
Scholars' Mine Scholars' Mine 

Doctoral Dissertations Student Theses and Dissertations 

Spring 2014 

Speciation dynamics of an agent-based evolution model in Speciation dynamics of an agent-based evolution model in 

phenotype space phenotype space 

Adam David Scott 

Follow this and additional works at: https://scholarsmine.mst.edu/doctoral_dissertations 

 Part of the Physics Commons 

Department: Physics Department: Physics 

Recommended Citation Recommended Citation 
Scott, Adam David, "Speciation dynamics of an agent-based evolution model in phenotype space" (2014). 
Doctoral Dissertations. 2270. 
https://scholarsmine.mst.edu/doctoral_dissertations/2270 

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This 
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the 
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu. 

http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/doctoral_dissertations
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/doctoral_dissertations?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2270&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/193?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2270&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/doctoral_dissertations/2270?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2270&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu




 

 

 

 

 

SPECIATION DYNAMICS OF AN AGENT-BASED  

 

EVOLUTION MODEL IN PHENOTYPE SPACE 

 

 

by 

 

 

ADAM DAVID SCOTT 

 

 

A DISSERTATION 

 

Presented to the Faculty of the Graduate Schools of the  

 

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY 

 

and 

 

UNIVERSITY OF MISSOURI AT ST. LOUIS 

 

In Partial Fulfillment of the Requirements for the Degree 

 

 

DOCTOR OF PHILOSOPHY 

 

in 

 

PHYSICS 

 

2014 

 

Approved by 

Sonya Bahar, Advisor 

Eric Majzoub 

Paul Parris 

Thomas Vojta 

Istvan Kiss 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© 2014 

Adam David Scott 

All Rights Reserved



 

 

iii 

ABSTRACT 

 This dissertation is an exploration of phase transition behavior and clustering of 

populations of organisms in an agent-based model of evolutionary dynamics. The agents 

in the model are organisms, described as branching-coalescing random walkers, which 

are characterized by their coordinates in a two-dimensional phenotype space. Neutral 

evolutionary conditions are assumed, such that no organism has a fitness advantage 

regardless of its phenotype location. Lineages of organisms evolve by limiting the 

maximum possible offspring distance from their parent(s) (mutability, which is the only 

heritable trait) along each coordinate in phenotype space. As mutability is varied, a non-

equilibrium phase transition is shown to occur for populations reproducing by assortative 

mating and asexual fission. Furthermore, mutability is also shown to change the 

clustering behavior of populations. Random mating is shown to destroy both phase 

transition behavior and clustering. The phase transition behavior is characterized in the 

asexual fission case. By demonstrating that the populations near criticality collapse to 

universal scaling functions with appropriate critical exponents, this case is shown to 

belong to the directed percolation universality class. Finally, lineage behavior is explored 

for both organisms and clusters. The lineage lifetimes of the initial population of 

organisms are found to have a power-law probability density which scales with the 

correlation length exponent near critical mutability. The cluster centroid step-sizes obey a 

probability density function that is bimodal for all mutability values, and the average 

displays a linear dependence upon mutability in the supercritical range. Cluster lineage 

tree structures are shown to have Kingman’s coalescent universal tree structure at the 

directed percolation phase transition despite more complicated lineage structures.  
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1. INTRODUCTION 

 “I made certain very simple, but not very inaccurate, suppositions, concerning 

 average fertility, and I worked to the nearest integer, starting with 10,000 persons, 

 but the computation became intolerably tedious after a few steps, and I had to 

 abandon it.” 

 (Francis Galton, F.R.S. 1875) 

 

 The natural world is immensely complicated, and with simplifying models, one 

can navigate and understand its complexity. With the use of stochastic computational 

simulations, systems that are inherently noisy, such as biological systems, may be studied 

with greater ease. Where mathematicians seek the most basic, logical understanding of 

such systems, biologists seek a grander picture. The modeling approach of a physicist is 

then to find the happy medium between simplicity and complexity. This happiness is the 

motivation for the approach taken here. 

 

1.1. NEUTRAL THEORY 

 All of the work within this dissertation operates under the assumption of neutral 

theory. This is in contrast to the foundation on which modern evolutionary biology is 

based, the theory of natural selection as described by Charles Darwin (1859). Natural 

selection arises through differential fitness, and describes how species adapt to changes in 

their environment and allows them to have a successful continuation of heritable traits.  

Fisher (1930) ushered the theory of natural selection from studies based only on natural 

history to statistical modeling. However, it wasn’t until the work of Kimura that notions 

of evolution without selection (without effects of differential fitness on survival) were 

explored (Kimura and Crow 1964; Kimura 1968, 1983). In his work, Kimura described 

genetic drift, a neutral theory of evolution that provides a “null hypothesis” for the 

formation of species by assuming that different genetic mutations have equal fitness 

benefits for the organisms which carry them. Recently, Hubbell (2001) described a 

neutral theory of ecology which also predicts clustering of spatial patterns of flora that 

occur from drift alone and without any species bias about where each plant or tree may 
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grow within a local area. Both of these neutral models suggest theoretical possibilities, 

but they do not imply prevalence.  

 There has been contention regarding possibility vs. prevalence of speciation by 

genetic drift and of neutral clustering in ecology (Ricklefs 2006), and this is compounded 

by the rarity of sympatric speciation. Several example species have been shown to have 

formed from sympatric speciation including sticklebacks (Schluter 1994), snails 

(Johannesson, Rolan-Alvarez, & Ekendahl 1995), and anolis lizards (Losos, et al. 1998). 

Even microorganisms such as bacteria have been shown to develop via sympatric 

speciation (Cadillo-Quiroz et al. 2012). Dieckmann and Doebeli (1999) showed that in an 

agent-based model of sympatric, assortative mating (explained below) organisms 

undergoing genetic drift can speciate when competition for resources is included in their 

dynamics. Their model was predicted to apply to recently colonized habitats, and for 

trait-biased mating species that rely upon ecological traits such as size or coloring 

(Dieckmann & Doebeli 1999).  

 The set of genes found in the DNA of an organism defines its genotype. The 

physical manifestation of the instruction from a gene is protein expression. The 

expression of a protein can, by itself or in concert with other proteins, be manifested as an 

external trait in an organism. The phenotype is then the set of traits which are observed 

from the genotype. Genetic drift explores the set of possible genotypes, or genotype 

space. The set of possible phenotypes then describes a phenotype space. Natural selection 

acts upon phenotypes, therefore a selected phenotype corresponds to a particular 

genotype. When a mutation occurs somewhere in a genotype, there can be a 

corresponding mutation to the phenotype. Neutral theory then describes how mutations 

offer no survival advantage over the original genotype (or phenotype) or any other 

mutated genotype. The work presented throughout exists in a phenotype space with no 

consideration of genotype space or physical space. 

 

1.2. PHASE TRANSITIONS 

 The purpose of studying phase transitions is to seek how a control parameter 

drives fundamental changes in the dynamics of an order parameter which is a measure of 

the overall behavior of a system. Here, the focus is on continuous, non-equilibrium phase 
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transitions. “Continuous” refers to the continuous first derivative of the order parameters 

as the control parameter is varied, and it is accompanied by diverging variations of the 

order parameter as the control parameter approaches the critical point. “Non-equilibrium” 

refers to the inability of system to transition equally between phases. In the supercritical 

state the system is active and fluctuating, whereas, subcritically, the system forever stays 

in an absorbing, inactive state. There are a variety of dynamical characteristics which go 

along with such a transition near and at a critical point. These include scale-free behavior 

of the order parameters (having no characteristic scaling), large variations of the order 

parameter, and asymptotically long decay times. The overarching objective of this 

dissertation is to report on the behavior of a specific neutral phenotype evolution model 

in the presence of a continuous, non-equilibrium phase transition. 

 

1.3. BASICS OF THE PHENOTYPE EVOLUTION MODELS 

 The models used throughout this dissertation are modifications of a previously-

described evolution model with rugged and changing fitness landscapes (Dees & Bahar 

2010). As in the original model, organisms are described here by independent and 

arbitrary trait values (coordinates) in a continuous, two-dimensional phenotype space. 

Interactions of organisms with each other and their environment are based upon four 

considerations.  

 1.3.1. Organism Lifecycle.  First, to reproduce, if one imagines a sexually 

reproducing organism that is free to choose its mate, it will more likely choose one that 

has similar traits, referred to as assortative mating (Kondrashov & Shpak 1998; de Cara, 

Barton, & Kirkpatrick 2008; Otto, Servedio, & Nuismer 2008). The offspring of the 

mating pair will exhibit a phenotype that is some combination of the parental phenotypes, 

with the incorporation of an additional amount of variation due to mutation. Note that this 

type of “blending inheritance” in phenotype space does not imply a blending of 

genotypes, which cannot occur in a biological system (Ridley 2004). Offspring which 

share too similar traits are likely to compete for the same set of resources, so when 

offspring compete, one of them will die. Finally, not all organisms are permitted the 

opportunity to survive before they can reproduce.  
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 For the model considered here, in contrast to that of Dees and Bahar (2010), at 

every stage in the lifecycle of organisms, there is no selection preference. The phenotype 

coordinates of organisms do not convey any advantage or disadvantage in terms of 

fitness, which is defined as the number of offspring produced, competition, or luck in 

escaping from random, mortal events. These processes will be detailed in the following 

sections. 

 1.3.2. Clustering and Species.  Since there is no explicit representation of 

geographic distance in the model, clustering of organisms in the phenotype space 

corresponds to sympatric speciation. Clustering is roughly based on the biological species 

concept, in the case of assortative mating and random mating, and on the phenetic species 

concept in the case of asexual fission. To clarify the biological terminology, sympatric 

speciation is the formation of species found in the same (“sym-”) physical area (“patric”). 

The biological species concept defines a species as a closed set of reproducing organisms 

that produce viable offspring. The concept of phenetic species describes bacterial species 

according to shared or similar phenotypes.  

 

1.4. SUMMARY 

 The role of mutability in controlling phase transition behavior and cluster 

formation will be studied. In Section 2, observation of phase transitions and clustering 

behaviors in the case of assortative mating and asexual fission are discussed in contrast 

with random mating. In Section 3, it is shown that the asexual fission model undergoes a 

phase transition which belongs to the directed percolation universality class. Statistical 

distributions and branching dynamics of the lineages of organisms and clusters in the 

asexual fission model are then discussed in Section 4. In addition, multilevel selection is 

discussed among possible implications of cluster fitness, and is put into context by 

possible universal structure measures of average time to most recent common ancestor. 

Suggestions for future studies branching from this work, such as implications of 

multilevel selection leading to scale-free selection, explosive increases in biological 

diversity, and comparisons with biological morphology data are discussed in Section 5. 
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2. OBSERVATIONS OF CLUSTERING AND PHASE TRANSITIONS 

2.1. INTRODUCTION 

 Speciation under neutral conditions was initially studied by Kimura in the case of 

genetic drift (Kimura & Crow 1964; Kimura 1968, 1983). A more recent, equivalent 

approach to clustering under neutral conditions was introduced by the work of Hubbell in 

the context of physical clustering in ecology (Hubbell 2001). How selection affects 

clustering in genotype and phenotype space or in physical space is of great concern to 

evolutionary biology and ecology, because species are generally identified by such 

clustering. Removing selection from evolution or from ecological pattern formation 

introduces important questions about clustering. However, these theories do not imply 

that they describe the prevalent evolutionary process of speciation, only that selection-

free clustering is possible (Hubbell 2001).  

 Evolutionary systems have been simulated with the goal of determining why 

clustering occurs for interacting organisms under neutral conditions. In particular, 

clustering was observed in a neutral model of organisms described by their spatial 

locations and genotypes (de Aguiar, Baranger, Baptestini, Kaufman, Bar-Yam 2009). 

Organisms underwent assortative mating by finding mates nearby in both physical and 

genotype spaces. It was concluded that assortative mating was the essential element to 

achieve speciation, and both physical and genotype spaces were necessary for clustering. 

Species abundance curves were produced which matched the predictions of Hubbell’s 

neutral theory of biodiversity, so it was counted as strong support for Hubbell’s theory 

(Banavar & Maritan 2009). 

 A related mathematical class of clustering systems to the de Aguiar et al. model is 

branching-coalescing random walks (BCRW). Much of the properties of such models are 

still being uncovered (Dutta, Panduragan, Rajaraman, and Roche 2013; Cooper et al. 

2012; Arthreya & Swart 2005). However, clustering in BCRW models has seen little 

attention in the context of computational evolutionary biology with at least one 

exception, that of Hubbell (2005). 

 Zhang, Serva, and Polikarpov (1990) observed clustering in a population of 

BCRW agents reproducing by asexual fission. Each organism had the same probability 
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for reproduction, mimicking neutral conditions. Another fission model, with organisms 

described by binary digit string genotypes, was studied by Derrida and Peliti (1991). 

They produced mathematical results such as the probability of observing specific 

genealogies under neutral conditions.  

 Meyer, Havlin, and Bunde (1996) produced a modified version of the Zhang et al. 

model in which they investigated the clustering of organisms under neutral-like 

conditions: equal birth and death rates. They determined that clustering arose from 

asymmetry in the birth and death processes. That is, offspring are born near their parents, 

whereas death kills off organisms regardless of their location in the space. Young, 

Roberts, and Stuhne (2001) introduced a “Brownian bugs” model of organisms 

reproducing by fission and concluded again that the minimum criterion for clustering in 

such models is a spatial asymmetry in the birth and death processes. They also noted that 

continuous, fluid-like population undergoing a diffusion process with equal birth and 

death rates does not yield clustering, so only agent-based models can exhibit clustering. 

In the works of Houchmandzadeh (2002) and Houchmandzadeh and Vallade (2003), 

mathematical properties of BCRWs were studied directly in the context of Hubbell’s 

neutral theory of biodiversity. Similarly, Lawson and Jensen (2008) studied a neutral 

model of phenotype evolution with populations undergoing BCRW. 

 Recently, it was shown that for several different types of rugged fitness phenotype 

landscapes, mutability could optimize clustering (Dees & Bahar 2010). Here, as below, 

mutability is defined as the maximum phenotypic distance an organism can be from its 

parents. Static, rugged landscapes (a grid of fitness values varying between one and four, 

where fitness is the number of offspring an organism can produce), moving rugged 

landscapes, and landscapes with feedback (reducing fitness with growing local 

population density, increasing fitness with lesser local population density) all showed that 

populations of organisms could cluster. Populations were also observed to undergo non-

equilibrium phase transition behavior (transitioning from an absorbing state of extinction 

to indefinite survival) for slightly smaller values of mutability on each landscape. Near 

the suspected critical mutability, large variations in the ensemble populations were also 

observed, with some simulations ending relatively quickly while others thrived for the 

duration of the simulation. 
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 The work presented here extends the results of the assortative mating phenotype 

space model in two ways. A neutral fitness landscape is assumed throughout, and phase 

transition behaviors and clustering are also observed for reproduction by fission. It is also 

shown that reproduction by random mate selection destroys both the phase transition and 

the formation of clustering. A measure for the quality of clustering is provided to 

compare clustering across a range of mutability values. The results demonstrate that 

sympatric speciation of organisms, described only by phenotypes, undergoes clustering in 

an evolution model under neutral conditions. 

 

2.2. METHODS 

 The models described in this section simulated three different sizes of phenotype 

space, 21x21, 45x45, and 77x77. Each phenotype space was associated with a neutral 

fitness landscape (with fitness=2) such that every phenotype allowed no selection bias 

through fitness differences. In all simulations, 300 organisms were initialized according 

to a uniform random distribution within the phenotype space and given the same 

mutability,  . Simulations were performed for five runs for          to      with 

increments of 0.02 units. The lifecycle of organisms was generational, as described 

above, and began with each organism producing two offspring, as is dictated by the 

neutral fitness landscape. Once all organisms reproduced, the parents were removed, 

leaving only their offspring. The offspring underwent competition death, random death, 

and death by absorbing boundaries. This process of birth and death was repeated until 

either the populations fell below three organisms (extinction; three organisms is the 

minimum necessary to determine a cluster, as will be discussed in more detail below) or 

the simulations reached the maximum time limit of 2000 generations. Simulations were 

performed in MATLAB (The MathWorks) on PCs using a Windows 7 operating system. 

 2.2.1. Reproduction Schemes.  Three different reproduction schemes were 

simulated. Assortative mating between organisms was determined by measuring distances 

between organisms. Having no gender distinction among organisms, mates were chosen 

to be the nearest-neighbor (NN) organism to the reproducing organism, also known as the 

reference organism. Once mates were established, offspring were generated for each 

reference organism according to an area about the mating parents. This area is referred to 
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as the birth region. Offspring were uniformly distributed within the birth region whose 

opposing corners are defined by the reference organism and its mate. The region was then 

extended in each direction by an addition of the mutability of the reference parent (Figure 

2.1). The offspring locations are (   ,    ) with the reference parent location (   ,    ) 

and mate location (   ,    ): 

 

       (       )    [(    (       )   )  (    (       )   )]     (1a) 

       (       )    [(    (       )   )  (    (       )   )]    (1b) 

 

The mutability,  , is determined by the reference parent, and uniformly distributed 

random numbers,    and   , were generated by MATLAB’s Mersenne twister 

pseudorandom number generator on the interval [0,1]. An example of assortative mating 

simulations is shown in Figure 2.2. 

 The asexual fission algorithm is similar to that for assortative mating, except that 

the rectangular birth region around two parents is reduced to a square with sides of length 

  , centered on the single reference parent. The coordinates of each offspring (   ,    ) 

were determined as  

 

                                                            (2a) 

                                                            (2b) 

 

where the parent coordinates are (   ,    ), mutability is  , and   is some random number 

drawn from a uniform distribution on the interval [0,1]. 

 Random mating modifies the assortative mating algorithm by having no NN 

calculation. Instead, mates were chosen at random from the population, regardless of 

their phenotype location. For every reference organism, all other organisms were equally 

likely to be chosen as a mate. Random mating is used as a “null condition” to identify the 

importance of local birth to clustering and phase transition behaviors. An example of 

random mating simulations is shown in Figure 2.3. 
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Figure 2.1.  Assortative Mating. (a) A parent (black circle) and its mate (blue circle);   

shows the mutability of the reference parent and the black rectangle its birth region. (b) 

The offspring of the reference parent (black diamonds). (c) Assuming the mate of the 

blue parent is the black parent, its birth region is defined by the blue rectangle. Since all 

organisms in a simulation shares the same  , the birth region is identical to that of the 

black parent shown in panel a. (d) After parents reproduce, they are removed, leaving the 

offspring to undergo a battery of death processes. 

 

 

 

a b 

c d 
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Figure 2.2.  Generation Snapshots – Assortative Mating. Generational snapshots 

(horizontal axis) for different values of   (vertical axis). The general population of 

organisms is shown in green, and example clusters are colored by red, white, or blue. 
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Figure 2.3.  Generation Snapshots – Random Mating. Generational snapshots (horizontal 

axis) for different values of   (vertical axis). The general population of organisms is 

colored white. Typically, only a single cluster existed at every generation for any random 

mating simulation. 

 

 

 

 2.2.2. Deaths.  Three death processes were modeled. Competitive death occurred 

for any offspring within the competition radius, or limit, of       . Both offspring 

were equally likely to be chosen for death to ensure neutral conditions, giving no survival 

bias to any offspring. Removing only one offspring corresponds to the particle process of 

coalescence. The random death process removed a uniformly distributed random 

percentage of the population that was capped at 70% of the surviving offspring 

population after the competitive death process had been completed. Finally, any offspring 

found outside the phenotype space boundaries were removed, giving rise to absorbing 

boundaries. Periodic boundary conditions were not used as they are biologically 

unrealistic: a large phenotype cannot map onto a smaller value of the same phenotype. 
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 2.2.3. Clustering.  Determining the clustering of organisms is a post simulation 

process. For each resulting population in every generation, clusters were determined 

according to NN and next-nearest-neighbor (NNN) connections, in the cases of 

assortative mating and asexual fission. For assortative mating, clusters correspond to the 

biological species concept as described above, with the addition of the NNN, also defined 

as alternates. Finding closed sets based only on NN mates is precisely analogous to the 

biological species concept. However, since mating occurs deterministically (the reference 

organism always mates with its NN), it could be reasoned that the alternate might also be 

a viable mate, even though it is never chosen as one for offspring production. In the 

asexual fission case, clusters defined with phenotypic NN and NNN correspond to the 

phenetic species concept. For both assortative mating and asexual fission, a cluster “seed” 

was determined for each reference organism by its NN and NNN. Clusters are the 

mathematical union of seeds; an iterative process then found closed, disjoint sets (see 

Figure 2.4).  

 

 

 

 

Figure 2.4.  Clustering Algorithm. Each organism (colored circles) has a NN connection 

(solid line) and a NNN connection (hashed line). For example, white’s NN is the 

connected yellow circle according to the solid white line, and white’s NNN is the 

connected blue circle indicated by the hashed white line. 
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 In the random mating case, clusters were found differently. Similar to randomly 

choosing mates, alternates were randomly chosen from the rest of the population. 

Although local clustering is lost, this choice of clustering conforms to the intended 

biological modeling. If a mate can be randomly chosen, then so might its alternate. This 

follows the mate and alternate clustering analogy with assortative mating. Figure 2.3 

shows only a single cluster in each snapshot 

 

2.3. RESULTS 

 In the example assortative and random mating simulations shown above in 

Figures 2.2 and 2.3, it can be seen that populations with different   values cluster and fill 

the phenotype space quite differently. These observations drive the following analysis. 

 Measuring the time average of the population and number of clusters within each 

run and then taking the sample average over the time averages, the mean population, 

<Population>, and mean number of clusters, <Clusters>, are shown for each value of 

simulated   in the assortative mating case in Figure 2.5. Small   simulations result in 

small values in each since populations go extinct before 2000 generations. With 

increasing  , <Population> and <Clusters> rise with increasing error bars, which were 

determined from standard deviations of the sample averages. Further increasing  , error 

bars reduce in size, and <Population> levels out while <Clusters> reaches a peak and 

then plateaus. As the phenotype space area is increased, the slopes of rising <Population> 

and <Clusters> also increase. However, the   for which populations consistently survive, 

the assumed critical point   , varies very little, with a value of         identified for 

each landscape. The value of   which gives a peak in <Clusters>,        , is also 

consistent for each landscape. At very large  , populations steadily decline, due to 

increased death by absorbing boundaries. All of these behaviors are also observed for 

asexual fission (see Figure 2.6), but with the assumed critical point varying slightly, 

        for 21x21 and         for 45x45 and 77x77 landscapes. The peak in 

<Clusters> occurs at         for each landscape in the asexual fission model. 
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Figure 2.5.  Sample Averages of Population and Clusters – Assortative Mating. (a) 

Sample population averages for each  . (b) Sample number of clusters averages for each 

 . Insets show standard deviation of the 77x77 landscape data for each panel as a 

function of mutability (adapted from Scott et al. 2013). 

 

 

 

 

Figure 2.6.  Sample Averages of Population and Clusters – Asexual Fission. (a) Sample 

population averages for each  . (b) Sample number of clusters averages for each  . Insets 

show standard deviation of the 77x77 landscape data for each panel as a function of 

mutability (adapted from Scott et al. 2013). 
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 The transition of <Population> from extinction to survival with increasing   was 

also observed in the system lifetimes. Histograms of system lifetimes for the 45x45 

landscape are shown in Figure 2.7. Elongation in the histogram tail grew more power-law 

like as   approached   . For        and above, system lifetimes were observed to last 

indefinitely with no sign of decay, and were stopped manually after a few million 

generations (not shown). 

 

 

 

 

Figure 2.7.  Histograms of System Lifetimes – Assortative Mating. Many more 

simulations were run for        (5000 runs),        (5000 runs),        (5000 

runs),        (2662 runs),        (5017 runs), and        (828 runs) (adapted 

from Scott et al. 2013). 
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 Temporal behavior of the population densities about    were observed for the 

asexual fission model and are shown in Figure 2.8. For the values of   shown, the 

average population density in each generation was calculated from 100 runs. Below the 

assumed   , these time series show the population decaying to extinction. As   

approaches   , the rate of decay becomes progressively slower until, at   , the system 

reached a surviving state.  

 

 

 

 

Figure 2.8.  Time-Series Average Populations Near Criticality – Asexual Fission.  

(a)       , (b)       , (c)       , (d)        (adapted from Scott et al. 2013). 

 

 

 

 The rise in <Population> along with error bars was not observed for the random 

mating model. Instead, <Population> gradually increased over a much larger range of  , 

as shown in Figure 2.9. Furthermore, no distinct clustering was observed since 

<Clusters> was approximately one for all  . 
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Figure 2.9.  Sample Averages of Populations – Random Mating.  

(adapted from Scott et al. 2013). 

 

 

 

 

 The quality of clustering was measured for assortative mating and asexual fission 

using the Clark and Evans (1954) nearest-neighbor index,   (see Eq. 3 for a square area)  

 

  
 √ ∑ ((         

)
 
 (         

)
 
)
  ⁄

 
   

  
.                              (3) 

 

Here, N is the population of a given generation,    and    
 are the locations of a 

reference organism, i, and its NN, respectively, and L is the linear landscape size (21, 45, 

or 77). This index measures the average NN distances for each population and compares 

it to a purely random distribution of NN measures given a specific area. An index of 

    corresponds to populations whose NN distances are purely random. For    , 

populations are more aggregated, and, for    , populations are more uniformly 

distributed. Clark and Evans introduced a significance measure to determine if 

populations may be considered aggregated or uniformly distributed when   is near 1. The 
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sample average, 〈 〉, is shown in Figure 2.10 for both assortative mating and asexual 

fission.  

 

 

 

 

Figure 2.10.  Sample Nearest-Neighbor Index – Populations. (a) assortative mating and 

(b) asexual fission (adapted from Scott et al. 2013). 

 

 

 

 Assortative mating populations were found to have purely random distributions 

(within 1% significance) for             on the 21x21 and 45x45 landscapes, and 

for 0.48 to 0.50 for the 77x77 landscape. Below each range, populations were found to be 

significantly aggregated, and above each range, populations were more uniformly 

distributed. Similarly, asexual fission populations were found to be distributed according 

to a purely random distribution for             on the 21x21 and 45x45 landscapes. 

Populations were significantly aggregated for        and uniformly distributed for 

       on the 77x77 landscape. 

 The distributions of cluster-size, known as species abundance in biology, are 

shown in Figure 2.11 for values of   near    for assortative mating. A cluster size is 

measured as the number of organisms in a cluster. The double logarithmic plots in Figure 
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2.11 show a change in concavity as   increases from below    to above   . Nearest   , 

power-law behavior is observed in the tail of the distribution, as emphasized by the best-

fit line from a minimization of a chi-square linear-fit to the data. 

 

 

 

 

Figure 2.11.  Cluster-Size Distributions Near Criticality. Note the concavity change in the 

distribution from          (b) to          (c) (adapted from Scott et al. 2013). 
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2.4. DISCUSSION 

 It is demonstrated above that clustering of organisms can occur without physical 

or genotype space and on a neutral landscape. Clustering in this model is representative 

of sympatric speciation and occurs for both assortative mating and asexual fission. In 

contrast, the random mating model almost always produces one large cluster. These 

findings are in agreement with other studies of neutral fission models that characterize 

clustering (Zhang et al. 1990; Derrida & Peliti 1991; Meyer, Havlin, & Bunde 1996; 

Young et al. 2001; Houchmandzadeh 2002; Houchmandzadeh & Vallade 2003; Lawson 

& Jensen 2002), but are in contrast with the conclusions reached by de Aguiar et al. 

(2009) which concluded that only assortative mating of organisms described in a 

genotype space and physical space were the minimum requirement for clustering.  

 Derrida and Peliti (1991) investigated lineages of individuals defined by genomes 

of spin-like alleles within fixed population sizes. The genomes were subject to a constant 

mutation rate, and individuals underwent asexual fission on a neutral fitness landscape. 

Serva and Peliti (1991) extended the model to include random mating, and Higgs and 

Derrida (1992) modified it for mating between individuals with some amount of genomic 

overlap. Speciation occurred for mating with the requirement of genome overlap. In 

contrast to these models, the models described in this dissertation are not tied to specific 

population sizes, and this allows far richer dynamics of emergent speciation and 

“biodiversity”. 

 The results presented in this work are related to BCRWs in a discrete space as 

studied by Athreya and Swart (2005). Particles in their model perform independent 

random walks, undergo binary splitting, and experience coalescence and random death. 

The Markov process in their work is similar to the one presented here with the primary 

difference being that the agents in this work exist in a continuous space with absorbing 

boundaries. In the thermodynamic limit of an infinite landscape, the critical value of   

may be smaller than reported (Marić, in preparation). As a result, increasing the 

landscape size to much larger areas may produce a different critical point. Even with the 

landscape sizes used here, since the critical range in both assortative mating (~0.40) and 

asexual fission (~0.34) is relatively close to the competition limit (0.25), this effect is not 

detectable from the simulations. The smaller landscape size (or much larger mutabilities) 
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induces a greater amount of killing from absorbing boundaries as compared with larger 

landscapes (or smaller mutabilities). A measure of the proportion of deaths due to 

competition, random, and absorbing boundaries shows that the vast majority of deaths 

come from competition and random death over a large range of  , well above both the 

critical point and the peak in <Clusters>. The lack of system size effects may be due to 

the correlation length being much less than the dimensions of the phenotype space; this 

was shown to be the case for critical parameters in both Privman (1990) and Toral and 

Tessone (2007). At very large values of  , much greater than   , system size effects 

become apparent due to a greater portion of deaths from absorbing boundaries. 

 Spatial asymmetry between birth and death processes was shown to be the 

primary requirement for clustering in the “Brownian bugs” model of Young et al. (2001). 

Fuentes, Kuperman, and Kenkre (2003) also found that some nonlocal competition is a 

prerequisite for pattern formation. Through various forms of an “influence function”, 

nonlocal competition was controlled for some key parameters such as the linear system 

size and width of the influence function. Figure 4 in their work suggests phase transition 

behavior in the ratio of the influence function width to the linear system size (Fuentes et 

al. 2003). The importance of spatial asymmetry was confirmed to be necessary as 

demonstrated by the loss of clustering in the random mating variant of the neutral model 

described in this chapter. Selecting mates arbitrarily in phenotype space causes a loss in 

local birth, and causes birth regions to cover larger areas of the phenotype space, 

matching the scale of the random death process.  

 The relative values of  , the competition radius, the linear system size, and the 

amount of random death likely define the critical behavior of the neutral model. If the 

competition radius goes to zero, the critical mutability will likely go to zero as well, 

becoming highly dependent on the amount of random death and potentially losing the 

phase transition entirely. A similar case occurred in Fuentes et al. (2003) where all 

population structure was lost in the extreme local limit.  

 Steep increases in the order parameters, such as <Population> and <Clusters> are 

not atypical for this system, since they were observed on rugged fitness landscapes for 

similar intermediate values of   (Dees & Bahar 2010). The neutral model shows that the 

NN index   also experiences a steep increase on the interval between    and   . The 
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control case of random mating on the neutral landscape is in stark contrast, showing a 

much more gradual increase in <Population> over a much greater range of  . A sharp 

increase in the population size, separating the extinction-survival transition across   , 

along with large error bars near the critical point, and divergence of the system lifetime, 

are indicative of a continuous non-equilibrium phase transition. Finite-size effects were 

not detected in the critical value of  , as discussed above, but increasing steepness in the 

transition was observed with increasing landscape sizes. This effect is typical for a 

directed percolation phase transition (Solé 2011). 

 Although phase transition-like behavior has been observed in other evolutionary 

models (Luz-Burgoa, Moss de Oliveira, Schwämmle, Sá Martins 2006), to the author’s 

knowledge, no other study has shown a transition due to varying a mutation-related 

parameter. Continuous phase transitions are accompanied by scale-free behavior at and 

near the critical point, and this behavior can be detected in the log-log plots of cluster-

size distributions on the critical mutability range. Power-law behavior in the tails of the 

distributions can be detected from the linearity of log-log plots, indicating no 

characteristic scale of the cluster sizes. Observing a concavity change from “down” to 

“up” in Figure 2.11 with steadily increasing   near    indicates a power-law in the 

distributions. This suggests that the phase transition is continuous, and since the critical 

point separates subcritical populations going to the absorbing state of extinction from 

supercritical populations going to a fluctuating active state, the transition is also clearly a 

non-equilibrium one. 

 By characterizing the filling of the space, the NN index   measures the quality of 

clustering in populations for different values of  . For    , the phenotype space is less 

well filled, with populations being more often clumped together. As   increases and 

becomes greater than one, populations become more uniformly distributed and clusters 

are less well-defined. The existing clusters for     correspond biologically to less 

well-defined species. Given sufficient knowledge of genetic lineages, species could still 

be defined, and the clustering algorithm can still be used to determine clusters. The peak 

observed for <Clusters> corresponds to the same range of   for which populations are 

associated with    . This effectively means that   transitions from clumpy populations 

for        to uniformly distributed populations for      . The decline of <Clusters> 
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is then tied to the more space-filling populations. Populations with         were 

more aggregated and exhibited relatively similar   values across the landscape sizes, but, 

for     ,   splits among the landscape sizes. This behavior is likely due to smaller 

population sizes, since the simulations tended to extinction for     . This effect can be 

explained by the increase in linear system size which is incorporated into the   measure 

via an inverse relationship for square landscapes (Eq. 3).  

 The neutral models described here could certainly be extended to include higher 

phenotype dimensionality. Indeed, in some paleobiological works such as Foote (1990) 

and Abe and Libermann (2012), nearest-neighbor methods are used to discern species of 

trilobites according to more than ten morphological traits. From renormalization group 

methods, it is known that the dimensionality of a space determines critical behavior, 

where above a certain upper critical dimension (depending on the universality class of the 

phase transition), the phase transition behavior conforms to mean-field theoretical 

predictions (Hinrichsen 2000). The dimensionality is suggested to affect phenotype 

clustering in Lawson and Jensen (2008), so the relationship between biodiversity and 

higher dimensional models is a recommended course of future study. 
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3. CHARACTERISATION OF A PHASE TRANSITION 

3.1. INTRODUCTION 

 A given phase transition is characterized by universal dynamics which describe 

the system’s behavior; the exponents which describe the system’s scaling in the 

neighborhood of the phase transition define its universality class (Henkel, Hinrichsen, 

Lübeck 2009). At the critical point, the correlation length of the system diverges, and the 

critical behavior of the system can then be analyzed through renormalization group 

methods (Fisher 1998; Täuber, Howard, & Vollmayr-Lee 2005; Lesne 1998). In non-

equilibrium phase transitions, a system undergoes an irreversible transition from an active 

fluctuating state into an absorbing state from which it cannot escape (Henkel et al. 2009, 

Hinrichsen 2000, Ódor 2004). Universality classes can be described by reaction-diffusion 

models of unary and binary particle processes describing birth, death, and particle 

interactions such as coalescence and annihilation (Ódor 2004; Hinrichsen 2003; Täuber et 

al. 2005). There are many different universality classes of non-equilibrium phase 

transitions such as pair contact processes with and without diffusion (PCP and PCPD), 

parity-conserving (PC), conserved threshold transfer process (CTTP), and perhaps the 

most important class, directed percolation (DP) (Henkel et al. 2009; Ódor 2004, 

Hinrichsen 2000). For DP, the processes involved are birth (for example, A2A), death 

(A0), and coalescence (for example, 2AA) (Täuber et al. 2005). The spatial and 

temporal dimensions in which these processes take place (discrete or continuous) do not 

significantly affect the critical dynamics, since DP models have been shown to occur with 

discrete time steps on lattices with varied geometries and off-lattice in a continuum or 

even on a lattice with continuous time (Oborny, Meszéna, Szabó 2005; Grimmett 2008). 

The dimensionality of the spatial component determines different universal behaviors for 

a universality class up to an upper critical dimension, above which the universal 

behaviors coincide with the mean field description (Henkel et al. 2009, Hinrichsen 2000, 

Ódor 2004). The upper critical dimension of DP is four (Hinrichsen 2000; Ódor 2004; 

Henkel et al. 2009). 

 In the context of biological evolution, DP models have included cellular automata 

such as the Domany-Kinzel (DK) model and the contact process (CP); however, these 
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models are usually modified by additional biological detail so that the universal behavior 

is modified (Laventrovich, Korolev, Nelson 2013; Lipowski, Ferreira, Wendykier 2012; 

Kuhr, Leisner, Frey 2011; Oborny et al. 2005; Lipowski & Lopata 1999). Generally, 

mathematical models of biological processes are defined in physical space and/or genetic 

space and are commonly restricted to constant population sizes (Derrida & Peliti 1991; 

Brunet & Derrida 2009; Tran, Hofrichter, Jost 2013; de Aguiar et al. 2009). More 

uncommon are models occurring in phenotype space (Lawson & Jensen 2008). In this 

work, the asexual fission model on a neutral landscape is investigated; this model 

resembles a spatial-branching process with coalescence in phenotype space, where the 

particle (organism) dynamics are birth (A2A), random death (A0), and coalescence 

(2AA). In the previous section, it was shown that the model transitioned from an active 

surviving state to an absorbing state of extinction as the maximum phenotype mutation 

size was varied (Scott et al. 2013). The observed system behavior was suggestive of the 

DP universality class. Here, it is demonstrated, by measuring the critical exponents and 

universal functions, that the model does indeed belong to the DP universality class. 

Biological implications regarding experimental comparisons of this model to 

paleobiological morphology studies and disorder problems that abiogenesis theories are 

discussed in Section 3.6. 

 

3.2. CRITICAL EXPONENTS AND UNIVERSAL FUNCTIONS 

 Universality classes of non-equilibrium phase transitions are in general defined by 

four fundamental exponents. Barring any special symmetries (two of the exponents are 

identical in DP), the four exponents are independent, and each characterizes the scaling 

behavior, in the neighborhood of the phase transition, of an order parameter which 

depends on the distance between the control parameter and the critical point. The control 

parameter of interest here is the mutability,  . Let   be the off-critical measure, the 

absolute difference in mutability from the critical point 

 

  |    |.                                                   (4) 
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Order parameters such as the population density (steady-state) are known to depend upon 

the off-critical measure ( ), time ( ), and in the case of finite systems, the linear 

landscape size ( ). Near the critical point, these dependencies are given by a homogenous 

function of the population density (can factor out a scaling constant raised to some 

power), known as a finite-size universal scaling equation (Laventrovich, Korolev, & 

Nelson 2013; Henkel et al. 2009)  

 

 (     )      ̃(               ).                                 (5) 

 

The parameter b is a dimensionless scale factor to be chosen, and the function  ̃ is the 

universal scaling function. Choosing       ⁄  gives 
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).                                 (6) 

 

The first dependency of  ̃ indicates that the density decays as a power law. The second 

dependency gives the off-critical scaling behavior, and the third gives the finite-size 

scaling behavior. From Eq. 6, it is known that the basic set of critical exponents (other 

exponents can be derived from them) can also be found from scaling relationships with 

the control parameter   (Hinrichsen 2000). 

 

                                                              (7) 

                                                             (8) 

                                                            (9) 

     
                                                      (10) 

 

where   is the population density (steady-state),    is the correlation time,    is the 

correlation length, and   is the survival probability (Hinrichsen 2000).  

 Due to the time-reversal symmetry (growth from single seed simulations yield 

survival probabilities which scale identically to density decays from critical-quench 

simulations) of directed percolation, the population density scales exactly the same as 
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survival probability, so      (Hinrichsen 2000). The above scaling measures assume 

an infinite system size, so due to finite system size, simply using the scaling relations 

above is expected to produce inaccurate exponents (Hinrichsen 2000). Investigation of 

the exponents from the data-collapse technique of critical-quench simulations was used.  

 Data-collapse is a technique in which time-series generated from different 

parameter values are fitted to some function through rescaling (from modifications of 

Eqs. 10 and 12). For example, Eq. 11 focuses on one of the dependencies in Eq. 6 which 

shows how the population density depends upon time ( ), and the off-critical measure 

( ). By rescaling the time and off-critical measure with the same exponents,   and   , for 

each time-series, the original data “collapses” onto the same curve. Graphically, there are 

two parts of the universal function described by Eq. 11, one for subcritical and the other 

for supercritical data. Examples of the desired universal scaling functions for DP systems 

can be found for CP simulations in Hinrichsen (2000), the radial DK model in 

Laventrovich, Korolev, and Nelson (2013), a tumor growth model with highly unusual 

DP dynamics in Lipowski, Ferreira, and Wendykier (2012), and in an experimental 

system of liquid crystals in Takeuchi, Kuroda, Chaté, and Sano (2009). 

 Without altering the universal properties, the arguments to the universal scaling 

function may be rescaled. Changing the off-critical argument of the universal scaling by 

(     ⁄ )
  

      gives 

 

      ̃(    )                                                     (11) 

 

with 

 

  
 

  
.                                                        (12) 

 

This allows for the determination of    and, in turn, of   from the relationship with   as 

given in Eq. 12. The    above and below the critical point should be equal, and in turn, so 

should  . 
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The finite-size argument of the universal scaling function may also be changed by 

the rescaling (   ⁄ )   ⁄     ⁄   ⁄ ,  

 

      ̃(   ⁄   ⁄ )                                                 (13) 

 

where   is the spatial dimension and  

 

  
  

  
                                                         (14) 

 

which relates    and   . 

 

3.3. MODEL 

 Simulations were performed identical to the asexual fission case described in 

Section 2. However, the three landscape sizes and initial populations are different. The 

landscape sizes were 29x29, 37x37, and 45x45, and had initial population sizes of 12474, 

20290, and 30000 organisms, respectively. The initial population sizes reflect the same 

initial population density of organisms for each landscape, equivalent to filling 

approximately 79.9% of sites on a hexagonal lattice within the landscape boundaries (see 

corresponding Methods and Appendix A). The initial populations were seeded as before 

across the space with a uniform random distribution.  

 

3.4. METHODS 

 3.4.1. Critical-Quench Simulations.  Critical-quench experiments on lattices are 

experiments which start with every lattice site occupied in the active state and are used to 

determine the critical point of a system by noting changes in the population density decay 

behavior (population density is a linear rescaling of actual population size, so the 

logarithmic decay is equivalent for both). Due to the continuous space in this model, the 

maximum population capacity was taken to correspond to the greatest density of 

organisms fitted into the landscape area where the minimum spacing between organisms 

is the competition radius  . This means that organisms can be considered as hard circles 

of radius κ centered about the coordinate of each organism. The greatest density of circles 
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(organisms) in a square landscape is the hexagonal lattice (Steinhaus 1999). From this the 

maximum population was determined for a given phenotype space area (see Appendix 

A). Due to computational constraints for the larger landscapes starting populations were 

set at 79.9% of the maximum capacity, giving initial populations of 12474, 20290, and 

30000 for landscape sizes 29x29, 37x37, and 45x45, respectively. Although not a “full” 

initial condition, the starting populations are much greater than the average populations 

observed to occur for the same mutabilities in Scott et al. (2013). The maximum time 

allowed for each simulation was T = 10
5
 generations. There were 100 simulations 

performed at each value of   over the range 0.29 to 0.37, at 0.01 increments. The 

simulations were run in MATLAB with the Parallel Processing Toolbox on PCs running 

Windows 7 as well as the UMSL Bortas 24-node Oracle server with MATLAB and the 

Distributed Computing Server Toolbox. 

 3.4.2. Critical Point and Decay Rate.  The decay from large starting populations 

was observed for a range of mutabilities about the hypothesized critical point from 

(        ) Scott et al. (2013). Simulations with          appeared to be well into the 

surviving regime, whereas simulations with          were well into the extinction 

regime. The simulated critical point,    , was determined as the mutability which 

minimized the χ
2
 linear fit of double logarithmic plots of the population density vs. time 

for the range of mutabilities described above. Only generations 10-1000 were used 

because of the manifestation of noticeably different decay dynamics around 2000 

generations. Finite-size effects incur a penalty on simulations in the supercritical range, 

when system lifetimes should have diverged to infinity at the critical point in an infinite 

landscape. A non-zero probability exists in this case that finite-size simulations can go to 

the absorbing state in the supercritical regime (Henkel et al. 2009). This caused the 

density decays to fall into the absorbing state for very long lifetimes, which seemed to 

begin around 2000 generations in this case. 

 Noting that the exponent   changed with   and that the rate of change decreased 

near    , cubic interpolation of   was performed with 0.0025 increments of   to 

determine an estimated critical mutability and decay rate,     and   . The estimated 

critical point,    , was determined to occur at the   for which the change in interpolated 

   was steepest (second derivative peak). An estimated     and    were determined for 
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each of the three landscapes. In the following, subcritical refers to      and 

supercritical refers to     . The values of    and     were used in the data-collapse 

approach, described below, in order to determine   .  

 3.4.3. Data Collapse.  Using the estimated critical values     and    on the time 

range of 1-1000 generations, with a rearrangement of Eq. 11 the subcritical and 

supercritical data-collapses according to the universal function  

 

                                                                    (    ).                                                   (15) 

 

The minimization of the goodness of fit (see below) of overlapping sections of the 

rescaled time series determined separate subcritical and supercritical values of    for each 

landscape. By the exponent relation in Eq. 12, the exponent   was then obtained for both 

subcritical and supercritical regimes. 

 To obtain   , the finite-size universal scaling function was plotted from a 

rearrangement of Eq. 13 for generations 1-5000. The universal scaling function at each 

landscape size was based on the average population density   for the supercritical 

        . 

 

     (   ⁄    )                                               (16) 

 

By using the same method of goodness of fit that was performed for   , the exponent   

was determined, which led to a determination of    from Eq. 9. The value of   used for 

the determination of   was averaged from the    from each landscape size. Similarly,    

was averaged over the six values corresponding to the sub- and supercritical values of 

each landscape. 
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 3.4.4. Goodness of Fit.  To determine the exponents which produce the best data-

collapse, the goodness of fit measure outlined by Bhattacharjee and Seno (2001) was 

used. However, instead of searching a two-dimensional exponent space, only values of    

were scanned while   was held constant. The goodness of fit measures collectively, for 

each overlapping pair of rescaled data, how well the data sets collapse onto each other, 

according to the scaling functions in Eqs. 15 and 16. The two measures for data-collapse, 

   and   , are 
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The measures only consider overlapping regions of data points from the n curves, 

indexed by   and  , so data is interpolated by the function   . For example,    is 

calculated separately for subcritical and supercritical data sets, so   = 4 for subcritical, 

and   = 5 for supercritical. There are three different landscape sizes, and so   = 3 for 

calculating   . The  th
 interpolation curve is over the shared scaled time span of the  th

 

curve. There are          interpolated points that are indexed by  . The value   is defined 

as a positive integer which may be chosen arbitrarily, and is taken here as   = 1. A wide 

range of values for    and    ranging from 0.25 to 3.00 in 0.001 increments were used to 

scan for the minimum in the goodness of fit measures. This was done to ensure that other 

potential universality classes and a mixture of different exponents could be ruled out (see 

Lübeck 2004 for a list of other universality class exponents; Lipowski et al. 2012). The 

minimum of    was found separately for subcritical and supercritical, so   = 4 for the 

four subcritical mutabilities and   = 5 for the five supercritical mutabilities. For    the 

value of   was 3, since that is the number of supercritical curves at        from each 

of the landscapes simulated. 

 The estimated error bars for    and    were calculated from the width of the 

goodness of fit measure about the minimum of the    and   curves (Eqs. 17 and 18), 

giving  
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Here,   represents the desired size of the error bars to be measured and was taken to be 

1% for the results below. 

 

3.5. RESULTS 

 The amount of concavity change in the population density time series about the 

critical point was visually seen to vary slightly between the landscapes 29x29 and 45x45. 

However, the most linear population decay on the generation range and the lower and 

upper bound range for the critical point described above (minimization of    linear fit) 

consistently occurred for            for each landscape (Figures 3.1, 3.2, and 3.3). 

The corresponding   ’s were 0.4010±0.1377, 0.3389±0.1381, and 0.3403±0.1404 for 

landscapes 29x29, 37x37, and 45x45, respectively (error bars were calculated from the 

standard deviation of the population density data from the    linear fit test  found in 

Garcia 2000). By interpolating   vs.  , the steepest change in   marked the estimated 

critical point, and was the same for each landscape at           . The corresponding 

values of    are summarized in Table 3.1 and the best-fit lines from    are shown in 

Figures 3.1, 3.2, and 3.3. From the minimization of the Bhattacharjee and Seno (2001) 

goodness of fit measure,    from Eq. 17,    was determined for each landscape size 

separately below (  
 ) and above (  

 )    , using   . These values are summarized in 

Table 3.1 and the corresponding best-fit off-critical data-collapse plots are given in 

Figures 3.4, 3.5, and 3.6.  Using Eq. 12   was obtained below (  ) and above (  ) the 

transition along with its estimated error bars as propagated from    and each 

corresponding   . These results are listed in Table 3.1. The average of the six values for 

   (subcritical and supercritical for each landscape) and the resulting calculation for   are 

found in Table 3.2. 
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Figure 3.1. Critical-Quench Average Populations – 29x29 Landscape. The estimated line 

(solid black) has a slope of    = 0.47. 

 

 

 

 

Figure 3.2. Critical-Quench Average Population – 37x37 Landscape. The estimated line 

(solid black) has a slope of    = 0.42. 
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Figure 3.3. Critical-Quench Average Populations – 45x45 Landscape. The estimated line 

(solid black) has a slope of    = 0.42. 

 

 

 

 

Table 3.1.  Estimated and Best-fit Critical Exponents – Critical-Quench. 

           
    

        

29 0.3275 0.47(14)            
                   

                  
                  

       

37 0.3275 0.42(14)            
                  

                  
                  

       

45 0.3275 0.42(14)            
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Figure 3.4. Off-Critical Data-Collapse – 29x29 Landscape. The data is plotted according 

to the function of Eq. 15. Subcritical values in the bottom universal curve were for 

      , and supercritical values in the top curve were for       . 

 

 

 

 

Figure 3.5.  Off-Critical Data-Collapse – 37x37 Landscape. The data is plotted according 

to the function of Eq. 15. Subcritical values in the bottom universal curve were for 

      , and supercritical values in the top curve were for       . 
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Figure 3.6. Off-Critical Data-Collapse – 45x45 Landscape. The data is plotted according 

to the function of Eq. 15. Subcritical values in the bottom universal curve were for 

      , and supercritical values in the top curve were for       . 

 

 

 

 The   exponent for the universal function of finite-size data-collapse was 

determined from the minimization of the goodness of fit measure,    from Eq. 18. This 

was done for curves from each landscape size at a supercritical value of       , and 

using 〈  〉 and 〈  〉 for the   and    values in Eq. 18. The value of   was determined, and 

the resulting value for    was calculated from Eq. 14. These results are summarized in 

Table 3.2. Figure 3.7 shows the corresponding finite-size universal scaling function. 

 

 

 

Table 3.2.  Average and Best-Fit Critical Exponents – Finite-Size. 

 〈  〉 〈  〉 〈 〉      

Calculated 0.44(14)            
                  

                  
                

      

Theoretical 0.454(1) 1.295(6) 0.584(4) 0.734(4) 1.76(3) 
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Figure 3.7. Finite-Size Data-Collapse –       . The data is plotted according to the 

function of Eq. 16. 

 

 

 

3.6. DISCUSSION 

 The results above clearly indicate that the non-equilibrium phase transition in this 

continuous space, spatial branching process model of phenotype evolution belongs to the 

directed percolation universality class. This system is a special case of evolution where 

there is no variation in the fitness landscape, reproduction is asexual, and organisms exist 

in sympatry where they are ensured local interactions. Neutrality, asexual reproduction, 

and sympatry should be tantamount to the universality classification because of the 

reaction-diffusion system they invoke. For example, if organisms were able to reproduce 

with some alternative scheme such as random mating, then it follows from the results of 

Section 3 that the phase transition behavior is lost. In the case of assortative mating, the 

particle process of reproduction changes to 2A2A, and its universality classification 

should belong to PCPD (Park 2011). Täuber et al. (2005) state that directed percolation 

can exist with either the annihilation (2A0) or coalescence processes. With the 

exchangeability between annihilation and coalescence, if given some other neutral fitness 

level with an odd number of offspring (for example, three), then the variation of this 

system would contain the particle operation A3A or A(m+1)A, m = 2, and therefore 

belong to the PC or BARWe universality class (branching-annihilating random walk with 
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even offspring as denoted by m) (Täuber et al. 2005).  Although similar phase transition 

behavior was observed with rough fitness landscapes in Dees and Bahar (2010), the DP 

transition is likely lost through the form of spatial disorder (discussed in more detail 

below) (Dobramysl & Täuber 2008). Another aspect of the phenotype space is the 

interaction with the boundaries. Should organisms be considered to develop new 

phenotypes or absorb into the boundaries due to insufficient protein production as could 

be considered here? If the phase transition behavior were driven by boundary activity, 

then new dynamical features can arise (Henkel & Schütz 1994; Fröjdh, Howard, & 

Lauritsen 2001; Barato, Bonachela, Fiore, Hinrichsen, Muñoz 2009). 

 The model described here model may be used as a null hypothesis, much like 

other studies where the neutral fitness or genetic drift is a null hypothesis (Kimura 1983; 

Dieckmann & Doebeli 1999). Applications may be in paleobiological systems where the 

only data known from fossil records are morphology (Abe & Liebermann 2012; Foote 

1990). The model could easily be scaled up to account for more phenotypes, which would 

increase the dimensionality of the space. Universality classes are allowed different 

accessible dimensions for the agents, but the exponents are known to converge on the 

mean-field theoretical predictions when the dimension of the space reaches the upper-

critical dimension. Above the upper critical dimension, the exponents and universal 

behavior conform to mean-field predictions. For DP, the upper-critical dimension is four, 

and thus in the trilobite studies by Abe and Liebermann (2012), as well as in Foote 

(1990), where twelve or more phenotypes are considered, the dimension of their spaces 

would be well above the upper-critical dimension for DP and likely most other plausible 

universality classes. However, other issues arise when working with available fossil data. 

As noted by Abe and Liebermann (2012), the exact line of descent of any ancient species 

is not known in general. In addition, some radiations lack temporal resolution to assign 

parent-offspring species. These issues do not arise in this model and the species lineages 

are considered in Section 4. 

 For both goodness of fit measures, the minimum wells were asymmetric and 

therefore resulted in asymmetric error bars for both below and above the transition (Table 

3.1). Even at 1% estimated error, the error bars on the exponents reported in the tables 

above are somewhat large in comparison with those found in other DP studies. Especially 
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in the reported 〈 〉, error bars are nearly half the average value. This is in part due to 

error propagation from 〈  〉 and 〈  〉 from which it was calculated (Eq. 12). All of the 

exponents indicate that they are theoretical DP exponents within a 1% margin of error, as 

measured from the goodness of fit. 

 The decision to cut off the generation ranges for the off-critical data-collapses at 

1000 was due to the observation that for much later generations, population density 

decays in some mutability curves showed unusual changes in the decay behavior. This 

effect is likely the result of finite-size effects where the probability of survival is never 

absolute even in the survival regime, unlike what is theorized in the thermodynamic limit 

of a truly infinite space (Henkel et al. 2009). This causes the steady-states of supercritical 

populations, which would otherwise stay surviving, to reach extinction. The relaxations 

were accurately observed since the generation range used was greater than calculated 

correlation times (on the order of 10
1
-10

2
 generations) for each landscape. This can be 

calculated with the measured average correlation time exponent as given in Eq. 3.3. 

Likewise, from the power-law scaling of correlation length given    in Eq. 3.4, the 

curves for        allowed accurate observation.   

 Only recently DP was reliably observed in an experimental setting (Takeuchi, 

Kuroda, Chaté, & Sano 2007 & 2009). The lessons from observing DP have been that 

short generational time scales are needed in order to observe long-time system dynamics 

and to have a reliable system free of noisy absorbing states. There are numerous potential 

biological models, ranging from predator-prey models, to species coexistence models, to 

calcium waves among cells which may belong to the DP universality class (Park 2011; 

Reinhardt, Bohm, Drossel, & Hinrichsen 2006; Timofeeva & Coombes 2004). In a tumor 

growth model, Lipowski et al. (2012) observed an unusual set of critical exponents 

appearing as mean-field DP, even though universal scaling functions and some critical 

exponents clearly exhibited non-mean-field DP, suggesting some biological systems can 

unexpectedly challenge or enhance universality theories. Populations of organisms 

undergoing reaction-diffusion processes could also be potential model systems from 

which to observe DP. However, DP may be observable only in small-scale organisms 

such as viruses, bacteria or yeast, since their reproductive cycle can be relatively short. 

An absorbing state of biological populations, extinction, does not suffer from natural 
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noisiness common to many other suggested DP systems which may suffer from quenched 

disorder (there are no zombies). The reaction-diffusion processes of some organisms can 

be modeled in physical space, genetic space, or phenotype space.  

 One must be careful to note any inhomogeneity in a model when considering its 

universality class. The DP conjecture and Reggeon Field Theory, from which DP was 

originally derived, require that a system must not contain spatial or temporal quenched 

disorders. Spatially quenched disorder occurs in many systems such as catalytic reactions 

or epidemics (Hinrichsen 2000). The absorbing state may be reached everywhere, but 

localized regions may not be able to reach the absorbing state or are returned to the active 

state in the presence of noise at the absorbing state. For example, in catalytic reactions 

under appropriate conditions, such as the Ziff-Gulari-Barshad (ZGB) catalytic reaction 

model of CO+OCO2 on a platinum surface, belongs to DP (Ehsasi, Matloch, Frank, 

Block, Christmann, Rys, & Hirschwald 1989). However, experimental verification in 

Ehsasi et al. (1989) did not reveal DP behavior. A variety of suggested reasons exist, such 

as possible defects in the catalytic reactions (Zambelli, Wintterlin, Trost, & Ertl 1996; 

Hinrichsen 2000). Similar issues in real systems make it difficult to observe DP, and 

delayed its experimental verification (Takeuchi et al. 2007; Hinrichsen 2000). In a 

biological system such as endangered species, this problem is unlikely to occur, since 

extinct species cannot produce new species. Yet, if the system were the entirety of the 

tree of life on earth, then such a system may not be subject to extinction. If the 

environment after a global extinction could support the production of life through some 

recipe of a “primordial soup, crêpe, or pizza”, then extinction no longer describes a true 

absorbing state (Bernal, Oparin, Mueller, Haldane, & Synge 1967; von Kiedrowski 1996; 

Smith & Szathmáry 1995; Ferreira & Fontanari 2002). The “recipes” are theories of 

abiogenesis describing how the first self-replicating life forms came from naturally 

occurring chemical processes on ancient earth. Dynamically, abiogenesis takes the form 

of spatially quenched disorder, so the dynamics of life on earth as a whole cannot 

possibly belong to DP. However, life would almost certainly take an alternative 

evolutionary path like in the thought experiment of “replaying the tape” (Gould 1990). 

 Temporal disorder occurs for systems where the dynamics are not consistent 

through time. Temporal disorder has been studied by Jensen (1996) where a 1D lattice 
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was subjected to the usual DP reaction-diffusion process. However, as the probability that 

a row of sites all propagate with certainty between two time steps was increased, the 

critical exponents were observed to deviate from the DP case where this absolute survival 

probability went to zero. The model presented in this work may incorporate this type of 

disorder, because, while the random death is calculated in the same way at every time 

step, the percentage of organisms subject to random death varies from one generation to 

the next. However, this disorder does not appear to have a significant effect, since the 

measured exponents show minimal deviation from the theoretical exponents. For 

comparison, Jensen (1996) saw changes from known DP exponents by around 6-14% 

when there was a 25% chance that no random death occurred in a time step. Percent 

differences of the critical exponents reported here are on similar order of change. 

 If the population-dependent random death occurred before, rather than after, the 

competitive death process, different population fluctuations could arise due to the non-

commutative nature of the death processes. In a variant of the neutral model, where the 

amount of random death is not population dependent and with assortative mating, results 

obtained are similar to those described above (having critical behavior and clustering) 

and the order of death processes are commutable (King et al. in preparation). The results 

of the critical exponents may also be closer to the theoretical DP values due to the 

assurance that temporal disorder is no longer a murky issue as it is here. However, an 

investigation of the critical exponents and scaling behavior of the related model is needed 

to confirm the universality class. The related model is mathematically more tractable than 

the one focused on here, and the governing partial differential equation closely resembles 

a typical Langevin equation with the caveat that the coalescent coefficient varies as a 

function of mutability. Despite the complexity of the model presented here with regard to 

the random death process, the dynamics are within the realm of systems belonging to the 

DP universality class. The variable stochasticity of random death may cause the critical 

point to exist as a small interval which may therefore have uncorrelated critical behavior 

of the usual quantities of interest when performing the universality determination. This is 

perhaps an enlightening notion for renormalization group theory, since the model 

presented appears to have a unique style of particle processes. Likely, the mathematical 

intractability is to blame, but the mathematics can still be written out and future 
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computational studies of related mathematically intractable systems may shed even more 

light on the universal behavior. 

 A potential use of a phenotype evolution model belonging to DP is the possibility 

to model genus or species decay/formation. In phenotype data, one might infer that 

mutability of populations of some animals may not be great enough to sustain 

populations in their environments. The phase transition indicators from the populations of 

this model are robust with regard to variations of the fitness landscape, the noisy local 

process of reproduction, and the implementation of random death (Dees & Bahar 2010; 

Scott et al. 2013; King et al. in preparation). The expectations to observe supercritical 

mutability in populations may be translated for a variety of situations involving different 

phenotype space dimensions and scales. The phase transition behavior, having no 

characteristic scale, could allow for investigation of multiple levels of taxonomy. It is to 

the problem of multilevel selection that is the central theme of the next section. 
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4. ORGANISM AND CLUSTER LINEAGE DYNAMICS 

4.1. INTRODUCTION 

 In this section, some properties of organism and cluster lineages are investigated. 

Relationships between parents and their offspring are naturally defined by temporal 

bonds, and can be mapped onto problems such as DP. In DP, measurements on the 

emerging infinite cluster (along the temporal direction) provide information on 

correlation times. Scaling of the correlation time (Eq. 8) is determined by the off-critical 

measure and the correlation time critical exponent (Hinrichsen 2000). The correlation 

time exponent may also determine the scaling distribution of lineage lifetimes. Lineage 

structures such as splitting events (offspring production) relate to fitness measures. 

Although organisms are allowed no more than two offspring, clusters may produce many 

more clusters. By measuring offspring cluster production, a measure of cluster fitness 

will be analyzed as a precursor to the possibility of multilevel selection in the model. 

 4.1.1. Cluster Interactions.  Temporal, or directed, clusters have been studied in 

systems such as directed lattice animals (Bousquet-Mélou 1996; Marckert 2012; Bacher 

2013), turbulent puffs and slugs (Sipos & Goldenfeld 2011), and in the context of 

multifractal graph-like structures (Feder 1988; Norton & Tandy 1999; Moon 1992; 

Berestycki 2003). A lattice animal is described in Stauffer and Aharony (1992) as a 

cluster of lattice sites, which can take different forms for a given number of sites in the 

cluster. For example, a cluster of three sites on a two-dimensional square lattice can take 

the shape of two unique lattice animals, where one is a line of the sites, and the other is in 

the shape of an elbow. A directed lattice animal (DLA) exists on an oriented lattice where 

it has at least one root vertex from which connected sites along a path in the preferred 

direction can be accessed from the root (Bousquet-Mélou 1996). The interaction between 

directed clusters (lineages) must be specified, because differences in the interaction rules 

produce different scaling properties. In the case of non-interacting DLA, the asymptotic 

scaling of lifetimes followed a power-law according to the DLA area, or number of sites 

in the DLA (Bousquet-Mélou 1996). Knežević and Vannimenus (2002) also observed 

critical behavior of interacting DLA. In particular, they measured critical exponents of 

the temporal and spatial asymptotic power laws of measured times between a root site 
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and its connected sites and the spatial distances between connected sites. The interacting 

DLA problem studied was framed as a bond percolation problem, and critical exponents 

of the interacting DLAs were shown to fit expectations of bond percolation. 

 In another system with interacting clusters, cluster lifetimes were found to scale 

superexponentially (Sipos & Goldenfeld 2011). They considered a fluid flowing through 

a pipe, and studied the lifetimes of different turbulence formations as the viscosity 

parameter, Reynolds number, was varied. Clusters of turbulence that did not span the 

pipe geometry are called puffs, and turbulent clusters that spanned the pipe are called 

slugs. Puffs could merge or split and the puff lifetime scaling depended upon the 

Reynolds number.  

 It is argued here that directed lattice animals represent organism lineages best; 

whereas turbulent puffs are more similar to cluster lineages. Individual lineages in the 

asexual fission model are non-interacting in the sense that no two lineages may merge 

(see Figure 4.1). This does not change the behaviors noted in previous sections, since the 

organisms still undergo the same dynamical processes within the phenotype space. 

Cluster lineages are more complex, since they can split and merge with other cluster 

lineages (Figure 4.1b). These points are emphasized in greater detail below in Subsection 

4.1.3. 

 

 

 

   

Figure 4.1.  Examples of Organism and Cluster Lineages. (a) Organism lineages cannot 

interact (merge) and each parent has at most two offspring. (b) Cluster lineages can 

interact and each parent cluster can have many offspring clusters and each offspring 

cluster can have many parent clusters. The downward arrow indicates the forward-in-time 

direction. The boxes indicate examples of backward-in-time events: (blue box) multiple 

coalescence, (orange box) simultaneous multiple coalescence, and (green box) 

fragmentation (see Subsection 4.1.3). 

a b 
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 It was shown in the preceding sections that the asexual fission model undergoes a 

DP phase transition as the mutability is increased to some critical value. From DP theory 

the population density, correlation length, and correlation time are known to exhibit 

scale-free behavior in the critical range of the control parameter consistent with DP. 

Dynamical properties of clusters about a non-equilibrium phase transition are of interest 

due to the scale-free behavior.  

 Biologically, this could model multiple levels (multilevel) of selection (Traulsen 

& Nowak 2006; Okasha 2009; Damore & Gore 2012). There are two descriptive classes 

of multilevel selection (MLS), and they describe the fitness of groups (species or clusters) 

with respect to the organisms within it or the clusters it produces (Damuth & Heisler 

1988). The MLS1 class describes the cluster fitness as being dependent upon the 

collective fitness of its organisms, such as the average organism fitness. In contrast, the 

MLS2 class describes the cluster fitness as the number of offspring clusters produced by 

it. For the organisms, heritable traits, such as altruistic behavior, have been used to 

increase the survivability of some groups (Hamilton 1964a & 1964b). Evolving 

behavioral traits has been a contentious and intriguing topic among evolutionary 

biologists, because it deviates from the notion of organism competition by introducing 

organism evolutionary benefits from participation in a group (Okasha 2005). However, in 

the neutral model here, there is no heritability characteristic that can be maintained by 

clusters unlike the mutability held by the organisms. Instead, clusters of organisms are 

limited to measures such as cluster-size (number of organisms), centroid (center of mass, 

see below), or gyration radius. Even the cluster fitness depends upon the cluster-size and 

gyration radius (see below). The scale-free dynamics of the model paired with the 

concept of multilevel selection in evolutionary biology allows one to ask whether the 

scale-free behavior arising from the phase transition translates into scale-free selection? 

This is the primary motivation for this section. 

 4.1.2. Graphs.  Lineages behave differently for organisms and clusters, so it is 

useful and important to define lineages according to known mathematical structures. 

Graph theory provides a mathematical description for such constructs. 

 Consider a set of nodes V, that may connected by a set of edges E. The collection 

of the set of nodes and edges defines a graph G = (V, E). A simple graph is one in which 
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no two nodes have multiple edges connecting them. The connections between nodes by 

the edges allows one to traverse the graph, and can be thought of as starting at one vertex, 

then jumping from vertex to vertex according to edge connections to a final vertex. Such 

traversals are called walks. A path is a type of walk where no vertex or edge is used more 

than once. A cycle is a walk whose starting vertex is also the final vertex, and an acyclic 

graph is a type of graph that contains no cycles. Simple graphs with cycles are sometimes 

referred to as pseudographs. Another specific type of graph that matches the structure of 

organism lineages is called a tree. Trees are graphs which are acyclic simple graphs. If a 

root of the tree is defined, then a tree whose edges lead away from the root is called a 

rooted tree. Finally, a set of disjoint trees is called a forest (Diestel 2012). 

 The graphs of interest in lineages are rooted trees for organism lineages, and 

rooted trees on which cycles are allowed for cluster lineages. If organisms are the node 

set and parent-offspring relationships define the edge set, then an organism lineage is just 

a rooted tree. Clusters interact in a more complicated manner; since they may merge and 

split by “trading” offspring organisms or causing divided groupings among offspring 

organisms (see Subsection 4.2.2). 

 4.1.3. Coalescent Theory.  Coalescent theory provides a mathematical 

construction for lineage merging and splitting events, more commonly referred to 

coalescent-fragmentation processes (CFP) (see Berestycki 2009 for a review). The 

mathematical language is left arbitrary with respect to different organizational levels. 

That is, it could be applied for a single level such as for the genealogies of organisms or 

for species phylogenies. The theory is related to physical models of fragmentation and 

coalgulation such as the Smoluchowski equations and Marcus-Lushnikov process 

(Aldous 1999; Bertoin 2006). Aldous (1999) and Bertoin (2006) provide some linkages 

between more physical models and some more mathematical models of coalescent 

theory. The terminology used throughout will follow this convention: forward-in-time 

branching events describe splitting and colliding events describe merging; backward-in-

time branching events describe fragmentation and colliding events describe coalescence. 

 The theory has its roots in the Galton-Watson (GW) branching process which was 

initially constructed to investigate the probabilities of extinctions of family surnames 

passed along a patriarchal line (Watson & Galton 1875). Their work initialized the 
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formulation of temporal measures on tree-like structures. About a century later, in a more 

rigorous construction of lineage coalescence times, Kingman (1982) described binary 

coalescence events occurring one at a time in haploid Wright-Fisher (WF) populations, 

called Kingman’s n-coalescent, where n represents the number of randomly chosen 

descendants for whom one finds their most recent common ancestor (MRCA). WF 

models evolve in a different way than the BCRW populations of the present model such 

that, in the latter, offspring randomly choose their parents. 

 Kingman’s coalescent was extended by Pitman (1999) to allow one instance of 

multiple coalescing lineages in a single time step, the Λ-coalescent. Independently, 

Schweinsberg (2000) and Möhle and Sagitov (2001) developed the theory to include 

simultaneous Λ-coalescent events in a single time step, the Ξ-coalescent. Berestycki 

(2004) studied the mathematical properties of Ξ-coalescents with fragmentation under the 

assumption that they were exchangeable in the case of coalescents and homogeneous in 

the case of fragmentation. This means that none of the properties of the lineages would 

influence the rates at which they undergo CFP. For example, if one assumes that the 

lineages in question are of clusters, then the number of agents within each cluster or any 

spatial extent that the cluster may cover will not affect the cluster lineage structure. 

Several descriptions of CFP have arisen to place dependencies on spatial descriptions, but 

the mathematical theory at present describes only spatial Λ-coalescents (Durrett & Limic 

2002; Limic & Sturm 2006; Angel, Berestycki, & Limic 2009). 

 Upon an initial introduction to CFP, one might be quick to think that coalescence 

and fragmentation are dual processes (that the reverse of one has the same behavior as the 

other). However, it has been observed in some situations that duality is not a general 

property to CFP, especially in the case of the stochastic coalescent (Bertoin & 

Goldschmidt 2004; Aldous 1999). The stochastic coalescent was formulated upon cluster 

masses driving the coalescence rates, rather than the number of lineages as for Kingman’s 

coalescent (Aldous 1999). More recently, universal tree structures have been explored by 

investigating the ratios of average times to MRCA with differing   for Kingman and 

Bolthausen-Sznitman coalescents, a model for natural selection that is also a special case 

of Λ-coalescents (Brunet, Derrida, & Simon 2008; Brunet & Derrida 2013). The ratios 

also classify different universality classes of tree structures. Despite all of these 
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advancements, currently there is no mathematical description for spatial Ξ-coalescents 

with fragmentation (N. Berestycki, personal communication). 

 4.1.4. Time to Most Recent Common Ancestor – First-Passage Time.  A 

common statistical measure regarding different CFP systems is the average time to 

MRCA from among   starting descendants, 〈  〉. For stochastic processes, the mean first-

passage time (MFPT) problem asks how long, on average, a trajectory takes to reach 

some intended target. For example, in the classic case of a drunkard walking down a 

street (whose stumbling walk mimics Brownian motion), one could ask how long, after 

leaving a bar it takes the inebriated person to get to the other side of the street. After 

averaging over the departing, clumsy patrons, one could then determine a MFPT. This is 

a type of MFPT problem, and an analytical solution is known for this type of diffusion 

called standard Brownian motion (continuous space and time), also known as the Weiner 

process, to reach a stationary spatial boundary in 1+1 dimensions (Lesne 1998).  

 A variety of systems have been considered regarding the type of target a walk 

reaches including: moving barriers (Tuckwell & Wan 1983), a specific finite sized target 

within the space (Bénichou & Voituriez 2014), and multiple finite-sized targets 

(Chevalier, Bénichou, Meyer, & Voituriez 2011). The space in which an object can 

maneuver is also important, but in certain cases, the distribution of FPT is known to 

exhibit universal features regardless of spatial properties, such as discrete, continuous, or 

fractal media (Condamin, Bénichou, Tejedor, Voituriez, & Klafter 2007; Bénichou, 

Chevalier, Klafter, Meyer, & Voituriez 2010; Bénichou & Voituriez 2014). Properties of 

MFPT have traditionally been explored with infinite spatial area or volume, but recent 

progress has been made for confined, finite volumes with reflecting boundaries 

(Bénichou, Chevalier, Klafter, Meyer, & Voituriez 2010; Bénichou & Voituriez 2014). 

The majority of the above systems involve random walkers without both branching and 

coalescing dynamics. The temporal properties of BCRW systems has only recently begun 

for systems involving BCRW by Dutta et al. (2013) that found coverage time measures 

(visiting all vertices of a graph) for a variety of graph structures. 

 4.1.5. Summary.  The primary focus of this section will be to determine how   

changes the CFP for both organism and cluster lineages as it drives the system through 

the DP transition to the uniformly distributed populations. To do so the MFPT problem 
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on lineages will be addressed. Specifically, organism lineages in the model appear to 

represent a spatial Ξ-coalescent, whereas the cluster lineages appear to be structured as 

spatial Ξ-coalescents with fragmentations (Figure 4.1). To the knowledge of the author, 

the cluster lineages represent a unique problem not yet explored mathematically. The 

CFP of lineages do not contain the exchangeability and homogeneous properties of 

coalescents and fragmentations that have been previously studied, because the lineages 

should be dependent upon how populations fill the space and clustering properties (which 

can be measured by the NN index  ).  

 The organism lineage lifetimes distribution will be determined for each value of 

 , and power-law scaling is expected at criticality due to the temporal nature of the 

infinite cluster in DP as well as from directed lattice animals. Fitness and spatial 

measures on the cluster centroids are taken to provide a better sense of how clusters 

might interact. The cluster centroid step-sizes will be measured as well as the NN index   

(Eq. 3) for cluster centroids. In an attempt to measure universal tree behavior, ratios of 

the average times to MRCA between n = 2, 3, and 4 will be measured as a function of  . 

These results will be discussed along with their evolutionary impact to multilevel 

selection. 

 

4.2. METHODS 

 Simulations of the neutral asexual fission model were run in the same manner as 

in Section 2; however, lineage algorithms are introduced here. Data was collected from 

nine runs at each value of   on a range encompassing the critical point, from 0.30 to 0.45 

in increments of 0.01 units. 

 4.2.1. Organism Lineages – Genealogies.  Parent-offspring relationships are 

relatively simple to define. Organism lineages, or genealogies, in the model are rooted 

binary trees. A parent will have at most two offspring according to the fitness landscape 

described above. Neither the parent nor its offspring will become related to any other 

organism from their respective populations (Figure 4.1). Even when two offspring from 

different parents undergo a competition event (coalesce), their lineages do not merge. 

Therefore, an organism only links to their parent from the previous generation and their 

offspring (if any) in the next generation. Given an organism from some generation (such 
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as the first generation, one of the first 300), its line of descent is extinguished when the 

last of its descendants die. Additionally, extinction of a population occurs when all lines 

of descent have gone to extinction. 

 Genealogy lifetimes, τ, are measured from the original 300 organisms in the first 

generation. Probability density distributions of τ for different values of   are measured 

from each of the initial populations from nine simulations, giving a sample size of 2700. 

 4.2.2. Cluster Lineages – Phylogenies.  Cluster lines of descent, phylogenies, are 

much more complicated than for the organisms. This is due in part by the merging-

splitting actions of clusters. Consider a cluster of organisms; each organism will produce 

offspring according to a Markov branching process. Let the cluster be of minimum size 

(three) and let those organisms in the cluster be labeled Ψi, where i is 1, 2, or 3. Let their 

offspring be labeled ψij, where j can be 1 or 2. Assuming all of the offspring survive, 

suppose that three offspring, ψ11, ψ12, and ψ32 form a cluster separate from the others 

(with ψ21, ψ22, and ψ31 in the second cluster). In the resulting offspring generation, two 

clusters are formed from the splitting of the parent cluster. Depending on the number of 

organisms in a cluster, the maximum number of offspring clusters, F, can be greater than 

two, representing an expanded fitness limit on the cluster level. The maximum number of 

offspring clusters a parent cluster can possibly produce depends upon the minimum 

cluster size (three) and the parent cluster size, s 

 

 ( )       (   ).                                          (18) 

 

The floor function is a rounding calculation that rounds down to the nearest integer. This 

means that the cluster fitness ranges from zero to F(s).  

 One could reason that if two clusters of the same size were spread out differently, 

such that the gyration radius of one cluster was significantly different from the other, then 

the cluster with a greater gyration radius will likely have more offspring organisms. More 

offspring could survive because they would be less likely to die from competitive death. 

Therefore, the gyration radius of clusters may also influence the number of offspring 

clusters between clusters of the same size. 
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 Clusters also merge when offspring from separate parent clusters join into a single 

cluster. This allows for an offspring cluster to have one or many parent clusters. This type 

of interaction is absolutely not allowed at the organism level, since the coalescence of 

organisms results from competitive death. The coalescence event is therefore of a 

different flavor at the cluster level. There is no death of a cluster (removal) based on 

phenotypic proximity. 

 The probability density distribution of cluster splits and mergers were calculated 

for each value of  . Only clusters among the last half of surviving generations were used 

to generate the distributions. Additionally, average cluster fitness of the same set of 

clusters was calculated as a function of  . 

 4.2.3. Cluster Centroid Step-Sizes.  Cluster centroids are calculated as the center 

of mass of constituent unit mass organisms and their locations 

 

   
 

 
∑   

 
   ,                                              (19a) 

   
 

 
∑   

 
   .                                              (19b) 

 

Step-sizes, Γ, are then defined as the distance between each parent cluster centroid (Cp) 

and each of its offspring cluster centroids (Cb): 

 

  √(       )
 
 (       )

 
.                               (20) 

 

 Probability density distributions of Γ were created for values of   = 0.30, 0.33, 

0.36, and 0.39. Only the clusters from the last half of surviving generations were used, 

regardless of whether populations decayed to extinction. Average Γ vs.   was also 

calculated based on the same set of clusters. 

 4.2.4. Average Time to Most Recent Common Ancestor.  Given some number 

of randomly chosen clusters in the same generation, the average time to MRCA, of the 

chosen cluster lineages can be calculated. This is a backward in time calculation, starting 

from a later generation and following lineages back toward their first root ancestor. The 

first root ancestor (MRCA) can be considered the point at which all lineages of the 
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original selected clusters coalesce. Average times to MRCA were determined for four 

different initial groups of clusters with n = 2, 3, and 4. Only the last three-quarters of 

surviving generations that also contained at least twenty clusters were considered for 

starting points. From among these, 1000 random generations were selected for sampling. 

This was done for each   and for each value of  .  

 

4.3. RESULTS 

 Genealogical lifetimes are shown as a normalized probability density distribution 

in Figure 4.2. Near the simulated critical point 0.33, an asymptotic power-law tail was 

observed with slope             . 

 

 

 

 

Figure 4.2.  Probability Density Distributions of Organism Genealogy Lifetimes. 

 

 

 

 Cluster splitting behavior as it depends upon   is visualized in Figure 4.3. The 

splitting events count how many offspring clusters were produced for each cluster, so 

Figure 4.3a also represents the cluster fitness distribution. Since clusters may not produce 

any offspring clusters, a zero splitting event, all events were shifted by one so that the 

double-logarithmic plot could show the probability of cluster death events. A power-law 

tail was observed for values of   near the critical point. The average cluster fitness, 
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number of offspring clusters produced by each cluster, 〈 〉 is plotted with respect to   in 

Figure 4.3b.  

 Cluster centroid step-size statistics are shown in Figure 4.4. The probability 

density distribution of the cluster centroid step-sizes is shown in Figure 4.4a. For all 

values of  , the distributions were found to be bimodal. Average Γ as a function of   is 

linear in Figure 4.4b. 

 

 

 

 

Figure 4.3.  Cluster Splitting Events. (a) Probability density distributions of cluster 

splitting events are shown for   = 0.30, 0.33, 0.36, and 0.39. To produce the double-

logarithmic plot, one was added to the splitting events such that 1 represents the complete 

death of a cluster, 2 represents a cluster producing one offspring cluster, etc. (b) Average 

cluster splitting events (cluster fitness) is shown as a function of mutability.  
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Figure 4.4.  Cluster Centroid Step-Size. (a) Probability density distributions of cluster 

centroid step-sizes. (b) Average cluster centroid step-size as a function of mutability. 

 

 

 

 Cluster centroid NN index   was calculated as a function of   (Figure 4.5). The 

population of cluster centroids were found to be significantly aggregated only for     , 

and were significantly distributed according to a uniform distribution for     . At 

criticality,     , the population of cluster centroids were found to be distributed 

according to a purely random distribution. A peak was observed about the same    as for 

the sample average number of clusters in Figure 2.6. 

 The ratios of average times to MRCA of the phylogenies is presented in Figure 

4.6. The 〈  〉 〈  〉 measure had a value of about 1.30 at criticality and decayed to roughly 

1.1 at       . The 〈  〉 〈  〉 ratio had a value of 1.45 at criticality and decayed to 

approximately 1.1 at       . The inset shows the standard deviation of each ratio; 

however, both curves are very close, with maxima at       . 
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Figure 4.5.  Sample Nearest-Neighbor Index – Cluster Centroids. 

 

 

 

 

Figure 4.6.  Ratios of Average Times to Most Recent Common Ancestor – Phylogenies. 

The dots indicate ratios calculated and the lines are added to aid the eye. The inset shows 

the standard deviation of the ratios. Both standard deviations fell almost identically onto 

each other, and they are of the same order of magnitude as the ratios. The peak standard 

deviation occurs for       . 
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4.4. DISCUSSION 

 The above results indicate potential scale-free properties near the DP phase 

transition. Lineage lifetimes of the organism lineages suggest possible power-law scaling 

for the curve at       . A best-fit on the tail from 10-100 generations showed the 

power-law scaling exponent to be             . This result may point to the    

exponent dictating the organism lifetimes (see Table 3.2). It is well known that the 

system lifetimes obeys this scaling at the critical point, and the correlation time exponent 

relates to the cluster size of directed lattice animals (Henkel et al. 2009; Park & Park 

2011; Bousquet-Mélou 1996).  

 The splitting events observed in Figure 4.3 may also suggest scale-free properties. 

There does not seem to be a difference in the extinction probability regardless of  . 

Certainly, as   increases, the populations begin to survive and grow in size. The number 

of clusters also increases, but one may think that cluster death, a zero splitting event, 

could reduce with increasing  . The results are contradictory to this notion, however.  

 With the power-law tail at       , one could ask if this scale-free fitness 

demonstrates scale-free selection? In short, no. The reason for this is two-fold. First, there 

is no selection bias, no differential fitness, on the organism level. Clustering of organisms 

occurs, (Figure 2.10) but there is no selection for any particular traits in the phenotype 

space. Secondly, the clustering of clusters is on the order of the system size. The most 

basic unit in the system is an organism, so only two levels of evolving populations can be 

sufficiently addressed. Given genetic information driving the locations in phenotype 

space, as well as expanding the size of the space through dimensions or total volume 

could allow more levels of biological organization to be studied. Selection could then be 

investigated at the level of digital nucleotides, genotypes, organisms described by 

phenotypes, clusters (species), and super-clusters (genera). However, this endeavor 

would likely require much greater computing resources than those employed here. 

 Instead, a more appropriate question to ask is whether multilevel selection is 

present. In this case, maybe, multilevel selection of the MLS2 variety is indicated through 

clusters producing offspring clusters. This is absolutely the case here. What is 

questionable is which clusters are surviving. This cannot be answered with the current 

data presented. However, it may be inferred that there must be some survival of clusters 
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which yield more clusters, since those that produce more have a greater chance of 

survival. This is similar to the notion of Goodnight (2013), who suggested that organisms 

which are able to “cast a broader net” to have their descendants in more clusters are able 

to survive longer. The same could be said for the clustering in this model. 

 The average cluster fitness (Figure 4.3b) is quite reminiscent of Figure 2.5b and 

2.6b, where average number of clusters was observed to rise steeply to a peak. For 

    , 〈 〉 was nearest to zero, grew sharply about      until reaching a peak near 

     and then declined again. Perhaps, this is not too unsuspected, since an increase in 

average fitness should lead to increased populations.  

 Figure 4.4 gives insights to the BCRW behavior of the clusters as they interact in 

the space. The distributions in Figure 4.4a show a decline in the leftmost peak as   

increases. This is likely due to the appearance of larger clusters granting greater step-

sizes more often than the existence of smaller clusters interacting at shorter scales. This is 

likely the cause of the probability compression on the short-scale end and expansion on 

the longer-scale end. Bimodality in Figure 4.4a may be dependent upon three factors. At 

small  , there are far less large clusters than what exists for larger  . The larger clusters 

typically have greater spatial coverage (as could be measured by gyration radius), and 

therefore can offer longer-range jumps for any nearby clusters or through splitting itself. 

For large clusters, they tend not only to cover more space, but they are also more likely to 

contain many more organisms. Therefore, the cluster-size distribution (Figure 2.11) gives 

a cluster more chances to split apart. Indeed, this is supported by the increase in cluster 

fitness distribution seen in Figure 4.3a. There is likely a build-up in the longer-scale 

probabilities due to the finite-size of the landscape. Large clusters may not be able to 

sufficiently jump in all directions with the absorbing boundaries. Smaller hops may be 

lost at the edges of the landscape and contribute to a loss in shorter centroid hops. The 

boundaries may in general reduce the support for mid-range jumps, but deeper 

investigation is needed to confirm these predictions. The average step-size shows 

remarkable linearity with increasing   (Figure 4.4b).   

 The spatial measures may be set into perspective with the NN index   on the 

cluster centroids (Figure 4.5). For all active states of the system (    ), cluster 

centroids are uniformly distributed. Only at criticality are cluster centroids in a purely 
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random distribution. Comparing this to the NN index on the organisms, Even when 

organisms were aggregated and surviving (recall        ), their clusters appear to 

be distributed uniformly. The DP behaviors then manifest when organisms cluster and 

clusters are distributed purely randomly. 

 Ratios of the average times to MRCA are shown in Figure 4.6. The ratios 

〈  〉 〈  〉 and 〈  〉 〈  〉 had values near 1.3 and 1.45 near criticality, respectively. Both 

decayed to just under 1.1 at       . Interestingly, Kingman’s coalescent produces 

ratios of 〈  〉 〈  〉      and 〈  〉 〈  〉      (Brunet, Derrida, & Simon 2008; Brunet 

& Derrida 2013). Whether there is true significance to the comparison of the ratio results 

is unclear. Cluster phylogenies structures are predicted to correspond to Ξ-coalescents 

with fragmentation, but at the DP critical point, the coalescent rates which determine 

average times to MRCA might still find correspondence with Kingman’s results. No 

other known ratios could be found that fall within a relatively small range about the 

results. Furthermore,   is shown to drive the CFP measures, forcing smaller ratios when 

the populations become uniformly distributed and forming large, indistinguishable 

clusters (Figure 2.2). This is a similar result seen by Brunet and Derrida (2012), in which 

a parameter tied to increased evolution rates continuously drove their system from having 

ratios described by Kingman to ones by Bolthausen-Sznitman. In much the same way, 

this effect is observed here. However, although the ratios appear to coincide with 

Kingman’s at criticality, as   increases, the ratios drop much lower than seen in the 

model by Brunet and Derrida (2012). This may suggest the influence of spatial 

constraints on the CFP structure and rates which are avoided in the generalized Λ-

coalescent available in the model by Brunet and Derrida (2012). 

 The application of coalescents here is uncommon, since coalescents are generally 

applied to problems arising in population genetics (Teh, Blundell, & Elliott 2011; Zähle, 

Cox, & Durrett 2005; Li & Durbin 2011). Having shown this system belongs to the DP 

universality class, the upper critical dimension is four and greater than the dimension of 

the phenotype space studied here. Below the upper critical dimension, following cluster 

lineages in a phenotype space is suggested to be messy to the point that clusters are not 

well-defined entities (Lawson & Jensen 2008), but data suggests that, near the DP critical 

point, this system produces long lines of descent (Figures 4.2 and 4.6). This is despite the 
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fragmentation process which allows multiple parent clusters for some offspring clusters 

combined with the Ξ-coalescent events which corresponds to variability in cluster 

fecundity. However, well into the supercritical DP range, when populations better fill the 

phenotype space and organisms have greater branching mobility (due to greater  ), 

clusters can grow much more massive. This allows for giant clusters to accumulate 

nearby clusters easier, and with the large noise in the system from organism coalescence 

death and random death, allows a once massive cluster to fracture into smaller clusters or 

join other nearby clusters. Greater space-filling populations experience greater amounts 

of trading of organisms between neighboring clusters which is the action that leads to 

greater mixing among cluster lineages. For populations with supercritical  , clusters do 

indeed become less well-defined as suggested by Lawson and Jensen (2008) and 

supported by Figure 2.10. 

 A long running debate between evolutionary biologists John Maynard Smith on 

one hand, and Elliott Sober and E. O. Wilson on the other, regarding group selection was 

addressed by Okasha (2006). It is generally well established that selection among 

individuals occurs, and is demonstrated by Okasha as natural selection acting upon the 

speed of antelopes. In the traditional view of group selection theory, one needs to show 

that a property of the organisms is inherited due to the benefit of belonging to a particular 

group. This would mean that a group of antelopes that run faster on average than a 

separate, slower group should have the evolutionary advantage to avoid fast predators. 

This, however, creates a hierarchical asymmetry in the process of natural selection at 

different levels, since the average group speed comes from a property of the organisms, 

not from the property of the group itself. The differences are subtle, but they can be 

parsed into better organized classifications having different theoretical constructions.  

 Okasha (2009) refers to different levels of selection based on organisms and their 

groups. When discussing the fitness of organisms in the models addressed in this work, 

the neutral landscape dictates that all organisms produce two offspring. This is the MLS1 

modeling discussed by Okasha (2009). Typically, in more physical models, cluster 

masses are determined by the number of agents within them. Describing the coagulation-

fragmentation processes of such a cluster is then based upon models such as 

Smoluchowski coagulation, Becker-Döring, or Marcus-Lushnikov models and their 
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variants (Aldous 1999). However, these processes are a mix of organizational levels since 

agent actions are built into the description of their cluster actions. Okasha (2009) refers to 

a more precise description of cluster behaviors, MLS2. At the MLS2 level, clusters 

become their own entities without regard to the agents from which they are composed. 

One can then talk about branching behaviors and/or fitness of clusters. The difference 

between MLS1 and MLS2 can be thought of as a sort of coarse-graining procedure like 

that in renormalization group methods and macroscopic modeling in statistical physics. 

Just as one does not need to know all of the microscopic details in order to know 

temperature, one does not need to know all of the organism behaviors in order to know 

the rate of cluster diffusion.  
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5. FUTURE DIRECTIONS OF RESEARCH 

 The BCRW processes exhibited by this model may be useful to further understand 

temporal behaviors in similar systems. In particular, advanced systems with a population 

of agents existing in a finite space with absorbing boundaries that contains moving, size-

fluctuating targets are related to the cluster lineage dynamics. This is a stack of specifics, 

but they point to the need for a more generalized model of BCRWs. Several types of 

problems may be addressed by the cluster lineage dynamics. Applicable classes of 

models could be of epidemic dynamics of a localized aggressive contagion, or the 

genealogy of genetic mutations of migrating people. Additional insights could be gained 

through alternative model narratives such as in Pie and Weitz (2005), where in another 

2+1 dimensions phenotype space, agents modeled lineages of species instead of 

organisms.  

 Physical models of CFP have been used to model processes on seemingly all 

scales from polymerization of molecules to star and galaxy formations in the universe 

(Aldous 1999). There has been increased interest in the past decade of lineage processes 

regarding coalescents. Although the central measures in CFP are the rates of each event, 

there does not seem to have been a study on CFP of clusters in a system exhibiting DP. 

Equilibrium and non-equilibrium studies have been investigated in the context of cluster 

formation and dissolution in the equilibrium case or coalescence overpowering 

fragmentation to cause a snowball effect of particles into a giant cluster in the non-

equilibrium context (Aldous 1999). 

 Several studies on FPT problems have taken into account the initial starting 

distances between an object and its target (Bénichou & Voituriez 2014; Condamin, 

Bénichou, & Moreau 2007; Condamin et al. 2007). Future studies on this model could 

look for potential relationships between the starting points between n-lineages to 

determine if the initial configurations influence their coalescence time to a MRCA. The 

centroid step-size measures shown here, along with a measure of cluster gyration radius, 

could provide necessary insights for this problem. 

 Cluster measures and resulting interactions may be dependent upon the mass 

density functions of each cluster. The typical use of a mass density distribution is used to 
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describe the total mass, center of mass, moment of inertia, etc. In the case of clusters, the 

cluster-sizes are the zeroth order measure, the cluster mass (assuming each organism 

provides unit mass to the cluster mass). Cluster centroids represent the first order measure 

of the mass density distribution. Second order and higher measures may also be 

determined in the usual manner of mass density distributions. Further investigation is 

needed to determine how much information of the branching-coalescing process of 

clusters can be derived from cluster mass density distributions. However, the information 

may be limited since the mass density distribution is a static measure, so knowing the 

time evolution of such distributions, similar to how master equations describe time 

evolving probability distributions, is likely needed. 

 Comparisons between this model and biological data should be top priority. There 

have been studies on the fossil record where morphological traits are the best information 

about how ancient organisms lived and evolved. Querying databases specializing in 

phenotypes, such as PhenomicDB, or more generalized biological public data sets, such 

as Dryad, may provide an initial step toward decent checks for the predictive power of 

this model (Groth, Kalev, Kirov, Traikov, Leser, & Weiss 2010; Abe & Lieberman 

2012). However, the model will likely need expansion in dimensionality of the phenotype 

space to meet the level of detail used by biologists. This should also resolve issues with 

low dimensional phenotype clustering that was addressed in Lawson and Jensen (2008). 

Furthermore, comparisons of the universal tree structures as determined by the ratios of 

average times to MRCA could provide the best comparisons. 

 Finally, it has been observed throughout this dissertation that populations of many 

BCRW organisms in a phenotype space have exhibited clustering and phase transition 

behavior dependent upon a noise amplitude measure of their maximum mutation size. 

This occurs for both assortative mating and asexual fission because of an asymmetry 

between birth and death processes. Random mating was shown to destroy both clustering 

and phase transition behavior. Furthermore, in the case of asexually reproducing 

organisms, the model was shown to belong to the DP universality class. The lineage 

behavior of organism lineage lifetimes at criticality appeared to have a scale-free 

distribution tail that scaled according to the correlation time exponent of DP. The wide 

range of cluster fitness indicates the possibility for multilevel selection as does the 
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average fitness of the clusters. The universal coalescent time ratios of cluster lineages 

appears to sweep from a Kingman’s n-coalescent to some other coalescent not yet 

described by the mathematical literature. These features indicate that there are rich 

dynamics that are yet to be explored. 
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APPENDIX A. 

MAXIMUM POPULATIONS 
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 The maximum population size depends on the linear size of the landscape L and 

the competition limit κ. In the model, organisms are allowed to exist on the boundaries, 

and are only absorbed if they travel beyond the bounds. In a plane, the maximum number 

of sites on a hexagonal lattice (Steinhaus 1999). Along the one side of the landscape, the 

organisms can be placed in a row with spacing κ, and the maximum number of possible 

organisms (sites) along this row is W. Assuming this for the horizontal or vertical side 

does not matter, since the landscape is a square 

 

       (
 

 
)   .                                             (A1) 

 

The floor function rounds down to the nearest integer and one is added to account for the 

site in the corner of two boundaries. The next row must be shifted by κ/2 to fit the 

hexagonal lattice. This gives a row width w 

 

     .                                                   (A2) 

 

The spacing between rows can be calculated by finding the height of a right triangle with 

width κ/2 and hypotenuse κ. The spacing is then  

 

    
√ 

 
.                                                     (A3) 

 

The maximum number of rows is then  
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)   .                                             (A4) 

 

The addition of unity on the right hand side of (A4) accounts for the row along the first 

boundary. The maximum number of rows with width W  
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       (
 

 
),                                                 (A5) 

 

And the maximum number of rows with width w  

 

      (
 

 
),                                                   (A5) 

 

where the ceil function rounds up to the nearest integer. The number of sites from rows 

with width W  

 

     ,                                                      (A5) 

 

and number of sites from rows with width w  

 

   (   ) .                                                 (A5) 

 

Therefore, the maximum number of sites in a landscape is 

 

          (     ).                                        (A5) 

 

 The maximum population sizes are listed, for each landscape used throughout this 

dissertation, in Table A.1. 

 

 

 

Landscape 21x21 29x29 37x37 45x45 77x77 

Nmax 8196 15611 25393 37544 109826 

Table A.1.  Maximum Populations for Each Landscape. 
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