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ABSTRACT 

 
This dissertation attempts to answer questions from two different areas of 

biology, ecology and neuroscience, using physics-based techniques.  

In Section 2, suitability of three competing random walk models is tested to 

describe the emergent movement patterns of two species of primates. The truncated 

power law (power law with exponential cut off) is the most suitable random walk 

model that characterizes the emergent movement patterns of these primates. In 

Section 3, an agent-based model is used to simulate search behavior in different 

environments (landscapes) to investigate the impact of the resource landscape on the 

optimal foraging movement patterns of deterministic foragers. It should be noted that 

this model goes beyond previous work in that it includes parameters such as spatial 

memory and satiation, which have received little consideration to date in the field of 

movement ecology. When the food availability is scarce in a tropical forest-like 

environment with feeding trees distributed in a clumped fashion and the size of those 

trees are distributed according to a lognormal distribution, the optimal foraging 

pattern of a generalist who can consume various and abundant food types indeed 

reaches the Lévy range, and hence, show evidence for Lévy-flight-like (power law 

distribution with exponent between 1 and 3) behavior.  

Section 4 of the dissertation presents an investigation of phase transition 

behavior in a network of locally coupled self-sustained oscillators as the system 

passes through various bursting states. The results suggest that a phase transition does 

not occur for this locally coupled neuronal network. 

The data analysis in the dissertation adopts a model selection approach and 

relies on methods based on information theory and maximum likelihood.
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1. INTRODUCTION 

 
“In Science it is better to be wrong than confused” – Francis Bacon  

 
1.1.   OUTLINE  

The dissertation research consists of two parts. 

1. Complex scaling behavior in animal foraging patterns (Sections 2 and 3) 

2. The dynamics of large ensembles of coupled neurons (Section 4) 

 
1.1.1. Complex Scaling Behavior in Animal Foraging Patterns. Since the 

introduction of foraging behavior studies of animals by MacArthur and Pianka [1] and 

Emlen [2], the interaction between environmental heterogeneity and individual 

movement has become a central component of ecological dynamics [3]. Movement of 

animals leads to interactions involving mating, predation and competition for 

resources and the spread of communicable disease or parasites, which are important 

determinants of the observed population dynamics and species diversity [4]. 

Therefore, understanding animal movement patterns is important to better understand 

the complexities of real ecological systems.  

It has been argued that animals navigate their environment in the most 

economical manner possible, so that they optimize their chances of encountering 

food, potential mates and other resources [1-7]. Thus, the problem of foraging can be 

considered a problem of search optimization: prime foraging ground for physicists! 

The heterogeneity of food resources in the environment (spatial distribution), 

as well as the composition and the temporal availability of food, requires animals to 

make choices regarding food consumption: what, when and where to eat. As a result, 

many researchers have attempted to explain and predict animal foraging behavior 

using optimal foraging theory [8-10], described in more detail in Section 1.2. In the 
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first section of the dissertation, questions on optimal foraging behavior are attempted 

to answer by focusing on one of the four categories in optimal foraging theory: 

optimal movement patterns.   

In the dissertation models based on random walk theory is used to investigate 

the complex scaling behavior in animal foraging patterns. Section 2 is devoted to the 

analysis of foraging movement patterns of social groups of Trachypithecus vetulus 

and Semnopithecus entellus, two foli-frugivorous primates that inhabit the island of 

Sri Lanka. Here, empirical data (move lengths and turn angles) was analyzed from 

two species of foli-frugivorous primates to determine which random walk model best 

describes the data. The statistical properties of the resource fields utilized by these 

primates were also analyzed; specifically, the spatial distribution and relative 

abundance of resources (targets) and the probability distribution of the size of feeding 

tree species measured by diameter at breast height (DBH) were characterized, in order 

to compare these properties to conditions under which Lévy foraging has been 

observed or predicted to occur [11,12].  

In Section 3, computational models were used to analyze plausible optimal 

search strategies of deterministic foragers in response to changes in resource 

availability and spatial distribution of resources in the environment. A computational 

model was developed based on the simple model of Boyer et al. [12], which is based 

on the cost/gain effect of the animal's energy, and also incorporating satiation and 

spatial memory.    

The Akaike information criterion (AIC) [13-15] is used to analyze data in all 

sections in the dissertation (see Section 1.4.2).  
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1.1.2. The Dynamics of Large Ensembles of Coupled Neurons.  This 

section of the dissertation (Section 4) focuses on a separate, but equally complex, 

biological problem: the dynamics of large ensembles of coupled neurons. This section 

is an extension of the work of Weihberger and Bahar [16] and Bahar [17], where the 

relation between bursting, phase synchronization and global synchronization (see 

Section 4.1.2) of a neural ensemble described by the Huber-Braun model [18], and the 

occurrence of a series of successive desynchronized and synchronized states in the 

system as the coupling constant is tuned in the lattice of locally connected neurons, 

are shown. The main aim in this section is to investigate whether there is evidence of 

a phase transition when the system passes through various bursting states, i.e., when 

the spike pattern of bursting changes from n-tuplets to (n+1)-tuplets (e.g., doublets to 

triplets) as the coupling constant is tuned. In this system, global synchronization, 

which is the measure of stochastic phase synchronization over the entire lattice, can 

be considered as the order parameter (Section 4.1.3). Here the preliminary evidence 

that the system may show characteristics of a phase transition was assessed (Section 

4.1.3), including a sharp increase in the order parameter. Possible scale-free behavior 

of the order parameter is evaluated using a model selection approach based on the 

Akaike information criterion (Section 1.4.2).  

 
1.2.  OPTIMAL FORAGING THEORY 

Beginning with Emlen [2] and MacArthur and Pianka [1], animal foraging 

behavior has been studied by means of mathematical models. All these models 

assume that ‘fitness’ associated with animal foraging behavior can be measured in 

terms of some ‘currency’ [8] - often energy- which has been favored by natural 

selection, subject to certain constraints. All these models are similar and therefore 

called optimal foraging models, and the theory under which these models are formed 



  4 

 

 

is now called optimal foraging theory. Optimal foraging theory has been applied to 

study animal foraging behavior under 4 categories [9]:  

(1) Optimal diet: choice of an animal as to what food type to eat 

(2) Optimal patch choice: choice of which type of food patch to feed in 

(3) Optimal allocation of time to different patches 

(4) Optimal movement patterns 

Recently, random walk theory has been utilized to study optimal movement patterns 

of organisms that optimize interaction between foragers and targets. However, it 

should also be noted that certain amount of criticism has shown regarding the 

application of optimal foraging theory in animal behavior [19].   

 
1.3.  RANDOM WALK THEORY 

The origin of random walk models can be traced back to the well-known work 

of the botanist Robert Brown [20] on the irregular motion of individual pollen 

particles, which is now known as Brownian motion (Figure 1.1; Fig1.1a). Many 

important fields such as random processes, random noise, spectral analysis and 

stochastic equations [21-25] were subsequently developed, and random walk theory 

was further extended with the mean-reversion process [26]. Uncorrelated random 

walks (URW), correlated random walks (CRW) and Lévy walks are the most 

commonly used random walk models in animal movement behavior.  

The uncorrelated random walk is the simplest form of random walk model and 

is assumed to have entirely random angles between successive move lengths (straight 

line movements from one foraging point to another). Since they lack directional 

persistence, i.e., the direction of the next move is statistically independent of the 

direction of the current move [27], they are referred to as uncorrelated random walks 

[3]. This process could be essentially Brownian motion [20] or Fickian diffusion [28] 
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since movement in any direction is allowed [29]. Brownian motion can be modeled 

with exponentially distributed move lengths and uniformly distributed turn angles 

[30]. Correlated random walks consist of move lengths drawn from a Gaussian or 

other exponentially decaying distribution and turn angles drawn from a non-uniform 

distribution [31,32]. However, CRWs involve a degree of correlation between 

subsequent step (moves) orientations (directional persistence) [29,33], that includes a 

local directional bias: each move is likely to point in the same direction as the 

previous move; however, the influence of the initial direction of motion tends to 

disappear gradually over time [29,30]. It should also be noted that these random walks 

(also called ‘classical’ random walks) are characterized by a move length distribution 

whose variance is finite (e.g., an exponential distribution).   

Lévy walks (Figure 1.1; Fig. 1.1b) are a special type of a random walk model 

that was recently introduced to animal foraging literature through an experimental 

study on foraging behavior of ants [34]. Like uncorrelated random walks, Lévy walks 

are also uncorrelated and unbiased, but the distribution of move lengths is heavy-

tailed (power-law distribution) with an infinite variance, and exhibits scale invariant 

(also called ‘scale free’) properties, i.e., there is no characteristic scale. Lévy walks 

are fractal-like, showing the same patterns regardless of the range over which they are 

viewed [29,30,32,35]. Although several recent works show Lévy walks to be the most 

efficient and economical animal movements under some circumstances, they are still 

the subject of controversy [33,35,36].    
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Figure 1.1. Sample trajectories. (a) Random walk (Brownian motion), and  
(b) Lévy walk.  
 

 

 

1.4.  STATISTICAL APPROACH 

Statistical analysis in this dissertation deviates from the traditional hypothesis 

testing approach, and instead uses the newer information theoretic approach. In this 

section the advantages, disadvantages, pros and cons of traditional hypothesis testing 

are discussed and the alternate information theoretic approach used for the analysis is 

introduced. 

Traditional null-hypothesis testing, which is the basis of Fisherian [37-39] or 

‘frequentist’ statistical approaches, has been the central paradigm of ecological 

research during the past century. However, during the past few decades a major 

paradigm shift took place in the field of mathematical ecology where the use of 

traditional approach of null-hypothesis testing has been questioned and an alternative 

information theoretic method has been strongly promoted and widely used due to the 

inaccuracy and inconsistency of null-hypothesis testing. Especially in the study of 

biology, it is important to understand whether traditional hypothesis testing addresses 

the issue of biological significance (implies a biologically relevant effect), as 

contrasted with statistical significance (result was unlikely due to chance) [40].  
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1.4.1. Traditional Hypothesis Testing. “Significance tests are irrelevant to 

the manager who must make the business decision” – H. V. ROBERTS [41] 

 
Hypothesis testing in statistics is the most commonly used approach to 

compare two models of data from a controlled experiment or from an observational 

study. It determines the probability that a given hypothesis is true. The hypothesis is 

rejected if the sample data is not consistent with the statistical hypothesis. There are 

two hypotheses that attempt to explain the results in an experiment; the null 

hypothesis (which represents no difference between population parameters of interest) 

and the alternative hypothesis (which represents either a unidirectional/one-tailed or 

bidirectional/two-tailed alternative) [42]. Decision rules are used to reject a null 

hypothesis. These decision rules can be described with reference to a P-value or with 

reference to a region of acceptance. The region of acceptance is a range of values 

such that, if the test statistic falls within the range, the null hypothesis will not be 

rejected.   

However, a number of problems are associated with the application of the 

hypothesis testing approach. Debates have been particularly evident among 

statisticians on the utility of null hypothesis tests in scientific research [42-44]. The 

basic problem with the null hypothesis-testing paradigm is that in most cases, it is 

“uninformative”. Although information must be provided to make decisions for a 

course of action, hypothesis schema ignore important information such as how 

different the parameters are from each other or whether the parameter estimates are 

required for useful applications. Null hypothesis tests are logically poor and have no 

theoretical justification. For example, rejecting a statistical null hypothesis with 95% 

confidence based on P=0.05 is not logical since P-values associated with hypothesis 

significance testing indicate conditional probabilities: the outcome is based on 
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knowing information about other circumstances. i.e., assuming the null hypothesis is 

true, P-value is computed based on the distribution of the test statistic [42]. Further, 

accepting a substantive alternative hypothesis cannot be justified logically by 

rejecting the null because of the distinction between statistical and substantive 

hypotheses. Here, the statistical alternative hypothesis is the logical negation 

(nullification) of the null hypothesis, whereas the substantive hypothesis reflects the 

knowledge statement that the research is making [45].  Joseph Berkson [46,47] was 

one of the first statisticians to oppose the practice of hypothesis testing. He states, 

“with the corpus delicti (body of crime) in front of you, you do not say ‘here is 

evidence against the hypothesis that no one is dead’. You would say ‘Evidently 

someone has been murdered’. Science is not about disproving things, but looking for 

appropriate evidence for affirmative conclusions” [46].  

The primary basis for data analysis and inference is that on a priori grounds 

almost all null hypotheses are framed in such a way that the hypothesis tested is true. 

The question is whether the sample size is large enough to make the test statistic 

significant [40]. When the sample size is small, the strong and important effects are 

not significant (e.g., a type II error where the decision made to reject the alternative 

hypothesis is wrong when a test fails to reject a false null hypothesis), whereas for 

large sample sizes even insignificant results show very impressive P-values [45].  

Further, they fail to address the issues of the estimation of effects or differences and 

precision of the results, and simply test a trivial (uninformative) null. The P-value, 

which is the cornerstone of null hypothesis testing, has problems as an inferential tool, 

its application in the observational studies and its interpretation [48,49]. The P-value 

is defined as the integral of an extreme region in the sampling distribution (a tail area 

integral) of varied data in which the hypothesis is fixed. Therefore the P-value 
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depends not only on observed data, but also on unobserved data as well [50]. Since 

the P-value depends on both observed data and unobserved data, it overstates the 

evidence against the null hypothesis [51,52]. Although for classic or strict 

experiments such as control-treatment, the null distribution of the test statistic (e.g., 

analysis of variance, F, t, z or χ2) could closely match the actual sampling distribution 

of that statistic, this property does not hold for observational studies. In observational 

studies, the distribution of the test statistic is unknown, due to lack of randomization, 

and hence, problems may occur with both known and unknown confounding factors. 

The form of the distribution of the test statistic in observational studies is not 

deducible from the observational data, but rather assumed naively, and hence, the 

interpretation of results becomes questionable [42].  

Furthermore, hypothesis testing for model selection is often poor [53]. A range 

of flaws exists when hypothesis testing is used for model selection, especially in 

situations when hypothesis-testing methods such as likelihood ratio tests and F-tests 

are used to select between multiple competing hypotheses. Specifically, the extent of 

multiple comparisons (testing of more than one hypothesis) is often restricted to 

nested models (i.e., the simpler model is a special case of the more complex model) 

and is not always clear when hypothesis-testing procedures (e.g., likelihood ratio tests 

in stepwise regression procedures) are used for model selection. The lack of general 

formal rules or guidelines regarding a rigorous definition of various P-values used to 

arrive at a final model makes hypothesis testing problematic to use for model 

selection. There are only ad hoc rules to interpret P-values that fail to result in a final 

parsimonious model (a trade-off between prediction bias* and parameter uncertainty†) 

                                                
* Prediction bias occurs when the estimated structural regression coefficients are biased away from 0 
and the estimated residual variation is biased low. 
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with good inferential features. The inferences relate to the information about the 

structure of the study system as inferred from the models considered and the 

parameters estimated in each model. Any recognizable features common to all 

samples that make strong inferences about the population are categorized as good 

inferential features; for example, adequate bias versus variance trade-off or good 

achieved confidence interval coverage and width [15].  The principle of parsimony 

(also called principle of simplicity) leads to a model with “…the smallest possible 

number of parameters for adequate representation of data…” [54]. In general, in a 

parsimonious model, bias decreases and variance increases with the increase of the 

dimension of the model. The model must be selected by considering a trade-off with 

the increasing variance. Moreover, parameter acceptance or rejection from 

multiparameter models depends on arbitrary α-levels (the basic cutoff for statistically 

significant versus statistically nonsignificant results) that lack a satisfactory statistical 

basis for the determination of a suitable trade-off between bias and variance. A large 

α-level gives overfitted models and their resulting problems. A low α-level gives a 

highly parsimonious model that will be highly biased relative to poly-dimensional 

reality [15].  Although model selection relies on the arbitrary choice of α, α depends 

on n (sample size) and K (parameters) to be useful in the model selection and these 

concepts are not considered in traditional hypothesis testing. These problems 

regarding hypothesis testing have been long known in the literature. However, they 

have been ignored in practical analysis of empirical data [15].   

 
  

                                                                                                                                      
†  Parameter uncertainty is the uncertainty of parameter estimates or predictions when there is variance 
in the estimators. 
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1.4.2. Information Theoretic Approach.  As an alternative method to 

traditional hypothesis testing, in the mid-1970s Akaike introduced his ‘entropy 

maximizing principle’ as a theoretical basis for model selection [13,14,55].  It is an 

estimator based on Kullback-Leibler distance (an information measure) [56] and 

Fisher’s [37] maximized log-likelihood, and was later named Akaike’s information 

criterion (AIC) [15]. In contrast to the “uninformative” hypothesis testing, since the 

AIC estimator is based on K-L information, this approach is information theoretic.  

“Information” here relates to the structure of the relationships between models, model 

parameter estimates, and components of variance.   

Kullback and Leibler [55] derived an information measure to provide a 

rigorous definition of “information” to Fisher’s “sufficient statistics” (i.e., the 

statistics contain just as much information about some parameter as the full data) that 

turned out to be the negative of Shannon-Jaynes entropy [57]. This information 

measure is now referred to as the Kullback-Leibler (K-L) information or distance 

[15]. K-L information is also called K-L discrepancy, divergence and number. The K-

L distance is a measure of dissimilarity between two completely determined models 

described by probability distributions f and g [58]. This distance is not “metric”, 

because the measure from f to g is not similar to the measure from g to f. Therefore it 

is really a discrepancy or divergence rather than a distance. The K-L distance is 

always positive, except when both models are the same (K-L distance = 0).  

Although there are no models that exactly represent full reality, let us denote 

the full truth as f and the approximating model as g. Also, let us assume that both 

models are completely known. The K-L distance between models f and g is then 

defined as 
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  ! !,! =    ! ! !"# !(!)
!(!|!)

!"         (1) 

 

for continuous functions f and g, where log denotes the natural logarithm and I( f, g) 

represents the information lost when g is used to approximate f or heuristically I( f, g) 

denotes the distance from g to f. θ denotes the parameters involved in the models.  

For discrete functions, 

 

  ! !,! =    !!  . !"#
!!
!!

!
!!!           (2) 

    

where there are k possible outcomes of the underlying random variable; the true 

probability of the ith outcome is given by pi. π1,……, πi represent the approximating 

probability distributions (i.e., the approximating models).   

The K-L information between two models is a fundamental quantity in 

information theory (and coding theory). It is a logical basis for model selection in 

conjunction with likelihood inference [15]. However, K-L information by itself will 

be inadequate to select the best model of the candidate models since it cannot be 

computed without full knowledge of both truth (f) and the parameters (θ) [15,42].  

Akaike overcame this inadequacy in 1973 by deriving a formal relationship between 

K-L information and the maximized log-likelihood function. This breakthrough 

brought both estimation and model selection under a single theoretical framework: 

optimization.  

The Akaike information criterion (AIC) is defined as 

  

   !"# = −2 log ℒ ! ! + 2!      (3) 
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where  ℒ ! !  is the likelihood function of the data set with the maximum parameter 

estimate !. The parameters are assumed to be fixed but unknown. Maximum 

parameter (maximum likelihood) estimate seeks the solution that ‘best’ explains the 

dataset. In other words, maximum likelihood estimate of ! is the value that 

maximizes the likelihood !(!|!), ! = !"#$!%[! ! ! ]. Since log is a monotonic 

function, ! = !"#$!% ! ! ! = !"#$!%[!"#  !(!|!)]. K gives the number of 

independently adjusted parameters needed to obtain the maximum ! [14]. The term 

log ℒ Θ !  is the numerical value of the log-likelihood at its maximum point.  

AIC can be computed for each approximating model of a set of well-defined a 

priori candidate models (hypotheses, i.e., gi, i = 1, 2, …..R). The AIC provides an 

estimate of the expected relative distance between the fitted model and the observed 

data. The model with minimum AIC is selected as the best candidate model for the 

empirical data at hand, since this model results in minimal information loss when 

used to approximate the data. However, it is important for the chosen candidate 

models to be well founded, since if all the models were very poor, the one estimated 

to be the best would also be relatively poor [15]. Although there are certain 

disadvantages in traditional null hypothesis testing, traditional approaches such as 

goodness of fit or classification success may be useful to assess how well the sample 

data could be approximated by the selected model and to identify whether the models 

are relatively poor.  Hence, a more powerful approach would be to combine both 

information theoretic criteria and null-hypothesis testing in multiple hypothesis 

testing.  

The value of the maximized log-likelihood has a significant variation among 

different data sets, i.e., there is a substantial sample variation (uncertainty) associated 
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with an estimate of a parameter when data sets are different. Therefore, AIC cannot be 

used to compare different data sets.  

Since sample size is often an issue with ecological data, a second-order variant 

of AIC corrected for small sample size n (AICc) has been developed and is generally 

used when the ratio n/K is small (<40) [15,59]. AICc is defined as  

 

  !"#! = −2 log ℒ ! ! + 2! !
!!!!!

.    (4)  

  

The AIC difference (∆!= !"#! − !"#!"#  )  estimates the ‘relative’ expected K-L 

difference between the candidate model and data; the ‘best’ model is defined as the 

one with the minimum AIC value, AICmin. It should be noted that the absolute values 

of AIC and AICc are uninformative in model selection since they reflect only the 

sample size and involve an unknown constant (interval scale). What is important is 

comparing AIC values. Therefore, the AIC difference (Δc) plays the most important 

role in interpreting the Akaike information criterion.  

Unlike hypotheses testing, AIC can be applied for both nested and non-nested 

model selection. Two models are considered to be nested if one model is a special 

case of the other, obtained by parameter restrictions. For example, the exponential 

distribution is a special case of the type III Pearson distribution, and the lognormal 

distribution is a special case of the semi-bounded Johnson distribution. In other 

words, nested models belong to the same family of distributions. On the other hand, 

models that are not nested belong to a separate family of distributions, i.e., individual 

models are not obtained from another model either by imposition of parameter 

restrictions or through a limiting process.  
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AIC is an estimate that combines goodness-of-fit of a model to data and the 

number of estimated model parameters. It reflects model parsimony: a trade-off 

between prediction bias and parameter uncertainty (or variance) (Section 1.4.1). 

Unavoidable sampling errors give rise to the fact that there is no necessity for the 

model with the lowest AIC to be the best K-L model. In order to incorporate this 

uncertainty Burnham and Anderson [15] suggested a very simple selection criterion 

depending on the AIC difference, Δ which they call a ‘rule of thumb’.  As a rule of 

thumb for nested models, if the AIC (AICc) difference is between 0 and 2, the 

empirical support for the model is considered to be substantial, while for differences 

greater than 2, support for the model is considerably less [15]. It should be noted that 

this logic has been tested by Richards [60], who showed that the consistency in the 

variation (parameter uncertainty) in AIC values for models investigated provides a 

potential clue as to why the rule of thumb introduced by Burnham and Anderson [15] 

works well. However, Richards [60] suggests that the robustness of this rule of thumb 

needs to be examined further. 

Since AIC is an estimate, the predictions made by the AIC estimate depend on 

model uncertainty (Section 1.4.1). Clear support for one model shows that maximum 

likelihood parameter estimates or predictions from that model can account for the 

nature of the data. Nevertheless, equal support in the observed data for multiple 

models (AIC values are nearly equal) becomes problematic in selecting the best 

model. Therefore when no single model is overwhelmingly supported by the data, 

parameter estimates or predictions found using model averaging become robust to 

better characterize the likelihood of the model since model averaging accounts for 

model selection uncertainty by reducing bias [60,61]. These predictions of each model 

are weighted using ‘Akaike weights’.  When the data and a set of R models are given, 
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likelihood of the model is ℒ !! ! , where !!   is the probability distribution of the 

candidate model, is normalized to give a set of positive ‘Akaike weights’, !!/!!, 

which sum to 1 and are defined as 

 

                                                                                                                  !! =
!!

∆!
!

!!
∆!

!!
!!!

     (5) 

 

where i represents the candidate model and r is any model from 1 to R. The likelihood 

(which denotes the relative strength of evidence for each model) of model !! is  

  ! !! ! ∝ !"# − !
!
△! .  Here, !!   is regarded as the weight of evidence that the 

model is the K-L best model in the set of candidate models considered. The weight 

(!!/!!) for a given model ranges between 0 (no support) and 1 (complete support).  

In contrast to hypothesis testing, AIC is not a statistical “test” and there are no 

associated concepts such as test power, P-values or arbitrary α levels. No single 

hypothesis (i.e., model) is made to be null and no notion of significance is needed. 

The information theoretic approach to model selection has a theoretical basis, whereas 

the use of null hypothesis testing should be considered ad hoc [15]. 
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2.  DETERMINISTIC FORAGING ON A COMPLEX RESOURCE 
LANDSCAPE: NO EVIDENCE FOR LÉVY-FLIGHT-LIKE BEHAVIOR 

 
2.1.  INTRODUCTION 

Understanding how organisms move within heterogeneous natural 

environments in the search for resources is a fundamental problem in ecology [1]. It 

has been suggested that organisms navigate through their environment in a manner 

that optimizes their chances of encountering food and other resources [7]. Since 

organism movement influences interactions such as predation, competition, and 

disease spread [4], the study of animal movement patterns has received wide attention 

from ecologists [33, 62-65].  

Random movement models have often been used to understand how 

organisms interact with their environment [66-72]. A pure random walk, which is the 

simplest form of these models, assumes that angles between successive steps (moves) 

are entirely random [66, 67]. This approach fails to account for directional persistence 

(the propensity of animals to continue moving in a fixed direction), and hence, is 

inadequate to describe most realistic animal movement.  

More recently, the analysis of movement data from animals as diverse as 

mussels [73], bees [65,74], jackals [63] and marine predators [75, 76] over different 

spatiotemporal scales has revealed a particular type of movement, where the 

movement distribution has a power-law tail with exponent µ between 1 and 3. In 

movement ecology, two terms are used to refer to such distributions. The term Lévy 

flight is used when the variable is move length, while the term Lévy walk is used 

when the variable is the time taken to complete a step. Since the move length 

distribution is characterized by a power-law tail, the move lengths do not have a 

characteristic scale, and hence, Lévy flights are scale-free. Strikingly, a recent 

reappraisal, using information-theoretical methods such as the Akaike information 
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criterion (AIC), of data from previous studies that purported to demonstrate Lévy 

flights in the movement trajectories of a number of organisms [74, 77], failed to 

establish any evidence for Lévy flights [35]. In addition, there is considerable debate 

on whether the mathematical characteristics of Lévy flights observed in the movement 

patterns of organisms are a result of an actual Lévy process, or whether they derive 

instead from complex interactions of the organisms with their environment [34, 73] 

(see Section 1.3 for more details). 

Recent studies hypothesize that emergent movement patterns resembling Lévy 

flights may be an adaptive response to the problem of foraging in environments where 

resources are distributed sparsely and randomly, and where knowledge-based search 

rules are of little use [4, 32, 75, 76, 78, 79]. In such environments, fractality and 

superdiffusivity, properties that are characteristic of Lévy flights, increase the 

probability of organisms encountering resources [72, 79]. In this case it is thought that 

movements resembling Lévy flights arise as a result of organisms moving according 

to an actual, inherent Lévy process. However, movements resembling Lévy flights 

have also been identified in deterministic foragers such as primates [80], which have 

an intimate knowledge of their environment and rely on spatial memory processes 

[81] to locate resources. This suggests that mechanisms other than stochastic search 

optimization, such as memory processes and the influence of landscape on animal 

movement could result in movement patterns resembling Lévy flights to emerge in 

such organisms [82]. In such a case, it could be argued that the animal’s trajectory is 

not a true “Lévy flight”, since it is based on conscious processing of the animal’s 

environment rather than an inherent stochastic (and presumed unconscious) process. 

The terminology used here is adopted by Boyer et al. [83] and others, and refer to 

move length distributions which exhibit the mathematical characteristics of Lévy 
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flights, but result from deterministic behavior, as “Lévy-flight-like”. Note that it could 

be argued that a “pure” Lévy flight is possible only in a mathematical sense, since any 

living forager, however simple its nervous system, will receive and respond to some 

input from the environment. Thus, the question of terminology may be a purely 

semantic one. 

Although the etiology of Lévy-flight-like foraging patterns is debated [4, 34, 

73] studies clearly show that the statistical properties of resource fields are capable of 

influencing search strategies [11, 12, 75]. Sims et al. [75] demonstrated that both the 

horizontal distribution of prey densities and vertical dive patterns of marine 

vertebrates followed a power-law distribution. Simulations indicate that prey 

encounter rates are higher when predators adopt Lévy-flight-like foraging behavior in 

a prey field defined by a Lévy distribution [75].  In the case of deterministic foragers 

such as primates, a modeling study by Boyer at al. [12] showed that Lévy-walk-like 

patterns could emerge when feeding tree size, measured as diameter at breast height 

(DBH) is distributed according to a power law with low resource exponent values (see 

Resource field under Methods). The tree size distribution of a tropical forest, similar 

in composition to forests inhabited by the spider monkeys studied by Boyer et al. 

[12], was also shown to follow a power-law distribution [12], though some of the 

sampling methodologies used to determine the resource distribution in this case have 

been questioned, as discussed below. Taken at face value, these studies show that 

Lévy-flight-like movement patterns are observed or predicted to occur when 

resources are scarce [11], randomly distributed [12] and, in the case of primates and 

similar deterministic foragers, when the frequency distribution of DBH (diameter at 

breast height) values of feeding trees follows a power-law distribution [12]. Although 

Boyer et al. [12] proposed a mechanism to explain Lévy-like movement patterns in 
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foragers with spatial memory, relatively few empirical studies have examined this 

issue [80]. Furthermore, the studies that demonstrate the presence of Lévy-flight-like 

movement in animals that live in social groups [80, 84] have only focused on the 

movements of individual organisms; whether Lévy-flight-like patterns are 

distinguishable in movement data from stable social groups as a whole is unclear. 

Additionally, move lengths derived through subsampling movement trajectories of 

organisms, which have been the basis for numerous studies demonstrating Lévy-

flight-like behavior in a variety of organisms [62, 75, 80], can give artefactual and 

incorrect results [85]. Despite evidence for the influence of resource distribution and 

abundance on search strategies, few foraging studies have attempted to 

simultaneously characterize the distribution and abundance of resources (see [75, 

76]). Characterizing the distribution and abundance of resources is crucial to 

elucidating the mechanisms that give rise to the observed movement patterns of 

foragers.  

In this section, the movement patterns of social groups of Trachypithecus 

vetulus and Semnopithecus entellus, two leaf and fruit-feeding (foli-frugivorous) 

primates that inhabit the island of Sri Lanka are analyzed, by fitting competing 

models to the data in order to determine which of the models best describe the 

foraging movements of stable social groups of these primates. T. vetulus and S. 

entellus (Figure 2.1) belong to the subfamily Colobinae and are predominantly 

arboreal. They overlap in their ranges in the north central dry zone of Sri Lanka but 

adopt different feeding strategies. S. entellus is more frugivorous and consumes a 

diverse array of plants, while T. vetulus utilizes relatively few species of plants as 

food [86].   
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Since the movement ecology of organisms is influenced by the distribution 

abundance of resources [11, 12], the statistical properties of the resource fields of 

these primates are also examined. Specifically, the spatial distribution and relative 

abundance of resources (targets) and the probability distribution of the DBH of 

feeding tree species are characterized in order to correlate the resource field 

distribution with the observed movement patterns in these primates. 

This study is unique in that this is the first study to compare both the 

movement data (move lengths) and statistical properties of resource fields of social 

groups of two sympatric putative competitors [87]. In addition, a more rigorous 

information-theoretic approach was employed, using the Akaike information criterion 

(AIC) by deviating from the once-predominant ‘hypothesis testing’ paradigm in 

model selection methodology, to assign relative strengths to competing models [15].  

 

 

 

 a) b) 

 
Figure 2.1. Colobine monkeys of Sri Lanka. (a) Semnopithecus entellus,       
(b) Trachypithecus vetulus. 
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2.2.  METHODS 

 2.2.1. Movement Data Collection.  Data was collected from July 2008 to 

June 2009 from two groups of S. entellus and one group of T. vetulus at the 

Kaludiyapokuna ('black-water pond') forest reserve, located in the dry zone of Sri 

Lanka. S. entellus groups A (n = 22 individuals) and B (n = 13) and the T. vetulus (n = 

11) group were habituated to human observers and could be approached to within a 

distance of 10 meters without showing signs of alarm or panic.  Data collection 

commenced at dawn, before the monkeys left their sleeping trees, and continued until 

dusk, at which time the animals settled down to sleep. The center of the group was 

visually determined and recorded as the group location [88].  An observer followed 

each group, and the locations at which each group stopped to feed were recorded 

using a Garmin 76 CSX GPS receiver. The coordinate data was transferred to 

ArcView 9.3 (ESRI) and distances between two successive feeding locations (move 

length) were determined using the Hawth’s Analysis Tools module 

(http://www.spatialecology.com/htools).  

 Once a group entered a tree, any change in position of the group was also 

recorded. During the course of daily follows, group scan sampling was performed at 

10-minute intervals and the number of animals engaged in different forms of activity 

(resting, moving, feeding, grooming, and social play) was recorded [89]. The plant 

species, the plant part and the approximate DBH of feeding trees, measured using a 

DBH tape, were recorded during each scan. Forage ratios (!!)  [90] were calculated 

for each tree species accounting for ≥ 1% of the annual diets of the study groups to 

measure dietary selectivity for each species. Forage ratios (!!) were computed using 

the formula: 
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!! =
!!
!!

                            (6)  

 

where !! is the percentage of plant species i in the diet and !!   is the percentage of 

plant species i available in the environment. Since these primates utilized liana 

species, stem density derived from the vegetation plots was used as a measure of 

availability of food plant species in the environment. The forage ratios greater than 

1.0 indicate preference while values less than 1.0 indicate avoidance. An extremely 

large ratio would indicate that an animal solely, or almost solely, subsists on an 

extremely rare species. 

 
 2.2.2. Resource Field.  The vegetation at the study site was characterized in 

20 m x 20 m plots (n = 59). All trees within each plot were identified and their DBH, 

which has been shown to be a reliable predictor of resource abundance in tropical 

trees [91], was recorded as described above. In situations where DBH is distributed 

according to a power law, the probability !(!) of observing a tree of DBH value k is 

given by !(!)   =   !!!! , where C is a normalization factor and 1 < β < ∞ is a fixed 

power-law exponent characterizing the environment [12].  When  β is close to 1, 

  !(!) decays slowly, implying that the range of tree sizes is very broad; when β >> 1, 

the variation in tree size is small, and the probability of finding larger targets is 

negligible [12]. Simulations have shown that, for 3 ≤ β ≤ 4, the move length 

frequency distribution !!(!) is well fitted by a power-law distribution with an 

exponent within the Lévy range [12]. This model assumes that the forager knows the 

location and sizes of all targets within the system and moves in a straight line from 

one target (!) to a new target (!) in a manner such that the ratio !!"/! is minimal 

among all targets in the system; !!" is the distance between two targets. In addition, 
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the forager does not revisit targets and as it is assumed that visited targets are no 

longer profitable.   

Both species feed predominantly on trees greater than 9 cm in DBH, and 

hence, only feeding trees with DBH > 9 cm were incorporated into the analysis. The 

resource exponent β was computed for each monkey group by using the DBH values 

of all feeding trees and preferred tree species they consumed during the period.  The 

preferred trees were defined as the subset of feeding trees with forage ratio greater 

than 1. Resource exponents were determined using MLE (maximum likelihood 

estimate) methods, described in detail in Section 1.4.2; the power-law expression used 

in the MLE comparison in this section was similar to that given by Boyer et al. [12], 

though with a different normalization factor (See Appendix A). MLE methods have 

been shown to be more accurate at determining exponents in comparison to traditional 

binning methods [92]. The spatial distribution of resources was characterized using 

the Morisita index (also called Morisita index of dispersion) !! [90]. Morisita index !! 

assumes a value of unity when trees are randomly distributed, is greater than 1 when 

trees are clumped in distribution, and is less than 1 when trees are distributed in a 

uniform pattern. The null hypothesis of randomness was tested by computing a χ2 

statistic for index values [90]. Morisita index !! was calculated for individual food 

tree species and also for all trees exploited for particular dietary items during the 

period of the study.  

 
2.2.3. Model Selection.  The robustness of three model fits to (1) the 

frequency distributions of successive moves of the two species and (2) the DBH 

distributions of the tree species utilized as food was tested. A power-law model 

(expected for a Lévy flight, as discussed above), an exponential model (expected if 

successive move lengths are drawn from a random Poisson distribution) and a 
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truncated power law model (power-law with an exponential decay for the longest 

moves) were selected as candidate models because a number of studies on animal 

movement and search behavior have shown move lengths to be approximated by 

these models [35, 76, 93]. Equations and parameters for all models are provided in 

Appendix A. Note also that the DBH data used in the analysis are only of the tree 

species utilized by the primates as food, and not of all the tree species in the forest; 

determining the model that best describes the DBH distribution of the entire forest is 

beyond the scope of this research. 

 The relative likelihood of each candidate model was computed using AICc 

weights (Wc) and AICc differences (Δc) [15] (see Section 1.4.2 for details). 

Note that testing for the presence of Lévy flights requires the fitting of the 

power-law model to the tail of the move length distribution. This requires the 

determination of a value !!"# in the data, which corresponds to the start of the tail. 

Here, the value !!"# of the move length and the power-law exponent ! was 

determined according to the methods outlined in Edwards [94]. The move lengths 

were binned using the logarithmic-binning method with normalization [7] and the 

minimum value of the smallest bin was set as !!"#. In the case of move length 

distributions, the competing models were fit to both the total data and the tail of the 

distribution. In the case of the DBH distributions, the competing models were fit only 

to the entire distribution.  

 Once the best model was identified using AIC, a Kolmogorov-Smirnov test 

was performed [95] as a goodness-of-fit (GOF) to determine whether the data was 

consistent with the model. The goodness-of-fit test was carried out since the best 

model found from AIC techniques might be the best among three poor models, and 

hence, without a quantitative measure of GOF [96], it is difficult to assess how well 
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the data that describes the movement patterns of the monkeys and DBH values of the 

feeding trees are approximated by the model.   

GOF tests are based on either the cumulative distribution function (CDF) or 

the probability density function (PDF) [97]. While GOF tests such as Chi-square tests 

depend on the PDF, tests such as Anderson-Darling (AD) and KS use the CDF 

approach, and hence, belong to the class of ‘distance tests’ [97]. Goodness-of-fit tests 

require the null-hypothesis distribution to be fully specified in advance and the 

parameters are estimated from the sample. Here, the parameters are estimated using 

MLE which produces more accurate and robust estimates [96].  

The KS test is based on the test statistic: 

 
! = !"#

!
!⋆ ! − !(!)                                          (7) 

 
where !⋆(!) is the hypothesized cumulative distribution function and !(!) is the 

empirical distribution function based on the sampled data. The calculation of the 

maximum distance between !⋆(!) and !(!) is required in order to test whether the fit 

of the best model found using AIC methods is reasonable [96]. The null hypothesis 

here is that two samples (!⋆(!) and (!) ) come from the same distribution and the 

alternative hypothesis is: null hypothesis is not true. The critical region is greater than 

the upper 5% point of the KS distribution (D0.05). The null hypothesis is rejected if D 

exceeds the nominal critical value and accepts if D is well below the nominal critical 

value [98]. P-value gives the probability that the Kolmogorov-Smirnov test statistic, 

D, is greater than the 95% confidence interval (D0.05). According to this test, if P > 

0.05, the difference between two samples is not significant enough to say that they 

have different distributions. In other words, the null hypothesis is not rejected and the 

data is considered to be well approximated by the model [94, 98]. It should be noted 
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that the value of D statistic, and hence, the P-value is not affected by scale changes 

like log [98].  

 
2.3. RESULTS 
 
 2.3.1. Move Length Distribution.  The average move length for T. vetulus 

sampled during the entire study period, including both the wet and dry seasons, was 

57.2 m (SD ± 38.9), while the average move lengths for S. entellus groups A and B 

during the same period were 34.0 m (SD ± 13.4) and 70.4 m (SD ± 36.6), 

respectively.  

Based on AIC, the move length distributions of S. entellus groups A (Figure 

2.2; Fig. 2.2a, Table 2.1) and B (Figure 2.2; Fig. 2.2b, Table 2.2) were best described 

by the truncated power-law distribution with an exponential decay. Similarly, the 

move length distribution of T. vetulus was also best described by the truncated power-

law model (Figure 2.2; Fig. 2.2c, Table 2.3). As suggested by the GOF tests, except 

for the tail of the move length distribution of group B, the movement data from all 

three social groups were consistent with the best model.  

 
 

Figure 2.2. Move length distribution of langurs and the relative fit of competing 
models to the data. (a) S. entellus group A, (b) S. entellus group B and (c) T. vetulus. 
The open circles represent the empirical distribution function based on the sampled 
data.  
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Table 2.1. Maximum-likelihood estimate (MLE), AICc, Δc and wc values for the 
parameters of competing models computed from move lengths of S. entellus (group 
A). 
 
Model best-fit parameter Likelihood AICc Δc wc GOF 
           
 D0.05 P-value 
 
 
Whole data set (n = 228) 
 
Power-law µ = 1.256 (1.223, 1.289) -1428.456             2860.965 640.582 7.93x10-140 0.7943 1.30x10-98 

 

Exponential λ = 0.017 (0.014, 0.019) -1160.571§ 2325.195 104.812 1.74x10-23 0.5781 1.53x10-67 

 

Truncated power-law µ = 1.831 (1.379, 2.368) -1108.165*        2220.383    0.00 ~ 1.00 0.0362 0.9147 
(with exp cut off) λ = 0.047 (0.039, 0.057) 
 
 
Tail of move length distribution (n = 215) 
 
Power-law µ = 1.250 (1.217,1.284) -1371.257 2746.571 672.69 8.46x10-147 0.6050 4.68x10-33 

 

Exponential λ = 0.016 (0.014, 0.018)  -1104.54§ 2213.137 139.256 5.77x10-31 0.3500 2.40x10-11 

 

Truncated power-law µ = 2.629 (2.028, 3.349) -1034.912*      2073.881 0.00 ~1.00 0.0750 0.6107 
(with exp cut off) λ = 0.058 (0.048, 0.070) 
 
* best model  
§ next best model 
 

 

 

Table 2.2. MLE, AICc, Δc and wc values for the parameters of competing models 
computed from move lengths of S. entellus (group B). 
 

Model best-fit parameter Likelihood AICc Δc wc GOF 
   
 D0.05 P-value 
 
 
Whole data set (n = 225) 
 
Power-law µ = 1.278 (1.241, 1.314) -1324.203 2652.46 475.764 4.89x10-104 0.7519 3.30x10-67 

 
Exponential λ = 0.021 (0.018, 0.024) -1106.882§ 2217.818 41.122 1.18x10-09 0.2033 1.28x10-8 

 
Truncated power law µ = 1.041 (0.718, 1.424) -1086.321*         2176.696 0.00 ~ 1.00 0.0599 0.3797 

(with exp cut off) λ = 0.043 (0.035, 0.052) 
 
 
Tail of move length distribution (n = 217) 
 
Power-law µ = 1.272 (1.236,1.308) -1297.528 2599.112 542.868 1.31x10-118 0.6850 2.95x10-42 

 

Exponential λ = 0.020 (0.018, 0.023) -1063.384§ 2130.824 74.58 6.38x10-17 0.2200 9.69x10-05 

 

Truncated power-law µ = 1.394 (1.006, 1.857) -1026.094*           2056.244 0.00 ~1.00 0.2650 1.10x10-06 

(with exp cut off) λ = 0.048 (0.040, 0.059) 
 
 
* best model  
§ next best model 
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Table 2.3. MLE, AICc, Δc and wc values for the parameters of competing models 
computed from move lengths of T. vetulus.  
 
 Model best-fit parameter Likelihood AICc Δc wc GOF 
   
 D0.05 P-value 
 
 
Fitting to the whole data set (n = 121) 
 
Power-law µ = 1.257 (1.223, 1.291) -755.392 1514.886 357.874 1.94x10-78 0.7853 1.69x10-89

  
Exponential λ = 0.018 (0.014, 0.021) -610.644§ 1225.39 68.378 1.42x10-15 0.2816 6.18x10-9 

 

Truncated power-law µ = 2.263 (1.566, 3.148) -576.455* 1157.012 0.00 ~ 1.00 0.0644 0.6732 
(with exp cut off) λ = 0.057 (0.044, 0.074) 
 
 
Tail of move length distribution (n =116) 

Power-law µ = 1.253 (1.207, 1.299) -733.3022 1470.711 370.828 2.99x10-81 0.3800 6.12x10-07 

Exponential λ = 0.017 (0.0201, 0.0140) -589.3238§ 1182.754 82.8712 1.01x10-18 0.2400 0.0050 

Truncated power-law µ = 2.944 (2.080, 4.051) -547.8882 1099.883 0.00 ~1.00 0.1500 0.193 
(with exp cut off) λ = 0.067 (0.051, 0.087) 
  
 
* best model  
§ next best model 
 
 
 
 
 
 2.3.2. Resource Field.  Important results are found for the DBH distribution 

patterns, the power-law exponents (β) computed using DBH measurements, and the 

spatial distribution patterns and the abundance of the species in the resource field.  

 
2.3.2.1. Model selection for DBH frequency distribution.   The DBH 

distributions of all feeding trees used and species preferred by the monkeys (those 

with forage ratio greater than 1), are shown in Figures 2.3 and 2.4, respectively, along 

with relative fits of the competing models. Akaike weights and Akaike differences, 

computed for competing models, indicated that the DBH distribution of all feeding 

trees and preferred tree species fed on by S. entellus groups A and B and T. vetulus 

during the study period were best described by the truncated power-law model 

(Tables 2.4, 2.5 & 2.6). However, GOF tests showed that none of the data sets were 

consistent with the truncated power-law model.  
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Figure 2.3. DBH distribution of all feeding trees utilized by langurs, and the relative 
fit of competing models to the data. (a) S. entellus group A, (b) S. entellus group B 
and (c) T. vetulus. The open circles represent the empirical distribution function based 
on the sampled data. 

 

 

 

 

 

 
 
Figure 2.4. DBH distribution of preferred feeding trees utilized by langurs, and the 
relative fit of competing models to the data. (a) S. entellus group A, (b) S. entellus 
group B and (c) T. vetulus. The open circles represent the empirical distribution 
function based on the sampled data. 
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Table 2.4. MLE, AICc, Δc and wc values for the parameters of competing models 
computed from DBH of tree species utilized by S. entellus (group A). 
 
Model best-fit parameter Likelihood AICc Δc wc   GOF 
   
 D0.05 P-value 
 
 
All feeding trees (n = 677) 
 
Power law β = 1.329 (1.304, 1.354) -3486.400 6968.80 1486.60 1.48x10323 0.8771 4.126x10-103 

 

Exponential λ = 0.039 (0.036, 0.042) -2874.925§ 5745.90 263.70 5.47x10-58 0.1140 4.044x10-8 

 

Truncated power law µ = 1.557 (1.312, 1.827) -2743.592*  5482.20 0.00 ~ 1.00 0.2954 3.945x10-52 
(with exp cut off) λ = 0.099 (0.089, 0.111) 
 
 
Selected trees (n = 143) 
 
Power law β = 1.298 (1.249, 1.347) -796.644 1589.30 272.40 7.06x10-60 0.8272 8.97x10-92 

 

Exponential λ = 0.025 (0.021, 0.029) -670.235§ 1336.50 19.60 5.54x10-05 0.2018 1.41x10-5 

 

Truncated power law µ = 0.673 (0.352, 1.069) -660.434* 1316.90 0.00 0.9999 0.1554 0.0018 
(with exp cut off) λ = 0.042 (0.032, 0.054) 
 

 
* best model  
§ next best model 
 

 
 
 
Table 2.5. MLE, AICc, Δc and wc values for the parameters of competing models 
computed from DBH of tree species utilized by S. entellus (group B). 
 
Model best-fit parameter Likelihood AICc Δc wc   GOF 
   
 D0.05 P-value 
 
 
All feeding trees (n = 656) 
 
Power law β = 1.327 (1.302, 1.352) -3399.047 6794.10 1398.50 2.09x10-304 0.8648 1.09x10-93 

 

Exponential λ = 0.037 (0.034, 0.040) -2811.798§ 5619.60 224.00 2.29x10-49 0.2858 2.63x10-47 

 

Truncated power law µ = 1.386 (1.155, 1.641) -2699.809*   5395.60 0.00 ~ 1.00 0.1164 3.34x10-8  
(with exp cut off) λ = 0.089 (0.079, 0.100) 
 
 
Selected trees (n = 280) 
 
Power law β = 1.328 (1.289, 1.366) -1446.578 2889.20 502.60 7.27x10-110 0.8638     1.85x10-94 

 

Exponential λ = 0.035 (0.031, 0.039) -1219.354§ 2434.70 48.10 3.59x10-11 0.2697 2.49x10-18 

 

Truncated power law µ = 0.794 (0.539, 1.090) -1195.286*  2386.60 0.00 ~ 1.00 0.1508 5.04x10-6 

(with exp cut off) λ = 0.063 (0.053, 0.075) 
 
 
* best model  
§ next best model 
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Table 2.6. MLE, AICc, Δc and wc values for the parameters of competing models 
computed from DBH of tree species utilized by T. vetulus. 
  
Model best-fit parameter Likelihood AICc Δc wc   GOF 
   
 D0.05 P-value 
 
 
All feeding trees (n = 633) 
 
Power law β = 1.326 (1.301, 1.352) -3280.774 6557.50 1380.60 1.61x10-300 0.8648 1.09x10-93

  
Exponential λ = 0.038 (0.034,0.041) -2707.584§ 5411.20 234.30 1.33x10-51 0.2879 2.37x10-46

  
Truncated power law µ = 1.490 (1.245, 1.762) -2590.452*  5176.90 0.00 ~ 1.00 0.1114 2.65x10-7 
(with exp cut off) λ = 0.094 (0.083, 0.105) 
 
 
Selected trees (n = 93) 
 
Power law β = 1.306 (1.244, 1.369) -506.543 1009.10 192.00 2.03x10-42 0.834 5.77x10-75 

 

Exponential λ = 0.029 (0.023, 0.036) -421.506§ 839.01 21.91 1.75x10-05 0.2380 4.05x10-5

  
Truncated power law µ = 1.013 (0.541, 1.629) -410.552* 817.10 0.00 ~ 1.00 0.1572 0.0179 
(with exp cut off) λ = 0.059 (0.043, 0.080) 
 
 
* best model  
§ next best model 
 
 
 
 

2.3.2.2. Power-law exponent (!).  Out of a total of 73 tree species, 49 species 

were utilized by S. entellus, while 27 were utilized by T. vetulus. A number of these 

were shared by the two monkey species [87]. For S. entellus groups A and B, DBH 

measurements from 677 and 656 trees were used to determine β, respectively. For T. 

vetulus, β was computed using DBH measurements from 633 trees.  Although the two 

species are known to partition resources [86], β values for preferred (!! ≥ 1)  and all 

feeding trees utilized by S. entellus did not differ significantly from those used by T. 

vetulus (Tables 2.4, 2.5 & 2.6).  

2.3.2.3. Spatial distribution and abundance of targets.  The majority of tree 

species utilized by S. entellus and T. vetulus were aggregated (clumped) in 

distribution (Table 2.7). Both S. entellus and T. vetulus utilized feeding tree species 

that occurred at high densities as well as species that occurred at relatively low 
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densities (Table 2.7), although species that occurred at relatively low densities 

constituted a greater proportion of the diet of T. vetulus in comparison to S. entellus.  

However, when all the tree species that were exploited for flowers, fruit and immature 

leaves were pooled separately, the trees exploited for each dietary item showed a 

uniform distribution (Table 2.8).  

 
 

 

Table 2.7.  Spatial distribution, abundance and the proportion of time spent feeding 
for major tree species utilized by S. entellus and T. vetulus during the study period.  
 
 

 
Species n D (Rank)     %Feeding time   Ip   Id (p)  Conclusion 
 GA GB TV     

   
Cryptocarya sp. 85 36.02(9) 2.05+ 1.07 - 0.5176 3.305 (0.00) Clumped 
Commiphora caudatum 3 1.27(43) 1.14♦ - 15.04 -------- --------  ----------* 
Dialium ovoideum 17 7.20(21) 1.66+♦ 3.84 - -0.488 2.169 (0.06) Random 
Dimocarpus longan 56 23.73(12) 1.00+♦ 4.24 4.26 0.505 2.031 (0.00) Clumped 
Diospyros ebenum 20 8.47(19) 1.27♦ - - 0.508 3.105 (0.00) Clumped 
Diospyros oocarpa 214 90.68(2) 2.83+♦ 1.94 - 0.506 1.742 (0.00) Clumped 
Drypetes sepiaria 166 70.34(5) 12.01+♦ - 6.89 0.507 1.995 (0.00) Clumped 
Ficus amplissima 4 1.69 (36) - 3.32 - -------- --------  Random* 
Ficus arnottiana 1 0.42(55) - - 3.88 -------- --------  ----------*  
Ficus microcarpa 15 5.51(23) 4.95+♦ - 21.3 -0.045 1.124 (0.41) Random 
Ficus virens 1 0.42 (55) - 2.35 - -------- --------  ----------* 
Grewia rothii 72 30.51(10) 7.24+♦ 7.52 1.75 0.514 2.885 (0.00) Clumped 
Holoptelea integrifolia 3 1.27(46) 8.60+♦ - - -------- --------  Clumped* 
Hydnocarpus venenata 22 9.32(17) 4.90+♦ 1.64 - 0.580 11.238 (0.00) Clumped 
Lannea coromandelica 4 1.69(36) 1.90♦ - 1.5 -------- --------  ----------* 
Lepisanthes senegalensis 137 58.10(6) 2.94+♦ - - 0.510 2.280 (0.00) Clumped 
Macaranga peltata 4 1.70(36) - 2.76 - -------- --------  ----------* 
Manilkara hexandra 4 1.70(36) 3.00♦ - 2.77 -------- --------  Clumped* 
Mischodon zeylanicus 317 134.32(1) 8.79+♦ 38.10 16.79 0.515 2.835 (0.00) Clumped 
Pterygota twaitesii 7 3.00(37) - 2.60 - -------- --------  ----------* 
Tetrameles nudiflora 11 4.66(28) 9.07+♦ 9.26 7.39 0.567 10.727 (0.00) Clumped 
Tricalysia dalzelli 38 16.10(15) - - 1.5 0.521 4.028 (0.00) Clumped 
Vitex altissima 9 3.81(30) 6.95+♦ 5.70 1.0 -------- --------  ----------* 
Wrightia angustifolia 26 11.02(16) 3.90+♦ 2.15 2.88 -0.414 1.634 (0.08) Random 
Xylopia nigricans 22 17.80(14) - - 2.00 0.506 2.193 (0.00) Clumped 

 
D = Density, Rank =rank in relation to density of all tree species (n= 67), GA = S. entellus group A, GB = S. 
entellus group B, TV = T. vetulus, Ip= Standardized Morisita Index, Id=Morisita Index; p = probability value, + = 
Feeding tree species utilized by S. entellus Group A during the dry season, ♦ =Species utilized by S. entellus 
group A as food during the wet season.*Certain species were represented by small sample size, and hence, the 
computation of indices of dispersion was not possible. In some of these cases, conclusions on patterns of 
dispersion were based on a published study on a similar dry evergreen forest tree community in the north central 
dry zone of Sri Lanka (see [100]). For a few species with small sample size, spatial patterns were undetermined as 
published information on dispersion patterns was unavailable.   
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Table 2.8. Spatial distribution of tree species that were exploited by the monkeys for 
immature leaves, fruit and flowers.  
 
       Immature leaves  Fruits   Flowers 
      Ip    Id    P ≤       Ip    Id     P ≤      Ip   Id     P ≤ 
 
Group A  -0.7525 0.4853    1.00 -0.7013 0.5763     1.00 -0.5098 0.9167        1.00 
 
Group B  -0.6444 0.6936    1.00 -0.6461 0.6792     1.00 -0.5098 0.9167    0.99 
 
T. vetulus  -0.5628 0.8497    1.00 -0.6796 0.6169     1.00 -0.225 1.3079    0.20 

 

 

 

2.4. DISCUSSION 

Among the different models tested, the truncated power-law model best 

described the move length distributions of these primates. On the contrary, the power-

law model was the poorest of the tested models, and hence, there was no support for 

behavior resembling Lévy flights in these primates. Likewise, another recent study, 

which examined the waiting times (stationary bouts) and move lengths derived from 

spatial data collected at equally spaced time intervals (subsampled move lengths) of a 

band of hamadryas baboons, found that the frequency distribution of move lengths 

provided no support for Lévy-flight-like behavior, though the waiting time 

distribution was described by a power law with an exponent µ between 2 and 3 [101]. 

A similar study using subsampled move lengths of Tonkean macaques showed that 

the move length distributions were described by a power law distribution with an 

exponent µ between 2 and 3, and hence, support for Lévy-flight-like behavior [102].   

In this study, move lengths distributed according to truncated power-law 

suggests that in these primates, long move lengths were relatively few compared to 

what would be expected if the tail of the distribution was distributed according to a 

power law. The lack of relatively long move lengths could be attributed to aspects of 

the behavior and resource landscape of these primates.  Both T. vetulus and S. entellus 
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are territorial species that maintain home ranges that overlap minimally with 

conspecific groups [87, 103]. Hence, it is possible that the movements of these 

primates are constrained in order to minimize contact with conspecific groups. The 

relative abundance of resources and the feeding ecology of these primates may have 

also given rise to the observed distribution of move lengths. Empirical studies [11, 76] 

have shown movement patterns characterized by power-laws (Lévy flights) tend to 

emerge when foragers are in habitats where resources are sparse, and exponential 

distributions (Brownian motion) tend to emerge when foragers are in habitats where 

resources are abundant [32, 79, 104]. However in the case of T. vetulus and S. 

entellus, both species have been shown to consume a diverse array of plant species 

and to alter their diet according to availability, increasing the consumption of leaves 

to compensate for reduced availability of fruit and flowers [86, 87]. This dietary 

flexibility probably alleviates the need for the long moves that may be necessary to 

locate scarce resources such as fruit and flowers.   

The spatial distribution of resources utilized by these primates may also 

alleviate the need for these primates to make long moves to locate suitable targets.  

Most tree species that were utilized frequently by S. entellus and T. vetulus were 

clumped in distribution. More specifically, of the tree species that constituted a major 

proportion of the diet of S. entellus group A 63.2% were clumped (aggregated), while 

only 15.8% were randomly distributed. In the case of S. entellus group B, 50% of the 

plant species that constituted the diet of the group were clumped, while only 21.4% 

were randomly distributed. Of the feeding tree species utilized by T. vetulus, 57.1% 

had clumped distributions, while only 14.3% of the species exhibited a random 

distribution.  In these primates, it is possible that, when a group feeds on a tree in a 

clump, they subsequently engage in area-restricted foraging and search for new 
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targets close to the original target, and hence, remain within the clump. Area-

restricted foraging has been shown to occur when organisms feed on clumped 

resources [105]. Animals engaged in area-restricted foraging have been shown to 

have shorter move lengths as this increases the utilization of resources by decreasing 

the probability of foragers leaving the high-density resource area [105, 106]. A study 

of movement patterns of marine predators also showed the movement patterns fitted 

by an exponential distribution tend to occur when the animals were feeding on 

aggregated resources, and movements resembling Lévy-flights occur when feeding on 

sparse or difficult-to-detect prey [107].  

The spatial distribution of feeding tree species in this study also differed from 

the conditions under which movement patterns resembling Lévy-flights have been 

predicted to emerge in deterministic foragers. The simulation model proposed by 

Boyer et al. [12] stipulates that targets (trees) are distributed randomly. However, the 

clumped distributions reported for the majority of these tree species are consistent 

with patterns of distribution of tree species reported from other tropical forests [108]. 

This suggests the possibility that most tropical forests may be incapable of supporting 

Lévy-like foraging behavior. 

The relative size and availability of feeding trees may have also influenced the 

foraging decisions of these primates, and hence, their move length distributions. In the 

case of primates and similar deterministic foragers, simulations have shown that 

movement patterns resembling Lévy-flights can emerge when the DBH of feeding 

trees is distributed according to a power law with an exponent in the range 3 ≤ β ≤ 4 

[12]. In this study, the availability of comparatively large feeding trees (profitable 

targets) was low in the environment, and hence, the DBH distributions of feeding 

trees utilized by the groups were best approximated by the truncated power-law 
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distribution, albeit the data was not consistent with the model when subjected to 

goodness-of-fit tests. The power-law model was the poorest of the tested candidate 

models, and hence, the DBH of feeding trees deviates from the conditions under 

which movement patterns approximated by a power-law have been shown to emerge 

[12]. Most tree species in the forest were small in trunk size (9-29 cm DBH); these 

small trees contributed to approximately 80% of total species richness [87]. This 

suggests that most trees encountered by the primates were probably of similar 

resource value (size) and the probability of encountering a substantially more 

profitable tree (large DBH) was probably very low. Hence, the primates may have fed 

on the closest available resource tree rather than move long distances to locate 

substantially valuable trees in the environment, resulting in a decrease in the 

frequency of long moves. The fact that many feeding tree species were shared by the 

two monkey species could be responsible for the similarity in the DBH distributions 

and power-law exponent β values of feeding trees. Moreover, even when fit with a 

power law, the β values of the DBH distribution of feeding trees utilized by the three 

groups were also significantly smaller than the range 3 ≤ β ≤ 4 under which 

movement patterns described by power-laws have been predicted to occur [12].  

However, it should be emphasized that, although many forest communities have been 

characterized by power-law exponents in the range 1.5 ≤ β ≤ 4 [12], the value of β is 

largely dependent on the DBH histogram bin width, and on the extent to which a 

community has been sampled [109]. Furthermore, a study using Monte Carlo methods 

that compared a wide range of approaches used in the estimation of power-law 

exponents, showed traditional binning methods as in the study by Boyer et al. [12], to 

be less accurate and less precise (produce biased estimates with high variance) in 

comparison to MLE methods [92].  
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Taken together, these results provide no support for Lévy-like foraging, nor 

for the presence of conditions, in this forest, under which Lévy-flight-like behavior 

might be expected to occur. A number of other lines of argument also call into 

question the evidence cited in support of Lévy-flight-like foraging in primates. 

Primates are selective feeders and utilize only a subset of the plants in the community 

as food [86, 87]. Hence, the probability distribution and the resource exponent of 

actual feeding tree species are more likely to influence the search behavior of these 

foragers than is the DBH distribution of the entire forest. Thus, it is erroneous to 

assume that Lévy-flight-like behavior may be widespread among deterministic 

foragers purely on the premise that the DBH distribution of all tree species in a forest 

follows a power-law distribution. Furthermore, Gentry transect data, on which many 

characterizations of forest structure are based, represents each forest only by a single 

50 m x 2 m plot, which is unlikely to capture all the important feeding tree species 

[92]. Many of the assertions of power-law DBH distributions with 1.5 ≤ β ≤ 4 are 

based on Gentry transect data [12, 109, 110]. In addition, for trees that branched 

below breast height, each stem (branch) was recorded in the Gentry transect data as a 

separate tree, resulting in bias towards an overrepresentation of smaller individuals 

[92].  Indeed, tree size distributions have been shown to deviate from power laws 

when sampled over a larger extent [109, 111, 112].   

As already discussed, many of the earlier reports of Lévy foraging have been 

overturned as naive graphical approaches and replaced by the rigorous MLE methods 

now becoming common practice throughout the scientific community. In addition, 

older sampling methodologies employed to collect movement data have also been 

questioned [34, 85]. Many prior studies recorded an organism’s movements at equally 

spaced time intervals, resulting in a subsample of the animal’s movements [75, 76, 80, 
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101, 102]. Reynolds [113] attempted to show that subsampling had no effect on 

identifying Lévy flights in animal movement data by demonstrating that the exponent 

µ of a frequency distribution of move lengths, derived from subsampling a Lévy 

distribution, did indeed fall within the Lévy range. However, the above mentioned 

study failed to fit the data to other candidate distributions and failed to investigate the 

effect of a range of different sampling rates [85]. Recent computer simulations have 

shown that, depending on the sampling rate, a non-Lévy movement path can be 

misclassified as a Lévy path, and vice versa [85].  

This study eliminates potential problems with the graphical identification of 

power laws by using MLE methods to identify models that best describe the data. In 

addition, the field method employed to collect movement data, which involved 

following particular groups of monkeys, and recording locations where the group 

came to a complete stop to feed, is more likely to yield actual, rather than 

subsampled, move lengths, and hence, eliminates the potential artifacts arising from 

subsampling.  This study is unique in that it is the first to examine the movement 

patterns of whole groups of two sympatric deterministic foragers using random walk 

models. The results of this study provide no evidence for Lévy-flight-like foraging in 

these species. The statistical properties of the resource fields utilized by the two 

primate species differ from the conditions under which Lévy-flight-like patterns have 

been predicted to occur [12]. This result is particularly striking in light of recent 

claims that many tropical forests contain distributions that are conducive to Lévy-

flight-like movement patterns [12]. Although non-Lévy-flight-like behavior was 

observed in the foli-frugivorous monkey species studied here, it remains possible that 

Lévy-like foraging is a useful strategy for other organisms, such as predators that rely 

on sparsely and randomly distributed resources. Further research needs to be 
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undertaken on both aquatic and terrestrial organisms to determine the conditions 

under which Lévy-like search strategies are optimal, and under what circumstances 

other types of movement might be more efficient. 
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3. EMERGENCE OF LÉVY FLIGHTS IN DETERMINISTIC FORAGERS IN 
A COMPUTATIONALLY MODELED TROPICAL FOREST-LIKE 

ENVIRONMENT 
 

3.1. INTRODUCTION 
 

Many studies have attempted to understand and predict the foraging behavior 

of organisms in a heterogeneous natural environment [1, 2, 8-12, 32, 74, 114-126]. 

Movement is a critical but little understood process influencing population numbers 

and it can alter the outcome of species interactions such as predation, competition for 

food and mates and spread of disease between organisms [3]. Animals are said to be 

moving through their environment in a more resourceful and efficient manner so that 

they can optimize their chances of encountering food, potential mates and other 

resources [1, 5-7]. The quantitative understanding of the outcomes of population 

movement is impossible without constructing and testing mathematical models [3].  

Mathematical models assume that fitness (survival and reproduction) of a 

foraging animal depends on foraging efficiency and can be measured in terms of food 

intake or net rate of energy intake [8, 9].  MacArthur and Pianka [1] and Schoener [8] 

suggested that foraging behavior that leads to an optimal fitness might be favored by 

natural selection. The study of such behavior is now referred to as optimal foraging 

theory [9, 10, 114].  Optimal foraging of an animal can be influenced by factors such 

as optimal diet (choice of which food type to eat), optimal patch choice (choice of 

which patch type to feed in), optimal allocation of time to different patches, and 

optimal (most efficient) patterns of movement [9]. However, it should also be noted 

that there is certain amount of criticism of the application of optimal foraging theory 

to animal behavior [19]. 

For decades, scientists have used random walk models to understand optimal 

patterns of foraging movement in animals. Uncorrelated random walks (URWs) such 
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as Brownian motion [20] and Fickian diffusion [28] are characteristic of animal 

movement at large spatial and long temporal scales [32]. URWs assume that the 

angles between successive moves are entirely random [66, 67]. In other words, URWs 

do not account for directional persistence in a forager's movement.  This inadequacy 

has been overcome by adding directional persistence to URWs to produce more 

realistic animal movements, called correlated random walks (CRW) [68, 69]. In a 

CRW, move lengths (in the case of primates, this would correspond to the distance 

between one feeding tree to another) are extracted from a Gaussian or other 

exponentially decaying distribution and turning angles (move direction) are extracted 

from a non-uniform distribution [32]. A third category of random walk models, 

known as Lévy flights, has been observed in the study of animal movement at 

different scales [33, 77, 127, 128]. As discussed above, Lévy flights are a type of 

uncorrelated random walk distinguished by a power law distribution  of 

move lengths with power law exponent 1<α<3, and a uniform distribution of turning 

angles [33]. Lévy flights have superdiffusive properties and are said to be ‘scale-free’ 

since, as discussed above, their move lengths follow a power law distribution, and 

hence, have no characteristic scale. Following Shlesinger and Klafter’s [34] 

observation of Lévy foraging behavior in microzooplankton, numerous empirical 

studies have reported Lévy foraging behavior in animals [11, 62, 65, 74, 75, 77, 80, 

127-131]. Simulation studies on animal foraging movement have also revealed that in 

an environment where the targets (resources) are sparse and distributed randomly and 

the forager forages in a destructive manner, Lévy flights are more efficient than 

CRWs [12, 32, 75]. Viswanathan et al. [74] showed that Lévy flight search patterns 

are optimal when the feeding sources are stationary, sparsely and randomly 

distributed and utilized in a ‘nondestructive’ manner, i.e., the sources are not depleted 

! 
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on the time scale of the animal's foraging. Bartumeus et al. [32] showed that Lévy 

flights are more efficient than CRWs in both destructive foraging and nondestructive 

foraging.  

There is considerable debate about the etiology of movement patterns 

resembling a Lévy flight [4,34]. It is thought that animals which forage in 

environments where they are blind to the distribution and abundance of prey perform 

a Lévy flight through an inherent Lévy walk process. However, Lévy-flight-like 

movements have also been reported from deterministic foragers such as primates, 

which suggests that memory processes and the interaction of organisms with their 

environment can also give rise to Lévy-flight-like movement trajectories [12, 75]. 

The underlying mechanisms that give rise to movement patterns in animal 

foraging behavior are key to understanding and predicting movement patterns [132]. 

To date, limited studies have been attempted to understand the underlying 

mechanisms that drive animals to search for food using a particular movement pattern 

and thereby explain the optimal foraging movement patterns for particular species 

(e.g., [12, 75, 126]). Boyer et al. [12] showed that Lévy movement patterns emerge as 

a consequence of a power-law distribution of targets. Sims et al. [75] suggested that 

Lévy foraging behavior might have evolved in response to a patchy distribution of 

resources.  However, Benhamou [34] showed that composite Brownian walks are a 

more efficient search strategy in a patchy environment. A composite Brownian walk 

is a mixture of two random walks, with large moves that are exponentially distributed 

corresponding to inter-patch movements and more frequent short and constant moves 

corresponding to intra-patch movement. Also, in a composite Brownian walk the turn 

angles are assumed to be uniformly distributed [34].   
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In this section, a modified version of the computational model proposed by 

Boyer et al. [12] is used to analyze plausible optimal search strategies of deterministic 

foragers in environments where the food availability changes from a state of 

abundance to being sparse. This is similar to the effects of disturbance regimes in 

forest ecosystems [133]. The simulations for this model are based on two groups of 

primates, gray langurs and purple-faced langurs, which inhabit the island of Sri 

Lanka. In addition to analyzing optimal movement patterns, the statistical properties 

of the resource landscape were also investigated. Aggregated (clumped) distributions 

of plant species have been observed throughout the world [134, 135]. Mechanisms 

such as niche segregation, habitat heterogeneity, differential predation, neighborhood 

competition and dispersal limitation have been suggested to give rise to aggregated 

distributions [135]. However, disturbances such as lopping (cutting down), burning, 

overgrazing and clearing for cultivation can alter the spatial distribution patterns in 

forests (i.e., aggregated distributions can become random or uniform, or vice versa) 

[133, 136].  In this study, the food availability was changed in the model scenarios by 

removing ~ 1% of feeding trees so that the distribution of the available food becomes 

sparser. The spatial distribution patterns of the environment at each change in food 

availability were reported using the Morisita index [90] (Table 3.1).  

 Another important aspect of the model explored here is spatial memory. 

Deterministic models assume that the forager has knowledge about its foraging 

environment. Numerous studies in the past have shown that animals such as 

honeybees, desert ants, rodents, birds, arthropods and primates use spatial memory to 

navigate their territory in search of food [81, 137-139]. While some studies have 

shown that spatial information in learning foraging routes is obtained using landmarks 

and celestial cues [138-140], others have shown that foragers use prior experiences to 
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gather information to determine their next location [123]. Spatial memory can be 

considered as a two-part system, consisting of a reference (long-term) and a working 

(short-term) memory [141- 144]. Reference memory preserves important abiotic, 

biotic and foraging characteristics (food availability and quality) of a certain feeding 

area as well as the locations of the feeding trees, so that the forager can return to 

previously visited feeding trees [123, 144]. Working memory is used in order to avoid 

recently depleted feeding areas [123, 144].  

 In the model, investigating optimal search strategies that are intermediate 

between destructive and non-destructive extremes was focused where the forager uses 

its reference memory and returns to the feeding tree at a later time as the food items 

are replenished to their original value. In addition, in this model, for each change in 

the landscape, move lengths are generated using satiation as a constraint. Satiation is 

an important component of animal foraging behavior and predation. Studies have 

shown satiation, defined in terms of stomach fullness [145, 146], to be one of the 

motivating factors that affects the feeding behavior of animals [147-149]. Lazzaro 

[150] suggested that the feeding rate of an animal is inversely proportional to 

satiation. As animals begin to feed, the level of satiation increases, while the 

frequency of depletion of resources monotonically decreases, eventually leading to 

the cessation of feeding. Food handling time of a satiated individual is longer [145, 

151- 154], and satiated individuals show more inefficient reactions towards prey than 

partly satiated individuals [155, 156].   

Thus, this study makes a significant contribution to the understanding of 

movement ecology of deterministic foragers but incorporating variables such as 

satiation and examining the influence of a dynamic resource landscape on the 

movement ecology of deterministic foragers. Furthermore, the present study is unique 
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because it is the first to investigate the optimal foraging patterns of deterministic 

foragers using satiation as a parameter, during conditions of changing food 

availability. 

 

 

Table 3.1. Morisita Index (Id) and Standardized Morisita Index (Ip) for each spatial 
distribution pattern. 

________________________________________ 
 Spatial distribution pattern  !!   !! 

________________________________________ 
 Clumped distribution > 0 > 1 

 Random distribution = 0 = 1 

 Uniform distribution < 0 < 1 

________________________________________ 

 
 
 
 
 
 
3.2. METHODS 
 

3.2.1. Resource Field.  The foraging environment is modeled as a two-

dimensional square area with N feeding trees organized in n food patches. One square 

(or quadrant) in the matrix is assumed to be equal to one 100 m2 (10 m  x 10 m) in the 

resource field. The resource field is assumed to be approximately 60,000 m2 (6.2 

hectares) and the feeding patches are spatially arranged following two distribution 

patterns, clumped (negative binomial distribution, Figure 3.1; Fig. 3.1a) and random 

(Poisson distribution, Figure 3.1; Fig. 3.1b) [157].   
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 (a) (b) 

Figure 3.1. Initial spatial distribution patterns of the resource landscape. (a) clumped 
distribution; (b) random distribution. White denotes the trees and black denotes the 
empty space in the landscape.  
 
 
 
 
 Trees are apportioned in a random or clumped pattern among 625 quadrants. 

Tree distributions are generated as follows: each square (patch/quadrant) in the matrix 

is filled with trees with a probability drawn from either the negative binomial or the 

Poisson distribution. The number of trees in each filled patch is determined as 

follows.  The mean number of trees in a square is 50. In the case of a random 

(Poisson) distribution of trees, each square has an equal chance of having a tree. The 

frequency distribution for the random pattern shows a peak at 50. In the case of a 

clumped distribution, the number of trees differs more widely from one clump to 

another. Therefore there are some squares with no trees and a few with many trees. 

The frequency distribution of trees is a negative binomial.  Clumped and random 

distributions are specifically selected since previous studies have shown that trees in 

tropical forests are predominantly clumped or randomly distributed [108, 135, 158-

160], although random distributions are observed less frequently [135, 159, 160]. The 

feeding trees within each patch are allocated randomly (random values drawn from a 
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uniform distribution) in both scenarios without disturbing the spatial distribution of 

the total landscape.  

Each food tree i contains fruits the primates eat, and the size (DBH) of the 

food tree is represented by  cm. In the previous section it is shown that the 

distribution !(!) of the size of the targets utilized by the two primate species (S. 

entellus and T. vetulus) does not always follow a power-law distribution. DBH values 

of the feeding trees are simulated using the range of observed data obtained from 

lognormal and power-law DBH distributions of the 56 species of trees utilized by 

these primates. DBH distributions of feeding trees in clumped and random resource 

fields are assumed to have lognormal and power-law distribution patterns, 

respectively. The lognormal distribution is chosen because it describes many 

biological variables [161] and the power-law distribution is selected since a number 

of studies have shown the DBH frequency distribution to follow a power-law 

distribution [12, 75].   

 
3.2.2. Model.  The foraging model introduced by Boyer et al. [12] is used 

here, in which foragers maximize food intake and minimize travel distance. The 

resource field consists of trees (food patches) of varied sizes. 150,000 DBH values are 

generated from lognormal and power-law distributions. Each tree in the landscape is 

assigned a DBH value as follows. First, the above-generated DBH values are assigned 

to the trees in one quadrant by using the random number generator in MatLab 

(function rand). Then the trees of the next selected quadrant are assigned DBH values 

again by using the random number generator in MatLab from the remaining set of 

generated DBH values. This procedure is repeated for all 625 quadrants until the 

entire landscape is allocated with DBH values.  

! 

k
i
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At the start of the simulation, the forager is located at a randomly chosen 

starting point in the home range. It is assumed that the foragers are aware of the 

location of the food patches and the food content (size of the trees).  The forager 

positioned at feeding tree i scans for the feeding tree ! such that !!" !! is minimal, 

where  is the distance between feeding tree i and feeding tree !. Once an optimal 

target tree is found, the forager will move toward it in a straight line [12].   

 A foraging scenario that is intermediate between destructive and non-

destructive extremes is assumed in this model, in which the food items are revisited 

only after a time lapse [160]; it is further assumed that 

(1) Once the resources are depleted at a feeding tree, the forager moves away 

from it and searches for the next best location in a manner that minimizes 

!!" !!  (using working memory). Resource depletion during feeding is 

implemented by reducing the DBH values of trees following the 

monotonically decreasing Pareto distribution [163].    

(2) While the foragers move away and feed from other trees, the food resources 

on trees that are previously fed upon start to replenish following a logistic 

growth function [144]. The foragers do not revisit these trees until the 

resources are replenished to their original value. 

(3) Once the resources are replenished, the forager may return to the replenished 

feeding trees according to assumption (1) (using reference memory).  

 For a given resource field scenario (clumped or random), the landscape is 

initially seeded with approximately 31,250 trees as discussed in Section 3.2.2. 

Simulations are performed for the initial landscape, and then for landscapes with 

fewer and fewer trees, with 200 trees removed before each new simulation. 300 

simulations are performed at each tree removal.  In both scenarios, trees are removed 

lij
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in a clumped and random fashion. For random removal, at each step 200 tree 

positions are selected in the landscape using a random distribution (Poisson 

distribution) and the trees at the selected positions are removed. For clumped 

removal, at each step, the trees are removed as follows: First, a feeding patch is 

selected from a standard uniform (flat) distribution and a certain percentage of the 

trees are selected for removal. Note that this percentage is adjusted until the number 

of trees removed is ~ 200. For example, if 10% of the trees first reduced exceed or do 

not account for 200 trees, the percentage is adjusted until the number of trees removed 

is approximately 200. If the patch does not consist of 200 trees, more patches are 

gradually selected from a standard distribution and the same procedure is repeated 

until the total number of trees removed from the selected patches is ~ 200. Then, for 

the next simulation, food patches are gradually selected until about 200 trees are 

removed from the landscape in the above-mentioned manner. This procedure is 

followed, with simulations performed after each tree removal, until 1% of the initial 

number of trees is left in the landscape. It should be noted that tree removal in the 

model is coded as percentage removal, and hence, for random removal, the percentage 

gives the exact number as 200 trees while for clumped removal it gives an 

approximate value closer to 200. For the scenarios where the feeding trees are 

removed following a clumped distribution, the DBH values in the entire resource field 

are assumed to be distributed according to a lognormal distribution. For the situations 

where the trees are removed following a random distribution, the DBH values are 

assumed to follow a power-law distribution‡.    

                                                
‡ These scenarios are only a few that are tested. Other types of situations could be tested. (a) Starting scenario: 
clumped; DBH distribution: power-law; tree removal: clumped, random  (b) Starting scenario: random; DBH 
distribution: lognormal; tree removal: clumped, random (c) Starting scenario: Uniform; DBH distribution: 
lognormal; tree removal: clumped, random (c) Starting scenario: Uniform; DBH distribution: power-law; tree 
removal: clumped, random. The above-mentioned scenarios will be tested in the future. 
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 After each depletion step, the new spatial distribution pattern is characterized 

by calculating the standardized Morisita index, and then the simulated foragers are 

allowed to perform their searches again. Changes in foraging strategy, characterized 

by changes in the probability distribution of move lengths, can thus be investigated as 

a function of changes to the resource landscape. 

 As discussed above, the Morisita index (Id) and the standardized Morisita 

index (Ip) are used to characterize the spatial distribution of the landscape at each 

change in food availability [90]. For a clumped distribution, !! > 1; for a random 

distribution, !! = 1; and for a uniform distribution, !! < 1 (Table 3.1); Figure 3.2 

shows illustrations of these different spatial distributions. The standardized Morisita 

index ranges from -1.0 to +1.0 with 95% confidence limits at +0.5 and -0.5. For a 

clumped distribution, !! > 0; for a random distribution, !! = 0; and for a uniform 

distribution, !! < 0 (Figure 3.1). The standardized Morisita index is considered to be 

one of the best measures of dispersion since it is independent of the sample size and 

population density [90, 164].   

 For each change in the landscape, move lengths are generated using satiation 

as a constraint. Each run ends when the forager is fully satiated; simulations typically 

result in ~70-100 moves before satiation is achieved. It is assumed that resource 

depletion is inversely proportional to satiation. It is also assumed that the monkeys 

feed on resources at a random rate between 0 and 1, which is modeled this with a 

monotonically decreasing function (the Pareto distribution) [163] with shape 

parameter α and scale parameter β (see Appendix B). The resource depletion is 

assumed to be proportional to the food intake by the monkeys. The forager is 

considered to be fully satiated when the DBH value of trees reaches 10 cm or below, 

and hungry when the DBH values are still above 10 cm. 
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 (a)    (b)    (c) 

Figure 3.2. Spatial distribution patterns. (a) Clumped distribution (!! = 0.5004);   
(b) Random distribution (!! = 0); (c) Uniform distribution (!! = −0.4988). 
 

 

 3.2.3. Model Selection.  Once the move lengths are simulated under the 

various conditions outlined above, the robustness of exponential and power-law 

distribution fits to the simulated data are tested using the likelihood and the Akaike 

information criterion (AIC) [13, 14, 36] (Section 1.4.2). Two candidate models are 

selected to fit the distribution of move lengths x and the corresponding probability 

density functions ! !  are; Power-law model corresponding to the classic Lévy flight 

model and exponential model [95] (Appendix A).  

The Lévy flight hypothesis suggests that the distribution of move lengths 

consists of a power-law tail (heavy tail distribution) with 1 < ! ≤ 3, whereas the 

Brownian motion model assumes the distribution of move lengths follows an 

exponential distribution. 
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3.3. RESULTS 

 Based on tree distribution, two scenarios are modeled, each beginning with 

approximately 31,250 feeding trees. In the first scenario, the trees are distributed in a 

clumped fashion, while in the second scenario the trees are distributed randomly.  

 
 3.3.1. Impact of Changing Food Availability on Move Length 

Distribution.  In all scenarios, the move length frequency distribution patterns at 

every tree density follow a mixture of both exponential and power-law models. The 

move length frequency distribution pattern of each path is determined by AIC. Out of 

300 paths (simulations) at each tree density, the majority of optimal foraging paths 

follow the power-law model. However, some optimal paths follow an exponential 

model, and hence, at every tree density the optimal foraging paths consist of both 

power-law and exponential distribution patterns (Figure 3.3).  

 Therefore, to further investigate the influence of the resource field on the 

search behavior of the forager, the investigation is restricted to the behavior of the 

exponent of the move length frequency distribution, when the distribution assumes a 

power-law distribution. The best model for each path is determined using the least 

AIC difference and Akaike weights [15]. This is shown in Table 3.2 and in Figures 

3.4- 3.7. The average number of paths that follow a power-law distribution (!!"#) is 

also shown in Table 3.2. The average of the power-law exponents of the paths that 

follow a power-law distribution is considered as the power-law exponent for each tree 

density. 

Note that at the very beginning of the landscape change, the average power-

law exponent (!!"#) is very high. The resulting !!"# appears to be entirely random 

and is dependent on the move lengths generated in a run. In other words, it depends 
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on the distance between the current feeding tree and the next feeding tree, , the 

monkeys chose to feed on. For example, when 300 paths are generated in a landscape 

with a particular tree density, the resulting !!"# is different to the !!"#  for another 

300 paths generate in the same landscape. When the paths consist of high proportion 

of short move lengths, !!"#  tends to show very large values, whereas the paths with a 

high proportion of long move lengths show low values of αavg. At the beginning of 

the landscape change, the tree density of the landscape is very high and as a result the 

monkeys have the opportunity to make many short move lengths.   

 

 
 

Figure 3.3. Percentage of paths with move lengths distributed according to a power 
law at each tree removal. (a) Starting spatial distribution: clumped; tree removal type: 
clumped;  (b) Starting distribution: random; tree removal type: clumped; (c) Starting 
distribution: clumped; tree removal type: random; (d) Starting distribution: random; 
tree removal type: random. 300 paths were simulated for each number of trees 
removed. 
 

lij
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Table 3.2. Summary of the impact of food availability on move length distribution 
and on resource landscape. 
 
 
Starting Scenario    Removal pattern  Navg       αmin No. of trees Change in spatial distribution 
 of tree density at αmin 

              
 
Clumped dist. Clumped 256  2.848         ~1900 Clumped 
 Random 277    3.349         ~200 Clumpedà Uniform 
 
Random dist.    Clumped       260     3.988   ~1250 Randomà Clumped àUniform 
 Random 267      4.059         ~900 Randomà ClumpedàUniform 
 
 

 

 

 

 

 

 
 

Figure 3.4. Variation of α as a function of the number of trees, for an initial clumped 
distribution, with trees removed in a clumped fashion. Figure (b) shows the same data 
as in (a), but with error bars representing the standard deviation (!!"# = 256). 
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Figure 3.5. Variation of α as a function of the number of trees, for an initial clumped 
distribution, with trees removed in a random fashion. Figure (b) shows the same data 
as in (a), but with error bars representing the standard deviation (!!"# = 277). 
 

  

 

 
  
 

 
 

Figure 3.6. Variation of α as a function of the number of trees, for an initial random 
distribution, with trees removed in a clumped fashion. Figure (b) shows the same data 
as in (a), but with error bars representing the standard deviation (!!"# = 260). 
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Figure 3.7. Variation of α as a function of the number of trees, for an initial random 
distribution, with trees removed in a random manner. Figure (b) shows the same data 
as in (a), but with error bars representing the standard deviation (!!"# = 267). 
 
 
 
  

 Starting from the above-described initial scenarios, tree removal is carried out 

according to two different distributions: clumped (negative binomial distribution) and 

random (Poisson distribution).   

Scenario 1: In this scenario, the initial tree distribution is clumped.  

Case 1: Tree removal is carried out in a clumped fashion, and the power-law 

exponent (α) of the move length distribution decreases with the removal of food trees 

(Figure 3.4; Figs. 3.4a and b) and reaches a minimum of αmin = 2.848. At this point 

there are approximately 1900 trees present in the resource field.  

Case 2: Trees are removed in a random fashion, and α of the move length 

distribution again decreases with the removal of trees in the resource field (Figure 3.5; 

Figs. 3.5a and b), reaching a minimum of αmin = 3.349. At this point ~200 trees are 

left in the resource field.  
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Scenario 2: In this scenario, the initial tree distribution is random. 

 Case 1: Tree removal is carried out in a clumped fashion, and α again 

decreases with the removal of feeding trees (Figure 3.6; Figs. 3.6a and b) and reaches 

a minimum of αmin = 3.988. At this point there are only about 1250 trees present in the 

resource field.   

 Case 2: Trees are removed in a random fashion, and α decreases with the 

removal of food trees (Figure 3.7; Figs. 3.7a and b) and reaches a minimum of αmin = 

4.059. At this point there are only about 900 trees present in the resource field.  

  
 3.3.2. Impact of Changing Food Availability on the Resource Landscape.  

The standardized Morisita index is measured at every tree removal, and the spatial 

distribution pattern at each removal is indicated in Figures 3.8- 3.11.  

Scenario 1: When trees are removed in a clumped fashion (case 1), the spatial 

distribution remains clumped throughout the changes in food availability (Figure 3.8). 

However, the degree of aggregation gradually increases with decreasing tree density 

and peaks when ~2300 trees are present in the landscape. As more and more trees are 

removed from the resource field, the number of tree clusters decreases rapidly (Figure 

3.8). In contrast, when trees in the resource landscape are removed randomly (case 2), 

the spatial distribution pattern gradually changes from clumped to random, and then 

to a uniform distribution until ~13950 trees remain in the landscape; beyond this 

point, the spatial distribution of the landscape varies between the three spatial 

distribution patterns: clumped, random and uniform distributions (Figure 3.9). The 

landscape is only calculated once for each removal, and hence, the standard deviation 

and error bars are not shown.  

Scenario 2: When trees are removed in a clumped fashion (case 1), the spatial 

distribution of trees in the landscape changes from a random to uniform distribution at 
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the first removal and then changes to a clumped distribution when more trees are 

removed, remaining clumped until the number of feeding trees is extremely low 

(N~750) (Figure 3.10; Fig. 3.10a). In the interval where Ip indicates that the trees 

remain clumped, the degree of aggregation increases gradually until about 1250 trees 

are present and then decreases until ~750 feeding trees are left in the landscape 

(Figure 3.10; Fig. 3.10b). At this point the tree distribution has a sharp fall in Ip and 

remains uniform beyond this point  (Figure 3.10; Fig. 3.10a). However, when trees 

are removed in a random manner, no discernible pattern of tree distribution is 

observed. The spatial distribution of trees of the landscape fluctuates among clumped, 

random and uniform distributions throughout the change in food availability (Figure 

3.11).  

 
 
 
 
 

  
Figure 3.8. Scenario 1, case 1. Variation of the standardized Morisita index as a 
function of number of trees, when the trees are removed in a clumped fashion, starting 
from a clumped distribution.   
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Figure 3.9. Scenario 1, case 2. Variation of the standardized Morisita index as a 
function of the number of trees when trees are removed in a random manner, starting 
from a clumped distribution.  
 
 
 
 
 
 

 
Figure 3.10. Scenario 2, case 1. Variation of the standardized Morisita index as a 
function of number of trees, when the trees are removed in a clumped manner, 
starting from a random distribution. Figure 10b shows the magnification over the 
range 0.500035< Ip < 0.500011 of Figure 10a.  
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Figure 3.11. Scenario 2, case 2. Variation of the standardized Morisita index as a 
function of number of trees, when the trees are removed in a random manner, starting 
from a random distribution. 
 

 

 

3.4. DISCUSSION 

Theoretical and empirical work on animal foraging has shown Lévy flights or 

Lévy-type behavior to be a more efficient search strategy than CRW and Brownian 

motion, when the forager engages in destructive foraging in an environment where 

targets are sparse and distributed randomly.  Hence, most animal behaviorists 

consider Lévy flight as an optimal foraging search pattern [4, 12, 32, 62, 65, 74, 75, 

77-80, 84, 129, 165]. A previous study has shown that when targets are stationary, 

sparsely and randomly distributed, and utilized in a nondestructive manner, the 

optimal Lévy movement pattern has α = 2 [74]. Moreover, a computational modeling 

study on optimal foraging trajectories of deterministic foragers shows that Lévy 

flights could emerge from interactions with scarce and randomly distributed resource 

landscapes, under conditions where the DBH distribution of the feeding trees follows 

a power-law model [12]. Since Lévy flights are observed in diverse organisms, Sims 
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et al. [75] labeled Lévy flights as a ‘rule’ that has evolved in response to the problem 

of foraging in environments where resources are distributed sparsely and randomly, 

and where knowledge-based search rules are of little use [4,32,75,76,78,79]. 

However, the presence of movement trajectories resembling Lévy flights in 

deterministic foragers such as primates [80], suggests that memory processes and 

landscape properties may also influence the movement of organisms and give rise to 

movement trajectories resembling Lévy flights. 

However, there is considerable debate over the methodologies used to identify 

Lévy-flight-like behavior in animal movement trajectories [35, 166]. The graphical 

methods used to determine power-law distributions and Lévy flights such as linear fit 

to a log-log plot of the raw histogram of the data [12,74,77,78, 167,168], a first 5 

point linear fit of the log-log plot of the raw histogram [169], or a linear fit of the log-

log plot of the logarithmically binned histograms [7,170,171] have been shown to be 

unsatisfactory [96] and information theoretic techniques using AIC have been 

proposed to replace the graphical methods [35, 166], as discussed in detail earlier in 

this dissertation. For example, Edwards et al. [34] are the first to overturn the use of 

graphical methods used to find power laws. They reanalyzed previous data [74] using 

AIC methods and estimated the power-law exponents using MLE methods, finding no 

evidence for power laws and Lévy-type foraging, in contrast to previous claims. 

Therefore, in this study the power-law exponents are determined by using MLEs and 

AICs by deviating from the traditional graphical method approach used to evaluate 

power laws.   

  The resulting move length distributions in the simulations described in the 

present study show a clear emergence of Lévy-type foraging when the resources are 

very scarce but distributed in a clumped pattern, in addition to being scarce and 
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distributed in a random manner as demonstrated in previous studies [12, 74]. Under 

these conditions, the DBH of all feeding trees are distributed according to a lognormal 

distribution. Therefore, it is also worth noting that Lévy-type behavior can also 

emerge when the DBH of resources is distributed according to a lognormal 

distribution in addition to when DBH is distributed according to a power-law 

distribution [12]. However, this study does not show a clear emergence of a Lévy 

flight when the resources are scarce and distributed in a uniform pattern (positive 

binomial distribution). In this case, as shown in Table 3.2, the DBH of remaining 

trees are distributed according to either a power law (remaining trees at the end of the 

simulation starting from scenario 2) or lognormal distributions (remaining trees at the 

end of the simulation starting from scenario 1).   

 First starting from both scenarios, a mixture of both composite Brownian and 

Lévy flights are observed as the number of trees is reduced (Figure 3.3). However, 

since every path consists of about ~70 move lengths, the sample size might not be 

large enough to get a clear picture of the underlying move length distribution pattern, 

although ~70 moves for a path is realistic for a deterministic animal. When only the 

simulations resulting in a power law receiving more empirical support by the AIC 

criteria are included, the power-law exponent decreases as more trees are removed 

and the exponent does not dip close to the Lévy range until the number of fruiting 

trees present corresponds to a lower density of a tropical forest-like environment 

(Table 3.2). This observation is partially consistent with the Lévy hypothesis, which 

predicts that the exponent of the power-law distribution of move lengths falls within 

the Lévy range when the resources are randomly and sparsely distributed; however, 

the resources appear to be very sparse when a Lévy flight emerges. It is also noted 

that the power-law exponent never falls as low as the suggested optimal value of α=2. 
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When resources in the forest are scarce, the power-law exponent of these tree 

resources that are spatially distributed in a clumped or in a uniform manner falls in the 

range of 2.5<α <4.1 (Table 3.2). Hence, these results show that, in the presence of 

satiation, when the trees are distributed according to conditions observed in tropical 

forests, there is certainly a possibility of Lévy-type behavior to emerge in the foraging 

patterns of deterministic foragers. The results show Lévy flights no only occur under 

the conditions that have been predicted to occur in deterministic foragers (when the 

resources are scarce and random with a DBH distribution following a power law) [12, 

74], but also when the resources are scarce and clumped with a DBH distribution 

following a lognormal distribution (Figure 3.4).     

The variations in the standardized Morisita index during tree removal can be 

interpreted as follows. In situations where the landscape is initially modeled with an 

aggregated tree distribution, when the food availability is reduced according to a 

negative binomial distribution, the degree of aggregation of the landscape increases 

gradually until there are ~2300 trees left (Figure 3.8). Then a sharp decrease in the 

degree of aggregation throughout the rest of the landscape change is observed. The 

initial increase in aggregation could be attributed to a greater variation in the number 

of trees in each of the quadrants caused by tree removal. As tree removal progresses 

and the number of trees in tree-bearing quadrants decreases, the variation in the 

number of trees between quadrants decreases, resulting in a sharp decline in 

aggregation (Figure 3.8). At this point the number of trees left in the entire landscape 

is extremely small, and hence, it is possible that most quadrants contain 

approximately the same number of feeding trees, resulting in a decline in the degree 

of aggregation. However, starting from the same scenario, when the food availability 

is reduced in a random manner, the degree of aggregation gradually decreases until it 
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reaches a random distribution in the presence of ~14950 feeding trees in the landscape 

(Figure 3.9). Thereafter the spatial pattern fluctuates among clumped, random and 

uniform distributions. Since a certain percentage of trees are removed randomly from 

the entire landscape, the variation in the number of trees between quadrants gradually 

diminishes. This could be the cause for the gradual decrease in aggregation until 

~14950 feeding trees are present. At this point !! = 0, indicating a random 

distribution. Random spacing occurs in the absence of strong interactions (clumped 

distribution) or strong repulsions (uniform distribution) among individuals in a 

population [172]. This is a very uncommon distribution pattern within a population 

since it usually occurs in habitats where environmental conditions and resources such 

as nutrients and moisture are consistent [172]. Then, when more trees are removed 

randomly from the environment, the spatial patterns fluctuate between clumped, 

uniform and random distributions depending on the location and the number of trees 

removed. For example, if the removed trees are relatively equally spaced in the 

landscape then the spatial distribution at this tree density would be regular and 

therefore uniform. If the trees are removed from only a certain number of quadrants 

and the number of trees removed varies a great deal from one region to another and 

becomes highly irregular, then the spatial distribution at this point would be clumped. 

These small tree populations may be increasingly sensitive to the spatial distribution 

of the removed trees.  

In scenarios where the initial resource distribution is random and the trees are 

removed in a clumped fashion, a decrease in the standardized Morisita index (from 

!! = 0 to !! = −0.023,  indicating a uniform distribution) could be observed at the 

initial tree removal (Figure 3.10). Since !! values before removal and after removal of 

trees are very close to each other, the variation of the number of trees in quadrants 



  66 

 

 

could be minimal. However, then the variation in the number of trees in each quadrant 

increases, resulting in a sudden increase in aggregation, i.e., as soon as the tree 

removal takes place when ~31000 trees are present, the trees in quadrants become 

very unevenly distributed and as a result a sharp increase in the standardized Morisita 

index (from !! < 0 to !!~  0.50) is observed in the landscape. A uniformly distributed 

landscape involves, on average, equally spaced trees. When !! = −0.023 the distance 

between individuals is very minimal. Therefore, the moment the trees are removed as 

clumps it makes it easier for the landscape to become irregular and clustered. As a 

result a sharp increase in aggregation occurs in the presence of ~31000 trees (Figure 

3.10; Fig. 3.10a). Then the spatial distribution of the landscape remains clumped, until 

a fall in the standardized Morisita index to !! < 0 is observed when ~700 trees are 

present in the environment. This fall is a continuation of the decrease in the clumped 

pattern shown in Figure 3.10; Fig. 3.10b. The drop in !!  could be attributed to the fact 

that, as more trees are removed, the variation in the number of trees in each quadrant 

decreases, resulting in a more even and a regular tree distribution (Figure 3.10; Fig. 

3.10a). In the interval where the resource landscape is spatially aggregated, 

aggregation shows a steady increase until the landscape is left with ~1250 trees and 

then shows a sharp decrease (Figure 3.10; Fig. 3.10b) similar to the case where the 

trees are removed in a clumped manner from an initial clumped distribution (Figure 

3.8). Here, the initial removal of trees (in a clumped manner) creates a clumped 

distribution in the landscape, resulting in a landscape structure similar to that 

observed in case 1 in scenario 1. When the trees are removed in a random manner 

(Figure 3.11), the aggregation of the landscape has gradually increased and peaked 

when ~24300 trees are present. Once aggregation peaks at ~24300 trees, the 

landscape starts to fluctuate among clumped, random and uniform distributions 
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(Figure 3.11) similar to the case where, starting from a clumped distribution, the trees 

are removed according to a random distribution (Figure 3.9). However, the initial 

gradual increase in !! could be due to the random removal of trees or due to noise. 

 In short, when trees are removed in a clumped fashion, after the first removal 

the system behaves identically, irrespective of the initial tree distribution. Similarly, 

when the trees are removed in a random fashion, after the point where the landscape 

is left with only ~24300 trees, the system behaves identically regardless of the initial 

tree distribution. When trees are removed randomly, the landscape fluctuates among 

clumped, random and uniform distributions. These results are interesting because, 

rather than the initial spatial distribution of the landscape, it is the tree removal pattern 

that appears to drive the spatial distribution of the new landscape.  

   The total tree density (feeding and non-feeding) of a range of tropical forests 

has been shown to be about 612 trees per hectare or greater [173].  Thus, the tree 

densities in the simulations in this section (Table 3.2) at which the power-law 

exponent converges on the Lévy range are quite comparable to fruiting tree densities 

in tropical forests. This suggests that Lévy-flight-like behavior could emerge in the 

foraging movement patterns of generalist deterministic foragers in tropical forests 

when fruiting trees are distributed in a clumped fashion. It should be noted that a 

study of spatial distribution patterns in six different tropical forests found that the 

majority of species are clumped in distribution [108]. Furthermore, since patchiness 

of resources is predominant in tropical forests, it has been suggested that aggregation 

is a ‘characteristic’ of tropical forests [133].  

The findings of this study suggest that the assumptions made for the 

emergence of Lévy-flight-like behavior by Boyer et al. [12] and the study by 

Viswanathan et al. [77], namely that resources are scarce and randomly distributed in 
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space, should be amended by the addition of one more condition: Lévy flights can also 

occur when the resources are scarce and aggregated in space. It has been noted that, 

when tropical forests are disturbed, tree species can either increase in aggregation or 

assume a uniform distribution [133]. This study is consistent with these observations. 

Here, in some cases, the patchiness of the landscape increases, and in other cases the 

initial distribution gradually changes to a uniform distribution when trees are 

removed, a process analogous to habitat disturbance.   

Satiation is another important factor in animal foraging behavior and 

predation. This is the first study to incorporate satiation into a deterministic model to 

determine optimal foraging search patterns. It has been suggested that the state of 

satiation is ‘an underlying mechanism’ in the dynamic organization of foraging 

behavior, since cost-benefit values of a feeding attempt can be predicted using the 

state of satiation [149]. A hungry animal is willing to pay a high feeding cost, whereas 

a nearly satiated animal would be prepared to pay a low feeding cost [174].  

This study analyses the optimal foraging patterns intermediate between 

destructive and non-destructive foraging extremes of deterministic foragers when 

food availability changes from abundance to scarcity and presents several new 

findings. These results show that, when resources are scarce and distributed in a 

clumped manner, the optimal foraging pattern of deterministic foragers indeed shows 

Lévy-flight-like behavior. The study also shows that the underlying mechanism of 

Lévy type foraging movements may be more complex than a consequence of scale-

invariant distribution of tree sizes suggested by Boyer et al. [12], although scale-

invariant distribution of tree sizes could well be the underlying mechanism for Lévy-

flight-like behavior on landscapes with scarce and randomly distributed resources. 

Furthermore, this study also suggests that since ‘aggregation’ is a characteristic of 
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tropical forests [133], Lévy-flight-like foraging behavior could emerge in tropical 

forests. Finally, the results show that when the resources are scarce and uniformly 

distributed and when the resources are abundant with any type of spatial distribution 

pattern, the movement patterns show more complex behaviors and may not always 

approximated by a power law, a result which should be further investigated. In these 

simulations, it was assumed that the forager is a generalist capable of exploiting all 

the trees in the resource field, and hence, these findings may or may not be applicable 

to specialized foragers that feed on few plant species in a forest.  In addition, the 

influence of other factors, such as variation in nutritional quality among plant species, 

on the movement ecology of foragers, needs to be further explored.    
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4. PHASE TRANSITION BEHAVIOR IN AN ARRAY OF NEAREST-
NEIGHBOR COUPLED NEURONS 

 
4.1. BACKGROUND 
 

4.1.1. Self-Sustained Oscillators.  The main characteristic features of self-

sustained oscillations are that they are stable oscillations that do not decay in 

autonomous dissipative systems [175].  In other words, these oscillators continue to 

oscillate on their own rhythms even in isolation. This rhythm is entirely dependent on 

the properties of the system itself [175].  Self-sustained oscillations must have an 

internal energy source because lack of constant supply of energy into the system 

would result in a decay of oscillations in a macroscopic natural system. Therefore 

these oscillations are called autonomous, i.e., “a periodic process … generated due to 

a nonperiodic power source” [176]. A. A. Andronov and A. A. Vitt [176], who first 

described the concept of self-sustained oscillations and self-sustained oscillatory 

systems, stated that the common property of such systems “consists in their ability to 

produce self-sustained oscillations, i.e., such oscillations whose amplitude, on the one 

hand, can be constant for a long time, but, on the other hand, is independent of initial 

conditions and is defined by the system properties”. They further noted that the 

oscillation parameters are independent of initial conditions which means the original 

rhythm is restored or the phase point returns to the limit cycle after a perturbation. 

However, this condition is only applied to a certain finite phase space [176, 177]. 

Phase space is an abstract space in which the state of the system is described by its 

coordinates [178].  

 
 4.1.2. Synchronization, Phase Synchronization and Stochastic Phase 

Synchronization.  Founding work on synchronization (meaning ‘to share a common 

time’) can be traced back to the legendary work of Christian Huygens [179]. Since 
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then synchronization has been an active research topic among the science community 

ranging from celestial mechanics to laser physics and from communication to 

neuroscience. In its simplest form, synchronization can be defined as adjustment of 

rhythms/frequencies of periodic oscillators as a result of their weak interactions [175, 

180]. It should be noted that synchronization is not a state, but a complex dynamical 

process [175]. However, during the last few decades different types of 

synchronization have been described in the literature. Complete synchronization, 

phase synchronization, lag synchronization and identical synchronization are a few of 

them [175, 180, 181]. The classical theory of synchronization differentiates between 

two types: forced synchronization by an external periodic driving force and mutual 

synchronization between coupled oscillators. However, in both cases manifestation of 

synchronization is the same [182].  

Phase synchronization describes the synchronization of periodic oscillations 

in which only the phase locking is important. Hence, phase synchronization can be 

defined in terms of instantaneous phase locking or frequency entrainment with 

uncorrelated amplitudes. From the mathematical point of view, the condition for 

phase locking is 

 

 !!!(!)   −!!!(!) < !"#$%&#%,    (8) 

 

where !! !  is the phase of a periodic oscillator, !! !  is the phase of the other 

periodic oscillator coupled with the first one, or an external periodic force defined as 

!! ! = Ω!! with frequency Ω!, t is a continuous time variable, n is the number of 

cycles of the external periodic force and m is the number of times the neuron fires 

[175, 183-186].  



  72 

 

 

In noisy systems, phase diffusion, amplitude and frequency fluctuations give 

rise to a ‘blurred’ appearance of the phase difference, and hence, it is important to use 

a statistical approach that leads to the notion of effective or stochastic phase 

synchronization [187]. In this case, the degree of clustering of the phase differences 

can be quantified, as discussed further below in Section 4.3.2.1 [188].  

 
4.1.3. Second Order Phase Transitions.  In statistical physics, 

transformation of a system from one state of matter (i.e., phase) to another, as a 

control parameter is varied, is called a phase transition. From a mathematical 

perspective, singular behavior in a potential (e.g., free energy) is indicative of a phase 

transition [189]. In a first order phase transition, the first derivatives of the appropriate 

potentials show a finite discontinuity. A transition that shows continuity of first 

derivatives and discontinuity of second derivatives of potentials is described as 

second order, continuous or critical phase transitions [189]. A continuous or critical 

phase transition can be characterized by parameters known as critical exponents. 

Interestingly many systems which undergo phase transitions possess the same set of 

critical exponents.  This phenomenon is known as universality and such systems are 

said to be in the same universality class [190].  Universality can also be described as a 

prediction of the renormalization group theory of phase transitions. Renormalization 

group theory states that the properties of a system near a phase transition depend only 

on properties such as dimensionality and symmetry [190]. The critical exponents 

describe the scaling of order parameters such as the density of particles, the 

correlation length, and the correlation time in the range of the control parameter over 

which the phase transition takes place. In other words, while the order parameter 

describes the changes undergone in a phase transition, a control parameter which is an 

external variable determines the location of the critical point [191].  In a critical phase 
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transition the order parameter is typically zero in the high-symmetry phase, finite in 

the low-symmetry phase and continuous at the transition point (critical value). The 

phases do not coexist at the transient point [192]. This type of transition corresponds 

to an infinite correlation length and a power-law decay of correlations by completely 

destroying the underlying order of the system. [189].  

This concept can be quantitatively described using correlation functions. The 

correlation function Γ defines the spatial behavior of fluctuations of the order 

parameter. It measures the characteristic distance !, of the correlated values of the 

order parameter at two distant points. In other words, it can be used to describe the 

spatial distribution of a population [193]. Let’s consider the order parameter density 

to be ! ! .  Then the density-density correlation function can be written as  

 

  Γ ! =    ! ! !(0) − ! ! !(0)  (9) 

 

For values of the control parameter far from the critical point (i.e. ! → ∞), Γ shows a 

rapid decrease with distance r [193]. It should be noted that since Γ decreases rapidly 

with r, the system does not show any correlations and therefore the system is 

dominated by a microscopic structure and short-range forces. On the other hand, if Γ 

shows a slow decrease with distance, the system shows a large degree of correlation 

between distant points and the system becomes organized at a macroscopic level with 

a new structure beyond short-ranged forces.  

 Near the critical point the correlation function takes the form, 

  

 Γ ! =   !!!   !"#!! !  (10) 
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where ! is the correlation length.  The correlation length is the measure of 

correlations of density fluctuations at two distant points. ! =   ! − 2+ !, where η is a 

system-dependent constant which is a critical exponent and d is the dimension of the 

system where the critical behavior is observed. This function takes the form of a 

truncated power law (power law with an exponential cutoff) which combines both 

power- law behavior and exponential decay. Experimentally it has found that in all 

second order phase transitions, at the critical point, the correlation length becomes 

infinite and very far points become correlated. Thus the system develops long-range 

macroscopic correlations and exactly at the critical point the correlation function 

behaves according to a power-law distribution,  

 

 Γ !     ~  !!!     (11) 

 

For a system to undergo a second-order phase transition, its order parameter should 

show scale-free behavior at the critical value of the control parameter.  

 
4.2. OBJECTIVE 
 

The link between neural synchronization and bursting has become a central 

part of neural dynamics studies. Bursting, which is a fundamental regime of neuronal 

behavior, takes place when periods of fast repetitive spiking are followed by a 

quiescent state, on a slower time scale [194, 195].  

Stochastic phase synchronization (Section 4.1.2) occurs when a nonlinear 

oscillator, showing a stochastically modulated limit cycle, is subjected to an external 

time-dependent force or is driven by coupling with another oscillator [185, 196]. The 

driving or coupling leads to entrainment between the oscillators, or between the 

oscillator and the driving force. Such entrainment can be characterized by a measure 
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of the constancy of the phase difference between the oscillators, a nonlinear 

dynamical technique which has proven very important in various biological systems 

such as the human heart-respiratory system and neuronal activity [185, 196].  

Firing of synchronized neurons is significant for many subtle information-

processing tasks in neural tissue such as neuronal signal transmission and coding [16, 

17, 194, 197- 200] as well as in pathological conditions such as epileptic seizures and 

Parkinsonian tremor [16, 17, 201-204].  

Many studies have attempted to understand the relation between bursting and 

neural synchronization using computational models [205-207]. Weihberger and Bahar 

[16] analyzed the relation between bursting, phase synchronization and global 

synchronization of a neural ensemble using an array of neurons described by the 

Huber-Braun model [18]. Here, global synchronization  (described as  in 

Weihberger and Bahar [16]) has been defined as a measure of stochastic phase 

synchronization over the entire array. In the study conducted by Weihberger and 

Bahar [16], it is demonstrated that in a nearest neighbor-coupled lattice, as the 

coupling constant is tuned, a series of successive synchronized and desynchronized 

states occurs, in which the system passes through various bursting states (from n-

tuplets to (n+1)-tuplets). The nearest neighbor-coupled lattice can be interpreted as a 

representation of neural connections in the neocortex, which tend to be local rather 

than long-distance.    

The onset of synchronization in this system exhibits characteristics which are 

reminiscent of a phase transition (Section 4.1.3): a sharp increase in a parameter 

(global synchronization) which characterizes the whole system and can be considered 

as an order parameter, and the occurrence of patches of high synchronization. This led 

! 
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to the idea of investigating whether true phase transition behavior is occurring in the 

system.  

In this section, the study of Weihberger & Bahar [16] is extended to 

investigate the phase transition behavior of this system as it passes through various 

bursting states as the control parameter (nearest neighbor coupling strength) is varied. 

Specifically, the system is tested for the development of a scale free distribution of the 

sizes of synchronized clusters in the intervals between highly synchronized states. 

The observation of such a scale-free distribution would correspond to the power-law 

distribution described by equation (11) and in Appendix A.2, and would be strongly 

suggestive of the presence of a second order phase transition in the system.  

 
4.3. METHODS 
 

4.3.1. Model.  The neural model used here is the model used in Bahar [17] and 

Weihberger and Bahar [16], which is an extension of the Huber-Braun model [18]. 

The Huber-Braun model is a modification of the Hodgkin-Huxley model for bursting 

neurons, and displays various bursting behaviors as a single parameter T is tuned [16]. 

Bahar [17] extended the Huber-Braun model by adding a coupling term to each 

neuron in the array to model an array of noisy coupled neurons. The basic model is 

given as follows. The transmembrane potential Vi for neuron i is given as 

 

!!
!!!
!"
=   −  !! −   !! −   !! −   !!" −   !!" +   ! +   !! (12) 

 

where CM is the membrane capacitance and ! is delta-corrected, zero-mean Gaussian 

white noise of variance 2D (where D is the noise intensity) which is given as 
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 ! =    !!!
!!
ln(!)

!/!
cos 2!"                                       (13) 

 

where ∆t is the integration time and !, ! ∈ [0,1] are uniformly distributed random 

numbers. Il is a passive leak current and is probably carried primarily by Cl- ions, 

given as 

 

  !! =   !!   !! −   !!  (14) 

 

where !! is the maximum conductance and !! is the reversal potential of the leak 

current.  

!!  and !! are simplified depolarizing and repolarizing Hodgkin-Huxley 

currents that represent generalized temperature-dependent Na+ and K+ currents, 

respectively. !!" and !!" are slow subthreshold depolarizing and repolarizing currents 

representing a Ca2+ current and a Ca2+ -dependent K+ current, respectively. These 

currents are modeled as follows (for k = d, r, sd):  

 

!! =   !!!!! !! −   !!  (15) 

 

where ρ is a scaling factor given as  ! = 1.3 !!!! /!", !! and !! are the maximum 

conductance and the reversal potential of the corresponding current, respectively, and 

!! is an activation variable representing the probability of  ion channel opening. Here, 

0 < !! < 1 and is described by a differential equation: 

 

!!!
!"

=   ! !!,!!  !!
!!

      (16) 
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where φ is another temperature-dependent scaling factor given by  ! = 3.0 !!!! /!",  

!! is a time constant, and !!,! is the steady-state activation which is given by 

 

!!,!   =   
!

!!!"# !!! !!!!!!
.         (17)                                               

 

The remaining subthreshold Ca2+ -dependent K+ repolarizing current Isr is modeled as  

 

!!" =   !!!"!!" !! − !!" .                                            (18) 

 

Here, the activation variable has the form 

  

!!!"
!"

=   ! !!!!"!!!!"
!!"

.       (19)                                                                                                            

 

The coupling term introduced in Equation (12) for neuron i is of the form 

  

!! = ! !! − !!!                                     (20) 

                                 

where g is the coupling constant. Vi and Vj represent the transmembrane potentials of 

neurons i and j, respectively. Biologically, the coupling term corresponds to a gap 

junction (direct intercellular electronic connection), which can be considered as the 

simplest type of coupling, in contrast to more complex synaptic coupling. The 

coupling term here is ‘inhibitory’, i.e., when neuron Vj fires, neuron Vi is less likely to 

fire. In this model, the parameter T, which characterizes temperature in the Huber-

Braun model, is used simply as a parameter that tunes the system’s bursting behavior. 
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Table 4.1 shows the parameter values used; the noise level was set to D = 0.5. The 

model constructed consists of an array of 25 x 25 coupled neurons and Euler’s 

method is used to carry out numerical integration, with a step size of 0.05 ms. The 

coupling constant g ranges between 0.001 and 0.006. In this neuron model, phase 

transition behavior is investigated only for the temperature parameter T =30°C.  

 

 

 

Table 4.1: Parameter values used in the model. 
 

 

Parameter    Parameter values 

_____________________________________________________________________ 

Membrane capacitance !"
!"!    CM =1 

Conductance !"
!"!    !! = 1.5     !!" = 0.25 

     !! = 2.0    !!" = 0.4     

     !! = 0.1 

Reversal potentials (mV)  !! = 50  !!" = 50  

     !! = −90  !!" = −90 

     !! = −60    

Time constants (ms)   !! = 0.05     !!" = 10 

      !! = 2   !!" = 20 

Steepness (mV-1)   !! = 0.25  !!" = 0.09 

     !! = 0.25 

Half activation (mV)    !!! = −25  !!!" = −40 

     !!! = −25 

Other parameters   ! = 30℃  !! = 25℃ 

     ! = 0.012   ! = 0.17 

     ! = 0.5  !!/! 
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 4.3.2. Analytical Method.  Stochastic phase synchronization is analyzed 

using the method introduced by Rosenblum et al. [183, 208] and Pikovsky et al. 

[175].  The degree of global synchronization   is measured using the 

synchronization index  [16, 209]. Weihberger & Bahar [16] showed that in the case 

of local coupling (without any long range connections) the global synchronization 

index  of an array of 400 coupled neurons alternates between high and low values 

as the coupling constant g is varied: the system undergoes sharp transitions between 

globally synchronized bursting and desynchronized behavior.  

Synchronization index γ  and global synchronization index, γgl . Every 

neuron is treated as a noisy 2π-periodic oscillator and the instantaneous phase 

difference between neurons a and b at times ti is  

 

 !!" !! = 2! !!!!!
!!!!!!!

,                            !! ≤ !! < !!!!   (21) 

 

where ti are the spike times (or burst times) of neuron a, and tj are the spike times (or 

burst times) of neuron b [16, 17, 180, 185].  A spike time is determined when the 

membrane potential crosses a threshold value in the positive direction. Here, the 

threshold value is -20 mV. The spike time of the first spike in a burst is defined as the 

burst time. A burst is described as a group of at least two successive spikes with 

interspike intervals < 90 ms [16]. The degree of synchronization is evaluated using a 

probability density plot of the phase differences. The intensity of the first Fourier 

mode of the probability density of the phase difference is called the synchronization 

index γ , and is calculated as 

 

! 
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                  ! = cos! ! + sin! !                          (22) 

 

where φ is the phase difference (Eq. 20) and 〈  〉 represents a time average . It should 

be noted that the synchronization index γ , which can be obtained for any pair of 

neurons, ranges between 0 and 1. γ =0 corresponds to no phase-locking (no 

synchronization) while γ =1 corresponds to perfect phase-locking (perfect 

synchronization) [175, 183, 208]. 

 The global synchronization index is calculated according to the method 

introduced by Weihberger and Bahar [16]. First, a matrix of synchronization indices 

Γ! = !!" !
  is obtained for all neurons (!, !), with reference to neuron k (located at 

position (l, m) in the array). Then γaverage (i, j) for neuron (i, j) is calculated as 

 

  !!"#$!%#(!, !) =
!
!"#

Γ!(!, !)!"#
!!!      (23) 

 

where Γ!(!, !) is the synchronization index of neuron (i, j) with respect to each 

possible reference neuron !(!,!). Here, 625 is the number of reference neurons (25 x 

25 array). Finally, !!" is found by averaging all γaverage (i, j)’s, excluding the boundary 

neurons: 

 

!!" =
!
!"!

!!"#$!%# !, !!"
!!!

!"
!!! .                                        (24) 

 

4.3.3. Statistical Physics.  The possible existence of a phase transition in large 

oscillator populations with a distribution of frequencies was first pointed out by 

Winfree in 1967 [210].  He suggested that at a phase transition the system changes 
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from a macroscopically quiescent phase to a collectively oscillating phase at some 

critical coupling strength.  In this section the possibility of phase transition behavior 

in a nearest neighbor coupled neural network that exhibits stochastic phase 

synchronization is investigated. Here, as discussed above, the synchronization index 

may be considered as an order parameter somewhat analogous to particle density or 

spin, while the size of synchronized clusters and the number of synchronized clusters 

may be considered analogous to the correlation length (see Section 4.1.3). If the 

system goes through a critical phase transition, the distribution of the sizes of 

synchronized clusters, P(c), should be scale-free for values of g in the critical range. 

Another characteristic feature of criticality in a phase transition is that the order 

parameter (for example, ), when measured over multiple realizations of the model, 

should be distributed according to a power law [189].  

The size distributions of synchronized clusters are obtained by setting two 

threshold values for the synchronization index, !!!!"#! = 0.5 and 0.75.  Neuron (!, !), 

together with its synchronized nearest neighbor such that ! ≥ !!!!"#! are considered 

as a minimal synchronized cluster. The clustering algorithm is carried out as follows. 

First the nearest neighboring neuron and the second nearest neighboring neuron that 

fall into the category of ! ≥ !!!!"#! is determined for neuron (!, !). Then a similar 

search is performed for each neuron found in the first search. This iterative search is 

continued until a cluster of synchronized neurons, i.e., a closed set of neurons with 

! ≥ !!!!"#!  is obtained. According to this algorithm, each neuron is uniquely 

assigned to one cluster.  

  
4.3.4. Statistical Analysis Method.  Using AIC techniques as described in 

Section 1.1.3, a power-law model, ! ! ~  !!! and two other candidate models, an 

exponential model, ! ! ~ exp(−!/!) and a truncated power-law model, 

! 

" gl
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! ! ~  !!!   exp  (−!/!) is tested to determine which models best define the 

distribution of the sizes of synchronized clusters, !, and the variability in .  Here, 

! ≥ !!"#where !!"#, which corresponds to the start of the tail of the data, is 

determined according to the methods outlined in Edwards [94]. The cluster sizes are 

binned using logarithmic binning with normalization [7] and the minimum value of 

the smallest bin is set as !!"#. ! is the scaling exponent and ! is the cut-off parameter 

(cluster size  above which !(!) decreases faster than in a power law). At the critical 

value,  !⟶ ∞ and the truncated power law distribution reduces to a power-law 

distribution. Away from this point ! starts to decrease and for larger cluster sizes this 

function combines both the power-law behavior and exponential decay. However, in 

the extreme case where !⟶ 0, the cluster size distribution decays exponentially over 

the entire range of cluster sizes [211]. It should be noted that these three models are 

chosen since they are used in describing cortical networks [212- 215]. Specifically, 

the use of a truncated power-law distribution is proposed since the correlation 

function near the critical point which is used to determine a phase transition (equation 

(10) in Section 4.1.3) takes the form of a truncated power-law distribution, and hence, 

the truncated power-law distribution of cluster sizes is regarded as a broad-scale 

network [216]. The exponential distribution of cluster sizes is considered as a single-

scale network, while a power-law distribution of cluster sizes is considered as a scale-

free network. Naturally, a power-law distribution is also selected as a candidate 

distribution, since the observation of power-law behavior would strongly support the 

postulate that a true critical phase transition occurs as the self-sustained oscillators 

(Section 4.1.1) synchronize.  

! 

" gl
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Once the best model is identified using AIC methods, a Kolmogorov-Smirnov 

(KS) test is performed [95] as a goodness-of-fit (GOF) test ( see Section 2.2.3), to 

determine whether the data is consistent with the model.  

 
4.4. RESULTS 
 
 In this study, only the case of ‘local coupling’ among neurons is focused 

where every neuron is connected to its non-diagonal and diagonal neighbors, with no 

long-range connections (Figure 4.1). The temperature value is held fixed at 30°C in 

the entire study. The system passes through various bursting states and alternating 

high and low  as the coupling constant g is tuned, as shown in Figure 4.2. Standard 

deviation of the frequency distribution of bursts is also plotted in Figure 4.2. Each 

value of  is calculated from a 50 s time series after discarding 10 s of transient 

points.  

 

 

 

 
Figure 4.1. Schematic diagram of the array of locally coupled neurons. Each neuron, 
except for the neurons at the edges, is connected to eight nearest neighbors, including 
diagonals.        

! 

" gl

! 

" gl

represent Ca2+ and Ca2+-dependent K+ currents, respectively.
They act on a slower time scale and at a subthreshold level,
and their interplay results in the oscillation of the baseline
membrane potential. Biologically, the Ca2+ current can play
a significant role in the modulation of burst activity.
Ca2+-dependent K+ currents are expressed in many tissues,
including neurons; while their physiological role is not fully
understood, their expression does appear to be altered in
some human epileptic syndromes !18". The currents are
modeled as follows #for k=d, r, sd$:

Ik = !gkak#Vi − Vk$ , #3$

where ! is a scaling factor with

! = 1.3#T−T0$/10,

gk and Vk are the maximum conductance, and the reversal
potential, of the corresponding current, respectively, and ak is
an activation variable which represents the probability of ion
channel opening. It has values between 0 and 1 and is de-
scribed by a differential equation:

dak

dt
=

"#ak,# − ak$
$k

, #4$

where " is another temperature-dependent scaling factor
with

" = 3.0#T−T0$/10.

Here, $k is a time constant and ak,# is the steady-state acti-
vation,

ak,# =
1

1 + exp!− sk#Vi − V0k$"
. #5$

The remaining subthreshold repolarizing current Isr is mod-
eled as

Isr = !gsrasr#Vi − Vsr$ . #6$

Here, the activation variable has the form

dasr

dt
=

"#− %Isd − kasr$
$sr

. #7$

The presence of Isd in this equation produces the Ca2+-
dependence of the K+ current Isr. The term & in Eq. #1$ rep-
resents delta-correlated, zero-mean Gaussian white noise of
variance 2D #where D is the noise intensity$, implemented
with a standard Box-Mueller algorithm as given in !19".

A coupling term ci was introduced for each neuron i, with

ci = g%
j

aij#Vi − Vj$ , #8$

where g is a coupling constant and Vi is the membrane po-
tential of the ith neuron. A= !aij" is the adjacency matrix
!20", which is defined as follows. If there are n neurons, then
A is an n'n matrix and the element aij is 1 if neuron i has a
connection to neuron j, 0 otherwise.

Three different topological coupling schemes were used,
as illustrated in Fig. 1.

Equation #8$ represents the simplest possible type of cou-
pling term, corresponding to a gap junction #direct electro-

tonic connection between cells, which occurs between some
neurons$, rather than more complex synaptic coupling. Gap
junction coupling has been chosen in order to render the
present model more dynamically simple; subsequent studies
will address more realistic synaptic coupling. Note that the
coupling term is “inhibitory,” to the extent that when neuron
Vj fires, neuron Vi is less likely to fire. In other words, de-
polarization of one neuron will cause hyperpolarization of its
neighbor. Inhibitory coupling plays a major role in the dy-
namics of neocortical pyramidal neurons !21" as well as in
the dynamics of cortical networks !22". In addition, inhibi-
tory connections have been implicated as playing a major
role in synchronous neural firing !23".

Table I shows the parameter values used in the model; in
all cases the noise level was set at D=0.5, and T was set at a
value of 30 °C, for which individual, uncoupled neurons all
fire tonic single spikes #no bursts$. We constructed a lattice
of 20'20 neurons; numerical integration was performed us-
ing Euler’s method, with a step size of 0.1 ms. The model
has been tested with smaller step sizes, with no change ob-
served in the results.

TABLE I. Parameter values used in the model.

Membrane capacitance # (F
cm2 $ CM =1

Conductances # ms
cm2 $ gd=1.5 gsd=0.25

gr=2.0 gsr=0.4
gl=0.1

Reversal potentials #mV$ Vd=50 Vsd=50
Vr=−90 Vsr=−90
Vl=−60

Time constants #ms$ $d=0.1 $sd=10
$r=2 $sr=20

Steepness #mV−1$ sd=0.25 ssd=0.09
sr=0.25

Half activation #mV$ V0d=−25 V0sd=−40
V0r=−25

Other parameters T=30 °C T0=25 °C
%=0.012 k=0.17
D=0.5 A2/s

a) b) c)
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FIG. 1. #a$ In the most general coupling scheme, each neuron
#excluding neurons at the edges$ is connected to eight nearest
neighbors, including diagonals. #b$ No diagonal coupling, with con-
nections to only four nearest neighbors. #c$ Array with several in-
troduced long-range connections. Dotted lines represent broken lo-
cal connections.

OLIVER WEIHBERGER AND SONYA BAHAR PHYSICAL REVIEW E 76, 011910 #2007$

011910-2
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The negative sign of the coupling term between two neighboring neurons i and 

j used in the model, !! = !(!! − !!) or !! = !(!! − !!) indicates inhibition of neuron 

i  if neuron j spikes and vice versa. The phase difference between any pair of these 

inhibitory-coupled neurons is typically close to π, corresponding to antiphase 

coupling. Diagonal neighbors tend more strongly towards exhibiting antiphase 

locking than non-diagonal neighbors [16]. Since the topology of the system is such 

that the neurons are coupled to their eight nearest neighbors, and since Gaussian white 

noise is injected into the model, a fixed phase difference among neighboring neurons 

is not possible; rather, the phase difference fluctuates over time. Nonetheless, the 

entire system does exhibit regimes of strongly enhanced global (overall) 

synchronization for various values of the coupling constant g, as shown in Figure 4.2. 

The different diagonal and non-diagonal pair antiphase locking patterns can be 

Figure 4.2. Alternating high and low values of the global synchronization 
index, !!", and the standard deviation of the burst frequency, σ, as a function 
of the coupling constant, g. The spike pattern changes from singlets to doublets 
and from doublets to triplets after each peak value of !!". 
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visualized using a synchronization map: a grayscale map of average synchronization 

index γaverage (Eq. 21), with white indicating !!"#$!%# !, ! = 1, corresponding to 

maximal synchronization, and black indicating !!"#$!%# !, ! = 0, corresponding to 

complete desynchronization. These synchronization maps, illustrated in Figure 4.3, 

show a ‘checkerboard’ pattern corresponding to high and low values of  γaverage 

(Figure 4.2) in each row and column. As the coupling constant increases, clusters of 

synchronized neurons are observed, as shown in the synchronization maps (Figure 

4.3). 

 

 

    
 g = 0.001,  !!"=0.1839   g = 0.0015, !!"=0.1332   g = 0.002,  !!"=0.3412  g = 0.0025,  !!"=0.5969 

 
 

    
 g = 0.003,  !!"=0.5071 g = 0.00325, !!"=0.3678 g = 0.0035,  !!"=0.2285 g = 0.004,  !!"=0.1321 

 
 

    
 g = 0.0045,  !!"=0.2249 g = 0.005,  !!"=0.1741 g = 0.0055,  !!"=0.4450 g = 0.006,  !!"=0.3581  
 
 
Figure 4.3. Grayscale map of γaverage. The checkerboard pattern increases (γaverage =0 to 
1) between regimes of synchronization.  
 



  87 

 

 

Synchronized clusters are obtained using synchronization indices above a 

threshold value of !   ≥   0.75 (Figure 4.4); clusters are also calculated for a lower 

threshold value of !   ≥ 0.5 (Figure 4.5). Figure 4.4; Fig. 4.4a and Figure 4.5; Fig. 

4.5a show the mean cluster size as a function of g. At each value of g, the mean 

cluster size is averaged over six realizations of the simulation. When the spike pattern 

of the system changes from a singlet to a doublet (i.e., when g is between 0.001 and 

0.003), for clustering of ! ≥   0.75 (Figure 4.4; Fig. 4.4a), the mean cluster size 

remains small for low values of g, and then begins to rise sharply for intermediate 

values, before reaching a constant. However, for clustering of !   ≥ 0.5 (Figure 4.5; 

Fig. 4.5a), mean cluster size rises sharply and peaks at g=0.003. When the spike 

pattern changes from a doublet to triplet (i.e. 0.003 ≤ g ≤ 0.006), for clustering at 

!   ≥ 0.75 and above, the mean cluster size rises for lower values of g (values closer 

to 0.003), then shows a drop and rises up gradually for intermediate values, before 

reaching a plateau at high values of g. For clustering at ! = 0.5 and above, the mean 

cluster size shows a sharp drop for g = 0.004, followed by a sharp rise at g = 0.005, 

before reaching a plateau at g  ≥ 0.0055. In Figure 4.4; Fig. 4.4b and Figure 4.5; Fig. 

4.5b the number of clusters are shown as a function of g. Like mean cluster sizes, at 

each value of g, the number of clusters are averaged over six realizations of the 

simulation. The general behavioral trend observed of the number of clusters is that it 

is antiphase to the mean cluster size: as the mean number of clusters increases, the 

mean cluster size decreases.  

 Common characteristics of a critical phase transition include a rapid increase 

in correlation lengths between phases of the system together with large variances in 

the order parameter as the system approaches the transition point [217, 218]. Since 

mean cluster size can be considered analogous to correlation length, the cluster size 
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distributions (see Section 4.4.1) at g values that can be considered as plausible 

transition points of a critical phase transition between synchronized regimes is 

investigated. These g values are determined according to the common characteristics 

of a critical phase transition mentioned above, with the help of Figures 4.4 and 4.5. At 

g = 0.0025 and 0.0035 for clusters of !   ≥ 0.75, and at g= 0.0015 for clusters of 

!   ≥ 0.5  there is a rapid increase in the number of clusters. In addition, the number of 

clusters shows an increase in variability from one simulation run to another, indicated 

by the large error bars in Figure 4.4; Fig. 4.4b and Figure 4.5; Fig. 4.5b. The standard 

deviation shown using error bars in Figures 4.4 and 4.5 is shown as a function of the 

coupling constant in Figure 4.6 to better understand the variability of the order 

parameter.  Large variances are shown as sharp peaks in standard deviation in Figure 

4.6; Figs. 4.6a and 4.6c. Likewise at g = 0.0025 and 0.0035 for clusters of !   ≥ 0.75 

and at g = 0.0025 for clusters of !   ≥ 0.5, the mean cluster size shows a rapid increase 

as well as an increase in variability. However, the increase in variability (fluctuations) 

for correlation lengths at !   ≥ 0.5 is not as acute as in clustering of !   ≥ 0.75 (Figure 

4.6). Also note that although there is a large error bar at 0.003 for mean cluster size of 

clustering of !   ≥ 0.75, g = 0.003 cannot be considered as a possible critical point, 

since 0.001, 0.003 and 0.006 are synchronized regimes (phases) and a phase transition 

can only take place between synchronization regimes. Therefore g = 0.003 is not a 

candidate for a possible transition point.    
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Figure 4.4. Neuron clustering at ! ≥ 0.75. (a) Number of clusters;  (b) Mean cluster 
size, shown as a function of g. (a) and (b) show mean values over six realizations of 
the simulation at each value of g; error bars show standard deviation among six 
realizations. 

 

     
Figure 4.5. Neuron clustering at ! ≥ 0.5. (a) Number of clusters;  (b) Mean cluster 
size, shown as a function of g. (a) and (b) show mean values over six realizations of 
the simulation at each value of g; error bars show standard deviation among six 
realizations. 
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Model Selection for Size Distribution Of Clusters.   

 Once the hypothetical values (referred as ghyp) for the critical values of g at 

which transitions occur are obtained, the cluster size distribution at each ghyp is 

investigated for scale-free behavior based on AIC methods. The cluster size 

distributions determined with thresholds of ! above both 0.75 and 0.5 are shown in 

Figure 4.7; Figs. 4.7a, 4.7c, and Figure 4.8; 4.8a, 4.8c, respectively. 

 The power-law model, truncated power-law model and exponential model are 

fitted to the cluster sizes obtained based on the maximum likelihood approach (Figure 

4.7; Figs. 4.7b, 4.7d and Figure 4.8; 4.8b, 4.8d) and compared based on AICs (Tables 

Figure 4.6. Standard deviation of the number of clusters (a, c) and the mean cluster 
size (b, d) as a function of g. Panels (a) and (b) show results determined using a 
threshold of γ ≥   0.75; (c) and (d) figures show results determined using a threshold 
of γ ≥   0.5.  
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4.2 and 4.3). Akaike weights and Akaike differences, computed for competing 

models, indicate that the cluster size distribution for !   ≥ 0.75 for all coupling 

constants that are assumed as possible critical values (g = 0.0025, 0.0035) are best 

described by a power-law model (Table 4.2). However, goodness-of fit tests show that 

none of the data sets (cluster sizes) are consistent with the power-law model (Table 

4.2). 

 

 

 

Figure 4.7. Power-law scaling in the critical range of g for ! ≥   0.75. The open circles 
represent the empirical distribution function based on the sampled data. (a) 
Distribution of cluster sizes for g = 0.0025 plotted as a standard histogram; (b) 
Distribution of cluster sizes for g = 0.0025 with the three model fits; (c) Distribution 
of cluster sizes for g = 0.0035 plotted as a standard histogram; (d) Distribution of 
cluster sizes for g = 0.0035 with the three model fits. Note that cluster size data are 
taken from all 6 runs at each value of g.  
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Figure 4.8. Power-law scaling in the critical range of g for ! ≥   0.5. The open circles 
represent the empirical distribution function based on the sampled data. (a) 
Distribution of cluster sizes for g = 0.0015 plotted as a standard histogram; (b) 
Distribution of cluster sizes for g = 0.0015 with the three model fits; (c) Distribution 
of cluster sizes for g = 0.0025 plotted as a standard histogram; (d) Distribution of 
cluster sizes for g = 0.0025 with the three model fits. Note that cluster size data are 
taken from all 6 runs at each value of g.  
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Table 4.2. MLE, AICc, Δc and wc values for the parameters of competing models 
computed from cluster sizes at ! ≥   0.75. 
 
 
Model Best-fit parameter Likelihood AICc Δc wc  GOF 
       
      D0.05 P-value 
_____________________________________________________________________ 
 
 
g = 0.0025 (number of cluster sizes n = 36) 
 
Power-law µ= 1.370(1.249, 1.491)        -169.008 342.379 00.00 0.999 0.7714 4.09x10-10

  
 
Exponential λ= 0.011 (0.008,0.015)         -198.947 402.258 59.88 2.31x10-05   

 
Truncated power-law µ= -0.634 (-0.748, -0.470)   -179.681 363.726 21.35 9.94x10-14   

 λ= 0.040(0.002, 0.008) 
 
 
g = 0.0035 (n = 124) 
 
Power-law µ= 1.604 (1.497, 1.710)       -391.912 787.923 00.00 ~1.00 0.2119 0.0083 

Exponential λ= 0.031 (0.025,0.036)        -558.533 1121.165 196.91 1.75x10-43  

Truncated power-law µ= -0.638 (-0.704, -0.558)    -490.366 984.831 333.24 4.34x10-73  

 λ= 0.011 (0.008, 0.016) 
_______________________________________________________________________________________________________ 
 
 
 
 
 
 
 
 The cluster size distribution for clustering of !   ≥ 0.5 for g =0.0025 also is 

best described by the power-law model, but the GOF tests suggest that the data show 

no consistency with the power-law distribution (Table 4.3). However, the cluster size 

distribution at g = 0.0015 is best described by the truncated power-law model 

according to AIC methods and the data are consistent with the truncated power-law 

model according to the GOF test (Table 4.3).  
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Table 4.3. MLE, AICc, Δc and wc values for the parameters of competing models 
computed from cluster sizes at ! ≥   0.5. 
 
 
Model Best-fit parameter Likelihood AICc Δc wc  GOF 
 
      D0.05 P-value 
_____________________________________________________________________ 
 
g = 0.0015 (n = 128) 
 
Power-law µ= 1.600 (1.496, 1.705)    -406.462 817.019 14.56 0.001 0.4750 1.33x10-04 

 
Exponential λ= 0.119 (0.099,0.140)      -400.628 805.352 2.90 0.190  

 
Truncated power-law µ= 0.216 (-0.024, 0.514)   -399.179 802.455 0.00 0.809  
 λ= 0.145 (0.110, 0.189) 
 
 
g = 0.0025 (n = 16) 
 
Power-law µ= 1.401 (1.221, 1.581)    -83.7822 172.314 0.00 0.999 0.8421 6.97x10-07 
 
Exponential λ= 0.005 (0.003,0.008)      -118.830 242.410 70.095 6.01x10-16  

 
Truncated power-law µ= -0.744 -0.844, -0.579)   -96.317 197.383 25.069 3.60x10-06  
 λ= 0.001 (0.0005, 0.0037) 
 
_______________________________________________________________________________________________________ 
 
 
 
 
4.5. DISCUSSION 

 Statistical approach to an array of nodes (e.g. neurons, oscillators..etc) gives 

rise to the identification of situations where small changes in local behavior give large 

changes in global performance. Appearance of phase transitions can be observed in 

such situations [217]. Phase transitions in neural networks have been identified earlier 

by many research groups [219-221]. However, this study is the first study to examine 

phase transition behavior with !!"  as the order parameter, in a locally coupled neural 

array described by the Huber-Braun model as the coupling constant is tuned.  

Common characteristics of a critical phase transition are rapidly increasing 

correlation lengths between phases as the transition is approached, giving rise to large 

fluctuations (variances) in the order parameter while changing from a disordered state 

to an ordered state [217]. Hence, the values of g shown in Tables 4.2 and 4.3 are 
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considered as hypothetical critical values of g, considering the fluctuations around the 

mean values of number of clusters and cluster sizes (Figure 4.6) and a rapid increase 

in the number of clusters and the mean cluster size between synchronized regimes 

(Figures 4.2, 4.4 and 4.5).   

If the system changes from a disordered state (quiescent) to an ordered state 

(synchronized) at some critical coupling strength the distribution of the cluster sizes 

of the order parameter should follow a power-law distribution at the critical coupling 

strength. AIC methods are used for this purpose and exponential, truncated power-law 

and power-law models are used as candidate models in the model selection. AIC 

methods suggest that the cluster size distribution of the clusters identified using a 

threshold of !   ≥ 0.75 is best characterized by a power-law model at some values of g 

intermediate between desynchronized and synchronized states. However, AIC method 

itself is not sufficient enough to determine whether the power-law model best 

describes the cluster size distribution at ghyp values. Therefore it is important to carry 

out a goodness-of-fit test to investigate whether power-law model is consistent with 

the cluster size data. This is essential because the power-law model could be the best 

model out of the 3 poor models. It should be noted that although goodness-of-fit test 

falls under hypothesis testing, it is purely used to determine whether the data is well 

approximated by the model and not as a model selection technique. Unlike other 

hypothesis tests there is a close relationship between goodness-of-fit tests and 

information theory. Both AIC methods and GOF tests require the distributions to be 

fully specified in advance [98]. Moreover, the parameters for the distributions are 

estimated from the sample using maximum likelihood estimation which is a more 

accurate and robust test than current broadly used methods for fitting to the power-

law distribution [96]. In this section the KS test is used as a GOF test since it is a 
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robust test (i.e., a test which is little affected by the departures from the mathematical 

model) that depends only on the relative distribution of the data [98]. The KS test 

suggests that the cluster size distribution is not consistent with the power-law model 

(Table 4.2). Likewise, although the AIC method shows that the cluster size 

distribution for ! ≥   0.5 is best interpreted by a power-law model, the GOF test 

shows no support for the power-law model at g= 0.0025 (Table 4.3). However, at g = 

0.0015 the size distribution of clusters of ! ≥   0.5 is well supported both by AIC 

method and GOF test by the truncated power-law model (Table 4.3).  

The simulated data analyzed here provides no indication for a possible phase 

transition in the model, since the distribution of cluster sizes does not follow a power-

law distribution at any of the tested g values. Absence of a power-law distribution of 

cluster sizes at hypothetically critical g values suggests that large cluster sizes are 

relatively fewer than if the tail of the distribution is distributed according to a power-

law. In this context, it is interesting to note the truncated-power law behavior of the 

size distribution of clusters of ! ≥   0.5 at g =0.0015. The lack of relatively large 

clusters could be attributed to the fact that the neural model used in this section has no 

long-range connections. A more likely explanation might be the small system size: 

with only an array of 25 x 25 neurons (a limit imposed by computational capability), 

sufficient large clusters may simply not have been able to occur. A study on 

functional brain-networks has shown that the scale-free nature of the network depends 

on the scale at which the network is formed [212]. Haysaka and Laurienti [212] 

suggest that truncated-power law distribution of size clusters may occur because of 

the restrictions in the network growth. However, out of the tested g values only g = 

0.0015 for clustering at ! ≥   0.5 shows the behavior of a truncated power-law 

distribution.   
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The results also show that the standard deviation at the possible critical g 

values above a higher threshold value of ! closer to near perfect synchronization 

(0.75) exhibits sharper peaks than for a lower threshold value of ! =   0.5 (Figure 4.6). 

On the other hand an increase in fluctuations at ghyp values are observed when !!!!"#! 

increased from 0.5 to 0.75. However, there is a rapid increase in the order parameter 

for clustering above both threshold values of !. This could be showing evidence of a 

possible phase transition behavior if clustering is observed closer to ! =   1 near 

perfect synchronization. Furthermore, finer range of g values would also narrow down 

the actual range of a possible transition.  

 
4.6.  CONCLUSION 
 

A nearest neighbor coupled neural array described by the Huber-Braun model 

[18] is investigated for the possibility of a second order phase transition at some 

critical coupling strength as the system passes through various bursting states. The 

synchronization index and the number of clusters are considered as order parameters, 

and the size of synchronized clusters is considered to be analogous to the correlation 

length of the system. Clustering is observed for threshold values of ! above 0.5 and 

0.75. The results do not show clear evidence of scale-free behavior of the cluster sizes 

at the potential critical values of the coupling constants. Nevertheless, it is import to 

note that there remains a possibility for the appearance of a phase transition if a finer 

range of g values is considered, and if a larger system size is used.    

Furthermore, it is interesting to observe sharper peaks in standard deviation at 

the hypothetical critical values of g (Figure 4.6) for clustering of ! ≥   0.75 than that 

of ! ≥   0.5. Similarly, an increase in large variances around the mean number of 

clusters and the mean cluster size, at ghyp values, are observed when !!!!"#! is 

increased from 0.5 to 0.75. However, in both cases a rapid increase in the number of 
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clusters and mean number of clusters, which are analogous to the order parameter, 

between synchronized regimes can be observed. When !!!!"#! is high most neurons 

would be synchronized and therefore most neurons are categorized into synchronized 

clusters. As a result, many synchronized clusters can be observed. Some of these 

clusters consist of only the minimum number of !s (two) and some consist of nearly 

maximum number of !s compared to the mean value of the cluster size. Hence, large 

variations around the mean number of clusters and mean cluster size can be observed 

for higher threshold values than for lower threshold values.  

 
4.7.  FUTURE WORK 
 

Firm conclusions regarding phase transitions cannot be made based on the 

results of this section. An investigation of ! values at a finer range of g values is 

needed to determine whether the system really undergoes a phase transition. Hence, 

repeating the entire study at a finer range of g values would be the next step in this 

project. According to the results that have already obtained, large fluctuations can be 

observed at hypothetical transition points with a rapid increase in both mean cluster 

size and number of clusters between phases, when !!!!"#! increases from 0.5 to 0.75. 

Moreover, in this section the idea of finding phase transition behavior in a locally 

coupled neural array is only considered. Therefore the future plan is to extend this 

study by randomly introducing long-range connections to the neural array and convert 

it into a small-world network of neurons: high interconnectivity of coupled neurons 

with random long-range coupling, to investigate possible phase transition behavior of 

the network. Moreover another goal of this project is to repeat this study at different 

temperatures (T = 20°  and 25°) and at larger system sizes to investigate whether the 

system undergoes phase transitions. 
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A.1. The probability density function (!"#) of the exponential model is 
 

! ! =   !!!!",             ! ∈    !!"#,∞  

 

where C is the normalization constant,  ! = !
!!!!!"#

,  as obtained by solving  

! ! !" = 1!
!!"#

.  λ is the parameter of the model and !!"! corresponds to the start 

of the tail of the data for the model. 

 

 

A.2. The !"# of the power-law model is 

 

! ! =   !!!!,             ! ∈    !!"#,∞  

 

where  ! = !!!
!!"#
!!! ,  and µ is the parameter of the model and !!"# corresponds to the 

start of the tail of the data for the model. 

 

 

A.3. The !"# of the truncated power-law model is 

 

! ! =   !!!!!!!",       ! ∈    !!"#,∞  

 

where ! = !
!!!!!(!!!,!!!"#)

, for the positive values of !  with Γ()  being the 

incomplete gamma function; λ and µ are the parameters of the model and !!"# 

corresponds to the start of the tail of the data for the model. 
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The !"# of the Pareto distribution is 

 

! ! !,! =
!!!

!!!!   ,                                      ! ≤ ! < ∞  ;     !,! > 0 

 

where !is the shape parameter and ! is the scale parameter. 
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