentum term dominates the mass term,

and as is demonstrated by the observable effects, light is attracted by gravity. This

means that the light barrier does not define the transition between particles being

attracted by and repulsed by gravity. This actually is obvious because the light

cone is approached for both high-energy tardyons as well as high-energy tachyons;
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the dispersion relation becomes E =
√
~p 2 +m2 ≈ |~p| or E =

√
~p 2 −m2 ≈ |~p| for

|~p| � m, respectively. Luxons (photons) traveling exactly at the speed of light are

known to be gravitationally lensed (see section 6.3 of [126]).
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Part IV

Conclusions
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Through the course of our investigations we have examined, and utilized, a

number of approximation methods in quantum mechanics. These range from numeri-

cal approximation of nonrelativistic quantum mechanics, to analytic, ultrarelativistic

approximations for both tardyons and tachyons. In all cases, we transform Hamil-

tonians into an intuitively more understandable form, where the physical degrees of

freedom are better displayed, and the operators obtain a more intuitive interpretation.

This is perhaps most obvious when we consider the nonrelativistic corrections to the

Dirac–Einstein–Schwarzschild Hamiltonian (9.76), obtained via a Foldy–Wouthuysen

transformation. The resulting nonrelativistic approximation lends itself quite nicely

to physical interpretation. This is partially due to the fact that the nonrelativistic ap-

proximation to the gravitational Hamiltonian has a similar structure when compared

to the well known nonrelativistic limit of the Dirac–Coulomb Hamiltonian [23,60].

In part I we begin by investigating three classes of Hamiltonians, Hermitian,

pseudo–Hermitian, and PT –symmetric. We work to determine what, if any, rela-

tion they all have to each other. Rather than creating a new, independent class of

Hamiltonians, pseudo–Hermiticity extends the definition of Hermiticity [1]. Then by

the very nature of pseudo–Hermiticity, it is clear that Hermitian operators must be a

subset pseudo–Hermitian operators (i.e., a Hermitian Hamiltonian is “1–Hermitian”

in the sense of the definition given in equation (2.13), setting η = 1 equal to the

unit operator). By considering the example cases of the real and imaginary cubic

anharmonic oscillators (equations (2.39) and (3.1), respectively) we are quickly able

to determine that neither PT –symmetry nor Hermiticity is a subset of the other. The

real cubic anharmonic oscillator is Hermitian but not PT –symmetric, while the imag-

inary cubic anharmonic oscillator is not Hermitian, but is PT –symmetric. By the

transitive relation it is then clear that the set of pseudo–Hermitian operators is not a

subset of the set PT –symmetric operators. We finally to consider whether or not the

set of PT –symmetric operators is a subset of the pseudo–Hermitian operators. The
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“obvious identification” of PT –symmetry being equivalent to P–Hermiticity, comes

from the consideration of Hamiltonians of the form H = ~p 2/(2m) + V , in which

case T H T = H+, and H will then be P–Hermitian. By looking at examples, the

simplest being a trivial model (“toy”) Hamiltonian, consisting of only the momentum

operator, Hp = p = −i ∂x, we find that PT –symmetry does not imply P–Hermiticity.

However, all the examples we consider are pseudo–Hermitian in some way. As such,

it is clear that the set of PT –symmetric operators is not a subset of the P–Hermitian

operators, but may be a subset of the pseudo–Hermitian operators. The two concepts

are clearly related, and constitute viable alternatives to Hermiticity.

Additionally, we investigate Hermitizing transforms, which map an exact PT –

symmetric Hamiltonian onto a Hermitian Hamiltonian [19, 31–34], order by order in

an expansion parameter. The Hermitizing transformation conserves the eigenvalues,

and would otherwise seem to suggest that PT –symmetry and Hermiticity are “equiva-

lent.” However, the calculation of these transforms is perturbative in nature, and gen-

erally leads to a much more complicated, non–local Hermitian Hamiltonian [15, 19].

Under such a transform, the original PT –symmetric Hamiltonian is generally easier

to work with. Moreover, in chapter 2.4 we show that the transformation is necessarily

non–unitary, and fails to conserve parity. By analytically calculating the metric of a

PT –symmetric Hamiltonian, it has been shown that p 2+ix3 cannot be similar to any

Hermitian Hamiltonian [21]. We also consider the differences between the physical

interpretation of a PT –symmetric Hamiltonian (a system in which the gain and loss

terms are in equilibrium) and a Hermitian Hamiltonian (a closed system). Finally,

by numerically calculating a set of PT –symmetric wave–functions (see chapter 3), we

develope an intuitive picture which is incompatible with that of a Hermitian wave–

function. We are left to conclude that PT –symmetry and pseudo–Hermiticity are

independent concepts.
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In chapter 3 we aim to develop an intuitive picture of PT –symmetric eigen-

states, which bear some similarities to eigenstates of a Hermitian Hamiltonian. While

the PT –symmetric wave–functions correspond to manifestly complex potentials, we

find that the modulus of the potential, which tends to infinity as x→ ±∞, confines

the wave–function, much like one would expect in the “classically allowed region” (see

figure 3.3). While nodes can be used to enumerate Hermitian wave–functions, PT –

symmetric wave–functions do not have any complex zeroes. However, the modulus

of these wave–functions do have local minima where we would expect to see nodes

based on the Hermitian picture, as reported in figures 3.4, 3.5, and 3.7. This allows

for a possible method of enumerating the PT –symmetric wave–functions.

Despite the similarities, there are some rather stark differences as well. While

the local minima may provide an opportunity to enumerate the wave–functions, the

fact that there are no complex zeroes is an indication that PT –symmetry is indepen-

dent of Hermiticity. Furthermore, there are an infinite number of both real and imagi-

nary zeroes, as reported in figure 3.6. Finally, we see that Hermitian Hamiltonians are

governed by the concavity condition. Due to the fact that the PT –symmetric poten-

tial is complex, no such condition can be imposed on the associated wave–functions.

These differences serve to distinguish PT –symmetry from Hermiticity, and ramify

our conclusion that it constitutes an independent concept.

In order to obtain these results, we use an easily scalable matrix diagonal-

ization algorithm which is specially suited for densely populated complex symmetric

matrices. The algorithm diagonalizes an input matrix in two steps. First, it tridiag-

onalizes the input matrix, and then it diagonalizes the resulting tridiagonal matrix

using an implicit shift. The user can implement the algorithm using the no–shift

option (which is not recommended), or using a linear, quadratic, or cubic shift. Nu-

merical evidence suggests that the cubic and quadratic shifts are in turn the most

efficient, depending on the structure of the matrix to be diagonalized.
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Finally, let us compare to routines within publicly accessible libraries (e.g.,

LAPACK [61]) which often act as black boxes, without a detailed discussion of the

algorithmic steps on which they are based. For typical applications (matrices around

rank 500), we find that our HTDQLS routine is somewhat faster than LAPACK’s routine

ZGEEVX. Furthermore, it can be challenging to alter LAPACK’s precision, while our

algorithm was written with transparency and ease of scalability in mind. It doesn’t

matter how fast a LAPACK routine can calculate the eigenvalues and/or eigenvectors

if more then 16 digit precision is required.

In part II we investigate a number of generalized Dirac Hamiltonians using the

standard Foldy–Wouthuysen transformation [22] and in doing so we obtain five new

results along with some rather well known results, e.g., the nonrelativistic limit of

the free Dirac particle, and the nonrelativistic limit of the Dirac–Coulomb Hamilto-

nian. We find the nonrelativistic limit of the Dirac–Einstein–Schwarzschild Hamilto-

nian (9.76) and find that the resulting Hamiltonian has a similar structure to the well

known result of the transformed Dirac–Coulomb Hamiltonian [23,60] (also see equa-

tion (9.33)). The leading terms are the usual kinetic corrections for a free particle,

while the second is instantly recognizable as the gravitational potential. The associ-

ated β prefactor ensures that both particles and antiparticles are attracted by gravity.

Additionally there is the gravitational analog to the zitterbewegung (Darwin) term,

as well as gravitational spin–orbit coupling, otherwise known as Fokker precession,

which is in full agreement with the classical result, which has in turn been confirmed

by Gravity Probe B [119]. Overall, there is particle–antiparticle symmetry, ensuring

that both particles and antiparticle behave the same when in a gravitational poten-

tial. This is in contrast to the result obtained when the chiral Foldy–Wouthuysen

transform is applied, which would otherwise imply that particles and antiparticles

behave differently when in a gravitational field (see chapter 10.6). We find the cor-

rections, up to the fourth order in momenta, of the Dirac Hamiltonian with a scalar
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potential (9.48). This Hamiltonian exhibits a surprising {~p 2, 1/r} term, despite the

similarities of the initial Hamiltonain and the untransformed Dirac–Coulomb Hamil-

tonian. Again to the forth order in momenta, we find the relativistic corrections to

the Dirac Hamiltonian with a scalar confining potential (9.58). Again we find that

the transformed Hamiltonian exhibits an anticommutator term as a kinetic correc-

tion. We find a compact representation of the Foldy–Wouthuysen transformed Dirac

Hamiltonian in a rotating non–inertial frame (9.108). We confirm that the Mashhoon

term [103] is unaffected by the transformation up to the fourth order in the momenta.

Finally, we apply the rotations from the Dirac–Einstein–Schwarzschild Hamiltonian

to the gravitationally coupled transition current (9.125). In addition to the known

corrections terms, there is an additional gravitational kinetic correction, as well as

gravitational corrections to the magnetic coupling.

In chapter 10 we apply the chiral Foldy–Wouthuysen transformation [24] to

the same set of generalized Dirac Hamiltonians investigated in chapter 9. The chiral

method utilizes some interesting properties of Dirac algebra to decouple the particle

and antiparticle degrees of freedom. Additionally, for the chiral transform to be uni-

tary, the input Hamiltonian must anticommute with the chiral operator J = i γ5β (see

chapter 10.1). We find that the results obtained using the standard and chiral trans-

formation agree (“accidentally”) for the free Dirac Hamiltonian (chapter 10.2). In

all other cases, the chiral transform introduces spurious parity breaking terms (chap-

ters 10.3–10.7). Perhaps this is not so surprising when considering the Dirac–Coulomb

Hamiltonian, which does not anticommute with J (chapter 10.3), and as such the chi-

ral transform is not unitary. The remainder of the generalized Dirac–Hamiltonians

we consider (chapters 10.4–10.7) do anticommute with J , so the chiral transform

is unitary. Both the standard and chiral Foldy–Wouthuysen transformation utilize

unitary transforms (in specific cases), and therefore produce Hermitian Hamiltonians

connected by a unitary transform. The results should then be equivalent. Yet the
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results contain conflicting terms and fulfill different symmetry relations. This is due

to the chiral transformation U as defined in equations (10.1) and (10.2), which breaks

parity, altering the fundamental symmetries of the Hamiltonian (see chapter 10.8).

Despite the “seductive” elegance of the chiral Foldy–Wouthuysen transformation, we

find that the standard Foldy–Wouthuysen transformation is a more reliable choice

when decoupling the particle and antiparticle degrees of freedom in the nonrelativistic

limit.

Finally, in part III we aim to gain a better understanding of Dirac Hamil-

tonians in the high-energy limit, including Dirac Hamiltonians of pseudo–Hermitian

form. The results profit from the preparations described in part I and II, where the

concepts of pseudo–Hermiticity and the Foldy–Wouthuysen transformation (nonrel-

ativistic decoupling transformation) have been described. We find results for the

ultrarelativistic decoupling of the free Dirac Hamiltonian, the gravitationally coupled

Dirac Hamiltonian, and their pseudo–Hermitian variants, i.e., tachyons. Inspired

by the Foldy–Wouthuysen transformation, we develop an ultrarelativistic decoupling

transform. An exact variation is used on the set of free particles, while a perturba-

tive approach is required for the more complicated example of gravitationally coupled

particles. Surprisingly, we find that while tachyons and tardyons are affected differ-

ently by the gravitational source, both are attracted by gravity in the hight energy

limit. This result contradicts the classical theory, in which tachyons are repulsed by

gravitational fields [30]. This result does not imply that all tachyons are attracted

by gravity, but it applies first and foremost to the high-energy limit, where particles

travel close to the speed of light. The result otherwise implies that in the high-

energy limit, the light barrier does not necessarily define a transition region between

particles being attracted to or repulsed by gravity. By comparing the subluminal

ultrarelativistic corrections to the gravitational interaction (17.32) to the superlumi-

nal ultrarelativistic corrections to the gravitational coupling (17.59) we notice that
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the expressions are almost identical, save for the signs of some of the higher-order

terms. We note that the terms proportional to the operator E , with no mass terms,

are identical, while the terms proportional to the inverse of E , all of which carry a

m2 dependence, carry the opposite sign. This tells us that the kinetic part of both

the tardyon and tachyon interact with gravity in the exact same way, while the mass

terms give rise to repulsive interactions for tachyons when the tardyon term would

otherwise be attractive.



APPENDIX A

EXPLICIT FORTRAN IMPLEMENTATION OF HTDQLS AND HTDQRS
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A.1. IMPLEMENTATION OF HTDQLS

A.1.1. Control Sequence. The subroutine CS allows the user to choose

between computing only eigenvalues, or computing both the eigenvalues and eigen-

vectors (which will take longer). If JOBZ=‘N’ then only eigenvalues are computed,

while if JOBZ=‘V’ then both eigenvalues and eigenvectors are computed. The eigen-

vector located in the ith column of A corresponds to the eigenvalue in the ith position

of D. There is also the option to sort the eigenvalues and eigenvectors. If the logical

SORTFLAG is true then the sorting will take place. Conversely, there will not be any

sorting if it is false.

SUBROUTINE HTDQLS(JOBZ, N, A, D, Z, SORTFLAG, SHIFTMODE)

IMPLICIT NONE

CHARACTER JOBZ

INTEGER N

COMPLEX*32 A(N, N), Z(N, N), D(N)

LOGICAL SORTFLAG

INTEGER SHIFTMODE

COMPLEX*32 E(0:N)

CALL COPYM(N, A, Z)

IF (JOBZ .EQ. ’N’) THEN

CALL HTD1(N, Z, D, E)

CALL QLS1(N, D, E, SHIFTMODE)

IF (SORTFLAG) CALL SORT1(N, D)

END IF

IF (JOBZ .EQ. ’V’) THEN

CALL HTD2(N, Z, D, E)

CALL QLS2(N, D, E, Z, SHIFTMODE)

IF (SORTFLAG) CALL SORT2(N, D, Z)

END IF

RETURN

END SUBROUTINE HTDQLS

A.1.2. Tridiagonalization. The subroutine TD1 tridiagonalizes a symmet-

ric matrix A and does not store the rotation matrices, while TD2 tridiagonalizes A and

does store the rotation matrix. The diagonal elements are stored in D, while the first
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sub diagonal is stored in E. Of course the first super diagonal is the same as the first

sub diagonal. The process is described in section 4.2

SUBROUTINE HTD1(N, A, D, E)

IMPLICIT NONE

INTEGER N

COMPLEX*32 A(N, N), D(N), E(0:N)

INTEGER I, J, K, L

COMPLEX*32 P, Q

LOGICAL REQTDS

DO I=N, 3, -1

D(I)=A(I, I)

P=0.0_16

REQTDS = .FALSE.

DO J=1, I-1

IF ((A(I,J) .NE. 0.0_16) .AND. (J .LE. I-2)) REQTDS = .TRUE.

P=P+A(I, J)**2

END DO

IF (REQTDS) THEN

Q=SQRT(P)

IF (ABS(A(I,I-1)+Q) .GE. ABS(A(I,I-1)-Q)) THEN

E(I)=-Q

P=P+A(I, I-1)*Q

A(I, I-1)=A(I, I-1)+Q

ELSE

E(I)=Q

P=P-A(I,I-1)*Q

A(I,I-1)=A(I,I-1)-Q

END IF

Q=0.0_16

DO J=1, I-1

E(J)=0.0_16

DO K=1, J

E(J)=E(J)+A(J, K)*A(I, K)

END DO

DO K=J+1, I-1

E(J)=E(J)+A(K, J)*A(I, K)

END DO

E(J)=E(J)/P

Q=Q+A(I, J)*E(J)

END DO

Q=Q/(2.0_16*P)

DO J=1, I-1

E(J)=E(J)-Q*A(I, J)
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DO K=1, J

A(J, K)=A(J, K)-E(J)*A(I, K)-A(I, J)*E(K)

END DO

END DO

ELSE

E(I)=A(I,I-1)

END IF

END DO

D(2)=A(2, 2)

E(2)=A(2, 1)

D(1)=A(1, 1)

DO I=1, N-1

E(I)=E(I+1)

END DO

E(0)=0.0_16

E(N)=0.0_16

RETURN

END SUBROUTINE HTD1

SUBROUTINE HTD2(N, A, D, E)

IMPLICIT NONE

INTEGER N

COMPLEX*32 A(N, N), D(N), E(0:N)

INTEGER I, J, K, L

COMPLEX*32 P, Q

LOGICAL REQTDS

DO I=N, 3, -1

D(I)=A(I, I)

P=0.0_16

REQTDS = .FALSE.

DO J=1, I-1

IF ((A(I,J) .NE. 0.0_16) .AND. (J .LE. I-2)) REQTDS = .TRUE.

P=P+A(I, J)**2

END DO

IF (REQTDS) THEN

Q=SQRT(P)

IF (ABS(A(I,I-1)+Q) .GE. ABS(A(I,I-1)-Q)) THEN

E(I)=-Q

P=P+A(I, I-1)*Q

A(I, I-1)=A(I, I-1)+Q

ELSE

E(I)=Q

P=P-A(I,I-1)*Q
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A(I,I-1)=A(I,I-1)-Q

END IF

Q=0.0_16

DO J=1, I-1

A(J, I)=A(I, J)/P

E(J)=0.0_16

DO K=1, J

E(J)=E(J)+A(J, K)*A(I, K)

END DO

DO K=J+1, I-1

E(J)=E(J)+A(K, J)*A(I, K)

END DO

E(J)=E(J)/P

Q=Q+A(I, J)*E(J)

END DO

Q=Q/(2.0_16*P)

DO J=1, I-1

E(J)=E(J)-Q*A(I, J)

DO K=1, J

A(J, K)=A(J, K)-E(J)*A(I, K)-A(I, J)*E(K)

END DO

END DO

ELSE

E(I)=A(I,I-1)

DO J=1, I-1

A(I,J) = 0.0_16

A(J,I) = 0.0_16

END DO

END IF

END DO

D(2)=A(2, 2)

E(2)=A(2, 1)

D(1)=A(1, 1)

DO I=1, N-1

E(I)=E(I+1)

END DO

E(0)=0.0_16

E(N)=0.0_16

A(1, 1)=1.0_16

A(2, 1)=0.0_16

DO I=2, N

DO J=1, I-1

P=0.0_16

DO K=1, I-1
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P=P+A(I, K)*A(K, J)

END DO

DO K=1, I-1

A(K, J)=A(K, J)-A(K, I)*P

END DO

END DO

A(I, I)=1.0_16

DO J=1, I-1

A(I, J)=0.0_16

A(J, I)=0.0_16

END DO

END DO

RETURN

END SUBROUTINE HTD2

A.1.3. Diagonalization. The subroutine QLS1 diagonalizes the tridiagonal

matrix stored in D and E, and does not store the rotation matrix while the subroutine

QLS2 diagonalizes the tridiagonal matrix stored in D and E, and does store the rotation

matrix. These routines detect premature zeroes, and perform the deflation steps when

necessary. The procedure is described in chapter 4.3

SUBROUTINE QLS1(N, D, E, SHIFTMODE)

IMPLICIT NONE

INTEGER N

COMPLEX*32 D(N), E(0:N)

INTEGER SHIFTMODE

INTEGER I, J, K, L, M

COMPLEX*32 C, P, Q, R, S, T, U

DO I=1, N-1

10 IF (D(I)+E(I) .NE. D(I)) THEN

DO M=I+1, N-1

IF (D(M)+E(M) .EQ. D(M)) GOTO 20

END DO

20 CALL SHIFT(N, I, M, D, E, S, SHIFTMODE)

P=D(M)-S

Q=E(M-1)

T=D(M)

U=E(M-1)

DO K=M-1, I, -1

R=SQRT(Q**2+P**2)

E(K+1)=R

C=P/R
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S=Q/R

D(K+1)=C**2*T+2.0_16*C*S*U+S**2*D(K)

P=(C**2-S**2)*U+C*S*(D(K)-T)

T=C**2*D(K)-2.0_16*C*S*U+S**2*T

U=C*E(K-1)

Q=S*E(K-1)

END DO

D(I)=T

E(I)=P

E(M)=0.0_16

GOTO 10

END IF

END DO

RETURN

END SUBROUTINE QLS1

SUBROUTINE QLS2(N, D, E, Z, SHIFTMODE)

IMPLICIT NONE

INTEGER N

COMPLEX*32 D(N), E(0:N), Z(N, N)

INTEGER SHIFTMODE

INTEGER I, J, K, L, M

COMPLEX*32 C, P, Q, R, S, T, U

DO I=1, N-1

10 IF (D(I)+E(I) .NE. D(I)) THEN

DO M=I+1, N-1

IF (D(M)+E(M) .EQ. D(M)) GOTO 20

END DO

20 CALL SHIFT(N, I, M, D, E, S, SHIFTMODE)

P=D(M)-S

Q=E(M-1)

T=D(M)

U=E(M-1)

DO K=M-1, I, -1

R=SQRT(Q**2+P**2)

E(K+1)=R

C=P/R

S=Q/R

D(K+1)=C**2*T+2.0_16*C*S*U+S**2*D(K)

P=(C**2-S**2)*U+C*S*(D(K)-T)

T=C**2*D(K)-2.0_16*C*S*U+S**2*T

U=C*E(K-1)

Q=S*E(K-1)
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DO L=1, N

R=Z(L, K+1)

Z(L, K+1)=S*Z(L, K)+C*R

Z(L, K)=C*Z(L, K)-S*R

END DO

END DO

D(I)=T

E(I)=P

E(M)=0.0_16

GOTO 10

END IF

END DO

RETURN

END SUBROUTINE QLS2

A.1.4. Shift. The subroutine SHIFT is directed by SHIFTMODE. The parame-

ter SHIFTMODE can be 0, 1, 2 or 3, which will then direct the subroutine to implement

no shift, a linear shift, a quadratic shift or a cubic shift respectively. For the quadratic

and cubic shifts, the subroutine additionally chooses which of the two or three shifts

should be used based on which is closest to the element which the routine is working

to converge. The different shifts are discussed in chapter 4.3.1

SUBROUTINE SHIFT(N, K, V, D, E, S, SHIFTMODE)

IMPLICIT NONE

INTEGER N, K, V

COMPLEX*32 D(N), E(0:N), S

REAL*16, PARAMETER::C=2.0_16**(1.0_16/3.0_16)

COMPLEX*32, PARAMETER::II=(0.0_16,1.0_16)

COMPLEX*32 X, Y, P, Q, R

COMPLEX*32 S1, S2, S3

REAL*16 D1, D2, D3

INTEGER SHIFTMODE

IF ((SHIFTMODE .LT. 0) .OR. (SHIFTMODE .GT. 3)) THEN

PRINT*, ’INVALID SHIFTMODE: OPERATION TERMINATED’

STOP

END IF

IF (SHIFTMODE .EQ. 0) THEN

S = 0.0_16

ELSE IF (SHIFTMODE .EQ. 1) THEN

S = D(K)

ELSE IF ((V-K .GT. 3) .AND. (SHIFTMODE .EQ. 3)) THEN
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P=2.0_16*D(K)-D(K+1)-D(K+2)

Q=D(K)-2.0_16*D(K+1)+D(K+2)

R=P*Q+9.0_16*E(K)**2

P=D(K)+D(K+1)-2.0_16*D(K+2)

Q=2.0_16*D(K)-D(K+1)

X=-P*R+9.0_16*Q*E(K+1)**2

P=D(K)+D(K+1)+D(K+2)

Q=P**2

P=D(K+1)*D(K+2)+D(K)*(D(K+1)+D(K+2))

R=P-E(K)**2-E(K+1)**2

Y=-Q+3.0_16*R

P=-9.0_16*D(K+2)*(E(K+1)**2)+X

Q=P**2+4.0_16*(Y**3)

R=SQRT(Q)

Q=P+R

P=EXP(LOG(Q)/3.0_16)

Q=Y/(3.0_16*P)

R=P/(3.0_16*C)

P=(D(K)+D(K+1)+D(K+2))/3.0_16

X=(1+II*SQRT(3.0_16))

Y=(1-II*SQRT(3.0_16))

S1=P+C*Q-R

S2=P-X*Q/(C**2)+Y*R/(2.0_16)

S3=P-Y*Q/(C**2)+X*R/(2.0_16)

S=S1

D1=ABS(D(K)-S1)

D2=ABS(D(K)-S2)

D3=ABS(D(K)-S3)

IF (D2 .LT. D1) THEN

S=S2

D1=D2

END IF

IF (D3 .LT. D1) THEN

S=S3

END IF

ELSE

P=(D(K+1)-D(K))/(2.0_16*E(K))

Q=SQRT(P**2+1.0_16)

X=-E(K)*(P-Q)

Y=-E(K)*(P+Q)

IF (ABS(X) .GT. ABS(Y)) THEN

S=D(K)+E(K)*(P+Q)

ELSE

S=D(K)+E(K)*(P-Q)
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END IF

END IF

RETURN

END SUBROUTINE SHIFT

A.1.5. Sort. The subroutine SORT1 sorts only the eigenvalues stored in D to

have ascending real parts while SORT2 sorts both the eigenvalues and eigenvectors,

such that the eigenvalues have ascending real parts, and the eigenvectors are in the

corresponding column of A.

SUBROUTINE SORT1(N, D)

IMPLICIT NONE

INTEGER N

COMPLEX*32 D(N)

INTEGER I, J

COMPLEX*32 P

DO I=2, N

J=I

10 IF (DBLE(D(J)) .LT. DBLE(D(J-1))) THEN

P=D(J-1)

D(J-1)=D(J)

D(J)=P

IF (J .GT. 2) THEN

J=J-1

GOTO 10

END IF

END IF

END DO

RETURN

END SUBROUTINE SORT1

SUBROUTINE SORT2(N, D, A)

IMPLICIT NONE

INTEGER N

COMPLEX*32 D(N), A(N, N)

INTEGER I, J, K

COMPLEX*32 P

DO I=2, N

J=I

10 IF (DBLE(D(J)) .LT. DBLE(D(J-1))) THEN

P=D(J-1)
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D(J-1)=D(J)

D(J)=P

DO K=1, N

P=A(K, J-1)

A(K, J-1)=A(K, J)

A(K, J)=P

END DO

IF (J .GT. 2) THEN

J=J-1

GOTO 10

END IF

END IF

END DO

RETURN

END SUBROUTINE SORT2

A.2. IMPLEMENTATION OF HTDQRS

Here we present an explicit implementation of HTDQRS, the complementary

algorithm to HTDQLS. As the two algorithms are very similar in how they are imple-

mented, we refer you to chapter A.1 for details on how each subroutine functions.

SUBROUTINE HTDQRS(JOBZ, N, A, D, Z, SORTFLAG, SHIFTMODE)

IMPLICIT NONE

CHARACTER JOBZ

INTEGER N

COMPLEX*32 A(N, N), Z(N, N), D(N)

LOGICAL SORTFLAG

INTEGER SHIFTMODE, I

COMPLEX*32 E(0:N)

CALL COPYM(N, A, Z)

DO I = 0,N

E(I) = (0.0_16, 0.0_16)

END DO

IF (JOBZ .EQ. ’N’) THEN

CALL HTD1(N, Z, D, E)

CALL QRS1(N, D, E, SHIFTMODE)

IF (SORTFLAG) CALL SORT1(N, D)

END IF

IF (JOBZ .EQ. ’V’) THEN

CALL HTD2(N, Z, D, E)

CALL QRS2(N, D, E, Z, SHIFTMODE)
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IF (SORTFLAG) CALL SORT2(N, D, Z)

END IF

RETURN

END SUBROUTINE HTDQRS

SUBROUTINE COPYM(N, A, Z)

IMPLICIT NONE

INTEGER N

complex*32 A(N, N), Z(N, N)

INTEGER I, J

DO I=1, N

DO J=1, N

Z(I,J)=A(I,J)

END DO

END DO

RETURN

END SUBROUTINE COPYM

SUBROUTINE HTD1(N, A, D, E)

IMPLICIT NONE

INTEGER N

COMPLEX*32 A(N, N), D(N), E(0:N)

INTEGER I, J, K, L

COMPLEX*32 P, Q

LOGICAL REQTDS

DO I=1, N-2

D(I)=A(I, I)

P=0.0_16

REQTDS = .FALSE.

DO J=I+1, N

IF ((A(I,J) .NE. 0.0_16) .AND. (J .GE. I+2)) REQTDS = .TRUE.

P=P+A(I, J)**2

END DO

IF (REQTDS) THEN

Q=SQRT(P)

IF (ABS(A(I,I-1)+Q) .GE. ABS(A(I,I-1)-Q)) THEN

E(I)=-Q

P=P+A(I, I+1)*Q

A(I, I+1)=A(I, I+1)+Q

ELSE

E(I)=Q

P=P-A(I,I+1)*Q
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A(I,I+1)=A(I,I+1)-Q

END IF

Q=0.0_16

DO J=N, I+1,-1

E(J)=0.0_16

DO K=N, J+1, -1

E(J)=E(J)+A(J, K)*A(I, K)

END DO

DO K=J, I+1, -1

E(J)=E(J)+A(K, J)*A(I, K)

END DO

E(J)=E(J)/P

Q=Q+A(I, J)*E(J)

END DO

Q=Q/(2.0_16*P)

DO J=N, I+1, -1

E(J)=E(J)-Q*A(I, J)

DO K=N, J, -1

A(J, K)=A(J, K)-E(J)*A(I, K)-A(I, J)*E(K)

END DO

END DO

ELSE

E(I)=A(I,I+1)

END IF

END DO

D(N-1)=A(N-1, N-1)

E(N-1)=A(N-1, N)

D(N)=A(N, N)

E(0) = 0.0_16

E(N) = 0.0_16

RETURN

END SUBROUTINE HTD1

SUBROUTINE HTD2(N, A, D, E)

IMPLICIT NONE

INTEGER N

COMPLEX*32 A(N, N), D(N), E(0:N)

LOGICAL REQTDS

INTEGER I, J, K, L

COMPLEX*32 P, Q

DO I=1, N-2

D(I)=A(I, I)

P=0.0_16
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REQTDS = .FALSE.

DO J=I+1, N

IF ((A(I,J) .NE. 0.0_16) .AND. (J .GE. I+2)) REQTDS = .TRUE.

P=P+A(I, J)**2

END DO

IF (REQTDS) THEN

Q=SQRT(P)

IF (ABS(A(I,I-1)+Q) .GE. ABS(A(I,I-1)-Q)) THEN

E(I)=-Q

P=P+A(I, I+1)*Q

A(I, I+1)=A(I, I+1)+Q

ELSE

E(I)=Q

P=P-A(I,I+1)*Q

A(I,I+1)=A(I,I+1)-Q

END IF

Q=0.0_16

DO J=N, I+1,-1

A(J, I)=A(I, J)/P

E(J)=0.0_16

DO K=N, J+1, -1

E(J)=E(J)+A(J, K)*A(I, K)

END DO

DO K=J, I+1, -1

E(J)=E(J)+A(K, J)*A(I, K)

END DO

E(J)=E(J)/P

Q=Q+A(I, J)*E(J)

END DO

Q=Q/(2.0_16*P)

DO J=N, I+1, -1

E(J)=E(J)-Q*A(I, J)

DO K=N, J, -1

A(J, K)=A(J, K)-E(J)*A(I, K)-A(I, J)*E(K)

END DO

END DO

ELSE

E(I)=A(I,I+1)

DO J=I+1, N

A(I, J) = 0.0_16

A(J, I) = 0.0_16

END DO

END IF

END DO
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D(N-1)=A(N-1, N-1)

E(N-1)=A(N-1, N)

D(N)=A(N, N)

A(N, N)=1.0_16

A(N-1, N)=0.0_16

E(0) = 0.0_16

E(N) = 0.0_16

DO I=N-1, 1, -1

DO J=N, I+1, -1

P=0.0_16

DO K=N, I+1, -1

P=P+A(I, K)*A(K, J)

END DO

DO K=N, I+1, -1

A(K, J)=A(K, J)-A(K, I)*P

END DO

END DO

A(I, I)=1.0_16

DO J=N, I+1, -1

A(I, J)=0.0_16

A(J, I)=0.0_16

END DO

END DO

RETURN

END SUBROUTINE HTD2

SUBROUTINE QRS1(N, D, E, SHIFTMODE)

IMPLICIT NONE

INTEGER N

COMPLEX*32 D(N), E(0:N)

INTEGER SHIFTMODE

INTEGER I, J, K, L, M

COMPLEX*32 C, P, Q, R, S, T, U

DO I=N-1, 1, -1

10 IF (D(I+1)+E(I) .NE. D(I+1)) THEN

DO M=I-1, 1, -1

IF (D(M+1)+E(M) .EQ. D(M+1)) GOTO 20

END DO

20 CALL SHIFT(N, I, M, D, E, S, SHIFTMODE)

P=D(M+1)-S

Q=E(M+1)

T=D(M+1)

U=E(M+1)
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DO K=M+1, I

R=SQRT(Q**2+P**2)

E(K-1)=R

C=P/R

S=-Q/R

D(K)=C**2*T-2.0_16*C*S*U+S**2*D(K+1)

P=(C**2-S**2)*U+C*S*(T-D(K+1))

T=C**2*D(K+1)+2.0_16*C*S*U+S**2*T

U=C*E(K+1)

Q=-S*E(K+1)

END DO

D(I+1)=T

E(I)=P

E(M)=0.0_16

GOTO 10

END IF

END DO

RETURN

END SUBROUTINE QRS1

SUBROUTINE QRS2(N, D, E, Z, SHIFTMODE)

IMPLICIT NONE

INTEGER N

COMPLEX*32 D(N), E(0:N), Z(N, N)

INTEGER SHIFTMODE

INTEGER I, J, K, L, M

COMPLEX*32 C, P, Q, R, S, T, U

DO I=N-1, 1, -1

10 IF (D(I+1)+E(I) .NE. D(I+1)) THEN

DO M=I-1, 1, -1

IF (D(M+1)+E(M) .EQ. D(M+1)) GOTO 20

END DO

20 CALL SHIFT(N, I, M, D, E, S, SHIFTMODE)

P=D(M+1)-S

Q=E(M+1)

T=D(M+1)

U=E(M+1)

DO K=M+1, I

R=SQRT(Q**2+P**2)

E(K-1)=R

C=P/R

S=-Q/R

D(K)=C**2*T-2.0_16*C*S*U+S**2*D(K+1)
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P=(C**2-S**2)*U+C*S*(T-D(K+1))

T=C**2*D(K+1)+2.0_16*C*S*U+S**2*T

U=C*E(K+1)

Q=-S*E(K+1)

DO L=1, N

R=Z(L, K+1)

Z(L, K+1)=S*Z(L, K)+C*R

Z(L, K)=C*Z(L, K)-S*R

END DO

END DO

D(I+1)=T

E(I)=P

E(M)=0.0_16

GOTO 10

END IF

END DO

RETURN

END SUBROUTINE QRS2

SUBROUTINE SHIFT(N, K, M, D, E, S, SHIFTMODE)

IMPLICIT NONE

INTEGER N, K, M

COMPLEX*32 D(N), E(0:N), S

REAL*16, PARAMETER::C=2.0_16**(1.0_16/3.0_16)

COMPLEX*32, PARAMETER::II=(0.0_16,1.0_16)

COMPLEX*32 X, Y, P, Q, R

COMPLEX*32 S1, S2, S3

REAL*16 D1, D2, D3

INTEGER SHIFTMODE

IF ((SHIFTMODE .LT. 0) .OR. (SHIFTMODE .GT. 3)) THEN

PRINT*, ’INVALID SHIFTMODE: OPERATION TERMINATED’

STOP

END IF

IF (SHIFTMODE .EQ. 0) THEN

S = 0.0_16

ELSE IF (SHIFTMODE .EQ. 1) THEN

S = D(K+1)

ELSE IF ((K-M .GT. 3) .AND. (SHIFTMODE .EQ. 3)) THEN

P=2.0_16*D(K-1)-D(K)-D(K+1)

Q=D(K-1)-2.0_16*D(K)+D(K+1)

R=P*Q+9.0_16*E(K-1)**2

P=D(K-1)+D(K)-2.0_16*D(K+1)

Q=2.0_16*D(K-1)-D(K)
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X=-P*R+9.0_16*Q*E(K)**2

P=D(K-1)+D(K)+D(K+1)

Q=P**2

P=D(K)*D(K+1)+D(K-1)*(D(K)+D(K+1))

R=P-E(K-1)**2-E(K)**2

Y=-Q+3.0_16*R

P=-9.0_16*D(K+1)*(E(K)**2)+X

Q=P**2+4.0_16*(Y**3)

R=SQRT(Q)

Q=P+R

P=EXP(LOG(Q)/3.0_16)

Q=Y/(3.0_16*P)

R=P/(3.0_16*C)

P=(D(K-1)+D(K)+D(K+1))/3.0_16

X=(1+II*SQRT(3.0_16))

Y=(1-II*SQRT(3.0_16))

S1=P+C*Q-R

S2=P-X*Q/(C**2)+Y*R/(2.0_16)

S3=P-Y*Q/(C**2)+X*R/(2.0_16)

S=S1

D1=ABS(D(K+1)-S1)

D2=ABS(D(K+1)-S2)

D3=ABS(D(K+1)-S3)

IF (D2 .LT. D1) THEN

S=S2

D1=D2

END IF

IF (D3 .LT. D1) THEN

S=S3

END IF

ELSE

P=(D(K)-D(K+1))/(2.0_16*E(K))

Q=SQRT(P**2+1.0_16)

D1=ABS(-E(K)*(P-Q))

D2=ABS(-E(K)*(P+Q))

IF (D1 .LT.D2) THEN

S=D(K+1)+E(K)*(P-Q)

ELSE

S=D(K+1)+E(K)*(P+Q)

END IF

END IF

RETURN

END SUBROUTINE SHIFT
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SUBROUTINE SORT1(N, D)

IMPLICIT NONE

INTEGER N

COMPLEX*32 D(N)

INTEGER I, J

COMPLEX*32 P

DO I=2, N

J=I

10 IF (DBLE(D(J)) .LT. DBLE(D(J-1))) THEN

P=D(J-1)

D(J-1)=D(J)

D(J)=P

IF (J .GT. 2) THEN

J=J-1

GOTO 10

END IF

END IF

END DO

RETURN

END SUBROUTINE SORT1

SUBROUTINE SORT2(N, D, A)

IMPLICIT NONE

INTEGER N

COMPLEX*32 D(N), A(N, N)

INTEGER I, J, K

COMPLEX*32 P

DO I=2, N

J=I

10 IF (DBLE(D(J)) .LT. DBLE(D(J-1))) THEN

P=D(J-1)

D(J-1)=D(J)

D(J)=P

DO K=1, N

P=A(K, J-1)

A(K, J-1)=A(K, J)

A(K, J)=P

END DO

IF (J .GT. 2) THEN

J=J-1

GOTO 10

END IF
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END IF

END DO

RETURN

END SUBROUTINE SORT2
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B.1. OVERVIEW

As discussed in chapter 4.2.4, it is possible to perform QL and QR decompo-

sitions, and subsequently matrix diagonalization using solely Householder reflections.

Without loss of generality, here we discuss the plain QL implementation (PQL), as

the plain QR algorithm works in the much the same way, save for the fact that it

performs QR decompositions in place of the QL decompositions.

Unlike the HTDQLS and HTDQRS routines, the PQL and PQR algorithms are not

presented as a master subroutine with versions of subroutines that carry out the

calculations. Instead we present four algorithms which are independent of each other.

Two of which are implementations of the PQL algorithm, while the other two are

implementations of the PQR algorithm. The difference between the two PQL and the

two PQR algorithms is whether they are calculating the only the eigenvalues (denoted

by a ‘1’ following the title) or calculating both the eigenvalues and eigenvectors

(denoted by a ‘2’ at the end of the title). In actuality the difference is contained in

about 24 lines of code.

As in the case of the HTDQLS algorithm, we do not need to explicitly calculate

the Q matrices, and as we shall see we actually only ever explicitly calculate the first

one. We do however need to calculate explicit values for at least a portion of the Li

matrix (here Li is the in terms of what was presented in chapter 4.3.1). In the case of

the PQL algorithm, we will have three arrays to keep track of (2 if just the eigenvalues

are to be found, and the following algorithm is modified as prescribed).

B.2. PLAIN QL ALGORITHM

SUBROUTINE PQLX1(N, A, D)

IMPLICIT NONE

INTEGER N

COMPLEX*32 A(N,N), D(N)

COMPLEX*32 L(N,N), V(N), W(N)
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COMPLEX*32 P, Q

INTEGER I, J, K, M

M=N

DO

Q=0.0_16

DO I=1, M-1

Q=Q+A(I,M)

END DO

IF(A(M,M)+Q .EQ. A(M,M)) M=M-1

IF(M .EQ. 1) EXIT

DO I=1, M

DO J=1, M

L(I,J)=A(I,J)

END DO

END DO

DO K=M, 2, -1

Q=0.0_16

DO I=1, K

V(I)=L(I,K)

Q=Q+V(I)*V(I)

END DO

P=SQRT(Q)

IF (P*L(K,K) .EQ. -Q) P = -P

V(K)=V(K)+P

P=P*L(K,K)+Q

Q=0.0_16

DO I=1, K

W(I)=0.0_16

DO J=1, K

W(I)=W(I)+A(I,J)*V(J)/P

END DO

Q=Q+V(I)*W(I)/(2*P)

END DO

DO I=1, K

W(I)=W(I)-Q*V(I)

END DO

DO I=1, K

DO J=1, K

A(I,J)=A(I,J)-V(I)*W(J)-W(I)*V(J)

END DO

END DO

DO I=K+1, N

W(I)=0.0_16

DO J=1, K
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W(I)=W(I)+V(J)*A(J,I)/P

END DO

DO J=1, K

A(J,I)=A(J,I)-V(J)*W(I)

A(I,J)=A(J,I)

END DO

END DO

DO I=1, k-1

W(I)=0.0_16

DO J=1, K

W(I)=W(I)+V(J)*L(J,I)/P

END DO

DO J=1, k-1

L(J,I)=L(J,I)-V(J)*W(I)

END DO

END DO

END DO

END DO

DO I=1, N

D(I)=A(I,I)

END DO

RETURN

END SUBROUTINE PQLX1

SUBROUTINE PQLX2(N, A, Z, D)

IMPLICIT NONE

INTEGER N

COMPLEX*32 A(N,N), Z(N,N), D(N)

COMPLEX*32 L(N,N), V(N), W(N)

COMPLEX*32 P, Q

INTEGER I, J, K, M

DO I=1, N

DO J=1, N

IF(I .EQ. J) Z(I,J)=1.0_16

IF(I .NE. J) Z(I,J)=0.0_16

END DO

END DO

M=N

DO

Q=0.0_16

DO I=1, M-1

Q=Q+A(I,M)

END DO
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IF(A(M,M)+Q .EQ. A(M,M)) M=M-1

IF(M .EQ. 1) EXIT

DO I=1, M

DO J=1, M

L(I,J)=A(I,J)

END DO

END DO

DO K=M, 2, -1

Q=0.0_16

DO I=1, K

V(I)=L(I,K)

Q=Q+V(I)*V(I)

END DO

P=SQRT(Q)

IF (P*L(K,K) .EQ. -Q) P = -P

V(K)=V(K)+P

P=P*L(K,K)+Q

Q=0.0_16

DO I=1, K

W(I)=0.0_16

DO J=1, K

W(I)=W(I)+A(I,J)*V(J)/P

END DO

Q=Q+V(I)*W(I)/(2*P)

END DO

DO I=1, K

W(I)=W(I)-Q*V(I)

END DO

DO I=1, K

DO J=1, K

A(I,J)=A(I,J)-V(I)*W(J)-W(I)*V(J)

END DO

END DO

DO I=K+1, N

W(I)=0.0_16

DO J=1, K

W(I)=W(I)+V(J)*A(J,I)/P

END DO

DO J=1, K

A(J,I)=A(J,I)-V(J)*W(I)

A(I,J)=A(J,I)

END DO

END DO

DO I=1, k-1
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W(I)=0.0_16

DO J=1, K

W(I)=W(I)+V(J)*L(J,I)/P

END DO

DO J=1, k-1

L(J,I)=L(J,I)-V(J)*W(I)

END DO

END DO

DO I=1, N

W(I)=0.0_16

DO J=1, K

W(I)=W(I)+Z(I,J)*V(J)/P

END DO

DO J=1, K

Z(I,J)=Z(I,J)-W(I)*V(J)

END DO

END DO

END DO

END DO

DO I=1, N

D(I)=A(I,I)

END DO

RETURN

END SUBROUTINE PQLX2

B.3. PLAIN QR ALGORITHM

SUBROUTINE PQRX1(N, A, D)

IMPLICIT NONE

INTEGER N

COMPLEX*32 A(N,N), D(N)

COMPLEX*32 R(N,N), V(N), W(N)

COMPLEX*32 P, Q

INTEGER I, J, K, M

M=1

DO

Q=0.0_16

DO I=M+1, N

Q=Q+A(I,M)

END DO

IF(A(M,M)+Q .EQ. A(M,M)) M=M+1

IF(M .EQ. N-1) EXIT

DO I=M, N
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DO J=M, N

R(I,J)=A(I,J)

END DO

END DO

DO K=M, N-1

Q=0.0_16

DO I=K, N

V(I)=R(I,K)

Q=Q+V(I)*V(I)

END DO

P=SQRT(Q)

IF (P*R(K,K) .EQ. -Q) P = -P

V(K)=V(K)+P

P=P*R(K,K)+Q

Q=0.0_16

DO I=K, N

W(I)=0.0_16

DO J=K, N

W(I)=W(I)+A(I,J)*V(J)/P

END DO

Q=Q+V(I)*W(I)/(2*P)

END DO

DO I=K, N

W(I)=W(I)-Q*V(I)

END DO

DO I=K, N

DO J=K, N

A(I,J)=A(I,J)-V(I)*W(J)-W(I)*V(J)

END DO

END DO

DO I=1, K-1

W(I)=0.0_16

DO J=K, N

W(I)=W(I)+V(J)*A(I,J)/P

END DO

DO J=K, N

A(I,J)=A(I,J)-V(J)*W(I)

A(J,I)=A(I,J)

END DO

END DO

DO I=K+1, N

W(I)=0.0_16

DO J=K, N

W(I)=W(I)+V(J)*R(J,I)/P
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END DO

DO J=K+1, N

R(J,I)=R(J,I)-V(J)*W(I)

END DO

END DO

END DO

END DO

DO I=1, N

D(I)=A(I,I)

END DO

RETURN

END SUBROUTINE PQRX1

SUBROUTINE PQRX2(N, A, Z, D)

IMPLICIT NONE

INTEGER N

COMPLEX*32 A(N,N), Z(N,N), D(N)

COMPLEX*32 R(N,N), V(N), W(N)

COMPLEX*32 P, Q

INTEGER I, J, K, M

DO I=1, N

DO J=1, N

IF(I .EQ. J) Z(I,J)=1.0_16

IF(I .NE. J) Z(I,J)=0.0_16

END DO

END DO

M=1

DO

Q=0.0_16

DO I=M+1, N

Q=Q+A(I,M)

END DO

IF(A(M,M)+Q .EQ. A(M,M)) M=M+1

IF(M .EQ. N-1) EXIT

DO I=M, N

DO J=M, N

R(I,J)=A(I,J)

END DO

END DO

DO K=M, N-1

Q=0.0_16

DO I=K, N

V(I)=R(I,K)
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Q=Q+V(I)*V(I)

END DO

P=SQRT(Q)

IF (P*R(K,K) .EQ. -Q) P = -P

V(K)=V(K)+P

P=P*R(K,K)+Q

Q=0.0_16

DO I=K, N

W(I)=0.0_16

DO J=K, N

W(I)=W(I)+A(I,J)*V(J)/P

END DO

Q=Q+V(I)*W(I)/(2*P)

END DO

DO I=K, N

W(I)=W(I)-Q*V(I)

END DO

DO I=K, N

DO J=K, N

A(I,J)=A(I,J)-V(I)*W(J)-W(I)*V(J)

END DO

END DO

DO I=1, K-1

W(I)=0.0_16

DO J=K, N

W(I)=W(I)+V(J)*A(I,J)/P

END DO

DO J=K, N

A(I,J)=A(I,J)-V(J)*W(I)

A(J,I)=A(I,J)

END DO

END DO

DO I=K+1, N

W(I)=0.0_16

DO J=K, N

W(I)=W(I)+V(J)*R(J,I)/P

END DO

DO J=K+1, N

R(J,I)=R(J,I)-V(J)*W(I)

END DO

END DO

DO I=1, N

W(I)=0.0_16

DO J=K, N
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W(I)=W(I)+Z(I,J)*V(J)/P

END DO

DO J=K, N

Z(I,J)=Z(I,J)-W(I)*V(J)

END DO

END DO

END DO

END DO

DO I=1, N

D(I)=A(I,I)

END DO

RETURN

END SUBROUTINE PQRX2
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C.1. SCHRÖDINGER EQUATION

We obtain the Schrödinger equation by identifying that when moving from

(nonrelativistic) classical mechanics to (again nonrelativistic) quantum mechanics

E → i∂t , ~p→ −i~∇ . (C.1)

When applied to the classical equation for a free particle,

E =
~p 2

2m
, (C.2)

we obtain the free Schrödinger equation (describing a free quantum particle)

i∂t φ(t, ~r) = −
~∇ 2

2m
φ(t, ~r) , (C.3)

which we can rewrite as

(
i∂t +

1

2m
~∇ 2

)
φ(t, ~r) = 0 . (C.4)

Taking the complex conjugate we find

(
−i∂t +

1

2m
~∇ 2

)
φ∗(t, ~r) = 0 . (C.5)

We now multiply (on the left) (C.4) and (C.5) by φ∗(t, ~r) and φ(t, ~r) respectively,

yielding

φ∗(t, ~r)

(
i∂t +

1

2m
~∇ 2

)
φ(t, ~r) = φ(t, ~r)

(
−i∂t +

1

2m
~∇ 2

)
φ∗(t, ~r) = 0 . (C.6)
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By moving all the terms to the l.h.s. we find

φ∗(t, ~r) i∂t φ(t, ~r) + φ(t, ~r) i∂t φ
∗(t, ~r)

+
1

2m

(
φ∗(t, ~r) ~∇ 2φ(t, ~r)− φ(t, ~r) ~∇ 2φ∗(t, ~r)

)
= 0 , (C.7)

we now multiply both sides by −i and add (i/(2m)[(~∇φ∗)(~∇φ)− (~∇φ)(~∇φ∗)] = 0 to

the equation, i.e.

∂t |φ(t, ~r)|2 − i

2m

(
φ∗(t, ~r)~∇ 2φ(t, ~r) +

(
~∇φ∗(t, ~r)

)(
~∇φ(t, ~r)

)
−φ(t, ~r)~∇ 2φ∗(t, ~r)−

(
~∇φ(t, ~r)

)(
~∇φ∗(t, ~r)

))
= 0 , (C.8)

which simplifies to

∂t |φ(t, ~r)|2− i

2m
~∇
(
φ∗(t, ~r)~∇φ(t, ~r)− φ(t, ~r)~∇φ∗(t, ~r)

)
= ∂t |φ(t, ~r)|2 + ~∇ ·

(
− i

2m
φ∗(t, ~r)

←→
~∇ φ(t, ~r)

)
= 0 , (C.9)

where
←→
~∇ is the antisymmetric differential operator, and acts as

f(~r)
←→
~∇ g(~r) = f(~r)~∇g(~r)− g(~r)~∇f(~r) . (C.10)

By defining ρ(t, ~r) and ~j(t, ~r) as

ρ(t, ~r) = |φ(t, ~r)|2 , ~j(t, ~r) = − i

2m
φ∗(t, ~r)

←→
~∇ φ(t, ~r) , (C.11)

(C.9) becomes the continuity equation

∂tρ(t, ~r) + ~∇ ·~j(t, ~r) = 0 , (C.12)

where ρ(t, ~r) is positive definite, and is interpreted as the probability density.
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C.2. KLEIN–GORDON EQUATION

We would like to generalize this to relativistic quantum mechanics. To do so

we we use the relativistic dispersion relation E2 = ~p 2 +m2 to find

∂2
t φ(t, ~r) =

(
~∇ 2 −m2

)
φ(t, ~r) , (C.13)

i.e.

(
∂2
t − ~∇ 2 +m2

)
φ(t, ~r) = 0 . (C.14)

Taking the complex conjugate we find

(
∂2
t − ~∇ 2 +m2

)
φ∗(t, ~r) = 0 . (C.15)

We now multiply the l.h.s. of (C.14) and (C.15) by φ∗(t, ~r) and φ(t, ~r) respectively,

to obtain

φ∗(t, ~r)
(
∂2
t − ~∇ 2 +m2

)
φ(t, ~r) = φ(t, ~r)

(
∂2
t − ~∇ 2 +m2

)
φ∗(t, ~r) = 0

⇒φ∗(t, ~r)∂2
t φ(t, ~r)− φ(t, ~r)∂2

t φ
∗(t, ~r)− φ∗(t, ~r)~∇φ(t, ~r) + φ(t, ~r)~∇φ∗(t, ~r) = 0

⇒ ∂t

(
φ∗(t, ~r)

←→
∂t φ(t, ~r)

)
+ ~∇ ·

(
−φ∗(t, ~r)

←→
~∇ φ(t, ~r)

)
= 0 . (C.16)

For the last step we used the fact that

f(x)∂2
xg(x)− g(x)∂2

xf(x) = ∂x (g(x)∂xf(x)− f(x)∂xg(x)) = ∂x

(
g(x)
←→
∂x f(x)

)
.

(C.17)
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We then have to redefine what ρ is for the KG equation, but we can keep the same

definition for ~j, with this in mind we define

ρ(t, ~r) =
i

2m
φ∗(t, ~r)

←→
∂t φ(t, ~r) , (C.18)

~j(t, ~r) = − i

2m
φ∗(t, ~r)

←→
~∇ φ(t, ~r) . (C.19)

Then (C.16) tells us

∂tρ(t, ~r) + ~∇ ·~j(t, ~r) = 0 . (C.20)

It is then natural to again interpret ρ as the probability density. However there are

two solutions to the KG equation, a positive and a negative energy solution, i.e.

φ+(t, ~r) = N exp
[
−i
(
E t− ~k · ~r

)]
, (C.21)

φ−(t, ~r) = N exp
[
i
(
E t− ~k · ~r

)]
, (C.22)

where E =
√
~k 2 +m2 ≥ 0. If we choose φ−(t, ~r), then

ρ(t, ~r) =
i

2m

(
φ∗−(t, ~r)∂tφ−(t, ~r)− φ−(t, ~r)∂tφ

∗
−(t, ~r)

)
=

i

2m
N2 (iE − (−iE)) = −N2E

m
≤ 0 . (C.23)

Thus for the Klein–Gordon (KG) equation, ρ is not positive definite, and cannot be

interpreted as the probability density. Instead it should be interpreted as a charge

density. However, this difference initially was extremely worrisome to physicists, and

lead to the KG equation being rejected by physicists, and the discovery of the Dirac

equation.
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C.3. DIRAC EQUATION

The Dirac equation was born out of a desire to combine the advantages of

the Schrödinger equation (positive–definite probability density) and the KG equation

(relativistic invariance). Such an equation would have to be linear in terms of the time

derivative, and consequently momentum (i.e., the spatial derivatives). Additionally,

the square of such an equation would necessarily recover the KG equation. Let us

rewrite (C.13) as

−∂2
t φ(t, ~r) =

(
−~∇ 2 +m2

)
φ(t, ~r) , (C.24)

which is simply another way of expressing the KG equation. We now assume that the

r.h.s. of (C.24) can be factored in such a way that (suppressing the wave function)

(
−~∇ 2 +m2

)
=
(
−i~α · ~∇+ βm

)2

=
(
−iαi∂i + βm

) (
−iαj∂j + βm

)
= − αiαj ∂i∂j − i

(
αiβ∂i + βαj∂j

)
m+ β2m2

= − 1

2

(
αiαj + αjαi

)
∂i∂j − i

(
αiβ + βαi

)
m∂i + β2m2

= − 1

2

{
αi, αj

}
∂i∂j − i

{
αi, β

}
m∂i + β2m2 . (C.25)

Comparing the beginning and end of the equation, we can make a number of deduc-

tions (bear in mind that ~∇ 2 = ∂i∂i), namely

{
αi, αj

}
= 2δij ,

{
αi, β

}
= 0 , β2 =, 1 . (C.26)
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We know that scalars commute, thus these conditions cannot be satisfied if αi and β

are scalars. Instead we use matrices. First let us define the Dirac γ matrices

γ0 =

 1 0

0 −1

 , γi =

 0 σi

−σi 0

 , (C.27)

where σi are the Pauli spin matrices, and are defined as

σ1 =

 0 1

1 0

 , σ2 =

 0 −i

i 0

 , σ3 =

 1 0

0 −1

 . (C.28)

The Dirac γ matrices have the property

{γµ, γν} = 2gµν , (C.29)

where in flat space, the metric is

[gµν ] =



1

−1

−1

−1


. (C.30)

Thus

(
γ0
)2

= 1 ,
(
γi
)2

= −1 , {γµ, γν} = 0 (µ 6= ν) . (C.31)

We find that the conditions set fourth by (C.26) are satisfied if we define

αi = γ0γi , β = γ0 . (C.32)
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Thus (C.24) becomes

(i∂t)
2 φ(t, ~r) =

(
−i~α · ~∇+ βm

)2

φ(t, ~r) , (C.33)

which is equivalent to

i∂tφ(t, ~r) =
(
−i~α · ~∇+ βm

)
φ(t, ~r) = (~α · ~p+ βm)φ(t, ~r) = Hφ(t, ~r) , (C.34)

where ~p = −i~∇ is the momentum operator. By multiplying this equation with γ0 on

the left, and collecting all the terms together we find an alternative way of writing

the Dirac equation, i.e.

(iγµ∂µ −m)φ(x) = 0 , x = (t, ~r) . (C.35)

We now take the adjoint (transpose and complex conjugate) of (C.35), multiply by

γ0 on the right, and use the fact that (γ0)2 = 0 to find

φ+(x)γ0γ0
(
−i (γµ)+←−∂ µ −m

)
γ0 =φ(x)

(
−iγ0 (γµ)+ γ0←−∂ µ −

(
γ0
)2
m
)

=φ(x)
(
−iγµ

←−
∂ µ −m

)
= 0 , (C.36)

where we used the identity γ0(γµ)+γ0 = γµ, and defined φ(x) = φ+(x)γ0. We now

multiply (C.35) by φ(x) on the left and (C.36) by φ(x) on the right, and equate the

two to find

φ(x) (iγµ∂µ −m)φ(x) = φ(x)
(
−iγµ

←−
∂ µ −m

)
φ(x) , (C.37)
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which simplifies to (when multiplied by −i)

φ(x)γµ∂µφ(x) + ∂µφ(x)γµφ(x) = ∂µ
(
φ(x)γµφ(x)

)
= 0 . (C.38)

We now define the probability current as

jµ = φ(x)γµφ(x) , (C.39)

and by (C.38) we have

∂µj
µ = 0 . (C.40)

Recall that the issue many physicists had with the KG equation was that ρ = j0 was

not positive definite. Well, here we have

ρ = j0 = φ(x)γ0φ(x) = φ+(x)γ0γ0φ(x) = |φ(x)|2 , (C.41)

which is positive definite.

C.4. LORENTZ INVARIANCE IN FLAT SPACE

Here we want to show that the Dirac equation is invariant under Lorentz

transformations, i.e., “the form of the Dirac Equation is identical in equivalent frames

of reference”– [131]. A Lorentz transform tells us that the coordinates transform

according to

x′ν = Λν
µx

µ . (C.42)

The associated differential operator will also be transformed. To understand how the

differential operator is transformed, we note that the Lorentz transforms leave the
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quantity s2 = (x0)2 − (x1)2 − (x2)2 − (x3)2 invariant, i.e.

xµgµνx
ν = x′µgµνx

′ν

⇒xµgµνx
ν = (Λµ

σx
σ) gµν (λµρx

ρ)

⇒ gσρx
σxρ = Λµ

σgµνΛ
ν
ρx

σxρ

⇒Λµ
σgµνΛ

ν
ρ = gσρ . (C.43)

We now multiply (C.42) by Λρ
σgρν ,

Λρ
σgρνx

′ν = Λρ
σgρνΛ

ν
µx

µ = gσµx
µ . (C.44)

We now use the identity gµσgσµ = δµµ to find

xµ = gµσΛρ
σgρνx

′ν . (C.45)

Then by the chain rule we find

∂′ν =
∂xµ

∂x′ν
∂

∂xµ
= gµσΛρ

σgρν∂µ = Λν
µ∂µ , (C.46)

where Λµ
ν = (Λν

µ)−1. We now multiply this equation by Λν
ρ, yielding

∂ρ = Λν
ρ∂
′
ν . (C.47)

Alternatively, we could have used the chain rule to find

∂µ =
∂x′ν

∂xµ
∂

∂x′ν
= Λν

µ∂
′
ν , (C.48)

where we used (C.42) to perform the differentiation, and managed to avoid quite a

bit of algebra to get to the same point.
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First we consider a frame F with an observer O, then O describes the particle

using the wave function ψ(xµ), which obeys the equation

(iγµ∂µ −m)ψ(xµ) = 0 . (C.49)

For Lorentz invariance, we then want an observer O′ in frame F ′ to describe the same

particle using the wave function ψ′(x′ν), which fulfills the equation

(iγ′ν∂′ν −m)ψ′(x′ν) = 0 . (C.50)

since we are looking for form invariance, the γ′ν matrices must fulfill the same prop-

erties as the γµ matrices, which are uniquely defined up to to a similarity transform,

thus we are looking for

(iγν∂′ν −m)ψ′(x′ν) = 0 , (C.51)

which is of the same form as (C.49). The transformation which takes ψ(xµ)→ ψ′(x′ν)

is assumed to be

ψ′(x′ν) = S(Λ)ψ(xµ) . (C.52)

In flat space, we can safely assume that the transformation matrix S(Λ) is indepen-

dent of the coordinates, i.e., it commutes with the differential operator ∂µ. Applying

the transform to (C.49) we then find

(
iS(Λ)γµS−1(Λ)∂µ −m

)
ψ′(x′ν) =

(
iS(Λ)γµS−1(Λ)Λν

µ∂
′
ν −m

)
ψ′(x′ν) = 0 . (C.53)
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By comparing this result to (C.51) we deduce that

S(Λ)γµS−1(Λ)Λν
µ = γν . (C.54)

We will be using this identity to construct the operator S, to do so we first rework

this equation into a more useable form. We begin by multiplying both sides of the

equation by Λσ
ρgσν on the left, yielding

S(Λ)gρµγ
µS−1(Λ) = Λσ

ρgσνγ
ν

⇒S(Λ)γρS
−1(Λ) = Λσ

ργσ , (C.55)

where we used (C.43) and gµνγ
ν = γµ. Finally we multiply both sides by gρµ, yielding

S(Λ)γµS−1(Λ) = Λνµγν , (C.56)

where Λνµ = gµρΛν
ρ.

We are now ready to begin constructing S. We begin by looking at the in-

finitesimal Lorentz transformation, which is of the form

Λµ
ν = δµν + εµν . (C.57)

Now, (C.43) can be rewritten as

Λσ
µg

µνΛρ
ν = gσρ . (C.58)

Plugging (C.57) into (C.58) we find

(1 + εσµ) gµν (1 + ερν) = (gµν + εσν) (1 + ερν) = gµν + εσν + ερµ = gσρ , (C.59)
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to the first order in ε, where εσν = εσρg
ρν . Notice that there is no summation in this

equation, so we can set σ = µ and ρ = ν, giving us

εµν + ενµ = 0 , (C.60)

i.e., εmuν is antisymmetric. We now use the appropriate elements of the metric g to

raise the indices of (C.57) to find

Λµν = gµν + εµν . (C.61)

The corresponding infinitesimal transformation S(εµν) can be written as

S(Λ) = S(εµν) = 1− i

4
σµνε

µν , S−1(εµν) = 1 +
i

4
σµνε

µν . (C.62)

It is fairly trivial to prove the inverse, we use the fact that (a + b)(a − b) = a2 + b2

and the fact that we are only keeping terms to the first order in εµν to find SS−1 = 1.

We now plug (C.62) into (C.56), yielding

(
1− i

4
σαβε

αβ

)
γµ
(

1 +
i

4
σαβε

αβ

)
= (gµν + ενµ) γν

⇒
(
γµ − i

4
σαβγ

µεαβ
)(

1 +
i

4
σαβε

αβ

)
= gµνγν + ενµγν

⇒ γµ − i

4
σαβγ

µεαβ +
i

4
σαβγ

µεαβ = γµ + ενµγν

⇒ − i

4
εαβ (σαβγ

µ − γµσαβ) = ενµγν . (C.63)

Now, we can rewrite the r.h.s. as follows

ενµγν =
1

2
εαµγα +

1

2
εβµγβ =

1

2
εαβδµβγα +

1

2
εβαδµαγβ =

1

2
εαβ (δµβγα − δµαγβ) ,

(C.64)
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where we used the fact that εµν = −ενµ, as shown in (C.60). Combining this result

with (C.63), and simplifying we find

[σαβ, γ
µ] = 2i (δµβγα − δµαγβ) . (C.65)

A solution to (C.65) is

σαβ =
i

2
[γα, γβ] . (C.66)

We will now show that (C.66) satisfies (C.65),

[σαβ, γ
µ] =

i

2
(γαγβγ

µ − γβγαγµ − γµγαγβ + γµγβγα)

=
i

2
(γα{γβ, γµ} − γαγµγβ − γβ{γα, γµ}+ γβγ

µγα

−{γµ, γα}γβ + γαγ
µγβ + {γµ, γβ}γα − γβγµγα)

= 2i (δµβγα − δµαγβ) , (C.67)

confirming (C.65). To get the result (C.67), we used {γµ, γν} = {γν , γµ} = 2δµν . This

property comes from the definition of gµν = 1
2
{γµ, γν} and the fact that gµνgνρ = δµρ,

explicitly

{γmu, γν} = gνρ{γµ, γρ} = 2gνρg
µρ = 2gµρgρν = 2δµν . (C.68)

We have thus confirmed (C.56), and therefore (C.54), with our definition of σµν (C.66)

and the infinitesimal S(Λ) (C.62). So the Dirac equation is invariant under an in-

finitesimal Lorentz transform, and as such must be invariant under a finite transform,
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which can be interpreted as a series of infinitesimal transforms, given by

Λµ
ν = exp

(
1

2
Ωαβ(Mαβ)µν

)
, (Mαβ)µν = gµαgνβ − gµβgνα , (C.69)

S(Λ) = exp

(
− i

4
Ωαβσαβ

)
. (C.70)

Then for the infinitesimal transform we left Ωαβ → εαβ � 1.

Notice that

Ωαβ(Mαβ)µν = Ωαβ
(
gµαgνβ − gµβgνα

)
= Ωµβgβν − (−Ωµα) gαν = 2Ωµ

ν , (C.71)

where we have used the fact that Ωαβ = −Ωβα, i.e., it antisymmetric.
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D.1. GENERAL OUTLINE

In this chapter (inspired by the notes of Rainer Dick [128]) we will be going over

some of the basics of General Relativity, which should give some context to the mate-

rial in chapter 8 to those less familiar with the subject. The main body of this thesis

deals with general relativity in the context of relativistic quantum mechanics, here we

will look at general relativity in the classical sense, without the added intricacies of

quantum dynamics. As in the main body of this work we will be using lowercase Greek

characters for the holonomic spacetime (µ, ν, ... = 0, 1, 2, 3), lower case Latin char-

acters starting at i for holonomic space (i, j, k, ... = 1, 2, 3), capital Latin characters

for anholonomic spacetime, i.e., the anholonomic basis (A,B,C, ... = 0, 1, 2, 3), and

capital Latin characters starting at I for the anholonomic space (I, J,K... = 1, 2, 3).

Additionally we will be using η for the Minkowski metric, [ηAB] = diag[1,−1,−1,−1],

and any other metric will be denoted using g.

Let us begin by considering an object moving in two dimensional space. The

object’s position can be described by the vector ~r, which in turn is defined using a

linear combination of linearly independent vectors. For example, in 2D Cartesian

coordinates we would have

d~r = dx êx + dy êy , (D.1)

which is of course exceptionally useful since we choose our linearly independent to be

orthonormal. However, there is nothing that forces us to use orthogonal, nor normal,

basis vectors. Thus a more general description of ~r would be

d~r = dx1ê1 + dx2ê2 = dxI êI . (D.2)
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We can then define the corresponding metric tensor using the basis vectors, i.e.

gIJ = êI · êJ , [gIJ ] =

 ê1 · ê1 ê1 · ê2

ê2 · ê1 ê2 · ê2

 . (D.3)

Then the square of any vector in thus basis is

dr2 = d~r · d~r = dxI êI · dxJ êJ = gIJdx
IdxJ . (D.4)

Note that this is true in all bases. We can also define the inverse of the metric tensor

as [gIJ ]−1 = [gIJ ], in which case [gIJ ] · [gIJ ] = 1, or

gIJgJK = δIK . (D.5)

Using the inverse metric tensor, we can define a new set of basis vectors, denoted as

êI . Furthermore we require that

êI · êK = δIK . (D.6)

By equating (D.5) and (D.6), and using the definition of gIJ (D.3), we find

êI · êK = gIJgJK = gIJ êJ · êK , (D.7)

which leaves us to conclude that

êI = gIJ êJ . (D.8)
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The inversion of which is

êJ = gIJ ê
I . (D.9)

We can then calculate the inverse of the metric tensor

gIJ = gIKδJK = gIKgKLg
LJ = gIKgLJ êK · êL =

(
gIK êK

)
·
(
gLJ êL

)
= êI · êJ . (D.10)

There are a variety of different sets of basis vectors, and the basis set that

one works in can have a significant impact on the complexity of the problem. As

such it is useful to know how to transform from one basis set to another. Suppose we

want to transform an equation from the basis set êI to the basis set êi (note that the

different basis sets are differentiated using upper and lower case Latin characters).

Then there must be a linear combination of the original basis set which results in the

new basis set, i.e.

êi = eJi êJ . (D.11)

We can write the vector ~r in terms of both the original basis and the new basis, i.e.

~r = xiêi = xieJi êJ = xJ êJ , (D.12)

giving us

xieJi = xJ . (D.13)

We define the inverse of eJi as eiJ , or

eJi e
i
K = δJK , eIje

k
I = δkj . (D.14)
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Thus

xi = eiJx
J . (D.15)

We can also find the elements of the tensors in the new basis set,

gij = êi · êj = eKi êK · eLj êL = eKi e
L
j gKL , gij = eiKe

j
Lg

KL . (D.16)

On the other hand, we can look at what happens when we transform the dual

basis vectors, for which xJ = xIg
IJ and xI = gIJx

J . Then

dxi = gijdx
j = eKi e

L
j gKLdx

j = eKi gKLdx
L = eKi dxK . (D.17)

So while the components of the basis sets transform contravariantly, the components

of the dual basis set transform covariantly. Armed with these results we can show

that the scalar product is invariant under coordinate transforms. To show this we

begin with two vectors in the original basis set,

~u = uI êI , ~v = vI êI , ~u · ~v = êI · êJuIvJ = gIJu
IvJ = uIvI = uJv

J , (D.18)

this result can then be compared to the result which we obtain from the transformed

vectors ~u and ~v,

~v · ~u = giju
ivj = uivi = uJeiJvi = uJvJ . (D.19)

Thus, as stated, and as should be expected, the scalar product of two vectors is

invariant under coordinate transforms.

Due of the complex nature of many of the bases, movement which is simply

described in one basis, i.e., movement along the x-axis in the Cartesian coordinate

system, is more complicated to describe in other systems. As such, we must formulate

a system for describing such movements within the basis transform. Let us start with
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the vector ~r(xj) = xI(xj)êI in the Cartesian basis. Then the vector d~r(xj) which

connects ~r(xj) and ~r(xj + dxj) is

d~r(xj) = ~r(xj + dxj)− ~r(xj) = dxk∂k~r(x
j) = dxkêk , (D.20)

which tells us that

êk = ∂k~r = ∂kx
I êI , (D.21)

We can then conclude that

eIk = ∂kx
I . (D.22)

We can also solve for the distance squared between the two points,

ds2 = d~r2 =
(
dxiêi(x)

)
·
(
dxj êj(x)

)
= dxidxj êi(x) · êj(x) = gijdx

idxj . (D.23)

While most of the work done in this section was done in two dimensions, all of it can

be generalized two four dimensions (spacetime), and will apply to our 4-vectors. We

would simply have I, J,K...→ A,B,C... and i, j, k...→ µ, ν, ρ....

D.2. HOLONOMIC COVARIANT DERIVATIVE

For a vector A = Aµêµ in the holonomic basis, we take the partial derivative

an find

∂νA = ∂ν (Aµêµ) = (∂νA
µ) êµ + Aµ∂ν êµ = (∂νA

µ) êµ + AµΓρµν êρ

=
(
∂νA

µ + AρΓµνρ
)
êµ = (∇νA

µ) êµ , (D.24)

where the Christoffel symbols (of the second kind) are defined as

∂ν êµ = Γρµν êρ . (D.25)
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Using the fact that êρ · êρ = 1, we find that the Christoffel symbols can be expressed

as

Γρµν = êρ · ∂ν êµ . (D.26)

We can also rewrite the Christoffel symbols in terms of the metric g. The key obser-

vation is to recall that by definition êµ = ∂µ~r (spacetime generalization of (D.21)).

Thus [129]

∂ν êµ = ∂ν∂µ~r = ∂µêν =
1

2
(∂ν êµ + ∂µêν) . (D.27)

Applying this to (D.26), we find

Γρµν = êρ · 1

2
(∂ν êµ + ∂µêν) =

1

2
gρσ (êσ · ∂ν êµ + êσ · ∂µêν)

=
1

2
gρσ [(êσ · ∂ν êµ + êµ · ∂ν êσ) + (êσ · ∂µêν + êν · ∂µêσ)− (êµ · ∂ν êσ + êν · ∂µêσ)]

=
1

2
gρσ [(êσ · ∂ν êµ + êµ · ∂ν êσ) + (êσ · ∂µêν + êν · ∂µêσ)− (êµ · ∂σêν + êν · ∂σêµ)]

=
1

2
gρσ [∂ν (êσ · êµ) + ∂µ (êσ · êν)− ∂σ (êµ · êν)] =

1

2
gρσ (∂νgσµ + ∂µgσν − ∂σgµν)

(D.28)

Let us go through the derivation in detail. In doing from the first to the second line

we added and subtracted identical terms. Going from the second to the third line we

used the identity ∂µêν = ∂ν êµ on the last term in the square brackets. Finally we

apply the product rule (in reverse), and use the fact that êµ · êν = gµν . We can now

define the covariant derivative operating in the holonomic basis as

∇νA
µ ≡ ∂νA

µ + ΓµνρA
ρ . (D.29)
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D.3. ANHOLONOMIC DERIVATIVE

We have now seen the emergence of the Christoffel symbols in the covariant

derivative by looking at how a vector in the holonomic space is differentiated. Now

let us look at how a vector in the anholonomic space is effected by the covariant

derivative. We start with a vector V = V AêA in the anholonomic basis. Then

∂µV = ∂µV
AêA =

(
∂µV

A
)

êA + V A∂µêA =
(
∂µV

A
)

êA + V A∂µ [eρAêρ]

=
(
∂µV

A
)
êA + V A [(∂µe

ρ
A) êρ + eρA∂µêρ] , (D.30)

we then apply the definition of the Christoffel symbols (D.25), yielding

∂µV =
(
∂µV

A
)

êA + V A
[
(∂µe

ρ
A) êρ + eρAΓλρµêλ

]
, (D.31)

we now apply the identity êρ = eAρ êA,

∂µV =
(
∂µV

A
)
êA + V A

[
(∂µe

ρ
A)
(
eBρ êB

)
+ eρAΓλρµ

(
eBλ êB

)]
=
(
∂µV

B
)

êB + V A
[
eBρ ∂µe

ρ
A + eBρ Γρµλe

λ
A

]
êB

=
(
∂µV

B + V A eBρ
[
∂µe

ρ
A + Γρµλe

λ
A

])
êB , (D.32)

we now use the definition of the holonomic covariant derivative (D.29) to rewrite this

as

∂µV =
(
∂µV

B + eBρ∇µe
ρ
A

)
êB =

(
∂µV

B + ωBµA
)

êB (D.33)

where we define the Ricci rotation coefficient as

ωBµA ≡ eBρ∇µe
ρ
A . (D.34)
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We then find that the anholonomic covariant derivative is

∇µV
A ≡ ∂µV

A + ωAµB . (D.35)

Using the fact that eAρ e
ρ
C = δAC , and ∂µδ

A
C = 0 we find

ωABµ = −ωBAµ . (D.36)

D.4. MOTION OF A PARTICLE IN SPACETIME

We now switch back to general relativity. Earlier we solved for the distance

squared between two points in 2D. In our 4-vector space time, it is generalized to be

ds2 = gµνdx
µdxν . (D.37)

In flat–spacetime this would be

ds2 = ηABdx
AdxB = c2dt2 − d~x2 . (D.38)

Then by taking the square root and integrating we find the action to be

S = mc

∫
dt

√
c2 − ~̇x 2 = mc

∫ √
gµνdxµdxν = mc

∫
dξ

√
gµν

dxµ

dξ

dxν

dξ
. (D.39)

From here, we can extract the Lagrangian

L =
√
gµν ẋµẋν , (D.40)



268

where ẋµ = dxµ/dξ. Recall that the proper time is given by

dτ 2 = dt2 − 1

c2
d~x 2 =

1

c2

(
c2dt2 − d~x 2

)
=

1

c2
gµν ẋ

µẋνdξ2 , (D.41)

then

cdτ =
√
gµν ẋµẋνdξ . (D.42)

We can then find the equations of motion using the fact that

(
∂

∂xµ
− d

dξ

∂

∂ẋµ

)
L = 0 . (D.43)

Looking at these differentials separately we find

∂

∂xµ
L = ∂µ

√
gαβẋαẋβ =

1

2

1√
gαβẋαẋβ

∂µgρν ẋ
ρẋν , (D.44)

and

d

dξ

∂

∂ẋµ
L =

d

dξ

∂

∂ẋµ

√
gαβẋαẋβ =

d

dξ

(
1

2

1√
gαβẋαẋβ

∂

∂ẋµ
gρσẋ

ρẋσ

)

=
d

dξ

(
1√

gαβẋαẋβ
gµν ẋ

µ

)

= gµν ẋ
µ d

dξ

1√
gαβẋαẋβ

+ gµν ẍ
µ 1√

gαβẋαċβ
+ ẋµẋρ∂ρgµν

1√
gαβẋαċβ

, (D.45)

where we used d
dξ

= dxσ

dξ
d
dxσ

= ẋσ∂σ. Notice that

f(x)
d

dx
ln (C f(x)) = f(x)

f ′(x)

f(x)
= f ′(x) , (D.46)
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where C is a constant. Then

d

dξ

1√
gαβẋαẋβ

=
1√

gαβẋαẋβ
d

dξ
ln

(
c√

gρσẋρẋσ

)

= − 1√
gαβẋαẋβ

d

dξ
ln

(
1

c

√
gρσẋρẋσ

)
, (D.47)

and (D.45) becomes

d

dξ

∂

∂ẋµ
L =

1√
gαβẋαẋβ

(
−gµν ẋµ

d

dξ
ln

(
1

c

√
gρσẋρẋσ

)
+ gµν ẍ

µ + ẋµẋρ∂ρgµν

)
.

(D.48)

We can now plug (D.44) and (D.48) into (D.43), and multiply by −gµρ to find

1√
gαβẋαẋβ

(
ẍµ + gµρ

(
∂σgρν −

1

2
∂ρgσν

)
ẋσẋν − gµν ẋµ

d

dξ
ln

(
1

c

√
gρσẋρẋσ

))
= 0 ,

(D.49)

i.e.

ẍµ + Γµσν ẋ
σẋν = gµν ẋ

µ d

dξ
ln

(
1

c

√
gρσẋρẋσ

)
, (D.50)

where we used the identities

Γµσν ẋ
σẋν = gµρ

(
∂σgρν −

1

2
∂ρgσν

)
ẋσẋν . (D.51)

If we choose ξ = τ , then (D.42) becomes

√
gµν ẋµẋν = c , (D.52)
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and due to the fact that ln(1) = 0, (D.50) becomes

ẍµ + Γµνρẋ
ν ẋρ = 0 . (D.53)

We have derived the equations of motion in spacetime.

D.5. SCHWARZSCHILD METRIC

The Schwarzschild metric was derived in 1916 by Karl Schwarzschild [130],

and describes the metric for a non–rotating gravitational center, and is given as

ds2 =
(

1− rs

r

)
c2dt2 −

(
1− rs

r

)−1

dr2 − r2dθ2 − r2 sin2 θdϕ , (D.54)

where rs is the Schwarzschild radius, and is given by

rs =
2GM

c2
. (D.55)

To derive the equations of motion, let us set

B =
(

1− rs

r

)
, A =

1

B
=
(

1− rs

r

)−1

, (D.56)

thus we can rewrite the metric as

ds2 = c2B2dt2 − Adr2 − r2dθ2 − r2 sin2 θ dϕ2 . (D.57)

We quickly deduce that the only non-vanishing terms of the metric tensor are

gtt = − c2B , grr = A , gθθ = r2 , gϕϕ = r2 sin2 θ ,

gtt = − 1

c2B
, grr =

1

A
, gθθ =

1

r2
, gϕϕ =

1

r2 sin2 θ
. (D.58)
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Then using

Γρνµ =
1

2
gρσ(∂µgσν + ∂νgσµ − ∂σgνµ) , (D.59)

We can solve for all the Christoffel symbols. To make things simpler we notice that

all the elements of the metric tensor (co- and contravariant) are nonzero along the

diagonal (i.e., gµν 6= 0 iff µ = ν), as such we will only include these elements when

writing out the solutions for the Christoffel symbols. Furthermore, for a Christoffel

symbol to be non-vanishing, at least two of it’s indices must match (in this case), so

we can narrow our scope. After all the calculations are complete, we find that the

non–vanishing Christoffel symbols are

Γrrr =
A′

2A
, Γrθθ = − r

A
, Γrϕϕ = −r sin2 θ

A
, Γθθr = Γϕϕr =

1

r
,

Γθϕϕ = − sin θ cos θ , Γϕϕθ =
cos θ

sin θ
, Γrtt =

c2B′

2A
, Γttr =

B′

2B
. (D.60)

Then the equations of motion given by

ẍµ + Γµνρẋ
ν ẋρ = 0 , (D.61)

become

d2r

dτ 2
+
A′

2A

(
dr

dτ

)2

− r

A

(
dθ

dτ

)2

− r sin2 θ

A

(
dϕ

dτ

)2

+
c2B′

2A

(
dt

dτ

)2

= 0 , (D.62)

d2θ

dτ 2
+

2

r

dθ

dτ

dr

dτ
− sin θ cos θ

(
dϕ

dτ

)2

= 0 , (D.63)

d2ϕ

dτ 2
+

2

r

dϕ

dτ

dr

dτ
+ 2

cos θ

sin θ

dϕ

dτ

dθ

dτ
= 0 , (D.64)

d2t

dτ 2
+
B′

B

dr

dτ

dt

dτ
= 0 . (D.65)
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Recall

êr = sin θ cosϕêx + sin θ sinϕêy + cos θêz ,

êθ = cos θ cosϕêx + cos θ sinϕêy − sin θêz ,

êϕ = − sinϕêx + cosϕêy , (D.66)

then

d

dτ
êr = θ̇êθ + ϕ̇ sin θêϕ ,

d

dτ
êθ = −θ̇êr + ϕ̇ cos θêϕ ,

d

dτ
êϕ = −ϕ̇(sin θêr + cos θêθ) ,

(D.67)

and

~̇r = ṙêr + rθ̇êθ + rϕ̇ sin θêϕ , (D.68)

~̈r = (r̈ − rθ̇2 − rϕ̇2 sin2 θ)êr + (2ṙθ̇ + rθ̈ − rϕ̇2 sin θ cos θ)êθ

+ (2ṙϕ̇ sin θ + rϕ̈ sin θ + 2rϕ̇θ̇ cos θ)êϕ . (D.69)

We can rewrite (D.63) as

θ̈ = ϕ̇2 sin θ cos θ − 2

r
θ̇ṙ , (D.70)

and plug it into the θ component of (D.69), giving us

2ṙθ̇ + rθ̈ − rϕ̇2 sin θ cos θ = 2ṙθ̇ + r

(
ϕ̇2 sin θ cos θ − 2

r
θ̇ṙ

)
− rϕ̇2 sin θ cos θ = 0 .

(D.71)

Similarly, we can rewrite (D.64) as

ϕ̈ = −2

r
ϕ̇ṙ − 2

sin θ

cos θ
ϕ̇θ̇ , (D.72)
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and plug it into the ϕ component of (D.69), yielding

2ṙϕ̇ sin θ+ rϕ̈ sin θ + 2rϕ̇θ̇ cos θ

= 2ṙϕ̇ sin θ + r

(
−2

r
ϕ̇ṙ − 2

sin θ

cos θ
ϕ̇θ̇

)
sin θ + 2rϕ̇θ̇ cos θ = 0 . (D.73)

Thus both of the angular components of ~̈r vanish, and we are left with

~̈r = (r̈ − rθ̇2 − rϕ̇2 sin2 θ)êr , (D.74)

and by rewriting (D.62) as

r̈ = − A
′

2A
ṙ2 +

r

A
θ̇2 +

r sin2 θ

A
ϕ̇2 − c2B′

2A
ṫ2 , (D.75)

(D.74) becomes

~̈r = −
(
A′

2A
ṙ2 − r

A
θ̇2 − r sin2 θ

A
ϕ̇2 +

c2B′

2A
ṫ2 + rθ̇2 + rϕ̇2 sin2 θ

)
êr , (D.76)

telling us that the gravity around a spherically symmetric non-rotating mass still

produces a force parallel to ~r. This means that absent of any outside influence, the

motion will remain in a plane. We can choose this plain to be at θ = π/2. The

equations of motion then reduce to

d2r

dτ 2
+
A′

2A

(
dr

dτ

)2

− r

A

(
dϕ

dτ

)2

+
c2B′

2A

(
dt

dτ

)2

= 0 , (D.77)

d2ϕ

dτ 2
+

2

r

dϕ

dτ

dr

dτ
=

1

r2

d

dτ
(r2ϕ̇) = 0 , (D.78)

d2t

dτ 2
+
B′

B

dr

dτ

dt

dτ
=

1

B

d

dτ
(Bṫ) = 0 . (D.79)

We now have sufficient information to consider how light will be affected by the

curvature of spacetime due to a gravitational center.
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D.6. BENDING OF LIGHT

Again, the work in this appendix is primarily inspired by [128]. Dealing with

massless particles can be somewhat problematic. The first obstacle that we must

overcome is the fact that eigentime of massless particles vanishes,

c2dτ 2 = −ds2 = −gµνdxµdxν = 0 .

Think of it this way, the special theory of relativity (STR) tells us that massless

particles must travel at the speed of light. As such massless particles will travel

at the same rate regardless of reference frame. Under such conditions the notion of

eigentime does not makes much sense, since it was devised to deal with the differences

that observers in different reference frames would see. For a particle traveling at the

speed of light, these differences no longer exist. With dτ = 0 it is clear that we do

not have an eigenvelocity (uµ = dxµ

dτ
). To circumvent these difficulties we will rewrite

the equations for massive particles such that they are independent of mass and the

eigentime. We will then assume that these hold in the limit where m → 0, which

makes sense since the equations are independent of the particle’s mass.

Let us begin by recalling the equations for massive particles (in terms of their

eigentime):

d2r

dτ 2
+
A′

2A

(
dr

dτ

)2

− r

A

(
dϕ

dτ

)2

+
c2B′

2A

(
dt

dτ

)2

= 0 , (D.80)

1

r2

d

dτ

(
r2ϕ̇
)

= 0 , (D.81)

1

B

d

dτ

(
Bṫ
)

= 0 . (D.82)
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From (D.82) we find

Bṫ = C ⇒ dt

dτ
=
C

B
⇒ dτ =

B

C
dt , (D.83)

where C is a constant. From which we find

d2r

dτ 2
=
C

B

d

dt

C

B

d

dr
=
C

B

(
−C B

′

B2

(
dr

dt

)2

+
C

B

d2r

dt2

)

=
C2

B2

(
d2r

dt
− B′

B

(
dr

dt

2))
,(

dr

dτ

)2

=
C2

B2

(
dr

dt

)2

,

(
dϕ

dτ

)2

=
C2

B2

(
dϕ

dt

)2

,

(
dt

dτ

)2

=
C2

B2
,

d

dτ

(
r2dϕ

dτ

)
=
C2

B

d

dt

(
r2

B

dϕ

dt

)
.

Thus (D.80) and (D.81) become (after we divide out common factors)

d2r

dt2
+

(
A′

2A
− B′

B

)(
dr

dt

)2

− r

A

(
dϕ

dt

)2

+
c2B′

2A
= 0 , (D.84)

d

dt

(
r2

B

dϕ

dt

)
= 0 . (D.85)

Which are independent of mass and eigentime as desired. (D.85) gives us

ϕ̇ =
JB

r2
, (D.86)

where J is a constant. Plugging this into (D.84), and multiplying by A
B
ṙ we find

A

B2
ṙr̈ +

A′

2B2
ṙ3 − B′

B3
ṙ3 − J2

r3
ṙ +

c2B′

2B2
ṙ = 0

⇒ d

dt

(
A

2B2
ṙ2 +

J2

2r2
− c2

2B

)
= 0

⇒ A

2B2
ṙ2 +

J2

2r2
− c2

2B
= K . (D.87)
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We know that ds2 = 0, massless particle, and we can rewrite ds2 (bear in mind that

θ = π
2
) as (we will use the equations that we just found plugged into ϕ̇2 and ṙ)

ds2 = − c2Bdt2 + Adr2 + r2dϕ2 =

(
−B +

A

c2
ṙ2 +

r2

c2
ϕ̇2

)
c2dt2

=

(
−B +

A

c2

2B2

A

(
K − J2

2r2
+

c2

2B

)
+
r2

c2

J2B2

r4

)
c2dt2 ,

most of the terms cancel out, and we are left with

ds2 = 2B2Kdt2 = 0 . (D.88)

Thus, for a massless particle

K = 0 . (D.89)

The radial equation is then

1

2
ṙ +

B2J2

2Ar2
− c2

B
2A = 0 . (D.90)

We can now use a parameter τ which we define as

dτ = Bdt =
r − rs

r
dt . (D.91)

This defines the affine parameters for light–like geodesics. τ can be rescaled by an

arbitrary positive factor. Applying this to the radial equation, along with A = 1
B

, we

find

1

2
B2

(
dr

dτ

)2

+B2 J2

2Ar2
−B2 c2

2AB
= 0 .
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We now divide out B2, yielding

1

2

(
dr

dτ

)2

+
BJ2

2r2
− c2

2
= 0 ,

and plug in for B

1

2

(
dr

dτ

)2

+
1

2

r − rs

r

J2

r2
=

1

2

(
dr

dτ

)2

+

(
1

2
− GM

c2r

)
J2

r2
=
c2

2
, (D.92)

The effective potential is then

Ṽ =
1

2

r − rs

r

J2

r2
=

(
1

2
− GM

c2r

)
J2

r2
. (D.93)

In this case, the effective potential will always produce a centrifugal barrier, provided

that J2 > 0:

dṼ

dr
=
J2

2

d

dr

(
1

r2
− rs

r3

)
=
J2

2

(
−2

1

r3
+ 3

rs

r4

)
= 0

⇒ r =
3

2
rs , (D.94)

i.e., the maximum (it is maximum) height of the effective potential always occurs at

r = 3
2
rs, this is then the lower bound of the periastron, the point of closest approach,

of a photon, assuming that it doesn’t get sucked in. Clearly, the other extremums

can only occur when r →∞, i.e., there is only the one maximum, and no minima. As

such, there are no stable bound orbits in the case of a massless particle. The height

of the barrier is

Ṽ

(
3

2
rs

)
=

2

27

J2

r2
s

, (D.95)

meaning that the photons do not fall into the event horizon provided (see figure D.1)

J ≥ 3
√

3

2
crs = 3

√
3
GM

c
. (D.96)
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Figure D.1: Here we plot the effective potential Ṽ (r)/c2, as found in (D.93) for
J = 3.5 c rs (blue), J = 2.5 c rs (red) and J = 2 c rs (green). We note that for the
latter two cases, the effective potential is less than the classical kinetic energy (1

2
c2),

and the photons will fall into the Schwarzschild radius. This agrees with (D.96).

i.e.

Ṽ

(
3

2
rs

)
≥ c2 . (D.97)

The impact parameter is given as b = J/c, thus in terms of the impact parameter,

photons do not fall into the Schwarzschild radius unless

b ≥ 3
√

3

2
rs = 3

√
3
GM

c2
. (D.98)

D.6.1. Deflection of Light in a Gravitational Field. Here we are con-

sidering photons which escape to infinity, i.e. b > 3
√

3
2
rs. (D.86) gives us

dϕ

dt
=
JB

r2
⇒ dϕ

dτ
=
J

r2
⇒ dτ

dϕ
=
r2

J
. (D.99)

We can now multiply (D.92) by
(
dτ
dϕ

)2

1

2

(
dr

dτ

)2(
dτ

dϕ

)2

+
1

2

r − rs

r

J2

r2

(
dτ

dϕ

)2

=
c2

2

(
dτ

dϕ

)2

,
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We now simplify and rearrange to find

(
dr

dϕ

)2

= −r − rs

r

J2

r2

r4

J2
+ c2 r

4

J2
= −r2 + rsr +

c2

J2
r4 .

Taking the square root, and rearranging further we find

dϕ = ±dr J√
c2r4 + J2rsr − J2r2

. (D.100)

Integration leads to

ϕ− ϕ0 = ±
∫ r

r0

dr
J√

r(c2r3 − J2r + J2rs)
= ±

∫ r

r0

dr
b√

r(r3 − b2r + b2rs)
(D.101)

We now set the origin at the center of the mass M . Since θ = π
2

we know the photon

is traveling in the xy-plane. We choose the x-axis such that the photon is falling in

from x→ −∞ along y = −b. In which case ϕ0 = −π and r0 →∞. The particle will

fall to the minimum value of r, r1. We then have

ϕ(r1) = −π −
∫ r1

∞
dr

b√
r(r3 − b2r + b2rs)

. (D.102)

The deflection angle of the photon is given by (r goes back out to ∞)

∆ϕ =ϕ(r →∞) = ϕ(r1) +

∫ ∞
r1

dr
b√

r(r3 − b2r + b2rs)

= − π − 2

∫ r1

∞
dr

b√
r(r3 − b2r + b2rs

. (D.103)

We now need to know what r1 is. Since, by definition, it is the minimum value of r,

dr
dϕ
|r=r1 = 0, i.e.

√
r1(r3

1 − b2r1 + b2rs) = 0 ⇒ (r1 − rs)b
2 = r3

1 . (D.104)
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Clearly if rs = 0 then r1 = b, because there is no gravitational attraction. As such we

can propose that r = b+ ε in the case that rs � b, then to the first order in epsilon

(b+ ε− rs)b
2 = (b+ ε)3 ⇒ (b+ ε− rs)b

2 = b3 + 3b2ε+��
�3bε2 + ��ε3

⇒ b+ ε− rs = b+ 3ε

⇒ ε = −rs

2
(D.105)

We now expand the ∆ϕ to the first order in r2, yielding

∆ϕ ≈ −π − 2

∫ b− rs
2

∞
dr

b

r
√
r2 − b2

+

∫ b− rs
2

∞
dr

b3rs

r2
√
r2 − b2

3 . (D.106)

Using the identity

∫ f(x+ε)

dξI(ξ) ≈
∫ f(x)

dξI(ξ) + εf ′(x)I(f(x)) (D.107)

we find

∆ϕ ≈ − π − 2

∫ b

∞
dr

b

r
√
r2 − b2

+ lim
r→b

rs√
r2 − b2

+

∫ b

∞
dr

b3rs

r2
√
r2 − b2

3 −����
���

��
lim
r→b

rs

2

brs√
r2 − b2

3

= − π − 2 sin−1

(
− b
r

)∣∣∣∣b
∞

+ lim
r→b

rs√
r2 − b2

− rs
2r2 − b2

br
√
r2 − b2

∣∣∣∣b
∞

= − π + π + lim
r→b

rs√
r2 − b2

− lim
r→b

rs√
r2 − b2

+
2rs

b
=

2rs

b
. (D.108)

Thus the deflection angle of a photon with impact parameter b in a gravitational field

is

∆ϕ ≈ 2rs

b
=

4GM

c2b
. (D.109)
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D.7. ISOTROPIC SCHWARZSCHILD METRIC

The Schwarzschild metric is derived as (D.54)

ds2 = −r − rs

r
dt2 +

r

r − rs

dr2 + r2dΩ2 , dΩ2 ≡ dθ2 + sin2 θdϕ2 (D.110)

where rs is the Schwarzschild radius, and as such is positive. Clearly this metric

runs into difficulties at the event horizon, i.e., r = rs. Inside a black hole the metric

becomes

ds2 =
rs − r
r

dt2 − r

rs − r
dr2 + r2dΩ2 , (D.111)

and our time coordinate t becomes spacelike while the space coordinate r becomes

timelike. This singularity and change in behavior of the t and r coordinates provide

challenges when crossing the event horizon and is dealt with using Kruskal-Szekeres

coordinates (see Chapter 6.4 of [126], and page 97–102 of [128]). Another example of

a coordinate transformation is the transformation into isotropic coordinates which is

performed by setting

r = r1

(
1 +

rs

4r1

)2

= r1f
2 , (D.112)

as illustrated in figure D.1, from which we find

dr = dr1

(
1 +

rs

4r1

)2

+ 2��r1

(
1 +

rs

4r1

)(
− rs

4r�21

)
dr1

=

(
1 +

rs

4r1

− rs

2r1

)(
1 +

rs

4r1

)
dr1

=

(
1− rs

4r1

)(
1 +

rs

4r1

)
dr1 = gfdr1 , (D.113)

r − rs = r1

(
1 +

rs

4r1

)2

− r2 = r1 +
rs

2
+

r2
s

16r1

− rs = r1

(
1− rs

2
+

(
rs

4r1

)2
)

= r1

(
1− rs

4r1

)2

= r1g
2 , (D.114)
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rs
4

rs

r1

r

Figure D.2: Here we plot r as a function of r1, from which it is evident that r covers
all the possible values outside the black hole, while the values for r inside the black
hole are absent.

where

f = f(r1) = 1 +
rs

4r1

, g = g(r1) = 1− rs

4r1

. (D.115)

We can then plug these into the Schwarzschild metric

ds2 = − r − rs

r
c2dt2 +

r

r − rs

dr2 + r2(dθ2 + sin2 θdϕ2)

= − ��r1g
2

��r1f 2
c2dt2 + �

�r1f
2

��r1��g
2�
�g2f 2dr2

1 + f 4r2
1(dθ2 + sin2 θdϕ2)

= − g2

f 2
c2dt2 + f 4(dr2

1 + r2
1dθ

2 + r2
1 sin2 θdϕ2) = − g

2

f 2
c2dt2 + f 4(dx2 + dy2 + dz2)

i.e.,

ds2 = −

(
1− rs

4r1

)2

(
1 + rs

4r1

)2 c
2dt2 +

(
1 +

rs

4r1

)4

(dr2
1 + r2

1dΩ2) , (D.116)

where

r = r1

(
1 +

rs

4r1

)2

, r1 =
r

2
− rs

4
+

1

2

√
r(r − rs) . (D.117)

This is a commonly used transform, and is generally used without a hint of the

difficulties that arise from using such a transform. Not only is the spatial coordinate

transformed, but the time coordinate t is implicitly transformed as well, albeit as
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t = t1. Let us consider the possible values of r implied by this transformation. As r1

goes from rs
4

to∞, r goes from the horizon to∞, as we might expect. However when

r1 goes from 0 to rs
4

, r goes from ∞ to rs. Thus the possible values for r outside the

black hole are covered twice, while the values for r inside the black hole are absent,

see figure D.2. Furthermore, when solving for r1 we find that there is a minimum

value for r, below which r1 becomes complex and no longer physical.
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