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ABSTRACT 

This dissertation presents a simple method for the photolithographic patterning of 

silica hydrogel monoliths and planar substrates with quantum dots and inorganic 

semiconductor nanoparticles. We developed a method for surface patterning and bulk 

(3D) patterning of silica hydrogel monoliths and surface patterning of planar substrates 

with CdS, CdSe, PbS and PbSe quantum dots using infrared light, ultraviolet light, X-

rays, and multi-photon ionization radiation. Precursor combinations were prepared which 

can readily dissociate with IR, UV, X-rays, and multi-photon ionization radiation. 

Different capping agents were used for improving quantum dot size distribution. The 

luminescence quantum yield of the composites can be increased to up to 30% with 

photoactivation. A masking technique was developed with which we can photolithograph 

sophisticated patterns with CdSe quantum dots on the surface of silica hydrogels that are 

highly luminescent without any further photoactivation. These are bottom-up methods, 

water-based, use readily available reagents and need only a few simple processing steps. 

These are attractive features for applications, and we anticipate that the technique may be 

employed for large-scale production of quantum dots in the near future. 
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1. INTRODUCTION 

1.1. LOW-DIMENSIONAL NANOCRYSTALS 

 Nanostructured semiconductors with a size range of 1-100 nm have been the 

focus of recent scientific research because of their important nonlinear optical properties,1 

luminescent properties,2,3 quantum size effects,4,5 and other important physical and 

chemical properties.6 In the past decade, low-dimensional materials such as nanometer-

size inorganic dots, tubes, and wires have been discovered which exhibited a wide range 

of electronic and optical properties that depend sensitively on both size and shape, and 

are of both fundamental and technological interest.7-9 They are potentially ideal building 

blocks for nanoscale electronics and optoelectronics. The ability to control the shapes of 

semiconductor nanocrystals affords an opportunity to further test theories of quantum 

confinement and yields samples with desirable optical characteristics from the point of 

view of application.10,11  

 The existing emerging important applications of low-dimensional semiconductor 

nanocrystals include using Quantum dots in biological assays,12-15 building blocks for 

assembly of semiconductor nanodevices,16 hybrid nanorod-polymer solar cells that 

combine semiconducting polymers and nanoparticles in useful photovoltaic devices with 

relatively high conversion efficiencies,17 room-temperature ultraviolet lasing using ZnO 

nanowire (NW) arrays,18 light-emitting diodes (LEDs),9 and nanosensors for biological 

and chemical species.19-21
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1.2. QUANTUM SIZE CONFINEMENT 

 The interest of this subject stems from two main desires. The first is the desire to 

understand the transition from molecular to bulk electronic properties, while the other is 

the prospect of practical application of these materials to optoelectronic devices, 

photocatalysts, and chemical sensors. Perhaps the most striking property of nanoscale 

semiconductors is the massive change in optical properties as a function of size due to 

quantum confinement. This is most readily manifest as a blue shift in the absorption 

spectra with the decrease of the particle size. The variation of the energy gap in 

semiconductors with size can also result in different emission wavelengths for different 

sizes of nanoparticles. One example is shown in Fig. 1.115 for ZnS-capped CdSe 

nanoparticles with different sizes which display a fluorescence rainbow of blue-green-

orange-yellow-red with the emission maxima at 443, 473, 481, 500, 518, 543, 565, 587, 

610, and 655 nm, respectively. 

 

 

Figure1.1. Ten different emission colors of different size ZnS-coated CdSe nanoparticles 

excited with a near-UV lamp. From left to right (blue to red), the emission maxima are 

443, 473, 481, 500, 518, 543, 565, 587, 610, and 655 nm, respectively. Reprinted with 

permission from [15], M. Y. Han et al., Nature Biotechnol. 19, 631 (2001). 
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 For a semiconductor crystal, electronic excitation consists of a loosely bounded 

electron-hole pair (the Mott-Wannier exciton22), usually delocalized over a length much 

longer than the lattice constant. The exciton Bohr radius is a useful parameter in 

quantifying the quantum confinement effects in semiconductor physics. The Bohr radius 

( ) of an exciton in semiconductors may be calculated byBa 23

2

2 * *

1 1
B

e h

a
e m m

ε ⎡ ⎤
 = +⎢ ⎥

⎣ ⎦

h    (1) 

where ε is the dielectric constant, ħ is the Planck constant, and  and  are the 

electron and hole effective masses respectively. As the particle size is reduced to 

approach the exciton Bohr radius, there are drastic changes in the electronic structure and 

physical properties. These changes include shifts of the energy levels to higher energy, 

the development of discrete features in the spectra, and the concentration of the oscillator 

strength into just a few transitions (Fig. 1.2)

*
em *

hm

23, which can be observed as a blue-shift in 

the optical band gap as well as an enhancement in the absorption cross section. This 

observed blue-shift of exciton energy (or optical band gap) with decreasing cluster size 

occurs because the energy band of a cluster with a finite number of atoms is discrete. For 

CdS, the quantum size effect occurs as the cluster diameter is comparable to or smaller 

than the exciton diameter of ~60Å (~3000-4000 atoms). For PbS, this size effect can be 

observed for a cluster as large as 180Å, which contains over 105 atoms. 

 This problem was first treated by Efros et al.24, who considered a simple particle 

in a box model. This model assumes that the energy band is parabolic in shape, 

equivalent to the so-called effective mass approximation. The shift in absorption 

threshold, ΔE, is dependent upon the value of the cluster radius R, Bohr radius of the 
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electron, , and Bohr radius if the hole, . When (1) 

 and , and (2) 

2 * 2
ea ( / m e )= εh e h

a

2 * 2
ha ( / m e )= εh

hR a<< eR a<< h ea R<< << , 

2 2

2 * *

1 1
2

⎡ ⎤
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⎣ ⎦

h

e h

E
R m m
π    (2) 

When (3) and  ha << R ea R<<

2 2

2 * *

1
2

Δ =
⎡ ⎤+⎣ ⎦

h

e h

E
R m m
π    (3) 

 

 

Figure 1.2. A schematic model for the energy structures of bulk solids, nanoparticles, and 

isolated molecules. 

 

 The model by Efros et al. ignores the Coulomb interaction and the correlation 

effect between electrons and holes. This is subsequently remedied by Brus25 and 
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Kayanma26. For the strongly confined cases (1) and (2), the size-dependent shift of the 

exciton energy of a small cluster can be derived as 

2 2 2
*

2 * *

1 1 1.786 0.248
2

⎡ ⎤
Δ = + − −⎢ ⎥

⎣ ⎦

h
yR

e h

eE E
R m m R
π

ε
  (4) 

Where R is the cluster radius and is the effective Rydberg energy, 

. The first term in Eq. (4) represents the particle in box quantum 

localization energy and has a simple 1/R

y

*
RE

4 2 2 * */[2 (1/ 1/ )]+h ee mε hm

2 dependence24, the second term is the Coulomb 

energy with a 1/R dependence25, and the third term is a result of the spatial correlation 

effect26. This last size-independent term is usually small, but can become significant for 

semiconductors with a small dielectric constant. 

 In both regimes the main experimental effects of confinement are the appearance 

of a structured absorption spectrum due to the presence of discrete energy levels and the 

blueshift of the absorption edge, which is roughly proportional to the inverse of the 

square of the particle radius. However, some electronic properties such as electron-hole 

interactions are expected to be modified only in the strong confinement regime. This is 

due to the increase of the spatial overlap of the electron and hole wavelength functions 

with decreasing size. As a consequence, the splitting between the radiative and 

nonradiative exciton states is enhanced largely in the strong confinement regime.  

Four basic dimensionality systems are listed in Table 1.1. 
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Table 1.1. The number of degrees of freedom Df in the electron motion, together with the 

extent of the confinement Dc, for the four basic dimensionality systems. 

System Dc Df

Bulk 0 3 

Quantum well 1 2 

Quantum wire 2 1 

Quantum dot 3 0 

  

Quantum confinement not only causes an increase of the energy gap (blueshift of 

the absorption edge) and the splitting of the electronic states but also changes the density 

of states (DOS). Many novel physical properties and potential applications of low-

dimensional semiconductors and many of the differences between the electronic behavior 

of the bulk and of quantum-confined low-dimensional semiconductors are due to their 

differences in the density of states. Fig. 1.3 shows the variation of the DOS with 

dimensionality.27  

 

Figure 1.3. Profiles of the density of states of three-dimensional bulk semiconductors, a 

two-dimensional quantum well, a one-dimensional quantum wire, and zero-dimensional 

quantum dots. Reprinted with permission from [28], A.P. Alivisatos, J. Phys. Chem. 100, 

13226 (1996). 
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The dimensionality of the system describes the number of dimensions of free transport of 

an electron gas, thus quantum wells are two-dimensional structures, quantum wires are 

one-dimensional, and quantum dots are considered zero-dimensional because electrons 

are confined in all spatial dimensions. Passing from three dimensions to two dimensions 

the density of states ρ(E) changes from a continuous dependence, where ρ(E)~E1/2, to a 

steplike dependence. Thus the optical absorption features are different for the bulk and 

for the quantum well structure. The optical absorption edge for a quantum well is at 

higher photon energy than for the bulk semiconductor and, above the absorption edge, the 

spectrum is stepped rather than smooth, the steps corresponding to allowed transitions 

between valence-band states and conduction-band states. In addition, at each step sharp 

peaks appear corresponding to confined electron-hole (exciton) pair states. In the case of 

lower dimensional systems (quantum dots, nanocrystallites, clusters, nanoparticles, 

colloids, etc.), the DOS becomes more discrete as the dimensionality decreases, and large 

optical absorption coefficients are observed.28 The low-dimensional structure has proven 

to be very promising in applications to semiconductor lasers, due mainly to the quantum 

confinement of the carriers and the variation of the density of states with 

dimensionality.29 The changes in the DOS lead to a change in the gain profile, a reduction 

of threshold current density, and a reduction of the temperature dependence of the 

threshold current. Owing to the steplike density of states, high gain with a lower 

spontaneous emission rate has been realized in a GaAs/AlGaAs GRIN-SCH SQW laser.30 

Thus low-dimensional structured materials are interesting, for both basic research and 

practical applications.  

 



 8

The density of states changes in moving from the bulk (3D) crystal to a quantum 

well (2D), there is further change in the density of states on moving to quantum wires 

(1D) and quantum dots (0D). The density of states is defined as the number of states per 

unit energy per unit volume of real space, which is expressed mathematically as 

( ) dNE
dE

ρ =    (5) 

In the bulk crystal, the three degrees of freedom for the electron momentum mapped out a 

sphere in k-space, while in quantum wells the electron momenta fill successively large 

circles. Continuing this argument for quantum wire with just one degree of freedom, the 

electron momenta that fill states along a line. Therefore the total number of states N is 

then equal to the length of the line in k-space (2k), divided by the length occupied by one  

state 2
L
π⎛

⎜
⎝ ⎠

⎞
⎟ , and divided by the length in real space,31 i.e. 

( )
1 1 1 22 2

2 /
D kN k

L Lπ π
= × =   (6) 

Then the density of states for a one-dimensional wire can be defined as 

( )
1 1

1
D D

D dN dN dkE
dE dk dE

ρ = =  

but 

11
* 22

2
2

2
dk m E
dE

−
⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠h

finally the density of states for a 1D wire is  

( )
1

* 21
2

2

2D mE 1
1

E

ρ

π

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠h
   (7) 

where the energy E is measured upwards from a subband minimum. Therefore on 

comparing the density of states for bulk (3D), quantum wells (2D) and quantum wires 
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(1D), it can be seen that successive reductions in degrees of freedom for the electron 

motion, lead to reductions in the functional form of ( )Eρ  by factors of 1/ 2E .31  

 

Table 1.2. The density of states for reduced dimensionality systems, rewritten in a 

standard form. 

Dimensionality ( )Eρ  

 

3D 

3/ 2*
1/ 2

2 2
1 2

2
m E

π

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠h

 

2D 

1*
0

2
1 2

2
m E

π
⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠h

 

 

1D 

1/ 2*
1/ 2

2
1 2m E
π

−⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠h

 

 

 

 If there are many (  confined states within the quantum wire with subband 

minima 

)n

iE , then the density of states at any particular energy is the sum over all the 

subbands below that point, which can be written as: 

( )
( )

( )
1/ 2*

1
2 1/ 2

1

2 1n
D

i
i i

mE E E
E E

ρ
π=

⎛ ⎞
= ⎜ ⎟⎜ ⎟ −⎝ ⎠

∑
h

Θ −    (8) 

where is the unit step function. In contrast to the bulk and 2D cases, quantum wires 

show maxima in the density of states at around the subband minima, i.e. at around the 

point at which charge would be expected to accumulate. Therefore, interband (electron-

hole) recombination will have a narrower linewidth than that of the 2D and 3D cases.

Θ

31

 The situation for quantum dots is quite different. As the particles are confined in 

all directions, then there are no dispersion curves, and thus the density of states is just 

dependent upon the number of confined levels. One single isolated quantum dot would 
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therefore offer just two (spin-degenerate) states at the energy of each confined level, and 

a plot of the density of states versus energy would be a series of δ-functions,31 i.e. in 

quantum dots, the parabolic density of states of a 3D system is replaced by a series of 

discrete energy levels, similar to those seen in atomic physics. These levels are distinct if 

their separation is larger than that of thermal broadening. This condition sets an upper 

limit on the size of a quantum dot and is obviously more restrictive for devices that 

operate at room temperature. The lower limit to the size of a quantum dot depends on the 

material which is used to form it and on the depth of the confining potential. At least the 

lowest confined energy level must lie within the potential well of the dot.32

 If we consider a QD artificial atom as a building block, we can create QD arrays. 

Electrons in QD arrays can move around and interact with each other through the 

coulomb interaction, and many interesting effects manifest themselves in magnetic, 

transport, and optical properties. When QDs are arranged on a periodic lattice and are 

coupled to each other coherently, a band structure is obtained. This type of dot lattice or 

artificial crystal was first proposed by Sakaki33 and it is called quantum dot superlattice 

(QDSL). It is analogous to quantum well superlattices,34 in which a sequence of 

semiconductor layers with different bandgaps produces new materials and devices. The 

energy spectrum of the superlattice is determined by the artificial periodicity and the 

coupling between quantum wells (dots) rather than by the properties of the individual 

semiconductor materials. 
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1.3. QUANTUM DOTS 

Quantum dots (QDs) are very small semiconductor materials which contain tens to a 

few hundreds of atoms with sizes of a few nanometers but only a small number of 

electrons (≤100) are free. Quantum dots are electrostatically or structurally isolated from 

the outside and are small regions defined by well defined confining potentials in 

semiconductor materials, in which electrons are confined and the number of electrons can 

vary between one and several hundreds and whose size is comparable to the Fermi 

wavelength of the electrons. First it was realized in 1932 by H. P. Rocksby that the red or 

yellow color of some silicate glasses could be linked to microscopic inclusions of CdSe 

and CdS.35 Such red and yellow colored glasses have been commercially available as 

color filters for decades.  In 1985 Ekimov et al..36 experimentally proved and 

theoretically modeled that these changes in color were linked to the density of states 

(DOS) determined by the size of the crystalline material. Below a certain size, the 

properties of the crystalline material start to deviate significantly from bulk properties 

and became strongly dependent on size. Finite size of the micro crystallites confines the 

motion of the quasiparticles (electron, hole and exciton) within their physical boundary. 

This is called quantum confinement. Quantum confinement modifies the DOS which in 

turn leads to discretization as well as enlarged spacing between the energy levels of 

electron and hole states. Thus one can observe an increase in the band gap as the optical 

absorption onset occurs at higher energies (blue-shift) in case of nanocrystals.36, 37 

Because QD’s are analogous to atoms, they are often referred to as artificial atoms. 

Unlike real atoms, though, current and voltage leads can be attached to probe a QD’s 

electronic state. The interplay between quantum confinement and charging effects 
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manifests itself in a wide range of physical phenomena.38-40 The single electron charging 

effect is one of the more important of these. When the charging energy of a small 

quantum dot is larger than the thermal energy, electrons in the lead cannot transfer into 

the dot (Coulomb blockade effect). By coupling several quantum dots, we can create 

artificial molecules. An important feature of these artificial molecules is that the 

couplings between different dots can be tuned by changing gate voltages or interdot 

distances. This tunability allows us to achieve various interesting phenomena, ranging 

from the formation of a “chemical bond” between two coupled dots to the manipulation 

of a single electron in “turnstiles” and “pumps”.41

Quantum boxes can be thought of as simply a generalization of the rectangular cross-

section quantum wires, in which there are confinements along all the three x, y and z-

axes. These three confinements remove all degrees of freedom in the particle’s 

momentum and localize it in all directions. Here the particle in consideration is an 

exciton. Thus the energy levels are now known as sublevels.31 

 

 
Figure 1.4. (a) Schematic illustration of a quantum box with side LX, LY and LZ and (b) 

Schematic illustration of a spherical quantum dot. 
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 Considering the case of an infinite potential separating the inside of the box from 

the outside, the 3D Schrödinger equation within the box is 

 ( ) (
2 2 2 2

, ,* 2 2 2 , , , ,
2 x y z )x y z E x y z

m x y z

⎛ ⎞− ∂ ∂ ∂
+ + Ψ = Ψ⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠

h    (9) 

Writing the total energy Ex,y,z as a sum of the three terms Ex, Ey and Ez , then the 3D 

equation can be decoupled into three 1D equations: 

( ) ( )
2 2

* 22 xx E x
m x

∂
− Ψ = Ψ

∂
h    (10.1) 

( ) ( )
2 2

* 22 yy E y
m y

∂
− Ψ = Ψ

∂
h    (10.2) 

( ) ( )
2 2

* 22 zz E z
m z

∂
− Ψ = Ψ

∂
h    (10.3) 

The confinement energy within this quantum box is  
22 22 2

, , * 2 2 22
yx z

x y z
x y z

nn nE
m L L L
π ⎛ ⎞

⎜= + +
⎜
⎝ ⎠

h ⎟
⎟

   (11) 

The 3D nature of the confinement requires three quantum numbers, i.e., nx, ny and nz to 

label each state.31

 In spherical Quantum dots as the potential is spherically symmetric, then the wave 

function would also be expected to have spherical symmetry, then the Schrödinger 

equation for a constant effective mass is42

( ) ( ) ( ) ( )
2 2

2
r* 2 2 2 2

1 1 1 1- r sin r V r r E
2m r r r r sin sin

⎡ ⎤⎛ ⎞∂ ∂ ∂ ∂ ∂⎛ ⎞ + θ + Ψ + Ψ =⎢ ⎥⎜ ⎟⎜ ⎟∂ ∂ θ ∂θ ∂θ θ ∂φ⎝ ⎠ ⎝ ⎠⎣ ⎦
rΨ

r r r rh  (12) 

For a free-particle (exciton) the Schrödinger equation is 

2 2
2

* 2 2 2 2

1 1 1 1- sin ( , , ) ( , , )
2m sin sin

r r
r r r r

E rθ θ φ θ φ
θ θ θ θ φ

⎡ ⎤⎛ ⎞∂ ∂ ∂ ∂ ∂⎛ ⎞ + + Ψ =⎢ ⎥⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦

h
Ψ

)

 (13) 

Solving equation (13) by separation of variables. Substituting the product 

form (( , , ) ( ) ) (Ψ = Θ Φr R rθ φ θ φ . Function R(r) describes how wave function Ψ varies 

along the radius vector from the center, with θ  and φ  constant. Function ( )θ describes Θ
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how the wave function varies with zenith angle with r  and Ψ φ  constant. Function 

( )Φ φ describes how wave function Ψ varies with azimuth angle with r  and θ  

constant(Fig. 1.4(b)).31 Multiplying by Eq. (11) with 2 / ΘΦr R 42

2
2 2

2 2

1 1 1sin 0
sin sin

Θ⎛ ⎞ ⎛ ⎞− + + =⎜ ⎟ ⎜ ⎟Θ Φ⎝ ⎠ ⎝ ⎠
d dR Φd dr Er

R dr dr d d
θ

θ θ φ
d

dθ θ
 (14) 

Angular part 

Multiplying Eq. (14) by 2sin θ , the last term, 
2

2

1 ⎛ ⎞Φ
⎜Φ ⎝ ⎠

d
d ⎟φ

, only involved φ  (whereas the 

first two terms only depend on and r θ ), and so must be a constant which we called 

, i.e. 2−m

2
2

2

1 Φ
= −

Φ
d m
dφ

. The solution was ( )Φ = ime φφ , with an integer (in order that the solution 

was the same for 

m

φ and 2+φ π ). Substituting into Eq. (14) gives  

2
2 2

2

1 1 sin 0
sin sin

Θ⎛ ⎞ ⎛ ⎞− + − =⎜ ⎟ ⎜ ⎟Θ⎝ ⎠ ⎝ ⎠
d dR d d mr Er

R dr dr d d
θ

θ θ θ θ
  (15) 

the 3rd and 4th terms in Eq. (15) are only a function of θ  (where the first two terms only 

depend on ), and must therefore be a constant which was r ( 1)+l l , i.e. 

 
2

2

1 sin ( 1)
sin sin

Θ⎛ ⎞ − = − +⎜ ⎟Θ ⎝ ⎠
d d m l l

d d
θ

θ θ θ θ
, this can be written as  

2

2

1 sin ( 1) 0
sin sin

⎛ ⎞Θ⎛ ⎞ + + − Θ =⎜⎜ ⎟
⎝ ⎠ ⎝ ⎠

d d ml l
d d

θ
θ θ θ θ ⎟    (16) 

with the substitution cos=x θ , Eq. (16) becomes  

2
2

2

( )(1 ) ( 1) ( ) 0
1

⎛ ⎞Θ⎡ ⎤− + + − Θ =⎜ ⎟⎢ ⎥ −⎣ ⎦ ⎝ ⎠

d d x mx l l
dx dx x

x    (17) 
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Eq. (17) is the Associated Legendre equation, so the solution is ( ) ( )Θ = m
lx P x ( cos=x θ ) 

where the (cos )m
lP θ  are Associated Legendre Polynomials and 0,1, 2,......=l , and runs 

over integer values from −  to .

m

l l 42 If  is not an integer one can show that the solution of 

Eq. (16) diverges for co

l

s 1=θ  or 1−  ( 0=θ  or π ). Generally we require the solution to 

be finite in these limits, and this is the reason why we write the separation constant is Eq. 

(16) as  with  an integer. The functions ( 1+l l ) l Θ and Φ are often combined into a 

Spherical harmonic, ( , )m
lY θ φ , where  

( ) (2 1) ( )!, (cos )
4 ( )!

+ −
=

+
m

l
n n mY

n m
m im

lP e φθ φ θ
π

    (18) 

The spherical harmonics are orthogonal and normalized, i.e. 

( ) ( )'

'

2
*

, ,
0 0

sin , ,  =∫ ∫ m m
l l l l

d d Y Y
π π

φ θ θ θ φ θ φ δ δ' 'm m
which equals to unity when '=l l and 

. As the Spherical harmonics are complex, we need to take the complex conjugate 

of one of them in this orthogonality/normalization relation. 

'=m m

The first few spherical harmonics are 

( ) ( )

( ) ( )

0 1
0 1

0 1
1 1

1 3, ,
4 8
3 3, cos , sin

4 8

sin

− −

=                        = −  

=                =  

i

i

Y Y

Y Y

e

e

φ

φ

θ φ θ φ θ
π π

θ φ θ θ φ θ
π π

 

For the case of , i.e. no dependence on the azimuthal angle 0=m φ , we have ( ) 1Φ =φ  

and also ( ) (cos cos=m
l lP P )θ θ , where the ( )lP x  are Legendre Polynomials. Hence 

( ) ( ) ( )
( )

0 2 1 !
,

4 !
+ −

=
+l

n n m
Y

n m
θ φ

π
     (19) 
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The first few Legendre Polynomials are ( ) ( ) ( ) ( )2
0 1 2

11, , 3 1
2

=  =  = −P x P x x P x x 42

Radial part 

From Eq.s (15) and (16)  

2
2 2 2

1 2 ( 1)( ) [ ] 0+
+ − =

h

d dR mE l lr
r dr dr r

R      (20) 

With the substitution 
2 2

2
=
h kE

m
 and =x kr the above -dependence equation becomes 

“spherical Bessel differential equation” 

r

( ) ( ) ( ) ( )
2

2 2

12 1
+⎡ ⎤

+ + −⎢ ⎥
⎣ ⎦

dR x l ld R x R x
dx x dx x

0=    (21) 

which is Bessel’s equation of order (1/ 2)+l . The solutions are (1/ 2) ( )+lJ x  and  (1/ 2) ( )+lN x

Spherical Bessel functions 

 This ordinary linear equation for the radial function R has two linearly 

independent solutions. They are called spherical Bessel and Neumann functions and are 

denoted conventionally by the symbols ( ) ( ) (1/ 2)/ 2 ( )+=l lj x x J xπ and 

( ) ( ) (1/ 2)/ 2 ( )+=ln x x N xπ l respectively. The first few orders of these functions are 

( ) ( )

( ) ( )

( ) ( )

0 0

1 12 2

2 23 2

sin cos

sin cos cos sin

3 1 3sin cos

=                                                      = −

= −                                          = − −

⎛ ⎞= − −                       =⎜ ⎟
⎝ ⎠

x xj x n x
x x

x x x xj x n x
x x x x

j x x x n x
x x x 3 2

3 1 3cos sin⎛ ⎞− − −⎜ ⎟
⎝ ⎠

x x
x x x

 

The spherical Bessel functions { }lj are the solutions appropriate to the Schrodinger 

equation inasmuch as they are not singular anywhere.43
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 Then the eigenstates and eigenenergies of the free-particle Hamiltonian in 

spherical coordinates are 

( ) ( ),m
klm l lj kr Y θ φΦ =    (22.1) 

2 2

2k
kE
m

=
h      (22.2) 

The orthonormality of this sequence { }Φklm is given by the relation 

( ) ( ) ( ) ( )

( )

'

' '

' '

*' ' ' ' 2

4 0

'
2

, ,

2

∞

⎡ ⎤= Ω ⎣ ⎦

                    = −

∫ ∫m m
l ll l

ll mm

lmk l m k d Y Y j kr j k r r dr

k k
k

π

θ φ θ φ

πδ δ δ

 (23) 

The vector r has the spherical coordinates ( ), ,r θ φ . The projection 

( ) ( ),= m
l lr lmk j kr Yθφ θ φ gives the coordinate representation of the ket vector lmk .43

The spherical well 

 We consider a particle (exciton) of mass M confined to the interior of a spherical 

well with impenetrable walls. In the domain , the wave function vanishes. In the 

domain , the time-independent Schrodinger equation is given by 

≥r R

<r R

 When 2 2 2
2

1ˆ ∂ ∂
= −

∂ ∂
hrp r

r r r
 and 

2
2 2

2 2

1 1ˆ sin
sin sin

⎡ ⎤∂ ∂ ∂⎛ ⎞= − +⎜ ⎟⎢ ⎥∂ ∂ ∂⎝ ⎠⎣ ⎦
hL θ

θ θ θ θ φ
  

then the Hamiltonian was 

 
2 2 2 2

2
2 * 2 2 2 2

ˆˆ 1 1 1 1ˆ sin
2 2 2 sin sin

⎡ ⎤⎛ ⎞− ∂ ∂ ∂ ∂ ∂⎛ ⎞= + = + +⎢ ⎥⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦

hrp LH r
m mr m r r r r

θ
θ θ θ θ φ

  

then the Schrödinger equation for a free particle was 
2

2
2

ˆ1 ˆ
2

⎛ ⎞
+ Φ = Φ⎜ ⎟

⎝ ⎠
r klm klm

Lp E
m r klm  

with general solutions given by 
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( ) ( ) ( ), , ,m
klm l lr j kr Yθ φΦ = θ φ    (24.1) 

2 2

2k
kE
m

=
h       (24.2) 

To impose boundary conditions ( ) 0Φ = =r R  we set ( ) 0=lj kR , which has an infinite 

number of solutions. To delineate these values we return to the notation ≡x kr in terms of 

which becomes ( ) 0=lj kR ( )ln 0=lj x where lnx is the nth zero of ( )lj x . Eigenfunctions 

and eigenenergies for the spherical well are then given by 

( ) (, , ,mnl
nlm l l

x rr j Y
R

)θ φ ⎛ ⎞Φ = ⎜ ⎟
⎝ ⎠

θ φ    (25.1) 

2 2
ln

22nl
xE

MR
 =

h       (25.2) 

Orthogonality of spherical Bessel functions is given by 

( ) '

' 3
22

1
0 2 +

⎛ ⎞⎛ ⎞  = ⎡ ⎤⎜ ⎟⎜ ⎟ ⎣ ⎦⎝ ⎠ ⎝ ⎠
∫
R

nl nl
l l l nl nn

x r x r Rdr r j j j x
R R

δ which indicates the nature of normalization 

of the functions. Note that the continuous spectrum of k values for the free particle 

(exciton) in spherical coordinates translates to the discrete spectrum of the quantum 

number for the finite spherical well problem.n 43

 The ground-state wavefunction and eigenenergy for the spherical well are given 

by 

( ) ( ) 03

1 1, ,
2G

l

rr j
R j R

πθ φ
π π

⎛Φ = ⎜
⎝ ⎠

⎞
⎟    (26.1) 

2 2

22GE
MR

π
 =

h       (26.2) 

The confinement energy decreases as the size of the quantum dot increases.43
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1.4.  APPLICATIONS 

Light emitting diodes (LEDs) from organic polymer and II-VI semiconductor 

nanocrystals have attracted considerable attention because polymer nanoparticle 

composites combine key properties required for flat-panel displays (FPDs) including low 

weight, low power, low voltage, low cost and compact size.44 FPDs were replacing CRT 

displays in military applications and in civilian technologies, such as information 

processing. Nanoparticle LEDs can provide improved brightness and multicolor 

capabilities compared to many of the existing flat-panel displays. The extremely small 

size of nanoparticles creates the prospect of displays with unprecedented resolution.44

The temperature dependence of semiconductor nanoparticle luminescence properties 

can be used for thermometry applications.45 This is a non-contact thermometry which has 

many advantages over other thermometry methods.46 As the temperature of the phosphor 

changes, the intensity of the fluorescence, the decay lifetime of the fluorescence, the 

excitation spectra of the fluorescence, and the wavelength of the fluorescence may all 

change. Because the fluorescence can be both excited and measured optically, 

fluorescence-based temperature sensors are advantageous compared to contact 

temperature sensors in applications where electromagnetic noise is strong or it is 

physically difficult to connect a wire. Emissivity does not affect the fluorescence signals, 

and wavelengths for fluorescence can be found for which glass and water are relatively 

transparent.  

Physical and chemical properties of nanoparticles suggest that the photophysical 

behavior of these tiny particles may be more finely tunable than that of dyes and, thus, 

may offer a promising way to solve some critical problems with biological labeling. 
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Nanoparticle biological probes are easier to make and are potentially less expensive than 

organic dyes. In comparison with conjugates formed with organic dyes, this new class of 

luminescent probes is 20 times as bright, 100 times as stable against photobleaching, and 

1/3 as wide in spectral width.47

Fluorescence resonance energy transfer (FRET) is the transfer of the excited-state 

energy between two different luminescent molecules (or nanoparticles), from the initially 

excited donor (D) to an acceptor (A). FRET can occur when the donor molecules emit at 

wavelengths that overlap with the absorption spectrum of the acceptor. Energy transfer 

occurs without the appearance of a photon and is the result of long-range dipole-dipole 

interactions between the donor and acceptor. An important characteristic of FRET is that 

the transfer rate is highly dependent on the distance between the donor acceptor. The 

distance at which FRET is 50% efficient, called the Förster distance, is typically 20-60 

Å.48 FRET is widely used as a sensing mechanism for molecular level distance and 

binding event detection.49 The stability of nanoparticles under UV and visible light makes 

possible not only high-contrast multiplexed imaging but also a long-term monitoring of 

the environment. 

Using nanoparticles or QDs as a storage medium offers tremendous potential. 

Enhanced, cost-effective storage of information requires ultrahigh packing densities as 

well as inexpensive self-assembling techniques and fast methods for writing and 

retrieving the information. Semiconductor quantum dots, which involve a few thousand 

atoms, may offer an attractive path toward achieving these goals. Single-electron storage 

has been suggested as a possibility with quantum dots.50
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Nanoparticles such as TiO2,51 iron oxide,52,53 cadmium sulfide,54-56 and clay57 have 

been incorporated into polymer systems such as poly (sodium 4-styrenesolfonate), 

polysaccharides such as -carrageenan and cellulose sulfate, PMMA, polystyrene, and 

sodium bis(2-ethylhexyl) sulfosuccinate (AOT)/isooctane organogels. The applications of 

these nanocomposites range from photovoltaics, catalysts, sensors and reverse osmosis 

membranes.

κ

58 One of the major applications of semiconductor nanoparticle/polymer 

composites is in the field of photovoltaics. Akimov et al. first demonstrated synthesis of 

conductive polymer nanocomposites containing 2 to 50 nm CdS nanocrystals, which 

were prepared in poly (vinyl alcohol), poly(vinylpyridine), and photographic gelatin. The 

composites exhibited good photosensitivity and photoconductivity. Also, nonlinear 

optical properties of quantum confined semiconductors are enhanced in polymer 

systems.58  

Porous glasses prepared by the sol–gel technique have a variety of applications when 

incorporated by photonic materials: tunable lasers, sensors, luminescence solar 

concentrators, semiconductor quantum dots, and biological markers.59

Super critically dried silica hydrogels are called aerogels and find applications in 

acoustic insulation, Cherenkov counters, batteries, capacitor electrodes, dielectric 

materials, piezoelectric materials, cosmic dust collection, inertial confinement fusion 

(ICF), nuclear waste storage, and catalysis.60

Oxidized copper selenide quantum dots in sol-gel glasses can be used for nonlinear 

optical applications and laser applications.61 The poly(N-vinyl-2-pyrrolidone) capped 

CdS quantum dots synthesized by a sol-gel method can be used for electroanalysis of 

myoglobin.62 The luminescence quenching effect of oxygen concentration on the 
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photoluminescence of CdSe/ZnS quantum dots around 520 nm can be used in preparing 

optical fiber luminescent oxygen sensors.63 ZnSe quantum dots embedded in SiO2 thin 

films which are prepared from H2SeO4 and Zn(Ac)2.H2O by the sol-gel process has the 

potential application of preparation of optical composite thin films.64

Photolithographic patterning of sol-gel materials is important for optical and 

electronic applications, and for data storage and encryption. Surface patterning can be 

employed to realize electrical contacts,65 and diffraction gratings.66,67 Quantum dot lasers 

can be fabricated based on quantum dots embedded in a titania sol-gel matrix,68 PbS and 

CdS nanoparticles embedded in silica gels can be considered for waveguides, optical 

amplification, passive Q-switching, refractive index modification, light converting 

devices and non-linear applications.69,70 Composites of silica gel and cytochrome-tagged 

Au nanoparticles were reported and they have applications in biotechnology.71 Patterning 

of sol-gel materials with regularly spaced arrays of nanoparticles allows production opto-

electronic components and devices such as gratings,72 photonic crystals,73 and optical 

memories.74

 

1.5. PHOTOLITHOGRAPHY 

Photolithography which is also called lithography, is a method of printing on a 

smooth surface that can be used to print text or artwork onto paper or another suitable 

material. Lithography was invented by a Austro-German, Alois Selefelder, in 1798. 

Lithography is actually developed for the semiconductor industry which is the creation of 

a pattern in a resist layer, usually an organic polymer film, on a substrate material. A 

latent image, consisting of a chemical change in the resist is created. The pattern is 
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developed by selectively removing either the exposed areas (for a positive resist) or the 

unexposed areas (for a negative resist). Electrons, ions and photons can all be used for 

exposure in the lithography process.  

Photolithography is the use of photons for high resolution of the lithographic 

exposure which is a broad field that includes most of the lithography in use today. This is 

the technique most widely used by the semiconductor industry and illustrates the general 

technique of lithography. It can be taken to include infrared lithography, deep and near-

ultraviolet photolithography, X-ray lithography and multi-photon ionization lithography. 

Only the shortest wavelengths are directly relevant to high resolution of the fabrication. 

The projection and proximity printing processes to be described are analogous to 

processes that could be used at nanometer dimensions for parallel printing with electrons 

or ions. The diffraction limit for the minimum resolvable grating period is usually taken 

as the Rayleigh criterion for the overlap of the diffraction peaks, which is approximately 

minimum line resolvable spacing     

≈
NA
λ       (27) 

where λ is the wavelength and NA is the numerical aperture of the optical system, which 

is of the order of one. The shortest wavelength to be used with conventional optics is 

about 193 nm from an excimer laser source. The use of wavelengths much shorter than 

this is limited by absorption in optical materials. While the technology constantly 

improves, with better optics, and sources of shorter wavelength, the limit of far-field 

diffraction is a fundamental one that prevents its use for feature sizes smaller than the 

wavelength of light. Photolithography is essentially ruled out for fabrication at 

dimensions below 100 nm. 
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 Projection systems employing X-rays would reduce diffraction effects, but the 

problem of fabricating optics to use in the X-ray region remains. Work in this area is 

advancing, with the development of multilayer mirrors and X-ray mask technology.  

 Proximity patterning allows the 1:1 replication of a mask pattern. The effects of 

near field diffraction can be arbitrarily reduced by decreasing the distance between mask 

and substrate. Qualitatively, the minimum line width is d sλ≈  where s is the separation 

between mask and substrate. 

 Proximity patterning can be done effectively by X-ray exposure where the shorter 

wavelengths, of the order of 1 nm, allow much greater mask-substrate separation. With 

short wavelength X-rays, diffraction can effectively be ignored for attainable gaps of the 

order of a few micrometers. Perhaps the most significant problem with X-ray printing is 

the creation of a durable and stable mask of high contrast. An absorbing metal, such as 

gold supported on a thin film such as SiN4, is one type of mask. Some of the smallest 

features replicated by X-rays were 17.5 nm in extent, fabricated by using edge-

evaporated metal as a mask. Some other high-resolution process is necessary to generate 

the mask features, in most cases this means electron beam lithography.75  

 

1.6. QUANTUM DOT PHOTOLITHOGRAPHY 

Rapid progress in nanoscale fabrication technology (“Nanotechnology”) has enabled 

us to make various types of semiconductor devices using quantum dots (QDs) using 

various fabrication methods. The emergence of quantum semiconductor physics and 

improved epitaxial crystal growth techniques led to the successful development of 

semiconductor quantum wells in the late 1970s. Early on, there were predictions that 
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optical devices made from quantum wires and quantum dots would show improved 

performance over quantum wells. 

 In optics, this first phase in the development of quantum dots and wires stalled. 

Most importantly, the lithographic top-down techniques used to fabricate quantum dots 

and wires were not sufficiently precise and free from defects to make structures useful for 

optics applications, especially at room temperature. These top-down approaches met with 

limited success simply because they could not make useable structures that were small 

enough. After 15 years of further development the top-down lithographic approaches are 

still not adequate to make structures as small as needed. In addition, optical techniques 

used to characterize and understand these structures typically probed ensembles of dots or 

wires. The detailed information needed to understand dots and wires was masked by 

inhomogeneous broadening from the sample distribution.  

 Requirements for realizing useful quantum dot and wire optical devices76 include: 

(1) making the structures small enough that the level splitting is larger than several kBT, a 

GaAs/AlGaAs dot must be 10 nm or smaller in lateral dimension to operate at room 

temperature; (2) making the structure large enough to ensure that at least one electron and 

one hole state are bound inside the nanostructure, a GaAs/AlGaAs dot must be 5 nm or 

larger in lateral dimension; (3) size fluctuations small enough that the inhomogeneous 

broadening is less than k

B

BBT; and (4) a high density of dots or wires for applications, such 

as lasers and light-emitting diodes (LED), that need a large number of emitters. If the 

lateral confinement is provided by surfaces or interfaces, then high-quality damage-free 

surfaces or interfaces are needed to minimize nonradiative recombination.  
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 The smallest dot made with a top-down approach is 30 nm wide,77 still too large 

to be quantum at room temperature. Most dots were larger. Photoluminescence (PL)77-79 

and cathodoluminescence (CL)80-82 revealed only small blue shifts of the emission that 

could be attributed to lateral confinement. The emission peaks had large inhomogeneous 

broadening, indicative of a large distribution of dot sizes. These earliest results for the 

first dots made83 pointed out important needs: to fabricate smaller structures to reach the 

quantum limit; to better characterize structures, investigating single dots to eliminate 

inhomogeneous broadening; to identify the relaxation pathways; and to further reduce 

nonradiative recombination at surfaces. The deep-etched QDs directly through the 

quantum well typically had poor luminescence due to nonradiative recombination and 

trapping at etch-induced damage near the side walls. Deep-etched QDs made with low-

damage etching such as electron cyclotron resonance etching84,85 and wet chemical 

etching,86 had luminescence efficiencies comparable to the corresponding quantum well 

luminescence efficiencies. For example, Bestwick et al.85,89 fabricated  25-60 nm 

GaAs/AlGaAs QDs using electron cyclotron resonance etching. They got 5% size 

uniformity in samples with 57-nm-wide QDs. The linewidth for the QD PL from these 

samples was almost the same as for the quantum well PL (3 meV). For these QDs there 

was negligible blue shift between the QD and quantum well peaks, as one would expect 

for QDs five times bigger than the exciton.80 These dots, with minimal sidewall damage, 

had luminescence efficiencies greater than for the unprocessed well. As the dot size 

decreased, the line width increased by a factor of two, indicative of size fluctuations for 

smaller dots. The exciton energy in 25 nm dots shifted by 7 meV due to the confinement. 

This is the magnitude of shift expected when the dot and exciton have the same size.80 

 



 27

Lithographic top-down approaches have not yet routinely provided the dot and wire 

structures needed. Essentially, the lithographic capabilities needed are still beyond the 

current state of the art. Etched structures were typically either too big to be useful as 

quantum structures at room temperature, had too much surface damage to provide 

adequate quantum efficiency, or did not have enough uniformity from structure to 

structure to provide the desired control. Alternatives such as barrier modulation and 

stressors provided weak confinement.  Enhanced interdiffusion provided size reduction at 

the cost of reducing the barrier for confinement. 

 With development using top-down fabrication stalled, it became clear in the early 

1990s that precision epitaxial growth techniques should be exploited for the bottom-up 

fabrication of wires and dots directly in quantum well structures. Quantum wells could be 

grown with monolayer precision down to a few monolayers in thickness. Comparable 

techniques were needed for dots and wires.  

 In the last 12 years, the development of quantum dots and wires has entered a 

second phase marked by more rapid and successful advancement. The development of 

quantum wire and dot structures was revitalized by the realization that comparable 

processes were needed to grow wires and dots from the bottom-up, ideally with the same 

precision and size control as achieved in the growth of quantum wells. Over the past 

decade, much progress has been made in realizing controlled bottom-up fabrication of 

dots and wires. This had led to dot and wire structures that now show real promise of 

providing much-enhanced integrated optical device structures for lasers and modulators. 

Such techniques as cleaved edge overgrowth (CEO), growth on nonplanar surfaces, and 

growth of self-assembled dot (SAD) structures have provided much smaller quantum 
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wires and dots with sufficiently controlled size and free from significant defects and good 

quality interfaces that do not degrade the luminescence. Lasing has been demonstrated 

with both wires and dots made with bottom-up growth techniques. These dots and wires 

have proven ideal for careful studies of the confined electrons, the effect of Coulomb 

interactions between trapped electrons and holes, and the coherent dynamics of the 

electrons in these structures. These achievements have led to well-developed fabrication 

techniques, early prototype quantum dot and wire laser structures. 

 The applications in traditional optics for dots and wires have been developed 

based on having a high density of dots or wires to provide a large optical response. At the 

same time, it has been assumed that the nanostructures are far enough apart to remain 

independent. In these optics applications, controlled positioning of the dots and wires is 

not important. However, other applications are being developed where position control 

will be increasingly important. For example, photonic crystals are arrays of dielectric 

scatterers carefully arranged to control photon dispersion, just as atoms in a lattice 

modify electron dispersion. Photonic crystals can be made, for example, by etching a 

regular array of holes into a quantum well system or etching away all of the structure 

except for a regular array of posts, each with an embedded quantum well. The typical 

dimension that defines the size of the hole or post and their separation is the wavelength 

of light. This is typically a few hundred nanometers for light propagation through 

semiconductor systems. Such dimensions are easily achieved by lithographic methods. It 

would be attractive to position optically active elements in each dielectric scatterer to 

provide optical gain, absorption, or nonlinear response.88 That would require fabrication 

of nanostructures precisely positioned to have the same lattice structure as the intended 
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photonic crystal. As another example, applications in quantum technology that require 

controlled transfer of quantum information between quantum bits in different 

nanostructures will also require controlled positioning of these structures. Growth 

directly on substrates patterned by lithography can also be used to control the positions of 

the wires and dots. 

 While substantial work is still being done to engineer quantum dots and wires for 

traditional optics applications, the study of dots and wires has recently entered a new 

phase focusing on single quantum dot photonics. The characterization of single quantum 

wires and dots has become nearly routine, and detailed information about the optics of 

individual structures has been obtained. This has led to fundamental experiments in 

quantum optics such as antibunching and photon interference. In parallel, quantum dots 

are now being intensely investigated as sources for the operational quantum bits (qubits) 

and single photon sources needed for quantum information processing. These 

nontraditional applications in quantum technology are motivating much of the work now 

being done to develop structures with position control. Moreover, these applications in 

quantum technology are stimulating extensive work to extract detailed information about 

the quantum coherent dynamics and manipulation of optical excitations (the qubits) in 

quantum dots.  

 In addition, methods to provide position control of the growth are being pursued 

now. Such control is needed to fabricate complex structures such as photonic crystals 

with the dots or wires embedded in the periodic lattice to provide an attractive medium, 

and quantum dot structures for applications in quantum technology.89
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 Our quantum dot photolithography is a bottom-up photochemical method that 

allows us to synthesize various inorganic semiconductor quantum dots and nanoparticles 

at a precisely controlled physical location and with a precisely controlled size in porous 

materials and on planar substrates. This technique allows patterning of porous materials 

and planar substrates with electronically active materials. In our technique, the porous 

matrix was washed with a solution of the precursors, which react to form nanoparticles in 

the exposed regions with infrared (IR), ultraviolet (UV), X-rays and multi-photon 

ionization radiation.90-95 Planar substrates like glass slides and silicon wafers can be 

patterned by spin coating a thin film of precursor solution on the substrate and by 

illuminating the selected region with the laser radiation. After exposure to the focused 

laser beam, quantum dots were formed in the illuminated regions. Both porous matrices 

and planar substrates were washed immediately with water to remove unreacted 

precursors. The patterned quantum dots were found to adhere reasonably well to the 

substrate, and were not washed out.90-92 By focusing the beam of a Nd:YAG laser, 

quantum dots can be placed photolithographically on the surfaces and also in the bulk 

(3D) of silica hydrogels, and on the surfaces of planar substrates like glass slides.91-93 

Bulk (3D) patterning of silica hydrogels was also realized with multi-photon ionization 

radiation. IR patterning was focused on the photolithography of CdS nanoparticles on the 

surface and in the bulk of silica hydrogels and on the surface of planar substrates by using 

CdNO3, NH4OH and thiourea as precursors. By varying the type and concentration of 

capping agents like sodiumhexametaphosphate, 2-mercaptoethanol and thioglycerol, the 

size of the quantum dots-and therefore the quantum confinement effects-can be 

controlled at will.91 Using 2-mercaptoethanol as a capping agent and focusing an infrared 
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beam inside the silica hydrogel allowed for 3D patterning. ultraviolet patterning uses 

CdSO4 and 2-mercaptoethanol as precursors for CdS patterning and cadmiumperchlotate 

hexahydrate, selenourea, thioglycerol and sodium citrate for CdSe patterning. This 

method allowed us to pattern with a spatial resolution of a few microns. This represents a 

significant improvement over the infrared method, where resolution was not better than 

40 μm, probably due to heat diffusion effects. The resolution could be further improved 

by employing more elaborate photolithographic equipment. This UV method also 

allowed patterning of planar substrates which is an extremely relevant feature, since it 

removes the need for a porous matrix to limit the nanoparticle size, and may allow planar 

fabrication of quantum dot devices. The UV method allowed using masks for 

sophisticated patterns. Recently we showed that (i) photodissociation can be made more 

efficient by using a different set of precursors like cadmiumperchalorate hexahydrate, 

selenourea, thioacetamide, 2-mercaptoethanol, thioglycerol and sodium citrate allowing 

production of complex patterns by masking, (ii) the quantum yield of the composites can 

be increased to up to about 30% by photoactivation, and (iii) quantum dots can be 

produced with X-ray lithography.93,94 X-ray lithography paved the way to ultra-high 

spatial resolution. In our experiments, comparatively hard X-rays (8.5keV) were 

employed, for which masks can be realized which have a resolution of tens of microns. 

However, soft X-rays can be employed, for which masks can be fabricated with a 

resolution well below 1 μm. Features produced with X-ray lithography penetrated into the 

bulk of the monoliths for as much as 12 mm. These structures have an aspect ratio of 

around 200 and could conceivably be employed as waveguides. In fact, materials such as 

PbS have a much higher index of refraction (n=4.1) than the matrix (n=1.1 to 1.5) for 
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silica gels. Addition of PbS in a concentration as little as 0.1% by volume to a silica gel 

increases the index of refraction of the composite by Δn ≈ 5×10-3, which is sufficient for 

waveguide applications.93 The 3D fabrication of semiconductor nanoparticles using 

multi-photon ionization radiation is of potential relevance for 3D fabrication of contacts, 

electronic devices, quantum dot devices and 3D optical integrated circuits95. This method 

paved the way for the realization of 3D opto-electronic circuitry that includes passive and 

active components. An additional benefit is that the nanoparticles produced with this 

technique are in the quantum confinement regime, thus the technique could conceivably 

be employed for 3D fabrication of quantum dot devices. 

 Our techniques are unique because (i) they are of bottom-up character, (ii) they 

allow us access to a wide number of semiconductor materials for patterning, (iii) they are 

compatible for porous matrices and planar substrates, (iv) they are compatible with 

photolithographic fabrication methods, (v) sophisticated masks can be employed and (vi) 

3D patterning is possible. 
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2.1. ABSTRACT 

Silica aerogels were patterned with CdS using a photolithographic technique 

based on local heating with infrared (IR) light. The solvent of silica hydrogels was 

exchanged with an aqueous solution of the precursors CdNO3 and NH4OH, all pre-cooled 

to a temperature of 5 0C. Half of the bathing solution was then replaced by a thiourea 

solution. After thiourea diffused into the hydrogels, the samples were exposed to a 

focused IR beam from a continuous wave, Nd-YAG laser. The precursors reacted in the 

spots heated by the IR beam to form CdS nanoparticles. We successfully lithographed 

features with a diameter of about 40 μm, which extended inside the monoliths for up to 4 

mm. Samples were characterized with transmission electron microscopy and optical 

absorption, photoluminescence and Raman spectroscopies. Spots illuminated by the IR 
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beam were made up of CdS nanoparticles dispersed in a silica matrix. The CdS 

nanoparticles had a diameter in the 4-6 nm range in samples exposed for four minutes to 

the IR beam, and of up to 100 nm in samples exposed for ten minutes. 

 

Photolithographic patterning of sol-gel materials is becoming increasingly 

important for optical and electronic applications, and for data storage and encryption. 

Surface patterning can be employed to realize electrical contacts1 and diffraction 

gratings.2,3 Patterning can also have a more three-dimensional character, and the 

lithographed features can extend from the surface deep into the bulk of the materials.4  

“True” three-dimensional patterning, i.e., formation of patterns in the bulk of the 

materials but not on their surface, is achieved with multiphoton ionization techniques.5,6  

Patterning with these techniques is attained in two simple steps, impregnation of 

the matrices with a solution of metal ions followed by photoreduction. However, patterns 

can be produced only out of materials accessible to photoreduction, noble and semi-noble 

metals. Patterning of sol-gel materials with electronically active components like 

semiconductors and magnetic materials usually requires multiple steps. The (pre-formed) 

active phase is added during gelification of the matrix,7-9 or synthesized by calcination of 

precursors.10-13  The resulting composites are homogeneously loaded with the active 

phase, and patterning is achieved by etching. 

 We report here a photolithographic technique that allows patterning of porous 

materials with electronically active materials. In our technique, the porous matrix is 

washed with a solution of the precursors, which react to form nanoparticles in the spots 

heated by an infrared (IR) laser. The experiments described here focus on 
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photolithography of CdS nanoparticles inside a silica hydrogel. The mean size of the CdS 

nanoparticles can be increased from a few nm to about 100 nm by increasing the 

exposure to the IR beam. The hydrogel is subsequently dried in supercritical CO2 to form 

an aerogel. Our technique, however, is more general. It can produce patterns of metals 

and magnetic materials, and can probably be extended to other porous matrices. For 

example, we have successfully patterned silica aerogels with Ag by irradiating solutions 

of AgNO3 and formaldehyde, and with Fe (and Fe oxides) by irradiating solutions of Fe-

triethanolamine complexes and hydrazine.14 These results will be reported in a 

forthcoming publication.15   

 Silica hydrogels were prepared with a conventional base-catalyzed route.4,16   The 

hydrogels were then washed in methanol and in water, and placed in a refrigerator kept at 

5 0C. CdS was synthesized by hydrolyzing thiourea in basic solution.17-21  Hydrogels were 

bathed in a pre-cooled aqueous solution of CdNO3 (1 mol·l-1) and NH4OH (4 mol·l-1). 

After about two hours, half of the bathing solution was removed from the vial, and was 

replaced by a 1 mol·l-1 thiourea solution. The samples were left in the refrigerator for an 

additional hour to let thiourea diffuse inside the monoliths. Cooling was necessary, since 

hydrogels loaded with the precursors turned pale yellow within about one hour when kept 

at room temperature. The monoliths did not change their color appreciably when 

refrigerated. The samples were then rapidly removed from the refrigerator, placed in a 

glass cuvette, and exposed to the light of a continuous wave Nd-YAG laser. The IR 

power on the sample was typically 1.8 W. Nanoparticle formation was monitored with 

transmission electron microscopy (TEM) and by observing the coloration of the 

illuminated spots. Nanoparticles started forming and the spots started becoming yellow 
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after an irradiation time of about four minutes. The spots kept becoming darker (and the 

particles somewhat larger, and more densely distributed) for another 6 minutes. We did 

not notice any relevant changes afterwards. We then compared this reaction time with the 

reaction time of hydrogels that were loaded with the precursors and placed in a constant 

temperature bath. The reaction time was about 10 minutes at temperatures below 35 0C, 

and a few seconds at temperatures higher than 60 0C. We thus estimated that the local 

temperature was between 35 and 600C. After exposure, the samples were immediately 

washed several times in cold distilled water to quench any further reaction of the 

precursors. To produce aerogels, the hydrogels were washed in methanol and in acetone, 

and were then dried in supercritical CO2.  

IR  

lens

hydrogel 

 

Figure 2.1. Top: Schematic  representation  of  the  illumination  arrangement.  Bottom: 

digital  camera  image  showing  arrays  of  CdS  spots  photolithographed  in  two 

aerogel  monoliths.  The  diameter  of  the  aerogel  monoliths  was  about  7 mm,  and  

the  diameter  of  the  circular spots  was  about  400 μm. 
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Arrays of circular spots photolithographed with our technique are shown in Fig. 

2.1. By varying the focal length of the lens and the distance between the hydrogel surface 

and the lens focus, the diameter of the spots was varied between 40 and 400 μm, and the 

penetration depth from a few microns to a few millimeters. The size and color of the 

spots did not change upon washing and supercritical drying, indicating that CdS was 

neither chemically altered nor removed by the washings, in agreement with our previous 

patterning experiments.4 After drying, regions lithographed with CdS were carved out of 

the matrix and crushed. The powder was analyzed with TEM. Typical micrographs of 

samples exposed for four minutes to the IR beam are reported in Fig. 2.2a and 2.2b. CdS 

nanoparticles appeared as dark spots, and were fairly uniformly distributed within the 

silica matrix. Energy-dispersive X-ray chemical analysis showed that the composition of 

the particles was 55% Cd - 45% S, comparable to the composition of the bathing 

solution. High magnification micrographs (Fig. 2.2b) showed that particles with a typical 

diameter of 20 nm coexisted with a large number of particles with a diameter of a few 

nm. A size distribution histogram is reported in Fig. 2.2c. The mean particle size was 

around 7 nm. With increasing exposure to the IR beam, the nanoparticles became larger 

(~ 100 nm) and more densely packed, as shown in figure 2.2d. This indicated that growth 

of pre-formed particles prevailed on nucleation of new particles, consistent with our 

previous findings on the synthesis of Ag nanoparticles in silica aerogels16. Preliminary 

results show that the size of the nanoparticles did not depend strongly on laser power 

within the range accessible to our instrument (1 to 7 W, measured at the sample). This is 

probably because the reaction time was of the order of a few minutes for all powers 
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employed. A complete investigation of the factors affecting nanoparticle size will be 

reported in a separate publication15. 
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Figure 2.2. (a), (b) Bright field micrographs of CdS-patterned silica aerogels. IR exposure 

was four minutes. (c) Corresponding size distribution histogram. (d) Same as above for 

an IR exposure of ten minutes. 

 

Samples were additionally characterized with optical absorption, 

photoluminescence and Raman spectroscopies. Room temperature absorption and 

photoluminescence (PL) spectra are reported in Fig. 3a. The absorption spectrum 

exhibited an excitonic shoulder at about 440 nm, characteristic of CdS nanoparticles with 

a diameter in the 4-4.5 nm range.22 Photoluminescence spectra exhibited a peak around 

475 nm and a shoulder around 520 nm. A peak around 475 nm has been found in 

CdS/silica composites with a CdS nanoparticle diameter between 4 and 5 nm.23-25 The 
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shoulder at 520 nm was probably due to particles with a larger diameter,24 but may also 

be due to recombination at surface defects.23,25 Formation of defects at the surface of CdS 

nanoparticles is not surprising, since the nanoparticles are probably nucleated and remain 

in contact with the pore walls.26,27   Spots exposed for long times to the IR beam were 

optically dense, and their absorption spectrum could not be measured. Photoluminescence 

intensity from these samples was absent or below the detection limit of our 

instrumentation. Raman spectra, shown in Fig. 2.3b, exhibited a peak at 298 cm-1.  This 

frequency was in good agreement with previous Raman measurements of CdS/silica 

composites,28 and corresponded to the first-order LO phonon frequency of CdS. The full 

width at half maximum (FWHM) of the Raman peak was 36 cm-1, which was found to 

correspond to a mean particle size of about 3 nm in CdS/silicon dioxide films.29
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Figure 2.3. (a) Room  temperature  absorption  (dashed line) and   photoluminescence 

(solid line)  of  silica  aerogel  samples  patterned  with  CdS.  PL was excited at 350 nm.  

(b) Room  temperature  Raman  spectra  of  silica  aerogel  samples  patterned  with  CdS.  

IR exposure was four minutes for all samples. 
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Optical characterization confirmed the chemical identity of the CdS nanoparticles.  

It also showed that a relevant fraction of nanoparticles exhibited quantum confinement 

effects in samples exposed for a short time to the IR beam. The mean particle size 

determined with linear optical spectroscopies was between 3 and 5 nm. The difference 

with the TEM mean size (~7 nm) is not irreconcilable, since the TEM size determination 

procedure was probably skewed towards large sizes. Small CdS particles could hardly be 

distinguished from the silica matrix, and we counted only particles with regular shapes 

which showed a large contrast. Mean sizes determined with optical spectroscopies also 

have a fairly large uncertainty, the main sources of error being polydispersity and surface 

defects.25,30  

In conclusion, we have shown a simple method to pattern silica aerogels with 

CdS. Our method is quite general, and can be extended to other semiconductors, to 

magnetic materials, to metals, and also to other porous matrices. Size control is 

reasonable, and can probably be improved by adding surfactants to the bathing solution, 

or by employing matrices with a uniform pore size like MCM-4113 or porous anodized 

alumina28.  The main challenge of our technique concerns the choice of the precursors. 

These must not react rapidly at room temperature, otherwise the composites will be 

uniformly loaded with the active phase. The reaction cannot require too high 

temperatures, because these need high laser powers, which can damage the host matrix. 

In the experiments described here, the reaction rate is tuned by varying the NH4OH 

concentration. When the concentration of NH4OH is too low, most of the Cd precipitates 

as Cd(OH)2, and does not diffuse inside the hydrogel. Cd(OH)2 also catalyzes hydrolysis 

of thiourea, and CdS forms rapidly even in cold samples. At high NH4OH concentrations, 
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Cd(NH3)4
2+ complexes are formed. These complexes are water soluble, and they diffuse 

inside the matrix. They also do not catalyze hydrolysis of thiourea as strongly as 

Cd(OH)2. Temperatures of the order of 35-60 0C are required to hydrolyze thiourea at an 

appreciable rate,17 and these temperatures are easily reached with IR irradiation.  
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3.1. ABSTRACT 

 

 Silica hydrogels and planar substrates were patterned with CdS nanoparticles 

using a photolithographic method based on the photo dissociation of thiols and cadmium-

thiolate complexes. Silica hydrogels were prepared via a standard base-catalyzed route. 

The solvent was exchanged with an aqueous solution of CdSO4 and 2-mercaptoethanol, 

and the samples were then exposed to a focused ultraviolet beam. Planar substrates were 

patterned by illuminating a precursor solution spin coated on the substrates. CdS 

nanoparticles formed in the illuminated spots, and had a diameter below about 2 nm. The 

diameter of the spots illuminated by the UV beam could be varied from a few hundred to 

a few μm, on both hydrogels and planar substrates. Samples were characterized with 

transmission electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, 

and optical absorption, photoluminescence and Raman spectroscopies. All these 
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techniques confirmed the chemical identity of the CdS nanoparticles. To investigate the 

mechanism of nanoparticle formation, we took absorption spectra of the precursor 

solution as a function of UV irradiation time. In unirradiated solutions, we noticed a 

maximum at 250 nm, characteristic of Cd-thiolate complexes. The absorption at 250 nm 

decreased with increasing UV exposure. A new band appeared at 265 nm for exposures 

around 5 minutes, and that band shifted to 290 nm in samples exposed for 10 minutes. A 

yellow precipitate formed after about 30 minutes. XRD showed that the precipitate was 

cubic CdS, with a mean particle size of 1.4 nm. We attribute formation of CdS to the 

photodissociation of the thiols and of the Cd-thiolates. UV irradiation of these precursors 

yields a series of species that can react with Cd2+, such as RS·, S2- and H2S.  Small CdS 

nanoparticles form in the initial stages of illumination, and present absorption bands in 

the 265 – 290 nm region. These CdS aggregates grow, coalesce and precipitate for longer 

irradiation times. 

 

3.2. INTRODUCTION 

Quantum dot-based technologies are moving from the laboratory into commercial 

applications. Kits for labeling biomolecules and cells with quantum dots, but also 

composites of quantum dots and polymers are now commercially available.1 Quantum-

dot based composites are especially attractive materials, and can be used for a variety of 

applications. For example, quantum dot lasers have been fabricated based on quantum 

dots embedded in a titania sol-gel matrix,2 and PbS and CdS nanoparticles embedded in 

silica gels are being considered for waveguide and non-linear optical applications.3,4 A 

major issue preventing widespread application of quantum dot composites is cost, which 
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derives mainly from the relatively complex synthetic procedures employed to produce 

composites made up of high quality quantum dots.2 Cost issues become even more 

relevant if one considers that in microfabrication a large fraction of a quantum dot film 

may have to be etched away and discarded. It would therefore be desirable to develop 

techniques that allowed rapid and inexpensive fabrication of high quality quantum dots 

and quantum dot composites.  

 Our group has recently developed a method that alleviates, in part, these 

fabrication issues, and is also compatible with commonly employed photolithographic 

technologies.5 According to our methodology, the solvent of silica hydrogels is 

exchanged with a solution of quantum dot precursors. Typically, one of the precursors is 

a group II metal chelate, and the second precursor is a sulfur-containing molecule like 

thiourea. Local heating with an infrared (IR) laser beam dissociates the chelate and the 

sulfur precursor and small, quantum confined sulfide nanoparticles are formed within the 

illuminated area. 

 In this manuscript, we present an alternate method that follows the same general 

principles of the IR approach, and uses a UV light to generate CdS inside a porous 

matrix. The main difference is that the new precursors are cadmium-thiolate complexes 

and thiols that are photodissociated by ultraviolet light. Operating with ultraviolet light 

has allowed us to pattern with a spatial resolution of a few microns. This represents a 

significant improvement over the IR technique, where resolution was not better than 40 

μm, probably due to heat diffusion effects. The resolution could be further improved by 

employing more elaborate photolithographic equipment.  Our technique also allows 

patterning of planar substrates by exposing glass slides spin coated with the precursor 
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solution to UV light. Patterning of planar substrates is an extremely relevant feature, 

since it removes the need for a porous matrix to limit the nanoparticle size, and may 

allow planar fabrication of quantum dot devices.  

 

3.3. EXPERIMENTAL 

3.3.1. Gel synthesis and patterning procedure. Silica hydrogels were prepared 

following a conventional base-catalyzed route.6 The hydrogels were then washed several 

times in methanol and in water. The hydrogels were cut into small cylinders of about 7 

mm in diameter, and 5-7 mm in length. The cylinders were then bathed in 20 ml of a 

solution of CdSO4 and 2-mercaptoethanol, HOCH2CH2SH, for about 2 hours. Several 

precursor concentrations were tested; the best results were obtained by using a thiol 

concentration of at least 10 times higher than the metal ion concentration, and by adding 

NH4OH to reach a pH of at least 7.5, e.g., [CdSO4] = 0.1 mol·l-1 (M), [HOCH2CH2SH] = 

1 M, [NH4OH] = 4 M.  We also worked without adding a base, but with a thiol 

concentration at least 500 times higher than the metal ion concentration, e.g., [CdSO4] = 

0.005 M, and [HOCH2CH2SH] = 7 M. The minimum UV exposure times necessary to 

produce nanoparticles as well as the physical characteristics of the nanoparticles did not 

depend strongly on the composition of the precursor solution and on the pH.  The 

hydrogel samples were placed in a glass cuvette filled with the bathing solution for index 

matching, and were exposed to ultraviolet light. The light source was either a high 

pressure, 100 W Hg arc discharge lamp, or the 351.1 nm excitation wave of a continuous 

wave Ar ion laser (Coherent Innova). The laser power at the sample was on the order of 

50 mW, and the illuminated spots had a diameter between about 3 and 100 μm. To ensure 
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that only the ultraviolet light was initiating the chemical reaction and that visible and 

infrared light did not play any role, samples were also illuminated with (A) an Ar ion 

laser emitting only in the visible part of the spectrum with a power of ~ 1 W and (B) a 

continuous wave infrared laser, also with a power of about 1 W. CdS did not form in any 

of these control experiments, confirming that only ultraviolet light induced reaction of the 

precursors. To pattern planar substrates, we spin coated glass slides or silicon wafers with 

the precursor solution, and exposed them to focused ultraviolet light.   

3.3.2. Characterization. Samples were characterized with transmission electron 

microscopy (TEM, and high resolution TEM), with UV-Vis optical absorption 

spectroscopy, photoluminescence spectroscopy, X-ray diffraction (XRD), and X-ray 

photoelectron spectroscopy (XPS). TEM micrographs were taken with a Zeiss EM 109, 

operated at 80 kV. HREM micrographs were taken using Philips 430ST TEM at an 

accelerating voltage of 300 kV. Samples for TEM were prepared by carving illuminated 

spots out of a monolith with a razor blade. The carved out regions were then crushed in 

methanol, and a drop of the suspension was placed on a 300 mesh lacey carbon grid.  

 UV-Vis optical absorption spectra of parent solutions and hydrogel monoliths 

were taken using a CARY 5 UV-Vis-NIR spectrophotometer. Characterization of the 

parent solutions was difficult, since they presented a strong absorption below about     

280 nm. The absorption probably originated from Cd-thiolate complexes, which have an 

absorption maximum at 250 nm,7,8 and from RS- anions, which absorb around 240 nm.9 

2-mercaptoethanol has a pKa of 9.5,10 and we estimate that [RS-] = 5 ×10-5M in a [RSH] 

= 7M solution. Because of the large absorption, the parent solutions could be 

characterized spectroscopically only after dilution by a factor 800 to 1000. 
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Photoluminescence spectra were taken using a JY-Horiba Fluorolog 3-22 Fluorometer. 

Raman spectra were obtained using the 514.5 nm line of an Ar+ laser and a SPEX 0.85 m 

double spectrometer equipped with a liquid N2 cooled charge coupled device array 

detector. X-ray diffraction (XRD) analysis of the powder was performed using a Scintag 

XDS200 diffractometer with a Cu radiation source and a liquid nitrogen cooled Ge 

detector.  Crystallite sizes were estimated via the Scherrer equation using the MDI Jade 

5.0 software.  A Gaussian correction was applied for the instrumental line broadening 

utilizing NIST standard silicon powder SRM 640B.  X-ray photoelectron spectroscopy 

(XPS) was carried out on a KRATOS AXIS 165 scanning spectrometer equipped with a 

225-W Mg X-ray source, producing photons with an average energy of 1253.6 eV.  

 

3.4. RESULTS AND DISCUSSION 

3.4.1. Formation of CdS upon illumination of precursor solutions. Our patterning 

technique is based on ultraviolet illumination of solutions of Cd2+ and a thiol (RSH) like 

2-mercaptoethanol. Cd2+ ions in the presence of thiols form polynuclear species 

complexed with RS- with the formula      {Cd(RS5Cd3)n}(n+2)+.11 Hayes et al. investigated 

the pH and concentration dependence of the complexes.7 Cd thiolates form at a pH higher 

than 6.0 when the [RSH]/[Cd2+] ratio is close to 3 (e.g., [Cd2+] = 1.25 × 10-4M, [RSH] = 5 

× 10-4M). The pH threshold shifts to lower values with increasing [RSH]/[Cd2+] ratio. For 

a [RSH]/[Cd2+] ratio of around 5, the minimum pH necessary to form Cd-thiolate 

complexes is around 3.5. In our experiments, we worked at [RSH]/[Cd2+] ratios of about 

10 (adding NH4OH to keep the solution at a pH≥8), and at [RSH]/[Cd2+] ratios higher 

than 500 at a pH of around 3. The characteristics of the resulting materials did not depend 
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strongly on precursor concentration and pH. Figure 3.1 reports the dependence of the 

absorption spectrum of a precursor solution, with a composition of [CdSO4] = 0.1M, 

[RSH] = 1M and [NH4OH] = 4M, diluted 800 times (see also Experimental Section) on 

irradiation time. In the unirradiated solution (solid line), a maximum at 250 nm was 

evident, which originated from Cd-thiolate complexes.7,8 Upon irradiation with 

ultraviolet light, the intensity of the peak at 250 nm decreased. After an exposure of 5 

minutes to the UV beam, a second (shifted) absorption band appeared around 265 nm. 

This band shifted to about 290 nm in samples exposed for 10 minutes to the UV beam. 

The appearance of bands in the 265-290 nm region is consistent with previous reports of 

radiolysis of Cd-thiolate complexes, and can be reconciled with the formation of very 

small CdS nanoparticles.7,8
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Figure 3.1. Optical absorption of an aqueous solution with [CdSO4] = 0.1M,                   

[2-mercaptoethanol] = 1M, and [NH4OH] = 4M, diluted 800 times. The solutions were 

illuminated with a high pressure, 100 W Hg lamp for the indicated times. 
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 In samples irradiated for more than 30 minutes, we noticed a yellow precipitate. 

That precipitate was filtered and analyzed with XRD. The corresponding spectrum is 

reported in Figure 3.2, and showed that the precipitate was cubic CdS. Debye-Scherrer 

analysis of the peak widths indicated an average crystallite size of about 1.4 nm. The 

formation of CdS precipitates confirms our attribution of the bands in the 265-290 nm to 

small CdS aggregates.  
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Figure 3.2. X-ray diffraction of precipitates formed after exposure of CdSO4 (0.005M) 

and 2-mercaptoethanol (7M) solution to ultraviolet light for one hour. Debye-Scherrer 

analysis indicated a mean particle size of 1.4 nm. The vertical lines indicate the position 

of the reflections of bulk cubic CdS, and their length the relative intensity.  

 

Formation of CdS in our experiment is due to photodissociation of the thiols and 

of the Cd-thiolate complexes. Exposure of thiols like 2-mercaptoethanol to ultraviolet 

light yields thiyl radicals, RS·, and eventually disulfides, RSSR, RS- and S2- anions.10,12,13 
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Photodissociation of Cd-thiolates can also originate species that can react with Cd2+. For 

example, UV irradiation of Cd-benzenethiolate complexes yields benzenethiolate radicals 

and H2S.14,15 Thiols adsorbed on the surface of CdS nanoparticles can be desorbed and 

oxidized by UV irradiation.16 Several of these photogenerated species can react with the 

metal ions and form CdS. S2- and H2S are the most reactive species, but recent 

experiments have also shown that RS· radicals can react with divalent cations to form 

sulfides.17,18 Fig. 3.3 summarizes the likely reactions leading to the formation of CdS 

nanoparticles, and compares the UV patterning technique with the IR photolithographic 

technique developed previously by our groups.5 Both UV and IR techniques yield sulfide 

nanoparticles; however, their mechanisms are widely different. The IR technique is based 

on hydrolysis of thiourea. The hydrolysis reaction occurs very slowly at room 

temperature, and is greatly accelerated by a temperature increase, thus photolithography 

can be carried out with infrared light. In the UV technique, sulfur-containing radicals and 

anions are liberated by photodissociation of the sulfur precursors. The precursors do not 

react when heated, at least within the range of temperatures covered by our control 

experiments (up to about 100 0C).  
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UV Photolithography.  

• Mechanism: photodissociation of thiols.  
  RSH + hν   RS·     

  Cd2+ + RS·  CdS + products.  

• Precursor solution (typ.) [2-mercaptoethanol] = 1-7 mol · l-1, [Cd2+] < 0.05 mol · l-1  
 

 

IR photolithography.  

• Mechanism: thermal dissociation of chelates and chalcogenide precursors [19-21]. 
 (H2N2)CS + OH-       HS- + products.   

   HS- + [Cd(NH3)n]2+  CdS + products. 
 

• Precursor solution (typical): [Thiourea] = 0.5 mol · l-1; [Cd2+] = 0.5 mol · l-1, 
[NH4OH] = 4 mol · l-1.   

Figure 3.3. Proposed reaction schemes for the UV and IR photolithographic techniques. 

 

3.4.2. Patterning of porous matrices. Silica hydrogels were prepared as described in the 

experimental section and their solvent was exchanged with a solution of Cd2+ and 2-

mercaptoethanol. Ultraviolet light was focused on selected regions of the samples, as 

shown schematically in Figure 3.4 a), top.  To pattern planar substrates, the precursor 

solution was spin coated on the support (typically a glass slide, or a silicon wafer), and a 

region was illuminated as shown in Figure 3.4 b), top. Yellowish spots started forming 

after illuminating samples with the Hg lamp for 20-30 minutes. Illumination times were a 

few minutes when the Ar ion laser was employed. The diameter of the photolithographed 

spots could be varied from a few to ~100 μm by changing the distance between the 

sample and the focal point. Typical patterned regions are shown in Figure 3.4a), bottom 

(hydrogels) and 3.4b), bottom (planar substrates). Patterns extended into the bulk of 
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hydrogels; the penetration depth could be varied from a few microns to about one 

millimeter by varying the focal length of the lens. 

After irradiation, the samples were washed several times in water to remove 

unreacted precursors. The size and color of the spots was not altered by washing, 

indicating that CdS was neither chemically altered nor removed, in agreement with our 

previous patterning experiments.22 To help confirm the chemical identity of the 

nanoparticles in the illuminated regions, some samples were washed with acetonitrile. 

The color and size of the spots was not altered. This ruled out the presence of unreacted 

Cd-thiolate precursors, which are highly soluble in acetonitrile.23 Some samples were 

also washed in acidic (H2SO4) solution. The lithographed regions vanished after a few 

hours, ruling out the presence of elemental sulfur, and strongly suggesting the presence of 

CdS. 
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Figure 3.4.Top:  Schematic representation of the illumination arrangement employed to 

pattern:  a) hydrogels, b) planar substrates. Multiple regions of a same sample were 

patterned by translating the sample in front of the beam. Bottom: a) CdS spots 

photolithographed on the surface of a silica hydrogel. b) CdS spot  photolithographed on 

a glass slide. Samples were illuminated with the 351.1 nm of a continuous wave Ar ion 

laser. The laser power at the sample was 50 mW, and exposures were between 5 and 10 

minutes.  

 For TEM analysis, UV-illuminated regions were carved out of the hydrogel, 

crushed in methanol and placed on a lacey carbon copper grid. Figure 3.5(a) shows a 

typical TEM micrograph.  CdS nanoparticles with diameter in the 15-20 nm range were 

present in all samples, and appeared as dark spots distributed within the light grey silica 

matrix. High magnification micrographs revealed the presence of a large number of 

particles in the 2-5 nm size range. Individual particles showed lattice fringes that could be 

reconciled with the cubic structure observed with XRD (Figure 3.5a, inset).A size 

distribution histogram is reported in Figure 3.5(b). The histogram, however, is most 
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probably not highly representative of the actual particle size distribution, since particles 

smaller than 3 nm could hardly be distinguished from the matrix.24

 

 

 

 

 

Figure 3.5. a) TEM micrograph showing CdS particles as dark spots embedded in a silica 

matrix (light grey). The scale bar represents 100 nm. Inset: HRTEM image of a 6 nm 

diameter CdS nanoparticle. The scale bar represents 1 nm. The lattice fringes are 

consistent with a cubic crystalline structure. b) Size distribution histogram obtained by 

measuring about 120 particles. Particles with diameters below about 3 nm could hardly 

be distinguished from the silica matrix, and the histogram is likely skewed towards large 

sizes. The precursor concentration in the parent solution was [CdSO4] = 0.005 M, [RSH] 

= 7 M, and the sample was illuminated for 30 minutes with a high pressure, 100 W Hg 

lamp. 

 

The chemical identity of the samples was further confirmed by absorption, 

photoluminescence, and Raman spectroscopy. Room temperature absorption spectra 

a) 
b) 

Diameter (nm)
0 5 10 15 20

0

5

10

15

20

25

Fr
eq

ue
nc

y 
(%

)

25b) 

 



 64

taken as a function of exposure time are reported in Figure 3.6. The spectra exhibited 

excitonic shoulders at about 265 nm for an exposure time of 30 minutes. The shoulder 

shifted to about 360 nm for exposures of 60 minutes, and did not shift significantly for 

longer exposures.  The position of these shoulders can be reconciled with CdS 

nanoparticles with a mean diameter of 1.4 nm and 2 nm, respectively.25,26 The mean 

nanoparticle size of the UV technique is therefore a factor 2-3 smaller than the mean 

particle size attainable with the IR technique.5 Recent developments, however, have 

shown that the mean particle size can be considerably reduced when a surfactant like a 

thiol is added to the precursor solution of the IR technique.27  
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Figure 3.6. Absorption spectra of hydrogels patterned with CdS using UV radiation. The 

curves correspond to an exposure time of 30, 60, and 90 min, respectively. The precursor 

concentration in the parent solution was [CdSO4] = 0.005 M, [RSH] = 7 M. A 100 W 

high pressure mercury lamp was used to illuminate the samples. 

  

 Room temperature photoluminescence (PL) spectra are reported in Figure 3.7, and 

are characterized by broad peaks, indicating that the photoluminescence was dominated 
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by traps. Particle size could not be determined from the PL spectra due to the broadness 

of the peaks; however, some trends could be discerned. Luminescence was in general 

weak, and increased with irradiation time. Peaks in the 400-450 nm region of the 

spectrum were often detected in samples irradiated for short times, and were probably 

due to carbon impurities incorporated in the silica matrix during the gel formation 

process.28-31 The emission profiles tended to shift towards longer wavelengths with 

increasing irradiation time, in agreement with the trend prevalent in the absorption 

spectra (see Figure 3.6). The emission spectra were comparable to the emission of 

samples obtained with the IR technique with a comparable mean size and capping 

agent.27
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Figure 3.7. Photoluminescence of hydrogels patterned with CdS at the indicated 

exposures. The precursor concentration in the parent solution was [CdSO4] = 0.005 M, 

[RSH] = 7 M. A 100 W high pressure Hg lamp was used to illuminate the samples. The 

excitation wavelength was 350 nm. 
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Raman spectra are shown in Figure 3.8, and exhibited a shift at 306 cm-1. This frequency 

nearly coincides with the first-order longitudinal-optical phonon frequency of bulk CdS, 

and is also in good agreement with previous Raman measurements of CdS/silica 

composites.32  
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Figure 3.8. Raman spectra of hydrogels patterned with CdS. The precursor concentration 

in the parent solution was [CdSO4] = 0.005 M, [RSH] = 7 M. The samples were 

illuminated for 30 minutes with a high pressure Hg lamp. 

 

 Thus, optical spectroscopy characterization confirmed the chemical identity of the 

CdS nanoparticles. The mean particle size determined with optical spectroscopy 

techniques was between 1.4 and 2 nm, and was consistent with the size measured with 

XRD. The difference with the TEM mean size (9.67 nm) is not irreconcilable, since 

particles with a size below about 3 nm could hardly be distinguished from the silica 

matrix. In a previous study.5 we also measured a larger (7.5 nm) nanoparticle size with 

TEM than with optical techniques (4-5 nm). We conclude that TEM should be regarded 
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only as a rough indicator of the size distribution of nanoparticles embedded in sol-gel 

matrices.  

3.4.3. Patterning of planar substrates. Our methodology can also be applied to the 

patterning of planar substrates with quantum dots, as shown in Figure 3.4(b). Figure 3.9 

shows the absorption and emission spectra of glass slides patterned with CdS. The data 

were in overall agreement with the data obtained for silica hydrogel patterning. 

Absorption showed an excitonic shoulder around 380 nm. From the position of the 

excitonic shoulder a mean size of about 2 nm was calculated, close to the mean size of 

CdS nanoparticles formed in silica gel matrices for comparable irradiation times. 

Emission was very broad, as in the case of patterned silica matrices. 
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Figure 3.9. a) Optical absorption of a microscope glass slide patterned with CdS. b) 

Photoluminescence spectra, excited at 350 nm. The precursor concentration in the parent 

solution was [CdSO4] = 0.1M, and [RSH] =1M. NH4OH was added to maintain a pH of 

about 11. The samples were irradiated for 60 min with a 100 W high pressure mercury 

lamp.  
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XPS spectra of patterned planar substrates are reported in Figure 3.10. Two Cd peaks 

were clearly evident, with binding energies of:  Cd3d5/2 = 405.5 eV, and Cd3d3/2 = 412.2 

eV; the sulfur peak had a maximum around 162.5 eV, which corresponded to S2p3/2, and a 

shoulder around 163.5 eV, which corresponded to S2p1/2. All these values are in excellent 

agreement with those previously reported for CdS nanoparticles capped with 

mercaptoethanol.33,34  
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 Figure 3.10. XPS spectra of CdS spots photolithographed on Si wafers. a) Cd 3d. b) S 

2p. The binding energies of Cd3d5/2 (405.5 eV), Cd3d3/2 (412.2 eV), S2p3/2 (162.5 V), S2p1/2 

(163.5 eV) nearly coincided with those previously reported for small CdS nanoparticles 

capped with mercaptoethanol [29,30]. Precursor solution composition and irradiation 

times were as in Figure 3.9. 

 

3.5. CONCLUSION 

In conclusion, we report a new photolithographic method for patterning planar and 

porous matrices with semiconductor quantum dots. Our approach is based on 
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photodissociation of metal thiolate precursors of CdS. Numerous characterization 

techniques were employed, showing that CdS nanoparticles with a mean diameter smaller 

than 2 nm were indeed produced in the illuminated regions. The minimum spot size 

attained in our experiments was a few microns. In the future, the spatial resolution could 

be brought to the diffraction limit by employing more elaborate photolithographic set-

ups. The composites could be employed to fabricate highly stable quantum dot ion 

sensors, since the porous matrix prevents coagulation and leaching of the nanoparticles in 

the environment, but also more sophisticated devices, such as photonic crystals and 

quantum dot lasers. Practical applications could be further facilitated by employing a 

cross-linking technique developed by our group, which increases the mechanical strength 

of hydrogel monoliths and films [35].  
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4.1. ABSTRACT 

 

 CdS quantum dots were fabricated photolithographically on the surface and in the 

bulk of silica hydrogels, as well as on the surface of planar substrates. Silica hydrogels 

were prepared with a standard base-catalyzed route, and the solvent was exchanged with 

a cold aqueous solution of CdNO3, NH4OH, thiourea, and a capping agent, e.g., 2-

mercaptoethanol. The samples were then exposed to a focused infrared beam produced 

by a continuous-wave Nd:YAG laser. The precursors reacted upon heating, and CdS 

nanoparticles formed in the illuminated regions. Use of capping agents allowed control of 

the mean particle size, while focusing the beam inside hydrogel monoliths generated 

nanoparticles in the bulk, but not at the surface. Planar substrates were patterned by 

illuminating a precursor solution spin-coated on the substrates. The average size of the 
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CdS nanoparticles could be varied between about 1.5 and 4.5 nm by varying the type and 

the concentration of the capping agents.  

 

4.2. INTRODUCTION 

 Embedding nanoparticles in sol-gel materials is becoming increasingly relevant 

for electro-optical and chemical applications. Quantum dot lasers have been fabricated 

based on quantum dots embedded in a titania sol-gel matrix,1 PbS and CdS nanoparticles 

embedded in silica gels are being considered for waveguide and non-linear optics,2,3 

while composites of silica gel and cytochrome-tagged Au nanoparticles have been 

reported4 and they are likely to have applications in biotechnology. Patterning of sol-gel 

matrices with regularly spaced arrays of nanoparticles allows production of 

optoelectronic components and devices such as diffraction gratings,5 photonic crystals,6 

and optical memories.7  

 Very recently, our team has developed a photochemical method that allows to 

pattern silica hydrogels with metal, oxide and semiconductor nanoparticles.8 In that 

method, the gelation solvent is exchanged with a solution of quantum dot precursors, 

typically a group II metal chelate, and a sulfur source like thiourea. Local heating with an 

infrared (IR) laser induces hydrolysis of thiourea. The released sulfur ions react with the 

metal ions forming small, quantum-confined sulfide nanoparticles.  Here, we extend that 

work and show that quantum dots can be synthesized in a precisely controlled physical 

location and with a precisely controlled size. By focusing the beam of a Nd:YAG laser, 

quantum dots can be placed photolithographically on the surfaces of silica gels, on planar 

substrates like glass slides, and also in the bulk of porous matrices. By varying the type 
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and the concentration of capping agents, the size of the quantum dots – and therefore the 

quantum confinement effects – can be controlled at will. Despite its simplicity, our 

technique is versatile, and may become an important tool in the fabrication and 

miniaturization of optoelectronic devices and sensors based on quantum dot/sol-gel 

composites. 

 

4.3. EXPERIMENTAL 

4.3.1. Preparation of hydrogels. Silica hydrogels were prepared by a modification of 

previously published procedures9 in which the contents of vial A (4.514 mL of 

tetramethoxysilane; 3.839 mL of methanol) and of vial B (4.514 mL of methanol; 1.514 

mL of water, and 20 µL of concentrated NH4OH) were mixed thoroughly and poured in 

molds.  Typical gelation times were around 10-15 min. The gels were left to age at room 

temperature for ~2 days. Aged gels were removed from their molds and soaked in 

methanol four times for 12 hours each time. The hydrogels were then soaked in water 

four times for 12 h each time.  The water-washed gels were then cut into cylinders of 

about 7 mm diameter (which was the diameter of our molds), and 4-5 mm length, and 

placed in 20 ml of solution containing the quantum dot precursors.  

4.3.2. Quantum dot precursors. CdS was synthesized by hydrolyzing thiourea in basic 

solution.10-14  Hydrogel slices with a volume of about 2 ml were soaked in a 20 ml of 

precursor solution with a CdNO3 concentration of 1 mol·l-1 (M) and a NH4OH  

concentration of 4 M. The samples were then placed in a refrigerator kept at 5 0C. After 

about two hours, half of the bathing solution was decanted and replaced with an aqueous 

solution containing thiourea with a concentration of 1 M, and a capping agent such as    
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2-mercaptoethanol, thioglycerol, or sodium hexametaphosphate (HMP, average 

molecular weight = 611.7). The concentration of the capping agents was varied between 

0.01 and 0.1 M. The samples were left in the refrigerator for an additional hour to let the 

thiourea and the capping agents diffuse inside the monoliths. Cooling was necessary, 

since the precursors react slowly at room temperature. Hydrogels loaded with the 

precursors turned pale yellow within about one hour when kept at room temperature, but 

did not appreciably change their color when refrigerated. The samples were then rapidly 

removed from the refrigerator, placed in a glass cuvette, and exposed to the light of a 

continuous wave, Nd:YAG laser. Samples were exposed to the IR beam between 4 and 

10 minutes, and the estimated power on the sample was about 1.8 W. The local 

temperature at the illuminated spots was measured by placing a thermocouple 

immediately below the gel surface. The local temperature was typically between 30 and 

40 0C, and did not exceed 50 0C even when the laser was operated at high powers ( > 

5W). After exposure, the samples were immediately washed several times in cold 

distilled water to avoid any further reaction while the precursors were removed. To 

pattern planar substrates, a thin film of precursor solution was spin coated on the support 

(typically a glass slide, or a silicon wafer), and a selected region was illuminated. After 

an exposure of about 3 minutes to the focused laser beam, yellow spots formed in the 

illuminated regions; the samples were then immediately washed by submersion in cold 

water to remove unreacted precursors. The patterned quantum dots were found to adhere 

reasonably well to the substrate, and were not washed out. The films produced in our 

proof-of-concept experiments were relatively thick and fairly rough (average thickness: 2 

± 0.5 μm). The quality of the films could probably be improved by using less 
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concentrated precursor solutions.  For three-dimensional patterning, we employed a 

continuous-wave laser (IPG Photonics YLR-100) emitting at a wavelength of 1065 nm, 

and with a power of 23 W. The laser beam was focused 6 mm beneath the surface of a 

hydrogel monolith with a lens of focal length 5 cm. 

4.3.3. Characterization. Samples were characterized with transmission electron 

microscopy (TEM and HREM), with UV-Vis optical absorption spectroscopy, 

photoluminescence spectroscopy, Raman spectroscopy, and X-ray photoelectron 

spectroscopy (XPS).  TEM micrographs were taken with a Zeiss EM 109 operated at 80 

kV. HREM micrographs were taken using a Philips 430ST operated at 300 kV. Samples 

for TEM were prepared by carving illuminated spots out of a monolith with a razor blade. 

The carved out regions were then crushed in methanol, and a drop of the suspension was 

placed on a 300 mesh lacey carbon grid. UV-Vis optical absorption spectra were taken 

using a CARY 5 UV-Vis-NIR Spectrophotometer. Photoluminescence spectra were taken 

using a JY-Horiba Fluorolog 3-22 Fluorometer. The Raman measurements were carried 

out in a perfect backscattering geometry using a fiber optically coupled confocal micro-

Raman system (TRIAX 320) equipped with a liquid N2-cooled charge-coupled detector. 

The 514.5-nm line of an Ar+ ion laser was the excitation source. A ×50 microscope 

objective was used to focus and collect the scattered laser light.  The microscope is 

equipped with a holographic super-notch filter to block the elastically scattered light; for 

Stokes scattering the filter blocks up to ~300 cm-1. This makes it somewhat inconvenient 

to measure the first order longitudinal optical (LO) phonon of CdS. However, for anti-

Stokes scattering the notch filter cutoff is around -200 cm-1. Although the intensity of 

anti-Stokes scattering is lower, due to the limitation of the notch filter we use anti-Stokes 
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Raman scattering to measure the first order longitudinal optical phonon in our CdS 

quantum dots. X-ray photoelectron spectroscopy (XPS) was carried out on a KRATOS 

AXIS 165 scanning spectrometer equipped with a 225-W Mg X-ray source, producing 

photons with an average energy of 1253.6 eV.  

 

4.4. RESULTS AND DISCUSSION 

4.4.1. Patterning of porous matrices. Our infrared photolithographic method relies on 

the hydrolysis of thiourea in basic solution, according to Eq. (1).     

Cd2+ + (H2N)2C=S + 2OH-  CdS + H2NCN + 2 H2O                                                 (1) 

Thiourea has often been employed as the sulfur source to fabricate high-quality metal 

sulfide thin films, and the reaction kinetics hava been investigated by several authors.15-17 

In most of those studies, the metal ion source was the water-insoluble Cd(OH)2, which 

was formed by addition of a base to a Cd2+ solution. The Cd(OH)2  route is advantageous 

for thin film deposition purposes, since the hydroxide catalyzes the hydrolysis of 

thiourea, and reduces the processing temperature.17 The hydroxide route, however, is not 

practicable for our purposes, since Cd(OH)2 is a precipitate that would not  diffuse inside 

the hydrogels. Formation of Cd(OH)2 can be prevented by using complexes of Cd2+. For 

example, Cd2+ - amino complexes can be formed by adding large concentrations of 

ammonium hydroxide to the bathing solution. When [NH4OH]>1.8 M (pH ~11), the 

stable phase is not the insoluble Cd(OH)2, but the water-soluble [Cd(NH3)4]2+ complex, 

which does diffuse into hydrogels. The transition from the hydroxide to the amino 

complex is quite noticeable: the turbid Cd(OH)2 suspension disappears, and the solution 

becomes clear. Exposure to an IR beam leads to local heating and dissociation of thiourea 

according to Eq.(1), leading to CdS formation only in the exposed regions. Reaction (1) 
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in the unexposed part of the cold gel is negligible, at least for the exposure times of our 

experiments (up to 15 minutes), and patterning is possible.  

 A schematic representation of the illumination set-up is shown in Figure 4.1, 

together with examples of (a) surface and (b) three-dimensional patterning of silica 

hydrogels, as well as (c) patterning of a planar substrate. Surface patterning of porous 

monolithic matrices can be achieved routinely with a laser power as low as 1 W, as 

described in Ref. 8 and shown in Figure 4.1a. The patterned regions in Figure 4.1 had a 

size between 1 and 3 mm to facilitate digital camera imaging; nevertheless, patterns as 

small as 40 μm could be obtained. A further development presented here is represented 

by the three-dimensional patterning shown in Figure 4.1b. Three-dimensional patterns 

were obtained by focusing the beam inside the monolith with a short focal length (~ 5 

cm) lens, and by employing high laser powers (> 5 W). The patterned regions were pale 

yellow and clearly distinguishable from the matrix. The size of the patterns was 

controlled by varying the illumination time. For example, the spot marked as i) in Figure 

4.1b was obtained after an illumination time of 1 minute, and spot ii), which had a 

volume about 30% larger, was obtained by illuminating for 2 minutes. After irradiation, 

the samples were washed several times in cold water to remove unreacted precursors. The 

size and color of the spots did not change upon washing, indicating that CdS was neither 

chemically altered nor removed by that processing, in agreement with our previous 

results.18
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Figure 4.1. Top, left:  Schematic representation of the illumination arrangement 

employed to pattern silica hydrogels. Bottom, a) Surface patterning of a silica hydrogel 

monolith.  b)  Bulk, three-dimensional patterning of a silica hydrogel monolith. The 

dimensions of the features are i) 2.3 mm × 0.3 mm (exposure time: 1 minute), and ii) 3.3 

mm × 0.4 mm (exposure time: 2 minutes). Top, right: Schematic representation of the 

illumination arrangement employed to pattern planar substrates. Bottom, c) Surface 

patterning of a glass slide spin-coated with a precursor solution. The dimensions of the 

spot are 0.6 mm × 0.8 mm. d)  Higher magnification image of the same region.  

  

For initial confirmation of the chemical identity of the nanoparticles in the 

illuminated regions, some samples were placed in aqueous acidic solution (H2SO4, ca. 

0.05 M). The yellow spots vanished after a few hours, ruling out the presence of 

elemental sulfur and strongly suggesting the presence of CdS.  In turn, Figure 4.2 shows a 

typical TEM micrograph obtained by carving a patterned region out of a hydrogel. 

Nanoparticles with diameters in the 15-25 nm range were present in all samples, and 

appeared as dark spots distributed within the light grey silica matrix. High magnification 
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micrographs revealed the presence of a large number of smaller particles, whose lattice 

fringes could occasionally be detected, as shown in the inset of Figure 4.2.  

 

  

2 nm 

 

 

 

 

 

 

 

 

 Figure 4.2. TEM micrograph showing CdS particles without any surfactant as dark spots 

embedded in a silica matrix (light grey). The scale bar represents 100 nm. Inset: HREM 

image of a 5 nm diameter CdS nanoparticle. The precursor solution contained CdNO3 

(0.5 M), NH4OH (2 M), and thiourea (0.5 M). Gels were illuminated for 5 minutes with a 

power of 1.8 W.  

  

As we have shown before, in samples exposed for a few minutes small (≤ 5 nm) 

nanoparticles represent up to 70-80% of the total number of nanoparticles, but they are 

very difficult to distinguish from the silica matrix with transmission electron 

microscopy.8,23 Size distribution histograms were not obtained, and the mean nanoparticle 

size was inferred from optical absorption spectra such as those reported in Figure 4.3, 
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which also summarizes data from samples containing different capping agents. When 

capping agents were not added to the solution, the spectra exhibited an excitonic shoulder 

around 460 nm, which corresponds to a mean particle size of about 4.5 nm.19,20 Addition 

of hexametaphosphate (HMP) as a capping agent did not strongly affect the particle size, 

and the absorption spectra continued to exhibit an excitonic shoulder around 460 nm. 

Thiols controlled particle size more effectively. The excitonic shoulder was shifted to 

around 370 nm for 2-mercaptoethanol as a capping agent, and around 380 nm for 

thioglycerol. The mean particle size, estimated from the position of the excitonic 

shoulder,19,20 was about 2 nm for 2-mercaptoethanol capping and about 2.5 nm for 

thioglycerol capping. The mean particle size of samples containing thiols are quite 

comparable, and about a factor 2 smaller than the mean particle size in samples without 

capping agents. Variation of the thiol concentration between 0.01 and 0.1 M did not 

affect the position of the excitonic shoulder significantly. For capping agent 

concentrations higher than about 0.1 M, CdS did not form.  

 The effect of surfactants on the mean particle size can be explained as follows. 

The pores of the matrix control nanoparticle size fairly efficiently, as shown by the 

comparatively small mean particle size (4.5 nm) of samples without capping agents. 

Addition of relatively weak stabilizing agents, like HMP, only weakly affects the mean 

size of the CdS nanoparticles. Capping agents that bind strongly to nanoparticles, like 

thiols (RSH), are more effective than the pore walls in limiting the particle size. The lack 

of formation of CdS at high capping agent concentrations can be explained by the 

formation of metal chelates.  For example, complexes such as [Cd(RS5Cd3)n](n+2)+ form 

when 2-mercaptoethanol or other thiols are added to a solution of Cd2+ ions.21-23 These 
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complexes are highly stable, and probably worse catalysts for the hydrolysis of thiourea 

than the [Cd(NH3)4]2+ complexes. For example, parent solutions with [CdNO3] = 0.5 M, 

[thiourea] = 0.5 M, and [RSH] = 0.1 M are stable for several hours at room temperature. 

Solutions with [RSH] = 0.2 M must to be heated to 50 0C before CdS forms, and with 

[RSH] = 0.3 M CdS forms only near the boiling point. Since the maximum temperature 

of the regions exposed to the IR beam was around 50 0C, it is not surprising that 

patterning was possible only for comparatively small surfactant concentrations. 
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Figure 4.3. Absorption spectra of hydrogels patterned with CdS. The precursor solution 

contained CdNO3 (0.5 M), NH4OH (2 M), and thiourea (0.5 M), and the capping agents 

indicated in the caption at a concentration of 0.1 M. Gels were illuminated for 5 minutes 

with a Nd:Yag laser at a power of 1.8 W. 

  

Room temperature photoluminescence (PL) spectra are reported in Figure 4.4, and 

are characterized by broad peaks, indicating the presence of a substantial number of 
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defects. The mean particle size could not be determined from the PL spectra due to the 

broadness of the peaks; however, some trends could be discerned. For example, 

luminescence was in general weak. Features in the 400-450 nm region of the spectrum 

were often detected, and were attributed to organic impurities remaining in the silica 

matrix since the gelation step, and, possibly, to CdS precursor residues.24-27 The 

luminescence intensity was higher in samples capped with thiols, and increased with the 

length of the aliphatic chain, in qualitative agreement with recent reports showing that the 

luminescence quantum yield of CdS nanoparticles increases with the chain length of 

aliphatic thiols.28
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Figure 4.4. Photoluminescence of hydrogels patterned with CdS using IR 

photolithography. The precursor solution contained CdNO3 (0.5 M), NH4OH (2 M), and 

thiourea (0.5 M), and the indicated capping agents in a concentration of 0.1 M. Gels were 

illuminated for 5 minutes at a power of 1.8 W. The excitation wavelength was 350 nm. 

Raman spectra are shown in Figure 4.5, and exhibit a peak at 300 cm-1. This 

frequency is in good agreement with previously reported Raman shifts in CdS/silica 
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composites,29 and corresponds to the first-order longitudinal optical (LO) phonon 

frequency of CdS. A peak at 600 cm-1 was also routinely observed and corresponds to the 

first overtone. 
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Figure 4.5. Raman spectrum of a silica hydrogel patterned with CdS. The precursor 

solution contained CdNO3 (0.5 M), NH4OH (2 M), and thiourea (0.5 M). Gels were 

illuminated for 5 minutes at a power of 1.8 W. 

 

4.4.2. Patterning of planar substrates. As Figure 4.1 shows, our photolithographic 

method can also be applied to the patterning of planar substrates with quantum dots. The 

results obtained for patterning of planar substrates were quite comparable to the results 

obtained for porous matrices. Figure 4.6 shows the absorption spectra of glass slides 

patterned with CdS as a function of the concentration of 2-mercaptoethanol. Excitonic 

shoulders were detected in all samples and were located at about 440 nm in samples 

without capping agents, and at around 370 nm in samples with a 2-mercaptoethanol 
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concentration of 0.01 M. In samples with a 2-mercaptoethanol concentration of 0.1 M a 

very weak shoulder could be identified in the 325-330 nm range. From the position of the 

excitonic absorption, mean particle sizes of about 4, 2, and 1.5 nm, respectively, were 

calculated. While formation of very small particles in samples without surfactants may 

appear surprising, we need to point out that our particles were most probably formed 

rapidly in thin water films. There was probably barely enough time and precursors 

available for the particle size to go past the nucleation stage. Photoluminescence spectra 

of planar substrates patterned with CdS are reported in Figure 4.7. Samples without 

capping agents had a weak, broad emission spectrum, similar to that of CdS powders,30 

indicating a large number of defects. The emission shifted towards higher energies and 

became narrower with increasing capping agent concentration. The emission shift 

towards higher energies is probably due to quantum confinement, and is consistent with 

the observed blue shift of the absorption with increasing capping agent concentration.  
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Figure 4.6. Optical absorption spectra of microscope glass slides patterned with CdS. The 

precursor solution contained CdNO3 (0.5 mol·l-1), NH4OH (2 mol·l-1), thiourea (0.5 mol·l-

1), and 2-mercaptoethanol concentration reported in the caption. Slides were illuminated 

for 3 minutes at a laser power of 1.8 W. 

 

Wavelength (nm)
400 450 500 550 600 650

In
te

ns
ity

 (a
.u

.)

0

50

100

150

No surfactant
0.01M 2-mercaptoethanol 
0.1M 2-mercaptoethanol 

 

×4

×8

Figure 4.7. Luminescence of microscope glass slides patterned with CdS. The precursor 

solution contained CdSO4 (0.5 M), NH4OH (2 M), thiourea (0.5 M), and the 2-

mercaptoethanol concentration reported in the caption. Slides were illuminated for 3 

minutes at a power of 1.8W. The excitation wavelength was 350 nm. 
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XPS spectra of silicon wafers patterned with CdS are reported in Figure 4.8. Two 

Cd peaks were clearly evident, with binding energies of:  Cd3d5/2 = 405.6 eV, and Cd3d3/2 

= 412.2 eV; the sulfur peak had a maximum around 162.0 eV, which corresponded to 

S2p3/2, and a shoulder around 163.2 eV, which corresponded to S2p1/2. All these values are 

in excellent agreement with those previously reported for CdS nanoparticles,31,32 and 

further confirm the chemical identity of the nanoparticles.  
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Figure 4.8. XPS spectra of CdS spots photolithographed on Si wafers. a) Cd 3d. b) S 2p. 

The precursor solution contained CdNO3 (0.5 M), NH4OH (2 M), and thiourea (0.5 M). 

Wafers were illuminated for 3 minutes at a power of 1.8 W. 

 

4.5. CONCLUSION 

 In conclusion, we demonstrate a photolithographic method that can be used to 

fabricate two- and three-dimensional patterns of CdS quantum dots on planar and porous 
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matrices. Our method involves infrared radiation to dissociate thiourea, and release HS- 

ions that react with Cd2+ and form CdS nanoparticles. Those nanoparticles are formed 

only in the exposed regions, and can be located either on the surface, or in the interior of 

silica hydrogel monoliths by merely focusing the laser beam. Furthermore, the mean size 

of the nanoparticles can be varied easily by using capping agents and by varying their 

type and concentration. Our technique is simple, extremely flexible, and compatible with 

existing photolithographic techniques. It allows fabrication of islands of semiconductor 

nanoparticles with a spatial resolution of tens of microns, comparable, for example, to 

that of photodiode arrays, and could be used for microfabrication purposes. 
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5.1. ABSTRACT 

 

 Highly luminescent semiconductor quantum dots have been synthesized in porous 

materials with ultraviolet and X-ray lithography. For this, the pore-filling solvent of silica 

hydrogels is exchanged with an aqueous solution of a group II metal ion together with a 

chalcogenide precursor such as 2-mercaptoethanol, thioacetamide or selenourea. The 

chalcogenide precursor is photodissociated in the exposed regions yielding metal 
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chalcogenide nanoparticles. Patterns are obtained by using masks appropriate to the type 

of radiation employed. The mean size of the quantum dots is controlled by adding 

capping agents such as citrate or thioglycerol to the precursor solution, and the quantum 

yield of the composites can be increased to up to about 30% by photoactivation. Our 

technique is water-based, uses readily available reagents, and highly luminescent 

patterned composites are obtained in a few simple processing steps. Polydispersity, 

however, is high, (around 50%), preventing large-scale usage of the technique for the 

time being. Future developments that aim at a reduction of the polydispersity are 

presented. 

 

5.2. INTRODUCTION 

 In the last few years, a wide array of quantum dot-based devices and composites 

have been proposed for applications ranging from non-linear optics1-4 to light emitting 

diodes,5,6 sensors,7-9 and lasers.10-12 Large-scale use of these devices and materials, 

however, is limited by cost and manufacturing issues. It was recognized early that 

applications could be made more readily available if quantum dots could be synthesized 

with bottom-up techniques which are compatible with conventional microfabrication 

methods such as photolithography.13 However, progress in this direction has been 

sluggish. Only very recently patterning of substrates with quantum dots was reported, and 

it was obtained with a top-down approach photocorrosion of films of pre-formed 

quantum dots.14

 We recently demonstrated that quantum dots can be synthesized in selected 

regions of porous matrices by photodissociation of appropriate precursors. In the first 
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demonstration of our photolithographic technique the precursors were dissociated 

thermally by focused infrared light (IR).15,16 Heat diffusion, however,  rendered use of 

masks impractical. Only relatively primitive patterns could be produced by translating the 

sample in front of the focused beam. We then showed that ultraviolet light (UV) could 

also be employed to pattern substrates with quantum dots.17 However, photodissociation 

of the thiol precursors employed in the UV  experiments was not very efficient. The 

incident light had to be tightly focused, and patterns could be produced only by 

translating the sample in front of a small illuminated spot as in the IR case. In addition, 

the composites produced with both IR and UV lithographies had a very low quantum 

yield, below 1%. Here we expand those methods and we show that: (i) photodissociation 

can be made more efficient by using a different set of precursors, allowing production of 

complex patterns by masking; (ii) the quantum yield of the composites can be increased 

to up to about 30% by photoactivation; (iii) quantum dots can be produced with X-ray 

lithography. Our quantum dot photolithography (QDPL) technique has therefore come a 

long way, and includes several attractive features, each of which has deep implications 

for applications. For example, we now have precursor combinations that are easily 

photodissociated. Thus, it may be possible to use conventional ultraviolet exposure and 

masking tools to produce quantum dots. The high quantum yield of the composites, 

combined with their porosity, may allow applications of the materials as optical materials 

and sensors. X-ray lithography paves the way to ultra-high spatial resolution. In our 

experiments, comparatively hard X-rays (8.5keV) for which masks can be realized which 

have a resolution of tens of microns were employed. However, it is conceivable that soft 

X-rays could be employed, for which masks can be fabricated with a resolution well 
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below 1 µm.18 We have also observed that features produced with X-ray lithography 

penetrated into the bulk of the monoliths as much as 12 mm. These structures have an 

aspect ratio of around 200 and could conceivably be employed as waveguides. In fact, 

materials such as PbS have a much higher index of refraction (n = 4.1) than the matrix (n 

= 1.1 to 1.5) for silica gels. Addition of PbS in a concentration of as little as 0.1% by 

volume to a silica gel increases the index of refraction of the composite by Δn ≈ 5×10-3, 

which is sufficient for waveguide applications. The main drawback of the technique, at 

this point, is probably polydispersity. This was estimated to be around 50% from the 

fwhm of the exciton peak in the absorption spectra. Polydispersity might be eliminated by 

using matrices with well-contolled pore size, such as MCM-41,19 or by size-selective 

photocorrosion,14, 20, 21 and this is where our research will focus in the near future. 

 

5.3. EXPERIMENTAL 

5.3.1. Sample preparation. Silica hydrogels were prepared following a conventional 

base-catalyzed route.22 The hydrogels were then washed several times in methanol and 

water. Hydrogel cylinders were then cut into smaller cylinders of about 7 mm in 

diameter, and 5-7 mm in length. These cylinders were then immersed in 20 ml of a 

solution of a group II and a group VI precursor. To produce CdS composites with 

ultraviolet photolithography, the precursor solution consisted of Cd(NO3)2 in a 

concentration of up to 0.5 mol·l-1 (M) and thioacetamide (CH3CSNH2), or thiourea 

(H2NCSNH2), in concentrations of up to 0.5 M. The metal:sulfur mole ratio was typically 

kept around 1:1. To produce CdSe composites with ultraviolet photolithography, the 

precursor solution consisted of Cd(ClO4)2·xH2O (x~6), in a concentration of up to 0.1 M 
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and selenourea (H2NCSeNH2), also in a concentration of up to 0.1 M. The 

metal:chalcogenide mole ratio was kept typically around 4:1. The metal and the 

chalcogenide precursors tended to react at room temperature even without irradiation. To 

prevent spontaneous formation of metal chalcogenides, a chelating agent such as 

triethanolamine was added to the precursor solution, in a concentration equal to that of 

the metal precursor. Alternatively, the vials containing the gels and the precursor solution 

were cooled to 5 0C. For X-ray lithography the bathing solution contained Cd(NO3)2 or 

Pb(NO3)2 in a concentration between 0.01 and 0.05 M. The chalcogenide source was 2-

mercaptoethanol, in a typical concentration of 1 M. The precursor solutions for X-ray 

lithography were stable at room temperature, and cooling was not required. In all 

experiments, diffusion of the precursors inside the gels was usually complete within 2 

hours, at which point the gels were irradiated. Gels and bathing solution were kept under 

Ar during preparation and irradiation. Unreacted precursors were removed after exposure 

by placing the samples in a large volume (>100 ml) of cold water. This washing 

procedure was repeated 3-4 times. Particle size was controlled by adding a capping agent 

like citrate or 2-mercaptoethanol in a concentration up to 10 times higher than that of the 

metal ion to the bathing solutions. 

5.3.2. Irradiation. Ultraviolet The light source for ultraviolet photolithography was a 

high pressure, 100 W Hg arc discharge lamp, whose light was collimated on the sample 

either with a long focal length lens, or with a standard collimator system.  Hydrogels 

filled with the precursor solution were placed in a quartz cuvette, filled with some of the 

solution for index matching, and placed in front of the beam. To prepare masks, a pattern 

was printed on paper with a laser printer, and a reduced copy was transferred on an 
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acetate transparency with a standard copier. The mask was then placed on the outer 

surface of the cuvette, and the sample was irradiated.  

X-Ray Irradiations were carried out at the Materials Research Collaborative Access 

Team (MRCAT) bending magnet beamline, at Argonne National Laboratory's Advanced 

Photon Source.  The beamline has a beam-defining mask upstream of an 880 mm long in-

vacuum platinum coated mirror held at an angle of 8 mrad used as a low pass energy 

filter.  The low energy spectrum of the beamline is defined by 375 μm thickness of 

beryllium windows. The final dimensions of the collimated beam are approximately 100 

mm by 6 mm. The beam was not monochromatic; the mean beam energy was 8.5 keV, 

and the fwhm of the energy distribution was around 6 keV. To prevent heating and 

damage to the gel structure, gels were translated in front of the beam at a typical speed of 

20 mm/s. Hard X-Ray masks for ultradeep X-Ray lithography (UDXRL) were fabricated 

by electrodepositing a Au absorber layer with a thickness on the order of 50 μm on a thin 

(0.5 mm) graphite sheet. A detailed description of the mask fabrication procedure can be 

found in Ref. 23. 

5.3.3. Characterization. Samples were characterized with UV-Vis optical absorption 

spectroscopy, photoluminescence spectroscopy, and Raman spectroscopy. Optical 

absorption spectra of hydrogel-quantum dot composites were taken with a CARY 5 UV-

Vis-NIR spectrophotometer. Photoluminescence spectra were taken using a JY-Horiba 

Fluorolog 3-22 Fluorometer. Raman spectra were obtained using the 514.5 nm line of an 

Ar+ laser and a SPEX 0.85 m double spectrometer equipped with a liquid N2 cooled 

charge coupled device array detector, or using a Renishaw micro-Raman spectrometer 

with a 785 nm excitation line. Due to the challenges of PbS Raman spectroscopy, a 
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reference PbS powder was prepared separately. The powder was obtained by adding 0.1 

M Na2S to a 0.1 M Pb(NO3)2 solution. The precipitate was filtered and washed several 

times with water, methanol, and ethanol. The resulting powder was polydisperse, with 

grains varying from about 10 nm to a few microns. 

5.3.4. Quantum Yield Measurements. Two different procedures were used to measure 

the quantum yield of the composites. In one case, a sample was illuminated with 

uncollimated UV light to produce a uniform distribution of semiconductor nanoparticles 

through the monolith. The emission of the composite was compared to that of a hydrogel 

which had the same dimensions of the composite, and where the solvent had been 

exchanged with a rhodamine solution. Alternatively, a CdSe spot with a diameter ca. 1 

mm was produced in a thin (ca. 1 mm) hydrogel.  Exposure time and lens focal length 

were chosen such that the CdSe pattern penetrated through the sample, giving rise to a 

cylindrical feature. The sample was then illuminated through a mask which had the same 

diameter as the CdSe pattern, and the emission was compared to that of a rhodamine-

loaded sample illuminated through the same mask. For both procedures, the UV-Vis 

spectrum of the composite and reference monolith were measured to account for 

differences in absorption. To rule out sample inhomogeneity and geometry issues 

measurements were repeated for at least four composite samples prepared under the same 

conditions, and for 4-5 samples loaded with varying rhodamine concentrations. 

 

5.4. RESULTS AND DISCUSSION 

5.4.1. Pattern Generation. Figure 5.1 shows sample patterns obtained by masking. 

Figure 5.1(a) shows a CdSe pattern obtained with UV photolithography. The image was 
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taken under room lighting. Figure 5.1(b) shows the luminescence of the pattern in (a), 

excited by an Ar+ laser. Figure 5.1 (c) and (d) show PbS patterns obtained with X-Ray 

lithography. For ease of representation, comparatively large patterns were produced. The 

resolution of the QDPL technique, however, is at least on the order of a few microns. A 

point resolution of about 3 μm was attained in our previous experiments by focusing an 

Ar ion laser beam on the surface of a gel with a low-magnification microscope objective. 

For the X-ray technique, a resolution on the order of 10 μm was obtained, which 

coincided with the fabrication limit of the X-ray mask.23 
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Figure 5.1. (a-b) CdSe patterns obtained with UV lithography. (b) Shows the 

photoluminescence of sample (a), obtained by illuminating the patterned sample with the 

457.9 nm line of an Ar+ laser. A laser goggle was interposed between the sample and the 

camera to filter the laser glare from the photoluminescence of the CdSe quantum dots. (c-

d) PbS patterns obtained with X-Ray lithography. 

 



 100

5.4.2. Photodissociation and Reaction Mechanisms. Ultraviolet. The UV technique is 

based on the photodissociation of chalcogenide precursors. In our initial experiments, we 

employed a solution of Cd2+ and a thiol (RSH) like 2-mercaptoethanol.17 Ultraviolet 

irradiation dissociated the thiols, yielding CdS. Photodissociation of these precursors, 

however, was not very efficient, and patterns could be created only by exposing matrices 

to tightly focused beams. In this work, we use different chalcogenide precursors which 

are also dissociated by UV light: thioacetamide, thiourea and selenourea. The overall 

reaction scheme leading to chalcogenide nanoparticles is shown in Eqs. (1) and (2) for 

thioacetamide.24

3 2 3CH CSNH  + h   CH CN + H S2ν →                                                           (1) 

2+ +
2Cd  + H S  CdS + 2H→                                                            (2) 

Use of selenourea as a source of selenium ions was investigated recently by other 

groups.25-27 It was found that selenourea photodissociates easily, but care must be taken 

to avoid oxidation of Se2-.27 In our experiments, oxidation of the Se anions was prevented 

by the capping agents, citrate and thioglycerol, which are reducing agents.  

 The chalcogenide precursors employed in the present experiments were more 

easily photodissociated than the precursors used previously. In samples containing the 

same precursor concentration clearly visible patterns were formed 5-10 times more 

rapidly when selenourea was used instead of the 2-mercaptoethanol (RSH) used 

previously. In addition, the molar absorptivity at 254 nm (Hg line) of the Cd2+-RSH 

precursor combination is 3.2 × 104 M-1 · cm-1,17 the molar absorptivity of Cd2+-selenourea 

is 1.0 × 104 M-1 · cm-1. When the differences in absorptivities and exposure times are 
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taken into account, we obtain that UV irradiation of Cd2+-selenourea is 15 to 30 times 

more efficient than that of Cd2+-RSH.  

X-Ray For X-ray lithography the chalcogenide precursor was 2-mercaptoethanol. 2-

mercaptoethanol is dissociated and liberates SH- when it reacts with the solvated 

electrons and radicals liberated by the interaction of X-rays with water.28,29 The overall 

reaction leading to metal chalcogenides is reported in Eqs. (3-5). Reduction of the metal 

ions by the solvated electrons, Eq. (6), was prevented by working in a large excess of 

thiol, typically 10-100 times the metal ion concentration. 

- . . +
2 (aq) 3H O + h   e  H ,  OH ,  H O ,  ...ν →                                                           (3) 

- - .
2 2 (aq) 2 2HOCH CH SH + e   SH  + CH CH OH→                                                         (4) 

- 2+SH  + Pb   PbS + H→ +                                                            (5) 

2+ - 0
(aq)Pb  + 2e   Pb→                                                             (6) 

 Patterns were formed readily with X-ray lithography. Typically, an exposure to 85 

mA · minute was sufficient to generate clearly visible patterns. This exposure is very low 

when compared to more conventional X-ray lithography processes such as LIGA. These 

processes are usually based on radiation-induced cross-linking of polymers like 

poly(methyl metacrylate) (PMMA) which require extremely lengthy exposures. On our 

apparatus, PMMA structures were obtained after exposures on the order of 40000 mA · 

minute. We also noticed that the chalcogenide patterns penetrated inside the gels for 

several millimeters, suggesting that X-Ray lithography could be employed to fabricate 

three-dimensional quantum dot structures with a high aspect ratio. 

5.4.3. Materials Characterization. Semiconductor nanoparticles form within the 

exposed regions, and do not diffuse appreciably in the unexposed regions, at least within 
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the limits of our measurements. The dimensions of the photolithographed features always 

coincided with those of the features on the masks, at least within the resolution of the 

optical microscope used for the measurements (~1 μm).30 The mean particle size was 

most efficiently controlled by adding capping agents to the precursor solution. The effect 

of capping agents on the mean particle size is shown in Figure 5.2. CdSe samples capped 

with citrate exhibited an excitonic shoulder in the 570-580 nm range, which corresponds 

to a mean nanoparticle size of 5 nm.31 Samples capped with a stronger capping agent 

such as thioglycerol exhibited an excitonic shoulder in the 430-440 nm range, 

corresponding to a mean nanoparticle size of 2.3 nm.32 We point out, however, that the 

excitonic shoulders were always very broad, independent of the capping agent that we 

employed. The large fwhm of these shoulders is a clear indicator of polydispersity. In 

experiments from other groups, weak, undefined shoulders were associated with ~50% 

polydispersity, which is probably a realistic figure for our experiments.20 We point out 

that size distribution histograms measured with transmission electron microscopy were 

not meaningful. In fact, for sizes below about 5 nm it is exceedingly difficult to 

distinguish the nanoparticles from density fluctuations of the silica matrix. 
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Figure 5.2. UV-Vis absorption spectra of CdSe patterns produced with UV 

photolithography and the indicated capping agents in a concentration of  3.5 × 10-3 M. 

The parent solution contained 1.6 ×10-3 M cadmium perchlorate and 4 ×10-4 M 

selenourea. 

  

The as-grown composites were poorly luminescent, which is common for 

quantum dots grown in aqueous environment. The luminescence, however, could be 

increased considerably by photoactivation. For this, unreacted precursors were first 

washed out of the hydrogels. The samples were then exposed to a low power (~15 W) 

black light. Light absorption by II-VI nanoparticles can induce oxidation of the 

chalcogenide, Equation (7).20,31,32 Surface defects are photooxidized preferentially, thus 

photoactivation is a convenient way to remove such defects and improve the 

photoluminescence quantum yield.20,21,33-46   

2+
2CdSe + O  + h   Cd  + SeOν → 2                                                           (7) 
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Figure 5.3 reports the results of a typical photoactivation treatment of a CdSe-patterned 

sample. The emission of as-grown samples was very weak, but increased by more than 

300 times with photoactivation. The emission maximum was around 580 nm before 

photoactivation, and around 560 nm at the end of the photoactivation period. The blue 

shift of the emission indicates that the mean size of the nanoparticles is reduced by 

photoactivation. Particle size reduction upon illumination has also been reported by other 

groups14,20,21,32 and is not surprising, since photoactivation removes atoms preferentially, 

but not exclusively, from surface defects. Luminescence quantum yields were determined 

with two different procedures which are described in the Experimental section. The 

quantum yields calculated with these procedures were quite consistent and indicated that 

the quantum yield of citrate-stabilized quantum dot composites could be increased to up 

to 30%.32 This high value of the quantum yield is in substantial agreement with recent 

reports of photoactivation of quantum dots. For example, citrate-capped CdSe quantum 

dots can be photoactivated to reach a quantum yield as high as 59%. The quantum yield 

of our composites is comparable or higher than the quantum yield of commercially 

available polymer/quantum dot composites,40 and to the quantum yield of recently 

reported latex spheres decorated with quantum dots and of photonic crystals (opals) 

infiltrated with quantum  dots.47 All these composites have a quantum yield on the order 

of 10%.48
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Figure 5.3. Photoactivation of a CdSe/silica composite. The parent solution contained 1.6 

× 10-3 M cadmium perchlorate, 3.5 × 10-3 M sodium citrate and 4 × 10-4 M selenourea. 

Samples were photoactivated for the indicated times with a black light with a power of 15 

W. Samples were excited with 400 nm light. 

  

The chemical identity and the structure of the nanoparticles in the patterned 

regions were investigated in our previous reports with techniques such as Raman 

spectroscopy, transmission electron microscopy, X-Ray diffraction, and X-Ray 

photoelectron spectroscopy. All these techniques showed that the nanoparticles were free 

of contamination, and that they had a bulk crystalline structure. In this work, we 

characterized the nanoparticles with Raman spectroscopy, and the results were in 

agreement with our previous research.15-17 Representative Raman spectra are shown in 

Figure 5.4 for CdS and PbS patterns obtained with X-Ray lithography. CdS patterns 

exhibited a peak at 303 cm-1.  This frequency is in good agreement with previous Raman 

measurements of CdS/silica composites, and corresponds to the first-order longitudinal 

optical (LO) phonon frequency of CdS.15-17,49 The interpretation of the Raman results for 
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PbS is more complex. The LO phonon of crystalline PbS at ~205 cm-1 in normal Raman 

scattering is forbidden. However, using an excitation source close to the intergap energies 

allows the forbidden Raman bands through the Fröhlich interaction mechanism.50 The 

Raman spectrum of bulk PbS contains mainly three peaks at 154, 204, and 454 cm-1.51 

The 154 cm-1 peak is a combination of a transverse acoustic (TA) and a transverse optic 

(TO) phonon; the 204 peak is the first-order LO phonon and the 450 is the first overtone 

of the LO phonon (2LO). Our Raman measurements from a PbS powder show the first-

order LO phonon at 200 cm-1 and a peak at 143 cm-1 which probably arises due to a 

combination of TA and TO phonons. The Raman spectrum from monoliths patterned 

with PbS shows the second and the third order LO phonons peaks at 440 and 610 cm-1, 

respectively. Observation of overtones which are not detected in the bulk appears to be a 

common phenomenon in nanocrystals,49 and has been reported for PbS nanoparticles with 

a mean size of 1.5 nm.52 The origin of the 240 cm-1 is still under investigation; this could 

be the first-order LO phonon that has an enhanced peak position due to the size of the 

nanocrystal. In 2 nm PbS nanocrystals, for example, the forbidden LO phonon appears at 

230 cm-1.53 We notice that a shoulder around 240 cm-1 is also evident in the spectra of the 

PbS powder. 
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Figure 5.4. Room temperature Raman spectra of PbS and CdS produced by X-ray 

lithography in silica hydrogels and measured with lines at 785 nm and 514 nm, 

respectively. The Raman spectrum of a PbS powder is also shown for reference.   

 

5.5. CONCLUSION 

 

In conclusion, we have demonstrated a method of generating quantum dots with 

photolithography which has several important features. Quantum dots can be synthesized 

with UV and X-ray lithographies, which have a very high theoretical spatial resolution. 

The process is water-based and highly luminescent composites can be fabricated in a few 

steps. The quantum yield of the composites can be increased with photoactivation to up 

to 30%, which is comparable to the quantum yield of the best commercial quantum dot 

composites. The main drawback of the technique, at this point, is probably polydispersity, 

which was estimated to be around 50% from the fwhm of the exciton peak in the 

absorption spectra. Polydispersity might be eliminated by using matrices with            
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well-controlled pore size, or by size-selective photocorrosion, and this is where our 

research will focus in the near future. 
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6.1. ABSTRACT 

Three-dimensional patterns of semiconductor nanoparticles were produced inside 

silica hydrogels by multiphoton ionization. The pore-filling solvent of silica hydrogels 

was exchanged with an aqueous solution of a group II metal ion and 2-mercaptoethanol 

or selenourea.  Metal chalcogenide nanoparticles were formed in the spots where the light 

of a pulsed laser was focused. The lithographed features had an elongated shape with a 

minimum diameter of 30 microns and a minimum length of 60 microns. Optical, 

photoluminescence and Raman spectroscopies confirmed the chemical identity of the 

nanoparticles in the patterned regions. The mechanism of formation was investigated, and 

it was established that the process is at least 2-photon in nature and that patterning can be 
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achieved with either femtosecond or nanosecond pulses. The experiments also suggested 

that chalcogenide anions were not liberated by direct dissociation of the chalcogenide. 

Rather, the chalcogenide dissociated after capturing solvated electrons and radicals 

liberated by multi-photon ionization of water.  

 

6.2. INTRODUCTION 

In the last few years, a considerable amount of research has focused on the three-

dimensional fabrication of contacts and electronic devices,1-19 on the fabrication of 

quantum dot devices,20-31 and on the fabrication of three-dimensional (3D) optical 

integrated circuits.32-43 We present here a technique that allows 3D fabrication of 

semiconductor nanoparticles which is of potential relevance for these seemingly 

unrelated fields. For example, three-dimensional (3D) fabrication techniques that employ 

pulsed lasers have been reported, but they were limited until now to metals.1-19 We show 

here that pulsed lasers can be applied also to fabricate 3D semiconductor patterns which 

might be employed to fabricate 3D opto-electronic circuitry that includes passive and 

active components. We also show that it is possible to pattern monoliths with high index 

materials such as PbS. We present estimates showing that the index of refraction of the 

patterned regions can be considerably higher than that of the matrix. Thus, our technique 

might also be employed for the fabrication of three-dimensional, all-optical circuitry that 

includes optically active materials. The technique could be used in its present form for 

applications that do not require monodisperse nanoparticles, or a high luminescence 

quantum yield. We anticipate that the technique might be also applied for 3D quantum 

dot fabrication. In fact both polydispersity and quantum yield can be controlled by 
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photocorrosion, as repeatedly demonstrated by several groups.44-49 For example, we 

recently demonstrated that the quantum yield of CdSe quantum dots produced with UV 

lithography could be increased from ≤ 1% to up to about 30% by photoactivation.49

 

6.3. EXPERIMENT 

Silica hydrogels were prepared following a conventional base-catalyzed route.50 

The hydrogels were then immersed in a solution of a group II and a group VI precursor.  

To produce sulfides, the bathing solution contained Cd(NO3)2 or Pb(NO3)2 in a 

concentration between 0.01 and 0.05  mol·l-1 (M), and 2-mercaptoethanol or thioglycerol 

in a concentration of 1 M. To produce selenides, metal concentrations were on the order 

of 4 × 10-3 M, and selenourea was used in a concentration on the order of 1 × 10-3 M. 

Precursors diffused inside the gels in 1-2 hours, and after this time the samples were 

removed from the solution and exposed. Unreacted precursors were removed after 

exposure by repeatedly bathing the samples in distilled water. Most irradiations were 

carried out using the frequency-doubled output ultraviolet light (532 nm) from a pulsed 

ND:YAG laser (Continuum Surelite I, q-switched). Pulses of 5 ns duration with a 20 Hz 

repetition rate were used. The energy per pulse was 200 mJ, producing a time averaged 

power of 1.1 Watts. The beam was focused down to a spot of 30 μm in diameter, and the 

estimated power in the focal region was on the order of 1 TW·cm-2. For some 

experiments, a beam was employed from a Ti:Sapphire laser femtosecond (fs) laser at the 

Kansas Light Source, Kansas State University.  This beam had a pulse length of 30 fs, a 

repetition rate of 1 kHz and an energy of 0.14 mJ per pulse.  Hydrogels filled with 

precursor solutions were placed in a quartz cuvette, filled with some of the solution for 
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index matching, placed in front of the beam, and moved in front of the beam with 

precision, two-axis translation stages. The light was focused on the samples typically by a 

10X, 0.25 numerical aperture objective.  

 Samples were characterized with UV-Vis optical absorption spectroscopy, 

photoluminescence spectroscopy, and Raman spectroscopy. Optical absorption spectra of 

hydrogel-quantum dot composites were taken with a CARY 5 UV-Vis-NIR 

spectrophotometer. Photoluminescence spectra were taken using a JY-Horiba Fluorolog 

3-22 Fluorometer. Raman spectra were obtained using the 514.5 nm line of an Ar+ laser 

and a SPEX 0.85 m double spectrometer equipped with a liquid N2 cooled charge 

coupled device array detector, or using a Renishaw micro-Raman spectrometer with a 

785 nm excitation line.  

 

6.4. RESULTS AND DISCUSSION 

 Figure 1(a) and (b) show the top view and respectively the side view of PbS 

patterns obtained with ns pulses. The patterned regions are clearly at different depths 

within the monolith, and complex patterns could be easily obtained, as shown in figure 

Figure 1(c).  Damage of the gel matrix was often observed when the laser was operated at 

powers higher than 0.1 TW · cm-2. In figure 1(d) we show a typical patterned region, 

which was obtained at a laser power slightly above the damage threshold. The beam was 

incident from the top. We notice some damage in the focal region, and an elongated dark 

feature extending in the direction of the beam axis. The elongated shape of the patterns is 

in agreement with previous reports of patterning with multiphoton ionization, and has 

been attributed to beam self-focusing induced by an increased refraction index in the 
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exposed region.43, 51, 52 The diameter and length of the patterns could be varied from a 

minimum of 30 × 60 μm to up to 200 × 600 μm by decreasing the magnification of the 

microscope objective or by increasing the exposure time.  
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Figure 6.1. (a) top view and (b) side view of sample PbS patterns.  The side view of a 

pattern obtained by mounting a sample on a precision x-y-z translation stage is shown in 

(c). (d) Optical microscope image of a patterned region.  Arrows indicate the incident 

beam direction. 

 

The chemical identity of the nanoparticles in the patterned regions was 

determined with standard characterization techniques such as optical absorption, 

photoluminescence and Raman spectroscopy. Absorption spectra showed a monotonic 
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increase of the absorbance with decreasing wavelength and broad excitonic shoulders, as 

shown in figure 2a) for PbS and in figure 2b) for CdSe. From the positions of the 

excitonic shoulders a mean particle size around 5 nm was estimated for both PbS and 

CdSe.53-55 We point out, however, that the broadness of the shoulders indicates that the 

samples were quite polydisperse and therefore the mean particle size should only be 

regarded as a rough estimate. 
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Figure 6.2. Optical absorption of a) PbS-patterned samples, and b) CdSe-patterned 

samples.  In a), sepactra were taken from wet hydrogel monoliths, and overtones of water 

vibrations were measured at ~975 nm and ~1160 nm. 

 

Photoluminescence spectra were measured for CdS-patterned samples and a 

representative spectrum is reported in figure 3a). A very broad emission peak dominated 

the spectrum in the 450-700 nm region, consistent with surface trap recombination. Two 

sharp peaks around 400 and, respectively, 425 nm were also evident in the spectrum. The 

peak at 400 nm can be reconciled with the emission from defects in silica gels,21, 56-60 

while the peak at 425 nm is probably due to the intrinsic luminescence of            
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quantum-confined CdS nanoparticles.21  Overall, the emission spectrum of figure 3a) is 

consistent the conventional picture of water-based quantum dot synthesis, which is 

known to yield polydisperse, defect-rich nanoparticles. Raman spectra are reported in 

figure 3b) for a CdS-patterned sample and show a peak around 310 cm-1 which is in 

overall agreement with the frequency of the first order longitudinal optical mode of bulk 

CdS.15, 61-67 The characterization experiments showed therefore that polydisperse metal 

chalcogenide nanoparticles were formed in the patterned regions. 
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Figure 6.3. a) Room temperature photoluminescence spectrum of a CdS-patterned 

sample. The excitation wavelength was 352 nm. b) Raman spectrum of a CdS-patterned 

sample. 

 

The mechanism of nanoparticle formation in the exposed regions was investigated 

with a series of control experiments. To rule out single-photon photochemical reactions 

we exposed samples to the 488 nm and, respectively, 532 nm lines of a continuous-wave 

Ar ion laser. The illuminated spots remained transparent and patterns did not form even 

when laser powers were employed which were sufficient to damage the gels. We then 
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exposed samples to the focused light of a 2W, continuous-wave Nd:YAG laser emitting 

at an infrared wavelength of 1064 nm. No particles formed in the illuminated spots, 

ruling out thermally induced chemical reactions. We concluded that the chemical process 

was two- or multi-photon in character. To make sure that the sulfur precursor was not 

directly dissociated by the incident light we replaced the sulfur source, 2-

mercaptoethanol, with other precursors which are often used to generate metal sulfides 

such as thioacetamide and thiourea. None of these precursors generated nanoparticles, 

suggesting that multiphoton dissociation of sulfur-containing organic molecules does not 

play a relevant role. Dissociation of the sulfur precursors likely followed an indirect path 

and was probably triggered by the radicals liberated by water ionization. The power in 

the focal spot was between 0.01 and 0.1 TW · cm-2, which is sufficient to ionize water, 

and it is known that 2-mercaptoethanol liberates SH- after scavenging solvated 

electrons.68-70 A possible overall reaction scheme is reported in Eqs. (1-3). To confirm 

our conjecture, we added an electron scavenger such as 2-propanol to the parent solution 

and noticed that nanoparticles were not formed.   

 

H2O + hν → e-
(aq), H

·, OH·, H3O+, …        (1) 

 

HOCH2CH2SH + e-
(aq) → SH- + ·CH2CH2OH     (2) 

 

SH- + Pb2+ → PbS + H+         (3) 

 

 

The mechanism of formation of selenide nanoparticles probably also did not 

proceed via direct dissociation of selenium compounds. Irradiation of monoliths loaded 
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only with selenourea did not yield elemental selenium nanoparticles which are the typical 

by-product of selenourea dissociation.71,72 The fact that chalcogenide nanoparticles 

formed with selenourea and not with thiourea as a precursor is probably reconcilable with 

the higher reactivity of selenourea. For example, recent experiments have shown that 

selenourea scavenges radicals 6-7 times more efficiently than thiourea,71 and our own 

group showed that chalgodenide nanoparticles are formed 5-10 times more efficiently by 

ultraviolet irradiation when selenourea is used instead of thiourea or 2-mercaptoethanol.49 

The higher reactivity of selenourea is confirmed by the current experiments, where 

selenide nanoparticles formed 5-10 times more rapidly than sulfides. Oxidation of 

selenium anions to elemental selenium was probably prevented by the addition of citrate, 

which acted both as a surfactant and as a reducing agent. 

The concentration of PbS nanoparticles was estimated from the optical absorption 

spectra of figure 2. Recent work54 has shown that the extinction coefficient σ of PbS 

depends strongly the radius r of the nanoparticles. An extinction coefficient was 

calculated in Ref. [54] by integrating absorption spectra in the visible and near infrared 

ranges and was found to depend exponentially on the radius:  

σ (M-1· cm-1) = 5.15 × 105 r 4.08       (4). 

 

The extinction coefficient was calculated from Eq.(4) assuming a particle radius r 

= 2.5 nm and the absorbance α was calculated by integrating the spectrum of figure 2a).  

The patterns in the sample used for optical absorption had a depth d = 0.7 mm, and a PbS 

particle concentration was obtained: 

optc
d

α
σ

= = 3.5 × 10-5  M      (5) 
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This nanoparticle concentration is very close to the one that can be estimated from the 

precursor concentration. The parent solution had a Pb2+ concentration c0= 0.05 M; the 

molecular weight of PbS is MW = 239.25, and the density is ρ = 7.5 g · l-1; assuming a 

mean particle size r = 2.5 nm, the particle concentration is  

c = 0

34
3

c MW

rπ ρ
= 4 × 10-5 M      (6) 

The concentration of CdSe nanoparticles was also calculated from absorption spectra and 

was also found in fair agreement with the concentration of the parent solution. The molar 

absorptivity of polydisperse CdSe quantum dots is σ  = 4 × 10-5 M-1·cm-1,45,46 the 

absorbance of the excitonic shoulder in figure 2b) is α = 0.14 and the depth of the 

patterns was d = 0.7 mm. From Eq. (5), we obtain a nanoparticle concentration  copt= 5 

× 10-6 M. The parent solution of the samples in figure 2b) had a selenourea concentration 

c0 = 1.2 × 10-3 M; CdSe has a molecular weight MW = 191.38 and a density ρ = 5.81 g · l-

1; for a mean particle size r = 2.5 nm, Eq.(6) yields c =  1.0 × 10-6 M.  These 

concentration estimates are approximate, especially considering that the uncertainty in 

the mean particle radius is probably very large. However, they consistently show that the 

particle concentration calculated from the optical absorption is comparable to that 

estimated from the concentration of the parent solution. Based on the estimated 

nanoparticle concentration we can also estimate the index contrast in the patterned 

regions. In experiments with PbS, the precursor concentration was c0 = 0.05 M. The 

volume fraction is f = 0PbS

matrix

V c M
V

W
ρ

= = 0.16%. The corresponding change in the 

dielectric constant is (1 )composite matrix PbSf fε ε ε= − + , and the refractive index of the 
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composite is composite compositen ε= . If PbS nanoparticles with a dielectric constant εPbS = 

17.0 were embedded in a xerogel (or aerogel) matrix with a dielectric constant εmatrix ~ 

1.69 (nmatrix= 1.310) the index of the composite would be ncomposite= 1.310, or Δn = 0.01. 

Thus, the index contrast that is theoretically attainable with our technique is 2-5 times 

higher than the index contrast Δn = 1-4 × 10-3 that is typically obtained by densification 

of glasses with fs pulses.32, 34, 37, 43

 

6.5. CONCLUSION 

In conclusion, we have shown that chalcogenide nanoparticles can be produced in 

the bulk of porous sol-gel materials such as silica hydrogels. Patterning is obtained by 

focusing a pulsed laser beam inside the bulk of a monolith, and can be achieved with 

femtosecond-pulsed lasers but also with cheaper and simpler with nanosecond-pulsed 

lasers. The process is multi-photon in character, and is probably induced by the 

scavenging of solvated electrons by chalcogenide-containing organic molecules. These 

molecules dissociate liberating chalcogenide anions that react with the metal cations. The 

nanoparticle concentration in the exposed regions was estimated from absorption spectra 

and was found comparable to the density estimated from the precursor concentration in 

the parent solution. The estimated index contrast is 2-5 times higher than the contrast 

commonly obtained by fs-pulse induced glass densification and is sufficient for light 

guiding applications. Our technique allows three-dimensional patterning with 

semiconductor nanoparticles and could be used for a variety of applications, ranging from 

construction of three-dimensional, quantum-dot based electronic applications to the 

fabrication of optically active photonic crystals and optical circuitry. 
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CONCLUSIONS 

 We have presented a method where porous sol-gel materials and planar substrates 

can be patterned with semiconductor quantum dots using photolithography. Silica gels 

and planar substrates are patterned with infrared, ultraviolet, X-rays and multi-photon 

ionization radiation. Our photolithographic method is a bottom-up method where we can 

position semiconductor quantum dots and nanoparticles at the required positions in the 

porous materials and on planar substrates. Arrays of quantum dots are usually fabricated 

on the surfaces of silica hydrogels. However, by focusing the laser beam inside the 

monolith, the arrays can be extended into the bulk of silica gels. Arrays of quantum dots 

can be patterned on planar substrates by focusing a light source on a thin film of a 

precursor solution. The quantum dot size distribution can be improved, and its mean size 

reduced by adding capping agents like sodium hexametaphosphate, 2-mercaptoethanol, 

thioglycerol and sodium citrate, and also by varying the concentration of capping agent. 

We will now briefly describe the characteristics of the lithographic techniques. 

 Infrared photolithography allowed patterning the surface and bulk of silica 

hydrogels and the surface of planar substrates. The diameter of the smallest pattern is 40 

μm, which extended inside the silica hydrogel for up to 4 mm. Focusing the IR beam on 

the surface of the silica hydrogel for shorter times allowed patterning only the surface of 

the hydrogel, and longer times allowed extending the pattern inside the hydrogel. This 

infrared photolithography can be employed to pattern silica hydrogels and planar 

substrates with other inorganic semiconductor quantum dots like CdSe, PbS, PbSe, ZnS 

and ZnSe, metal nanoparticles like silver and magnetic nanoparticles like . The 

main challenge of our method concerns the choice of the precursors.  These must not 

3 4Fe O

 



 131

react rapidly at room temperature, otherwise the composites will by uniformly loaded 

with the active phase. The reaction cannot require high temperatures, because this 

necessitates high laser powers that can damage the host matrix. In the IR patterning of 

CdS quantum dots, the reaction rate is tuned by varying the concentration.  

When the concentration of is too low, most of the Cd precipitates as  

and does diffuse inside the hydrogel. also catalyzes hydrolysis of thiourea, and 

 forms rapidly even in cold samples. At high concentrations, 

4NH OH

4NH OH 2Cd(OH)

2Cd(OH)

CdS 4NH OH 2
3 4Cd(NH ) +  

complexes are formed. These complexes are water soluble, and they diffuse inside the 

matrix. They also do not catalyze hydrolysis of thiourea as strongly as . 

Temperatures of the order of 35-60 

2Cd(OH)

0C are required to hydrolyze thiourea at an 

appreciable rate, and these temperatures are easily reached with IR radiation. This 

technique is simple, extremely flexible, and compatible with existing photolithographic 

techniques. It allows fabricating islands of semiconductor nanoparticles with a spatial 

resolution of tens of microns, comparable, for example, to that of photodiode arrays, and 

could be used for microfabrication purposes. The main limitation, however, is spatial 

resolution, which cannot be better than about 40 μm because of heat diffusion. 

 Ultraviolet photolithography can also be employed for patterning porous matrices 

and planar substrates. This method is based on photodissociation of metal thiolate 

precursors of CdS. The Cd precursor is a water-soluble salt such as , and the 

chalcogenide source can be 2-mercaptoethanol, thioacetamide ( ), or thiourea 

( ). cadmium perchlorate hexahydrate  and selenourea 

were employed as precursors for  formation and sodium citrate or 

thioglycerol were used as capping agents. The minimum pattern diameter attained in this 

4CdSO

3CH CSNH2

2

2

2H NCSNH 4 2 2(Cd(ClO ) .6H O)

2(H NCSeNH ) CdSe
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method was a few microns. In the future the spatial resolution might be brought to the 

diffraction limit by employing more elaborate photolithographic set-ups. Since heat 

diffusion is not an issue with UV, masking could be employed. CdSe patterns produced 

by employing thioglycerol as a capping agent were highly luminescent without further 

photoactivation. When sodium citrate was employed as a capping agent then the quantum 

yield of CdSe quantum dots can be further improved by photoactivation to reach a value 

as high as 30%. The composites could be employed to fabricate highly stable quantum 

dot ion sensors, since the porous matrix prevents coagulation and leaching of the 

nanoparticles in the environment. They can also be used to fabricate sophisticated 

devices, such as photonic crystals and quantum dot lasers. 

  X-ray lithography paves the way to ultra-high resolution lithography. A 

resolution on the order of 10 µm was obtained, which coincided with the fabrication limit 

of the X-ray mask.Silica hydrogels were patterned with CdS and PbS quantum dots by 

employing X-rays.  and were used as metal ion precursors and 2-

mercaptoethanol was used as a sulphur ion precursor. In this method comparatively hard 

X-rays were employed, for which masks can be realized which have a resolution of tens 

of microns. Masks with a resolution well below 1 µm can be employed when soft X-rays 

are used. Features patterned with X-ray lithography penetrated into the bulk of silica 

hydrogels as much as 12 mm, suggesting that X-ray lithography could be employed to 

fabricate three-dimensional quantum dot structures with a high aspect ratio. Our 

structures have an aspect ratio of around 200 and could conceivably be employed as 

waveguides. In fact PbS has a higher index of refraction (n=4.1) than the silica hydrogel 

(n=1), so the addition of PbS in a concentration as low as 0.1% by volume to a silica 

3 2Cd(NO ) 3 2Pb(NO )
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hydrogel increases the index of refraction of the hydrogel by . This is 

sufficient for waveguide applications.  

35 10n −Δ ≈ ×

 Multi-photon ionization photolithography can also be employed to pattern silica 

hydrogels with different semiconductor nanoparticles and quantum dots. A spatial 

resolution of as low as 10 µm was obtained. PbS, PbSe, CdS and CdSe quantum dots 

were patterned. and were used as Pb and Cd precursors 

respectively. 2-mercaptoethanol was used as a sulphur precursor in the patterning of PbS. 

Selenourea was used as a selenium precursor in the patterning of PbSe and CdSe. 

Thiogycerol was used as a sulphur precursor in the patterning of CdS, and thioglycerol 

was used as a capping agent in the patterning of CdSe. Translation of the silica hydrogel 

in front of the multi-photon ionization beam allowed patterning of sophisticated 

integrated optical components. 

3 2Pb(NO ) 4 2 2Cd(ClO ) .6H O
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