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ABSTRACT

We study the effects of quenched weak disorder on quantum phase transitions

in disordered magnets. The presence of disorder in the system can lead to a variety of

exotic phenomena, e.g., the smearing of transitions or quantum Griffiths singularities.

Phase transitions are smeared if individual spatial regions can order indepen-

dently of the bulk system. In paper I, we study smeared quantum phase transitions

in binary alloys A1−xBx that are tuned by changing the composition x. We show that

in this case the ordered phase is extended over all compositions x < 1. We also study

the composition dependence of observables. In paper II, we investigate the influence

of spatial disorder correlations on smeared phase transitions. As an experimental

example, we demonstrate in paper III, that the composition-driven ferromagnetic-to-

paramagnetic quantum phase transition in Sr1−xCaxRuO3 is smeared.

When individual spatial regions cannot order but fluctuate slowly, the phase

transition is characterized by strong singularities in the quantum Griffiths phase. In

paper IV, we develop a theory of the quantum Griffiths phases in disordered ferromag-

netic metals. We show that the quantum Griffiths singularities are stronger than the

usual power-law quantum Griffiths singularities in insulating magnets. In paper V,

we present an efficient numerical method for studying quantum phase transitions in

disordered systems with O(N) order parameter symmetry in the large-N limit. Our

algorithm solves iteratively the large-N self-consistent equations for the renormalized

distances from criticality.

Paper VI is devoted to the study of transport properties in the quantum

Griffiths phase associated with the antiferromagnetic quantum phase transition in a

metal. We find unusual behavior of transport properties which is in contrast to the

normal Fermi-liquid behavior.
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1. INTRODUCTION

1.1. PHASE TRANSITIONS AND CRITICAL PHENOMENA

A phase transition is the abrupt transformation of a thermodynamic system

from one phase to another. Examples are the phase transitions of water [2]. The

water can exist as a gas, liquid, or solid depending on temperature and pressure as

shown in Fig. 1.1. The solid and gas phases are connected along the line AC, where

they coexist and are in equilibrium. The liquid and solid phases are connected along

the line AD, they also coexist and are in equilibrium on the coexistence line AD.

Similarly, liquid and gas can also coexist. These two phases are separated by the

liquid-gas coexistence line AB. At point A, at which the three lines intersect, solid,

liquid, and gas all exist in equilibrium. This point is known as the triple point.

The phase transitions occurring when crossing coexistence lines are charac-

terized by discontinuities in the first derivatives of the Gibbs free energy across the

coexistence lines. They are called first-order phase transitions. First order phase

transitions involve latent heat which is absorbed or released during the crossing of

the coexistence lines. The point B at which the liquid and gas phases of a water be-

come identical is called the critical point. It is characterized by a critical temperature

Tc and a critical pressure Pc. At temperatures above Tc and pressures higher than Pc,

there is only one fluid phase. The transition occuring at the critical point is called

a second-order or continuous phase transition. At continuous phase transitions, no

latent heat is released or absorbed and the first derivatives of the Gibbs free energy

are continuous.

Another example of phase transitions are magnetic phase transitions. Just as

a fluid can exist as a liquid, or a gas, a magnetic system can exist as a ferromagnet
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Figure 1.1: Schematic phase diagram of water.

or paramagnet. But, just as liquid and gas are not the only phases of a fluid system,

the ferromagnetic and paramagnetic phases are also not the only two possible phases

of magnetic systems.

The most basic model of magnetic systems is the Ising model. The Ising model

consists of a lattice in d > 1 dimensional space. The classical spin variable Si = ±1

is attached to the i-th lattice site. In the presence of an external magnetic field, the

model is described by the following Hamiltonian

H = −J
∑

i,j

SiSj − h
∑

i

Si , (1.1)

where J is the interaction between spins and h is a uniform external magnetic field. In

the absence of the magnetic field h = 0, for J > 0 and at temperatures T < Tc, where

Tc is the critical temperature, spins prefer to align in parallel; the corresponding phase

is called the ferromagnetic phase (Fig. 1.2a). For J < 0 and low temperatures, the

spins are antiparallel, and the system is in the antiferromagnetic phase (Fig. 1.2b).

At temperatures T > Tc, the system shows paramagnetic behavior (Fig. 1.2c), i.e.,

the spins fluctuate between up and down. Different phases can be distinguished by

an order parameter, a quantity that is zero in one phase (the disordered phase) and
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Figure 1.2: Magnetic systems. a) ferromagnet, b) antiferromagnet, c) paramagnet,
spins fluctuate in time.

non-zero in the other, ordered phase. In a ferromagnetic system, the order parameter

is the magnetisation per site m = 〈Si〉. m = 0 in the paramagnetic phase and m 6= 0

in the ferromagnetic phase as shown in Fig. 1.3a.

At low temperatures T < Tc, the ferromagnet has two equivalent thermody-

namic states with magnetizations m > 0 and m < 0. In the presence of an external

magnetic field h 6= 0, the field energy will tend to align the spins with h. Therefore,

as h changes from being negative to positive, the sign of the magnetizarion, m, will

also change abruptly. So, for T ≤ Tc the field-driven transition between two up and

down phases is first order. It turns into a continuous transition at T = Tc (Fig. 1.3b).

1.1.1. Landau Mean-Field Theory. Landau theory postulates that for a

given phase transition, the free energy F (known as the Landau free energy) is an

analytic function of the order parameter m and can be expanded in a power series

F = F0 + tm2 + vm3 + um4 +O(m5)− hm , (1.2)
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Figure 1.3: Phase transition in a ferromagnet. a) Magnetisation as a function of
temperature in the ferromagnetic Ising model, b) Phase diagram of the
ferromagnetic Ising model.

where t, v, u are system parameters that may depend on external parameters such

as temperature, pressure and chemical composition etc.. h is an external field. The

correct physical value of the order parameter can be determined by minimizing the

free energy. Landau theory only uses the average value ofm, thus it can be understood

as a sophisticated mean-field theory.

If v 6=0, Landau theory describes first-order phase transitions. In the absence

of the external field, for t > t∗, where t∗ = 9v2/32u, there is a minimum only atm = 0

(Fig. 1.4a). For t < t∗, a secondary minimum and maximum appear in addition to the

minimum at m = 0 (Fig. 1.4b). As t is lowered further to the value t′ both minima

have the same value (Fig. 1.4c). Below t′, the secondary minimum is now the global

minimum, and the value of the order parameter m which minimizes the Landau free

energy F jumps discontinuously from m = 0 to a non-zero value (Fig. 1.4d).

For v = 0, Landau theory describes continuous phase transitions. In the

absence of external field, and for t > 0, the Landau free energy has a single minimum

at m = 0 (Fig. 1.5a). For t ≤ 0, the minima of F are at (Fig. 1.5b,c)

m = ±
√

−t
2u
∼ (−t)β . (1.3)
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Figure 1.4: First-order phase transition. The Landau free energy as a function of
order parameter for various temperatures.

Thus, according to Landau theory, criticality in the order parameter is char-

acterized by a critical exponent β = 1/2. The singularity in Eq. (1.3) is an example

of critical singularities. Singularities also occur in the vicinity of the critical point in

the following observables

C ∼ |t|−α , (1.4)

χ ∼ |t|−γ , (1.5)

and

mc(h) ∼ h1/δ . (1.6)

Here, C is the specific heat, χ is the order parameter susceptibility, and mc is the

order parameter at the critical point. α, γ and δ are called critical exponents. The

values of critical exponents within Landau theory are given in the Table 1.1. They

are identical to the usual mean-field values.

1.1.2. Breakdown of Landau Theory. Landau theory uses the average

order-parameter while neglecting fluctuations about this average. The effects of these
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Figure 1.5: Second-order phase transition. The Landau free energy as a function of
order parameter for various temperatures.

fluctuations can become important near the critical point and cause the Landau

theory to fail . The fluctuations are described by the correlation function

G(~r1, ~r2) = 〈m(~r1)m(~r2)〉 − 〈m(~r1)〉 〈m(~r2)〉 . (1.7)

For translationally invariant system G(~r1, ~r2) = G(~r1 − ~r2) = G(~r). Near the the

critical point, G(~r) has the form [2]

G(~r) ∼ 1

rd−2+η
exp(−r/ξ) . (1.8)

The critical exponent is η = 0 in the Landau theory. The correlation length ξ diverges

at the critical point as

ξ ∼ |t|−ν , (1.9)

implying long-range correlations in space. Here, ν is the correlation length exponent.

In addition to the long-range correlations in space, there are analogous long-

range correlations of the order parameter fluctuations in time. Close to the critical
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Table 1.1: Critical exponents in the Landau mean field theory.

crit. exp. β γ δ α η ν
1/2 1 3 0 0 1/2

point, the correlation time diverges as

τc ∼ |t|−νz , (1.10)

where z is the dynamical critical exponent.

The relative strength of the order-parameter fluctuations can be estimated by

PLG =
|
∫

dd~rG(~r)|
∫

dd~rm2(~r)
. (1.11)

The criterion that PLG be small (PLG ≪ 1) for the validity of Landau theory is

called the Ginzburg criterion [3]. Substituting Eqs. (1.3,1.8,1.9) into Eq. (1.11), the

Ginzburg criterion takes the form

tνd−2β−2ν ≪ 1 . (1.12)

Thus, the Landau theory is valid in the limit t→ 0, if

d >
2β + 2ν

ν
≡ d+ , (1.13)

where d+ is the upper critical dimension. Inserting mean-field values β = 1/2 and

ν = 1/2 gives d+ = 4. Thus, according the Ginzburg criterion the Landau theory

breaks down for d < 4. Another critical dimension is the so-called lower critical

dimension d−. Below d−, no phase transition is observed in the system. In such a
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case, no long range order is possible due to strong fluctuations. d− = 1, or 2 for Ising

and O(3) Heisenberg symmetries, respectively.

1.1.3. Landau-Ginzburg-Wilson Theory. As we have seen in the last

subsection, Landau theory breaks down below the upper critical dimension d+ =

4 because of the strong order parameter fluctuations. In order to describe phase

transitions more adequately one needs to generalize the Landau free energy function

(1.2) to a functional that depends on a spatially varying order parameter field φ(r).

Expanding in both φ(r) and its gradient yields the Landau-Ginzburg-Wilson (LGW)

functional (for the case v = 0)

S[φ(r)] =
1

T

∫

ddr
{

tφ2(r) + c[∇φ(r)]2 + uφ4(r)
}

, (1.14)

The LGW theory is a nontrivial many-body problem which cannot be solved in

closed form. Wilson solved this problem for which he was awarded a Nobel Prize in

Physics in 1982 [4, 5]. He treated the Landau-Ginzburg-Wilson theory by means of

a renormalization group (RG) [2] which is based on the Kadanoff scaling. We will

discuss both scaling theory and RG in details below.

1.1.4. The Scaling Hypothesis. In this subsection, we will discuss the

scaling theory [2, 6]. The scaling hypothesis is based on the idea [7] that close to

the critical point, the only relevant length is the correlation length. Let us consider

a system with a lattice constant a0 close to ferromagnetic phase transition. The

neighboring spins are mostly parallel. Therefore we can replace a block of neighboring

spins of size ba0 by a single “renormalized” spin. If we do this everywhere in the

lattice, we get a system with a new lattice constant ba0. If we now rescale all lengths

by a factor b, the distance from criticality t and field h will be renormalized as tb = bytt

and hb = byhh. Rescaling length by b leads to the change of the free energy density
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f by a factor of b−d. f therefore fulfills the homogeneity relation

f(t, h) = b−df(bytt, byhh) . (1.15)

Because the length scale is reduced by the factor of b, correlation length is changed

by the same factor, ξ′ = ξ/b. Therefore, the scaling form for the correlation length

has the form

ξ(t, h) = bξ(bytt, byhh) . (1.16)

Using scaling forms Eq. (1.15,1.16), we can find the scaling behavior of ther-

modynamic functions and derive scaling relations.

As the rescaling factor b is arbitrary, we can choose it such that bytt = 1. This

leads to the scaling forms

f(t, h) ∼ td/ytgf(h/t
yh/yt) , (1.17)

and

ξ(t, h) ∼ t−1/ytgξ(h/t
yh/yt) . (1.18)

Thus, in zero magnetic field, the correlation length diverges as

ξ(t) = |t|−ν , (1.19)

with ν = 1/yt.

The zero-field magnetization can be found as
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m(t) = −
(

∂f

∂h

)

T

∼ t(d−yh)/yt . (1.20)

Comparing the above equation with Eq. (1.3) gives the scaling relation

β = (d− yh)ν , (1.21)

The magnetization at the critical point t = 0, with the choice of b = h−1/yh in

Eq. (1.15), has the form

m ∼ h(d−yh)/yh , (1.22)

which gives Widom’s scaling relation [8]

δ =
yh

d− yh
. (1.23)

Similarly, the susceptibility χ(t) = ∂m/∂h ∼ |t|−(2yh−d)ν and gives Fisher’s scaling

law [9],

γ = (2yh − d)ν , (1.24)

and the specific heat C(t) = −T∂2f/∂t2 ∼ |t|νd−2 ∼ |t|−α leads to Joshephson’s

identity [10]

α = 2− νd . (1.25)

Joshephson’s scaling law is valid only below the upper critical dimension.



11

Finally, using scaling relations derived above, we can obtain Rushbrooke’s

identity [11]

α + 2β + γ = 2 , (1.26)

and Widom’s identity

α + β(δ + 1) = 2 . (1.27)

Scaling theory was originally developed on a purely heuristic basis. Today it

can be derived by means of the renormalization group. It is an extremely powerful

tool for analyzing experiments and numerical data.

1.1.5. Renormalization Group Theory. The renormalization group (RG)

method [2, 6] is based on the idea that close to the critical point, the correlation

length, ξ, is the only important length scale, and that microscopic length scales are

irrelevant. The fact that at the critical point the correlation length diverges causes

the critical behavior to be dominated by long-wavelength fluctuations. If we inte-

grate over fluctuations having wavelength a . λ . ba, a a being lattice constant, the

behavior of the correlation function for distances r > ba will not be changed. The

integration over short-wavelength fluctuations assigns to the original system another

corresponding system having the same behavior at long distances. The transforma-

tion between these systems is called a renormalization-group transformation (RGT).

It leads to a system with a new Hamiltonian with new coupling constants which can

be obtained from the old one by the RG recursion relations. RGT can be iterated by

integrating over fluctuations having wavelenghts ba . λ . b2a etc..

The crucial ingredient of the RG method is existence of fixed points. A fixed

point is a point where the Hamiltonian is mapped onto itself under the RGT. Corre-

spondingly, at fixed points the correlation length ξ does not change under the RGT
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and thus it can be 0 or∞. The fixed point with ξ =∞ is referred to as a critical fixed

point, and a fixed point with ξ = 0 as a trivial fixed point. The behavior of the RG

flows, (i.e. the change of the Hamiltonian parameters under the RGT) determine the

phase diagrams. A fixed point can be attractive, repulsive, or mixed. If the system

starts close to an attractive fixed point, then the iterations bring it back to the fixed

point. On the other hand, if the system starts close to a repulsive fixed point, it is

driven away from that by the iterations. The fixed point is mixed if the system is

repulsive in one direction and attractive in another direction. At the critical point,

the RG fixed point is repulsive in one direction and attractive in all other directions.

Renormalization Group in the momentum space. As an example, let

us construct explicitly the RG transformations in the simple case of the Gaussian

model. The model is described by the Landau functional in the momentum space

βH = −hm(0)β +
1

2

∫

|q|<Λ

ddq [t+ |q|2]|m(q)|2 , (1.28)

in the presence of external magnetic field h. Here, β = 1/T ∗. Λ is a high momentum

cut off. This model is defined only for t > 0, since there is no m4 term to insure

stability for t < 0. However, the partition function is still singular at t = 0. So, the

model represents approaching a phase transition from the disordered side. To do RG

calculations, we need to implement three following steps:

(1) Coarse grain: We divide the fluctuations into two components as:

m(q) =











m(q) for 0 < q < Λ/b

σ(q) for Λ/b < q < Λ
(1.29)

∗We set Planck’s constant and Boltzmann constant to unity (~ = kB = 1) in what follows.
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Then, we integrate out the short-wavelength fluctuations σ(q) (Fig. 1.6). The

functional integral in the partition function involves only integrations over indepen-

dent modes. We obtain

Z = Z0

∫

Dm(q) exp

{

− hm(0) +
1

2

∫

|q|<Λ/b

ddq [t+ |q|2]|m(q)|2
}

, (1.30)

where Z0 is the non-singular part resulting from integration over σ.

(2) Rescale: Next, we need to rescale momentum q = b−1q′. This leads to

H ′ = −hm(0) +
1

2

∫

|q|<Λ

ddq′ b−d [t+ b−2|q′|2]|m(q′/b)|2 , (1.31)

(3) Renormalize: Finally, we rescale m = zm′ such that coefficient in the

above Hamiltonian in front of |q′|2 is recovered to 1/2. This leads to the renormalized

Hamiltonian

H ′ = −h′m(0) +
1

2

∫

|q|<Λ

ddq′ [t′ + |q′|2]|m(q′)|2 , (1.32)

with the renormalized parameters

h′ = hb1+d/2, t′ = tb2 . (1.33)

These are the recursion relations.

There is a unique fixed point at t∗ = h∗ = 0, called Gaussian fixed point.

Comparing Eq. (1.33) to Eq. (1.15), we can identify the exponents yt = 2 and yh =

1 + d/2. Using these exponents in Sec. 1.1.4, one can find the critical exponents

ν = 1/2 and α = 2− d/2.
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Figure 1.6: The reduction of momentum by a factor b in the RG scheme.

RG methods for more complex models follow the same basic steps. Just the

technical implementation is different.

1.1.6. Quantum Phase Transitions. Quantum phase transitions [12] oc-

cur by varying a non-thermal parameter such as magnetic field, pressure or chemical

composition at absolute zero temperature. The macroscopic order can be destroyed

by quantum fluctuations which are in accordance with Heisenberg’s uncertainty prin-

ciple. The critical point associated with a continuous quantum phase transition is

called quantum critical point. Quantum phase transitions may seem like an ab-

stract theoretical idea of little practical consequence because absolute zero cannot

be reached. However, they are the key to explain a wide variety of experiments.

The quantum fluctuations dominate the material’s properties in the vicinity of the

quantum critical point not just at absolute zero but also at low but non-zero temper-

atures. In metallic systems, they can cause strong deviations from the conventional

Fermi-Liquid behavior of normal metals [13].

An experimental example of a quantum phase transition was found in the

compound LiHoF4 by Bitko et al. in 1996 [1]. The phase diagram of this compound is

shown in Fig. 1.7. The phase transition between the ferromagnetic and paramagnetic

phases can be achieved in two different ways: (i) thermal (classical) phase transition,

by varying the temperature at fixed small external magnetic field and (ii) quantum
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Figure 1.7: Temperature-transverse magnetic field phase diagram of LiHoF4 after [1].

phase transition, by changing external field at absolute zero temperature T = 0. As

pointed out above, quantum phase transitions are caused by quantum fluctuations.

In LiHoF4 compound, these fluctuations are caused by the transverse magnetic field,

they increase with increasing field and destroy the ferromagnetic order at the quantum

critical point.

To understand relations between classical and quantum phase transitions, let

us look at the quantum-to-classical mapping. In classical statistical mechanics, static

and dynamic behaviors decouple. The kinetic and potential parts of the Hamiltonian

commute, resulting in factorization of the partition function

Z =

∫

Πidpie
−βHkin

∫

Πidqie
−βHpot = ZkinZpot . (1.34)

The kinetic contribution to the free energy will usually not display any singularities,

since it derives from the product of simple Gaussian integrals. Therefore, one can

study classical phase transitions using a time independent Landau-Ginzburg-Wilson

theory such as equation (1.14).
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In contrast, in quantum mechanics the kinetic and potential parts of the

Hamiltonian do not commute. Thus, the partition function does not factorize and one

must solve for the dynamics together with the thermodynamics. Therefore, quantum

mechanical analogs of the Landau-Ginzburg-Wilson theory need to be formulated

in terms of space and time dependent fields. A simple example of such a quantum

Landau-Ginzburg-Wilson functional has the form [14, 15]

S[φ] =

∫ β

0

dτ

∫

ddr

[

[∂τφ(r, τ) + [∇φ(r, τ)]2 + rφ2(r, τ) +
1

2
φ4(r, τ)

]

, (1.35)

where τ and φ(r, τ) are imaginary time and the order parameter field, respectively.

r measures distance to the quantum critical point. At quantum phase transitions,

the imaginary time acts as an additional coordinate. In addition to the correlation

length ξ, quantum system is characterized by the correlation length in imaginary time

direction ξτ . As the transition is approached both the order parameter correlation

length ξ and correlation time ξτ diverge:

ξ ∼ |r|−ν, ξτ ∼ ξz , (1.36)

where z is the dynamical critical exponent.

At non-zero temperatures, the extension of the extra dimension is finite and

close to the critical point where ξτ > β, the extra dimension cannot affect the critical

behavior. In contrast, at T = 0, the extension in imaginary time direction is infinite,

and the critical behavior is described by a theory in higher dimension. The quan-

tum phase transition in d dimensions is equivalent to some classical phase transition

in higher d + z dimensional space. If space and imaginary time enter the theory

symmetrically the dynamical exponent z = 1, but in general, it can be larger than

one.
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Let us now discuss properties of the system near a quantum critical point

qualitatively [16]. The schematic phase diagram is shown in Fig. 1.8. The disordered

phase at finite temperatures T can be divided into different regimes. For low T and

r > 0, the extension in imaginary time direction ξτ < β, equivalently T < rνz. In

this regime quantum mechanics is important and excitations are well-defined quasi-

particles. Correspondingly, the regime is called “quantum disordered”. For magnetic

transitions in metallic systems, this regime will be the usual Fermi-liquid regime.

For T > Tc and r < 0, but β > ξτ , the order is destroyed by thermal fluctuations.

The corresponding regime is called “thermally disordered” regime (excitations are

well-defined quasiparticles). In the “quantum critical” regime, bounded by crossover

lines T ∼ |r|νz, properties are determined by unconventional excitation spectrum of

the quantum critical ground state, where quasiparticle excitations are replaced by a

critical continuum of excitations.

In the quantum critical regime, this continuum is thermally excited leading

to unconventional power-law temperature dependencies of observables. Quantum

critical behavior is cutoff at high temperatures when T exceeds a characteristic mi-

croscopic energy scale of the system. In a magnet this cutoff is the typical exchange

energy.

For any transition occurring at a finite temperature Tc, quantum mechanics is

unimportant for |t| . T
1/νz
c “because ~ωc ≤ kBT”, where t = (T − Tc)/Tc and ~ωc is

the quantum energy scale. Correspondingly, the critical behavior is described by the

classical theory.

Let us now discuss briefly scaling at quantum phase transitions. Because a

quantum phase transition in d spatial dimensions is related to a classical transition

in d+ z dimensions, the scaling form can be generalized as

f(r, h, T ) = b−(d+z)f(rb1/ν , hbyh, T bz) . (1.37)
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Figure 1.8: Schematic phase diagram in the vicinity of a quantum critical point. The
horizontal axis represents the quantum control parameter r, the vertical
axis is the temperature T . Tc is the phase boundary.

Using this homogeneity relation, we can see how quantum fluctuations result in un-

conventional power-law temperature dependencies of physical observables. In the

absence of field h = 0, if we choose b = r−ν, we find

f = rν(d+z)f(1, T r−νz) , (1.38)

or if we substitute b = T−1/z, we obtain

f = T (d+z)/zg(rT−1/νz) . (1.39)

Then, for the specific heat C = T∂S/∂T at r = 0, we obtain the unconventional

relation

C(r = 0, T ) ∼ T d/z , (1.40)

in the quantum critical regime.
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1.2. PHASE TRANSITIONS IN THE PRESENCE OF DISORDER

Realistic materials always contain impurities, defects or other kinds of disor-

der. Therefore, significant attention has been attracted by phase transitions in the

presence of quenched disorder [17, 18]. In the following, we consider weak quenched

disorder i.e., time independent-disorder which does not qualitatively modify the two

bulk phases separated by the transition. The question of how quenched disorder

influences phase transitions has a long history. Initially, it was thought that any

kind of disorder destroy continuous transitions, because in the presence of disorder,

the system divides itself up into spatial regions which independently undergo the

phase transition at different temperatures. Correspondingly, there would not be sin-

gularities in observables (see Ref. [19] for a historical discussion). However, later, it

became clear that phase transitions can remain sharp in the presence of disorder in

the system.

1.2.1. Harris Criterion. Harris [20] found a simple heuristic criterion that

governs whether weak disorder changes the critical behavior of a given clean critical

point. Here, we sketch the derivation of the Harris criterion. Let us consider a system

with quenched disorder which undergoes a second order phase transition at a tem-

perature T 0
c . Due to the presence of the disorder, the effective transition temperature

Tc(r) may be position dependent (Tc(r) is not a true phase transition temperature

but marks the point where the order parameter at r orders locally). The deviation

from the critical temperature T 0
c can be written as

δTc(r) = Tc(r)− T 0
c . (1.41)
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The typical value of the fluctuations δTc(r), over a large volume with linear size L

can be estimated using the central limit theorem, yielding

∆Tc(r) ∼ L−d/2 . (1.42)

Harris observed that a sharp phase transition can only occur if the fluctuations

δTc(r) over a correlation volume ξd are much smaller than the global distance from

the critical point T 0
c . At the clean critical point ξ ∼ |T−T 0

c |−ν , therefore the criterion

for the stability of the clean critical point becomes

|T − T 0
c |−dν/2 < |T − T 0

c | , (1.43)

which is fulfilled if

dν > 2 . (1.44)

The last inequality is called the Harris criterion. Thus, if the Harris criterion is

fulfilled, weak disorder does not change the clean critical behaviors. However, non-

universal quantities such as the critical temperature can be changed.

1.2.2. Strong-Disorder Renormalization Group Theory. We now dis-

cuss the strong-disorder renormalization group methods used for studies of the critical

behavior of disordered systems. These methods are defined only for disordered sys-

tems and are performed in real space. Strong-disorder renormalization group cannot

be defined for pure systems which do not feature spatial heterogeneities.

The strong-disorder renormlization group was introduced by Ma, Dasgupta

and Hu [21] for the random antiferromagnetic quantum spin chain. The idea of

the strong-disorder renormalization group is to identify the strongest coupling in the

system. One then finds the ground state of the corresponding part of the Hamiltonian,
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and treats the coupling to the rest of the system perturbatively. Finally, one then

throws out the excited states involving the strong coupling, yielding a new effective

Hamiltonian. This renomalization procedure is repeated ad infinitum.

We now sketch the strong-disorder renormalization group procedure in the

random transverse-field Ising model developed by Fisher [22]. The Hamiltonian of

the transverse-field Ising model is given by

H = −
∑

i

Jiσ
z
i σ

z
i+1 −

∑

i

hxi σ
x
i . (1.45)

Here, Ji > 0 are the nearest neighbor interactions and hxi are random trans-

verse fields. σxi and σzi are Pauli matrices representing the spin at site i,

σx =







0 1

1 0






, σy =







0 −i

i 0






, σz =







1 0

0 −1






.

The orthogonal eigenstates corresponding to the operator σz are

| ↑〉 =







1

0






and | ↓〉 =







0

1






.

For the operator σx, the orthogonal eigenstates are

| →〉 = | ↑〉+ | ↓〉√
2

and | ←〉 = | ↑〉 − | ↓〉√
2

.

The renormalization group procedure is as follows:

(1) Find the strongest coupling

Ω ≡ max{Ji, hxi } . (1.46)
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Figure 1.9: Schematic of strong-disorder renormalization group decimation for spin
chain.

If the largest coupling is an interaction, for example Ω = J3, then neighboring

transverse fields hx2 and hx3 can be treated as a perturbation to the term −J3σz2σz3 ,

which has two degenerate ground states | ↓↓〉 and | ↑↑〉. The two spins involved are

joined together into a spin cluster with an effective transverse field (Fig. 1.9)

h̃x2 ≈
hx2h

x
3

J2
. (1.47)

We now throw away the excited states | ↑↓〉 and | ↓↑〉 of the spin cluster and treat

the cluster as an effective spin whose moment is

µ̃3 = µ2 + µ3 . (1.48)

If instead the strongest coupling is a transverse field, for instance Ω = hx2 ,

then the associate part of H is −hx2σx2 which has a ground state | →〉 and excited

state | ←〉. The coupling of σ2 to the rest of the system −J1σz1σz2 − J2σz2σz3 is treated

in second-order perturbation theory. This yields an effective interaction
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J̃1 ≈
J1J2
hx2

. (1.49)

Throwing out σ2 by neglecting its excited state leads to a new spin chain with one

fewer spin and new coupling J̃1.

The strong-disorder renormalization steps explained above are sketched in

Fig. 1.9. Under the repeated use of the decimation transformations, Eqs. (1.47,

1.49), the energy scale Ω is gradually decreased accompanied by an aggregation and

annihilation process of spin clusters. These steps are repeated ad infinitum.

When the strongest coupling is a field, the corresponding cluster is annihi-

lated. In contrast, if the largest one is an interaction, the clusters that it connects

are aggregated into one cluster. In the paramagnetic phase, annihilation dominates

as Ω→ 0, and large clusters are not created. In the ferromagnetic phase, the aggre-

gation dominates as Ω → 0. A cluster of infinite size is formed at Ω = 0. At the

quantum critical point annihilation and aggregation balance and an infinite cluster

first appears.

Because the Ji and h
x
i are random quantities, we need to study their probabil-

ity distributions. At each strong-disorder renormalization group step these probabil-

ity distributions of log J and log h change. The corresponding flow equations for the

distribution functions were derived by Fisher [22]. The renormalization flow equations

display very interesting behavior. At the critical point, given by [log J ]av = [log hx]av,

here [...]av denotes disorder average, the widths of the distributions diverge as Ω→ 0.

Therefore, the critical fixed point is called an infinite randomness fixed point.

This type of critical point has unusual properties. For example, it displays

activated scaling rather than conventional power-law scaling. At the critical point
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the length of the clusters or renormalized bonds scales as

Lψ ∼ log

(

Ω0

Ω

)

. (1.50)

Here, Ω0 is a microscopic energy scale and ψ = 1/2 is known as the tunneling critical

exponent. The relation between time-scale and length-scale is thus logarithmic

log ξτ ∼ ξψ , (1.51)

This implies that the dynamical exponent z is formally∞. The magnetic moment of

a cluster scales as

µ ∼ log

(

Ω0

Ω

)φ

, (1.52)

with φ = (1 +
√
5)/2 equal to the golden mean.

The correlation length is found to scale like

ξ ∼ r−ν , (1.53)

where the exponent ν = 2. Here, the distance r from criticality is defined as

r =
[log hx]av − [log J ]av

var(log hx) + var(log J)
, (1.54)

where var(...) denotes the variance.

The strong-disorder renormalization group can also be used to analyse ther-

modynamic observables off criticality. Fisher [22] found strong power-law quantum

Griffiths behaviors of thermodynamic observables in the so-called Griffiths region. In

the next subsections, we discuss the Griffiths phase in more detail.
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1.2.3. Classification of Critical Points. We emphasize that the Harris

criterion is only a necessary condition for the stability of a clean critical point. It

is not a sufficient condition because it only deals with average disorder behavior at

large length scale. Possible qualitative effects at finite length scales are not covered by

the Harris criterion. Using the Harris criterion and strong-disorder renormalization

group analysis, we can classify critical points (Motrunich et al. [23] ):

The first class includes systems whose clean correlation length critical ex-

ponents ν fulfil the Harris criterion. At the critical point, when the length scale

increases (coarse graining), the effective disorder becomes smaller and smaller with-

out bound. At large length scales, the system becomes asymptotically homogeneous.

Thus, disorder is renormalization group irrelevant at the critical point. The system is

then controlled by a pure fixed point. An example is the classical three-dimensional

Heisenberg model with the clean critical exponent ν ≈ 0.698 [24], which fulfills the

Harris criterion.

The second class contains systems whose clean critical exponent ν does not

fulfil the Harris criterion. Under coarse graining, the effective disorder strength con-

verges, towards a finite level, and the system is then controlled by a finite-disorder

fixed point. The critical behavior is of conventional power-law type but with a dif-

ferent critical exponent which fulfills the Harris criterion. An example is the three-

dimensional classical Ising model with the clean critical exponent ν ≈ 0.627 [25]

which does not fulfill the Harris criterion. In the presence of disorder, the critical

exponent is ν ≈ 0.684 [26].

In the third class, the clean critical exponent also does not fulfil the Harris

criterion. At the critical point, under coarse graining, the effective disorder be-

comes larger and larger without bound. The system is controlled by an infinite-

randomness fixed point. At the infinite-randomness critical point, the dynamical

scaling is activated (logarithmic) rather than power-law. Examples in this class are:
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the one-dimensional random quantum spin chain, and one and two-dimensional ran-

dom quantum Ising systems [27, 28, 29].

1.2.4. Rare Region Effects. We now discuss the effect of rare strong dis-

order fluctuations on phase transitions. Let us consider a randomly diluted classical

magnet (Fig. 1.10). The dilution reduces the transition temperature from its clean

value Tc to the new value Tc(p), where p is the vacancy concentration. However,

there will always be large spatial regions (rare regions) that are devoid of impurities.

For temperatures Tc(p) < T < Tc, they can show local order even if the bulk system

is in the disordered phase. The locally ordered rare regions are not static but they

fluctuate slowly. Griffiths showed that the rare regions can lead to a singularity in

the free energy in a whole parameter region Tc(p) < T < Tc, which is now known

as the Griffiths phase [30]. The effect of the rare regions depends on the effective

dimension of the rare regions. Three cases can be distinguished [31]:

(i) If the rare regions are below the lower critical dimensionality d−c of the

problem, an isolated rare region cannot undergo the phase transition by itself. As

will be shown in Sec. 1.2.5, the Griffiths singularity is only an essential one and the

resulting rare-region contributions to observables are small. This case is realized in

generic classical systems (where the rare regions are finite in all directions and thus

effectively zero-dimensional). It also happens at some quantum phase transitions such

as the transition in the diluted bilayer Heisenberg quantum antiferromagnet [32, 33].

Here, the rare regions are equivalent to one-dimensional classical Heisenberg models

which are below d−c = 2.

(ii) In the second class, the rare regions are exactly at the lower critical dimen-

sion. In this case, the system shows strong power-law quantum Griffiths singularities

(see Secs. 1.2.6, 1.2.7). This case is realized, e.g., in classical Ising models with linear

defects [34] and random quantum Ising models (each rare regions corresponds to a

one-dimensional classical Ising model in imaginary time direction) [28] as well as in
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Figure 1.10: Schematic plot of a diluted magnet. Circled shaded area (rare region)
is devoid of impurities.

the disordered itinerant quantum Heisenberg magnets (the rare regions are equivalent

to classical one-dimensional Heisenberg models with 1/τ 2 interaction) [31].

(iii) Finally, in the third class, the rare regions are above the lower critical

dimension, i.e., they can undergo the phase transition independently from the bulk

system. This leads to a smeared phase transition (see Sec. 1.2.8). Examples are:

classical Ising magnets with planar defects [35] (the rare regions are effectively two-

dimensional) and itinerant quantum Ising magnets [36, 37] where the rare regions are

equivalent to classical one-dimensional Ising models with 1/τ 2 interaction.

1.2.5. Classical Griffiths Effects. Uncorrelated disorder at classical phase

transitions leads to exponentially weak classical Griffiths singularities (the singularity

in the free energy is only an essential one). The singularities in thermodynamic

observables can be estimated using optimal fluctuation theory [38, 39].

Let us consider the diluted classical magnet (Fig. 1.10). The probability for

the finding an impurity-free region of linear size LRR is
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P(LRR) ∼ exp(−bLdRR) , (1.55)

with b a constant that depends on the disorder strength. For temperatures Tc(p) <

T < Tc, the system is in the Griffiths phase. In an external magnetic field h, a rare

region of linear size LRR can be polarized if µh > kBT , where µ ∼ LdRR is the magnetic

moment of a rare region. Using this condition, one can define a minimum volume of

a rare region that can be polarized, Ldm ∼ kBT/h. The rare-region contribution to

the magnetization-field curve can be estimated by summing over all polarized rare

regions

mRR(h) ∼
∫ ∞

Lm

dLRRP(LRR)L
d
RR ∼ exp(−bkBT/h) . (1.56)

Thus, the rare-region contribution is singular, however it is exponentially weak.

The contribution of the rare regions to the magnetic susceptibility can be

estimated easily. The order parameter susceptibility χ(LRR) is proportional to L
2d
RR.

Thus, the rare region contribution to the susceptibility grows as a power of its linear

size LRR. The rare region contribution to the total susceptibility can be obtained by

summing over all rare regions,

χRR ∼
∫

dLRRP(LRR)χ(LRR) . (1.57)

The power law increase of the susceptibility cannot overcome the exponential drop

in the rare region density P(LRR). Thus, the rare region contribution to the order

parameter susceptibility is exponentially weak [40].

1.2.6. Quantum Griffiths Effects. We have seen in the subsection (1.2.5)

that the rare-region effects are exponentially weak at classical phase transitions. In



29

this subsection, we discuss the rare-region effects at quantum phase transitions. At

quantum phase transitions quenched disorder is perfectly correlated in the imaginary

time direction which becomes infinitely extended at zero temperature. This leads to

enhanced rare-region effects [17, 18].

For definiteness, we consider the random transverse-field Ising model with

random interactions and homogeneous field. Let us assume that the interactions

are binary distributed random variables, so the interaction can take values Jl or Jh

(Jh > Jl). Because of the disorder, the critical field hc will be between hc,h and hc,l,

critical fields of hypothetical systems with Ji ≡ Jh or Ji ≡ Jl. The probability for

finding a rare region of linear size LRR, which has only strong bonds is exponentially

small in its volume

P ∼ exp(−bLdRR) . (1.58)

In the Griffiths phase hxc,l < hx < hxc,h, these rare regions are locally ordered. The

energy gap of a rare region is given by [41]

ε ∼ exp(−cLdRR) , (1.59)

where c = log(h/J). Combining the last two Eqs. (1.58, 1.59) leads to the power-law

density of states of the rare-region excitations in the low-energy regime,

ρ(ε) ∼ ελ−1 . (1.60)

Here, λ = b/c is the non-universal Griffiths exponent. It varies systematically within

the Griffiths phase and vanishes at the critical point.

The power-law density of states ρ(ε) leads to non-universal power-law quantum

Griffiths singularities of several thermodynamic observables. The rare regions are
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equivalent to two-level systems with gap ε. The rare regions with energy gap ε > T

are in their quantum ground states while rare regions with gap ε < T are free. The

number n of free rare regions at temperature T can be found as

n(T ) ∼
∫

dǫρ(ǫ)e−ǫ/T/(1 + e−ǫ/T ) ∼ T λ . (1.61)

The uniform static susceptibility can be estimated by summing Curie suscep-

tibilities for all free rare regions, yielding

χ(T ) = n(T )/T ∼T λ−1 . (1.62)

The specific heat C can be obtained from

∆E ∼
∫

dǫρ(ǫ)ǫ e−ǫ/T/(1 + e−ǫ/T ) ∼ T λ+1 , (1.63)

which gives

C ∼ T λ . (1.64)

Knowing the specific heat, we can find the rare region contribution to the

entropy as

∆S ∼ T λ . (1.65)

To determine the zero-temperature magnetization in a small ordering field h,

we note that rare regions with ǫ < h are (almost) fully polarized while the rare regions
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with ǫ > h have very small magnetization. Thus,

m ∼
∫ h

0

dǫρ(ǫ) ∼ hλ . (1.66)

The power-law singularities (1.61 - 1.66) are called the quantum Griffiths singularities

[17, 18].

1.2.7. Quantum Griffiths Singularities in Metals. Let us now discuss

rare-region effects at quantum phase transitions in a disordered metal. The standard

model that describes quantum phase transitions in metals was introduced by Hertz

[14]. He derived the model from a microscopic Hamiltonian of interacting electrons

(Hubbard model) by integrating out the fermionic degrees of freedom in the partition

function. As the result, he obtained Landau-Ginzburg-Wilson order parameter field

theories for the ferromagnetic and antiferromagnetic quantum phase transitions.

An important difference between systems of localized spins and metallic mag-

nets is that magnetic excitations are undamped in the localized spin systems while

they are damped in the itinerant magnets. This is the result of the coupling between

magnetic degrees of freedom and the gapless particle-hole excitations in the metal.

The damping is reflected in the frequency-dependent term in the Landau-Ginzburg-

Wilson action. The Landau-Ginzburg-Wilson action of the clean transition is given

by [14]

S =

∫

dτ

∫

ddx
[

φ(x, τ)Γ(x, τ)φ(x, τ) + uφ4(x, τ)
]

. (1.67)

where φ(x, τ) is the order parameter field, magnetization for a ferromagnet and stag-

gered magnetization for an antiferromagnet. It is a scalar for Ising symmetry, while

it has three components (φ1, φ2, φ3) for a Heisenberg magnet. Γ(x, τ) is the Gaussian



32

vertex whose Fourier transform is

Γ(q, ωn) = r + q2 + γ(q)|ωn| . (1.68)

Here, ωn is a bosonic Matsubara frequency. The linear frequency dependence corre-

sponds to the overdamped dynamic of the system. This so-called Landau damping

is Ohmic. In contrast, for undamped dynamics the leading frequency dependence in

(1.68) would be ω2
n. The form of γ(q) depends on the type of the transition. For anti-

ferromagnetic transitions it is a constant γ(q) = γ0 for q→ 0 while for ferromagnetic

transitions γ(q) ∼ 1/|q|a. In the former case, the lifetime of the spin-fluctuations

(paramagnons) is q−independent reflecting the fact that the order parameter is not

a conserved quantity and paramagnons can decay locally. In the latter case, the

lifetime is q−dependent. This is due to the fact that the order parameter, the total

magnetization, is a conserved quantity in the ferromagnet. Relaxation of a low−q

excitations thus requires transporting the order parameter over a large distance which

takes a long time and has to diffuse over a large distance, in long times. The value

of a depends on the character of the electron motion in the system and equals 1 or

2 for ballistic and diffusive ferromagnets, respectively. The effect of long-range inter-

actions created by soft modes in the itinerant ferromagnet modifies the rare-region

effects [42]. We will discuss dirty ferromagnetic metals in detail in Paper IV. Here,

we discuss antiferromagnetic metals.

Consider for example, an itinerant antiferromagnetic Heisenberg model. The

randomness can be introduced by making r a random function of position, r →

r + δr(x). The rare regions are finite in the d space dimensions and infinitely large

in imaginary time. Let us consider a single large rare region which is locally ordered,

while the bulk system is in the disordered phase. In the presence of damping, the

action (1.67) contains the linear dependence of the frequencies which is equivalent
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to a long-range interaction in imaginary time of the form 1/(τ − τ ′)2. Thus, each

rare region is equivalent to an one-dimensional Heisenberg model with a long-range

interaction 1/τ 2. This model is known to be exactly at its lower critical dimension.

Correspondingly, the characteristic energy ε of a rare region decreases exponentially

with its volume LdRR, resulting in power-law Griffiths singularities analogous to those

in the random transverse-field Ising model (1.61 - 1.66). Without damping, the in-

teraction in imaginary time direction would be short-ranged and the corresponding

one-dimensional Heisenberg model is below its lower critical dimension. Thus, the

characteristic energy ε decreases as a power-law with its volume, leading to the ex-

ponentially small contributions to the thermodynamic observables.

In recent years, indications of quantum Griffiths phases have been observed

in experiments on a number of metallic systems such as magnetic semiconductors

[43, 44, 45], Kondo lattice ferromagnets [46, 47] and transition metal ferromagnets

[48, 49]. The phase diagram of Ni1−xVx is shown in Fig. 1.11. Pure Nickel undergoes

a ferromagentic phase transition at 630K. By doping vanadium atoms, the critical

temperature decreases. At constant temperature, the transition can be tuned by

changing the concentration of vanadium atoms. At zero temperature, the Ni1−xVx

compound under goes a quantum phase transition at vanadium concentration of xc ≈

11.4%. As shown in Fig. 1.12a , for concentrations slightly above xc (11 − 15%) the

temperature dependence of the magnetic susceptibility is described by non-universal

quantum Griffiths power laws for temperatures 30–300K. As shown in Fig. 1.12b,

the magnetization-field curves show non-linear behaviors above 3000 Gauss. These

behaviors are in very good agreement with the Griffiths singularities (1.62) and (1.66).

1.2.8. Smeared Phase Transitions. In the last subsection, we have seen

that at lower temperatures, i.e., when damping is sufficiently strong, itinerant Heisen-

berg magnets display power-law Griffiths singularities. Millis et al. [36, 37] showed

that metallic Ising magnets show qualitatively different behavior.
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Figure 1.11: Temperature-composition magnetic phase diagram of Ni1−xVx (see
Ref. [48] for more details).

At zero temperature, each rare region is equivalent to a one-dimensional clas-

sical Ising model finite in the d space dimensions and infinite in imaginary time. The

interaction in the imaginary time direction is short-range without damping, while

Ohmic damping leads to a long-range 1/τ 2 interaction. The one-dimensional Ising

model with 1/τ 2 long-range interaction is known to have a phase transition [50].

Thus, each rare region undergoes the phase transition independently, i.e., individual

rare regions stop tunneling, leading to the smearing of the global phase transition.

At higher temperatures but below a microscopic cutoff scale, the damping is unim-

portant, i.e., the interaction is short range. In this case, the Ising model is exactly

at its lower critical dimension d−c = 1. Correspondingly, the energy gap ǫ decreases

exponentially with its volume. Thus, the dissipationless quantum Ising model can

show quantum Griffiths singularities.

We now sketch the theory of smeared phase transitions in disordered metallic

Ising systems proposed by Vojta [17, 51]. Using optimal fluctuation theory, we can

study the thermodynamics for small order parameter M . Let us again assume that
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the disorder is introduced via dilution. The probability for finding a rare region of

width LRR is given by

P ∼ exp(−bLdRR) . (1.69)

Such rare regions develop static order if the local distance from criticality fulfills

r < rc(LRR) < 0. Since rare regions are finite in space, using finite size-scaling

[52, 53], we can find

rc(LRR) = A/LφRR , (1.70)

with A < 0, Here, φ is the finite-size scaling shift exponent. Thus, the probability

for finding a rare region which becomes locally ordered at rc is exponentially small

P(tc) ∼ exp(−b̃|rc|−d/φ) , (1.71)

where b̃ is a constant. The total order parameter can be obtained by summing over all

rare regions showing local orders i.e. rc > r. This yields an exponential tail towards

the clean critical point

M(t) ∼ exp(−b̃|r|−d/φ) . (1.72)

Thus, the global phase transition is destroyed by rounding, because static order can

develop on isolated rare regions.

At non-zero temperatures, the static magnetic order on the rare regions is

destroyed, and a finite interaction of the order of the temperature is necessary to

align them. This means that the sharp phase transition is recovered. To estimate

the critical temperature Tc that bounds the ferromagnetic phase we note that the
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Figure 1.12: Behavior of observables in the quantum Griffiths phase. (a) The tem-
perature dependence of magnetic susceptibility of Ni1−xVx for different
Vanadium concentrations. Dotted lines represent fits to Eq. (1.62). The
solid lines represent a model that sums a quantum Griffiths law and a
Curie term (see Ref. [48] for more details). (b) Magnetization versus
field. The dashed lines represents fits to Eq. (1.66).

interaction between two rare regions drops off exponentially with their distances x,

Eint ∼ e−x/ξ [51], where ξ is the bulk correlation length. The typical distance xtyp

between neighboring locally ordered rare regions can be estimated from their density,

ρ, as xtyp ∼ ρ−1/d ∼ M−1/d. Therefore, the critical temperature dependence on r is

thus

log(1/Tc) ∼ exp(−b̃|r|−d/φ) . (1.73)

If we take a Ruderman-Kittel-Kasuya-Yosida type interaction into account which

decays as 1/xd with distance but is not contained in Hertz’s theory, the r−dependence

of Tc changes to a simple exponential [51].

Let us now consider classical smeared phase transitions. A classical system

with uncorrelated disorder cannot show a smeared phase transition because all rare
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regions are of finite size and cannot undergo true phase transition at non-zero temper-

atures. However, if quenched disorder is perfectly correlated in one or more dimen-

sions then rare regions are infinitely extended. If the number of correlated dimensions

dcor is high enough then large rare regions can undergo the phase transition indepen-

dently of the bulk system. This leads to a destruction of the sharp transition by

smearing [17].

Let us consider a classical random Ising model (Fig. 1.13). Assume that the

disorder is correlated in a sufficiently large dimension dcor = 2 and it is distributed

randomly in dran = d−dcor dimension, so that the system undergoes a smeared phase

transition. Optimal fluctuation theory for the behavior of the observable in the tail

can be developed along the same lines as the theory above. The only difference is that

the randomness is restricted in dran dimension. The dimensionality d in Eqs. (1.72,

1.73) therefore needs to be replaced by dran, yielding

M(r) ∼ e−b̃|r|
−dran/φ

. (1.74)

and

log(1/Tc) ∼ exp(−b̃|r|−dran/φ) . (1.75)

1.3. FERMI LIQUIDS AND NON FERMI LIQUIDS

1.3.1. Landau Fermi-Liquid Theory. The Fermi-liquid theory is a pheno-

logical model of interacting fermions that describes the normal state of most metals at

low temperatures [54]. The theory of Fermi-liquids was developed by Landau in 1956,

and later refined by Abrikosov et al. (see e.g. [55]). According to the Fermi-liquid

theory, a gas of interacting fermionic particles is equivalent to a system of almost

non-interacting quasiparticles.
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Figure 1.13: Randomly layered magnet: disorder is correlated in two dimensions.

Based on the idea of turning on the interactions between particles adiabati-

cally, Landau suggested that the excited states of the interacting system correspond

one-to-one to the excited states of the noninteracting system, so that the total par-

ticle number, spin, and momentum are conserved. However, dynamical properties,

such as mass, magnetic moment etc. are renormalized to new values. Imagine, start-

ing with a noninteracting system with one particle in state k, σ added to the ground

state Fermi sea. Turning on the interactions, the particle becomes “dressed” by in-

teractions; this results in a state with the characteristics of a particle in an excited

state with definite momentum k, and spin σ. However, it is not a true eigenstate of

the interacting Hamiltonian. It is called a quasiparticle.

The Fermi-liquid theory is valid if the typical excitation energy i.e. T , is much

larger then the rate of the change of the Hamiltonian ζ (because of adiabatic turning

on of the interactions), and the lifetime of the quasiparticle τlife is long compared to

ζ−1, otherwise it will decay away during its birth. Thus, there is an energy window
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where the Fermi-liquid theory makes sense,

τ−1
life ≪ ζ ≪ T . (1.76)

Within Fermi-liquid theory, the lifetime is inversely proportional to the square of the

temperature, τ−1
life ∝ T 2. Thus, there is always a temperature range at low temper-

atures where Eq. (1.76) is fulfilled. Within the Fermi-liquid theory the behavior of

observables shows universal temperature dependencies (see Table 1.2) [56].

1.3.2. Metals Near a Quantum Critical Point. The Fermi-liquid theory

has been very successfully in describing the low-temperature behavior of normal met-

als. However, some experimental measurements show strong deviations from Fermi-

liquid behavior (e.g. [13]). Non Fermi-liquid behavior is often observed to occur near

a quantum critical point. For example, such non Fermi-liquid behavior was observed

experimentally in the CeCu6−xAux compounds [57]. In these compounds, the phase

transition is tuned by changing the gold concentration. The quantum critical point

is found at a concentration xc ≈ 0.1. For concentrations x < xc, the system is in a

non-magnetic phase, while for x > xc, the system is in the antiferromagentic phase.

Fig. (1.14a) shows specific heat data in the vicinity of the quantum critical point

plotted as C/T . The specific heat shows a T log(T ) form between 0.06 K and 2.5 K,

indicating non Fermi-liquid behavior. Non Fermi-liquid behavior is observed also in

resistivity data shown in Fig. (1.14b). Far away from critical point, for concentrations

x = 0.5 and x = 1 system shows Fermi-Liquid behavior, i.e., resistivity ρ ∼ T 2. At

the critical point, non Fermi-liquid behavor is observed with ρ ∼ T .

1.3.3. Semi-Classical Boltzmann Theory. In this subsection, we discuss

transport phenomena in metals [58] within the semi-classical Boltzmann transport

formalism.
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Table 1.2: Behaviors of observables in the Fermi-liquid.

Specific heat C ∼ T
Entropy S ∼ T

Pauli susceptibility χ ∼ const.
Electrical resistivity ρ ∼ T 2

In semi-classical approximation, an electron wavepacket is constructed from a

superposition of plane wave states, so that its size dr in space is much smaller then its

mean free path l, i.e., the length traveled by electrons between successive collisions.

This allows us to consider electrons as point-like quasiparticles. In order to assign a

mean wave number k, to the wave packet, electrons should be localized in k space,

i.e. dk ≪ k. According to the Heisenberg uncertainty principle dkdr ≈ 1, which

implies that the mean wave length of the electron λ = 2π/k should be much smaller

than the mean free path l: λ≪ l.

A macroscopic system contains of the order of 1023 electrons; therefore it is im-

possible to solve the equations of motion for each electron and a statistical treatment

is needed. It is useful to know what electrons do “on average” and less important

what each particular electron does. The Boltzmann transport equation describes the

time evolution of the electron distribution function f(r, k, t), i.e., the occupancy of

state k at position r and time t. The distribution function can change due to three

reasons: diffusion, drift and collisions. The diffusion is caused by any gradient in

electron concentration, e.g ∂f/∂r, whereas the drift (diffusion in k space) is caused

by external forces. The collisions are due to “internal” forces between electrons. The

time evolution of the electron distribution function is given by Boltzmann transport

equation
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Figure 1.14: Low-temperature begavior of the CeCu6−xAux compound. (a) Specific
heat, plotted as C/T versus log(T ) for different concentrations of Au
atoms. (b) The resistivity ρ as a function of temperature T for the
concentrations of Au: x = 0.5, x = xc = 0.1 and x = 1. Data taken
from Ref. [57].
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Here, on the right hand side, the first and second terms correspond to the changes of

the electron distribution function f due to the diffusion and drift, respectively. The

last one is the collision term, which depends on the microscopic scattering mechanism.

The total local rate of change of the distribution must vanish in a steady state.

Assume there is elastic scattering only, from state |k〉 to state |k′〉. The

scattering probability Pkk′dk′ is given by

Pkk′dk′ = fk(1− fk′)Zkk′dk′ . (1.78)
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Here, Zkk′ is transition amplitude. Summing over all states k′ from which the particle

may come and into which it may go, we obtain

∂f

∂t

∣

∣

∣

∣

coll

=

∫

[fk′(1− fk)− fk(1− fk′)]Zkk′dk′ . (1.79)

Combining the two Eqs. (1.77, 1.79) gives a nonlinear integrodifferential equation for

the distribution function

−vk ·
∂f

∂r
− k̇ · ∂f

∂k
+

∫

[fk′(1− fk)− fk(1− fk′)]Zkk′dk′ = 0 . (1.80)

It is clear that finding a complete solution of this equation must be beyond

feasibility in most cases. Hence, approximations must be made. A very common

simplification is the linearization for small deviations from equilibrium, i.e., fk =

f 0
k + δfk, where f

0
k is the equilibrium Fermi-Dirac distribution function. Substituting

the approximated fk into Eq. (1.81), and keeping terms to leading order in δfk, gives

the linearized Boltzmann equation in the form

−vk ·
∂f 0

∂T
∇T − k̇ · ∂f

0

∂k
= −

∫

[(fk − f 0
k)− (fk′ − f 0

k′)]Zkk′dk′ . (1.81)

While we discussed only elastic scattering above, a similar equation with modified

transition rates Zkk′ is obtained for inelastic scattering. Transition rates Zkk′ can be

calculated from the microscopic Hamiltonian using Fermi’s golden rule.

The task of finding a solution of a linearized inhomogeneous integral Boltz-

mann equation is a typical problem of applied mathematics. It is well known that the

solution can be formally constructed be applying a variational principle to a general

trial function [58]. For this approach it is convenient to introduce a new function Φk



43

defined by

fk = f 0
k − Φk

∂f 0
k

∂εk
. (1.82)

Φk is a measure of the deviation of the electron distribution from equilibrium. By

defining the scattering operator P̂

P̂(...) =
∫

dk′(...)Pkk′ , (1.83)

one can write the right side of the Boltzmann Eq. (1.81) as P̂Φk/T . In the same way,

X is defined such that X /T matches the left side of the Eq. (1.81). This leads to the

new alternative formulation of the Boltzmann equation in the form

X = P̂Φk . (1.84)

Defining an inner product by

〈Φ,Ψ〉 =
∫

dkΦkΨk . (1.85)

leads to

〈Φ,X〉 = 〈Φ, P̂Φ〉 . (1.86)

The variational principle states that among all functions which satisfy this

condition, the solution of the integral equation maximizes 〈Φ, P̂Φ〉. Alternatively, it

can be formulated as follow: the solution of the integral Eq. (1.86) gives the minimal
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value to the functional

〈Φ, P̂Φ〉
〈Φ,X〉2 . (1.87)

The variational principle can be formulated in thermodynamics and in trans-

port properties as well. In the thermodynamics, the variational principle states that

in the steady state the currents in the sample are such that the entropy production

takes its maximum value [58].

According to the variational principle, the electrical resistivity in the steady

state is given by as minimum of a functional of Φk

ρ =
〈Φ, P̂Φ〉

〈Φ,X (E = 1)〉2 , (1.88)

where E is the external electrical field which is related to the change of the k vector

as k̇ = E.

Thus, the electrical resistivity is the extremal value of the variational function

in unit electric field. Similarly, the variational principle can be applied to other

transport properties such as the thermal conductivity, the Peltier coefficient and the

thermopower [58].

1.4. SUMMARY

In this section, an introduction was given to classical and quantum phase

transitions (Section. 1.1). We derived the critical behavior of observable quantities

near the phase transition within the Landau mean-field approach. We also showed

that for dimensions d < 4 the Landau theory breaks down; and we discussed the

Landau-Ginzburg-Wilson theory which works for dimensions d < 4. In addition, we

discussed the scaling theory to characterize critical behavior and gave an introduction
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to the renormalization group method in momentum space which can be used to solve

the Landau-Ginzburg-Wilson theory.

Section 1.2 was devoted to a discussion of how disorder can affect phase transi-

tions. We saw that disorder can have much more dramatic effects on quantum phase

transitions than on classical phase transitions. The impurities and defects may lead

to strong-disorder phenomena including power-law quantum Griffiths singularities,

infinite-randomness critical points and the smearing of the phase transition. Quan-

tum Griffiths singularities are caused by rare spatial configurations of the disorder

(rare regions) that fluctuate very slowly. As a consequence, observables display sin-

gular behavior not just at criticality but in a whole parameter region near the critical

point which is called the quantum Griffiths phase. If rare regions show static order,

i.e., they undergo the phase transition independently of the bulk system, they lead

to a smearing of the global phase transition. We also briefly discussed the strong-

disorder renomalization group which can be used to study the critical behavior of the

observable quantities on disordered system.

In the Section 1.3, we considered the Fermi-liquid theory which describes

the behavior of observable quantities in normal metals at low temperatures. We

showed that the strong quantum fluctuations near quantum phase transitions can

cause significant deviations from the Fermi-liquid behavior of normal metals. In

addition, we introduced the semi-classical Boltzmann transport theory which can be

used to study the transport properties near quantum phase transitions in metals.

We also discussed the solution of the Boltzmann transport equation by means of a

variational principle.



46

PAPER

I. COMPOSITION-TUNED SMEARED PHASE TRANSITIONS

Fawaz Hrahsheh, David Nozadze, and Thomas Vojta

1Department of Physics, Missouri University of Science & Technology,

Rolla, MO 65409

ABSTRACT∗

Phase transitions in random systems are smeared if individual spatial regions

can order independently of the bulk system. In this paper, we study such smeared

phase transitions (both classical and quantum) in substitutional alloys A1−xBx that

can be tuned from an ordered phase at composition x = 0 to a disordered phase at

x = 1. We show that the ordered phase develops a pronounced tail that extends over

all compositions x < 1. Using optimal fluctuation theory, we derive the composition

dependence of the order parameter and other quantities in the tail of the smeared

phase transition. We also compare our results to computer simulations of a toy model,

and we discuss experiments.
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1. INTRODUCTION

When a phase transition occurs in a randomly disordered system, one of the

most basic questions to ask is whether the transition is still sharp, i.e., associated

with a singularity in the free energy. Naively, one might expect that random dis-

order rounds or smears any critical point because different spatial regions undergo

the transition at different values of the control parameter. This expectation turns

out to be mistaken, as classical (thermal) continuous phase transitions generically

remain sharp in the presence of weak randomness. The reason is that a finite-size

region cannot undergo a true phase transition at any nonzero temperature because

its partition function must be analytic. Thus, true static long-range order can only

be established via a collective phenomenon in the entire system

Recent work has established, however, that some phase transitions are indeed

smeared by random disorder. This can happen at zero-temperature quantum phase

transitions when the order parameter fluctuations are overdamped because they are

coupled to an (infinite) heat bath.[51, 59] As the damping hampers the dynamics, suf-

ficiently large but finite-size regions can undergo the phase transition independently

from the bulk system. Once several such regions have developed static order, their

local order parameters can be aligned by an infinitesimally small mutual interaction.

Thus, global order develops gradually, and the global phase transition is smeared.

Classical thermal phase transitions can also be smeared provided the disorder is per-

fectly correlated in at least two dimensions. In these cases, individual “slabs” of finite

thickness undergo the phase transition independently of the bulk system.[35, 60]

The existing theoretical work on smeared phase transitions focuses on situa-

tions in which a sample with some fixed degree of randomness is tuned through the

transition by changing the temperature (for classical transitions) or the appropriate

quantum control parameter such as pressure or magnetic field (for quantum phase
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transitions). However, many experiments are performed on substitutional alloys such

as CePd1−xRhx or Sr1−xCaxRuO3. These materials can be tuned from an ordered

phase (ferromagnetic for the two examples) at composition x = 0 to a disordered

phase at x = 1 while keeping the temperature and other external parameters fixed,

i.e., they undergo a phase transition as a function of composition. The composition

parameter x actually plays a dual role in these transitions. On the one hand, x is

the control parameter of the phase transition. On the other hand, changing x also

changes the degree of randomness. If such a composition-tuned phase transition is

smeared, its behavior can therefore be expected to be different than that of smeared

transitions occurring at fixed randomness.

In this paper, we investigate the properties of composition-tuned smeared

phase transitions in substitutional alloys of the type A1−xBx. We show that the

ordered phase extends over the entire composition range x < 1, and we derive the

behavior of the system in the tail of the smeared transition. Our paper is organized

as follows. In Sec. 2, we consider a smeared quantum phase transition in an itinerant

magnet. We use optimal fluctuation theory to derive the composition dependence of

the order parameter, the phase boundary, and other quantities. In Section 3 we briefly

discuss how the theory is modified for smeared classical transitions in systems with

correlated disorder. Section 4 is devoted to computer simulations of a toy model that

illustrate and confirm our theory. We conclude in Sec. 5 by comparing composition-

tuned smeared transitions with those occurring at fixed randomness. We also discuss

experiments.

2. SMEARED QUANTUM PHASE TRANSITION

2.1. Model and Phase Diagram. In this section we investigate the ferro-

magnetic or antiferromagnetic quantum phase transition of itinerant electrons with
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Ising order parameter symmetry. In the absence of quenched randomness, the Landau-

Ginzburg-Wilson free energy functional of this transition in d space dimensions reads

[14, 15]

S =

∫

dydz ψ(y)Γ(y, z)ψ(z) + u

∫

dy ψ4(y) . (1.1)

Here, ψ is a scalar order parameter field, y ≡ (y, τ) comprises imaginary time τ

and d-dimensional spatial position y,
∫

dy ≡
∫

dy
∫ 1/T

0
dτ , and u is the standard

quartic coefficient. Γ(y, z) denotes the bare inverse propagator (two-point vertex)

whose Fourier transform reads

Γ(q, ωn) = r + ξ20q
2 + γ0(q) |ωn| . (1.2)

Here, r is the distance from criticality,† ξ0 is a microscopic length scale, and ωn is a

Matsubara frequency. The dynamical part of Γ(q, ωn) is proportional to |ωn|. This

overdamped dynamics reflects the Ohmic dissipation caused by the coupling between

the order parameter fluctuations and the gapless fermionic excitations in an itinerant

system. The damping coefficient γ0(q) is q-independent for an antiferromagnetic

transition but proportional to 1/|q| or 1/|q|2 for ballistic and diffusive ferromagnets,

respectively.

We now consider two materials A and B. Substance A is in the magnetic

phase, implying a negative distance from criticality, rA < 0, while substance B is

nonmagnetic with rB > 0. By randomly substituting B-atoms for the A-atoms to

form a binary alloy A1−xBx, we can drive the system through a composition-driven

magnetic quantum phase transition.

A crucial role in this transition is played by rare A-rich spatial regions. They

can be locally in the magnetic phase even if the bulk system is nonmagnetic. In

†Strictly, one needs to distinguish the bare distance from criticality that appears in (1.2) from
the renormalized one that measures the distance from the true critical point. We suppress this
difference because it is unimportant for our purposes.
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the presence of Ohmic dissipation, the low-energy physics of each such region is

equivalent to that of a dissipative two-level system which is known to undergo, with

increasing dissipation strength, a phase transition from a fluctuating to a localized

phase.[61] Therefore, the quantum dynamics of sufficiently large rare regions com-

pletely freezes,[36] and they behave as classical superspins. At zero temperature,

these classical superspins can be aligned by an infinitesimally small residual inter-

action which is always present as they are coupled via the fluctuations of the para-

magnetic bulk system. The order parameter is thus spatially very inhomogeneous,

but its average is nonzero for any x < 1 implying that the global quantum phase

transition is smeared by the disorder inherent in the random positions of the A and

B atoms.[17, 18, 51]

At small but nonzero temperatures, the static magnetic order on the rare re-

gions is destroyed, and a finite interaction of the order of the temperature is necessary

to align them. This restores a sharp phase transition at some transition temperature

Tc(x) which rapidly decreases with increasing x but reaches zero only at x = 1. If the

temperature is raised above Tc, the locally ordered rare regions act as independent

classical moments, leading to super-paramagnetic behavior. A sketch of the resulting

phase diagram is shown in Fig. 1.

2.2. Optimal Fluctuation Theory. In this section, we use optimal fluctu-

ation theory [62, 63, 64] to derive the properties of the tail of the smeared quantum

phase transition. This is the composition range where a few rare regions have devel-

oped static magnetic order but their density is so small that they are very weakly

coupled.

A crude estimate of the transition point in the binary alloy A1−xBx can be

obtained by simply averaging the distance from criticality, rav = (1 − x)rA + xrB.

The transition point corresponds to rav = 0. This gives the critical composition in
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Figure 1: (Color online) Schematic temperature-composition phase diagram of a bi-
nary alloy A1−xBx displaying a smeared quantum phase transition. In the
tail of the magnetic phase, which stretches all the way to x = 1, the rare
regions are aligned. Above Tc, they act as independent classical moments,
resulting in super-paramagnetic (PM) behavior. x0c marks the critical com-
position in average potential approximation defined in (1.3).

“average potential approximation,”

x0c = −rA/(rB − rA) . (1.3)

Let us now consider a single A-rich rare region of linear size LRR embedded

in a nonmagnetic bulk sample. If the concentration xloc of B atoms in this region

is below some critical concentration xc(LRR), the region will develop local magnetic

order. The value of the critical concentration follows straightforwardly from finite-size

scaling,[52, 53]

xc(LRR) = x0c −DL−φ
RR , (1.4)

where φ is the finite-size shift exponent and D is a constant. Within mean-field

theory (which should be qualitatively correct in our case because the clean transition

is above its upper critical dimension[14]), one finds φ = 2 and D = ξ20/(rB − rA).
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Since xc(LRR) must be positive, (1.4) implies that a rare region needs to be larger

than Lmin = (D/x0c)
1/φ to develop local magnetic order.

As the last ingredient of our optimal fluctuation theory, we now analyze the

random distribution of the atoms in the sample. For simplicity, we assume that the

lattice sites are occupied independently by either A or B atoms with probabilities 1−x

and x, respectively. Modifications due to deviations from a pure random distribution

(i.e., clustering) will be discussed in the concluding section 5. The probability of

finding NB = Nxloc sites occupied by B atoms in a spatial region with a total of

N ∼ LdRR sites is given by the binomial distribution

P (N, xloc) =

(

N

NB

)

(1− x)N−NBxNB . (1.5)

We are interested in the regime x > x0c where the bulk system will not be magnetically

ordered but xloc = NB/N < xc(LRR) such that local order is possible in the region

considered.

To estimate the total zero-temperature order parameter M in the tail of the

smeared transition (where the rare regions are very weakly coupled), we can simply

sum over all rare regions displaying local order

M ∼
∫ ∞

Lmin

dLRR

∫ xc(LRR)

0

dxlocm(N, xloc)P (N, xloc) . (1.6)

Here, m(N, xloc) is the order parameter of a single region of N sites and local compo-

sition xloc; and we have suppressed a combinatorial prefactor. We now analyze this

integral in two parameter regions, (i) the regime where x is somewhat larger than x0c

but not by too much, and (ii) the far tail of the transition at x→ 1.
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If x is not much larger than x0c , the rare regions are expected to be large, and

we can approximate the binomial distribution (1.5) by a Gaussian,

P (N, xloc) =
1

√

2πN(1−N)
exp

[

−N (xloc − x)2
2x(1− x)

]

(1.7)

To exponential accuracy in x, the integral (1.6) can now be easily performed in

saddle point approximation. Neglecting m(N, xloc), which only modifies power-law

prefactors, we find that large rare regions of size LφRR = D(2φ − d)/[d(x − x0c)] and

maximum possible B-concentration xloc = x0c−DL−φ
RR dominate the integral. Inserting

these saddle point values into the integrand yields the composition dependence of the

order parameter as‡

M ∼ exp

[

−C (x− x0c)2−d/φ
x(1− x)

]

(1.8)

where C = 2(D/d)d/φ(2φ− d)d/φ−2φ2 is a non-universal constant.

Let us now analyze the far tail of the smeared transition, x→ 1. In this regime,

the binomial distribution cannot be approximated by a Gaussian. Nonetheless, the

integral (1.6) can be estimated in saddle-point approximation. We find that for x→ 1,

the integral is dominated by pure-A regions of the minimum size that permits local

magnetic order. This means LRR = Lmin = (D/x0c)
1/φ and xloc = 0. Inserting these

values into the integrand of (1.6), we find that the leading composition dependence

of the order parameter in the limit x→ 1 is given by a non-universal power law,

M ∼ (1− x)Ld
min = (1− x)(D/x0c)d/φ . (1.9)

We thus find thatM is nonzero in the entire composition range 0 ≤ x < 1, illustrating

the notion of a smeared quantum phase transition.

‡This result is valid for d < 2φ which is fulfilled for our transition. In the opposite case, the
integral over LRR is dominated by its lower bound, resulting in a purely Gaussian dependence of
M on x− x0

c .
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So far, we have focused on the zero-temperature order parameter. Other

quantities can be found in an analogous manner. Let us, for example, determine the

phase boundary, i.e., the composition dependence of the critical temperature Tc. As

was discussed in Sec. 2.1, the static magnetism of the rare regions is destroyed at

nonzero temperatures. Consequently, magnetic long-range order in the sample can

only develop, if the rare regions are coupled by an interaction of the order of the

temperature. The typical distance between neighboring locally ordered rare regions

can be estimated from their density, ρ, as rtyp ∼ ρ−1/d ∼M−1/d. Within the Landau-

Ginzburg-Wilson theory (1.1,1.2), the interaction between two rare regions drops off

exponentially with their distance r, Eint ∼ exp(−r/ξb), where ξb is the bulk correlation

length. This leads to a double-exponential dependence of Tc on x for compositions

somewhat above x0c , i.e., ln(1/Tc) ∼ exp{C(x − x0c)2−d/φ/[dx(1 − x)]}. For x → 1,

we find ln(1/Tc) ∼ (1 − x)−L
d
min/d. However, in a real metallic magnet, the locally

ordered rare regions are coupled by an RKKY-type interaction that decays as a

power law with distance, Eint ∼ r−d, rather than exponentially.[65] (This interaction

is not contained in the long-wavelength expansion implied in (1.2).) Therefore, the

composition dependence of the critical temperature takes the same form as that of

the magnetization,

Tc ∼ exp

[

−C (x− x0c)2−d/φ
x(1 − x)

]

(1.10)

for compositions somewhat above x0c and

Tc ∼ (1− x)Ld
min = (1− x)(D/x0c)d/φ (1.11)

in the far tail of the smeared transition, x→ 1.

We now turn to the order parameter susceptibility. It consists of two differ-

ent contributions, one from the paramagnetic bulk system and one from the locally

ordered rare regions. The bulk system provides a finite, non-critical background
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throughout the tail of the smeared transition. Let us discuss the rare region contri-

bution in more detail. At zero temperature, the total order parameter M is nonzero

for all x < 1. The rare regions therefore always feel a symmetry-breaking effective

field which cuts off any possible divergence of their susceptibilities. We conclude

that the zero-temperature susceptibility does not diverge anywhere in the tail of the

smeared transition. If the temperature is raised above Tc, the relative alignment of the

rare regions is lost, and they behave as independent large (classical) moments, lead-

ing to a super-paramagnetic temperature dependence of the susceptibility, χ ∼ 1/T

(see Fig. 1). At even higher temperatures, when the damping of the quantum dy-

namics becomes unimportant, we expect the usual non-universal quantum Griffiths

power-laws, χ ∼ T λ−1, where λ is the Griffiths exponent.[17, 18, 66]

3. SMEARED CLASSICAL PHASE TRANSITION

Classical (thermal) phase transitions with uncorrelated disorder cannot be

smeared because all rare regions are of finite size and can thus not undergo a true

phase transition at any nonzero temperature. However, perfect disorder correlations

in one or more dimensions lead to rare regions that are infinitely extended in the

thermodynamic limit. If the number of correlated dimensions is high enough, these

infinitely large rare regions can undergo the phase transition independently of the

bulk system, leading to a smearing of the global phase transition.[60] This happens,

for example, in a randomly layered Ising magnet, i.e., an Ising model with disorder

correlated in two dimensions.[35]
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In this section, we discuss how the theory of Sec. 2 is modified for these

smeared classical phase transitions. For definiteness, we consider a classical Landau-

Ginzburg-Wilson free energy in d dimensions,

S =

∫

dy ψ(y)[r − ∂2y]ψ(y) + u

∫

dy ψ4(y) . (1.12)

As in the quantum case, we now consider a binary “alloy” A1−xBx of two materials A

and B. The atoms are arranged randomly in d⊥ dimensions, while they are perfectly

correlated in d‖ = d− d⊥ dimensions. For example, if d⊥ = 1 and d‖ = 2, the system

would consist of a random sequence of layers, each made up of only A atoms or only

B atoms.

If the correlated dimension d‖ is sufficiently large, the “alloy” undergoes a

smeared classical phase transition as the composition x is tuned from 0 to 1 at a

(fixed) temperature at which material A is magnetically ordered, rA < 0, while

material B is in the nonmagnetic phase, rB > 0. The optimal fluctuation theory for

the behavior in the tail of the smeared transition can be developed along the same

lines as the theory in Sec. 2. The only important difference stems from the fact that

the randomness is restricted to d⊥ dimensions. The dimensionality d in eqs. (1.8)

and (1.9) therefore needs to be replaced by d⊥, leading to

M ∼ exp

[

−C (x− x0c)2−d⊥/φ
x(1− x)

]

(1.13)

for compositions somewhat above x0c and

M ∼ (1− x)L
d⊥
min = (1− x)(D/x0c)d⊥/φ

(1.14)

for x → 1. The same substitution of d by d⊥ was also found for smeared classical

transitions tuned by temperature rather than composition.[60]
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4. COMPUTER SIMULATIONS

To verify the predictions of the optimal fluctuation theory in Sec. 2 and to

illustrate our results, we have performed computer simulations of a toy model, viz., a

classical Ising model with d space-like dimensions and one time-like dimension. The

interactions are between nearest neighbors in the space-like directions but infinite-

ranged in the time-like ones. This (d + 1)-dimensional toy model retains the pos-

sibility of static order on the rare regions (which is crucial for the transition being

smeared) but permits system sizes large enough to study exponentially rare events.

The Hamiltonian reads

H = − 1

L τ

∑

〈y,z〉,τ,τ ′

Sy,τSz,τ ′ −
1

L τ

∑

y,τ,τ ′

JySy,τSy,τ ′ (1.15)

Here y and z are d-dimensional space-like coordinates and τ is the time-like coor-

dinate. Lτ is the system size in time direction and 〈y, z〉 denotes pairs of nearest

neighbors on the hyper-cubic lattice in space. Jy is a quenched random variable hav-

ing the binary distribution P (J) = (1− x) δ(J − Jh) + x δ(J − Jl) with Jh > Jl. In

this classical model Lτ plays the role of the inverse temperature in the corresponding

quantum system and the classical temperature plays the role of the quantum tuning

parameter. Because the interaction is infinite-ranged in time, the time-like dimen-

sion can be treated in mean-field theory. For Lτ →∞, this leads to a set of coupled

mean-field equations for the local magnetizations my = (1/Lτ )
∑

τ Sy,τ . They read

my = tanh β [Jymy +
∑

z

mz + h] , (1.16)

where the sum is over all nearest neighbors of site y and h → 0 is a very small

symmetry-breaking magnetic field which we typically set to 10−12. If all Jy ≡ Jh, the

system undergoes a (sharp) phase transition at Th = Jh + 2d, and if all Jy ≡ Jl, it
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undergoes the transition at Tl = Jl + 2d. In the temperature range Th > T > Tl, the

phase transition can therefore be tuned by composition x.

The mean-field equations (1.16) can be solved efficiently in a self-consistency

cycle. Using this approach, we studied systems in one, two, and three space dimen-

sions. The system sizes were up to L=10000 in 1d, and up to L = 100 in 2d and

3d. For each parameter set, the data were averaged over a large number of disorder

realizations. Details will be given with the individual results below.

Figure 2 shows an overview over the magnetizationM as a function of compo-

sition x for a (3+1)-dimensional system at several values of the classical temperature

in the interval Th > T > Tl.

The figure clearly demonstrates that the magnetic phase extends significantly

beyond the “average potential” value x0c = (Th − T )/(Th − Tl). In this sense, the

magnetic phase in our binary alloy benefits from the randomness. In agreement

with the smeared phase transition scenario, the data also show that M(x) develops

a pronounced tail towards x = 1. (By comparing different system sizes, we can

exclude that the tail is due to simple finite-size rounding.[60]) We performed similar

simulations for systems in one and two space dimensions, with analogous results.

To verify the theoretical predictions of the optimal fluctuation theory devel-

oped in Sec. 2, we now analyze the tail of the smeared phase transition in more

detail. Figure 3 shows a semi-logarithmic plot of the magnetization M vs. the com-

position x for a (1 + 1)-dimensional system, a (2 + 1)-dimensional system, and a

(3 + 1)-dimensional one. In all examples, the data follow the theoretical prediction

(1.8) over at least 2 orders of magnitude in M in a transient regime of intermediate

compositions x.

We also check the behavior of the magnetization for compositions very close

to x = 1. Since (1.9) predicts a non-universal power law, we plot log(M) vs.

log(1 − x) for a (3 + 1)-dimensional system in Fig. 4. The figure shows that the
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Figure 2: (Color online) Magnetization M vs composition x for a (3+1)-dimensional
system having Jh = 20, Jl = 8 and several values of the classical tempera-
ture T . The data represent averages over 100 samples of size L = 100. The
values of the critical concentration in “average potential approximation,”
x0c , are shown for comparison.

magnetization tail indeed decays as a power of (1 − x) with x → 1. The expo-

nent increases with increasing temperature in agreement with the prediction that it

measures the minimum size Nmin ∼ Ldmin a rare regions needs to have to undergo

the transition independently. The inset of Fig. 4 shows a fit of the exponent to

Ldmin ∼ [x0c(T )]
−3/2 = [(Th − T )/(Th − Tl)]−3/2. The equation describes the data rea-

sonably well; the deviations at small exponents can be explained by the fact that our

theory assumes the rare-region size to be a continuous variable which is not fulfilled

for rare regions consisting of just a few lattice sites.

Our computer simulation thus confirm the theoretical predictions in both com-

position regions in the tail of the transition. In a transient regime above x0c , we ob-

serve the exponential dependence (1.8) while the magnetization for x→ 1 follows the

non-universal power law (1.9).
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Figure 3: (Color online) log(M) vs x in the tail of the transition for three example
systems: (i) (3 + 1)-dimensional system with L = 100, Jh = 20, Jl = 8, and
T = 23, (ii) (2 + 1)-dimensional system with L = 100, Jh = 15, Jl = 8,
and T = 18, and (iii) (1 + 1)-dimensional system with L = 10000, Jh =
11, Jl = 8, and T = 12.8. All data are averages over 100 disorder configu-
rations. The solid lines are fits to (1.8), with the fit intervals restricted to
x ∈ (0.25, 0.55) in (1+1) dimensions, (0.6,0.72) in (2+1) dimensions and
(0.7,0.82) for the (3+1)-dimensional example.

5. CONCLUSIONS

In summary, we have investigated phase transitions that are tuned by changing

the composition x in a random binary alloy A1−xBx where pure A is in the ordered

phase while pure B is in the disordered phase. If individual, rare A-rich spatial regions

develop true static order, they can be aligned by an infinitesimal residual interaction.

This results in the smearing of the global phase transition, in agreement with the

classification put forward in Ref.

As an example, we have studied the quantum phase transition of an itinerant

Ising magnet of the type A1−xBx. At zero temperature, the ordered phase in this
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Figure 4: (Color online) log(M) vs log(1 − x) for a (3 + 1)-dimensional system with
L = 100, Jh = 20, Jl = 8 and several temperatures. All data are averages
over 100 disorder configurations. The solid lines are fits to the power-law
(1.9). The inset shows the exponent as a function of temperature, with the
solid line being a fit to [x0c(T )]

−3/2.

binary alloy extends over the entire composition range x < 1, illustrating the notion

of a smeared quantum phase transition. Upon raising the temperature, a sharp phase

transition is restored, but the transition temperature Tc(x) is nonzero for all x < 1

and reaches zero only right at x = 1 (see Fig. 1). Using optimal fluctuation theory,

we have derived the functional forms of various thermodynamic observables in the

tail of the smeared transition. We have also briefly discussed smeared classical phase

transitions that can occur in systems with correlated disorder, and we have performed

computer simulations of a toy model that confirm and illustrate the theory.

Although our results are qualitatively similar to those obtained for smeared

phase transitions occurring at fixed randomness as a function of temperature or an
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appropriate quantum control parameter, the functional forms of observables are not

identical. The most striking difference can be found in the far tail of the transition.

In the case of composition-tuning, the order parameter vanishes as a non-universal

power of the distance from the end of the tail (x = 1), reflecting the fact that the

minimum rare region size required for local magnetic order is finite. In contrast, if the

transition occurs at fixed composition as a function of temperature or some quantum

control parameter, the order parameter vanishes exponentially,[51, 60] because the

minimum size of an ordered rare region diverges in the far tail. These differences

illustrate the fact that the behavior of observables at a smeared phase transition is

generally not universal in the sense of critical phenomena; it depends on details of the

disorder distribution and how the transition is tuned. Only the question of whether

or not a particular phase transition is smeared is universal, i.e., determined only by

symmetries and dimensionalities.

Let us briefly comment on the relation of our theory to percolation ideas.

The optimal fluctuation theory of Sec. 2.2 applies for compositions x larger than the

percolation threshold of the A-atoms. Because the A-clusters are disconnected in

this composition range, percolation of the A atoms does not play a role in forming

the tail of the ordered phase at large x. Instead, distant rare regions are coupled via

the fluctuations of the paramagnetic bulk phase and, in metallic magnets, via the

RKKY interaction. Percolation does play a role, though, in the crossover between

the inhomogeneous order in the tail of the transition and the bulk order at lower x.

We note in passing that the behavior of a diluted system (where B represents

a vacancy) with nearest-neighbor interactions is not described by our theory. In this

case, the A-clusters are not coupled at all for compositions x larger than the A per-

colation threshold. Therefore they cannot align, and long-range order is impossible.

As a result, the super-paramagnetic behavior of the locally ordered clusters extends
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all the way down to zero temperature. This was recently discussed in detail on the

example of a diluted dissipative quantum Ising model.[67]

In the present paper, we have assumed that the A and B atoms are distributed

independently over the lattice sites, i.e., we have assumed that there are no correla-

tions between the atom positions. It is interesting to ask how the results change if

this assumption is not fulfilled, for example because like atoms tend to cluster. As

long as the correlations of the atom positions are short-ranged (corresponding to a fi-

nite, microscopic length scale for clustering), our results will not change qualitatively.

All arguments in the optimal fluctuation theory still hold using a typical cluster of

like atoms instead of a single atom as the basic unit. However, such clustering will

lead to significant quantitative changes (i.e., changes in the non-universal constants

in our results), as it greatly increases the probability of finding large locally ordered

rare regions. We thus expect that clustering of like atoms will enhance the tail and

move the phase boundary Tc(x) towards larger x. A quantitative analysis of this

effect requires explicit information about the type of correlations between the atom

positions and is thus relegated to future work.

Let us finally turn to experiment. Tails of the ordered phase have been ob-

served at many quantum phase transitions. However, it is often not clear whether

these tails are an intrinsic effect or due to experimental difficulties such as macro-

scopic concentration gradients or other macroscopic sample inhomogeneities. Recent

highly sensitive magneto-optical experiments on Sr1−xCaxRuO3 have provided strong

evidence for a smeared ferromagnetic quantum phase transition.§ The behavior of

the magnetization and critical temperature in the tail of the smeared transition agree

well with the theory developed here. Moreover, the effects of clustering discussed

above may explain the wide variation of the critical composition between about 0.5

and 1 reported in earlier studies.[68, 69, 70] We expect that our smeared quantum

§L. Demko et al., unpublished.
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phase transition scenario applies to a broad class of itinerant systems with quenched

disorder.
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ABSTRACT∗

We investigate the influence of spatial disorder correlations on smeared phase

transitions, taking the magnetic quantum phase transition in an itinerant magnet

as an example. We find that even short-range correlations can have a dramatic

effect and qualitatively change the behavior of observable quantities compared to

the uncorrelated case. This is in marked contrast to conventional critical points,

at which short-range correlated disorder and uncorrelated disorder lead to the same

critical behavior. We develop an optimal fluctuation theory of the quantum phase

transition in the presence of correlated disorder, and we illustrate the results by

computer simulations. As an experimental application, we discuss the ferromagnetic

quantum phase transition in Sr1−xCaxRuO3.

∗Published in Europhysics Letters 97, 20007 (2012).
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1. INTRODUCTION

Quenched disorder has various important consequences in condensed matter.

For example, disorder can change the universality class of a critical point [71, 72] or

even change the order of a phase transition [73, 74, 75].

In theoretical studies, the disorder is often assumed to be uncorrelated in

space even though many sample preparation techniques will produce some degree of

correlations between the impurities and defects. As long as the correlations are short-

ranged, i.e., characterized by a finite correlation length ξdis, this assumption is usually

justified if one is interested in the universal properties of critical points. (There are

exceptions for special, fine-tuned local correlations [76]). The reason why short-

range correlated disorder leads to the same behavior as uncorrelated disorder can

be easily understood within the renormalization group framework. Under repeated

coarse graining, a nonzero disorder correlation length ξdis decreases without limit.

The disorder thus becomes effectively uncorrelated on the large length scales that

determine the critical behavior.

A formal version of this argument follows from the Harris criterion [20]. It

states that a clean critical point is stable against weak uncorrelated disorder if its

correlation length critical exponent ν fulfills the inequality dν > 2 where d is the space

dimensionality. If the inequality is violated, the disorder is relevant and changes

the critical behavior. According to Weinrib and Halperin [77], spatially correlated

disorder leads to the same inequality as long as its correlations decay faster than

r−d with distance r. Thus, short-range correlated disorder and uncorrelated disorder

have the same effect on the stability of a clean critical point.

In this letter, we demonstrate that spatial disorder correlations are much more

important at smeared phase transitions, a broad class of classical and quantum phase

transitions characterized by a gradual, spatially inhomogeneous onset of the ordered
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phase [17]. Specifically, we show that short-range correlated disorder and uncorre-

lated disorder lead to qualitatively different behaviors. The disorder correlations do

not only influence quantities usually considered non-universal such as the location of

the phase boundary, they also change the functional dependence of the order param-

eter and other quantities on the tuning parameters of the transition, as indicated in

Fig. 1. We propose that this mechanism may be responsible for the unusually wide

variations reported in the literature on the properties of the ferromagnetic quantum

phase transition (QPT) in Sr1−xCaxRuO3.

In the following, we sketch the derivation of our theory, compute observables,

and illustrate them by simulations. We also discuss the generality of our findings,

and we compare them to experiment.

2. SMEARED QUANTUM PHASE TRANSITION

For definiteness, we consider a magnetic QPT in a metallic system with

Ising order parameter symmetry. In the absence of quenched disorder, the Landau-

Ginzburg-Wilson free energy functional of this transition is given by [14, 15]

S =

∫

dydz ψ(y)Γ(y, z)ψ(z) + u

∫

dy ψ4(y) , (2.1)

where ψ is the order parameter field, y ≡ (y, τ) comprises d-dimensional spatial

position y and imaginary time τ , the integration means
∫

dy ≡
∫

dy
∫ 1/T

0
dτ , and

u is the standard quartic coefficient. The Fourier transform of the Gaussian vertex

Γ(y, z) reads

Γ(q, ωn) = r + ξ20q
2 + γ0(q) |ωn| . (2.2)



68

M
, 

T
c

x

Figure 1: (Color online) Schematic of the zero-temperature magnetization-
composition curve (M vs x) and the finite-temperature phase boundary
(Tc vs x) at a smeared quantum phase transition in a random binary alloy
A1−xBx. The cases of uncorrelated, correlated, and anti-correlated disorder
are contrasted.

Here, r is the distance from criticality,† ξ0 is a microscopic length, and ωn is a Matsub-

ara frequency. The dynamical part of Γ(q, ωn) is proportional to |ωn|. This reflects the

Landau damping of the order parameter fluctuations by gapless electronic excitations

in a metallic system. The coefficient γ0(q) is q-independent for an antiferromagnetic

transition but proportional to 1/|q| or 1/|q|2 for ballistic and diffusive ferromagnets,

respectively.

We now consider a random binary alloy A1−xBx consisting of two materials

A and B. Pure substance B has a non-magnetic ground-state, implying a positive

distance from quantum criticality, rB > 0. Substance A has a magnetically ordered

ground state with rA < 0. By randomly substituting B atoms for A atoms, one can

drive the system through a QPT from a magnetic to a nonmagnetic ground state.

†Strictly, one needs to distinguish the bare distance from criticality that appears in (2.2) from
the renormalized one that measures the distance from the true critical point. We suppress this
difference because it is unimportant for our purposes.
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Due to statistical fluctuations, the distribution of A and B atoms in the alloy

will not be spatially uniform. Some regions may contain significantly more A atoms

than the average. If the local A-concentration is sufficiently high, such regions will

be locally in the magnetic phase even if the bulk system is nonmagnetic. Because the

magnetic fluctuations are overdamped, the quantum dynamics of sufficiently large

such locally magnetic spatial regions completely freezes (for Ising symmetry [36]). At

zero temperature, these rare regions thus develop static magnetic order independently

of each other. This destroys the sharp QPT by smearing [17, 18, 51] and is manifest

in a pronounced tail in the zero-temperature magnetization-composition curve [78].

At any nonzero temperature, the static magnetic order on individual, inde-

pendent rare regions is destroyed because they can fluctuate via thermal excitations.

Therefore, a finite interaction between the rare regions of the order of the thermal

energy is necessary to align them. This restores a conventional sharp phase transi-

tion at any nonzero temperature. However, the smeared character of the underlying

QPT leads an unusual concentration dependence of the critical temperature Tc which

displays a tail towards large x [51, 78].

The effects of disorder correlations can be easily understood at a qualitative

level. For positive correlations, like atoms tend to cluster. This increases, at fixed

composition, the probability of finding large A-rich regions compared to the uncorre-

lated case. The tail of magnetization-composition curve therefore becomes larger (see

Fig. 1). In contrast, like atoms repel each other in the case of negative correlations

(anti-correlations). This decreases the probability of finding large A-rich regions and

thus suppresses the tail.
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3. OPTIMAL FLUCTUATION THEORY

To quantify the influence of the disorder correlations, we now develop an

optimal fluctuation theory [51, 78]. We focus on the “tail” of the smeared transition

(large x) where a few rare regions show magnetic order but their interactions are

weak because they are far apart.

We roughly estimate the transition point in the alloy A1−x
B

x
, by setting the

average distance from criticality to zero, rav = (1− x)rA + xrB = 0. This defines the

critical composition in “average-potential” approximation,

x0c = −rA/(rB − rA) . (2.3)

For compositions x > x0c , static magnetic order can only develop on rare, atypical

spatial regions with a higher than average A-concentration. Specifically, a single A-

rich rare region of linear size LRR can show magnetic order, if the local concentration

xloc of B atoms is below some critical value xc. Because the rare region has a finite

size, the critical concentration is shifted from the bulk value x0c . According to finite-

size scaling [52, 53]

xc(LRR) = x0c −DL−φ
RR , (2.4)

where φ is the finite-size shift exponent and D is a non-universal constant. In a

three-dimensional itinerant magnet, φ takes the mean-field value of 2 because the

clean transition is above its upper critical dimension. As xc(LRR) must be positive,

a rare region must be larger than Lmin = (D/x0c)
1/φ to show magnetic order.

In the tail of the smeared transition, the magnetically ordered rare regions are

far apart and interact only weakly. To find the total magnetization M one can thus
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simply sum over all magnetically ordered rare regions. This gives

M ∼
∫ ∞

Lmin

dLRR

∫ xc(LRR)

0

dxlocP (N, xloc)m(N, xloc) , (2.5)

where P (N, xloc) is the probability for finding a region ofN sites and local composition

xloc (i.e., a region containing NB = Nxloc atoms of type B), and m(N, xloc) is its

magnetization

Let us analyze the spatial distribution of atoms in the sample to determine the

probability P (N, xloc). Specifically, let us assume that the random positions of the

A and B atoms are positively correlated such that like atoms form clusters of typical

correlation volume (number of lattice sites) Vdis ≈ 1 + aξddis where ξdis is the disorder

correlation length and a is a geometric prefactor. The probabilities for finding A and

B clusters in the sample are 1− x and x, respectively. The number ncl of correlation

clusters contained in a large spatial region of N sites (N ≫ Vdis) is approximately

ncl ≈ N/Vdis = N/(1 + aξddis) . (2.6)

The probability P (N, xloc) for finding a region of N sites and local composition

xloc is therefore equal to the probability Pclus(ncl, nB) for finding nB = xncl clusters

of B atoms among all the ncl clusters contained in the region. It can be modeled by

a binomial distribution

Pclus(ncl, nB) =

(

ncl

nB

)

(1− x)ncl−nBxnB . (2.7)

We now distinguish two cases, (i) the regime where x is not much larger than x0c , and

(ii) the far tail of transition at x→ 1.
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(i) If x is just slightly larger than x0c , rare regions are large and the probability

(2.7) can be approximated by a Gaussian

Pclus ≈
1

√

2πx(1− x)/ncl

exp

[

−ncl
(xloc − x)2
2x(1− x)

]

. (2.8)

We estimate the integral (2.5) in saddle point approximation. Neglecting subleading

contributions fromm(N, xloc), we find that rare regions of size LφRR = D(2φ−d)/[d(x−

x0c)] and composition xc(LRR) dominate the integral. The resultingM(x) dependence

reads

M ∼ exp

[

− C

(1 + aξddis)

(x− x0c)2−d/φ
x(1− x)

]

, (2.9)

where C = 2(D/d)d/φ(2φ − d)d/φ−2φ2 is a non-universal constant. In this regime,

varying the disorder correlation length thus modifies the non-universal prefactor of

the exponential dependence of M on x.

(ii) An even more striking effect occurs in the tail of the transition for x→ 1.

As rare regions cannot be large in this regime, the binomial distribution (2.7) cannot

be approximated by a Gaussian. However, within saddle point approximation, the

integral (2.5) is dominated by rare regions containing only A atoms and having the

minimum size permitting local order. Inserting LRR = Lmin = (D/x0c)
1/φ and xloc = 0

into (2.5), we find that the composition dependence of the magnetization is given by

the power law,

M ∼ (1− x)β (x→ 1) , (2.10)

with β = aLdmin/(1 + aξddis). In this regime, the disorder correlations thus modify the

seeming critical exponent of the order parameter. The exponent value is given by the

minimum number of correlation clusters necessary to form a magnetically ordered

rare region. The results for uncorrelated disorder [78] are recovered by substituting

ξdis = 0 into (2.9) and (2.10).
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So far we have assumed that a typical disorder correlation cluster of A atoms

is smaller than the minimum rare region size required for magnetic order. For larger

disorder correlation length ξdis ≥ Lmin, a single correlation cluster is already large

enough to order magnetically. As a result, (almost) all A atoms contribute to the total

magnetization. Correspondingly, the composition dependence of the order parameter

is given by

M ∼ (1− x) . (2.11)

To combine the power laws (2.10) and (2.11) for different ranges of ξdis, we construct

the heuristic formula

β = (aLdmin + aξddis)/(1 + aξddis) (2.12)

which can be used to fit experimental data or simulation results.

Other observables such as the finite-temperature phase boundary can be found

in similar fashion. As discussed above, at T 6= 0, individual rare regions do not de-

velop a static magnetization. Instead, global magnetic order arises via a conventional

(sharp) phase transition at some transition temperature Tc which can be estimated

from the condition that the interaction energy between the rare regions is of the order

of the thermal energy. To determine the interaction energy, we note that in a metallic

magnet, the rare-regions are coupled by an RKKY interaction which falls off as r−d

with distance r. As the typical distance between neighboring rare regions behaves as

r ∼ M−1/d [51], the composition dependence of the critical temperature is analogous

to that of the magnetization. In particular,

Tc(x) ∼ (1− x)β (2.13)

in the tail of the smeared transition, x→ 1.
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4. SIMULATIONS

We now verify and illustrate the theoretical predictions by performing com-

puter simulations of a toy model [51, 60]. Its Hamiltonian is motivated by the so-

called quantum-to-classical mapping [12] which relates a quantum phase transitions

in d space dimensions to a classical transition in d + 1 dimensions. The extra space

dimension corresponds to imaginary time in the quantum problem. Consequently,

we consider a (3+1)-dimensional classical Ising model on a hypercubic lattice with

three space dimensions and a single imaginary time-like dimension. The interaction

in the time-like direction is long-ranged as the |ωn| frequency dependence in (2.2)

corresponds to a 1/τ 2 in imaginary time. In the toy model, we replace this inter-

action by an infinite-range interaction in time direction, both on the same site and

between spatial neighbors.‡ This correctly reproduces the smeared character of the

phase transition due to static magnetic order on the rare regions. The Hamiltonian

of the toy model takes the form

H = − 1

Lτ

∑

〈y,z〉,τ,τ ′

J0Sy,τSz,τ ′ −
1

Lτ

∑

y,τ,τ ′

JySy,τSy,τ ′ , (2.14)

where y and z are space coordinates, τ is the time-like coordinate, and Sy,τ = ±1.

Lτ is the system size in time and 〈y, z〉 denotes pairs of nearest neighbors in space.

Jy is a binary random variable whose value, Jh or Jl, is determined by the type of

atom on lattice site y. The values at different sites y and z are not independent,

they are correlated according to some correlation function C(y − z). The average

concentrations of Jh-sites and Jl-sites are 1− x and x, respectively.

Treating the time-like dimension within mean-field theory, which is exact be-

cause of the infinite range of the interactions, a set of coupled nonlinear equations

‡Even though the bare action (2.1, 2.2) does not have an interaction between spatial neighbors
at different imaginary times τ , such a coupling will be generated in perturbation theory (or under
RG) from the short-range spatial interaction and the long-range interaction in time.
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emerge for the local magnetizations my = (1/Lτ )
∑

τ Sy,τ ,

my = tanh
1

Tcl
(Jymy +

∑

zJ0mz + h) . (2.15)

Here, the z-sum is over the nearest neighbors of site y, and h is a tiny symmetry-

breaking magnetic field. According to the quantum-to-classical mapping, the classical

temperature Tcl is not related to the physical temperature of the underlying quantum

system (which is encoded in Lτ ) but rather some quantum control parameter that

tunes the distance from the quantum phase transition.

The local mean-field equations (2.15) can be solved efficiently in a self-consistency

cycle. In the two clean limits with either Jy = Jh or Jy = Jl for all y, the phase

transition occurs at Th = Jh + 6J0 and Tl = Jl + 6J0, respectively. We choose a

classical temperature between Th and Tl and control the transition by changing the

composition x.

To generate the correlated binary random variables representing the site occu-

pations, a version of the Fourier-filtering method [79] is implemented. This method

starts from uncorrelated Gaussian random numbers uy and turns them into correlated

Gaussian random numbers vy characterized by some correlation function C(r). This

is achieved by transforming the Fourier components ũq of the uncorrelated random

numbers according to

ṽq =
[

C̃(q)
]

1
2 ũq, (2.16)

where C̃(q) is the Fourier transform of C(r). The vy then undergo binary projection to

determine the occupation of site y; the site is occupied by atom A if vy is greater than

a composition-dependent threshold and by atom B if vy is less than the threshold.

In the majority of our calculations, we focus on attractive short-range disorder

correlations of the form C(r) = exp (−r2/2ξ2dis). Figure 2 shows examples of the
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Figure 2: (Color online) Examples of the atom distribution in a plane of 2562 sites
for several values of the disorder correlation length ξdis = 0, 1.0, 2.0 from
left to right (x = 0.5).

resulting atom distributions for several values of the disorder correlation length ξdis.

The formation of clusters of like atoms is clearly visible.

We now discuss the results of the mean-field equations (2.15). Figure 3

presents the total magnetization M as function of composition x for several val-

ues of ξdis with all other parameters held constant. At a given composition x, the

magnetization M increases significantly even for small ξdis of the order of the lattice

constant. Moreover, the seeming transition point (at which M appears to reach 0)

rapidly moves towards larger compositions, almost reaching x = 1 for a correlation

length ξdis = 2. Inset (a) of Fig. 3 shows a plot of logM versus log(1− x) confirming

the power-law behavior (2.10) in the tail of the transition. The dependence on ξdis of

the exponents β extracted from these power laws is analyzed in inset (b) of Fig. 3.

It can be fitted well with the heuristic formula (2.12).

In addition to the attractive (positive) correlations, we now briefly consider the

case of anti-correlations (like atoms repel each other). We model the anti-correlations

by a correlation function having values C(0) = 1, C(r) = −c for nearest neigh-

bors, and C(r) = 0 otherwise. The positive constant c controls the strength of the
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Figure 3: (Color online) Magnetization M vs. composition x for several values of the
disorder correlation length ξdis using one disorder realization of 2563 sites,
Jh = 20, Jl = 8, J0 = 1, Tcl = 24.25, and h = 10−10. Also shown is one
curve for the case of anti-correlations (1283 sites), for details see text. Inset
(a): log-log plot of M vs. (1 − x) confirming the power-law behavior in
the tail of the smeared transition. The tail exponent β shown in inset (b)
agrees very well with (2.12) as shown by the solid fit line.

anti-correlations. A characteristic magnetization-composition curve for such anti-

correlated disorder (with c = 1/6) is included in Fig. 3. The data show that the

magnetization is reduced compared to the uncorrelated case, and the tail becomes

less pronounced. Analogous simulations using different values of c show that this

effect increases with increasing strength of the anti-correlations, as indicated in Fig.

1.

5. CONCLUSIONS

In summary, we have studied the effects of spatially correlated disorder on

smeared phase transitions. We have found that even short-range disorder correlations
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(extending over just a few lattice constants) lead to qualitative modifications of the

behavior at smeared transitions compared to the uncorrelated case, including changes

in the exponents that characterize the order parameter and the critical temperature.

In other words, systems with uncorrelated disorder and with short-range correlated

disorder behave differently

This is in marked contrast to critical points, at which uncorrelated disorder

and short-range correlated disorder lead to the same critical behavior. (Long-range

correlations do change the critical behavior [77, 80].) What causes this difference

between critical points and smeared transitions? The reason is that critical behavior

emerges in the limit of infinitely large length scales while smeared transitions are

governed by a finite length scale, viz., the minimum size of ordered rare regions.

This renders the renormalization group arguments underlying the generalized Harris

criterion [20, 77] inapplicable.

The majority of our calculations are for the case of like atoms attracting each

other. For these positive correlations, large locally ordered rare regions can form

more easily than in the uncorrelated case. Thus, the tail of the smeared transition is

enhanced; and the phase boundary as well as the magnetization curve move toward

larger x as indicated in Fig. 1. We have also briefly considered the case of like

atoms repulsing each other. These anti-correlations suppress the formation of large

locally ordered rare regions compared to the uncorrelated case. As a result, the phase

boundary and the magnetization curve will move toward smaller x. In addition

to short-range correlations, we have also studied long-range power-law correlations

which are interesting because they lead to a broad spectrum of cluster sizes. Detailed

results will be published elsewhere [81].

Turning to experiment, our results imply that smeared phase transitions are

very sensitive to slight short-range correlations in the spatial positions of impurities

or defects. In particular, an analysis of the data in terms of critical exponents will
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give values that depend on these correlations. We believe that a possible realization of

the effects discussed in this paper can be found in Sr1−xCaxRuO3. This well-studied

material undergoes a ferromagnetic QPT as a function of Ca concentration. Because

Sr1−xCaxRuO3 is a metallic system with Ising spin symmetry, the transition is ex-

pected to be smeared [51]. Interestingly, the reported experimental phase diagrams

(see Fig. 4) and magnetization curves show unusually large variations. Not only does

the apparent critical composition change between x ≈ 0.5 and 1; the functional form

of the magnetization curves also varies. Although part of these discrepancies may

be due to the difference between film and bulk samples [82], large variations within

each sample type remain. We propose that disorder correlations, i.e., clustering or

anti-clustering of like atoms may be responsible for at least part of these variations.

0.0 0.2 0.4 0.6 0.8 1.0
0

40

80
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160
 Hosaka et al. 
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 Wissinger et al.

 Khalifah et al.

 Kiyama et al.

 Cao et al.

T c

x

Figure 4: (Color online) Experimental temperature-composition phase diagrams of
Sr1−xCaxRuO3. Data from Hosaka et al. [83], Schneider et al. [84],
Wissinger et al. [82], and Khalifah et al. [85] are for thin films while those
of Kiyama et al. [70], and Cao et al. [68] are for bulk samples. Published
magnetization curves show similar variations.
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Finally, we emphasize that even though we have considered the QPT in itin-

erant magnets as an example, our theory is very general and should be applicable

to all phase transitions smeared by disorder including QPTs [59, 86, 87], classical

transitions in layered systems [35, 60] and non-equilibrium transitions [88]

We thank I. Kezsmarki for helpful discussions. This work has been supported

in part by the NSF under grant No. DMR- 0906566.
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ABSTRACT∗

The subtle interplay of randomness and quantum fluctuations at low tem-

peratures gives rise to a plethora of unconventional phenomena in systems rang-

ing from quantum magnets and correlated electron materials to ultracold atomic

gases. Particularly strong disorder effects have been predicted to occur at zero-

temperature quantum phase transitions. Here, we demonstrate that the composition-

driven ferromagnetic-to-paramagnetic quantum phase transition in Sr1−xCaxRuO3 is

completely destroyed by the disorder introduced via the different ionic radii of the

randomly distributed Sr and Ca ions. Using a magneto-optical technique, we map

the magnetic phase diagram in the composition-temperature space. We find that

the ferromagnetic phase is significantly extended by the disorder and develops a pro-

nounced tail over a broad range of the composition x. These findings are explained

by a microscopic model of smeared quantum phase transitions in itinerant magnets.

Moreover, our theoretical study implies that correlated disorder is even more powerful

in promoting ferromagnetism than random disorder.

∗Published in Physical Review Letters 108, 185701 (2012).
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Classical or thermal phase transitions generally remain sharp in the presence

of disorder, though their critical behavior might be affected by the randomness. On

the other hand, zero-temperature quantum phase transitions [12, 16, 89] – which

are induced by a control parameter such as the pressure, chemical composition or

magnetic field – are more susceptible to the disorder. Nevertheless, most disordered

quantum phase transitions have been found sharp as the correlation length charac-

terizing the spatial fluctuation of the neighboring phases diverges at the transition

point.

In recent years, it has become clear that the large spatial regions free of ran-

domness, which are rare in a strongly disordered material and hereafter referred to

as rare regions, can essentially change the physics of phase transitions [17]. Close to

a magnetic transition, such rare regions can be locally in the magnetically ordered

phase – with slow fluctuations leading to the famous Griffiths singularities [30] – even

if the bulk system is still nonmagnetic. These rare regions are extremely influential

close to quantum phase transitions. and expected to dominate the thermodynamics.

They give rise to the the so-called quantum Griffiths phases [17, 18, 30] as recently

observed in magnetic semiconductors [43], heavy-fermion systems [47], and transition

metal alloys [48].

When the rare regions are embedded in a dissipative environment the disor-

der effects are further enhanced. For example, in metallic magnets, the magnetiza-

tion fluctuations are coupled to electronic excitations having arbitrarily low energies.

This leads to an over-damped fluctuation dynamics. Sufficiently strong damping

completely freezes the dynamics of the locally ordered rare regions [36], allowing

them to develop a static magnetic order. It has been predicted [51] that this mecha-

nism destroys the sharp magnetic quantum phase transition in a disordered metal by

rounding and a spatially inhomogeneous ferromagnetic phase appears over a broad

range of the control parameter.
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The family of perovskite-type ARuO3 ruthanates (with A an alkaline earth

ion) offers an ideal setting to test these predictions. SrRuO3 is a ferromagnetic metal

with a Curie temperature of TC = 165K. On the other hand, no long-range magnetic

order develops in CaRuO3 and recent studies indicate paramagnetic behavior or the

presence of short-range antiferromagnetic correlations in the ground state [90]. It is

demonstrated that tiny Co doping can drive the system to a low-temperature spin-

glass state [91], however, the ground state of CaRuO3 is still under debate. Earlier

studies of the transport, thermal and magnetic properties of Sr1−xCaxRuO3 solid

solutions revealed that the composition x is an efficient control parameter and the

substitution of the Sr ions by the smaller Ca ions gradually suppresses the ferromag-

netic character and with it the Curie temperature [68, 69, 70, 92]. However, estimates

of the critical Ca concentration at which TC vanishes show large variations depending

on the way of the assignment, experimental methodology and sample synthesis (e.g.

bulk crystals versus thin films with strain due to lattice mismatch with the substrate).

In addition, the random distribution of Sr and Ca ions introduces strong disorder in

the exchange interactions controlling the magnetic state.

To investigate the magnetic properties of Sr1−xCaxRuO3 with high accuracy,

we have grown a composition-spread epitaxial film of size 10mm×4mm and thickness

200 nm (∼ 500 unit cells) on a SrTiO3 (001) substrate [93, 94] which sets the easy

magnetization direction normal to the film plane [95]. The Ca concentration changes

linearly from x=0.13 to 0.53 along the long side of the sample, as shown in Fig. 1a.

The large atomically-flat area observed in the atomic force microscope image (Fig. 1a)

demonstrates the high quality of this film.

The composition and temperature dependence of the magnetic properties of

the Sr1−xCaxRuO3 film were probed by a home-built magneto-optical Kerr micro-

scope equipped with a He-flow optical cryostat. Its magneto-optical Kerr rotation for

visible light is dominated by the charge transfer excitations between the O 2p and
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Figure 1: (Color online) Morphology and magnetic characterization of the
composition-spread Sr1−xCaxRuO3 epitaxial film. (a) Photographic im-
age of the 10×4mm2 film with the local concentration, x, indicated along
the composition-spread direction. The large terraces of mono-atomic lay-
ers in the atomic force microscope image demonstrates the high quality of
the film. (b) The contour plot of the remanent magnetization (M) over
the composition-temperature phase diagram. The dotted mesh is the mea-
sured data set used for the interpolation of the surface. The ferromagnetic-
paramagnetic phase boundary, TC(x), derived from the susceptibility and
magnetization data (see text for details) is also indicated by the black and
grey symbols, respectively. (c) Schematic of the magnetism in the tail of
the smeared transition. The spins on Sr-rich rare regions (bright islands)
form locally ordered ”superspins”. Their dynamics freezes due to the cou-
pling to electronic excitations which also tends to align them giving rise to
an inhomogeneous long-range ferromagnetic order.

Ru 4d t2g states [83]. The large magnitude of the magneto-optical Kerr effect, being

the consequence of strong spin-orbit coupling in ruthenates [96], was found to be

proportional to the magnetization measured by a SQUID magnetometer on uniform

thin films. We have performed all these experiments using a red laser diode. The

resulting precisions of the magnetization (M) and susceptibility (χ) measurements

were 6 · 10−3 µB per Ru atom and 8 · 10−3 µBT
−1 per Ru atom, respectively. Since

the composition gradient of the sample is about 0.04mm−1, the spatial resolution,
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δ . 20µm, of our microscope corresponds to a resolution of δx ≈ 0.001 in the com-

position, allowing us to achieve an exceptionally fine mapping of the magnetization

versus the control parameter of the quantum phase transition. See Supplemental

Material at [97] for more details on the sample preparation, characterization, and on

the experimental methodology.

An overview of the results is given in Fig. 1b which shows a color contour

map of the remanent magnetization M as a function of the temperature T and the

composition x. It was obtained by interpolating a large collection of M(x) and

M(T ) curves measured at constant temperatures and concentrations, respectively.

The data clearly show that the area of the ferromagnetic phase and the magnitude

of the low-temperature magnetization are gradually suppressed with increasing x.

Figure 2 displays the temperature dependence of the magnetization and susceptibil-

ity for selected compositions. With increasing x, the upturn region in the magne-

tization curves significantly broadens and the width of the ac susceptibility peaks

increases. This already hints at an unconventional smearing of the paramagnetic-to-

ferromagnetic phase transition at higher values of the composition x. The critical

temperature, TC(x) in Fig. 1b, separating the ferromagnetic and paramagnetic states

in the composition-temperature phase diagram was identified with the peak posi-

tions in the susceptibility and in the first derivative of magnetization using both the

temperature and the concentration sweeps.

The TC(x) line in Fig. 1b does not show a singular drop at any concentra-

tion, instead it grows a tail extending beyond x = 0.52 where the zero-temperature

magnetization is about three orders of magnitude smaller than the saturation value

for SrRuO3. Similar behavior is also observed in the low-temperature magnetization

M as a function of the composition, x, as shown in Fig. 3a. (We found that all

M(x) curves measured below T=6K collapse onto each other without any detectable
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Figure 2: (Color online) Temperature dependence of (a) the remanent magnetization
M and (b) ac susceptibility χ for selected compositions, x. The main panel
of (b) focuses on the region x & 0.4, and the inset displays representative
susceptibility curves over the full range of x. Both the magnetization and
susceptibility curves show the continuous suppression of the ferromagnetic
phase with increasing x and the broadening of the transition.

temperature variation.) M(x) has an inflection point at x ≈ 0.44 followed by a pro-

nounced tail region in which the magnetization decays slowly towards larger x. The

existence of an ordered ferromagnetic moment is further confirmed by the hysteresis

in the M(B) loops even at x = 0.52 (see the inset of Fig. 3a). Thus, the evolution of

both the magnetization and the critical temperature with x provide strong evidence

for the ferromagnetic-to-paramagnetic quantum phase transition being smeared.

How can the unconventional smearing of the quantum phase transition and

the associated tail in the magnetization be understood quantitatively? As the mag-

netization fluctuations in a metallic ferromagnet are over-damped, sufficiently large

Sr-rich rare regions can develop true magnetic order (see Fig. 1c) even if the bulk sys-

tem is paramagnetic [36, 51]. Macroscopic ferromagnetism arises because these rare

regions are weakly coupled by an effective long-range interaction [42, 98]. To model

this situation, we observe that the probability for finding NSr strontium and NCa

calcium atoms in a region of N = NSr +NCa unit cells (at average composition x) is

given by the binomial distribution P (NSr, NCa) =
(

N
NSr

)

(1− x)NSrxNCa . Such a region
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Figure 3: (Color online) The smearing of the quantum phase transition in
Sr1−xCaxRuO3. (a) The composition dependence of the remanent mag-
netizationM at selected temperatures. The inset shows that the hysteresis
in the field loops at T=4.2K gradually vanishes towards larger x but still
present even at x ≈ 0.52. (b) Semilogarithmic plots of the magnetization
and the transition temperature TC as functions of the control parameter in
the tail region. The symbols represent the experimental data while solid
lines correspond to the theory which predicts xc = 0.38 as the location of
the quantum phase transition in the (hypothetical) clean system.

orders magnetically if the local calcium concentration xloc = NCa/N is below some

threshold xc. Actually, taking finite-size effects into account [78], the condition reads

xloc < xc −A/L2
RR where LRR is the size of the rare region, and A is a non-universal

constant. To estimate the total magnetization in the tail of the transition (x > xc),

one can simply integrate the binomial distribution over all rare regions fulfilling this

condition. This yields [78], up to power-law prefactors,

M ∝ exp

[

−C (x− xc)2−d/2
x(1− x)

]

(3.1)

where C is a non-universal constant. This equation clearly illustrates the notion of

“smeared” quantum phase transition: the order parameter vanishes only at x = 1 and

develops a long, exponential tail upon approaching this point. As xc represents the

composition where the hypothetical homogeneous (clean) system having the average
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ion size would undergo the quantum phase transition, the extension of the ferromag-

netic phase beyond xc is an effect of the disorder. Starting from atomic-scale disorder

our theory is applicable as long as a large number of clusters are probed within the

experimental resolution, so that the measured quantities represent an average over

the random cluster distribution. The smooth dependence of the magnetization on x

together with the small spot size of the beam (<300µm2) verifies that this is indeed

the case. Based on the given spot size the upper bound for the typical cluster size is

estimated to be 1-2µm2 (see Supplemental Material).

As a direct test of our theory we fit the lowest-temperature M(x) data with

Eq. (3.1). We take the spatial dimensionality d = 3 due to the large thickness of the

sample far beyond the spin correlation length in the system. As can be discerned in

Fig. 3b, the magnetization data in the tail (x & 0.44) follow the theoretical curve

over about 1.5 orders of magnitude down to the resolution limit of the instrument.

For the critical composition of the hypothetical clean system, we obtain xc = 0.38,

though the quality of the fit is not very sensitive to its precise value because the

drop in M occurs over a rather narrow x interval. The composition dependence of

the critical temperature TC can be estimated along the same lines by comparing the

typical interaction energies between the rare regions with the temperature and the

same functional dependence on x was found [78]. The experimental data in the tail

region follow this prediction with the same xc = 0.38 value, as can be seen from the

corresponding fit in Fig. 3b.

To summarize, we have studied the paramagnetic-to-ferromagnetic quantum

phase transition of Sr1−xCaxRuO3 by means of a composition-spread epitaxial film.

We found that the disorder significantly extends the ferromagnetic phase. Moreover,

the phase transition in this itinerant system does not exhibit any of the singulari-

ties associated with a quantum critical point. Instead, both the magnetization and

critical temperature display pronounced tails towards the paramagnetic phase. The
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functional forms of these tails agree well with the predictions of our theoretical model.

Our calculations also show that disorder, if correlated over a few unit cells, is even

more powerful in promoting an inhomogeneous ferromagnetic phase. We thus con-

clude that our results provide, to the best of our knowledge, the first quantitative

confirmation of a smeared quantum phase transition in a disordered metal. We ex-

pect that this scenario applies to a broad class of itinerant systems with quenched

disorder.
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ABSTRACT∗

We present a theory of the quantum Griffiths phases associated with the ferro-

magnetic quantum phase transition in disordered metals. For Ising spin symmetry, we

study the dynamics of a single rare region within the variational instanton approach.

For Heisenberg symmetry, the dynamics of the rare region is studied using a renor-

malization group approach. In both cases, the rare region dynamics is even slower

than in the usual quantum Griffiths case because the order parameter conservation

of an itinerant ferromagnet hampers the relaxation of large magnetic clusters. The

resulting quantum Griffiths singularities in ferromagnetic metals are stronger than

power laws. For example, the low-energy density of states ρ(ǫ) takes the asymptotic

form exp[−{λ̃ log(ǫ0/ǫ)}3/5]/ǫ with λ̃ being non-universal. We contrast these results

with the antiferromagnetic case in which the systems show power-law quantum Grif-

fiths singularities in the vicinity of the quantum critical point. We also compare our

result with existing experimental data of ferromagnetic alloy Ni1−xVx.

∗Published in Physical Review B 85, 174202 (2012), selected as an Editor’s Suggestion.
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1. INTRODUCTION

The low-temperature behavior of quantum many-particle systems can be sen-

sitive to impurities, defects, or other kinds of quenched disorder. This effect is es-

pecially important near quantum phase transitions, where fluctuations in time and

space become connected. The interplay between static disorder fluctuations and large-

scale quantum fluctuations leads to much more dramatic effects at quantum phase

transitions than at classical phase transitions, including quantum Griffiths singulari-

ties, [30, 99, 100] infinite-randomness critical points featuring exponential rather than

power-law scaling, [22, 101] and the smearing of the transition.[51]

The Griffiths effects at a magnetic phase transition in a disordered system are

caused by large spatial regions (rare regions) that are devoid of impurities and can

show local magnetic order even if the bulk system is globally in the paramagnetic

phase. The order parameter fluctuations induced by rare regions belong to a class

of excitations known as instantons. Their dynamics is very slow because flipping the

rare region requires a coherent change of the order parameter over a large volume.

Griffiths showed [30] that this leads to a singular free energy, not just at the transition

point but in a whole parameter region, which is now known as the Griffiths phase. In

classical systems, the contribution of the rare regions to thermodynamic observables

is very weak. However, due to the perfect disorder correlations in (imaginary) time,

Griffiths effects at quantum phase transitions are enhanced and lead to power-law

singularities in thermodynamic quantities (for reviews see, e.g., Refs. [17, 18]).

The systems in which quantum Griffiths behavior was originally demonstrated

[22, 99, 100, 101] all have undamped dynamics (a dynamical exponent z = 1 in the

clean system). However, many systems of experimental importance involve supercon-

ducting [102] or magnetic [13, 103, 104, 105] degrees of freedom coupled to conduction

electrons. This leads to overdamped dynamics characterized by a clean dynamical
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exponent z > 1. Studying the effects of the rare regions in this case is, therefore, an

important issue. It has been shown that metallic Ising antiferromagnets can show

quantum Griffiths behavior at higher energies, where the damping is less important.

[66] In contrast, the quantum Griffiths singularities in Heisenberg antiferromagnets

are caused by the dissipation and occur at lower energies. [31]

In recent years, indications of quantum Griffiths phases have been observed in

experiments on a number of metallic systems such as magnetic semiconductors,[43,

44, 45] Kondo lattice ferromagnets, [46, 47] and transition metal ferromagnets.[48, 49]

All these experimental observations of quantum Griffiths phases are in ferromagnets

rather than in antiferromagnets. However, in contrast to antiferromagnets, a complete

theory of quantum Griffiths phases in ferromagnetic metals does not yet exist.

In this paper, we therefore develop the theory of quantum Griffiths effects in

ferromagnetic metals with both Ising and Heisenberg symmetries. We show that the

quantum Griffiths singularities do not take power-law form, in contrast to those

in antiferromagnets.[17, 18] The rare-region density of states behaves as ρ(ǫ) ∼

exp[−{λ̃ log(ǫ0/ǫ)}3/5]/ǫ in the low-energy limit, where λ̃ plays a role analogous

to the non-universal Griffiths exponent. This means that the Griffiths singular-

ity is stronger than a pure power law. This kind of density of states leads to

non-power-law dependencies on the temperature T of various observables, includ-

ing the specific heat, C ∼ exp[−{λ̃ log(T0/T )}3/5], and the magnetic susceptibility,

χ∼ exp[−{λ̃ log(T0/T )}3/5]/T . The zero-temperature magnetization-field curve be-

haves as M ∼ exp[−{λ̃ log(H0/H)}3/5].

The paper is organized as follows. In Sec. 2, we introduce the model: Landau-

Ginzburg-Wilson order parameter field theories for ferromagnetic Ising and Heisen-

berg metals. In Sec. 3, we study the dynamics of a single rare region. For the Ising

case, we use a variational instanton calculation, and for Heisenberg symmetry, we

use a renormalization group theory of the quantum nonlinear sigma model with a
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damping term. In Sec. 4, we average over all rare regions and calculate observables

in the ferromagnetic quantum Griffiths phase. In Sec. 5, we compare our predictions

with existing experimental data. Finally, we conclude in Sec. 6 by discussing the dif-

ference between ferromagnetic and antiferromagnetic quantum Griffiths singularities

as well as some open questions.

2. THE MODEL

Rare region effects in disordered metallic systems are realized both in Ising

magnets [66] and in Heisenberg magnets. [31] In the following, we consider both cases.

Our starting point is a quantum Landau-Ginzburg-Wilson action of the itinerant

ferromagnet [14, 15], †

S = Sstat + Sdiss + Sdyn , (4.1)

where the static part has the form

Sstat = E0

∫ β

0

dτ

∫

d3r
[

tφ2(r, τ) + [∇φ(r, τ)]2 + 1

2
φ4(r, τ)

]

. (4.2)

Here, E0 is a characteristic energy (assumed to be of the order of the band width in

a transition metal compound or the order of the Kondo-temperature in an f -electron

system). We measure lengths in units of the microscopic length scale ξ0. t > 0 is the

bare distance of the bulk system from criticality. φ(r, τ) is the dimensionless order

parameter field. It is a scalar for the Ising model, while it has three components

(φ1, φ2, φ3) for a Heisenberg magnet.

†We set Planck’s constant and Boltzmann constant to unity (~ = kB = 1) in what follows.
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We consider disorder coupled to the square of the order parameter. The

corresponding action has the form

Sdiss =E0

∫ β

0

dτ

∫

d3r V (r)φ2(r, τ) , (4.3)

where V (r) is the disorder potential.

The dynamical part of Eq. (4.1) is Sdyn = S
(1)
dyn + S

(2)
dyn, where

S
(1)
dyn = E0τ

2
m

∫ β

0

dτ

∫

d3r[∂τφ(r, τ)]
2 , (4.4)

corresponds to the undamped dynamics of the system with the clean dynamical ex-

ponent z = 1, while

S
(2)
dyn =

γT

E0

∑

ωn

|ωn|
∫

d3q
|φ̃(q, ωn)|2
|q|a , (4.5)

describes overdamped dynamics with conserved order parameter (clean dynamical

exponent z = 2 + a), which stems from the coupling to the conduction electrons. In

Eq. (4.4), τm is a microscopic time, and in Eq. (4.5), γ parametrizes the strength

of the dissipation. φ̃(q, ωn) is the Fourier transform of the order parameter φ(r, τ)

in momentum and Matsubara frequency. The value of a depends on the character

of the electron motion in the system and equals 1 or 2 for ballistic and diffusive

ferromagnets, respectively.

3. DYNAMICS OF A SINGLE RARE REGION

In this section, we study the dynamics of a single droplet formed on a rare

region of linear size L. This means, we consider a single spherical defect of radius L
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at the origin with potential V (r) = −V for r < L, and V (r) = 0 otherwise. We are

interested in the case V > 0, i.e., in defects that favor the ordered phase.

The effective dimensionality of the model defined by Eq. (4.1) is deff = 3 + z.

Thus, the clean model (4.1) is above its upper critical dimension (dc = 4), implying

that mean-field theory is valid. The mean-field equation for a static order parameter

configuration φ0(r) is [36]

∇2φ0(r) + [t+ V (r)]φ0(r) + φ3
0(r) = 0 , (4.6)

with solution

φ0(r) =











φ0 for r < L

φ0L
r
e−rt

1/2
for r > L.

(4.7)

This implies that the order parameter is approximately constant in the region r < L

and decays outside of it.

To study the dynamics of the droplet, we start from the variational instanton

approach.[37] In the simplest case, the droplet maintains its shape while collapsing

and reforming. In order to estimate the action associated with this process, we make

the ansatz

φ(r, τ) = φ′
0(r)η(τ) . (4.8)

Here, φ′
0(r) must be chosen such that

∫

d3rφ(r, τ) is time independent because of order

parameter conservation in an itinerant ferromagnet. This can be done by introducing

φ′
0(r) = φ0(r)(1 − Ar) such that the q = 0 Fourier component is canceled. A is a

constant to be determined. In the limit of a large rare region, Lt >> 1, we find

φ′
0(r) = φ0(r)

(

1− 4

3

r

L

)

. (4.9)
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In the following subsections, using ansatz Eq. (4.8), we separately discuss the dy-

namics of the droplet in itinerant Ising and Heisenberg ferromagnets.

3.1. Itinerant Ising Model. We now calculate the tunneling rate between

the “up” and “down” states of a single rare region in an itinerant Ising ferromagnet

by carrying out variational instanton calculations.[37, 106] To estimate the instanton

action, we use the ansatz Eq. (4.8) (which provides a variational upper bound for the

instanton action) with η(τ) = ±1 for τ → ±∞. Inserting this ansatz into the action

Eq. (4.1) and integrating over the spatial variables yields, up to constant prefactors,

Sstat ∼ L3

∫

dτ [−2η2(τ) + η4(τ)] , (4.10)

and

S
(1)
dyn ∼ L3

∫

dτ [∂τη(τ)]
2 . (4.11)

The part of the action corresponding to the overdamped dynamics becomes

S
(2)
dyn =

α

4

∫

dτdτ ′
dη

dτ

dη

dτ ′
log

(τ − τ ′)2 + τ 2m
τ 2m

, (4.12)

where the dimensionless dissipation strength α ∼ γL3+a. In order to estimate the

action Eqs. (4.10) to (4.12), we make the variational ansatz

dη

dτ
=

2θ(τ 20 − 4τ 2)

τ0
. (4.13)

Summing all contributions, we obtain the instanton action

S ∼ L3/τ0 + L3τ0 + γL3+a log(τ0/τm) . (4.14)
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Minimizing this action over the instanton duration gives τ0 ∼ L−a/γ. Corre-

spondingly, the action is S ∼ γL3+a. Then, the bare tunneling rate or tunnel splitting

behaves as

ǫ ∼ exp(−S) ∼ exp(−const. × γL3+a) . (4.15)

Thus, the bare tunneling rate decays exponentially with L3+a in the itinerant Ising

ferromagnet unlike the tunneling rate in the itinerant Ising antiferromagnet,[36, 37]

which decays exponentially with L3. The extra factor La can be understood as

follows. To invert the magnetization of a rare region of linear size L, magnetization

must be transported over a distance of the order of L, because the order parameter

conservation prevents local spin flips. The rare region dynamics thus involves modes

with wave vectors of the order of q ∼ 1/L. Since the part of the action corresponding

to the overdamped dynamics Eq. (4.5) is inversely proportional to momentum qa, we

obtain an extra factor La in the action Eq. (4.12).

Within renormalization group methods,[61] the instanton-instanton interac-

tion renormalizes the zero-temperature tunneling rate to

ǫren ∼ ǫ1/(1−α) . (4.16)

This implies that at zero temperature, the smaller rare regions with α < 1 continue

to tunnel with a strongly reduced rate, while the larger rare regions (α > 1) stop to

tunnel and behave classically, leading to super-paramagnetic behavior.

3.2. Itinerant Heisenberg Model. A particularly interesting case are itin-

erant Heisenberg ferromagnets because quantum Griffiths phases have been observed

experimentally in these systems.[47, 48, 49] We now study the dynamics of a single

rare region in an itinerant Heisenberg ferromagnet. We make the ansatz

φ(r, τ) = φ′
0(r)n(τ) , (4.17)
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Here, n(τ) is a three-component unit vector. After substituting Eq. (4.17) into the

action Eq. (4.1) and integrating over the spatial variables, we obtain

S ∼ gτ 2m

∫

dτ [∂τn(τ)]
2 +

α

4

∫

dτdτ ′
n(τ) · n(τ ′)

(τ − τ ′)2 + τ 2m
, (4.18)

where the dimensionless coupling constant g ∼ L3 and α ∼ γL3+a as before. Because

there is no barrier in a system with continuous order parameter symmetry, the static

part of the action is constant. Therefore, we cannot solve the problem within the

variational instanton approach. Instead, rotational fluctuations must be taken into

account.

We calculate the characteristic relaxation time of the rare region by a renor-

malization group analysis of the action Eq. (4.18). As shown in Sec. 7, for weak

damping α ≪ g, there are two different regimes, where the behaviors of the re-

laxation times are different. Particularly, for energies ω larger than some crossover

energy ωc ∼ α/g, undamped dynamics is dominant, and the relaxation time of the

rare region has the form

ξτg ∼ L3 , (4.19)

which leads to a power-law dependence of the rare-region characteristic energy on L,

ǫ ∼ L−3 . (4.20)

For energies ω ≪ ωc, overdamped dynamics dominates the system properties,

and the relaxation time of the rare region behaves as

ξτγ ∼ exp[const.× γL3+a] . (4.21)
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This results in a characteristic energy of

ǫ ∼ exp[−const.× γL3+a] . (4.22)

Thus, the behavior of the characteristic energy in the itinerant Heisenberg magnet is

the analogous to that of the tunneling rate in the Ising model discussed above.

We can now roughly estimate the size Lc of the rare region corresponding to

the crossover of the two regimes. By comparing Eqs. (4.19) and (4.21), we find for

small α:

Lc ∼ [log(const./γ)/γ]1/(3+a) . (4.23)

For small rare regions, L < Lc , the undamped dynamics dominates systems prop-

erties and the characteristic energy is given by Eq. (4.20), while for L > Lc, the

damping term is dominant and the characteristic energy is determined by Eq. (4.22).

For large damping α ≫ g, the overdamped dynamics dominates the system

properties for all energies ω. Correspondingly, the characteristic energy is given by

Eq. (4.22).

4. OBSERVABLES

In the last section, we have seen that metallic Ising ferromagnets display mod-

ified Griffiths behavior at higher energies [Eq. (4.15)], while at asymptomatically low

energies, the rare regions freeze and lead to a smeared phase transition [Eq. (4.16)].

For Heisenberg ferromagnets, we have found conventional behavior at higher energies

[Eq. (4.20)], and modified Griffiths behavior at low energies [Eq. (4.22)]. Correspond-

ingly, we expect modified Griffiths singularities in thermodynamic quantities at low

energies for itinerant Heisenberg ferromagnets, while for metallic Ising ferromagnets

they should occur at higher energies.
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In this section, we use the single-rare-region results of Sec. 3 to study the

thermodynamics in these ferromagnetic quantum Griffiths phases. To do so, we

need to estimate the rare-region density of states. By basic combinatorics (see, e.g.,

Refs. [17, 18]), the probability for finding an impurity-free rare region of volume L3

is P ∼ exp(−bL3) with b being a constant that depends on the disorder strength.

Combining this and Eq. (4.22) gives the density of states (of the Heisenberg system)

in the low-energy regime as

ρ(ǫ) ∼ 1

ǫ
exp[−{λ̃ log(ǫ0/ǫ)}3/(a+3)] . (4.24)

Here, ǫ0 is a microscopic energy scale, and the non-universal exponent λ̃ ∼ b(a+3)/3/γ

plays a role similar to the usual quantum Griffiths exponent. The same density of

states follows from Eq. (4.15) for the higher-energy regime of the Ising model. Thus,

in ferromagnetic metals, the rare-region density of states does not take power-law

form, in contrast to the one in antiferromagnets.

We can now find observables using the rare-region density of states Eq. (4.24).

The number n of free rare regions at temperature T behaves as

n(T ) ∼
∫

dǫρ(ǫ)e−ǫ/T /(1 + e−ǫ/T )

∼ exp[−{λ̃ log(T0/T )}3/(a+3)] , (4.25)

where T0 is a microscopic temperature scale.

The uniform static susceptibility can be estimated by summing Curie suscep-

tibilities for all free rare regions, yielding

χ(T ) = n(T )/T ∼ 1

T
exp[−{λ̃ log(T0/T )}3/(a+3)] . (4.26)
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The dependence of the moment µ of the rare region on its energy leads to a subleading

correction only.

The contribution of the rare regions to the specific heat C can be obtained

from

∆E ∼
∫

dǫρ(ǫ)ǫ e−ǫ/T/(1 + e−ǫ/T )

∼ T exp[−{λ̃ log(T0/T )}3/(a+3)] , (4.27)

which gives ∆C ∼ exp[−{λ̃ log(T0/T )}3/(a+3)]. Knowing the specific heat, we can

find the rare region contribution to the entropy as ∆S ∼ exp[−{λ̃ log(T0/T )}3/(a+3)].

To determine the zero-temperature magnetization in a small ordering field H ,

we note that rare regions with ǫ < H are (almost) fully polarized while the rare

regions with ǫ > H have very small magnetization. Thus,

m ∼
∫ H

0

dǫρ(ǫ) ∼ exp[−{λ̃ log(H0/H)}3/(a+3)] , (4.28)

where H0 is a microscopic field (again, the moment of the rare region leads to a sub-

leading correction). The zero-temperature dynamical susceptibility can be obtained

by summing the susceptibilities of the individual rare regions using the density of

states Eq. (4.24),

χ(ω) =

∫ Λ

0

dǫρ(ǫ)χrr(ω; ǫ) , (4.29)

where the dynamical susceptibility of a single rare region in Heisenberg metals at

zero temperature is given by [107]

χrr(ω + i0; ǫ) =
µ2

ǫ− iγω , (4.30)
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where µ is the moment of the rare region. Substituting Eq. (4.30) into Eq. (4.29) we

find

χ(ω+i0)∼ (1+iγ sgn(ω))

|ω| exp[−{λ̃ log |ω0/ω|}3/(a+3)] , (4.31)

where ω0 is a microscopic frequency. This result can be used to estimate the rare

region contribution to the NMR spin relaxation time T1. Inserting Eq. (4.31) into

Moriya’s formula [108] for the relaxation rate yields

1/T1 ∼
T

ω2
exp[−{λ̃ log |ω0/ω|}3/(a+3)] . (4.32)

5. EXPERIMENT

Recently, indications of a quantum Griffiths phase have been observed in the

transition metal ferromagnet Ni1−xVx. [48, 49] The behavior of the thermodynamics

has been described well in terms of the power-low quantum Griffiths singularities

predicted for an itinerant antiferromagnet (and the transverse-field Ising model).

Here, we compare our new theory of ferromagnetic quantum Griffiths phases with

the experimental data given in Refs. [48, 49]. The residual resistivity of Ni1−xVx

close to the quantum phase transition is rather high. ‡ Thus, we choose a = 2

for a diffusive ferromagnet. Figure 1 shows the behavior of the susceptibility as a

function of temperature. The curves corresponding to the concentrations x = 13.0%

and x = 15.0% (which are far away from the critical concentration xc ≈ 11.5%) are

described better by power laws rather than our modified quantum Griffiths behavior

Eq. (4.26), at least above T ≈ 10K (the low-temperature upturn is likely due to

freezing of the rare regions). For concentrations x = 12.07% and x = 12.25%, our

theory fits better than power-law Griffiths singularities and extends the fit range from

‡A. Schroeder, private communications
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30–300K down to 5–300K. The curves corresponding to the concentrations x = 11.4%

and x = 11.6% can be fitted by Griffiths power-laws only in the temperature range

30 to 300 K, our new functional form Eq. (4.26) does not improve the fit of these

curves.

We also compared the prediction Eq. (4.28) for a modified magnetization-field

curve with the data given in Refs. [48, 49]. We found that the fits to power-laws and

to the modified quantum Griffiths behavior Eq. (4.28) cannot be distinguished.

Let us also point out that the susceptibility data in the temperature range

below 20K can be fitted reasonable well by Eq. (4.26); see details in Fig. 1. Further

experiments may be necessary to decide whether our theory applies in this region.

Overall, our theory does not significantly improve the description of the data

of Refs. [48, 49] over the temperature range where Griffiths behavior is observed.

A possible reason is that the relevant rare regions are too small. At concentrations

x = 13.0% and x = 15.0%, they have moments of about µ ≈ 5µB and µ ≈ 1µB,

respectively. Correspondingly, the effect of the order parameter transport cannot

play any role, whereas our functional forms arise for large rare regions where the

order parameter transport limits the relaxation of the rare region. A possible reason

why the curves corresponding to the concentrations x = 11.4% and x = 11.6% can

not be described by our theory at T < 30K might be that the curves are actually

slightly on the ordered side of the quantum phase transition.

6. CONCLUSIONS

In summary, we studied the dynamics of rare regions in disordered metals

close to the ferromagnetic quantum phase transition, considering the cases of both

Ising and Heisenberg spin symmetries. The overall phenomenology is similar to the

well-studied antiferromagnetic quantum Griffiths behavior. [31, 37, 51, 66] Namely,
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Figure 1: (Color online). Temperature dependence of the susceptibility of Ni1−xVx

for different Vanadium concentrations. Solid and dotted lines represent fits
to Eq. (4.26) in the different temperature ranges 5 to 300 K and 1 to 20
K, respectively (data from Ref. [48]).

for Ising symmetry at low temperatures, the overdamping causes sufficiently large

rare regions to stop tunneling. Instead, they behave classically, leading to super-

paramagnetic behavior and a smeared quantum phase transition. In contrast, at

higher temperatures but below a microscopic cutoff scale, the damping is unimpor-

tant and quantum Griffiths singularities can be observed. In contrast to the Ising

case, the itinerant Heisenberg ferromagnet displays quantum Griffiths singularities

when damping is sufficiently strong, i.e., at low temperatures. Above a crossover

temperature, conventional behavior is expected.

Although the phenomenologies of the ferro- and antiferromganetic cases are

similar, the functional forms of the quantum Griffiths singularities are different. In

ferromagnetic quantum Griffiths phases, the tunneling rate (or characteristic energy)

of a rare region decays as exp[−const. × γLa+3] with its linear size L, where a is
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equal to 1 or 2 for ballistic and diffusive ferromagnets, respectively. This leads to the

modified nonpower-law quantum Griffiths singularities in thermodynamic quantities,

discussed in Sec. 5, in contrast to the power-law quantum Griffiths singularities

in itinerant antiferromagnets. The reason is the following. Because of the order

parameter conservation in the itinerant quantum ferromagnet, the damping effects

are further enhanced as the dimensionless dissipation strength α for a rare region of

linear size L is proportional to La+3 rather than L3.

In strongly disordered system, where our theory is most likely to apply, the

motion of the electron is diffusive. Correspondingly, we expect a = 2. In hypothetical

systems with rare regions, but ballistic dynamics of the electrons, a would take the

value 1.

In our explicit calculations, we have used Hertz’s form [14] of the order-

parameter field theory of the itinerant ferromagnetic quantum phase transition. How-

ever, mode-coupling effects in the Fermi liquid lead to an effective long-range spatial

interaction between the order parameter fluctuations. [98, 109, 110] In the order-

parameter field theory, this leads to a nonanalytic momentum dependence of the

static action Eq. (4.2). The effects of this long-range interaction on the existence

and energetics of a locally ordered rare region were studied in detail in Ref. [106].

This work showed that the long-range interactions only produce subleading correc-

tions to the droplet-free energy. Therefore, including these long-range interactions in

the action Eq. (4.1) will not change the results of the present paper.

Let us now turn to the limitations of our theory. In our calculations, we

assumed that the droplet maintains its shape while collapsing and reforming. Cor-

respondingly, our calculation provides a variational upper bound for the instanton

action. There could be faster relaxation processes; however, it is hard to image the

droplet dynamics to avoid the restriction coming from the order parameter conser-

vation. We treated the individual, locally ordered rare regions as independent. But,
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in a real metallic magnet, they are weakly coupled by a Ruderman-Kittel-Kasuya-

Yosida (RKKY), interaction which is not included in the Landau-Ginzburg-Wilson

action Eq. (4.1). At the lowest temperatures, this RKKY interactions between the

rare regions induces a cluster glass phase. [65] Finally, our theory does not take the

feedback of the order parameter fluctuations on the fermions into account. It has

been found that for some quantum phase transitions, the Landau-Ginzburg-Wilson

theory breaks down sufficiently close to the transition point due to this feedback.

[42, 111] For strongly disordered systems, this question has not been addressed yet,

it remains a task for the future.

Turning to experiment, our theory does not significantly improve the descrip-

tion of the data of Ni1−xVx. [48, 49] We believe that the main reason is that our

theory is valid for asymptomatically large rare regions where the order parameter

transport plays an important role, whereas the experimental accessible rare regions

in Ni1−xVx are not large enough for the order parameter conservation to dominate

their dynamics. We expect our theory can be applied in systems where one can

observe Griffiths singularities at lower temperatures leading to larger rare regions.

7. APPENDIX: RENORMALIZATION GROUP THEORY

In this section, we show the derivation of Eqs. (4.19) and (4.21) by renormal-

ization group (RG) analysis. At low temperatures, the action Eq. (4.18) is formally

equivalent to a quantum non-linear sigma model [112] in imaginary time τ . We can set

n(τ) = (π(τ), σ(τ)), where π(τ) = (π1(τ), π2(τ)) represents transverse fluctuations.

After expanding in π and keeping terms up to O(g−2), O(α−2), we find [112]



108

S =

∫

dω

2π

(

gω2 +
α

4
|ω|
)

|π̃(ω)|2

+

∫

dω1dω2dω3

(2π)3

(α

8
|ω1| − gω1ω3

)

π̃β(ω1)π̃β(ω2)π̃β′(ω3)π̃β′(−ω1 − ω2 − ω3) .

(4.33)

We now consider the case of the small damping α≪ g. Two different energy

regimes can be distinguished: (i) ω larger than some crossover energy ωc ∼ α/g,

implying that the undamped dynamics dominates the systems properties, and (ii)

ω ≪ ωc, when the damping term is dominant.

(i) Because the contribution of the undamped dynamics is dominant in this

regime, we neglect the damping term and renormalize g. To construct a perturbative

renormalizaition group, consider a frequency region [−Λ,Λ] (Λ is a high energy cut

off), and divide the modes into slow and fast ones, π̃(ω) = π̃<(ω) + π̃>(ω). The

modes π̃<(ω) involve frequency −Λ/b < ω < Λ/b, and are kept. We integrate out the

short-wavelength fluctuations π>(ω) (with frequencies in the region −Λ < ω < −Λ/b

and Λ/b < ω < Λ) in perturbation theory using the propagator 〈π̃>β (ω)π̃>β′(ω′)〉 =

πδββ′δ(ω + ω′)/(gω2).

After applying standard techniques, we find that this coarse graining changes

the coupling constant g to gco = g + Ig(b), where Ig(b) = (2πΛ)−1(b − 1). After

rescaling τ ′ = τ/b and renormalizing π′(τ ′) = π<(τ)/ζg, we obtain the renormalized

coupling constant in the form

g′ = b−1ζ2ggco . (4.34)
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To find the rescaling factor ζg, we average n over the short wavelength modes π> and

obtain

〈n〉> =〈(π<1 + π>1 , ...,
√

1− (π< + π>)2)〉>

=(1− 〈(π>)2〉>/2 +O(g−2))(π<1 , ...,
√

1− (π<)2) . (4.35)

Thus, we identify

ζg = 1− 〈(π>)2〉>/2 +O(g−2) = 1− Ig(b)

g
+O(g−2) . (4.36)

Correspondingly, the renormalized coupling constant given in Eq. (4.34) becomes

g′ = b−1(g − Ig(b)) . (4.37)

Setting b = 1 + δl, and integrating Eq. (4.37) gives the recursion relation g(l) =

g(0)e−l. To find the relaxation time, we run the RG to g(l) = 1 and use ξτ ∼ el. This

gives

ξτg ∼ L3 . (4.38)

(ii) In the same way, for low energies ω ≪ ωc, we neglect the term correspond-

ing to the undamped dynamics and renormalize the α coefficient. We find that α is

not modified by the perturbation, i.e., αco = α, and the field rescaling factor ζα is

given by

ζα = 1− Iα(b)

α
+O(α−2) , (4.39)



110

where Iα(b) = 2π−1 log(b). Then, we find the recursion relation α(l) = α(0)− 4π−1l.

This leads to the relaxation time

ξτγ ∼ exp[const.× γL3+a] . (4.40)
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TRANSITIONS IN THE LARGE−N LIMIT
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1Department of Physics, Missouri University of Science & Technology,

Rolla, MO 65409

ABSTRACT∗

We develop an efficient numerical method to study the quantum critical be-

havior of disordered systems with O(N) order-parameter symmetry in the large−N

limit. It is based on the iterative solution of the large−N saddle-point equations com-

bined with a fast algorithm for inverting the arising large sparse random matrices. As

an example, we consider the superconductor-metal quantum phase transition in dis-

ordered nanowires. We study the behavior of various observables near the quantum

phase transition. Our results agree with recent renormalization group predictions,

i.e., the transition is governed by an infinite-randomness critical point, accompanied

by quantum Griffiths singularities. Our method is highly efficient because the nu-

merical effort for each iteration scales linearly with the system size. This allows us

to study larger systems, with up to 1024 sites, than previous methods. We also dis-

cuss generalizations to higher dimensions and other systems including the itinerant

antiferomagnetic transitions in disordered metals.

∗Submitted to Computer Physics Communications (2013).
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1. INTRODUCTION

Randomness can have much more dramatic effects at quantum phase transi-

tions than at classical phase transitions because quenched disorder is perfectly corre-

lated in the imaginary time direction which needs to be included at quantum phase

transitions. Imaginary time acts as an additional coordinate with infinite extension

at absolute zero temperature. Therefore, the impurities and defects are effectively

very large which leads to strong-disorder phenomena including power-law quantum

Griffiths singularities [30, 99, 100], infinite-randomness critical points characterized

by exponential scaling [22, 101], and smeared phase transitions [51]. For example,

the zero-temperature quantum phase transition in the random transverse-field Ising

model is governed by an infinite-randomness critical point [22] featuring slow acti-

vated (exponential) rather than power-law dynamical scaling. It is accompanied by

quantum Griffiths singularities. This means, observables are expected to be singular

not just at criticality but in a whole parameter region near the critical point which

is called the quantum Griffiths phase.

Quantum Griffiths singularities are caused by rare spatial configurations of

the disorder. Due to statistical fluctuations, one can always find spatial regions (rare

regions) which are impurity free. The probability P(VRR) to find such a rare region is

exponentially small in its volume VRR, P(VRR) ∼ exp(−bVRR) with b being a constant

that depends on the disorder strength. Close to a magnetic phase transition, the rare

region can be locally in the magnetic phase while the bulk system is still non-magnetic.

When the characteristic energy ǫ of such a rare region decays exponentially with its

volume, ǫ ∼ exp(−cVRR) (as in the case of the transverse-field Ising model), the re-

sulting rare-region density of states has power-law form, ρ(ǫ) ∼ ǫλ−1, where λ = b/c

is the non-universal Griffiths exponent. λ takes the value zero at the quantum critical

point and increases throughout the quantum Griffiths phase. The singular density of
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states of the rare regions leads to quantum Griffiths singularities of several thermody-

namic observables including order-parameter susceptibility, χ ∼ T λ−1, specific heat,

C ∼ T λ, entropy, S ∼ T λ, and zero-temperature magnetization-field curve m ∼ hλ

(for reviews see, e.g., Refs. [17, 18]).

Many interesting models in statistical mechanics and field theory contain some

integer-valued parameter N and can be solved in the large−N limit. Therefore, the

large−N method is a very useful tool to study classical and quantum phase transi-

tions. An early example is the Berlin-Kac spherical model [113] which is equivalent

to a classical O(N) order parameter field theory in the large−N limit [114]. Anal-

ogously, the quantum spherical model [115, 116, 117] has been used to investigate

quantum critical behavior. In both cases, N is the number of order parameter com-

ponents. Another potential application of the large−N method are SU(N) Kondo

models [118] with spin-degeneracy N . In all of these cases, the partition function

can be evaluated in saddle point approximation in the limit N ≫ 1, leading to

self-consistent equations. In clean systems, these equations can often be solved ana-

lytically. However, in the presence of disorder, one obtains a large number of coupled

self-consistent equations which can be solved only numerically.

In this paper, we develop a new efficient numerical method to study critical

behavior of disordered system with O(N) order-parameter symmetry in the large−N

limit. We apply this method to the superconductor-metal quantum phase transi-

tion in disordered nanowires. Using a strong-disorder renormalization group, it has

recently been predicted that this transition is in the same universality class as the

random transverse-field Ising model. We confirm these predictions numerically. We

also find the behaviors of observables as a function of temperature and an external

field. They follow the expected quantum Griffiths power laws. We consider up to

3000 disorder realizations for system sizes L = 256 and 1024. The paper is organized

as follows: In Sec. 2 we introduce the model: a continuum Landau-Ginzburg-Wilson
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order-parameter field theory in the presence of dissipation; and we generalize the the-

ory to quenched disordered systems. Then, we discuss the predicted critical behavior

of this model and derive the large−N formulation. In Sec. 3, we review an existing

numerical approach to this model. In Sec. 4, we present our numerical method to

study the quantum critical behavior. We discuss the results in Sec. 5, and we compare

them to the behavior predicted by the strong-disorder renormalization group. Sec. 6

is devoted to the computational performance of our method. Finally, we conclude in

Sec. 7 by discussing and comparing our numerical method to the existing one. We

also discuss generalizations to higher dimensions and other models.

2. THE MODEL

We start from the quantum Landau-Ginzburg-Wilson free-energy functional

for an N−component vector order parameter ϕ in one space dimension. For a clean

system with overdamped order parameter dynamics the Landau-Ginzburg-Wilson

action reads,†

S =
1

2

∫

dx

∫ 1/T

0

dτ
[

αϕ2(x, τ) + J [∂xϕ(x, τ)]
2 +

u

2N
ϕ4(x, τ)

]

+
γT

2

∑

ωn

|ωn|
∫

dx|ϕ̃(x, ωn)|2 − h
∫

dx

∫ 1/T

0

dτϕ(x, τ) , (5.1)

where α is the bare distance from criticality. γ and J are the strength of dissipation

and interaction, respectively. u is the standard quartic coefficient. h is a uniform

external field conjugate to the order parameter. ϕ̃(x, ωn) is the Fourier transform

of the order parameter φ(x, τ) with respect to imaginary time, and ωn = 2πnT is a

Matsubara frequency. The above action with N = 2 order parameter components

†We set Planck’s constant and Boltzmann constant to unity (~ = kB = 1) in what follows.
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(equivalent to one complex order parameter) has been used to describe [119] the

superconductor-metal transition in nanowires [120]. This transition is driven by pair-

braking interactions, possibly due to random magnetic moments trapped on the wire

surface [120], which also introduce quenched disorder in the nanowire. The action

(5.1) can be generalized to d = 3 space dimensions and N = 3 order parameter

components, in this case, it describes itinerant antiferromagnetic quantum phase

transitions [14, 15].

In the presence of quenched disorder, the functional form of Eq. (5.1) does

not change qualitatively. However, the coupling constants become random functions

of position x. The full effect of disorder can be realized by setting u = γ = 1 while

considering the couplings α and J to be randomly distributed in space [121]. The

quantum phase transition in zero external field can be tuned by changing the mean

of the αi distribution, α.

Recently, the model (5.1) has been investigated by means of a strong-disorder

renormalization group method [107, 122]. This theory predicts that the model falls

in the same universality class as the one-dimensional random transverse-field Ising

model which was studied extensively by Fisher [22]. Thus, the phase transition is

characterized by an infinite-randomness critical point at which the dynamical scaling

is exponential instead of power-law. Off criticality, the behaviors of observables are

characterized by strong quantum Griffiths singularities.

Let us focus on the Griffiths phase on the disordered side of the transition,

where the distance from criticality δ = ᾱ − ᾱc > 0. The strong-disorder renormal-

ization group predicts the disorder averaged equal-time correlation function C(x) to

behave as [22]

C(x) ∼ exp[−(x/ξ)− (27π2/4)1/3(x/ξ)1/3]

(x/ξ)5/6
(5.2)
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for large distances x. Here, ξ is the correlation length which diverges as ξ ∼ |δ|−ν

with ν = 2 as the critical point is approached. The disorder averaged order parameter

as a function of the external field h in the Griffiths phase has the singular form [22]

ϕ(h) ∼ hλ . (5.3)

Here, λ is the non-universal Griffiths exponent which vanishes at criticality as λ ∼ δνψ

with critical exponent ψ = 1/2. Right at criticality, the theory predicts logarithmic

behavior rather than a power law [22],

ϕ(h) ∼ [log(h0/h)]
φ−1/ψ . (5.4)

Here, the exponent φ = (1 +
√
5)/2 equals to the golden mean, and h0 is some

microscopic energy scale.

The average order parameter susceptibility as a function of temperature T in

the disordered Griffiths phase is expected to have the form [22]

χ(T ) ∼ T λ−1 (5.5)

with the same λ−exponent as in Eq. (5.3).

Our goal is to test the strong-disorder renormalization group predictions by

means of a numerical method. As a first step, we discretize the continuum model

(5.1) in space and Fourier-transform from imaginary time τ to Matsubara frequency

ωn. The discretized Landau-Ginzburg-Wilson action has the form
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S =
T

2

L
∑

i=1

∑

ωn

[

αi|ϕ̃i(ωn)|2 + Ji|ϕ̃i(ωn)− ϕ̃i+1(ωn)|2 +
1

2N
|ϕ̃i(ωn)|4

]

+

L
∑

i=1

[T

2

∑

ωn

|ωn||ϕ̃i(ωn)|2 − hϕ̃i(0)
]

, (5.6)

where L is the system size. The nearest-neighbor interactions Ji > 0 and the mass

terms αi (bare local distances from criticality) are random quantities. The critical

behavior of the model (5.6) can be studied in the limit of a large number of order

parameter components N . In this limit, the above action can be reduced to a Gaus-

sian form. This can be done in several ways, for example by decomposing the square

of each component of the order parameter |ϕ̃(k)
i (ωn)|2 into its average 〈ϕ2〉 and fluc-

tuation ∆|ϕ̃(k)
i (ωn)|2: |ϕ̃(k)

i (ωn)|2 = 〈ϕ2〉 + ∆|ϕ̃(k)
i (ωn)|2. Substituting this into the

quartic term of the action (5.6) and using the central limit theorem, the quartic term

can be replaced by 〈ϕ2〉|ϕ̃i(ωn)|2. This leads to the Gaussian action

S =
T

2

L
∑

i,j=1

∑

ωn

ϕ̃∗
j (ωn)(Mij + |ωn|δi,j)ϕ̃j(ωn) + h

L
∑

i=1

ϕ̃i(0) . (5.7)

The coupling matrix is given by

Mij = −Jiδi,j+1 − Jjδi,j−1 + (ri + 2Ji)δi,j . (5.8)

The renormalized local distance ri from criticality at site i must be determined self-

consistently from

ri = αi + 〈ϕ2〉 , (5.9)



118

where 〈ϕ2〉 is given by

〈ϕ2〉 = T
∑

ωn

[M + |ωn|1]−1
ii + h2

L
∑

j,k=1

M−1
ij M

−1
ik . (5.10)

Here, 1 is the identity matrix. In the presence of disorder, the self-consistent equa-

tions (5.9) at different sites are not identical. We thus arrive at a large number

of coupled non-linear self-consistent equations. Therefore, numerical techniques are

required to solve them.

3. EXISTING NUMERICAL APPROACH

In this section, we review the numerical method proposed by Del Maestro

et al. [123] to study the model (5.7) at zero temperature and in the absence of

an external field (h = 0). The matrix M is spectral decomposed in terms of its

orthogonal eigenvectors Vij and eigenvalues ǫi as

L
∑

j=1

MijVjk = Vikǫk . (5.11)

Using this decomposition, the inverse matrix in Eq. (5.10) can be written as

[M + |ωn|1]−1
ij =

L
∑

k=1

VikVkj
ǫk + |ωn|

. (5.12)

At zero temperature the sum over Matsubara frequencies in Eq. (5.10) turns

into an integral which can be performed analytically. This leads to the self-consistent

equations (for h = 0),

1

π

L
∑

j=1

(Vij)
2 log

(

1 +
Λω
ǫj

)

+ αi − ri = 0 . (5.13)
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Here, for convergence of the frequency integral, an ultra violet cutoff Λω is intro-

duced. Numerical solutions to Eq. (5.13) were obtained by an iteration process using

a modified Powell’s hybrid method. The method works well for large distances from

criticality and small system sizes, but it becomes computationally prohibitive near

criticality where the correlation length ξ becomes of order of the system size. This

problem can be partially overcome by implementing a clever iterative solve-join-patch

procedure. However, the system size L is still limited because large matrices need to

be fully diagonalized which requires O(L3) operations per iteration. Therefore, for

large L the method gets very slow.

As the result, the largest sizes studied in Ref. [123] were L = 128. The authors

analyzed equal time correlations, energy gap statistics and dynamical susceptibilities

and found them in agreement with the strong-disorder renormalization group predic-

tions [107, 122]. The method was also used in Ref. [124] to study the conductivity.

4. METHOD

We now present a novel numerical method to study the model (5.7) at non-zero

temperatures. Its numerical effort scales linearly with system size L (per iteration)

compared with the L3 scaling of the numerical method outlined in Sec. 3. The basic

idea of our method is that, for h = 0, we only need the diagonal elements of the

inverse matrix M−1 to iterate the self-consistent Eq. (5.9). The numerical effort for

finding the diagonal elements of the inverse of a sparse matrix is much smaller than

that of a full diagonalization. Combining Eqs. (5.9) and (5.10), the system of self-

consistent equations at non-zero temperatures T , and in the presence of an external

field h, reads
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ri = 2T

m
∑

n=1

[M + 2πnT1]−1
ii + TM−1

ii + h2
L
∑

j,k=1

M−1
ij M

−1
ik + αi . (5.14)

Here, m = Λω(2πT )
−1 with an ultra-violet cutoff frequency Λω. To solve these

equations (5.14) iteratively, we find the inverses of the tridiagonal‡ matrices [Mij +

2πnT1] and Mij using the fast method proposed in Ref. [125]. This algorithm is

summarized in Sec. 8. In zero external field, we only need the diagonal elements

of [Mij + 2πnT1]−1 and the number of operations per iteration scales linearly with

system size L, while it scales quadratically in the presence of a field because for h 6= 0,

full inversion of the matrix is required.

Once the full set of ri has been obtained, we can compute observables from

the quadratic action (5.7). Let us first consider observables in the absence of an

external field. The equal-time correlation function C(x) = 〈ϕx(τ)ϕ1(τ)〉 averaged

over disorder realizations can be obtained from Eq. (5.7),

C(x) =
T

L− x

L−x
∑

i=1

(

m
∑

n=1

2[M + 2πnT1]−1
i,i+x +M−1

i,i+x

)

, (5.15)

where the overbar indicates the average over disorder configurations. Similarly, in the

zero external field, we can calculate the order parameter susceptibility as a function

of temperature. The disorder-averaged order parameter susceptibility χ(T ) can be

expressed as

χ(T ) =
T

L

L
∑

i=1

L
∑

k=1

M−1
ik . (5.16)

‡We use open boundary conditions.
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In the presence of an external field, we need to include h in the solution of

Eq. (5.14). We can then compute the order-parameter vs . field curve. The disorder-

averaged order parameter reads

ϕ(h) =
h

L

L
∑

i=1

L
∑

k=1

M−1
ik . (5.17)

We note that the number of operations to calculate observables for one disorder

configuration scales quadratically with the system size L. However, this needs to be

done only once, outside the loop that iterates the self-consistent equations. At low

temperatures, according to Eq. (5.14), we need to invert a huge number of matrices

[Mij +2πnT1] per iteration (one for each Matsubara frequency). Naively, one might

therefore expect the numerical effort to scale linearly in 1/T . However, these matrices

are not very different. We can therefore accelerate the method by combining them

appropriately. This is explained in Sec. 9.

5. RESULTS

In this section, we report results of our numerical calculations of the model

(5.7). We consider the interactions Ji to be uniformly distributed on (0, 1) with mean

J = 0.5 and the bare local distances from criticality αi to be Gaussian distributed

with mean α and variance 0.25.

An advantage of our method is that it gives direct access to the temperature

dependencies of observables. For example, we calculate the zero-field order parameter

susceptibility as a function of temperature for various values of the control parameter

ᾱ according to Eq. (5.16). At low temperatures, the Griffiths power law (5.5) describes

the data very well (see Figure 1). The non-universal Griffiths exponent λ can be

determined from fits in the temperature range T = 10−3 − 1.5 × 10−2. Figure 2(a)

shows how λ varies as the distance from criticality δ = ᾱ−ᾱc changes. The power law
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Figure 1: (Color online) Order-parameter susceptibility χ versus temperature T for
various distances from criticality ᾱ in the Griffiths phase. All data are
averaged over 3000 disorder configurations with system size L = 256. The
solid lines represent fits to the Griffiths power law (5.5), χ(T ) ∼ T λ−1, over
the temperature range T = 10−3 − 1.5× 10−2.

λ ∼ δνψ describes the data well with the critical point ᾱc = −0.85(3), and exponents

ν = 2.0(2) and ψ = 0.51(2). Here, the number in brackets indicates the uncertainty

in the last digit. These results are consistent with the predictions of Refs. [107, 122].

We also compute the order parameter as a function of an external field at

T = 10−3 for various ᾱ (Figure 3). The off-critical data (δ > 0) are described by the

Griffiths power law (5.3) with an exponent λ. At the critical point, the ϕ(h) curve

follows the logarithmic dependence (5.4) with exponents ψ = 0.51(2) and φ = 1.61(2).

The value for exponent φ is in agreement with the predicted one [107, 122]. The

values of the Griffiths exponent λ match those extracted from susceptibility data (see

Figure 2 (a)). The deviation near the critical point may be due to the fact that the

correlation length becomes comparable to the system size and correspondingly causes

finite-size effects in the data.
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Figure 2: (Color online) a) The Griffiths exponent λ versus distance from criticality
δ. The solid line is a fit to the power law λ ∼ δψν . b) The correlation
length ξ obtained by analyzing correlation function data versus distance δ
from criticality. The solid line is a fit to a power law, resulting in a critical
point of ᾱc = −0.85(3) and the correlation length exponent ν = 2.0(2).

In addition, in the absence of an external field h, for system size L = 1024, we

compute the disorder-averaged correlation functions (5.15) at temperature T = 10−3

for various values of ᾱ (see Figure 4). The values of correlation length ξ can be

extracted by fitting the data to Eq. (5.2). We find good agreement of the data with

Eq. (5.2) for distances between x = 5 and some cutoff at which the curves start to

deviate from the zero-temperature behaviors due to temperature effects and where

curves start to become noisy because correlations become dominated by very rare

large clusters.

Figure 2(b) shows how the correlation length ξ changes with distance from

criticality δ. The data can be fitted to the power law ξ ∼ |δ|−ν, as expected [22]. By

fitting, we extract the critical point ᾱc = −0.85(3) and exponent ν = 2.0(2). The
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Figure 3: (Color online) Order parameter φ versus external field h for various ᾱ. The
data are averaged over 3000 disorder configurations of system size L = 256.
In the field range h = 10−4 to 2×10−3, the dotted and solid lines represent
fits to Eq. (5.4) and the Griffiths power law (5.3), respectively.

values of exponent ν and critical point ᾱc are in agreement with those obtained from

χ(T ) and ϕ(h).

6. COMPUTATIONAL PERFORMANCE

In this section, we discuss the execution time of our method for solving the self-

consistent Eqs. (5.14) iteratively (i.e., the time needed to get a full set of renormalized

distances from criticality ri). In our method, the time per iteration scales linearly

with the system size L in the absence of an external field because the operation

count is dominated by the matrix inversion. Thus, the disorder-averaged execution

time t̄ ∼ nitL for a single disorder configuration, where nit is the number of iterations

needed for convergence of the self-consistent Eqs. (5.14). The number of iterations nit

depends on the disorder configuration, it is larger for a disorder realization which has

locally ordered rare regions with smaller α. In the conventional paramagnetic phase,
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Figure 4: (Color online) The equal-time correlation functions for several values of ᾱ.
All data are averaged over 3000 samples of size L = 1024 at T = 10−3. The
solid lines are fits to Eq. (5.2). Inset: Deviations of correlation function
at fixed value of ᾱ = −0.7 due to temperature effects and statistical error
of an average over disorder configurations. The data represented by circles
and stars are averaged over the same 1000 disorder configurations at T =
0.0025 and T = 10−3, respectively. The curves represented by triangles are
averaged over different set of 1000 disorder configurations at T = 10−3.

i .e., for larger values of ᾱ away from criticality, locally ordered rare regions are almost

absent, therefore the number of iterations nit is a constant. Thus, in the conventional

paramagnetic phase, the execution time is expected to scale linearly with the system

size, t̄ ∼ L. Figure 5 shows that it indeed scales linearly with the system size for

ᾱ = 1. In contrast, in the quantum Griffiths phase, where locally ordered rare regions

are present, nit is expected to be large and to become larger close to criticality. If we

compare two different system sizes in the quantum Griffiths phase, the larger system

is expected to have locally ordered rare region with higher probability. Thus, in the

quantum Griffiths phase the number of iterations nit is expected to be a function

of system size L, which we model as nit ∼ Ly with some non-negative exponent y.

Therefore, in the quantum Griffiths phase the execution time does not scale linearly
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Figure 5: (Color online) At the temperature T = 10−3 and in the zero field h = 0,
execution time for a single disorder configuration t̄ versus system size L for
ᾱ = −0.6 and ᾱ = 1. All data are averaged over 1000 disorder realizations.
The solid lines represent fits to the power-law. (times measured on an Intel
Core i5 CPU)

with the system size but it behaves as t̄ ∼ Ly+1. Figure 5 shows that for ᾱ = −0.6 in

the quantum Griffihts phase, the disorder averaged execution time t̄ does not scales

linearly with L but behaves as power law t̄ ∼ Ly+1 with y = 0.6.

Because our method performs the Matsubara sums numerically, the effort

increases with decreasing temperature T . As shown in Sec. 9, this increase is only

logarithmic in 1/T if we approximately combine higher Matsubara frequencies.

7. CONCLUSIONS

In summary, we have developed an efficient numerical method for studying

quantum phase transitions in disordered systems with O(N) order parameter symme-

try in the large−N limit. Our algorithm solves iteratively the large−N self-consistent

equations for the renormalized distances from criticality using the fast method of
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Ref. [125] for the necessary matrix inversions. We have applied our method to the

superconductor-metal quantum phase transition in nanowires and studied the criti-

cal behavior of various observables near the transition. Our results are in agreement

with strong-disorder renormalization predictions [107, 122] that the quantum phase

transition is governed by infinite-randomness critical point accompanied by quantum

Griffiths singularities.

Let us compare the performance of our method with that of the method pro-

posed in Ref. [123] and outlined in Sec. 3. The main difference is how the sums over

the Matsubara frequencies in the self-consistent equations (5.9) are handled. The

method of Ref. [123] works at T = 0 where the Matsubara sum becomes an integral.

This integral is performed analytically which saves computation time. However, the

price is a complete diagonalization of the coupling matrix M which is very costly

(O(L3) operations per iteration). Moreover, observables at T 6= 0 are not directly

accessible.

In contrast, our method performs the Matsubara sum numerically which allows

us to use the fast matrix inversion of Ref. [125] (which needs just O(L) operations per

iteration) instead of a full diagonalization. Furthermore, we can calculate observables

at T 6= 0. However, our effort increases with decreasing T . Thus, the two methods

are in some sense complimentary. The method of Ref. [123] is favourable for small

systems when true T = 0 results are desired. Our method works better for larger

systems at moderately low temperatures.

We also emphasize that all our results have been obtained by converging the

self-consistent equations (5.9) by means of a simple mixing scheme. Even better

performance could be obtained by combining our matrix inversion scheme with the

solve-join-patch algorithm [123] for convergence acceleration.

Our method can be generalized to higher-dimensional problems. The self-

consistent equations can be solved in the same way, using a fast method for inverting
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the arising sparse matrices. For two dimensional systems, one could use the methods

given in Refs. [126, 127] for which the cost of inversion is O(N3/2), where N is a

total number of sites. We therefore expect the cost of our method to scale as Ny+3/2

or N3/2 in the quantum Griffiths and quantum paramagnetic phases, respectively.

For three dimensional systems, sparse matrices can be inverted in O(N2) operations

[127], correspondingly the cost of our method is expected to behave as Ny+2 (N is

number of sites) in the quantum Griffiths phase. In the quantum paramagnetic phase

it should scale as N2.

A possible application of our method in three dimensions is the disordered

itinerant antiferromagnetic quantum phase transitions [107, 122]. The clean tran-

sition is described by a Landau-Ginzburg-Wilson theory which is generalization of

the action (5.1) to d = 3 space dimensions and N = 3 order parameter components

[14, 15]. Introducing disorder leads to random mass terms as in the case of the

superconductor-metal quantum phase transition in nanowires.

8. APPENDIX: INVERSION OF TRIDIAGONAL MATRIX

In this section we sketch the fast method for the inversion of a tridiagonal

matrix outlined in Ref. [125]. The cost of finding the diagonal elements of the inverse

matrix is O(L) operations while inverting the full matrix costs O(L2) operations. The

basic idea is that the inverse matrix of the tridiagonal matrix Mij can be represented

by two sets of vectors vj and uj: M
−1
ij = uivj. Let diagonal and offdiagonal elements

of matrix Mij be Mii = ai and Mi,i+1 = Mi,i+1 = −bi, respectively. By combining a

UL decomposition of the linear system for v and a UL decomposition ofMij , one can

determine the set of vectors

v1 =
1

d1
, vi =

b2 · · · bi
d1 · · · di−1di

, i = 2, · · · , n , (5.18)
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where

dn = an , di = ai −
b2i+1

di+1
, i = n− 1, · · · , 1 . (5.19)

The set of vectors uj can be found by combining a LU decomposition of the

linear system for u and a LU decomposition of Mij , yielding

un =
1

δnvn
, un−i =

bn−i+1 · · · bn
δn−i · · · δnvn

, i = 1, · · · , n− 1 , (5.20)

where

δ1 = a1 , δi = ai −
b2i
δi−1

, i = 2, · · · , n . (5.21)

Finding both sets of vectors needs O(L) operations, consequently the number

of operations to extract the diagonal elements M−1
ii = uivi of inverse matrix scales

linearly with L while the cost of finding the full inverse matrix M−1
ij = uivj is O(L2).

9. APPENDIX: ACCELERATION OF METHOD

In this section we propose an approach to accelerate the summation over the

Matsubara frequencies in our method. The idea is based on the fact that the critical

behaviors are dominated by low-frequencies, correspondingly only matrices associated

with low Matsubara frequencies ωn have dominant contributions in Eq. (5.14). At

higher ωn, consecutive matrices change very little. Therefore, instead of finding diago-

nal elements of [Mij+2πTn1]−1 for each Matsubara frequencies ωn, we invert matrices

corresponding to n = 1, ..., 100 and correspondingly calculating the sum of first 100

terms in Eq. (5.14) exactly. Then, we approximate sum of the remaining terms cor-

responding to n > 100 (higher Matsubara frequencies) in the following way: we find
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diagonal elements of [Mij+2πTn1]−1 corresponding to the midpoints of subintervales

obtained by dividing interval n = 10l+1 + 1, ..., 10l+2 (l = 1, ..., log10(m/100)) into 90

subintervales of width 10l. Then, we approximate appropriate sum in Eq. (5.14) by

summing over terms calculated at midpoints multiplied by 10l. In this case, numeri-

cal effort scales logarithmically as log10(1/T ) compared with 1/T scaling in the case

of exact summation. To check the magnitude of errors arising due to this approxima-

tion, we have compared observables calculated exactly and using acceleration method

for the system with size L = 256 and control parameter ᾱc = −0.6 at the temperature

T = 10−3. We have found that arising errors are less than 0.1%.
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ABSTRACT∗

We study the electrical resistivity in the quantum Griffiths phase associated

with the antiferromagnetic quantum phase transition in a metal. The resistivity is

calculated by means of the semi-classical Boltzmann equation. We show that the

scattering of electrons by locally ordered rare regions leads to a singular temperature

dependence. The rare-region contribution to the resistivity varies as T λ with tem-

perature T, where λ is the usual Griffiths exponent which takes the value zero at the

critical point and increases with distance from criticality. We find similar singular

contributions to other transport properties such as thermal resistivity, thermopower

and the Peltier coefficient. We also compare our results with existing experimental

data and suggest new experiments.

∗Published in Europhysics Letters 95, 57010 (2011).
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1. INTRODUCTION

Quantum phase transitions [12] occur at zero temperature when an external

parameter such as magnetic field, pressure or chemical composition is varied. They

are driven by quantum rather than thermal fluctuations. At continuous quantum

phase transitions, i.e., quantum critical points, the quantum fluctuations driving the

transition diverge and become scale invariant in space and time. These fluctuations

dominate the material’s properties in the vicinity of the quantum critical point at

low but non-zero temperatures. In metallic systems, they can cause strong deviations

from the conventional Fermi-Liquid behavior of normal metals [13].

Impurities, defects or other kinds of quenched disorder can significantly modify

the low temperature behavior of quantum many-particle systems. The interplay

between dynamic quantum fluctuations and static disorder fluctuations leads to much

more dramatic effects at quantum phase transitions than at classical thermal phase

transitions, including quantum Griffiths singularities [30, 99, 100], infinite randomness

critical points featuring exponential instead of power-law scaling [22, 101] and the

smearing of the phase transition [51]. These unconventional phenomena are caused

by large spatial regions (rare regions) that are devoid of impurities and can show

local order even if the bulk system is in the disordered phase. The fluctuations of

these rare regions are very slow because they require changing the order parameter in

a large volume. Griffiths showed that this leads to a singular free energy in a whole

parameter region which is now known as the Griffiths phase. The probability P(Ld)

for finding an impurity-free rare region with linear size L in a disordered system is

exponentially small in its volume Ld, P(Ld) ∼ exp(−cLd) with c being a constant

that depends on the disorder strength. In systems in which the characteristic energy

ǫ of such a rare region decays exponentially with its volume, ǫ ∼ exp(−bLd), the

resulting density of states is of power-law type, ρ(ǫ) ∝ ǫλ−1, where λ = c/b is the
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non-universal Griffiths exponent. It varies systematically within the Griffiths phase

and vanishes at the critical point. The power-law density of states ρ(ǫ) leads to

non-universal power-law quantum Griffiths singularities of several thermodynamical

observables including the specific heat, C ∼ T λ, and the magnetic susceptibility,

χ ∼ T λ−1. The zero-temperature magnetization-field curve behaves as M ∼ Hλ (for

reviews, see Refs. [17, 18]).

Quantum Griffiths phases have been predicted to occur not only in localized

magnets but also in metallic systems [31, 66, 122], but clear-cut experimental verifica-

tions have been absent for a long time. Only recently, quantum Griffiths phases have

been observed in experiment in a number of systems such as magnetic semiconductors

[43, 44, 45], Kondo lattice ferromagnets [46, 47] and transition metal ferromagnets

[48]. The lack of experimental evidence for quantum Griffiths phases in metals may

be (at least partially) due to the theories being incomplete: while the thermodynam-

ics in quantum Griffiths phases is comparatively well understood, very little is known

about the experimentally important and easily accessible transport properties.

In this Letter we therefore study the electrical resistivity in the quantum Grif-

fiths phase of an antiferromagnetic metal by means of the semi-classical Boltzmann

equation approach. In the same manner, we also investigate other transport proper-

ties such as the thermal resistivity, the thermopower and the Peltier coefficient. We

find that the scattering of the electrons by spin-fluctuations in the rare regions leads

to singular temperature dependencies not just at the quantum critical point but in

the entire antiferromagnetic quantum Griffiths phase. The rare region contribution

to the resistivity varies as ∆ρ ∝ T λ with temperature T , the contribution to thermal

resistivity behaves as ∆W ∝ T λ−1, and the thermopower and the Peltier coefficient

behave as ∆S ∝ T λ+1 and ∆Π ∝ T λ+2, respectively.
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2. MODEL AND METHOD OF SOLUTION

Let us now sketch the derivation of these results. The transport properties

of the itinerant antiferromagnetic systems we are interested in can be described by

a two-band model consisting of s and d electrons [128, 129]. The Hamiltonian has

the form H = Hs + Hd + Hs−d, where Hs and Hd are the Hamiltonians of s and d

electrons, respectively. Hs−d corresponds to the exchange interaction between s and

d electrons. Only the s electrons contribute to the transport properties. They are

scattered by the spin-fluctuations of the d electrons which are assumed to be in the

antiferromagnetic quantum Griffiths phase. The contribution to the resistivity from

the scattering by the spin-fluctuations stems from the s−d exchange interaction term

of the Hamiltonian

Hs−d = g

∫

dr s(r) · S(r) , (6.1)

where g is the coupling between s and d electrons. s and S are the spin densities of

the s and d electrons, respectively.

Close to an antiferromagnetic transition in three-dimensional space, transport

properties can be treated within a semi-classical approach using the Boltzmann equa-

tion because quasiparticles are still (marginally) well defined. For simplicity, we also

assume that the spin-fluctuations are in equilibrium, i.e., we neglect drag effects. This

approximation is valid if the system can lose momentum efficiently by Umklapp or

impurity scattering as is the case in a dirty antiferromagnetic system. The linearized

Boltzmann equation in the presence of an electric field E and a temperature gradient

∇T, but zero magnetic field can be written as [58]

− vk

∂f 0
k

∂T
∇T − vk

∂f 0
k

∂εk
E =

(

∂fk
∂t

)

scatt

, (6.2)
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where f 0
k is the equilibrium Fermi-Dirac distribution function. The first and second

terms correspond to the rate changes of the electron distribution function fk due to

the diffusion and electric field E, respectively. The last one is the collision term. Let

the stationary solution of the Boltzmann equation be fk = f 0
k −Φk(∂f

0
k/∂εk), where

Φk is a measure of the deviation of the electron distribution from equilibrium. Then

the linearized scattering term due to the spin-fluctuations has the form [129, 130]

(

∂fk
∂t

)

scatt

=
2g2

T

∑

k′

f 0
k′(1− f 0

k)n(εk − εk′)Imχ(k− k′, εk − εk′)(Φk − Φk′)

=
1

T

∑

k′

Pk′(εk − εk′)(Φk − Φk′) , (6.3)

where n(εk − εk′) is the Bose-Einstein distribution function and χ is the total dy-

namical susceptibility of the spin-fluctuations of the d electrons.

3. ELECTRICAL RESISTIVITY

In order to calculate the electrical resistivity we consider Ziman’s variational

principle [58]. The resistivity ρ is given as the minimum of a functional of Φk [58] †

ρ[Φk] = min

[

1

2T

∫ ∫

(Φk − Φk′)2Γk′

k dkdk
′

(∫

vkΦk
∂f0

k

∂εk
dk
)2

]

, (6.4)

where

Γk′

k =

∫ ∞

0

dω Pk′(ω)δ(εk′ − εk + ω) . (6.5)

†We set Plank’s constant, electron’s charge and Boltzmann constant ~ = e = kB = 1 in what
follows.
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Quantum Griffiths effects in disordered metallic systems are realized both in

Heisenberg magnets [31, 43] and in Ising magnets. In the latter case, they occur in a

transient temperature range where the damping is unimportant [66]. In the following,

we consider both cases.

As we are interested in the rare-region contribution to the resistivity in the

Griffiths phase, we need to find the rare region dynamical susceptibility which is

simply the sum over the susceptibilities of the individual rare regions. The imaginary

part of the dynamical susceptibility of a single cluster (rare region) of characteristic

energy ǫ in the quantum Griffiths phase of a disordered itinerant quantum Heisenberg

antiferromagnet is given by

Imχcl(q, ω; ǫ) =
µ2γω

ǫ2(T) + γ2ω2
F2
ǫ(q) , (6.6)

where µ is the moment of the cluster and γ is the damping coefficient which results

from the coupling of the spin-fluctuations and the electrons. ǫ(T ) plays the role of the

local distance from criticality. For high temperatures γT ≫ ǫ, ǫ(T ) ≈ T and for low

temperatures γT ≪ ǫ, ǫ(T ) ≈ ǫ. Fǫ(q) is the form factor of the cluster which encodes

the spatial magnetization profile. For random quantum Ising models the imaginary

part of the dynamical magnetic susceptibility of a single cluster (rare region) is given

by

Imχcl(q, ω; ǫ) = π
µ2

4
tanh

( ǫ

2T

)

[δ(ǫ− ω)− δ(ǫ+ ω)]F 2
ǫ (q) . (6.7)

To get the total rare-region susceptibility, we integrate over all rare regions

using the density of states ρ(ǫ),

Imχ(q, ω) =

∫ Λ

0

dǫρ(ǫ)Imχcl(q, ω; ǫ) , (6.8)
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where Λ is an energy cut-off. The precise functional form of Fǫ(q) is not known, since

every cluster has a different shape and size. However, we can find it approximately

by analyzing the Fourier transform of a typical local magnetization profile of the rare

region. Consider a rare region of linear size L (located at the origin). Following Millis

et al. [36], the order parameter is approximately constant for r < L, while for large

r > L, it decays as e−r/ξ/r, where ξ is the bulk correlation length. Taking the Fourier

transform we find that Fǫ(q) depends on ε via the combination |Q−q|3 log(ǫ−1) only,

where Q is the ordering wave vector. Correspondingly, from Eq. (6.8), we find that

the rare region contribution to the zero-temperature susceptibility in the quantum

Griffiths phase can be expressed as

Imχ(q, ω) ∝ |ω|λ−1sgn(ω) X[(q−Q)3 log(ω−1)] , (6.9)

where X is a scaling function. The precise form of the logarithmic correction is diffi-

cult to find and beyond the scope of this paper. For random quantum Ising models,

the susceptibility has the same structure as Eq. (6.9) [66]. It is clear that the scaling

function X will give only logarithmic corrections to the temperature dependence of

the resistivity ρ in our further calculations.

To minimize the resistivity functional (6.4), we need to make an ansatz for

the distribution Φ. Close to an antiferromagnetic quantum phase transition, the mag-

netic scattering is highly anisotropic because χ(q, ω) peaks around the ordering wave

vector Q. However, since we are interested in a strongly disordered system, the low-

temperature resistivity will be dominated by the elastic impurity scattering which is

isotropic and redistributes the electrons over the Fermi surface. Correspondingly, we

can use the standard ansatz

Φk ∝ n · k . (6.10)
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where n is a unit vector parallel to the electric filed. Note that any constant prefactor

in Φk is unimportant because it drops out in the resistivity functional (6.4) and in

the corresponding thermal resistivity functional (6.13). Then, after applying standard

techniques [58] the magnetic part of the resistivity given in Eq. (6.4) becomes

∆ρ ∝ T

∫

d3q
(n · q)2

q

∫ ∞

0

dω
∂n(ω)

∂T
Imχ(q, ω) . (6.11)

Inserting the susceptibility (6.9) yields the rare-region contribution to the

resistivity in the antiferromagnetic quantum Griffiths phase as

∆ρ ∝ T λ . (6.12)

Thus, the temperature-dependence of the resistivity follows a non-universal power-

law governed by the Griffiths exponent λ.

4. OTHER TRANSPORT PROPERTIES

In the same way, we study other transport properties such as the thermal

resistivity, the thermopower, and the Peltier coefficient. The variational principle for

the thermal resistivity has the form [58]

W [Φk] = min

[

∫ ∫

(Φk − Φk′)2Γk′

k dkdk
′

(∫

vk(εk − µ)Φk
∂f0

k

∂εk
dk
)2

]

, (6.13)

where µ is the chemical potential of the s-electrons. As long as impurity scattering

dominates, we can use the standard ansatz for the variational function,

Φk ∝ (εk − µ)n · k . (6.14)



139

Then, following the calculation for the thermal resistivity outlined in Ref. [58] we

obtain

∆W ∝ 1

T 2

∫

d3q

∫

dω
∂n(ω)

∂T
Imχ(q, ω)

×
[

ω2

(

1

q
− q

6kF
2

)

+
π2q

3kF
2T

2

]

. (6.15)

where kF is Fermi momentum of the s-electrons ‡. Inserting the susceptibility (6.9)

into (6.15), the temperature dependence of the thermal resistivity due to the spin-

fluctuations in the Griffiths phase from the above equation is given by

∆W ∝ T λ−1 . (6.16)

The existence of an electric field E in a metal subject to a thermal gradient∇T

is called Seebeck effect and is characterized by the thermopower S which is defined

via E = S ∇T . To calculate the thermopower, we analyze the Boltzmann equation

(6.2) in the presence of both E and ∇T using the trial function

φk ∝ η1n · k+ η2(εk − µ)n · k . (6.17)

where η1 and η2 are variational parameters. Elastic impurity scattering leads to the

usual linear temperature dependence Simp ∝ T while the contribution due to the

magnetic scattering by the rare regions in the Griffiths phase reads

∆S ∝ T λ+1 . (6.18)

Another transport coefficient called the Peltier coefficient Π characterizes the

flow of a thermal current in a metal in the absence of a thermal gradient. It is related

‡Here, we have averaged over all directions of the vector n; this is sufficient to get the temperature
dependence.
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to the thermopower by Π = S T. Correspondingly, the rare-region contribution to

the Peltier coefficient has the form

∆Π ∝ T λ+2 . (6.19)

5. DISCUSSION AND CONCLUSIONS

In summary, we have investigated the transport properties in the quantum

Griffiths phase close to an antiferromagnetic quantum phase transition in a metallic

system (see Fig. (1)). The rare-region contributions to electrical resistivity, thermal

resistivity, thermopower, and the Peltier coefficient are characterized by non-universal

power-laws in T which are controlled by the Griffiths exponent λ.

Our results have been obtained using the semi-classical Boltzmann equation

approach. This approach is valid in Griffiths phase in which the system consists of

a few locally ordered rare regions in a non-magnetic bulk where the quasiparticles

are well-defined. Sufficiently close to the actual quantum critical point (which is of

infinite-randomness type) the quasiparticle description may break down, invalidating

our results. A detailed analysis of this question hinges on the fate of the fermionic

degrees of freedom at the infinite-randomness quantum critical point. This difficult

problem remains a task for the future.

We have used the standard isotropic ansatz (6.10, 6.14) for the deviation of

the electron distribution from equilibrium. This is justified as long as the rare-region

part ∆ρ(T ) of the resistivity is small compared to the impurity part ρ0. When ∆ρ

becomes larger, the anisotropy of the scattering needs to be taken into account. This

can be done by adapting the methods of Rosch [131] to the situation at hand.

We emphasize that our results have been derived for antiferromagnetic quan-

tum Griffiths phases and may not be valid for ferromagnetic systems. The problem is

that a complete theory of the ferromagnetic quantum Griffiths phase in a metal does
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Figure 1: (Color online) Schematic temperature-control parameter phase diagram of
an itinerant antiferromagnet close to the quantum critical point. Our re-
sults apply in the Griffiths phase at low temperatures.

not exist. In particular, the dynamical susceptibility still is not known. Correspond-

ingly, the transport properties in ferromagnetic quantum Griffiths phases remain an

open problem.

Non-universal power-laws in a variety of observables including transport prop-

erties can also arise from a different physical mechanism far away from the magnetic

quantum phase transition. In Kondo-disordered systems, the existence of a wide dis-

tribution of local single-ion Kondo temperatures is assumed, this leads to the power-

law singularities [132, 133]. This model was used to explain experimental results in

some heavy fermion compounds such as UCu4Pd and UCu3.5Pd1.5 [134, 135].

Let us now turn to experiment. Unfortunately and somewhat ironically, all

clear-cut experimental observations of quantum Griffiths phases are in itinerant fer-

romagnets rather than in antiferromagnets. However, quantum Griffiths effects have

been discussed in the context of the antiferromagnetic quantum phase transition in
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heavy fermion systems [136, 137]. One of the most striking predictions following

from our theory is that the exponent characterizing the electrical resistivity should

be less than one sufficiently close to the quantum phase transition. There are several

antiferromagnetic systems such as CeCo1.2Cu0.8Ge2 and Ce(Ru0.6Rh0.4)2Si2 [136, 137]

that show unusual power-law behaviour of the electrical resistivity with an exponent

less than unity. The first system’s resistivity increases with decreasing temperature.

This is incompatible with our prediction and described by the Kondo model. The

resistivity of the second compound decreases with decreasing temperature in agree-

ment with our prediction. However, it is not clear whether this behaviour is indeed

caused by the quantum Griffiths phase. To establish this, one should measure var-

ious thermodynamics quantities as well as the transport properties and relate their

low-temperature behavior.
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SECTION

2. CONCLUSIONS

In this thesis, reprints of six papers have been presented that studied various

aspects of quenched disorder effects on phase transitions. In papers I, II, and III,

we investigated smeared phase transitions in binary alloys A1−xBx, in which the

transition is tuned by changing the composition x. We considered both spatially

correlated and uncorrelated disorder. This theory was put to a test in experiments

on the Sr1−xCaxRuO3 compound in paper III.

Paper IV studied quantum Griffiths singularities associated with the ferro-

magnetic quantum phase transition in a disordered metal for Ising and Heisenberg

order parameter symmetries. The resulting quantum Griffiths singularities are even

stronger than usual quantum Griffiths singularities.

Paper V was devoted to an efficient numerical method to study the quantum

critical behavior of disordered systems with O(N) order-parameter symmetry in the

large-N limit. The method is based on the iterative solution of the large−N saddle-

point equations combined with a fast algorithm for inverting the arising large sparse

random matrices.

In paper VI, we studied transport properties in the quantum Griffiths phase

associated with the antiferromagnetic quantum phase transition in a metal by means

of the semi-classical Boltzmann transport theory.

In summary, we explained how quenched disorder can affect a variety of phase

transitions and modify the behavior of observable quantities close to the transition
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point. We thus took a step towards a better understanding of the interplay between

randomness and phase transitions. However, many interesting open questions remain.

The complete theories of smeared phase transitions and quantum Griffiths phases are

not obtained yet. It would be interesting, for example, to study effects of spatial long-

range correlations of the disorder on smeared phase transitions. Moreover, theories

of quantum Griffiths phases in metals neglect weak localization effects. Because the

system is strongly disordered in the quantum Griffiths phase, it would be interesting

to study weak localization effects and other quantum effects on observable quantities

in quantum Griffiths phases.
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