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ABSTRACT

This dissertation is an exploration of phase transition behavior and clustering of
populations of organisms in an agent-based model of evolutionary dynamics. The agents
in the model are organisms, described as branching-coalescing random walkers, which
are characterized by their coordinates in a two-dimensional phenotype space. Neutral
evolutionary conditions are assumed, such that no organism has a fitness advantage
regardless of its phenotype location. Lineages of organisms evolve by limiting the
maximum possible offspring distance from their parent(s) (mutability, which is the only
heritable trait) along each coordinate in phenotype space. As mutability is varied, a non-
equilibrium phase transition is shown to occur for populations reproducing by assortative
mating and asexual fission. Furthermore, mutability is also shown to change the
clustering behavior of populations. Random mating is shown to destroy both phase
transition behavior and clustering. The phase transition behavior is characterized in the
asexual fission case. By demonstrating that the populations near criticality collapse to
universal scaling functions with appropriate critical exponents, this case is shown to
belong to the directed percolation universality class. Finally, lineage behavior is explored
for both organisms and clusters. The lineage lifetimes of the initial population of
organisms are found to have a power-law probability density which scales with the
correlation length exponent near critical mutability. The cluster centroid step-sizes obey a
probability density function that is bimodal for all mutability values, and the average
displays a linear dependence upon mutability in the supercritical range. Cluster lineage
tree structures are shown to have Kingman’s coalescent universal tree structure at the

directed percolation phase transition despite more complicated lineage structures.
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1. INTRODUCTION

“I made certain very simple, but not very inaccurate, suppositions, concerning
average fertility, and | worked to the nearest integer, starting with 10,000 persons,
but the computation became intolerably tedious after a few steps, and | had to
abandon it.”

(Francis Galton, F.R.S. 1875)

The natural world is immensely complicated, and with simplifying models, one
can navigate and understand its complexity. With the use of stochastic computational
simulations, systems that are inherently noisy, such as biological systems, may be studied
with greater ease. Where mathematicians seek the most basic, logical understanding of
such systems, biologists seek a grander picture. The modeling approach of a physicist is
then to find the happy medium between simplicity and complexity. This happiness is the

motivation for the approach taken here.

1.1. NEUTRAL THEORY

All of the work within this dissertation operates under the assumption of neutral
theory. This is in contrast to the foundation on which modern evolutionary biology is
based, the theory of natural selection as described by Charles Darwin (1859). Natural
selection arises through differential fitness, and describes how species adapt to changes in
their environment and allows them to have a successful continuation of heritable traits.
Fisher (1930) ushered the theory of natural selection from studies based only on natural
history to statistical modeling. However, it wasn’t until the work of Kimura that notions
of evolution without selection (without effects of differential fitness on survival) were
explored (Kimura and Crow 1964; Kimura 1968, 1983). In his work, Kimura described
genetic drift, a neutral theory of evolution that provides a “null hypothesis” for the
formation of species by assuming that different genetic mutations have equal fitness
benefits for the organisms which carry them. Recently, Hubbell (2001) described a
neutral theory of ecology which also predicts clustering of spatial patterns of flora that

occur from drift alone and without any species bias about where each plant or tree may



grow within a local area. Both of these neutral models suggest theoretical possibilities,
but they do not imply prevalence.

There has been contention regarding possibility vs. prevalence of speciation by
genetic drift and of neutral clustering in ecology (Ricklefs 2006), and this is compounded
by the rarity of sympatric speciation. Several example species have been shown to have
formed from sympatric speciation including sticklebacks (Schluter 1994), snails
(Johannesson, Rolan-Alvarez, & Ekendahl 1995), and anolis lizards (Losos, et al. 1998).
Even microorganisms such as bacteria have been shown to develop via sympatric
speciation (Cadillo-Quiroz et al. 2012). Dieckmann and Doebeli (1999) showed that in an
agent-based model of sympatric, assortative mating (explained below) organisms
undergoing genetic drift can speciate when competition for resources is included in their
dynamics. Their model was predicted to apply to recently colonized habitats, and for
trait-biased mating species that rely upon ecological traits such as size or coloring
(Dieckmann & Doebeli 1999).

The set of genes found in the DNA of an organism defines its genotype. The
physical manifestation of the instruction from a gene is protein expression. The
expression of a protein can, by itself or in concert with other proteins, be manifested as an
external trait in an organism. The phenotype is then the set of traits which are observed
from the genotype. Genetic drift explores the set of possible genotypes, or genotype
space. The set of possible phenotypes then describes a phenotype space. Natural selection
acts upon phenotypes, therefore a selected phenotype corresponds to a particular
genotype. When a mutation occurs somewhere in a genotype, there can be a
corresponding mutation to the phenotype. Neutral theory then describes how mutations
offer no survival advantage over the original genotype (or phenotype) or any other
mutated genotype. The work presented throughout exists in a phenotype space with no

consideration of genotype space or physical space.

1.2. PHASE TRANSITIONS
The purpose of studying phase transitions is to seek how a control parameter
drives fundamental changes in the dynamics of an order parameter which is a measure of

the overall behavior of a system. Here, the focus is on continuous, non-equilibrium phase



transitions. “Continuous” refers to the continuous first derivative of the order parameters
as the control parameter is varied, and it is accompanied by diverging variations of the
order parameter as the control parameter approaches the critical point. “Non-equilibrium”
refers to the inability of system to transition equally between phases. In the supercritical
state the system is active and fluctuating, whereas, subcritically, the system forever stays
in an absorbing, inactive state. There are a variety of dynamical characteristics which go
along with such a transition near and at a critical point. These include scale-free behavior
of the order parameters (having no characteristic scaling), large variations of the order
parameter, and asymptotically long decay times. The overarching objective of this
dissertation is to report on the behavior of a specific neutral phenotype evolution model

in the presence of a continuous, non-equilibrium phase transition.

1.3. BASICS OF THE PHENOTYPE EVOLUTION MODELS

The models used throughout this dissertation are modifications of a previously-
described evolution model with rugged and changing fitness landscapes (Dees & Bahar
2010). As in the original model, organisms are described here by independent and
arbitrary trait values (coordinates) in a continuous, two-dimensional phenotype space.
Interactions of organisms with each other and their environment are based upon four
considerations.

1.3.1. Organism Lifecycle. First, to reproduce, if one imagines a sexually
reproducing organism that is free to choose its mate, it will more likely choose one that
has similar traits, referred to as assortative mating (Kondrashov & Shpak 1998; de Cara,
Barton, & Kirkpatrick 2008; Otto, Servedio, & Nuismer 2008). The offspring of the
mating pair will exhibit a phenotype that is some combination of the parental phenotypes,
with the incorporation of an additional amount of variation due to mutation. Note that this
type of “blending inheritance” in phenotype space does not imply a blending of
genotypes, which cannot occur in a biological system (Ridley 2004). Offspring which
share too similar traits are likely to compete for the same set of resources, so when
offspring compete, one of them will die. Finally, not all organisms are permitted the

opportunity to survive before they can reproduce.



For the model considered here, in contrast to that of Dees and Bahar (2010), at
every stage in the lifecycle of organisms, there is no selection preference. The phenotype
coordinates of organisms do not convey any advantage or disadvantage in terms of
fitness, which is defined as the number of offspring produced, competition, or luck in
escaping from random, mortal events. These processes will be detailed in the following
sections.

1.3.2. Clustering and Species. Since there is no explicit representation of
geographic distance in the model, clustering of organisms in the phenotype space
corresponds to sympatric speciation. Clustering is roughly based on the biological species
concept, in the case of assortative mating and random mating, and on the phenetic species
concept in the case of asexual fission. To clarify the biological terminology, sympatric
speciation is the formation of species found in the same (“sym-") physical area (“patric”).
The biological species concept defines a species as a closed set of reproducing organisms
that produce viable offspring. The concept of phenetic species describes bacterial species

according to shared or similar phenotypes.

1.4. SUMMARY

The role of mutability in controlling phase transition behavior and cluster
formation will be studied. In Section 2, observation of phase transitions and clustering
behaviors in the case of assortative mating and asexual fission are discussed in contrast
with random mating. In Section 3, it is shown that the asexual fission model undergoes a
phase transition which belongs to the directed percolation universality class. Statistical
distributions and branching dynamics of the lineages of organisms and clusters in the
asexual fission model are then discussed in Section 4. In addition, multilevel selection is
discussed among possible implications of cluster fitness, and is put into context by
possible universal structure measures of average time to most recent common ancestor.
Suggestions for future studies branching from this work, such as implications of
multilevel selection leading to scale-free selection, explosive increases in biological

diversity, and comparisons with biological morphology data are discussed in Section 5.



2. OBSERVATIONS OF CLUSTERING AND PHASE TRANSITIONS

2.1. INTRODUCTION

Speciation under neutral conditions was initially studied by Kimura in the case of
genetic drift (Kimura & Crow 1964; Kimura 1968, 1983). A more recent, equivalent
approach to clustering under neutral conditions was introduced by the work of Hubbell in
the context of physical clustering in ecology (Hubbell 2001). How selection affects
clustering in genotype and phenotype space or in physical space is of great concern to
evolutionary biology and ecology, because species are generally identified by such
clustering. Removing selection from evolution or from ecological pattern formation
introduces important questions about clustering. However, these theories do not imply
that they describe the prevalent evolutionary process of speciation, only that selection-
free clustering is possible (Hubbell 2001).

Evolutionary systems have been simulated with the goal of determining why
clustering occurs for interacting organisms under neutral conditions. In particular,
clustering was observed in a neutral model of organisms described by their spatial
locations and genotypes (de Aguiar, Baranger, Baptestini, Kaufman, Bar-Yam 2009).
Organisms underwent assortative mating by finding mates nearby in both physical and
genotype spaces. It was concluded that assortative mating was the essential element to
achieve speciation, and both physical and genotype spaces were necessary for clustering.
Species abundance curves were produced which matched the predictions of Hubbell’s
neutral theory of biodiversity, so it was counted as strong support for Hubbell’s theory
(Banavar & Maritan 2009).

A related mathematical class of clustering systems to the de Aguiar et al. model is
branching-coalescing random walks (BCRW). Much of the properties of such models are
still being uncovered (Dutta, Panduragan, Rajaraman, and Roche 2013; Cooper et al.
2012; Arthreya & Swart 2005). However, clustering in BCRW models has seen little
attention in the context of computational evolutionary biology with at least one
exception, that of Hubbell (2005).

Zhang, Serva, and Polikarpov (1990) observed clustering in a population of

BCRW agents reproducing by asexual fission. Each organism had the same probability



for reproduction, mimicking neutral conditions. Another fission model, with organisms
described by binary digit string genotypes, was studied by Derrida and Peliti (1991).
They produced mathematical results such as the probability of observing specific
genealogies under neutral conditions.

Meyer, Havlin, and Bunde (1996) produced a modified version of the Zhang et al.
model in which they investigated the clustering of organisms under neutral-like
conditions: equal birth and death rates. They determined that clustering arose from
asymmetry in the birth and death processes. That is, offspring are born near their parents,
whereas death kills off organisms regardless of their location in the space. Young,
Roberts, and Stuhne (2001) introduced a “Brownian bugs” model of organisms
reproducing by fission and concluded again that the minimum criterion for clustering in
such models is a spatial asymmetry in the birth and death processes. They also noted that
continuous, fluid-like population undergoing a diffusion process with equal birth and
death rates does not yield clustering, so only agent-based models can exhibit clustering.
In the works of Houchmandzadeh (2002) and Houchmandzadeh and Vallade (2003),
mathematical properties of BCRWs were studied directly in the context of Hubbell’s
neutral theory of biodiversity. Similarly, Lawson and Jensen (2008) studied a neutral
model of phenotype evolution with populations undergoing BCRW.

Recently, it was shown that for several different types of rugged fitness phenotype
landscapes, mutability could optimize clustering (Dees & Bahar 2010). Here, as below,
mutability is defined as the maximum phenotypic distance an organism can be from its
parents. Static, rugged landscapes (a grid of fitness values varying between one and four,
where fitness is the number of offspring an organism can produce), moving rugged
landscapes, and landscapes with feedback (reducing fitness with growing local
population density, increasing fitness with lesser local population density) all showed that
populations of organisms could cluster. Populations were also observed to undergo non-
equilibrium phase transition behavior (transitioning from an absorbing state of extinction
to indefinite survival) for slightly smaller values of mutability on each landscape. Near
the suspected critical mutability, large variations in the ensemble populations were also
observed, with some simulations ending relatively quickly while others thrived for the

duration of the simulation.



The work presented here extends the results of the assortative mating phenotype
space model in two ways. A neutral fitness landscape is assumed throughout, and phase
transition behaviors and clustering are also observed for reproduction by fission. It is also
shown that reproduction by random mate selection destroys both the phase transition and
the formation of clustering. A measure for the quality of clustering is provided to
compare clustering across a range of mutability values. The results demonstrate that
sympatric speciation of organisms, described only by phenotypes, undergoes clustering in

an evolution model under neutral conditions.

2.2. METHODS

The models described in this section simulated three different sizes of phenotype
space, 21x21, 45x45, and 77x77. Each phenotype space was associated with a neutral
fitness landscape (with fitness=2) such that every phenotype allowed no selection bias
through fitness differences. In all simulations, 300 organisms were initialized according
to a uniform random distribution within the phenotype space and given the same
mutability, u. Simulations were performed for five runs for u = 0.30 to 1.50 with
increments of 0.02 units. The lifecycle of organisms was generational, as described
above, and began with each organism producing two offspring, as is dictated by the
neutral fitness landscape. Once all organisms reproduced, the parents were removed,
leaving only their offspring. The offspring underwent competition death, random death,
and death by absorbing boundaries. This process of birth and death was repeated until
either the populations fell below three organisms (extinction; three organisms is the
minimum necessary to determine a cluster, as will be discussed in more detail below) or
the simulations reached the maximum time limit of 2000 generations. Simulations were
performed in MATLAB (The MathWorks) on PCs using a Windows 7 operating system.

2.2.1. Reproduction Schemes. Three different reproduction schemes were
simulated. Assortative mating between organisms was determined by measuring distances
between organisms. Having no gender distinction among organisms, mates were chosen
to be the nearest-neighbor (NN) organism to the reproducing organism, also known as the
reference organism. Once mates were established, offspring were generated for each

reference organism according to an area about the mating parents. This area is referred to



as the birth region. Offspring were uniformly distributed within the birth region whose
opposing corners are defined by the reference organism and its mate. The region was then
extended in each direction by an addition of the mutability of the reference parent (Figure

2.1). The offspring locations are (cpy, cp,) With the reference parent location (c,, ¢yy)

and mate location (cpy, Ciny):

Chx = min(crx» me) —HU + [(max(crx' me) + /'L) - (min(crx' me) - ;u)]rx (18.)

Cpy = min(cry, cmy) —u+ [(max(cry,cmy) +u) — (min(cry, cmy) — ,u)]ry (1b)

The mutability, u, is determined by the reference parent, and uniformly distributed
random numbers, . and 7y, were generated by MATLAB’s Mersenne twister
pseudorandom number generator on the interval [0,1]. An example of assortative mating
simulations is shown in Figure 2.2.

The asexual fission algorithm is similar to that for assortative mating, except that
the rectangular birth region around two parents is reduced to a square with sides of length
2u, centered on the single reference parent. The coordinates of each offspring (cpyx, Cpx)

were determined as

Chx = Crx — U+ 21U (2a)
Cox = Cry —U+ 21U (2b)

where the parent coordinates are (c,., ¢,y), mutability is y, and r is some random number
drawn from a uniform distribution on the interval [0,1].

Random mating modifies the assortative mating algorithm by having no NN
calculation. Instead, mates were chosen at random from the population, regardless of
their phenotype location. For every reference organism, all other organisms were equally
likely to be chosen as a mate. Random mating is used as a “null condition” to identify the
importance of local birth to clustering and phase transition behaviors. An example of

random mating simulations is shown in Figure 2.3.



Figure 2.1. Assortative Mating. (a) A parent (black circle) and its mate (blue circle); u
shows the mutability of the reference parent and the black rectangle its birth region. (b)
The offspring of the reference parent (black diamonds). (c) Assuming the mate of the
blue parent is the black parent, its birth region is defined by the blue rectangle. Since all
organisms in a simulation shares the same w, the birth region is identical to that of the
black parent shown in panel a. (d) After parents reproduce, they are removed, leaving the
offspring to undergo a battery of death processes.
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1 50 1000 2000

0.44

1.20

Figure 2.2. Generation Snapshots — Assortative Mating. Generational snapshots
(horizontal axis) for different values of u (vertical axis). The general population of
organisms is shown in green, and example clusters are colored by red, white, or blue.
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1 50 1000 2000

7.00

12.00

Figure 2.3. Generation Snapshots — Random Mating. Generational snapshots (horizontal
axis) for different values of u (vertical axis). The general population of organisms is
colored white. Typically, only a single cluster existed at every generation for any random
mating simulation.

2.2.2. Deaths. Three death processes were modeled. Competitive death occurred
for any offspring within the competition radius, or limit, of k = 0.25. Both offspring
were equally likely to be chosen for death to ensure neutral conditions, giving no survival
bias to any offspring. Removing only one offspring corresponds to the particle process of
coalescence. The random death process removed a uniformly distributed random
percentage of the population that was capped at 70% of the surviving offspring
population after the competitive death process had been completed. Finally, any offspring
found outside the phenotype space boundaries were removed, giving rise to absorbing
boundaries. Periodic boundary conditions were not used as they are biologically
unrealistic: a large phenotype cannot map onto a smaller value of the same phenotype.
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2.2.3. Clustering. Determining the clustering of organisms is a post simulation
process. For each resulting population in every generation, clusters were determined
according to NN and next-nearest-neighbor (NNN) connections, in the cases of
assortative mating and asexual fission. For assortative mating, clusters correspond to the
biological species concept as described above, with the addition of the NNN, also defined
as alternates. Finding closed sets based only on NN mates is precisely analogous to the
biological species concept. However, since mating occurs deterministically (the reference
organism always mates with its NN), it could be reasoned that the alternate might also be
a viable mate, even though it is never chosen as one for offspring production. In the
asexual fission case, clusters defined with phenotypic NN and NNN correspond to the
phenetic species concept. For both assortative mating and asexual fission, a cluster “seed”
was determined for each reference organism by its NN and NNN. Clusters are the
mathematical union of seeds; an iterative process then found closed, disjoint sets (see
Figure 2.4).

Figure 2.4. Clustering Algorithm. Each organism (colored circles) has a NN connection
(solid line) and a NNN connection (hashed line). For example, white’s NN is the
connected yellow circle according to the solid white line, and white’s NNN is the

connected blue circle indicated by the hashed white line.
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In the random mating case, clusters were found differently. Similar to randomly
choosing mates, alternates were randomly chosen from the rest of the population.
Although local clustering is lost, this choice of clustering conforms to the intended
biological modeling. If a mate can be randomly chosen, then so might its alternate. This
follows the mate and alternate clustering analogy with assortative mating. Figure 2.3

shows only a single cluster in each snapshot

2.3. RESULTS

In the example assortative and random mating simulations shown above in
Figures 2.2 and 2.3, it can be seen that populations with different u values cluster and fill
the phenotype space quite differently. These observations drive the following analysis.

Measuring the time average of the population and number of clusters within each
run and then taking the sample average over the time averages, the mean population,
<Population>, and mean number of clusters, <Clusters>, are shown for each value of
simulated u in the assortative mating case in Figure 2.5. Small u simulations result in
small values in each since populations go extinct before 2000 generations. With
increasing u, <Population> and <Clusters> rise with increasing error bars, which were
determined from standard deviations of the sample averages. Further increasing u, error
bars reduce in size, and <Population> levels out while <Clusters> reaches a peak and
then plateaus. As the phenotype space area is increased, the slopes of rising <Population>
and <Clusters> also increase. However, the u for which populations consistently survive,
the assumed critical point u., varies very little, with a value of u, = 0.40 identified for
each landscape. The value of u which gives a peak in <Clusters>, u,, = 0.46, is also
consistent for each landscape. At very large u, populations steadily decline, due to
increased death by absorbing boundaries. All of these behaviors are also observed for
asexual fission (see Figure 2.6), but with the assumed critical point varying slightly,
U, = 0.36 for 21x21 and u,. = 0.34 for 45x45 and 77x77 landscapes. The peak in

<Clusters> occurs at u,, = 0.38 for each landscape in the asexual fission model.
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The transition of <Population> from extinction to survival with increasing p was
also observed in the system lifetimes. Histograms of system lifetimes for the 45x45
landscape are shown in Figure 2.7. Elongation in the histogram tail grew more power-law
like as u approached u.. For u = 0.42 and above, system lifetimes were observed to last
indefinitely with no sign of decay, and were stopped manually after a few million

generations (not shown).
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Figure 2.7. Histograms of System Lifetimes — Assortative Mating. Many more
simulations were run for 4 = 0.20 (5000 runs), u = 0.25 (5000 runs), 4 = 0.30 (5000
runs), u = 0.37 (2662 runs), u = 0.38 (5017 runs), and u = 0.40 (828 runs) (adapted

from Scott et al. 2013).
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Temporal behavior of the population densities about u,. were observed for the
asexual fission model and are shown in Figure 2.8. For the values of u shown, the
average population density in each generation was calculated from 100 runs. Below the
assumed p., these time series show the population decaying to extinction. As u
approaches ., the rate of decay becomes progressively slower until, at u., the system

reached a surviving state.
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Figure 2.8. Time-Series Average Populations Near Criticality — Asexual Fission.
(@ u=0.30, (b) u = 0.32, (c) u = 0.34, (d) u = 0.36 (adapted from Scott et al. 2013).

The rise in <Population> along with error bars was not observed for the random
mating model. Instead, <Population> gradually increased over a much larger range of u,
as shown in Figure 2.9. Furthermore, no distinct clustering was observed since

<Clusters> was approximately one for all u.
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The quality of clustering was measured for assortative mating and asexual fission

using the Clark and Evans (1954) nearest-neighbor index, R (see Eq. 3 for a square area)

1/2
R = 2m2£1((crix—cmix)2+(crl.y—cmiy)2) | (3)

NL

Here, N is the population of a given generation, ¢, and c,,, are the locations of a
reference organism, i, and its NN, respectively, and L is the linear landscape size (21, 45,
or 77). This index measures the average NN distances for each population and compares
it to a purely random distribution of NN measures given a specific area. An index of

R = 1 corresponds to populations whose NN distances are purely random. For R < 1,
populations are more aggregated, and, for R > 1, populations are more uniformly
distributed. Clark and Evans introduced a significance measure to determine if

populations may be considered aggregated or uniformly distributed when R is near 1. The
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sample average, (R), is shown in Figure 2.10 for both assortative mating and asexual

fission.
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Figure 2.10. Sample Nearest-Neighbor Index — Populations. (a) assortative mating and
(b) asexual fission (adapted from Scott et al. 2013).

Assortative mating populations were found to have purely random distributions
(within 1% significance) for 0.48 < u < 0.54 on the 21x21 and 45x45 landscapes, and
for 0.48 to 0.50 for the 77x77 landscape. Below each range, populations were found to be
significantly aggregated, and above each range, populations were more uniformly
distributed. Similarly, asexual fission populations were found to be distributed according
to a purely random distribution for 0.38 < u < 0.40 on the 21x21 and 45x45 landscapes.
Populations were significantly aggregated for u < 0.38 and uniformly distributed for
u = 0.40 on the 77x77 landscape.

The distributions of cluster-size, known as species abundance in biology, are
shown in Figure 2.11 for values of u near u, for assortative mating. A cluster size is

measured as the number of organisms in a cluster. The double logarithmic plots in Figure
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2.11 show a change in concavity as u increases from below u,. to above u.. Nearest .,
power-law behavior is observed in the tail of the distribution, as emphasized by the best-

fit line from a minimization of a chi-square linear-fit to the data.
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2.4. DISCUSSION

It is demonstrated above that clustering of organisms can occur without physical
or genotype space and on a neutral landscape. Clustering in this model is representative
of sympatric speciation and occurs for both assortative mating and asexual fission. In
contrast, the random mating model almost always produces one large cluster. These
findings are in agreement with other studies of neutral fission models that characterize
clustering (Zhang et al. 1990; Derrida & Peliti 1991; Meyer, Havlin, & Bunde 1996;
Young et al. 2001; Houchmandzadeh 2002; Houchmandzadeh & Vallade 2003; Lawson
& Jensen 2002), but are in contrast with the conclusions reached by de Aguiar et al.
(2009) which concluded that only assortative mating of organisms described in a
genotype space and physical space were the minimum requirement for clustering.

Derrida and Peliti (1991) investigated lineages of individuals defined by genomes
of spin-like alleles within fixed population sizes. The genomes were subject to a constant
mutation rate, and individuals underwent asexual fission on a neutral fitness landscape.
Serva and Peliti (1991) extended the model to include random mating, and Higgs and
Derrida (1992) modified it for mating between individuals with some amount of genomic
overlap. Speciation occurred for mating with the requirement of genome overlap. In
contrast to these models, the models described in this dissertation are not tied to specific
population sizes, and this allows far richer dynamics of emergent speciation and
“biodiversity”.

The results presented in this work are related to BCRWSs in a discrete space as
studied by Athreya and Swart (2005). Particles in their model perform independent
random walks, undergo binary splitting, and experience coalescence and random death.
The Markov process in their work is similar to the one presented here with the primary
difference being that the agents in this work exist in a continuous space with absorbing
boundaries. In the thermodynamic limit of an infinite landscape, the critical value of u
may be smaller than reported (Mari¢, in preparation). As a result, increasing the
landscape size to much larger areas may produce a different critical point. Even with the
landscape sizes used here, since the critical range in both assortative mating (~0.40) and
asexual fission (~0.34) is relatively close to the competition limit (0.25), this effect is not

detectable from the simulations. The smaller landscape size (or much larger mutabilities)
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induces a greater amount of killing from absorbing boundaries as compared with larger
landscapes (or smaller mutabilities). A measure of the proportion of deaths due to
competition, random, and absorbing boundaries shows that the vast majority of deaths
come from competition and random death over a large range of u, well above both the
critical point and the peak in <Clusters>. The lack of system size effects may be due to
the correlation length being much less than the dimensions of the phenotype space; this
was shown to be the case for critical parameters in both Privman (1990) and Toral and
Tessone (2007). At very large values of u, much greater than u,, system size effects
become apparent due to a greater portion of deaths from absorbing boundaries.

Spatial asymmetry between birth and death processes was shown to be the
primary requirement for clustering in the “Brownian bugs” model of Young et al. (2001).
Fuentes, Kuperman, and Kenkre (2003) also found that some nonlocal competition is a
prerequisite for pattern formation. Through various forms of an “influence function”,
nonlocal competition was controlled for some key parameters such as the linear system
size and width of the influence function. Figure 4 in their work suggests phase transition
behavior in the ratio of the influence function width to the linear system size (Fuentes et
al. 2003). The importance of spatial asymmetry was confirmed to be necessary as
demonstrated by the loss of clustering in the random mating variant of the neutral model
described in this chapter. Selecting mates arbitrarily in phenotype space causes a loss in
local birth, and causes birth regions to cover larger areas of the phenotype space,
matching the scale of the random death process.

The relative values of u, the competition radius, the linear system size, and the
amount of random death likely define the critical behavior of the neutral model. If the
competition radius goes to zero, the critical mutability will likely go to zero as well,
becoming highly dependent on the amount of random death and potentially losing the
phase transition entirely. A similar case occurred in Fuentes et al. (2003) where all
population structure was lost in the extreme local limit.

Steep increases in the order parameters, such as <Population> and <Clusters> are
not atypical for this system, since they were observed on rugged fitness landscapes for
similar intermediate values of u (Dees & Bahar 2010). The neutral model shows that the

NN index R also experiences a steep increase on the interval between u. and p,,. The
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control case of random mating on the neutral landscape is in stark contrast, showing a
much more gradual increase in <Population> over a much greater range of x. A sharp
increase in the population size, separating the extinction-survival transition across u.,
along with large error bars near the critical point, and divergence of the system lifetime,
are indicative of a continuous non-equilibrium phase transition. Finite-size effects were
not detected in the critical value of u, as discussed above, but increasing steepness in the
transition was observed with increasing landscape sizes. This effect is typical for a
directed percolation phase transition (Solé 2011).

Although phase transition-like behavior has been observed in other evolutionary
models (Luz-Burgoa, Moss de Oliveira, Schwammle, Sa Martins 2006), to the author’s
knowledge, no other study has shown a transition due to varying a mutation-related
parameter. Continuous phase transitions are accompanied by scale-free behavior at and
near the critical point, and this behavior can be detected in the log-log plots of cluster-
size distributions on the critical mutability range. Power-law behavior in the tails of the
distributions can be detected from the linearity of log-log plots, indicating no
characteristic scale of the cluster sizes. Observing a concavity change from “down” to
“up” in Figure 2.11 with steadily increasing u near u. indicates a power-law in the
distributions. This suggests that the phase transition is continuous, and since the critical
point separates subcritical populations going to the absorbing state of extinction from
supercritical populations going to a fluctuating active state, the transition is also clearly a
non-equilibrium one.

By characterizing the filling of the space, the NN index R measures the quality of
clustering in populations for different values of u. For R < 1, the phenotype space is less
well filled, with populations being more often clumped together. As R increases and
becomes greater than one, populations become more uniformly distributed and clusters
are less well-defined. The existing clusters for R > 1 correspond biologically to less
well-defined species. Given sufficient knowledge of genetic lineages, species could still
be defined, and the clustering algorithm can still be used to determine clusters. The peak
observed for <Clusters> corresponds to the same range of u for which populations are
associated with R~1. This effectively means that R transitions from clumpy populations

for u < p, to uniformly distributed populations for u > p,,. The decline of <Clusters>
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is then tied to the more space-filling populations. Populations with . < p < u, were
more aggregated and exhibited relatively similar R values across the landscape sizes, but,
for u < u., R splits among the landscape sizes. This behavior is likely due to smaller
population sizes, since the simulations tended to extinction for u < u.. This effect can be
explained by the increase in linear system size which is incorporated into the R measure
via an inverse relationship for square landscapes (Eq. 3).

The neutral models described here could certainly be extended to include higher
phenotype dimensionality. Indeed, in some paleobiological works such as Foote (1990)
and Abe and Libermann (2012), nearest-neighbor methods are used to discern species of
trilobites according to more than ten morphological traits. From renormalization group
methods, it is known that the dimensionality of a space determines critical behavior,
where above a certain upper critical dimension (depending on the universality class of the
phase transition), the phase transition behavior conforms to mean-field theoretical
predictions (Hinrichsen 2000). The dimensionality is suggested to affect phenotype
clustering in Lawson and Jensen (2008), so the relationship between biodiversity and

higher dimensional models is a recommended course of future study.
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3. CHARACTERISATION OF A PHASE TRANSITION

3.1. INTRODUCTION

A given phase transition is characterized by universal dynamics which describe
the system’s behavior; the exponents which describe the system’s scaling in the
neighborhood of the phase transition define its universality class (Henkel, Hinrichsen,
Libeck 2009). At the critical point, the correlation length of the system diverges, and the
critical behavior of the system can then be analyzed through renormalization group
methods (Fisher 1998; Tauber, Howard, & Vollmayr-Lee 2005; Lesne 1998). In non-
equilibrium phase transitions, a system undergoes an irreversible transition from an active
fluctuating state into an absorbing state from which it cannot escape (Henkel et al. 2009,
Hinrichsen 2000, Odor 2004). Universality classes can be described by reaction-diffusion
models of unary and binary particle processes describing birth, death, and particle
interactions such as coalescence and annihilation (Odor 2004; Hinrichsen 2003; T&uber et
al. 2005). There are many different universality classes of non-equilibrium phase
transitions such as pair contact processes with and without diffusion (PCP and PCPD),
parity-conserving (PC), conserved threshold transfer process (CTTP), and perhaps the
most important class, directed percolation (DP) (Henkel et al. 2009; Odor 2004,
Hinrichsen 2000). For DP, the processes involved are birth (for example, A>2A), death
(A—>0), and coalescence (for example, 2A->A) (Tauber et al. 2005). The spatial and
temporal dimensions in which these processes take place (discrete or continuous) do not
significantly affect the critical dynamics, since DP models have been shown to occur with
discrete time steps on lattices with varied geometries and off-lattice in a continuum or
even on a lattice with continuous time (Oborny, Meszéna, Szab6 2005; Grimmett 2008).
The dimensionality of the spatial component determines different universal behaviors for
a universality class up to an upper critical dimension, above which the universal
behaviors coincide with the mean field description (Henkel et al. 2009, Hinrichsen 2000,
Odor 2004). The upper critical dimension of DP is four (Hinrichsen 2000; Odor 2004;
Henkel et al. 2009).

In the context of biological evolution, DP models have included cellular automata

such as the Domany-Kinzel (DK) model and the contact process (CP); however, these



25

models are usually modified by additional biological detail so that the universal behavior
is modified (Laventrovich, Korolev, Nelson 2013; Lipowski, Ferreira, Wendykier 2012;
Kuhr, Leisner, Frey 2011; Oborny et al. 2005; Lipowski & Lopata 1999). Generally,
mathematical models of biological processes are defined in physical space and/or genetic
space and are commonly restricted to constant population sizes (Derrida & Peliti 1991;
Brunet & Derrida 2009; Tran, Hofrichter, Jost 2013; de Aguiar et al. 2009). More
uncommon are models occurring in phenotype space (Lawson & Jensen 2008). In this
work, the asexual fission model on a neutral landscape is investigated; this model
resembles a spatial-branching process with coalescence in phenotype space, where the
particle (organism) dynamics are birth (A->2A), random death (A->0), and coalescence
(2A—>A). In the previous section, it was shown that the model transitioned from an active
surviving state to an absorbing state of extinction as the maximum phenotype mutation
size was varied (Scott et al. 2013). The observed system behavior was suggestive of the
DP universality class. Here, it is demonstrated, by measuring the critical exponents and
universal functions, that the model does indeed belong to the DP universality class.
Biological implications regarding experimental comparisons of this model to
paleobiological morphology studies and disorder problems that abiogenesis theories are

discussed in Section 3.6.

3.2. CRITICAL EXPONENTS AND UNIVERSAL FUNCTIONS

Universality classes of non-equilibrium phase transitions are in general defined by
four fundamental exponents. Barring any special symmetries (two of the exponents are
identical in DP), the four exponents are independent, and each characterizes the scaling
behavior, in the neighborhood of the phase transition, of an order parameter which
depends on the distance between the control parameter and the critical point. The control
parameter of interest here is the mutability, u. Let A be the off-critical measure, the

absolute difference in mutability from the critical point

A= |u— pel. (4)
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Order parameters such as the population density (steady-state) are known to depend upon
the off-critical measure (A), time (t), and in the case of finite systems, the linear
landscape size (L). Near the critical point, these dependencies are given by a homogenous
function of the population density (can factor out a scaling constant raised to some
power), known as a finite-size universal scaling equation (Laventrovich, Korolev, &
Nelson 2013; Henkel et al. 2009)

p(At,L) = b= Pp(th™1,Ab, L7b™1). (5)

The parameter b is a dimensionless scale factor to be chosen, and the function g is the

universal scaling function. Choosing b = t'/Vi gives

s Uy ¥
p(At L) =t ™Mp (1,At / "'T)' (6)

The first dependency of g indicates that the density decays as a power law. The second
dependency gives the off-critical scaling behavior, and the third gives the finite-size

scaling behavior. From Eq. 6, it is known that the basic set of critical exponents (other
exponents can be derived from them) can also be found from scaling relationships with

the control parameter A (Hinrichsen 2000).

p o AP (7
& o AT (8)
§L ATV 9)
P o AP (10)

where p is the population density (steady-state), &, is the correlation time, &, is the
correlation length, and P is the survival probability (Hinrichsen 2000).

Due to the time-reversal symmetry (growth from single seed simulations yield
survival probabilities which scale identically to density decays from critical-quench

simulations) of directed percolation, the population density scales exactly the same as
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survival probability, so g = B’ (Hinrichsen 2000). The above scaling measures assume
an infinite system size, so due to finite system size, simply using the scaling relations
above is expected to produce inaccurate exponents (Hinrichsen 2000). Investigation of
the exponents from the data-collapse technique of critical-quench simulations was used.

Data-collapse is a technique in which time-series generated from different
parameter values are fitted to some function through rescaling (from modifications of
Egs. 10 and 12). For example, Eg. 11 focuses on one of the dependencies in Eq. 6 which
shows how the population density depends upon time (t), and the off-critical measure
(4). By rescaling the time and off-critical measure with the same exponents, a and v, for
each time-series, the original data ““collapses” onto the same curve. Graphically, there are
two parts of the universal function described by Eq. 11, one for subcritical and the other
for supercritical data. Examples of the desired universal scaling functions for DP systems
can be found for CP simulations in Hinrichsen (2000), the radial DK model in
Laventrovich, Korolev, and Nelson (2013), a tumor growth model with highly unusual
DP dynamics in Lipowski, Ferreira, and Wendykier (2012), and in an experimental
system of liquid crystals in Takeuchi, Kuroda, Chaté, and Sano (2009).

Without altering the universal properties, the arguments to the universal scaling

function may be rescaled. Changing the off-critical argument of the universal scaling by

(At/M)™ = tAv gives
p~t=*p(eA™) (11)
with
a="L (12)

This allows for the determination of v, and, in turn, of g from the relationship with « as
given in Eq. 12. The v, above and below the critical point should be equal, and in turn, so
should S.
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The finite-size argument of the universal scaling function may also be changed by
the rescaling (L?/t)~%/% = t¥7 /14,

p~t=p (e /L) (13)

where d is the spatial dimension and

z=21 (14)

Vi

which relates v, and v, .

3.3. MODEL

Simulations were performed identical to the asexual fission case described in
Section 2. However, the three landscape sizes and initial populations are different. The
landscape sizes were 29x29, 37x37, and 45x45, and had initial population sizes of 12474,
20290, and 30000 organisms, respectively. The initial population sizes reflect the same
initial population density of organisms for each landscape, equivalent to filling
approximately 79.9% of sites on a hexagonal lattice within the landscape boundaries (see
corresponding Methods and Appendix A). The initial populations were seeded as before

across the space with a uniform random distribution.

3.4. METHODS

3.4.1. Critical-Quench Simulations. Critical-quench experiments on lattices are
experiments which start with every lattice site occupied in the active state and are used to
determine the critical point of a system by noting changes in the population density decay
behavior (population density is a linear rescaling of actual population size, so the
logarithmic decay is equivalent for both). Due to the continuous space in this model, the
maximum population capacity was taken to correspond to the greatest density of
organisms fitted into the landscape area where the minimum spacing between organisms
is the competition radius k. This means that organisms can be considered as hard circles

of radius « centered about the coordinate of each organism. The greatest density of circles
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(organisms) in a square landscape is the hexagonal lattice (Steinhaus 1999). From this the
maximum population was determined for a given phenotype space area (see Appendix
A). Due to computational constraints for the larger landscapes starting populations were
set at 79.9% of the maximum capacity, giving initial populations of 12474, 20290, and
30000 for landscape sizes 29x29, 37x37, and 45x45, respectively. Although not a “full”
initial condition, the starting populations are much greater than the average populations
observed to occur for the same mutabilities in Scott et al. (2013). The maximum time
allowed for each simulation was T = 10° generations. There were 100 simulations
performed at each value of u over the range 0.29 to 0.37, at 0.01 increments. The
simulations were run in MATLAB with the Parallel Processing Toolbox on PCs running
Windows 7 as well as the UMSL Bortas 24-node Oracle server with MATLAB and the
Distributed Computing Server Toolbox.

3.4.2. Critical Point and Decay Rate. The decay from large starting populations
was observed for a range of mutabilities about the hypothesized critical point from
(u = 0.34) Scott et al. (2013). Simulations with u = 0.34 appeared to be well into the
surviving regime, whereas simulations with u = 0.32 were well into the extinction
regime. The simulated critical point, u.g, was determined as the mutability which
minimized the y? linear fit of double logarithmic plots of the population density vs. time
for the range of mutabilities described above. Only generations 10-1000 were used
because of the manifestation of noticeably different decay dynamics around 2000
generations. Finite-size effects incur a penalty on simulations in the supercritical range,
when system lifetimes should have diverged to infinity at the critical point in an infinite
landscape. A non-zero probability exists in this case that finite-size simulations can go to
the absorbing state in the supercritical regime (Henkel et al. 2009). This caused the
density decays to fall into the absorbing state for very long lifetimes, which seemed to
begin around 2000 generations in this case.

Noting that the exponent a changed with u and that the rate of change decreased
near p.,, cubic interpolation of a was performed with 0.0025 increments of u to
determine an estimated critical mutability and decay rate, .. and a,. The estimated
critical point, u.., was determined to occur at the u for which the change in interpolated

a, Was steepest (second derivative peak). An estimated .. and a, were determined for
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each of the three landscapes. In the following, subcritical refers to u < u. and
supercritical refers to u > u.. The values of a, and u., were used in the data-collapse
approach, described below, in order to determine v.

3.4.3. Data Collapse. Using the estimated critical values u., and a, on the time
range of 1-1000 generations, with a rearrangement of Eq. 11 the subcritical and

supercritical data-collapses according to the universal function

pt~f(tA™). (15)

The minimization of the goodness of fit (see below) of overlapping sections of the
rescaled time series determined separate subcritical and supercritical values of v for each
landscape. By the exponent relation in Eq. 12, the exponent £ was then obtained for both
subcritical and supercritical regimes.

To obtain v, the finite-size universal scaling function was plotted from a
rearrangement of Eq. 13 for generations 1-5000. The universal scaling function at each
landscape size was based on the average population density p for the supercritical
u = 0.33.

pto~f (/% /1Y) (16)

By using the same method of goodness of fit that was performed for v, the exponent z
was determined, which led to a determination of v, from Eg. 9. The value of a used for
the determination of z was averaged from the a, from each landscape size. Similarly, v,
was averaged over the six values corresponding to the sub- and supercritical values of

each landscape.



31

3.4.4. Goodness of Fit. To determine the exponents which produce the best data-
collapse, the goodness of fit measure outlined by Bhattacharjee and Seno (2001) was
used. However, instead of searching a two-dimensional exponent space, only values of v,
were scanned while  was held constant. The goodness of fit measures collectively, for
each overlapping pair of rescaled data, how well the data sets collapse onto each other,
according to the scaling functions in Egs. 15 and 16. The two measures for data-collapse,

P; and P,, are

1

1/q
Novera
B Zen B oy 6 — €, 01 L @)

]1/q

ne|

N overlap

1

Novera -
Py = [T B ey T 1y 6 = Ep (1 L1 (18)

Noverlap

The measures only consider overlapping regions of data points from the n curves,
indexed by j and p, so data is interpolated by the function &,. For example, P; is
calculated separately for subcritical and supercritical data sets, so n = 4 for subcritical,
and n = 5 for supercritical. There are three different landscape sizes, and so n = 3 for
calculating P,. The p" interpolation curve is over the shared scaled time span of the ;"
curve. There are No,eriqp interpolated points that are indexed by i. The value q is defined
as a positive integer which may be chosen arbitrarily, and is taken here as g = 1. A wide
range of values for v, and v, ranging from 0.25 to 3.00 in 0.001 increments were used to
scan for the minimum in the goodness of fit measures. This was done to ensure that other
potential universality classes and a mixture of different exponents could be ruled out (see
Lubeck 2004 for a list of other universality class exponents; Lipowski et al. 2012). The
minimum of P; was found separately for subcritical and supercritical, so n = 4 for the
four subcritical mutabilities and n = 5 for the five supercritical mutabilities. For P, the
value of n was 3, since that is the number of supercritical curves at u = 0.33 from each
of the landscapes simulated.

The estimated error bars for v, and v, were calculated from the width of the

goodness of fit measure about the minimum of the P; and P,curves (Eqgs. 17 and 18),

giving
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P1(vio£nvyo) ~1/2
Avy = vy [ZIn — Pf‘(’vlm)"" , (19)
_ P,(V1oEnVvio) -1/2
AVJ_ =MNVio [Zlnw . (20)

Here, n represents the desired size of the error bars to be measured and was taken to be

1% for the results below.

3.5. RESULTS

The amount of concavity change in the population density time series about the
critical point was visually seen to vary slightly between the landscapes 29x29 and 45x45.
However, the most linear population decay on the generation range and the lower and
upper bound range for the critical point described above (minimization of y? linear fit)
consistently occurred for u = 0.33 = . for each landscape (Figures 3.1, 3.2, and 3.3).
The corresponding a,’s were 0.4010+0.1377, 0.3389+0.1381, and 0.3403+0.1404 for
landscapes 29x29, 37x37, and 45x45, respectively (error bars were calculated from the
standard deviation of the population density data from the x? linear fit test found in
Garcia 2000). By interpolating « vs. u, the steepest change in @ marked the estimated
critical point, and was the same for each landscape at u., = 0.3275. The corresponding
values of a, are summarized in Table 3.1 and the best-fit lines from a, are shown in
Figures 3.1, 3.2, and 3.3. From the minimization of the Bhattacharjee and Seno (2001)
goodness of fit measure, P, from Eq. 17, v, was determined for each landscape size
separately below (v, ™) and above (v;*) tce, Using a,. These values are summarized in
Table 3.1 and the corresponding best-fit off-critical data-collapse plots are given in
Figures 3.4, 3.5, and 3.6. Using Eq. 12 B was obtained below (8~) and above (B%) the
transition along with its estimated error bars as propagated from «, and each
corresponding v. These results are listed in Table 3.1. The average of the six values for
vy (subcritical and supercritical for each landscape) and the resulting calculation for g are
found in Table 3.2.
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Figure 3.1. Critical-Quench Average Populations — 29x29 Landscape. The estimated line
(solid black) has a slope of a, = 0.47.
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Figure 3.2. Critical-Quench Average Population — 37x37 Landscape. The estimated line
(solid black) has a slope of a, =0.42.
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Figure 3.3. Critical-Quench Average Populations — 45x45 Landscape. The estimated line
(solid black) has a slope of a, = 0.42.

Table 3.1. Estimated and Best-fit Critical Exponents — Critical-Quench.
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Figure 3.4. Off-Critical Data-Collapse — 29x29 Landscape. The data is plotted according
to the function of Eq. 15. Subcritical values in the bottom universal curve were for
u < 0.32, and supercritical values in the top curve were for u > 0.34.
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Figure 3.5. Off-Critical Data-Collapse — 37x37 Landscape. The data is plotted according
to the function of Eq. 15. Subcritical values in the bottom universal curve were for
u < 0.32, and supercritical values in the top curve were for u > 0.34.
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Figure 3.6. Off-Critical Data-Collapse — 45x45 Landscape. The data is plotted according

to the function of Eq. 15. Subcritical values in the bottom universal curve were for

u < 0.32, and supercritical values in the top curve were for u > 0.34.

The z exponent for the universal function of finite-size data-collapse was

determined from the minimization of the goodness of fit measure, P, from Eq. 18. This

was done for curves from each landscape size at a supercritical value of 4 = 0.33, and

using {a.) and (v;) for the a and v, values in Eq. 18. The value of z was determined, and

the resulting value for v, was calculated from Eq. 14. These results are summarized in

Table 3.2. Figure 3.7 shows the corresponding finite-size universal scaling function.

Table 3.2. Average and Best-Fit Critical Exponents — Finite-Size.

(ae) (vy) (B) UL z
Calculated | 0.44(14) | 1.301%3:952 | 0.56819233 | 0.799+3193 | 1.631318
Theoretical |  0.454(1) 1.295(6) 0.584(4) 0.734(4) | 1.76(3)
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Figure 3.7. Finite-Size Data-Collapse — u = 0.33. The data is plotted according to the
function of Eq. 16.

3.6. DISCUSSION

The results above clearly indicate that the non-equilibrium phase transition in this
continuous space, spatial branching process model of phenotype evolution belongs to the
directed percolation universality class. This system is a special case of evolution where
there is no variation in the fitness landscape, reproduction is asexual, and organisms exist
in sympatry where they are ensured local interactions. Neutrality, asexual reproduction,
and sympatry should be tantamount to the universality classification because of the
reaction-diffusion system they invoke. For example, if organisms were able to reproduce
with some alternative scheme such as random mating, then it follows from the results of
Section 3 that the phase transition behavior is lost. In the case of assortative mating, the
particle process of reproduction changes to 2A—>2A, and its universality classification
should belong to PCPD (Park 2011). Téauber et al. (2005) state that directed percolation
can exist with either the annihilation (2A—>0) or coalescence processes. With the
exchangeability between annihilation and coalescence, if given some other neutral fitness
level with an odd number of offspring (for example, three), then the variation of this
system would contain the particle operation A->3A or A>(m+1)A, m = 2, and therefore

belong to the PC or BARWe universality class (branching-annihilating random walk with
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even offspring as denoted by m) (Tduber et al. 2005). Although similar phase transition
behavior was observed with rough fitness landscapes in Dees and Bahar (2010), the DP
transition is likely lost through the form of spatial disorder (discussed in more detail
below) (Dobramysl & T&uber 2008). Another aspect of the phenotype space is the
interaction with the boundaries. Should organisms be considered to develop new
phenotypes or absorb into the boundaries due to insufficient protein production as could
be considered here? If the phase transition behavior were driven by boundary activity,
then new dynamical features can arise (Henkel & Schiitz 1994; Frojdh, Howard, &
Lauritsen 2001; Barato, Bonachela, Fiore, Hinrichsen, Mufioz 2009).

The model described here model may be used as a null hypothesis, much like
other studies where the neutral fitness or genetic drift is a null hypothesis (Kimura 1983;
Dieckmann & Doebeli 1999). Applications may be in paleobiological systems where the
only data known from fossil records are morphology (Abe & Liebermann 2012; Foote
1990). The model could easily be scaled up to account for more phenotypes, which would
increase the dimensionality of the space. Universality classes are allowed different
accessible dimensions for the agents, but the exponents are known to converge on the
mean-field theoretical predictions when the dimension of the space reaches the upper-
critical dimension. Above the upper critical dimension, the exponents and universal
behavior conform to mean-field predictions. For DP, the upper-critical dimension is four,
and thus in the trilobite studies by Abe and Liebermann (2012), as well as in Foote
(1990), where twelve or more phenotypes are considered, the dimension of their spaces
would be well above the upper-critical dimension for DP and likely most other plausible
universality classes. However, other issues arise when working with available fossil data.
As noted by Abe and Liebermann (2012), the exact line of descent of any ancient species
is not known in general. In addition, some radiations lack temporal resolution to assign
parent-offspring species. These issues do not arise in this model and the species lineages
are considered in Section 4.

For both goodness of fit measures, the minimum wells were asymmetric and
therefore resulted in asymmetric error bars for both below and above the transition (Table
3.1). Even at 1% estimated error, the error bars on the exponents reported in the tables

above are somewhat large in comparison with those found in other DP studies. Especially
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in the reported (B), error bars are nearly half the average value. This is in part due to
error propagation from (e, ) and (v;) from which it was calculated (Eq. 12). All of the
exponents indicate that they are theoretical DP exponents within a 1% margin of error, as
measured from the goodness of fit.

The decision to cut off the generation ranges for the off-critical data-collapses at
1000 was due to the observation that for much later generations, population density
decays in some mutability curves showed unusual changes in the decay behavior. This
effect is likely the result of finite-size effects where the probability of survival is never
absolute even in the survival regime, unlike what is theorized in the thermodynamic limit
of a truly infinite space (Henkel et al. 2009). This causes the steady-states of supercritical
populations, which would otherwise stay surviving, to reach extinction. The relaxations
were accurately observed since the generation range used was greater than calculated
correlation times (on the order of 10*-10° generations) for each landscape. This can be
calculated with the measured average correlation time exponent as given in Eq. 3.3.
Likewise, from the power-law scaling of correlation length given v, in Eq. 3.4, the
curves for u = 0.33 allowed accurate observation.

Only recently DP was reliably observed in an experimental setting (Takeuchi,
Kuroda, Chaté, & Sano 2007 & 2009). The lessons from observing DP have been that
short generational time scales are needed in order to observe long-time system dynamics
and to have a reliable system free of noisy absorbing states. There are numerous potential
biological models, ranging from predator-prey models, to species coexistence models, to
calcium waves among cells which may belong to the DP universality class (Park 2011,
Reinhardt, Bohm, Drossel, & Hinrichsen 2006; Timofeeva & Coombes 2004). In a tumor
growth model, Lipowski et al. (2012) observed an unusual set of critical exponents
appearing as mean-field DP, even though universal scaling functions and some critical
exponents clearly exhibited non-mean-field DP, suggesting some biological systems can
unexpectedly challenge or enhance universality theories. Populations of organisms
undergoing reaction-diffusion processes could also be potential model systems from
which to observe DP. However, DP may be observable only in small-scale organisms
such as viruses, bacteria or yeast, since their reproductive cycle can be relatively short.
An absorbing state of biological populations, extinction, does not suffer from natural
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noisiness common to many other suggested DP systems which may suffer from quenched
disorder (there are no zombies). The reaction-diffusion processes of some organisms can
be modeled in physical space, genetic space, or phenotype space.

One must be careful to note any inhomogeneity in a model when considering its
universality class. The DP conjecture and Reggeon Field Theory, from which DP was
originally derived, require that a system must not contain spatial or temporal quenched
disorders. Spatially quenched disorder occurs in many systems such as catalytic reactions
or epidemics (Hinrichsen 2000). The absorbing state may be reached everywhere, but
localized regions may not be able to reach the absorbing state or are returned to the active
state in the presence of noise at the absorbing state. For example, in catalytic reactions
under appropriate conditions, such as the Ziff-Gulari-Barshad (ZGB) catalytic reaction
model of CO+O->CO, on a platinum surface, belongs to DP (Ehsasi, Matloch, Frank,
Block, Christmann, Rys, & Hirschwald 1989). However, experimental verification in
Ehsasi et al. (1989) did not reveal DP behavior. A variety of suggested reasons exist, such
as possible defects in the catalytic reactions (Zambelli, Wintterlin, Trost, & Ertl 1996;
Hinrichsen 2000). Similar issues in real systems make it difficult to observe DP, and
delayed its experimental verification (Takeuchi et al. 2007; Hinrichsen 2000). In a
biological system such as endangered species, this problem is unlikely to occur, since
extinct species cannot produce new species. Yet, if the system were the entirety of the
tree of life on earth, then such a system may not be subject to extinction. If the
environment after a global extinction could support the production of life through some
recipe of a “primordial soup, crépe, or pizza”, then extinction no longer describes a true
absorbing state (Bernal, Oparin, Mueller, Haldane, & Synge 1967; von Kiedrowski 1996;
Smith & Szathmary 1995; Ferreira & Fontanari 2002). The “recipes” are theories of
abiogenesis describing how the first self-replicating life forms came from naturally
occurring chemical processes on ancient earth. Dynamically, abiogenesis takes the form
of spatially quenched disorder, so the dynamics of life on earth as a whole cannot
possibly belong to DP. However, life would almost certainly take an alternative
evolutionary path like in the thought experiment of “replaying the tape” (Gould 1990).

Temporal disorder occurs for systems where the dynamics are not consistent

through time. Temporal disorder has been studied by Jensen (1996) where a 1D lattice
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was subjected to the usual DP reaction-diffusion process. However, as the probability that
a row of sites all propagate with certainty between two time steps was increased, the
critical exponents were observed to deviate from the DP case where this absolute survival
probability went to zero. The model presented in this work may incorporate this type of
disorder, because, while the random death is calculated in the same way at every time
step, the percentage of organisms subject to random death varies from one generation to
the next. However, this disorder does not appear to have a significant effect, since the
measured exponents show minimal deviation from the theoretical exponents. For
comparison, Jensen (1996) saw changes from known DP exponents by around 6-14%
when there was a 25% chance that no random death occurred in a time step. Percent
differences of the critical exponents reported here are on similar order of change.

If the population-dependent random death occurred before, rather than after, the
competitive death process, different population fluctuations could arise due to the non-
commutative nature of the death processes. In a variant of the neutral model, where the
amount of random death is not population dependent and with assortative mating, results
obtained are similar to those described above (having critical behavior and clustering)
and the order of death processes are commutable (King et al. in preparation). The results
of the critical exponents may also be closer to the theoretical DP values due to the
assurance that temporal disorder is no longer a murky issue as it is here. However, an
investigation of the critical exponents and scaling behavior of the related model is needed
to confirm the universality class. The related model is mathematically more tractable than
the one focused on here, and the governing partial differential equation closely resembles
a typical Langevin equation with the caveat that the coalescent coefficient varies as a
function of mutability. Despite the complexity of the model presented here with regard to
the random death process, the dynamics are within the realm of systems belonging to the
DP universality class. The variable stochasticity of random death may cause the critical
point to exist as a small interval which may therefore have uncorrelated critical behavior
of the usual quantities of interest when performing the universality determination. This is
perhaps an enlightening notion for renormalization group theory, since the model
presented appears to have a unique style of particle processes. Likely, the mathematical

intractability is to blame, but the mathematics can still be written out and future
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computational studies of related mathematically intractable systems may shed even more
light on the universal behavior.

A potential use of a phenotype evolution model belonging to DP is the possibility
to model genus or species decay/formation. In phenotype data, one might infer that
mutability of populations of some animals may not be great enough to sustain
populations in their environments. The phase transition indicators from the populations of
this model are robust with regard to variations of the fitness landscape, the noisy local
process of reproduction, and the implementation of random death (Dees & Bahar 2010;
Scott et al. 2013; King et al. in preparation). The expectations to observe supercritical
mutability in populations may be translated for a variety of situations involving different
phenotype space dimensions and scales. The phase transition behavior, having no
characteristic scale, could allow for investigation of multiple levels of taxonomy. It is to

the problem of multilevel selection that is the central theme of the next section.
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4. ORGANISM AND CLUSTER LINEAGE DYNAMICS

4.1. INTRODUCTION

In this section, some properties of organism and cluster lineages are investigated.
Relationships between parents and their offspring are naturally defined by temporal
bonds, and can be mapped onto problems such as DP. In DP, measurements on the
emerging infinite cluster (along the temporal direction) provide information on
correlation times. Scaling of the correlation time (Eq. 8) is determined by the off-critical
measure and the correlation time critical exponent (Hinrichsen 2000). The correlation
time exponent may also determine the scaling distribution of lineage lifetimes. Lineage
structures such as splitting events (offspring production) relate to fitness measures.
Although organisms are allowed no more than two offspring, clusters may produce many
more clusters. By measuring offspring cluster production, a measure of cluster fitness
will be analyzed as a precursor to the possibility of multilevel selection in the model.

4.1.1. Cluster Interactions. Temporal, or directed, clusters have been studied in
systems such as directed lattice animals (Bousquet-Mélou 1996; Marckert 2012; Bacher
2013), turbulent puffs and slugs (Sipos & Goldenfeld 2011), and in the context of
multifractal graph-like structures (Feder 1988; Norton & Tandy 1999; Moon 1992;
Berestycki 2003). A lattice animal is described in Stauffer and Aharony (1992) as a
cluster of lattice sites, which can take different forms for a given number of sites in the
cluster. For example, a cluster of three sites on a two-dimensional square lattice can take
the shape of two unique lattice animals, where one is a line of the sites, and the other is in
the shape of an elbow. A directed lattice animal (DLA) exists on an oriented lattice where
it has at least one root vertex from which connected sites along a path in the preferred
direction can be accessed from the root (Bousquet-Mélou 1996). The interaction between
directed clusters (lineages) must be specified, because differences in the interaction rules
produce different scaling properties. In the case of non-interacting DLA, the asymptotic
scaling of lifetimes followed a power-law according to the DLA area, or number of sites
in the DLA (Bousquet-Mélou 1996). Knezevi¢ and Vannimenus (2002) also observed
critical behavior of interacting DLA. In particular, they measured critical exponents of

the temporal and spatial asymptotic power laws of measured times between a root site
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and its connected sites and the spatial distances between connected sites. The interacting
DLA problem studied was framed as a bond percolation problem, and critical exponents
of the interacting DLAs were shown to fit expectations of bond percolation.

In another system with interacting clusters, cluster lifetimes were found to scale
superexponentially (Sipos & Goldenfeld 2011). They considered a fluid flowing through
a pipe, and studied the lifetimes of different turbulence formations as the viscosity
parameter, Reynolds number, was varied. Clusters of turbulence that did not span the
pipe geometry are called puffs, and turbulent clusters that spanned the pipe are called
slugs. Puffs could merge or split and the puff lifetime scaling depended upon the
Reynolds number.

It is argued here that directed lattice animals represent organism lineages best;
whereas turbulent puffs are more similar to cluster lineages. Individual lineages in the
asexual fission model are non-interacting in the sense that no two lineages may merge
(see Figure 4.1). This does not change the behaviors noted in previous sections, since the
organisms still undergo the same dynamical processes within the phenotype space.
Cluster lineages are more complex, since they can split and merge with other cluster

lineages (Figure 4.1b). These points are emphasized in greater detail below in Subsection

AN |

Figure 4.1. Examples of Organism and Cluster Lineages. (a) Organism lineages cannot
interact (merge) and each parent has at most two offspring. (b) Cluster lineages can
interact and each parent cluster can have many offspring clusters and each offspring

cluster can have many parent clusters. The downward arrow indicates the forward-in-time
direction. The boxes indicate examples of backward-in-time events: (blue box) multiple
coalescence, (orange box) simultaneous multiple coalescence, and (green box)
fragmentation (see Subsection 4.1.3).
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It was shown in the preceding sections that the asexual fission model undergoes a
DP phase transition as the mutability is increased to some critical value. From DP theory
the population density, correlation length, and correlation time are known to exhibit
scale-free behavior in the critical range of the control parameter consistent with DP.
Dynamical properties of clusters about a non-equilibrium phase transition are of interest
due to the scale-free behavior.

Biologically, this could model multiple levels (multilevel) of selection (Traulsen
& Nowak 2006; Okasha 2009; Damore & Gore 2012). There are two descriptive classes
of multilevel selection (MLS), and they describe the fitness of groups (species or clusters)
with respect to the organisms within it or the clusters it produces (Damuth & Heisler
1988). The MLS1 class describes the cluster fitness as being dependent upon the
collective fitness of its organisms, such as the average organism fitness. In contrast, the
MLS2 class describes the cluster fitness as the number of offspring clusters produced by
it. For the organisms, heritable traits, such as altruistic behavior, have been used to
increase the survivability of some groups (Hamilton 1964a & 1964b). Evolving
behavioral traits has been a contentious and intriguing topic among evolutionary
biologists, because it deviates from the notion of organism competition by introducing
organism evolutionary benefits from participation in a group (Okasha 2005). However, in
the neutral model here, there is no heritability characteristic that can be maintained by
clusters unlike the mutability held by the organisms. Instead, clusters of organisms are
limited to measures such as cluster-size (number of organisms), centroid (center of mass,
see below), or gyration radius. Even the cluster fitness depends upon the cluster-size and
gyration radius (see below). The scale-free dynamics of the model paired with the
concept of multilevel selection in evolutionary biology allows one to ask whether the
scale-free behavior arising from the phase transition translates into scale-free selection?
This is the primary motivation for this section.

4.1.2. Graphs. Lineages behave differently for organisms and clusters, so it is
useful and important to define lineages according to known mathematical structures.
Graph theory provides a mathematical description for such constructs.

Consider a set of nodes V, that may connected by a set of edges E. The collection

of the set of nodes and edges defines a graph G = (V, E). A simple graph is one in which
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no two nodes have multiple edges connecting them. The connections between nodes by
the edges allows one to traverse the graph, and can be thought of as starting at one vertex,
then jumping from vertex to vertex according to edge connections to a final vertex. Such
traversals are called walks. A path is a type of walk where no vertex or edge is used more
than once. A cycle is a walk whose starting vertex is also the final vertex, and an acyclic
graph is a type of graph that contains no cycles. Simple graphs with cycles are sometimes
referred to as pseudographs. Another specific type of graph that matches the structure of
organism lineages is called a tree. Trees are graphs which are acyclic simple graphs. If a
root of the tree is defined, then a tree whose edges lead away from the root is called a
rooted tree. Finally, a set of disjoint trees is called a forest (Diestel 2012).

The graphs of interest in lineages are rooted trees for organism lineages, and
rooted trees on which cycles are allowed for cluster lineages. If organisms are the node
set and parent-offspring relationships define the edge set, then an organism lineage is just
a rooted tree. Clusters interact in a more complicated manner; since they may merge and
split by “trading” offspring organisms or causing divided groupings among offspring
organisms (see Subsection 4.2.2).

4.1.3. Coalescent Theory. Coalescent theory provides a mathematical
construction for lineage merging and splitting events, more commonly referred to
coalescent-fragmentation processes (CFP) (see Berestycki 2009 for a review). The
mathematical language is left arbitrary with respect to different organizational levels.
That is, it could be applied for a single level such as for the genealogies of organisms or
for species phylogenies. The theory is related to physical models of fragmentation and
coalgulation such as the Smoluchowski equations and Marcus-Lushnikov process
(Aldous 1999; Bertoin 2006). Aldous (1999) and Bertoin (2006) provide some linkages
between more physical models and some more mathematical models of coalescent
theory. The terminology used throughout will follow this convention: forward-in-time
branching events describe splitting and colliding events describe merging; backward-in-
time branching events describe fragmentation and colliding events describe coalescence.

The theory has its roots in the Galton-Watson (GW) branching process which was
initially constructed to investigate the probabilities of extinctions of family surnames

passed along a patriarchal line (Watson & Galton 1875). Their work initialized the
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formulation of temporal measures on tree-like structures. About a century later, in a more
rigorous construction of lineage coalescence times, Kingman (1982) described binary
coalescence events occurring one at a time in haploid Wright-Fisher (WF) populations,
called Kingman’s n-coalescent, where n represents the number of randomly chosen
descendants for whom one finds their most recent common ancestor (MRCA). WF
models evolve in a different way than the BCRW populations of the present model such
that, in the latter, offspring randomly choose their parents.

Kingman’s coalescent was extended by Pitman (1999) to allow one instance of
multiple coalescing lineages in a single time step, the A-coalescent. Independently,
Schweinsberg (2000) and Mdéhle and Sagitov (2001) developed the theory to include
simultaneous A-coalescent events in a single time step, the Z-coalescent. Berestycki
(2004) studied the mathematical properties of E-coalescents with fragmentation under the
assumption that they were exchangeable in the case of coalescents and homogeneous in
the case of fragmentation. This means that none of the properties of the lineages would
influence the rates at which they undergo CFP. For example, if one assumes that the
lineages in question are of clusters, then the number of agents within each cluster or any
spatial extent that the cluster may cover will not affect the cluster lineage structure.
Several descriptions of CFP have arisen to place dependencies on spatial descriptions, but
the mathematical theory at present describes only spatial A-coalescents (Durrett & Limic
2002; Limic & Sturm 2006; Angel, Berestycki, & Limic 2009).

Upon an initial introduction to CFP, one might be quick to think that coalescence
and fragmentation are dual processes (that the reverse of one has the same behavior as the
other). However, it has been observed in some situations that duality is not a general
property to CFP, especially in the case of the stochastic coalescent (Bertoin &
Goldschmidt 2004; Aldous 1999). The stochastic coalescent was formulated upon cluster
masses driving the coalescence rates, rather than the number of lineages as for Kingman’s
coalescent (Aldous 1999). More recently, universal tree structures have been explored by
investigating the ratios of average times to MRCA with differing n for Kingman and
Bolthausen-Sznitman coalescents, a model for natural selection that is also a special case
of A-coalescents (Brunet, Derrida, & Simon 2008; Brunet & Derrida 2013). The ratios

also classify different universality classes of tree structures. Despite all of these



48

advancements, currently there is no mathematical description for spatial Z-coalescents
with fragmentation (N. Berestycki, personal communication).

4.1.4. Time to Most Recent Common Ancestor — First-Passage Time. A
common statistical measure regarding different CFP systems is the average time to
MRCA from among n starting descendants, (T;,). For stochastic processes, the mean first-
passage time (MFPT) problem asks how long, on average, a trajectory takes to reach
some intended target. For example, in the classic case of a drunkard walking down a
street (whose stumbling walk mimics Brownian motion), one could ask how long, after
leaving a bar it takes the inebriated person to get to the other side of the street. After
averaging over the departing, clumsy patrons, one could then determine a MFPT. This is
a type of MFPT problem, and an analytical solution is known for this type of diffusion
called standard Brownian motion (continuous space and time), also known as the Weiner
process, to reach a stationary spatial boundary in 1+1 dimensions (Lesne 1998).

A variety of systems have been considered regarding the type of target a walk
reaches including: moving barriers (Tuckwell & Wan 1983), a specific finite sized target
within the space (Bénichou & Voituriez 2014), and multiple finite-sized targets
(Chevalier, Bénichou, Meyer, & Voituriez 2011). The space in which an object can
maneuver is also important, but in certain cases, the distribution of FPT is known to
exhibit universal features regardless of spatial properties, such as discrete, continuous, or
fractal media (Condamin, Bénichou, Tejedor, Voituriez, & Klafter 2007; Bénichou,
Chevalier, Klafter, Meyer, & Voituriez 2010; Benichou & Voituriez 2014). Properties of
MFPT have traditionally been explored with infinite spatial area or volume, but recent
progress has been made for confined, finite volumes with reflecting boundaries
(Bénichou, Chevalier, Klafter, Meyer, & Voituriez 2010; Bénichou & Voituriez 2014).
The majority of the above systems involve random walkers without both branching and
coalescing dynamics. The temporal properties of BCRW systems has only recently begun
for systems involving BCRW by Dutta et al. (2013) that found coverage time measures
(visiting all vertices of a graph) for a variety of graph structures.

4.1.5. Summary. The primary focus of this section will be to determine how u
changes the CFP for both organism and cluster lineages as it drives the system through
the DP transition to the uniformly distributed populations. To do so the MFPT problem
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on lineages will be addressed. Specifically, organism lineages in the model appear to
represent a spatial Z-coalescent, whereas the cluster lineages appear to be structured as
spatial Z-coalescents with fragmentations (Figure 4.1). To the knowledge of the author,
the cluster lineages represent a unique problem not yet explored mathematically. The
CFP of lineages do not contain the exchangeability and homogeneous properties of
coalescents and fragmentations that have been previously studied, because the lineages
should be dependent upon how populations fill the space and clustering properties (which
can be measured by the NN index R).

The organism lineage lifetimes distribution will be determined for each value of
u, and power-law scaling is expected at criticality due to the temporal nature of the
infinite cluster in DP as well as from directed lattice animals. Fitness and spatial
measures on the cluster centroids are taken to provide a better sense of how clusters
might interact. The cluster centroid step-sizes will be measured as well as the NN index R
(Eqg. 3) for cluster centroids. In an attempt to measure universal tree behavior, ratios of
the average times to MRCA between n = 2, 3, and 4 will be measured as a function of pu.
These results will be discussed along with their evolutionary impact to multilevel

selection.

4.2. METHODS

Simulations of the neutral asexual fission model were run in the same manner as
in Section 2; however, lineage algorithms are introduced here. Data was collected from
nine runs at each value of u on a range encompassing the critical point, from 0.30 to 0.45
in increments of 0.01 units.

4.2.1. Organism Lineages — Genealogies. Parent-offspring relationships are
relatively simple to define. Organism lineages, or genealogies, in the model are rooted
binary trees. A parent will have at most two offspring according to the fitness landscape
described above. Neither the parent nor its offspring will become related to any other
organism from their respective populations (Figure 4.1). Even when two offspring from
different parents undergo a competition event (coalesce), their lineages do not merge.
Therefore, an organism only links to their parent from the previous generation and their

offspring (if any) in the next generation. Given an organism from some generation (such
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as the first generation, one of the first 300), its line of descent is extinguished when the
last of its descendants die. Additionally, extinction of a population occurs when all lines
of descent have gone to extinction.

Genealogy lifetimes, t, are measured from the original 300 organisms in the first
generation. Probability density distributions of t for different values of u are measured
from each of the initial populations from nine simulations, giving a sample size of 2700.

4.2.2. Cluster Lineages — Phylogenies. Cluster lines of descent, phylogenies, are
much more complicated than for the organisms. This is due in part by the merging-
splitting actions of clusters. Consider a cluster of organisms; each organism will produce
offspring according to a Markov branching process. Let the cluster be of minimum size
(three) and let those organisms in the cluster be labeled W, where i is 1, 2, or 3. Let their
offspring be labeled ;j, where j can be 1 or 2. Assuming all of the offspring survive,
suppose that three offspring, 11, W12, and w3, form a cluster separate from the others
(with w21, w22, and w33 in the second cluster). In the resulting offspring generation, two
clusters are formed from the splitting of the parent cluster. Depending on the number of
organisms in a cluster, the maximum number of offspring clusters, F, can be greater than
two, representing an expanded fitness limit on the cluster level. The maximum number of
offspring clusters a parent cluster can possibly produce depends upon the minimum

cluster size (three) and the parent cluster size, s

F(s) = floor(s/3). (18)

The floor function is a rounding calculation that rounds down to the nearest integer. This
means that the cluster fitness ranges from zero to F(s).

One could reason that if two clusters of the same size were spread out differently,
such that the gyration radius of one cluster was significantly different from the other, then
the cluster with a greater gyration radius will likely have more offspring organisms. More
offspring could survive because they would be less likely to die from competitive death.
Therefore, the gyration radius of clusters may also influence the number of offspring

clusters between clusters of the same size.
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Clusters also merge when offspring from separate parent clusters join into a single
cluster. This allows for an offspring cluster to have one or many parent clusters. This type
of interaction is absolutely not allowed at the organism level, since the coalescence of
organisms results from competitive death. The coalescence event is therefore of a
different flavor at the cluster level. There is no death of a cluster (removal) based on
phenotypic proximity.

The probability density distribution of cluster splits and mergers were calculated
for each value of u. Only clusters among the last half of surviving generations were used
to generate the distributions. Additionally, average cluster fitness of the same set of
clusters was calculated as a function of u.

4.2.3. Cluster Centroid Step-Sizes. Cluster centroids are calculated as the center

of mass of constituent unit mass organisms and their locations

1
Cy = - 2i=1Cx» (192)

N

Cy==-Y5_1cy. (19b)

N

Step-sizes, I', are then defined as the distance between each parent cluster centroid (Cp)

and each of its offspring cluster centroids (Cp):

r= \/ (Cox = Cox)” + (Cpy — Ciy)”. (20)

Probability density distributions of I" were created for values of u = 0.30, 0.33,
0.36, and 0.39. Only the clusters from the last half of surviving generations were used,
regardless of whether populations decayed to extinction. Average I" vs. u was also
calculated based on the same set of clusters.

4.2.4. Average Time to Most Recent Common Ancestor. Given some number
of randomly chosen clusters in the same generation, the average time to MRCA, of the
chosen cluster lineages can be calculated. This is a backward in time calculation, starting
from a later generation and following lineages back toward their first root ancestor. The

first root ancestor (MRCA) can be considered the point at which all lineages of the
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original selected clusters coalesce. Average times to MRCA were determined for four
different initial groups of clusters with n = 2, 3, and 4. Only the last three-quarters of
surviving generations that also contained at least twenty clusters were considered for
starting points. From among these, 1000 random generations were selected for sampling.

This was done for each n and for each value of u.

4.3. RESULTS
Genealogical lifetimes are shown as a normalized probability density distribution

in Figure 4.2. Near the simulated critical point 0.33, an asymptotic power-law tail was

observed with slope —1.282 + 0.072.
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Figure 4.2. Probability Density Distributions of Organism Genealogy Lifetimes.

Cluster splitting behavior as it depends upon u is visualized in Figure 4.3. The
splitting events count how many offspring clusters were produced for each cluster, so
Figure 4.3a also represents the cluster fitness distribution. Since clusters may not produce
any offspring clusters, a zero splitting event, all events were shifted by one so that the
double-logarithmic plot could show the probability of cluster death events. A power-law

tail was observed for values of u near the critical point. The average cluster fitness,
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number of offspring clusters produced by each cluster, (F) is plotted with respect to u in
Figure 4.3b.

Cluster centroid step-size statistics are shown in Figure 4.4. The probability
density distribution of the cluster centroid step-sizes is shown in Figure 4.4a. For all
values of u, the distributions were found to be bimodal. Average I" as a function of u is

linear in Figure 4.4b.
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Figure 4.3. Cluster Splitting Events. (a) Probability density distributions of cluster
splitting events are shown for p = 0.30, 0.33, 0.36, and 0.39. To produce the double-
logarithmic plot, one was added to the splitting events such that 1 represents the complete
death of a cluster, 2 represents a cluster producing one offspring cluster, etc. (b) Average
cluster splitting events (cluster fitness) is shown as a function of mutability.
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Figure 4.4. Cluster Centroid Step-Size. (a) Probability density distributions of cluster
centroid step-sizes. (b) Average cluster centroid step-size as a function of mutability.

Cluster centroid NN index R was calculated as a function of u (Figure 4.5). The
population of cluster centroids were found to be significantly aggregated only for u < .,
and were significantly distributed according to a uniform distribution for u > u.. At
criticality, u = u., the population of cluster centroids were found to be distributed
according to a purely random distribution. A peak was observed about the same p,, as for
the sample average number of clusters in Figure 2.6.

The ratios of average times to MRCA of the phylogenies is presented in Figure
4.6. The (T5)/(T,) measure had a value of about 1.30 at criticality and decayed to roughly
1.1 at u = 0.45. The (T,)/(T,) ratio had a value of 1.45 at criticality and decayed to
approximately 1.1 at u = 0.45. The inset shows the standard deviation of each ratio;

however, both curves are very close, with maxima at 4 = 0.33.
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Figure 4.5. Sample Nearest-Neighbor Index — Cluster Centroids.
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Figure 4.6. Ratios of Average Times to Most Recent Common Ancestor — Phylogenies.

The dots indicate ratios calculated and the lines are added to aid the eye. The inset shows

the standard deviation of the ratios. Both standard deviations fell almost identically onto

each other, and they are of the same order of magnitude as the ratios. The peak standard
deviation occurs for u = 0.33.
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4.4. DISCUSSION

The above results indicate potential scale-free properties near the DP phase
transition. Lineage lifetimes of the organism lineages suggest possible power-law scaling
for the curve at u = 0.33. A best-fit on the tail from 10-100 generations showed the
power-law scaling exponent to be —1.282 + 0.072. This result may point to the v,
exponent dictating the organism lifetimes (see Table 3.2). It is well known that the
system lifetimes obeys this scaling at the critical point, and the correlation time exponent
relates to the cluster size of directed lattice animals (Henkel et al. 2009; Park & Park
2011; Bousquet-Mélou 1996).

The splitting events observed in Figure 4.3 may also suggest scale-free properties.
There does not seem to be a difference in the extinction probability regardless of .
Certainly, as u increases, the populations begin to survive and grow in size. The number
of clusters also increases, but one may think that cluster death, a zero splitting event,
could reduce with increasing u. The results are contradictory to this notion, however.

With the power-law tail at ¢ = 0.33, one could ask if this scale-free fitness
demonstrates scale-free selection? In short, no. The reason for this is two-fold. First, there
IS no selection bias, no differential fitness, on the organism level. Clustering of organisms
occurs, (Figure 2.10) but there is no selection for any particular traits in the phenotype
space. Secondly, the clustering of clusters is on the order of the system size. The most
basic unit in the system is an organism, so only two levels of evolving populations can be
sufficiently addressed. Given genetic information driving the locations in phenotype
space, as well as expanding the size of the space through dimensions or total volume
could allow more levels of biological organization to be studied. Selection could then be
investigated at the level of digital nucleotides, genotypes, organisms described by
phenotypes, clusters (species), and super-clusters (genera). However, this endeavor
would likely require much greater computing resources than those employed here.

Instead, a more appropriate question to ask is whether multilevel selection is
present. In this case, maybe, multilevel selection of the MLS2 variety is indicated through
clusters producing offspring clusters. This is absolutely the case here. What is
questionable is which clusters are surviving. This cannot be answered with the current

data presented. However, it may be inferred that there must be some survival of clusters
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which yield more clusters, since those that produce more have a greater chance of
survival. This is similar to the notion of Goodnight (2013), who suggested that organisms
which are able to “cast a broader net” to have their descendants in more clusters are able
to survive longer. The same could be said for the clustering in this model.

The average cluster fitness (Figure 4.3b) is quite reminiscent of Figure 2.5b and
2.6b, where average number of clusters was observed to rise steeply to a peak. For
u < U, (F)was nearest to zero, grew sharply about u = u, until reaching a peak near
1 = u, and then declined again. Perhaps, this is not too unsuspected, since an increase in
average fitness should lead to increased populations.

Figure 4.4 gives insights to the BCRW behavior of the clusters as they interact in
the space. The distributions in Figure 4.4a show a decline in the leftmost peak as u
increases. This is likely due to the appearance of larger clusters granting greater step-
sizes more often than the existence of smaller clusters interacting at shorter scales. This is
likely the cause of the probability compression on the short-scale end and expansion on
the longer-scale end. Bimodality in Figure 4.4a may be dependent upon three factors. At
small u, there are far less large clusters than what exists for larger u. The larger clusters
typically have greater spatial coverage (as could be measured by gyration radius), and
therefore can offer longer-range jumps for any nearby clusters or through splitting itself.
For large clusters, they tend not only to cover more space, but they are also more likely to
contain many more organisms. Therefore, the cluster-size distribution (Figure 2.11) gives
a cluster more chances to split apart. Indeed, this is supported by the increase in cluster
fitness distribution seen in Figure 4.3a. There is likely a build-up in the longer-scale
probabilities due to the finite-size of the landscape. Large clusters may not be able to
sufficiently jump in all directions with the absorbing boundaries. Smaller hops may be
lost at the edges of the landscape and contribute to a loss in shorter centroid hops. The
boundaries may in general reduce the support for mid-range jumps, but deeper
investigation is needed to confirm these predictions. The average step-size shows
remarkable linearity with increasing u (Figure 4.4b).

The spatial measures may be set into perspective with the NN index R on the
cluster centroids (Figure 4.5). For all active states of the system (u > u.), cluster

centroids are uniformly distributed. Only at criticality are cluster centroids in a purely
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random distribution. Comparing this to the NN index on the organisms, Even when
organisms were aggregated and surviving (recall p, < u < u,), their clusters appear to
be distributed uniformly. The DP behaviors then manifest when organisms cluster and
clusters are distributed purely randomly.

Ratios of the average times to MRCA are shown in Figure 4.6. The ratios
(T5)/(T,) and (T,)/(T,) had values near 1.3 and 1.45 near criticality, respectively. Both
decayed to just under 1.1 at u = 0.45. Interestingly, Kingman’s coalescent produces
ratios of (T5)/(T,) = 4/3 and (T,)/(T,) = 3/2 (Brunet, Derrida, & Simon 2008; Brunet
& Derrida 2013). Whether there is true significance to the comparison of the ratio results
is unclear. Cluster phylogenies structures are predicted to correspond to Z-coalescents
with fragmentation, but at the DP critical point, the coalescent rates which determine
average times to MRCA might still find correspondence with Kingman’s results. NO
other known ratios could be found that fall within a relatively small range about the
results. Furthermore, u is shown to drive the CFP measures, forcing smaller ratios when
the populations become uniformly distributed and forming large, indistinguishable
clusters (Figure 2.2). This is a similar result seen by Brunet and Derrida (2012), in which
a parameter tied to increased evolution rates continuously drove their system from having
ratios described by Kingman to ones by Bolthausen-Sznitman. In much the same way,
this effect is observed here. However, although the ratios appear to coincide with
Kingman’s at criticality, as p increases, the ratios drop much lower than seen in the
model by Brunet and Derrida (2012). This may suggest the influence of spatial
constraints on the CFP structure and rates which are avoided in the generalized A-
coalescent available in the model by Brunet and Derrida (2012).

The application of coalescents here is uncommon, since coalescents are generally
applied to problems arising in population genetics (Teh, Blundell, & Elliott 2011; Z&hle,
Cox, & Durrett 2005; Li & Durbin 2011). Having shown this system belongs to the DP
universality class, the upper critical dimension is four and greater than the dimension of
the phenotype space studied here. Below the upper critical dimension, following cluster
lineages in a phenotype space is suggested to be messy to the point that clusters are not
well-defined entities (Lawson & Jensen 2008), but data suggests that, near the DP critical

point, this system produces long lines of descent (Figures 4.2 and 4.6). This is despite the
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fragmentation process which allows multiple parent clusters for some offspring clusters
combined with the Z-coalescent events which corresponds to variability in cluster
fecundity. However, well into the supercritical DP range, when populations better fill the
phenotype space and organisms have greater branching mobility (due to greater u),
clusters can grow much more massive. This allows for giant clusters to accumulate
nearby clusters easier, and with the large noise in the system from organism coalescence
death and random death, allows a once massive cluster to fracture into smaller clusters or
join other nearby clusters. Greater space-filling populations experience greater amounts
of trading of organisms between neighboring clusters which is the action that leads to
greater mixing among cluster lineages. For populations with supercritical y, clusters do
indeed become less well-defined as suggested by Lawson and Jensen (2008) and
supported by Figure 2.10.

A long running debate between evolutionary biologists John Maynard Smith on
one hand, and Elliott Sober and E. O. Wilson on the other, regarding group selection was
addressed by Okasha (2006). It is generally well established that selection among
individuals occurs, and is demonstrated by Okasha as natural selection acting upon the
speed of antelopes. In the traditional view of group selection theory, one needs to show
that a property of the organisms is inherited due to the benefit of belonging to a particular
group. This would mean that a group of antelopes that run faster on average than a
separate, slower group should have the evolutionary advantage to avoid fast predators.
This, however, creates a hierarchical asymmetry in the process of natural selection at
different levels, since the average group speed comes from a property of the organisms,
not from the property of the group itself. The differences are subtle, but they can be
parsed into better organized classifications having different theoretical constructions.

Okasha (2009) refers to different levels of selection based on organisms and their
groups. When discussing the fitness of organisms in the models addressed in this work,
the neutral landscape dictates that all organisms produce two offspring. This is the MLS1
modeling discussed by Okasha (2009). Typically, in more physical models, cluster
masses are determined by the number of agents within them. Describing the coagulation-
fragmentation processes of such a cluster is then based upon models such as

Smoluchowski coagulation, Becker-Doring, or Marcus-Lushnikov models and their
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variants (Aldous 1999). However, these processes are a mix of organizational levels since
agent actions are built into the description of their cluster actions. Okasha (2009) refers to
a more precise description of cluster behaviors, MLS2. At the MLS2 level, clusters
become their own entities without regard to the agents from which they are composed.
One can then talk about branching behaviors and/or fitness of clusters. The difference
between MLS1 and MLS2 can be thought of as a sort of coarse-graining procedure like
that in renormalization group methods and macroscopic modeling in statistical physics.
Just as one does not need to know all of the microscopic details in order to know
temperature, one does not need to know all of the organism behaviors in order to know

the rate of cluster diffusion.
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5. FUTURE DIRECTIONS OF RESEARCH

The BCRW processes exhibited by this model may be useful to further understand
temporal behaviors in similar systems. In particular, advanced systems with a population
of agents existing in a finite space with absorbing boundaries that contains moving, size-
fluctuating targets are related to the cluster lineage dynamics. This is a stack of specifics,
but they point to the need for a more generalized model of BCRWs. Several types of
problems may be addressed by the cluster lineage dynamics. Applicable classes of
models could be of epidemic dynamics of a localized aggressive contagion, or the
genealogy of genetic mutations of migrating people. Additional insights could be gained
through alternative model narratives such as in Pie and Weitz (2005), where in another
2+1 dimensions phenotype space, agents modeled lineages of species instead of
organisms.

Physical models of CFP have been used to model processes on seemingly all
scales from polymerization of molecules to star and galaxy formations in the universe
(Aldous 1999). There has been increased interest in the past decade of lineage processes
regarding coalescents. Although the central measures in CFP are the rates of each event,
there does not seem to have been a study on CFP of clusters in a system exhibiting DP.
Equilibrium and non-equilibrium studies have been investigated in the context of cluster
formation and dissolution in the equilibrium case or coalescence overpowering
fragmentation to cause a snowball effect of particles into a giant cluster in the non-
equilibrium context (Aldous 1999).

Several studies on FPT problems have taken into account the initial starting
distances between an object and its target (Bénichou & Voituriez 2014; Condamin,
Bénichou, & Moreau 2007; Condamin et al. 2007). Future studies on this model could
look for potential relationships between the starting points between n-lineages to
determine if the initial configurations influence their coalescence time to a MRCA. The
centroid step-size measures shown here, along with a measure of cluster gyration radius,
could provide necessary insights for this problem.

Cluster measures and resulting interactions may be dependent upon the mass

density functions of each cluster. The typical use of a mass density distribution is used to
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describe the total mass, center of mass, moment of inertia, etc. In the case of clusters, the
cluster-sizes are the zeroth order measure, the cluster mass (assuming each organism
provides unit mass to the cluster mass). Cluster centroids represent the first order measure
of the mass density distribution. Second order and higher measures may also be
determined in the usual manner of mass density distributions. Further investigation is
needed to determine how much information of the branching-coalescing process of
clusters can be derived from cluster mass density distributions. However, the information
may be limited since the mass density distribution is a static measure, so knowing the
time evolution of such distributions, similar to how master equations describe time
evolving probability distributions, is likely needed.

Comparisons between this model and biological data should be top priority. There
have been studies on the fossil record where morphological traits are the best information
about how ancient organisms lived and evolved. Querying databases specializing in
phenotypes, such as PhenomicDB, or more generalized biological public data sets, such
as Dryad, may provide an initial step toward decent checks for the predictive power of
this model (Groth, Kalev, Kirov, Traikov, Leser, & Weiss 2010; Abe & Lieberman
2012). However, the model will likely need expansion in dimensionality of the phenotype
space to meet the level of detail used by biologists. This should also resolve issues with
low dimensional phenotype clustering that was addressed in Lawson and Jensen (2008).
Furthermore, comparisons of the universal tree structures as determined by the ratios of
average times to MRCA could provide the best comparisons.

Finally, it has been observed throughout this dissertation that populations of many
BCRW organisms in a phenotype space have exhibited clustering and phase transition
behavior dependent upon a noise amplitude measure of their maximum mutation size.
This occurs for both assortative mating and asexual fission because of an asymmetry
between birth and death processes. Random mating was shown to destroy both clustering
and phase transition behavior. Furthermore, in the case of asexually reproducing
organisms, the model was shown to belong to the DP universality class. The lineage
behavior of organism lineage lifetimes at criticality appeared to have a scale-free
distribution tail that scaled according to the correlation time exponent of DP. The wide

range of cluster fitness indicates the possibility for multilevel selection as does the



average fitness of the clusters. The universal coalescent time ratios of cluster lineages
appears to sweep from a Kingman’s n-coalescent to some other coalescent not yet
described by the mathematical literature. These features indicate that there are rich
dynamics that are yet to be explored.
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The maximum population size depends on the linear size of the landscape L and
the competition limit k. In the model, organisms are allowed to exist on the boundaries,
and are only absorbed if they travel beyond the bounds. In a plane, the maximum number
of sites on a hexagonal lattice (Steinhaus 1999). Along the one side of the landscape, the
organisms can be placed in a row with spacing «, and the maximum number of possible
organisms (sites) along this row is W. Assuming this for the horizontal or vertical side
does not matter, since the landscape is a square

W = floor (2) + 1. (A1)
The floor function rounds down to the nearest integer and one is added to account for the
site in the corner of two boundaries. The next row must be shifted by «/2 to fit the
hexagonal lattice. This gives a row width w

w=Ww—1. (A2)

The spacing between rows can be calculated by finding the height of a right triangle with

width /2 and hypotenuse k. The spacing is then

dy = k2. (A3)
The maximum number of rows is then
H=fbm(£)+1 (Ad)

The addition of unity on the right hand side of (A4) accounts for the row along the first

boundary. The maximum number of rows with width W
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M = Floor (%), (A5)
And the maximum number of rows with width w
m = ceil (g), (A5)

where the ceil function rounds up to the nearest integer. The number of sites from rows
with width W

Sw = WM, (A5)
and number of sites from rows with width w
Sw =W —1Dm. (A5)
Therefore, the maximum number of sites in a landscape is
Npax = floor(Sy, + S,.). (A5)

The maximum population sizes are listed, for each landscape used throughout this
dissertation, in Table A.1.

Landscape

21x21

29%x29

37x37

45x45

7IXT77

Nmax

8196

15611

25393

37544

109826

Table A.1. Maximum Populations for Each Landscape.
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El:d:l:pdm_:.'thn. = Thie posibility of spesinkbon driven
by groetic drift alone; mothe atseoes of melictive drive,
wan firsl ugmialied i U eoptert 6F Klmiod's nistral
ahzory [1-8] i hasrocently: reoiboetd firremsed wtlenlian
due to fhe- cortroversal work of H‘I.I:bl'.l‘rﬂ 4| om newrtral
Eheors Iny eealogy, Mamy a'pmumu.uls{ e [tuve Lot
underiaken in fweend veamy b mvestigeic both ko e
il bpats of Hubbell's nontral theory, aned ftn sppiicahilly
for the distribulion of sl sperim (s for oxample,
Ricklés (5], rather than the plant species which inttisily
inpplred It A& mrioty n‘f oo it fomal ﬂru:lﬁm Hiwen heen
prerformed i well, with an uve Lo underitantding the st
bie mechamismy undedving mutnil rlmrrmg, g wiech
Fe=mt wtdy wes st afde Agpabar el al, |15] which dbeme
stratiad clustering o s brbod peulbeal spabial/genisiype
bansbsmape. fo this model, argesisms reproducs] by eesar-
tatter minling (wtechiug miies wikh soilsr aikipe sl
spatial Ioénllon). The suthom sugiteted thut wesoriative
RS W nOESAry bt solhsifficent for spermiion (i
e the lormathon of repraioctively bolated chifsiters ol
orgunisi i the spatiel) genotype landschpe). Foarther
were, “spesthar spatial nor rentic remirtions slooe” wer
frpratial hs Tl b spteeialiom "ﬂl Thu moste] alsa |h..1nﬂl
speclin ibimdanoe ciacs comsiatint wilh Uk ]E‘Etlk:u.b]'ﬁ

(T innll: bakrrsbime ] atu

af Hubbel's: peuteal annde], snd wad hos inderpeed &
previding siyong sepport for iemtral theory [71

The dis Agber 'ef al mrisdel bianrs o strong spmilerify Lo
wowidlstardtad clasz of iluslering modnle derived from thi
mathematics of braoching and mpip?a':lng ramfom snlks
L 1000, Fhane ot ol vetipaled s population of sabafan

windkerswhich move through wepies, spaduce by, feston,

aned i [8]. Thay abesrvod chistoring over thme onoa
winitral Btiwss lamifsenpe. Derrils i) Peliti [ srbunad ek
s similar: problme, wsing & pEome aof Hnsry dizite simiter

to that indrodieed by Kaulfman [10].

Miver of ol [H | mvestigated o modifis] version of the
Fhany of ol moinl, otine that clistaring rggulimi from
n .wpq.ﬁ.n'.f asyiliy delvers firth amd death processes
e prgani=ms alwors sppest sear tlisic el orpas.
i, while death picks off ndividual mepandles of ther
lorablun o the thoprdiiesl spae. The impotene of
spulin] mEvmmetey Bolwost Girth and desth dytiambcs e
ako emptErssd by Yoot of al ]I-"'| At it rodnosd W
“Hrowohiem boes™ medil for e chmterng ol ssuslly-
tepeadiicing orgmnlsms In o ool indsesgee.

Wi eoeentiy investignied tho mlo of maxinum mutation
skrw m rh:l'l.‘tu; e ki t.mmluhd s cliitrriing v pheetiie
Lphe Wpmde] b ni ol -busad evol iibobiry mddel disbiisl
b0 cagrbun Hhe Sy Fonteres of Dhirsmiag netural seloction

—wurialility, computition, and herivabdity [18] o this
rvivebiel. s babe kS (s i mul bt =) derves b d
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conlrol paraeier; intrensed motabilite esn b considersd
utinlopoos b sddicg oois oo the sEtem, Samilatinis
assartative mating o wrioms types of pugged pheno-
typu hﬂhﬂpm wie alwrred the lormstion of repre-
ducifvely ua:im'.al siuslims, moalcgoE o spooms. As Lhe
mmtability wme incrousd, ]:l]:::EE—tru'ﬂillm Ak bebimior
was obeerveed {0 verious el wirhy ms et atbeds B
snad mamber af clusters: The fransition took [l s=tem
fromm l.n.tlmhhag sl.hlnd'ﬂtj:nrﬂm:l lﬁaﬂltlmfmhﬂ
with highly cofibipgent behading ovrurring for motakility
whlyes within the trensstion mmnge | 13]

Tex tlyer L papeT e kmmtrﬂr thnl. I.'Imu-n:u;m_l
plinin pennsttirms odeur m thiz model even on o neutrol
fitrvezs bnmdvoape, for both sssac st mniing and =T
Ve peprvsdiontion Ty Bssdon. (ﬂmllr!{n;fnih by oo anly
Fu1 L eonirsl diesn of mirely famlom mulbng, [mpertinily,
vl lareleape i the modelproventis] beve = smmply 5 spics
ol plinetypes: (U ciititadin te mprsentation ol physicnl
s il Lhils providis umodel Tor svmpat o spoot il o,

Mothods. -

Madel.  The mivdel consiEts of b pogalalics of orgas-
axm i A comkimeous fwe-slimenssoned phurlrrl]_pc space (o
srsoriboipier) whoss conrdinies roprmssint inedupiendent
‘wiblHwsy phemotvpes with Gntte, sbsrbie Boohdarieal
Tor onch geperniion, » populntien of oispring orgen-
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woenrding 1o ane of theve mproduction schomes s
bt ive matine. asezual poproduetion, or medom mifing:
Aftor mprurlm-tmn. bt punirsid pspata Loy wipst sbimnirisbid:
The pow popaletion Qe undefwent w ser= of doatli
progess= i arder o smudate mandem owortadify due to

enipisbithmn, prrd.l.lhm o ather erilwed The -un.rw'.r.ug
olfspring Uhen Bocimn the miw pirents for e following

In ur]: siiilagicty, the slimg schemw, the s of
‘he miorglicimen, Lhe minimumn distantg jllvbvd belgeen
orgrnisms | oompesition lmit), unel the mtihll{l;r v wwTn
bl comthnt, Mutaldiily =rien = the primary cheiml
paramivknein the vessilie bofoi it represents e s sinmm
poestbiln distance of np olfsprimg from ite pm'nntji-} nened
i clefirios the s sllowahle ot ion s bnofe
riorphiEpies

The fitnesa I-IIIPI-'CBT'H-Fn in wll the simulstions pirremtod
bkt B “flat™ LB = thad ety orpaeisEm, te;url[ms
of Tyeatjor, produces by s amber ol offspring, snd
#nch alfspring n Iuhjlpl‘_tu] tov Whsie s sl ol rRnsbyriiead
denlh procizss. ﬂ;‘.ruc}ﬂtnll}- it wwch e stucied Jime,
the imdividusl fitmess & jwo (oach orgamism produces
twis pffspriees, The coraditions thus oorresprnd o weutml
seliction.

"l'ﬂmﬂl.h:;!n bogan with wn imitial m;min.hnu nl iﬂ,l
orpanisrs isiifornily randunily dispereed tirovghout {be
l:nd.mup-t- nad wete oo forbp w2000 geherhbiink
(Pratiminrs pesulls snggent that different fitial populs-
ton s have sn effet only on the tramilsad bbmsior of
the wodel. but not on (he fondsmental chirsctorsto of

thid plinde Erarsitinnes described @t following =dlion. |
Rure were worminnted oarly 6 the populskion Yorsmn
Smttinet”™, dropping beliw threo argmisms: ( the minimim
newdesd [or bhie difimition of o dustor see below | Sime-

Intjom ween perfirmee] uming s original progoem et

i MATEAB (The MathWeorks), and num on POs wsing &

‘Windeus 7 apusrnting sl

Repraduciion slieies ..inmn.hﬂ.lvnu.l.lngwimpip

ametiled] by U selection Gf aksrst nezhbios Do

oarck gEneation, ok orpuninm pelevted s b e tha
m'gnﬂmuht.ttdnl-h]m:hunatdlnmfmmlhh&hhu

mrphospiute. A baae pea for ofBping prodociion wes

dotormined 1‘3?1'.!1:1 prwitions of thn mferemee arganism and
].I:lml.LTI.H' ntes A Chon meressed on ol ddes v the

mmtebifty g Two pfepring weoe generated o) uniformdy

distribmted Tandim onordinates srithim the didmod ATFH.

Mope explicitly. sn uﬁpmn;‘_'a vovrdinates (b b?' e
dwtermimsd e

b= b — o (A

b=t — ok (1M g = (g = ) gy [Th)
whora vz and ny are rondom mmmbers wmiformly distnb-
ubisd betwoim ' and |, Mo (M) the meassmnn of b

= {y| covedinnles of Uhe parsmt orgnmsmes, sod i (g}
bs thﬂndﬂimmdthax!ﬂ}ltmﬂm.m Lbfth#pnmh
Phuring wnrch penerstion, ench orparinm goneribed v
aff=pring with s =L oejphbar.

In bhe s=xual reprealietiog tuslel, the aes b which
new alfspring were gimeented wha defined only by the
premit s Joonticn, exteanidod on all=ides by pothre s sgaace
of size 2u x Yg, with the parpnt arganism o the center,
AN o S condilin”, wnothel sl of s ilabine ek
porformed idnmtically o the assoriativn making schemo,
bte with ergemisms mating with rmdomly sloted -
niE.

Competiion, rimdom desih, and Sotindary condifons.

bn ordie to simulate the denth of offspring dm o
resutiree mprtiting, nrvisble Rybitdzation, prodatioe
or olher vigase of e, organtiems were dimnuked disk
b 1) competitive eomimmmte: 30 rendase death; and
1Y biidmay condibions. Compmiition ilnth ocoarmed i
i orzandeme wee found eldest {hnn o spacing of 0.5
frin feom anch iber m 1be mmrphespeee; m ki s,

Epl= tme - p)ires (1)

| otie of the two wes renduimly chiosen for dimimilion. The

nterhet of g arsmn dlindnabed by radden dasth im oach
peneration s detormined by choosing w porcentage (rom
& umifrrmn maadon distribiion, &l s madimum of 705,
of il popiligisn. Flually, dfsprmg whidh were loand
buyund th bounds of Ly mopphospaoe wirn, of iuisabod.
Applicstion ol thess pemes) muthods wrre ptevatbed fn
e cedear dessritusd.

(lustering.  Followimy the eliminetion of srgan
i vy W competition; ewoeham death wnd boumdary
comnditiins, the remsiniig erpsnistis were ssigmd 1o
clustérs, whith we commider b analog of wpodid) &
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fillorin. A chmler Sueed™ wos determined: b o miirenee
urpunizm, e miale [peares) pleenolyple welrhbor], and
its womnd nearest,. phenotypic neighbor {(which muy e
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iﬂmtm anl il entisibions o s tted landsspe
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