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ABSTRACT

Images and videos can be naturally represented by graphs, with spatial graphs for images and

spatiotemporal graphs for videos. However, for different applications, there are usually differ-

ent formulations of the graphs, and algorithms for each formulation have different complexities.

Therefore, wisely formulating the problem to ensure an accurate and efficient solution is one of the

core issues in Computer Vision research. We explore three problems in this domain to demonstrate

how to formulate all of these problems in terms of spatiotemporal graphs and obtain good and

efficient solutions.

The first problem we explore is video object segmentation. The goal is to segment the primary

moving objects in the videos. This problem is important for many applications, such as content

based video retrieval, video summarization, activity understanding and targeted content replace-

ment. In our framework, we use object proposals, which are object-like regions obtained by low-

level visual cues. Each object proposal has an object-ness score associated with it, which indicates

how likely this object proposal corresponds to an object. The problem is formulated as a directed

acyclic graph, for which nodes represent the object proposals and edges represent the spatiotempo-

ral relationship between nodes. A dynamic programming solution is employed to select one object

proposal from each video frame, while ensuring their consistency throughout the video frames.

Gaussian mixture models (GMMs) are used for modeling the background and foreground, and

Markov Random Fields (MRFs) are employed to smooth the pixel-level segmentation.

In the above spatiotemporal graph formulation, we consider the object segmentation in only sin-

gle video. Next, we consider multiple videos and model the video co-segmentation problem as a

spatiotemporal graph. The goal here is to simultaneously segment the moving objects from multi-

ple videos and assign common objects the same labels. The problem is formulated as a regulated
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maximum clique problem using object proposals. The object proposals are tracked in adjacent

frames to generate a pool of candidate tracklets. Then an undirected graph is built with the nodes

corresponding to the tracklets from all the videos and edges representing the similarities between

the tracklets. A modified Bron-Kerbosch Algorithm is applied to the graph in order to select the

prominent objects contained in these videos, hence relate the segmentation of each object in dif-

ferent videos.

In online and surveillance videos, the most important object class is the human. In contrast to

generic video object segmentation and co-segmentation, specific knowledge about humans, which

is defined by a pose (i.e. human skeleton), can be employed to help the segmentation and tracking

of people in the videos. We formulate the problem of human pose estimation in videos using the

spatiotemporal graph. In this formulation, the nodes represent different body parts in the video

frames and edges represent the spatiotemporal relationship between body parts in adjacent frames.

The graph is carefully designed to ensure an exact and efficient solution. The overall objective for

the new formulation is to remove the simple cycles from the traditional graph-based formulations.

Dynamic programming is employed in different stages in the method to select the best tracklets

and human pose configurations
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CHAPTER 1: INTRODUCTION

Videos contain much more information compared to images, thus it is beneficial to use videos

in computer vision applications, such as object segmentation, human pose estimation, tracking,

and action recognition. Compared to still images, the most important benefit from videos is the

temporal information. It is crucial for object segmentation, pose estimation, etc. However, it is

difficult to use this information effectively, and there are two main reasons. First, it is natural to

formulate an image- or video-based problems into graph related problems; however, there can be

many different formulations for a specific problem, and how to formulate it without losing useful

information is important. Second, for video-based graph, there will be many more nodes and

edges, thus the complexity of the formulations would be much higher. Therefore, how to select

a proper formulation in order to get a computational efficient solution is also important. In this

dissertation, we focus on three important computer vision problems which can be formulated as

spatiotemporal graphs: video object segmentation, video object co-segmentation, and human pose

estimation in videos.

Video object segmentation aims to obtain a pixel-level segmentation for the foreground moving

object in a video. Object proposals, which are potential foreground regions, are commonly em-

ployed in this problem. There are two important points about the object proposals, we need to keep

in mind. First, we need to sample a lot of object proposals for each video frame in order to obtain

a high recall rate. Second, we want to keep the selected proposals consistent through all the video

frames. Spatiotemporal graph is a perfect solution for this problem, with the object proposals rep-

resented by nodes and spatiotemporal relationships between the object proposals represented by

edges. The problem can be solved efficiently by dynamic programming.

While video object segmentation can only handle a single video, video object co-segmentation is
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able to segment multiple videos simultaneously and label the same object class present in different

videos with the same label. We also propose a spatiotemporal graph formulation for this problem.

In this formulation, the nodes represent object proposal tracklets in the videos, and the edges

represent the consistencies between the tracklets within one video or across videos. The solution

is to extract multiple maximum cliques from the graph, where each clique corresponds to one

foreground object.

Human, as the most important object class in videos, is very difficult to be segmented from the

background due to the deformations of body parts. Therefore, the last problem we investigate is

human pose estimation in videos, which deals with the estimation of the joint locations of human

body in videos. This knowledge can potentially benefit the video object segmentation. We also

use spatiotemporal graph for this problem. The joints can be naturally represented by nodes, and

the spatiotemporal relationships between the body parts can be modeled by edges. A common

problem for this graph formulation is the computational complexity, due to the simple cycles in the

graph. Our major contribution is re-formulating the spatiotemporal graph to be a tree, in order to

reduce the computational complexity.

In the next Sections, we first introduce some general concepts which are important for this disser-

tation: spatiotemporal graphs, relational graphs and hypothesis graphs in Section 1.1. Then, we

introduce the three problems which we explore in this dissertation: video object segmentation in

Section 1.2, video object co-segmentation in Section 1.3, and human pose estimation in videos in

Section 1.4.
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(a) (b) 

Figure 1.1: Relational Graph vs. Hypothesis Graph. (a) shows the relational graph for a problem.
(b) shows the corresponding hypothesis graph. In this example, each entity has three hypotheses
and corresponding to the structure of (a), edges are added between the hypotheses which have
relationship.

1.1 Spatiotemporal Graphs, Relational Graphs, and Hypothesis Graphs

In the context of computer vision research for videos, spatiotemporal graphs are defined as the

graphs which are designed to model video-based problems, in which the nodes and edges encode

both spatial (pixels within a video frame) and temporal (pixels across video frames) information.

The fundamental theme of this dissertation is to explore the applications of spatiotemporal graphs

in video object segmentation, video object co-segmentation, and human pose estimation in videos.

In computer vision, and several other disciplines, many problems can be abstracted as follows.

Assume there is a set of entities E = {ei|Ni=1}, where each of them can stay in only one of the many
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states S = {sk|Mk=1}, with the unary scoring functions {Φ(ei, sk)|ei ∈ E , sk ∈ S}, which gives the

likelihood that an entity ei stays in state sk. And there is a binary compatibility function for each

pair of entities {Ψ(ei, ej, sk, sl)|ei, ej ∈ E , sk, sl ∈ S}, which represents the compatibility of entity

ei in state sk and entity ej in state sl. The goal is to decide the best states for each entity such that

these entities have high unary scores and are also compatible with each other. This problem can be

modeled as a graph optimization problem formulated by relational and hypothesis graphs, which

is described next.

A relational graph, Gr = (Vr, Er), represents the relationship of a set of entities which are rep-

resented by entity nodes {vir |
|Vr|
i=1}, and the relationships between pairs of entities are represented

by edges Er. Fig.1.1(a) shows a simple relational graph which has 4 entities and 3 edges to repre-

sent their relations. Corresponding to a relational graph Gr, a hypothesis graph, Gh = (Vh, Eh),

can be built. Fig.1.1(b) is the hypothesis graph for the relational graph in Fig.1.1(a). For an en-

tity node vir in Vr, a group of hypothesis nodes Vh(i) = {vkh(i) |
|Vh(i)|
k=1 } are generated to form the

hypothesis graph, so Vh =
|Vr|⋃
i=1

Vh(i). The hypothesis nodes represent the possible states of each

entity, and in this dissertation they represent possible locations of body parts. Hypothesis edges,

Eh = {(vkh(i), vlh(j))|vkh(i) ∈ Vh(i), v
l
h(j) ∈ Vh(j), (v

i
r, v

j
r) ∈ Er}, are built between each pair of

hypothesis nodes from different groups following the structure of Gr. An unary weight, Φ, can

be assigned to each hypothesis node, which measures the likelihood for the corresponding entity

to be in the state of this hypothesis node; and a binary weight, Ψ, can be assigned to each hy-

pothesis edge, which measures the compatibility of the pair of hypothesis nodes connected by the

edge. The methodology is to select one hypothesis node for each entity, in order to maximize the

combined unary and binary weights. This is a graph optimization problem and the general form

is NP-hard; however, if the relational graph is a tree (including the degenerated case of a single

branch), the problem is no longer NP-hard and efficient dynamic programming based polynomial

time solutions exist.
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For a tree-based relational graph, Gr, and the corresponding hypothesis graph, Gh, the objective

function for a set of arbitrary selected nodes (following the structure of Gr) s = {si||Vr|i=1, s
i ∈ Vh}

is:

M(s) =
∑
si∈Vh

Φ(si) + λ ·
∑

(si,sj)∈Eh

Ψ(si, sj), (1.1)

in which λ is the parameter for adjusting the binary and unary weights, and the goal is to maximize

M(s): s∗ = arg maxs(M(s)). Let the algorithm proceed from the leaf nodes to the root, and let

F(i, k) be the maximum achievable combined unary and binary weights of kth hypothesis for ith

entity. F(·, ·) satisfies the following recursive function:

F(i, k) = Φ(vkh(i))+∑
vjr∈kids(vir)

max
l

(
λ ·Ψ(vkh(i), v

l
h(j)) + F(j, l)

)
. (1.2)

Based on this recursive function, the problem can be solved efficiently by dynamic programming,

with a computation complexity ofO(|Vr| ·N), where N is the max number of hypotheses for each

node in Vr.

The concept of relational and hypothesis graphs can be applied to different problems. For example,

for the video object segmentation (Section 1.2), the relational graph encodes the structure of the

video frames, and the hypothesis graph encodes the object proposals. We aim to select one object

proposal from each video frame using these graphs. Another example is the human pose estima-

tions in videos, and in this problem, the relational graph encodes the human body structures in the

video frames, and the hypothesis graph encodes the human pose candidates. We aim to select one

human pose candidate from each video frame using these graphs.
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1.2 Video Object Segmentation

The goal for video object segmentation is to detect the primary moving object in the video and

to delineate it from the background in all frames. Video object segmentation is a well-researched

problem in computer vision and is a prerequisite for a variety of high-level vision applications,

including content based video retrieval, video summarization, activity understanding and targeted

content replacement. Fig.1.2 shows an illustration for this problem.

Figure 1.2: An Illustration for Video Object Segmentation.
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In the past, several methods have been proposed to tackle this problem, however, most of them are

supervised (e.g. [5, 82, 133]), which means that the methods use manual segmentation annotations

in the first frame and prorogate them to the following frames. A fully automatic method is highly

preferable and there are several methods (e.g. [60, 68, 134]) proposed recently to attack the prob-

lem in this way. A most successful technique to tackle this problem is to use the object proposals

[21]. Object proposals are regions in images which are likely to be the foreground objects. For

each video frame, there can be multiple object proposals, therefore how to select the correct object

proposals is the most important problem. Just picking the top object proposals will not work in

this case, since even though the object proposals are ranked, the rankings are very noisy and the

top proposals are usually not the proposals we want. Another method to handle this problem is to

use some clustering method to select the most relevant object proposals, however, in this case it

is very difficult to guarantee that exactly one proposal is selected from each frame. In this case,

graph-based method can be employed to solve this problem. The idea is to use nodes to represent

proposals in each frame and build a fully connected graph where the edges corresponding to the

similarities between the object proposals. The typical constraint for this graph is that only one

object proposal can be selected from each video frame, and the objective it to get a set of object

proposals which have the highest combined score.

Although the graph-based method mentioned above for video object segmentation is straightfor-

ward, it is not a good option in real world applications due to its high computational complexity.

The problem is NP-hard and the optimal solution cannot be obtained in a reasonable time if the

videos are long. Approximate solutions can be applied, however, a global optimum may not be

guaranteed and the performance would be sacrificed. Therefore, we propose a new graph formula-

tion to solve this problem. The intuition behind this formulation is that: introducing edges between

proposals from all different frames is reasonable but not necessary, and sometimes may be harmful

if the edge weights are not designed properly. For video object segmentation, the appearance of
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the object may change through the video frames, so connecting proposals from frames which are

far away would only help the performance marginally. Furthermore, if one really wants to handle

the appearance changes through the video frames, the edges which connect distant frames should

be penalized, this mechanism further increases the complexity of the algorithm.

We propose a new method [134], in which compared to fully connected graphs, the object pro-

posals are only locally connected. This method significantly makes the formulation simpler, and

more importantly, leads to an efficient and exact solution. In the proposed method, the object

proposals are represented by nodes, and an unary score is assigned to each object proposal which

is a combination of object-ness score and motion score. The binary edges are designed to con-

nect object proposals from neighboring frames (within 3 frames in our implementation), and their

weights correspond to the similarity of color histogram and a location adjacency measure. The

final graph is obtained by a directed acyclic graph, and the solution for this graph is a linear time

dynamic programming algorithm. We also propose pre- and post-processing to refine the results.

The pre-processing handles the incomplete object proposals. Quite often, there are no complete

object proposals in some frames, we use pre-processing to combine some of the incomplete ob-

ject proposals in order to have good object proposals in each frame. For post-processing, we use

a video-based Markov Random Field (MRF) to smooth out the object segmentation from all the

frames to get a pixel-level segmentation.

1.3 Video Object Co-Segmentation

In the previous Section, we consider the object segmentation problem in a single video. In this

Section, we investigate how to benefit the object segmentation by using multiple videos, which

inspires us to formulate a new problem: video object co-segmentation using spatiotemporal graph.
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Figure 1.3: An Illustration for Video Object Co-Segmentation.

The goal of video object co-segmentation is to discover and segment objects from multiple videos

in an un-supervised manner. Unsupervised segmentation of object classes from multiple videos

has applications in large scale video tagging and retrieval, generation of training sets for supervised

learning, and forensic video analysis. Fig.1.3 shows an example for video object co-segmentation.

Video co-segmentation is a natural extension of image co-segmentation (e.g. [93, 49, 71]), which

uses multiple input images to segment the common objects from them. In contrast, for video object

co-segmentation, the input is multiple videos which contain some common objects. The expected

results are the segmentations of every object, such that the same labels are assigned to the common

objects.

This becomes simple if each video only contains one object. Since the video object segmentation

methods can be applied to extract the object, and a post-processing step can be integrated to match

objects from different videos. However, if there are potentially multiple objects in each video, the

problem becomes more difficult and video object segmentation method may not work. One reason
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is that video object segmentation methods cannot segment multiple objects. Another reason is that

if multiple objects are adjacent to each other and have similar motion patterns, it is very likely for

video object segmentation method to segment them into a single object.

We formulate this problem as spatiotemporal graph and obtain the exact solution [135]. The graph

is built using tracklets of object proposals. Each object proposal in every video frame is tracked

backward and forward throughout the whole video. If some tracks drift, the tracks are split into

smaller tracklets to avoid the drift. Several top object proposal tracklets are selected from each

video based on the sum of the object-ness scores. A graph is built for the object proposal tracklets

from different videos, where each node represents one object proposal tracklet. Edges between

nodes represent the similarity between tracklets. Then the problem becomes to group the nodes

such that nodes in a group are similar to each other. The problem is a Maximum Weight Cliques

Problem, and we solve it by a modified version of Bron-Kerbosch Algorithm. The complexity of

the algorithm is O(3n/3) with an exact solution. Finally, a multi-label MRF model is applied to the

initial segmentation results and pixel-level segmentations are obtained.

1.4 Human Pose Estimation in Videos

The previous two Sections discussed the problem of object segmentation and co-segmentation in

videos. We found that the important class of objects in the online videos, or in surveillance camera

videos is human. In contrast to generic object segmentation, specific knowledge about the human

body (e.g. body poses) can be employed in video object segmentation, tracking, etc. This leads us

to use spatiotemporal graph in another interesting problem: human pose estimation in videos.
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Figure 1.4: An Illustration for Human Pose Estimation in Videos.
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The goal of human pose estimation in videos is to estimate the human poses from each video frame

and ensure the poses are consistent throughout the video frames. Fig.1.4 shows an illustration of

the problem of human pose estimation in videos. This is a very important problem for human-

computer interaction, video surveillance and tracking. An obvious approach is to apply the single

image based pose estimation method to each frame. However, in this dissertation, we demonstrate

that by using temporal information contained in a video, the performance can be improved. Due to

body part occlusions in the videos, the image based pose estimation methods (e.g. [130, 111, 18,

117]) normally cannot predict the body part locations accurately. The double counting problem is

also serious for image based pose estimations, in which the left and right body parts are detected at

the same location. These two problems can be potentially avoided once the temporal information in

videos is considered. For example, to deal with occlusion, the pose estimation results from adjacent

frames can be utilized to predict the body part locations once they are occluded. For the double

counting problem, if in most of the video frames the body parts can be detected correctly, these

“correct poses” can be used to avoid the double counting problem in other frames. Furthermore,

even though the human poses in video frames can be estimated within a reasonable error range,

the poses may not be consistent throughout the video frames. The human poses in the frames can

be made more consistent by using the temporal information.

An initial idea is to generate some hypothesis poses in each video frame, using the image-based

pose estimation methods, and select the best one from each frame such that the poses are consistent

throughout the video. A baseline method with this idea does not give very good results. Since there

are many body parts of the human body, there would be an exponential number of combinations

of human poses for these body parts, therefore it is very difficult to generate accurate pose hy-

potheses in each frame. Another idea is to generate body part hypotheses rather than human pose

hypotheses, then select the best body part locations considering the spatiotemporal relationships

between the body parts. This idea is perfect if the problem can be solved efficiently. However, it is
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computational prohibitive since there are a lot of simple cycles in the corresponding graphs using

this formulation. Therefore, how to simplify the graph without losing too much information is an

important issue.

We propose two key ideas [136] to tackle this issue, which reduces the original fully connected

graph model into a simplified tree-based graph model. The first idea is Abstraction: in contrast

to the standard tree-based representation of body parts, we introduce a new concept, abstract body

parts, to conceptually combine the symmetric body parts. In this way, we take the advantage of the

symmetric nature of the human body parts without inducing simple cycles into the formulation.

The second idea is Association, using which we generate optimal tracklets for each abstract body

part to ensure the temporal consistency. Since each abstract body part is processed separately, it

does not induce any temporal simple cycles into the graph. The proposed method can be solved

efficiently to get accurate pose estimation results in videos.

1.5 Dissertation Organization

This dissertation is organized as follow: In Chapter 2 we introduce the related works for object

segmentation and human pose estimation in videos; in Chapter 3 we introduce the proposed method

for video object segmentation and show improved results on publicly available datasets; in Chapter

4, we introduce our video object co-segmentation method and show improved results on MOViCS

dataset and Safari datasets; in Chapter 5, we introduce the proposed human pose estimation method

for videos and show results on three public available datasets; and we conclude and discuss future

works in Chapter 6.

13



CHAPTER 2: LITERATURE REVIEW

In the previous Chapter, we introduced the three computer vision problems: video object segmen-

tation, video object co-segmentation, and human pose estimation in videos, which we investigate

in this dissertation using spatiotemporal graphs. Before we start introducing each problem with

detailed solutions and experiments in different Chapters, in this Chapter, we give a review of the

related works in order to give the readers a big picture and some context for these topics.

We start with the introduction of a fundamental problem in computer vision: video segmentation.

In this problem, the goal is to segment the video sequences into different spatial temporal regions

which are perceptually consistent (in the context of appearance, motion, etc.). This problem is

a generalization of image segmentation to multiple frames in a video. We introduce the related

works for video segmentation in Section 2.1

There are many sub-problems of video segmentation, for example, video object segmentation,

video object co-segmentation, and motion segmentation, etc. Video object segmentation aims to

segment the single foreground moving object from the background in different frames in the video.

This is different from background difference, since in background difference each moving object

which is different from background is identified in the frames. However, in video object segmen-

tation, the correspondences of object regions in different video frames are also determined. Also,

in most background difference methods, it assume the camera capturing the video is stationary.

However, in video object segmentation, the camera does not need to be static. Video object seg-

mentation is a very hot topic in recent computer research and we introduce its related works in

Section 2.2.

Video object co-segmentation is also a new problem which has only been investigated recently.

Compared to video object segmentation, multiple videos are considered and the aim is to segment
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and assign the same label to the object appearing in multiple videos. In this formulation, infor-

mation from multiple videos is simultaneously used to segment multiple objects. Video object

segmentation methods can be applied to solve video object co-segmentation if and only if there is

one object in each video. We will introduce its related works in Section 2.3.

It is very difficult to get accurate segmentation of humans in videos due to their body part defor-

mations. However, human is one of the most important object classes in videos. We believe human

pose estimation can aid in solving human object segmentation. In pose estimation the aim is to

estimate the joint locations of the human body in video frames. This can be very useful for the

segmentation of human in videos. Pose estimation in a single image has been very active area of

research. However, research related to human pose estimation from videos has been just started in

recent years. We introduce its related works in Section 2.4.

2.1 Video Segmentation

In this dissertation, video segmentation refers to the segmentation of videos into different spa-

tiotemporal regions. It has been an active research topic in last a few years, and a large dataset [37]

is available to compare different video segmentation algorithms. The video segmentation methods

can be classified into three categories: graph-based segmentation, clustering segmentation, and

motion segmentation.

2.1.1 Graph-based Segmentation

Graph-based segmentation methods are commonly employed for video segmentation, which em-

ploy nodes to represent the super-pixels or super-voxels and edges to represent the similarities.
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Hierarchical graph-based method (e.g. [40, 105]) is the most intuitive methodology for video

segmentation. In [40], the method begins by over-segmenting a video into super-voxels using

appearance. A region graph over the obtained super-voxels is built, and these super-voxels are

iteratively grouped over multiple levels to create a tree of spatiotemporal segmentations. To extend

its application to dynamic video scene segmentation, another formulation of the hierarchical graph-

based method is proposed in [105]. Custom spatiotemporal filters with texture and motion cues

are used, and a novel metric-learning framework is employed to optimize the representation for

specific objects and scenes.

Bottom-up video segmentation methods (e.g. [61, 115, 13]) which do not have hierarchical for-

mulations are also proposed. Conditional Random Field model (CRF) is the traditional solution

for segmentation, and in [13], CRF is employed to handle disconnected spatiotemporal segments,

and to ensure consistent segmentation. The labeling decision is postponed until a high confidence

is gained from the region. CRF can also be applied on top of initial rough segmentation, for ex-

ample, a multiple hypothesis framework is proposed in [115], which begins by generating several

segmentations for each frame and enumerating many possible trajectories of regions within some

frames. Each trajectory is assigned a score, and these trajectories are used to get an initial seg-

mentation of the video. A MAP labeling of a higher-order random field is obtained to determine

the final segmentation. In contrast to CRF, holistic models can also be employed: for instance,

the concept of spatiotemporal closure is proposed in [61] for video segmentation, which treats the

spatiotemporal volume as a single entity, and extracts contiguous tubes whose overall surface is

supported by strong appearance and motion discontinuities.

Different methods (e.g. [126, 64, 63, 127, 36]) have been proposed to make the video segmenta-

tion algorithms computational efficient. A streaming hierarchical video segmentation framework

is proposed in [126], which is motivated by data streaming principal that each video frame is pro-

cessed only once and does not change the segmentation of previous frames. It aims to save the

16



computational resources and process the videos faster. Similarly, a Sub-Optimal Low-Rank De-

composition method is introduced in [64, 63] for the graph-based streaming video segmentation.

The representation coefficient matrix with the fixed rank is decomposed into two sub-matrices of

low rank, and then these matrices are iteratively optimized with closed-form solutions. To further

improve the efficiency of streaming video segmentation, a reduced graph formulation is intro-

duced in [36], which is re-weighted in a way such that the resulting segmentation is equivalent

to that of the full graph under certain assumptions. For online video segmentation, a framework

is introduced in [127], which consists of a probabilistic segment label propagation method and a

temporally consistent hierarchical label merging scheme.

Many features and feature fusion methods (e.g. [131, 34, 55]) have also been proposed to boost the

performance. A multi-cue fusion method is proposed in [131] within the Markov Random Field

model for unconstrained video segmentation, which combines contour cues, temporally smooth-

ness cues, and global structure cues from a video. A analysis of different within- and between-

frame affinities (including motion cues) is performed for video segmentation in [34]. A classifier

based graph construction method is proposed in [55] which combines features and calibrated clas-

sifier outputs as edge weights, and defines the graph topology by an edge selection scheme.

Graph-based methods can model the structure of the video sequence well, however, it is not a

“direct” method since it builds the graph first then optimize it. In contrast, clustering segmentation

method group the pixels directly and we will introduce these methods in the next Section.

2.1.2 Clustering Segmentation

Clustering methods, for example mean-shift [19, 77], spectral clustering [54], and Gaussian Mix-

ture Models [39], are also employed for video segmentation. They explore the problem in a differ-

ent perspective and are deeply rooted in the unsupervised learning methodology.
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Mean-shift [19, 77] is the most commonly used clustering method for video segmentation. A hier-

archical clustering method is adopted in [19] for video segmentation, which operates by repeatedly

applying mean shift analysis over increasingly large ranges, with the combined 7-dimension color-

motion features. Another mean-shift based video segmentation method is proposed in [77] with

bilateral filtering and anisotropic diffusion, which preserves the edges and enforces the smooth-

ness. For spectral clustering, must-link constraints are combined in [54] for video segmentation.

Guassian mixture models have been used in [39] to extract coherent space-time regions in feature

space (with color features), and then to get the corresponding coherent segments (video-regions) in

the videos. Different from traditional clustering methods, a co-clustering method is introduced in

[113] for semantic video segmentation. It is formalized as a Quadratic Semi-Assignment Problem

which has a linear programming relaxation that makes effective use of information from hierar-

chies. An iterative multi-resolution video segmentation algorithm is obtained within this frame-

work. For a special application, textured object segmentation in videos, feature fusion and global

convex continuous optimization are employed in [81].

Most of the graph-based segmentation and clustering segmentation methods take only appearance

information (pixel values) into account. However, motion cues can also be used for video segmen-

tation and we will introduce its related works in the next Section.

2.1.3 Motion Segmentation

Motion segmentation is another important techniques for video segmentation. Motion boundaries

and figure-ground segmentation (e.g. [57, 27, 104]) used to be the dominant techniques for motion

segmentation, however, point and region trajectory based methods (e.g. [7, 73, 62, 29, 53, 35])

have become more popular recently.

Motion boundaries and figure-ground segmentation (e.g. [57, 27, 104]) are traditional ways for
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foreground object segmentation. Low level cues (e.g. flows, occlusions) are used for motion

segmentation. A two-step motion segmentation method is proposed in [57], which consists of an

algorithm for obtaining the initial estimate of the model by dividing the scene into rigidly moving

components using efficient loopy belief propagation; and a second step to refine the initial estimate

using αβ-swap and α-expansion algorithms. Long-term occlusion relations are analyzed in [104]

and used within a convex optimization framework to segment the video frames. In comparison,

object-level cues can also be integrated for motion segmentation, for instance, a learning based

method is proposed for moving object segmentation in [27]. In this method, segment proposals are

obtained by multiple figure-ground segmentations on motion boundaries. A Moving Object-ness

Detector which was trained on image and motion fields is used to detect moving objects in the

video.

Recently, point and region trajectories (e.g. [7, 73, 62, 29, 53, 35]) have been employed more often

for motion segmentation. Long term point trajectories can be employed in many ways for motion

segmentation. A basic version [7] is to use the long term point trajectories of dense optical flow.

This method uses pair-wise distances between these trajectories for clustering. Temporally con-

sistent segmentations of moving objects are obtained in a video shot. One step further, in [62], a

new track clustering cost function that includes occlusion reasoning is proposed to cluster of point

tracks into coherent motions. Several methods have been proposed to embed the trajectories. A

variational method is proposed in [73] to get dense segmentations from sparse trajectory clusters.

A hierarchical, nonlinear diffusion process which take advantage of superpixels to propagate the

motion segmentation is used. A new trajectory embedding method is proposed in [29], which uses

a discretization process to recover from the over-segmentations by merging clusters according to

discontinuity evidence along the boundaries. A minimum cost multi-cut formulation is proposed

in [53] to segment the long-term trajectories, which not only assigns cluster labels, but also decides

the number of clusters while allowing for varying cluster sizes. Compared to point trajectories, a
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region trajectory based segmentation method is introduced in [35]: first, hierarchical image seg-

ments are obtained and a directed acyclic graph for these segments in video frames is built; then,

a dynamic programming-based optimisation is applied to get the region trajectories and measures

of confidence from the graph.

As a special problem in video segmentation, video object segmentation has gain its popularity in

recent years. We will introduce its related works in next Section.

2.2 Video Object Segmentation

Video object segmentation aims to detect the primary object in a video and to delineate it from the

background in all frames. Both supervised and fully automatic methods have been proposed.

2.2.1 Supervised Methods

Some of the supervised video object segmentation methods (e.g. [5, 82, 133]) need annotations of

object segments in key frames for initialization. Optimization techniques employing motion and

appearance constraints are then used to propagate the segments to all frames.

Other methods (e.g. [90, 112]) only require accurate object region annotation for the first frame,

then employ region tracking to segment the rest of frames into object and background regions.

A region-based particle filter method is proposed in [114], in which the particles are defined as

the regions in the current image partition. The prediction step uses co-clustering between the ob-

ject segmentation in the previous frame with the current frame, which allows to tackle the shape

changes of non-rigid objects. Patch seams are also used in [83] to tackle the problem, which are

connected paths of low energy in the video frames. With the patch seams, the proposed energy

20



function combines the similarity of patches, temporal consistency of motion and spatial coheren-

cy of seams. Segmentations are propagated with high fidelity in the critical boundary regions.

Tracking and segmentation are integrated together in [125] to get improved results for both. The

segmentation problem is treated as a pixel-level label assignment task with regularization accord-

ing to the part models, and the tracking problem is considered as estimating the part models based

on the segmentations, which in turn is used to refine the model.

2.2.2 Semi-Supervised Methods

Motion grouping (e.g. [97, 96, 7, 76, 38, 80, 11]), as an initial step, has been employed for auto-

matic video object segmentation for a long time. A fast object segmentation method is proposed in

[76], a rough estimate of which pixels are within the object region based on motion boundaries is

first obtained; then the result is refined by a spatiotemporal extension of GrabCut over all the video

frames. Similarly, in [38], motion segmentation is applied to get a coarse foreground segmenta-

tion, then the motion regions are refined by optimizing an energy function based on appearance

and perceptual organization. Another method [80] introduces VabCut, a video extension of Grab-

Cut, to tackle the unsupervised video foreground object segmentation task. It combines the RGB

frames with a motion layer. Dense trajectories from optical flow are employed in [11] for motion

segmentation. A new affinity measurement method incorporating both global and local informa-

tion of point trajectories is proposed to cluster trajectories into groups and a graph-based method

is applied to obtain the final segmentation.

Visual saliency is introduced to handle the video object segmentation problem in [123, 23, 128].

In [123] the saliency is considered as a prior for object via the computation of robust geodesic

measurement. Two discriminative visual features are employed to infer the object regions: spatial

edges and temporal motion boundaries. The video object segmentation problem is cast as a voting
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scheme [23] on the graph of similar regions in the video sequence. The method starts from simple

saliency votes at each pixel, and iteratively corrects the votes by consensus voting of re-occurring

regions across the video sequence. Furthermore, saliency fusion is employed in [128] to boost the

performance. The temporal coherent salient region throughout the whole video can be obtained as

the first step, then a discriminative model will be learnt to represent the appearance of the object

against the background. As an important component, a self-adaptive saliency map fusion method

is employed by learning the reliability of saliency maps from different cues.

Object detections are also used for video object segmentation (e.g. [121, 118, 137]). A graph

transduction method is introduced in [121, 118] for object segmentation. It learns object proposals

densely over space-time, with both appearance models learned from rudimentary detections of

sparse object-like regions. In contrast, object detection is employed in [137] for semantic video

object segmentation. The authors propose a video segmentation-by-detection framework. They

first apply object and region detectors pre-trained on images to generate a set of detection and

segmentation proposals; then track several objects and solve a joint binary optimization problem

with min-cost flow for segmentation.

Co-segmentation is also employed (e.g. [66, 67]) for video object segmentation. The co-segmentation

algorithm learns the model of the primary object by representing the frames/videos as a graphical

model. In order to handle longer videos in [67], the object segmentation should be performed with-

in video shots. In the valid video shots, a graph is constructed to model the video object detection

and the final segmentation is obtained within the detection boxes.

More recently, object proposal methods (e.g. [21, 9, 1]) are employed for video object segmenta-

tion in [60, 68, 104, 8, 134]. Lee et al. [60] proposed to detect the primary object by collecting a

pool of object proposals from the video, and applied spectral graph clustering to obtain multiple

binary inlier/outlier partitions. Each inlier cluster corresponds to a particular object’s regions. Both
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motion and appearance based cues are used to measure the ‘objectness’ of a proposal in the clus-

ter. Ma et al. [68] attempt to mitigate this issue by utilizing relationships between object proposals

in adjacent frames. The object region selection problem is modeled as a constrained Maximum

Weight Cliques problem in order to find the true object region from all the video frames simultane-

ously. However, this problem is NP-hard [68] and an approximate optimization technique is used

to obtain the solution. The probabilistic graphical model is built across a set of videos based on

an object proposal algorithm. Long-term occlusion cues are utilized in [104] to infer the moving

objects from the videos. A shorted path formulation in [8] is employed to select the video objects.

Compared to pre-trained image-based object proposal methods, there are some other variations

of object proposals which are designed for video object segmentation (e.g. [14, 74]). In [14],

foreground/backround object-like pool is obtained by using the pixel-level optical flow and binary

mask features. A super-pixel level conditional random field can be built to label the foreground

and background based on the fact that the appearance and motion features of the moving object are

temporally and spatially coherent. Compared to image based object proposals, the spatiotemporal

object proposals [74] are also used for video object segmentation.

In summary, video object segmentation has been investigated intensely, and object proposal based

methods (e.g. [60, 68]) have gain their popularity in recent years. However, these methods [60, 68]

still have some drawbacks which inspired our proposed method. In [60], a drawback is that the

clustering process ignores the order of the proposals in the video, and therefore, cannot model the

evolution of object’s shape and location with time. And the shortcoming of [68] is that its formu-

lation is NP-hard and an approximate optimization technique is used to obtain the solution. Both

of the two approaches [60, 68] have two additional limitations. First, in both approaches, object

proposal generation for a particular frame doesn’t directly depend on object proposals generated

for adjacent frames. Second, both approaches do not actually predict the shape of the object in

adjacent frames when computing region similarity, which degrades segmentation performance for
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fast moving objects. In this dissertation, we propose a directed acyclic graph based method which

overcomes the drawbacks of the state-of-the-art method and improves the performance. The details

of the proposed method and the experimental results are given in Chapter 3.

As a further step, compared to single object segmentation in videos, there are also some methods

proposed to simultaneously segment objects from multiple videos. We will introduce these related

works in next Section.

2.3 Video Object Co-Segmentation

Video object co-segmentation is a relatively new problem. Given multiple videos as input, the aim

is to segment the objects, and assign the common objects with same labels.

Bottom-up methods with super-pixels as their building blocks have been proposed in [16, 119,

122]. Chiu and Fritz [16] proposed multi-class video object co-segmentation and also provided a

publicly available dataset (MOViCS) with ground truth. In this work, a non-parametric Bayesian

model for co-segmentation is used, which is based on a video segmentation prior. Simultaneous

object discovery and segmentation is also proposed in [119], and this formulation uses a spa-

tiotemporal auto-context model, and combines with the appearance modeling for superpixel label-

ing. For object discovery, the superpixel-level labels are propagated to the frame level through

a multiple instance boosting algorithm with spatial reasoning. Multiple cues (intra-frame salien-

cy, inter-frame consistency, and across-video similarity) have been incorporated into an energy

optimization framework [122] for robust object co-segmentation.

Bottom-up methods with super-voxels have also been demonstrated effective for video object co-

segmentation in [10, 116]. The method in [10] attempts to segment the common region from a

pair of videos and model the problem as a common foreground and background separation. In
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this method, the video pair is represented by super-voxels and a motion-based video grouping

method is used to find common foreground regions. Gaussian mixture models are employed to

characterize the common object appearance. A Markov Random Field model with a Quadratic

Pseudo-Boolean Optimization is proposed in [116] for video object co-segmentation. A subspace

is used to segment the videos into consistent spatio-temporal regions with multiple classes, while

assigning the common foreground consistent labels. The motion features are designed to better

differentiate regions within each video, making accurate extraction of object boundaries.

Motion and saliency cues are used to guide video object co-segmentation in [41, 44, 65, 94]. Li

et al. has proposed a method in [65], which employs a multi-search strategy to extract each target

individually and an adaptive decision criterion is used to decide whether the segmented regions

are the correct targets. Object-ness and motion are also employed by Guo et al. [41, 44]. First, a

figure/ground segmentation method is employed to generate some seed foreground segmentations;

then, linkage constraints between the super-pixels are added based on whether they exhibit the

characteristics of common fate or not; and finally, an iterative constrained clustering algorithm is

employed to trim away the incorrect and accidental linkage relationships. The work by Rubio et al.

[94] aims at segmenting the same object (or objects belonging to the same class) moving in a sim-

ilar manner from two or more videos. The method starts with grouping the pixels in video frames

at two levels: the higher levels consists of space-time tubes and the lower level consists of within

frame region segments; an initial foreground and background labeling is generated to construct the

probabilistic distribution of the feature vectors of tubes and regions; and a probabilistic framework

is employed to get the final co-segmentation results.

Object proposals are also used in video object co-segmentation (e.g. [129, 30, 31, 32]). An en-

riched object proposal set (proposal stream) is used for object co-segmentation in [129]. The

problem is again formulated as a graphical model to select a proposal stream for each object in

which the pairwise potentials consist of the appearance dissimilarity between different stream-
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s in the videos. The object-based co-segmentation methods proposed in [30, 31] formulate the

problem as a co-selection graph in which the segments that are likely to be the foreground ob-

jects are favored while the intra-video and inter-video coherence also considered. For multiple

objects, the co-selection graph model is extended into a proposed multi-state selection graph mod-

el (MSG) that optimizes the segmentations of different objects jointly. To improve the robustness,

a multi-component foreground model is developed in [32] to handle appearance variations (view-

point/pose/color) of the objects. In order to learn the parameters of the multi-component model, a

transfer learning algorithm is employed to propagate the information of the labeled frames to the

unlabeled ones in a tree structured model.

In summary, the methods [10, 94, 16] which are based on pixels or image patches have relatively

good performance for video object co-segmentation. However, there are still some shortcomings in

them. For example, both [10] and [94] use strong assumptions of a single class of object common

to all videos. And the disadvantage of [16] is that it groups dense image patches to obtain segments,

which can potentially yield noisy results. Inspired by the success of object proposals used in video

object segmentation [60, 68], we propose a Regulated Maximum Weight Clique (RMWC) based

method to attack the problem. It uses object proposal tracklets as its building blocks, and Bron-

Kerbosch Algorithm to solve it efficiently. The details about the proposed method and the results

are given in Chapter 4.

The video object segmentation and co-segmentation methods introduced in this section and the

previous section are all about generic objects. One natural question would be, how to model a

specific class of objects using spatiotemporal graphs? We found that human is one of the most

important objects in videos and human pose estimation is one of the most difficult problems in this

domain. Therefore, we investigate the problem of human pose estimation in videos and we will

introduce its related works in next Section.
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2.4 Human Pose Estimation

A large body of work in human pose estimation have been reported in recent years. Early works

are focused on human pose estimation and tracking in controlled environment [100]; there is also

some important work using depth images [99]. Single image based human pose estimation [130,

111, 18, 117] in unconstrained scenes has progressed dramatically in the last a few years; however,

video based human pose estimation in unconstrained scenes is still in a very early stage, and some

pioneer research (e.g. [85, 78, 108, 15]) has been conducted only recently. We briefly introduce

related works of image based human pose estimation, and focus on video based full body human

pose estimation methods.

2.4.1 Image-based Methods

For image based human pose estimation in unconstrained scenes, most work has been focused on

pictorial structure models (e.g. [3, 4, 47, 87]) for quite long time and the performance has been

promising. In [130], a flexible mixture-of-parts model was proposed to infer the pose configura-

tions, which showed very impressive results. A new scheme was introduced in [48] to handle a

large number of training samples which resulted in significant increase in pose estimation accuracy.

Authors in [102, 132, 84] attempted to estimate 3D human poses from a single image.

The high order dependencies of body parts are exploited in [59, 45, 46, 103, 101, 124, 52, 107, 79,

86]. The authors in [107] proposed a hierarchical spatial model with an exact solution, while in

[79], a conditional model is defined. The rich spatial interactions among body parts are explored

in [86] with an inference machine formulation. A novel, non-linear joint regressor model was

proposed in [18], which handles typical ambiguities of tree based models quite well.

More recently, deep learning [111, 110, 75, 12] has also been introduced for human pose estima-
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tion. Both color and motion features are combined into a deep learning framework [42] for pose

estimation. Pose estimation is formulated as a regression problem [111] towards body joints, and

a cascade of Deep Neural Networks DNN regressors are trained to estimate the poses. A hybrid

architecture [110], which consists of a deep Convolutional Network and a Markov Random Field

is proposed to infer the human poses.

The image-based method only uses appearance information to estimate the human poses, which is

not able to handle body part occlusions, motion blurs, etc. Videos contain much more information

and temporal/motion features can be very helpful in handling these issues. We will introduce some

recent works for human pose estimation in videos in the next Section.

2.4.2 Video-based Methods

For video based human pose estimation in unconstrained scenes, some early research adopted the

tracking-by-detection framework (e.g. [2, 70, 88]). More recently, some methods [15, 108, 139,

28, 91, 95] have mainly focused on upper body pose estimation and other methods [78, 85] have

focused on full body pose estimation.

For upper body pose estimation: A tracking-by-selection framework is proposed in [108] to sim-

plify the graph optimization problem, which makes the exact inference possible. In [15], the poses

are decomposed into limbs, and recomposed together to obtain pose estimations in the video. The

authors in [95] decompose the full model of body parts into many tree-based sub-models which en-

ables them to get the exact inference for the sub-models. To handle the loopy graph in video-based

pose estimation, an approximation of the full model [138] is proposed by introducing an ensemble

of two tree-structured sub-models: Markov networks for spatial parsing and Markov chains for

temporal parsing. Both models can be trained jointly using the max-margin techniques, and an

iterative parsing process is proposed to achieve the ensemble inference.

28



In context of full body pose estimation, in [78], many pose candidates are generated in each frame,

and the most consistent ones which have high detection scores are selected through the frames.

Ramakrishna et al. [85] model the symmetric structures of the body parts and proposed an effec-

tive approximate solution to the problem. A 2-level region-based tracking scheme is proposed in

[72] which refines the joint locations by a Kalman filter. Bayes theorem using Extreme learning

machine (ELM) is employed in [89] to estimate body part likelihood scores, and a voting scheme

that uses inter-frame detected segments to filter out errors and detect body parts in the current

frame. Inspired by the successful pictorial structures model, a new framework is proposed in [106]

which combines an image conditioned model that incorporates higher order dependencies of mul-

tiple body parts with poselet features. The authors propose in [98] to propagate the detection in

each frame using the global motion estimation. The method first produces reasonable trajectory

hypotheses for each body part. Then, in the optimization framework, body part trajectories rather

than body part candidates are obtained to infer the human pose.

In summary, all of the above video-based full body pose estimation methods [89, 78, 98] are

insightful, however, none of them has simultaneously exploited the important constraints between

body parts (e.g. symmetry of parts) and has an efficient exact solution. In this dissertation, we

propose a novel method which reduces the video-based human pose estimation problem into a tree-

based optimization problem which can be solved efficiently. The details of the proposed method

and experimental results are introduced in Chapter 5.

2.5 Summary

In this Chapter, we have reviewed the literatures for the problems we investigate: video object

segmentation, video object co-segmentation, and human pose estimation in videos. The related

works give us a lot of insights about the problems, and based on these insights about the limita-
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tions of current state of art approaches, we propose new ideas in this dissertation to improve the

performance on publicly available datasets.

Compared to the existing methods, we have developed three new methods to solve these prob-

lems using spatiotemporal graphs. First, for video object segmentation, object proposals are used

intensely in current literature; however, the main issue for the state-of-the-art methods ([60, 68])

is that they are not able to guarantee a selection of good proposals for all the video frames. We

employ spatiotemporal graph to model the object proposal structure in the video, and ensure one

good object proposal is selected for every video frame. The results are improved dramatically us-

ing this idea. Second, for video object co-segmentation, rather than using low-level features [16],

we embed the object proposal tracklets into a spatiotemporal graph which encode the motion and

appearance cues in different videos to delineate the objects. Finally, for human pose estimation

in videos, the major issue is the computational complexity of the standard graph formulation. We

re-formulate the spatiotemporal graph to be a tree, and employ dynamic programming to reduce

the computational complexity. We will introduce our proposed methods in detail in the next three

Chapters.
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CHAPTER 3: SPATIOTEMPORAL GRAPHS FOR VIDEO OBJECT

SEGMENTATION

3.1 Introduction

In this Chapter, our goal is to detect the primary object in a video and to delineate it from the

background in all frames. Video object segmentation is a well-researched problem in the computer

vision and is a prerequisite for a variety of high-level vision applications, including content based

video retrieval, video summarization, activity understanding and targeted content replacement.

We propose a novel method which is inspired by the object proposal based methods [60, 68]. In

general, an object’s shape and appearance varies slowly from frame to frame. Therefore, our idea

is that the object proposal sequence in a video with high ‘objectness’, and high similarity across

frames is likely to be the primary object. To this end, we use optical flow to track the evolution

of object shape, and compute the difference between predicted and actual shape (along with ap-

pearance) to measure similarity of object proposals across frames. The ‘objectness’ is measured

using appearance and a motion based criterion that emphasize high optical flow gradients at the

boundaries between objects proposals and the background. The primary object proposal selection

problem is formulated as the longest path problem for Directed Acyclic Graph (DAG), for which

(unlike [68]) an optimal solution exists in linear time. Note that, if the temporal order of object

proposals locations (across frames) is not used ([60], then it can result in no proposals being as-

sociated with the primary object for many frames (please see Figure 3.1). The proposed method

not only uses object proposals from a particular frame (please see Figure 3.2), but also expands

the proposal set using predictions from proposals of neighboring frame. The combination of pro-

posal expansion, and the predicted shape based similarity criteria results in temporally dense and
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spatially accurate primary object proposal extraction. We have evaluated the proposed approach

using several challenging benchmark videos and it outperforms both unsupervised and supervised

state-of-the-art methods

Video Frames 

Key-frame Object Regions [13] 

? ? 

#38 #39 #61 #62 Frame 

Primary Object Regions Extracted by Proposed Method 

Figure 3.1: Primary object region selection in the object proposal domain. The first row shows
frames from a video. The second row shows key object proposals (in red boundaries) extracted by
[60]. “?” indicates that no proposal related to the primary object was found by the method. The
third row shows primary object proposals selected by the proposed method. Note that the proposed
method was able to find primary object proposals in all frames. The results in row 2 and 3 are prior
to per-pixel segmentation. In this dissertation we demonstrate that temporally dense extraction of
primary object proposals results in significant improvement in object segmentation performance.
Please see Table 3.1 for quantitative results and comparisons to state of the art.[Please Print in
Color]
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Figure 3.2: Object proposals from a video frame employing the method in [21]. The left side image
is one of the video frames. Note that the monkey is the object of interest in the frame. Images on
the right show some of the top ranked object proposals from the frame. Most of the proposals do
not correspond to an actual object. The goal of the proposed work is to generate an enhanced set
of object proposals and extract the segments related to the primary object from the video.

Object Proposal Generation & 
Expansion 

Layered DAG Optimization for Primary 
Object Selection 

GMMs and MRF based Optimization 

Generate object 
proposals, and then 

enhance the proposal set 
using motion based 

prediction 

Use discriminative 
motion, shape similarity 
across frames and other 

cues for object extraction 

Refine the segmentation 
results. 

Input Videos 

Object Segmentation 

Figure 3.3: The Video Object Segmentation Framework
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The organization of the rest of the Chapter is as follows. In Section 3.2, the structure of the

spatiotemporal is introduced, and the unary and binary weights are formulated; In Section, 3.3,

the dynamic programming solution is given and analyzed; In Section 3.4, the Gaussian Mixture

Models and Markov Random Field optimization are introduced for the pixel-level segmentation; In

Section 3.5, the object proposal generation and expansion methods are discussed; In Section 3.6,

both qualitative and quantitative experimental results for two publicly available datasets (SegTrack

[112] and GaTech [40]) and some other challenging videos are shown; In Section 3.7, the Chapter

is concluded.

3.2 Layered DAG based Video Object Segmentation

The proposed framework consists of 3 stages (as shown in Figure 3.3): 1. Generation of object

proposals per-frame and then expansion of the proposal set for each frame based on object propos-

als in adjacent frames. 2. Generation of a layered DAG from all the object proposals in the video.

The longest path in the graph fulfills the goal of maximizing objectness and similarity scores, and

represents the most likely set of proposals denoting the primary object in the video. 3. The prima-

ry object proposals are used to build object and background models using Gaussian mixtures, and

a graph-cuts based optimization method is used to obtain refined per-pixel segmentation. Since

the proposed approach is centered around layered DAG framework (each layer corresponds to one

video frame) for selection of primary object regions, we will start with its description.

We want to extract object proposals with high objectness likelihood, high appearance similarity

and smoothly varying shape from the set of all proposals obtained from the video. Also, since we

want to extract the primary object only, we want to extract at most a single proposal per frame.

Keeping these objectives in mind, the layered DAG is formed as follows. Each object proposal

is represented by two nodes: a ‘beginning node’ and an ‘ending node’ and there are two types of
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edges: unary and binary edges. The unary edges have weights which measure the objectness of

a proposal. The details of the function for unary weight assignments (measuring objectness) are

given in Section 3.2.1. All the beginning nodes in the same frame form a layer, so as the ending

nodes. A directed unary edge is built from beginning node to ending node. Thus, each video

frame is represented by two layers in the graph. Directed binary edges are built from any ending

node to all the beginning nodes in latter layers. The binary edges have weights which measure the

appearance and shape similarity between the corresponding object proposals across frames. The

binary weight assignment functions are introduced in Section 3.2.2.

…… …… 
…… …… 

Frame i-1 Frame i Frame i+1 

s t 

…… …… 
Layer 
2i-3 

Layer 
2i-2 

Layer 
2i-1 

Layer 
2i 

Layer 
2i+1 

Layer 
2i+2 

Figure 3.4: Spatiotemporal Graph for Video Object Segmentation. Node “s” and “t” are source
and sink nodes respectively, which have zero weights for their edges connecting with other nodes
in the graph. The yellow nodes and the green nodes are “beginning nodes” and “ending nodes”
respectively and they are paired such that each yellow-green pair represents an object proposal.
All the beginning nodes in the same frame are arranged in a layer and the same is the case for the
ending nodes. The green edges are the unary edges and red edges are the binary edges.

35



Figure 3.4 is an illustration of the graph structure. It shows frame i − 1, i and i + 1 of the graph,

with corresponding layers of 2i− 3, 2i− 2, 2i− 1, 2i, 2i+ 1 and 2i+ 2. Note that, only 3 object

proposals are shown for each layer for simplicity, however, there are usually hundreds of object

proposals for each frame and the number of object proposals for different frames are not necessary

the same. There is also a virtual source node “s” and a sink node “t” with 0 weighted edges (black

edges) in the graph. Note that, it is not necessary to build binary edges from an ending node to

all the beginning nodes in latter layers. In practice, only building binary edges to the next three

subsequent frames is enough for most of the videos.

3.2.1 Unary Edges

Unary edges measure the objectness of the proposals. Both appearance and motion are important

to infer the objectness, so the scoring function for object proposals is defined as Sunary(r) =

A(r) + M(r), in which r is any object proposal, A(r) is the appearance score and M(r) is the

motion score. We define M(r) as the average Frobenius norm of optical flow gradient around the

boundary of object proposal r. The Frobenius norm of optical flow gradients is defined as:

∥∥∥∥UX∥∥∥∥
F

=

∥∥∥∥∥∥∥
 ux uy

vx vy


∥∥∥∥∥∥∥
F

=
√
u2x + u2y + v2x + v2y , (3.1)

where U = (u, v) is the forward optical flow of the frame, ux, vx and uy, vy are optical flow

gradients in x and y directions respectively.

The intuition behind this motion scoring function is that, the motions of foreground object and

background are usually distinct, so boundary of moving objects usually implies discontinuity in

motion. Therefore, ideally, the gradient of optical flow should have high magnitude around fore-

ground object boundary (this phenomenon could be easily observed from Figure 3.5). In equation
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3.1, we use the Frobenius norm to measure the optical flow gradient magnitude, the higher the val-

ue, the more likely the region is from a moving object. In practice, the maximum of optical flow

gradient magnitude does not coincide exactly with the moving object boundary due to underlying

approximation of optical flow calculation. Therefore, we dilate the object proposal boundary and

get the average optical flow gradient magnitude as the motion score. Figure 3.5 is an illustration of

this process. The appearance scoring function A(r) is measured by the objectness ([21]).

Figure 3.5: Optical Flow Gradient Magnitude Motion Scoring. In row 1, column 1 shows the
original video frame, column 2 shows one of the object proposals and column 3 shows dilated
boundary of the object proposal. In row 2, column 1 shows the forward optical flow of the frame,
column 2 shows the optical flow gradient magnitude map and column 3 shows the optical flow
gradient magnitude response for the specific object proposal around the boundary.
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3.2.2 Binary Edges

Binary edges measure the similarity between object proposals across frames. For measuring the

similarity of regions, color, location, size and shape are the properties to be considered. We define

the similarity between regions as the weight of binary edges as follows:

Sbinary(rm, rn) = λ · Scolor(rm, rn) · Soverlap(rm, rn), (3.2)

whererm and rn are regions from frame m and n, λ is a constant value for adjusting the ratio

between unary and binary edges, Soverlap is the overlap similarity between regions and Scolor is the

color histogram similarity:

Scolor(rm, rn) = hist(rm) · hist(rn)T , (3.3)

where hist(r) is the normalized color histogram for a region r,

Soverlap(rm, rn) =
|rm ∩ warpmn(rn)|
|rm ∪ warpmn(rn)|

, (3.4)

where warpmn(rn) is the warped region from rn by optical flow to frame m. It is clear that Scolor

encodes the color similarity between regions and Soverlap encodes the size and location similarity

between regions. If two regions are close, and the sizes and shapes are similar, the value would be

higher, and vice versa. Note that, unlike prior approaches [60, 68], we use optical flow to predict

the region (i.e. encoding location and shape), and therefore we are better able to compute similarity

for fast moving objects.
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3.3 Dynamic Programming Solution

Until now, we have built the layered DAG and the objective is clear: to find the highest weighted

path in the DAG. Assume the graph contains 2F + 2 layers (F is the frame number), the source

node is in layer 0 and the sink node is in layer 2F +2. Let Nij denotes the jth node in ith layer and

E(Nij, Nkl) denotes the edge from Nij to Nkl. Layer i has Mi nodes. Let P = (p1, p2, ..., pm+1) =

(N01, Nj1j2 , ..., Njm−1jm , N(2n+2)1) be a path from source to sink node. Therefore,

Pmax = argmax
P

m∑
i=1

E(pi, pi+1). (3.5)

Pmax forms a Longest (simple) Path Problem for DAG. Let OPT (i, j) be the maximum path value

for Nij from source node. The maximum path value satisfies the following recurrence for i ≥ 1

and j ≥ 1:

OPT (i, j) = max
k=0...i−1,l=1...Mk

[OPT (k, l) + E(Nkl, Nij)]. (3.6)

This problem can be solved by dynamic programming in linear time [56]. The computational

complexity for the algorithm is O(n+m), in which n is the number of nodes and m is the number

of edges. The most important parameter for the layered DAG is the ratio λ between unary and

binary edges. However, in practice, the results are not sensitive to it, and in the experiments λ is

simply set to be 1.
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3.4 Per-pixel Video Object Segmentation

Once the primary object proposals are obtained in a video, the results are further refined by a graph-

based method to get per-pixel segmentation results. We define a spatiotemporal graph by connect-

ing frames temporally with optical flow displacement. Each of the nodes in the graph is a pixel in

a frame, and edges are set to be the 8-neighbors within one frame and the forward-backward 18

neighbors in adjacent frames. We define the energy function for labeling f = [f1, f2, ..., fn] of n

pixels with prior knowledge of h (from GMMs):

E(f, h) =
∑
i∈S

Dh
i (fi) + λ

∑
(i,j)∈N

Vi,j(fi, fj), (3.7)

where S = {pi, ..., pn} is the set of n pixels in the video, N consists of neighboring pixels, and i,j

index the pixels. pi could be set to 0 or 1 which represents background or foreground respectively.

The unary termDh
i defines the cost of labeling pixel iwith label fi which we get from the Gaussian

Mixture Models (GMM) for both color and location:

Dh
i (fi) = −log(αU c

i (fi, h) + (1− α)U l
i (fi, h)), (3.8)

where U c
i (.) is the color-induced cost and U l

i (.) is the location cost.

For the binary term Vi,j(fi, fj), we follow the definitions in [92]:

Vi,j(fi, fj) = [fi 6= fj]exp
−β(Ci−Cj)

2

, (3.9)

where [.] denotes the indicator function taking values 0 and 1, (Ci−Cj)2 is the Euclidean distance

between two adjacent nodes in RGB space, and β = (2
∑

(Ci − Cj)2)−1|(i,j)∈N .
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We use the graph-cuts based minimization method in [33] to obtain the optimal solution for e-

quation 3.7, and thus get the final segmentation results. Next, we describe the method for object

proposal generation that is used to initialize the video object segmentation process.

3.5 Object Proposal Generation & Expansion

In order to achieve our goal of identifying image regions belonging to the primary object in the

video, it is preferable (though not necessary) to have an object proposal corresponding to the

actual object in each frame in which object is present. Using only appearance or optical flow based

cues to generate object proposals is usually not enough for this purpose. This phenomenon could

be observed in the example shown in Figure 3.6. For frame i in this figure, hundreds of object

proposals were generated using method in [21], however, no proposal is consistent with the true

object, and the object is fragmented between different proposals.

We assume that an object’s shape and location changes smoothly across frames and propose to

enhance the set of object proposals for a frame by using the proposals generated in its adjacent

frames. The object proposal expansion method works by the guidance of optical flow (see Figure

3.6). For the forward version of object proposal expansion, each object proposal rki−1 in frame i−1

is warped by the forward optical flow to frame i, then a check is made if any proposal rji in frame

i has a large overlap ratio with the warped object proposal, i.e.,

o =
|warpi−1,i(rki−1) ∩ r

j
i |

|rji |
. (3.10)
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Figure 3.6: Object Proposal Expansion. For each optical flow warped object proposal in frame
i − 1, we look for object proposals in frame i which have high overlap ratios with it. If multiple
object proposals have high overlap ratios with the warped proposal, they are merged into a new
large object proposal. This process will produce the right object proposal if it is not discovered by
in frame i, but will be discovered by our method in frame i− 1.
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The contiguous overlapped areas, for regions in i+1 with o greater than 0.5, are merged into a single

region, and are used as additional proposals. Note that, the old original proposals are also kept, so

this is an ‘expansion’ of the proposal set, and not a replacement. In practice, this process is carried

out both forward and backward in time. Since it is an iterative process, even if suitable object

proposals are missing in consecutive frames, they could potentially be produced by this expansion

process. Figure 3.6 shows an example image sequence where the expansion process resulted in

generation of a suitable proposal.

3.6 Experiments

The proposed method was evaluated using two well-known segmentation datasets: SegTrack dataset

[112] and GaTech video segmentation dataset [40]. Quantitative comparisons are shown for Seg-

Track dataset since ground-truth is available for this dataset. Qualitative results are shown for

GaTech video segmentation dataset. We also evaluated the proposed approach on additional chal-

lenging videos.

3.6.1 SegTrack Dataset

There are 6 videos in this dataset, and also a pixel-level segmentation ground-truth for each video

is available. We follow the setup in the literature ([60, 68]), and use 5 (birdfall, cheetah, girl,

monkeydog and parachute) of the videos for evaluation (since the ground-truth for penguin is not

useable). We use an optical flow magnitude based model selection method to infer the camera

motion: for static cameras, a background subtraction cue is also used for moving object extraction;

for all the results shown in this Section, the static camera model was only selected (automatically)

for the “birdfall” video.
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Table 3.1: Quantitative results and comparison with the state of the art on SegTrack dataset

Video Ours [68] [60] [112] [17]
birdfall 155 189 288 252 454
cheetah 633 806 905 1142 1217
girl 1488 1698 1785 1304 1755
monkeydog 365 472 521 563 683
parachute 220 221 201 235 502
Avg. 452 542 592 594 791
supervised? N N N Y Y

We compare our method with 4 state-of-the-art methods [68], [60], [112] and [17] shown in Table

3.1. Note that our method is unsupervised, and it outperforms all the other unsupervised methods

except for the parachute video where it is a close second. Note that [112] and [17] are supervised

methods which need an initial annotation for the first frame. The results in Table 3.1 are the average

per-frame pixel error rate compared to the ground-truth. The definition is [112]:

error =
XOR(f,GT )

F
, (3.11)

where f is the segmentation labeling results of the method, GT is the ground-truth labeling of the

video, and F is the number of frames in the video. Figure 3.7 shows qualitative results for the

videos of SegTrack dataset.

Figure 3.8 is an example that shows the effectiveness of the proposed layered DAG approach for

temporally dense extraction of primary object regions. The figure shows consecutive frames (frame

38 to frame 43) from “monkeydog” video. The top 2 rows show the results of key-frame object

extraction method [60], and the bottom 2 rows show our object region selection results. As one

can see, [60] detects the primary object proposal in only one of the frames, however, by using the

proposed approach, we can extract the primary object region from all the frames.

44



(a) Birdfall 

(b) Cheetah 

(c) Girl 

(d) Monkeydog 

(e) Parachute 

Figure 3.7: SegTrack dataset results. The regions within the red boundaries are the segmented
primary objects.
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Frame #38 #39 #40 

? ? 
#41 #42 #43 

? ? ? 
(a) Key-frame Object Region Selection 

(b) Layered DAG Object Region Selection 

Frame #38 #39 #40 

#41 #42 #43 

Figure 3.8: Comparison of object region selection methods. The regions within the red bound-
aries are the selected object regions. “?” means there is no object region selected by the method.
Numbers above are the frame indices.[Please Print in Color]
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Table 3.2: Quantitative Results on Persons and Cars dataset

Video Average per-frame pixel error
Surfing 1209
Jumping 835
Skiing 817
Sliding 2228
Big car 1129
Small car 272

3.6.2 GaTech Segmentation Dataset

We also evaluated the proposed method on GaTech video segmentation dataset. We show qualita-

tive comparison of results between the proposed approach and the original bottom-up method in

Figure 3.9. As one can observe, our method is able to segment the true foreground object from the

background. The method in [40] doesn’t use an object model which induces over-segmentation

(although the results are very good for the general segmentation problem).

3.6.3 Persons and Cars Segmentation Dataset

We have built a new dataset for video object segmentation. The dataset is challenging: persons are

in a variety of poses; cars have different speeds, and when they are slow, it is very hard to do motion

segmentation. We generate ground truth for those videos. Figure 3.10 shows some sample results

from this dataset, and Table 3.6.3 shows the quantitative results for this dataset (the average per-

frame pixel error is defined as the same as SegTrack dataset [112]). Please visit http://crcv.ucf.edu

for more details.
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3.7 Summary

We have proposed a novel and efficient layered DAG based approach to segment the primary object

in videos. The major contribution is that it formulate the problem into a directed acyclic graph,

for which the inference can be efficiently done by dynamic programming. The result from the

graph inference are consistent object proposals from all the video frames. This approach also uses

innovative mechanisms to compute the ‘objectness’ of a region and to compute similarity between

object proposals across frames. A final step with GMM and MRF ensures an accurate pixel-level

video segmentation. The proposed approach outperforms the state of the art on the well-known

SegTrack dataset. We also demonstrate good segmentation performance on additional challenging

data sets. Similar ideas can potentially be applied to other problems, such as object tracking, image

registration, etc.

In order to extend the spatiotemporal graph formulation to handle multiple videos, in next Chapter

we will employ it to solve the video object co-segmentation problem.
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(a) waterski 

(b) yunakim 

Figure 3.9: Object Segmentation Results on GaTech Video Segmentation Dataset. Row 1: orignial
frame, Row 2: Segmentation results by the bottom-up segmentation method [40]. Row 3: Video
object segmentation by the proposed method. The regions within the red or green boundaries are
the segmented primary objects. [Please Print in Color]
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(a) Surfing 

(b) Jumping 

(e) Big car 

(f) Small car 

(c) Skiing 

(d) Sliding 

Figure 3.10: Sample Results on Persons and Cars Dataset. Please go to http://crcv.ucf.edu for more
details.
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CHAPTER 4: SPATIOTEMPORAL GRAPHS FOR VIDEO OBJECT

CO-SEGMENTATION

4.1 Introduction

In the previous Chapter, we have investigated the problem of segmenting an object from a single

video. A natural question would be: can multiple videos be used together to improve the segmen-

tation for each video? And this question leads to a new problem: video object co-segmentation.

Our goal is to discover and segment objects from a video collection in an unsupervised manner. We

compensate for the lack of supervision by exploiting commonality of objects in video collection (if

it exists) to build better object segmentation models. Unsupervised segmentation of objects from a

video collection has applications in large scale video tagging and retrieval, generation of training

sets for supervised learning, and forensic video analysis.

The proposed method first generates object proposal tracklets in different videos. It then groups

the tracklets into Maximum Weight Cliques by a modified version of Bron-Kerbosch Algorithm.

Finally it employs Gaussian Mixture Models and Markov Random Fields to obtain the pixel-level

segmentations. Fig.4.1 shows an illustration of the proposed approach. Compared to the existing

video co-segmentation methods, the proposed approach has the following advantages:

1. The proposed method employs object tracklets to obtain spatially salient and temporally consis-

tent object regions for co-segmentation, while most of previous co-segmentation methods simply

use pixel-level or region-level features to perform clustering. The perceptual grouping of pixels

before matching reduces segment fragmentation and leads to a simpler matching problem.

2. The proposed approach does not rely on approximate solutions for object groups. The grouping
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problem is modeled as a Regulated Maximum Weight Clique (RMWC) problem for which an

optimal solution is available. The use of only the salient object tracklets for grouping keeps the

computational cost low.

3. Unlike the state-of-the-art single video object segmentation method ([134]), the proposed

method can handle occlusions of objects, or objects going in and out of videos because the ob-

ject tracklets are temporally local and there is no requirement for the object to continuously remain

in the field of view of the video. Furthermore, there is no limitation on the number of object class-

es in each video and the number of common object classes in the video collection. Therefore, the

approach can be used to extract objects in an unsupervised fashion from general video collections.

… … 

Video 1 Video 2 

C1 

C2 

… 

… 

… 

… 

… 

… 

… 

… 

… 

… 

Track-lets Track-lets 

Object Proposal Tracklets Generation 

Efficient Object Proposal Tracking 

Non-Maximum Suppression 

Object Proposal Tracklets 

Multiple Object Co-Segmentation by 
Maximum Weight Cliques 

GMM and MRF Optimization 

Videos 

Co-Segmentation (a) (b) 

Figure 4.1: (a) Shows the framework of the proposed method. (b) Shows the spatiotemporal graph
for video object co-segmentation. In this example, we generate ‘object proposal’ tracklets for two
videos and use weighted nodes to represent them. Edges are built between similar nodes, and there
are two types of edges (intra-video edges: red; inter-video edges: orange). In this example, the
first two maximal cliques, which have highest weights are obtained (C1 and C2). C1 contains all
the segments for ‘chicken’ from two videos and C2 contains all the segments for ‘turtle’ in video
1.
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4. The proposed method is different from Maximum Weight Clique Problem, which has already

been explored in video object segmentation [69], in a way that the clique weights of the proposed

method are not simply defined as the summation of node weights, but regulated by the intra-

clique consistency term. Therefore, the extracted cliques have more global consistency, and similar

objects from different videos are accurately grouped.

The organization of the rest of the Chapter is as follows: In Section 4.2, we describe the frame-

work of the proposed method. In Section 4.3 we introduce how to generate the object proposal

tracklets accurately. In Section 4.4 we introduce the proposed Regulated Maximum Weighted

Clique (RMWC) formulation for video object co-segmentation. In Section 4.5, we present the

performance evaluation of the proposed algorithm. In Section 4.6., the Chapter is concluded.

4.2 The Framework

The proposed method consists of two stages: (1) Object Tracklets Generation: In this stage, we

generate a number of object proposals ([21]) for each frame and use each of them as a starting

point, and track the object proposals backward and forward throughout the whole video sequence.

We generate reliable tracklets from the track set (those with high similarity over time) and perform

non-maxima suppression to remove noisy or overlapping proposals. (2) Multiple Objects Co-

Segmentation by Regulated Maximum Weight Cliques: A graph is generated by representing each

tracklet as a node from all videos in the collection. The nodes of the graph are weighted by their

appearance and motion scores, and edges are weighted by tracklet similarity. Edges with weight

below a threshold are removed. A Regulated Maximum Weight Clique extraction algorithm is

used to find objects ranked by score which is a combination of intra-group consistency and Video

Object Scores. The object regions obtained from the video sets are used to initialize per-pixel

segmentation [33] to get the final co-segmentation results.
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4.3 Object Tracklets Generation

In this stage, the method in [21] is employed to generate a number of object proposals (which are

likely to be ’object regions’ in each frame). The method in [21] generates many candidate object

regions for an image. It extracts multiple features to infer whether a candidate region is an object

region, and assigns a score to each region. For each of the object proposals we define a Video

Object Score, Sobject, which is a combination of motion and appearance information:

Sobject(x) = A(x) +M(x), (4.1)

where x is an object proposal, and A(x) is the appearance score (which is the objectness score

defined by [21]). The appearance objectness score is high for regions that have a well defined

closed boundary in space, different appearance from its surrounds and is salient [21], and M(x) is

the motion score (which is defined in [134] as the average Frobenius norm of optical flow gradient

around the boundary of object proposal).

4.3.1 Efficient Object Proposal Tracking

We track every object proposal from each frame backward and forward to form a number of tracks

for the object proposals (please see Fig.4.2).

A combined color, location, and shape similarity function is employed for object proposal tracking:

Ssimi(xm, xn) = Sapp(xm, xn) · Sloc(xm, xn) · Sshape(xm, xn), (4.2)

where xm and xn are object proposals from frame m and n respectively, Sapp is the appearance

similarity, Sloc is the location similarity which computes the overlap ratio between two regions,
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and Sshape is the shape similarity between the object proposals. Color histograms are used to

model appearance. The descriptor for estimating shape similarity is computed by representing the

contour of a region in normalized polar coordinates and sampling it from 0 to 360 degrees to form

a vector. Dot products of descriptors are used for computing both shape similarity and appearance

similarity.

Once the similarity function is defined, a simple greedy tracking method is employed to track

large number of object proposals. By using the similarity scores defined in Eq.4.2, for a specific

object proposal in the frame, the most similar object proposal in adjacent frame is selected to be

the tracked proposal. The reason for using this method is mainly due to efficiency. As shown in

Fig.4.2, the similarity matrices between all object proposals in adjacent frames are pre-computed.

Based on the greedy method, tracking a specific object proposal to the next frame amounts to

finding the index of max value in a specific row of the similarity matrix. Thus this tracking process

is computationally economical.

4.3.2 Non-Maximum Suppression for Object Proposal Tracks

One can sample a large number of proposals per frame and, therefore, generate a larger number of

tracks for an input video. Specifically, for a video that has F frames and each frame has N object

proposals, F ×N tracks could be obtained, since we generate tracks for each proposal. However,

many of the object samples are overlapping and therefore their tracks are similar. A non-maximum

suppression (NMS) ([25]) scheme is used to prune near duplicate tracks. For each object proposal

track X = {x1, ..., xi, ...xF}, an overall Video Object Score is computed as:

Sobject(X) =
F∑
i=1

(Sobject(xi)), (4.3)

where i is the frame index, and F is the number of frames.
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Figure 4.2: Object Proposal Tracking. (a) Shows the similarity matrices between F1 (frame 1) and
F2, F2 and F3, and F3 and F4. It also shows an example for tracking a specific object proposal
(the 4th in F1): first, the largest item from row 4 of similarity matrix F1 and F2 (the 1st item in
this example) is found; then, the largest item from row 1 of similarity matrix F2 and F3 is found;
and so on. Note that, only 10 object proposals (the matrices are 10 by 10) are shown in this figure
for simplicity, but hundreds of objects proposals are used in the experiments. (b) Shows some
object proposal tracks. In this example, several object proposals are generated for frame 31, and
the object proposal shown in red box is tracked backward and forward to form a track throughout
all the video frames. The same process is repeated for other object proposals (in orange and purple
boxes as another two examples). This process is repeated for all the frames.

Next, the track that has the highest score is selected and all other tracks which have high overlap

ratio Roverlap with the selected track are removed. The value 0.5 is used for Roverlap, as suggested

in ([25])). After that, the track with the second highest score among the surviving tracks is se-

lected and the process is repeated. The process is continued iteratively until all tracks have been

processed. The overlap ratio between two tracks X and Y is defined as:

Roverlap(X, Y ) =

∑F
i=1(xi ∩ yi)∑F
i=1(xi ∪ yi)

, (4.4)

where xi and yi are object proposals in the track X and Y respectively, and F is the number of
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frames for the video.

After the non-maximum suppression, typically only a small percentage of the total tracks (prior to

NMS) are retained. To ensure validity of the track associations, we remove associations that are

1.5 standard deviations away from the mean track similarity (shown in Fig.4.3 ). This reduces the

likelihood of a single track containing different objects.

Track T 

Tracks after Non-maximum Suppression 

… 

… 

… 

… 

Track 1 

Track i 

… 

… 

#47 #48 #46 #45 #44 #43 #49 

#50 #51 #52 #53 #54 #55 #56 

#57 #58 #60 #59 #61 #62 #63 

Track-let 

Track-let 

Track- 
let 

… … … 

… … … 

Figure 4.3: Tracklet Splitting. In this example, after the Non-Maximum Suppression, there are T
object proposal tracks selected. Track i is shown as an example to generate the object proposal
tracklets. There are several adjacent frames which are not very similar compared to other adjacent
frame pairs, therefore, they are split and several tracklets are generated (red, orange and purple).
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4.4 Multiple Object Co-Segmentation by Regulated Maximum Weight Cliques

Once object tracklets from the video collection have been obtained (Section 4.3), the next step is

to discover salient object groupings in the video collection. We formulate the grouping problem as

a Regulated Maximum Weight Clique Problem.

4.4.1 Clique Problems

Let G = (V,E,W ) be an undirected graph, where V is the set of vertices, E is the set of edges

and W is a set of weights for each vertex. A clique is a complete subgraph of G, i.e. one whose

vertices are pairwise adjacent. A Maximal Clique is a complete subgraph that is not contained

in any other complete subgraph [58]. Finding All Maximal Cliques from a graph is NP-hard

and Bron-Kerbosch Algorithm [6], which has the worst case time complexity O(3(n/3)), is known

to be the most efficient algorithm in practice ([109]). The Maximum Clique Problem is to find

maximum complete subgraph of G. The Maximum Weight Clique Problem deals with finding

the clique which has maximum weight.

4.4.2 Problem Constraints

We use the following constraints for co-segmenting the objects from videos:

1. The object proposal tracklets for the same class of objects should have similar appearance

both within a video and across videos; however, due to the illumination differences across

videos, for building color histograms in LAB space ([22]), the L channel (which represents

the brightness) is only used for tracklets from the same video (intra-video edges), but a, b

channels are used for tracklets from both same (intra-video edges) and different videos (inter-
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video edges).

2. The shape of the object in the same video would not change significantly, so the shape

similarity is also used for building the edges for tracklets of the objects in a video.

3. The dominant objects should have high Video Object Scores.

4. The tracklets generated by an object should have low appearance variation. Based on these

constraints, the graph is built as illustrated in Fig.4.1.

4.4.3 Graph Structure

The co-segmentation problem is formulated into a Regulated Maximum Weight Cliques Problem

by representing the object proposal tracklets to be the nodes. Based on constraints 1 and 2, edges

are built between tracklets. There are two types of edges: intra-video edges and inter-video edges.

The intra-video edge values are computed as a combined color histogram similarity in LAB color

space and shape similarity:

E(X, Y ) =(shape(X) · shape(Y )T )·∏
i={L,a,b}

(hist(LABi(X)) · hist(LABi(Y ))T ),
(4.5)

where shape(X) and shape(Y ) are the shape descriptors (Sec.4.3.1) for object proposal trackletX

and Y respectively. The nearest two object proposals in the two tracklets are selected to represent

the shapes of the tracklets.

And the inter-video edge values are computed as color histogram similarity of {a, b} channels in
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LAB color space:

E(X, Y ) =
∏

i={a,b}

(hist(LABi(X)) · hist(LABi(Y ))T ). (4.6)

After computing the edges, the weak edges are removed (by a threshold).

4.4.4 Regulated Maximum Weight Clique Extraction

Based on constraint 3 and according to Equation 4.1, the weight of a node (object proposal tracklet)

is computed as:

W (X) =

f∑
i=1

(Sobject(xi)), (4.7)

where f is the number of object proposals in this tracklet. W (X) is the sum up of the Video Object

Score of all object proposals contained in this tracklet.

Based on constraint 4, the weight of a clique is defined as:

W (C) = Γhist(C) ·
n(C)∑
i=1

(W (Xi)), (4.8)

where C = {X1, ..., Xn(C)} is a clique, Xi is a node (tracklet) contained in this clique, n(C) is the

number of nodes in this clique, and Γhist(C) is the color histogram consistency regulator which

computes the mean color histogram consistency of all the object proposals contained in the clique:

Γhist(C) =

∑f(C)
i=1

∑f(C)
(j=1∧j 6=i)(hist(xi) · hist(xj)T )

f 2(C)− f(C)
, (4.9)

where xi and xj are object proposals in clique C, f(c) is the number of object proposals in this

clique, and hist(·) is the {a, b} channel color histogram in LAB space.
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By this formulation, the clique that has the highest score represents the object with largest com-

bined score of inter-object consistency and objectness. This problem is different from Maximum

Weight Clique problem and can not be solved by standard methods ([58, 43]), because the clique

weights are not simply defined as the summation of node weights and the weights varies over iter-

ations as we extract objects one by one. Therefore, we call this as Regulated Maximum Weight

Cliques Problem. Note that, we want to retrieve all Regulated Maximum Weighted Cliques as

possible objects. This is achieved through iteratively finding and removing the Regulated Maxi-

mum Weight Cliques from the graph to get a ranked list of cliques (i.e. objects).

A modified version of Bron-Kerbosch Algorithm ([6]) which also has a worst-case complexity of

O(3(n/3)) is proposed to solve this problem:

1. Apply Bron-Kerbosch Algorithm to find all the maximal cliques from the graph.

2. Compute the weight of each clique in linear time.

3. Find the clique with the highest weight and remove all the nodes associated with this clique,

update the clique structures and recompute the weights. This process could be performed for

multiple times in order to extract multiple object groupings from the videos.

Note that, the high-complexity doesn’t prohibit the use of this algorithm. The object tracklets

generation stage removes most of the spurious tracklets. For videos evaluated in this dissertation,

the maximum clique extraction process took less than a second on a standard laptop. The object

regions obtained from the video sets are used to initialize per-pixel segmentation [33] to get the

final co-segmentation results.
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4.5 Experiments

The proposed method was tested on the video co-segmentation dataset (MOViCS dataset ([16]))

and was compared with several other methods. The results show that it performs better both quali-

tatively and quantitatively. Detailed analysis is presented to show that the co-segmentation method

produces better segmentation results by using information from multiple videos. Results also show

that the proposed method could handle occlusions for which the state-of-the-art single video object

segmentation method fails.

4.5.1 MOViCS Dataset

To the best of our knowledge, MOViCS dataset ([16]) is the only video co-segmentation dataset

which has the ground truth annotations for quantitative analysis. It contains 4 video sets which

totally has 11 videos, 5 frames of each video have pixel-level annotations for the object labels.

4.5.1.1 Experimental Setup

Following the setup in [16], the intersection-over-union metric is employed to quantify the results:

M(S,G) = S∪G
S∩G , where S is a set of segments and G is the ground truth. The co-segmentation

score for a set of video is defined as Scorej = maxiM(Si, Gj), where Si denotes all segments

grouped into an object class i. And a single average score is defined for all object classes as:

Score = 1
C

∑
j Scorej , where C is the number of object classes in the ground truth.
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Figure 4.4: Video Co-Segmentation Results on MOViCS Dataset. Each row shows the results of
a video in MOViCS dataset. Column 1 is one original frame from the video; column 2 (’GT’)
is the ground truth for co-segmentation, red regions correspond to the first object in the video
set and green regions correspond to the second object in the video set; column 3 (‘Ours’) is the
results of the proposed method, red and green regions correspond to the first and second objects
in the video set and blue region corresponds to the third object; column 4 (’VCS’) and 5 (’ICS’)
are the results of video co-segmentation method from [16] and [50] respectively. Row 1 and 2
are for ‘chicken&turtle’ video set, row 3-6 are for ’lion&zebra’ video set, row 7 and 8 are for
‘giraffe&elephant’ video set and row 9-11 are for ‘tigers’ video set.
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4.5.1.2 Comparisons with State-of-the-art Methods

The proposed method is compared with several state-of-the-art Co-Segmentation methods, see

Table 4.1 (the results of VCS [16] and ICS [50] are obtained from [16]). As mentioned in Section

4.4.3, we use a threshold to remove the weak edges, here we show the results by using a single

threshold for all video sets (see column ‘Ours1’), and also using optimal thresholds for different

video sets (in column ‘Ours2’). Qualitative results on this dataset are shown in Fig.4.4.

The evaluation shows that the proposed method improves on the state of the art. The average

improvement is more than 20%. From Fig.4.4, we can see that ours is the only result that looks

visually very similar to the ground truth. Unlike prior methods, our method does not have the

propensity for breaking objects into a number of fragments and the method also produces better

contours for the objects. The only video in which the object regions are not accurately segmented

is the 3rd video in video set ‘tigers’.This is due to the large difference in appearance of animals

from other two videos and qualitatively our method is still the best for this video set.

Table 4.1: Quantitative comparisons with the state of the art on MOViCS dataset. ‘Ours1’ shows
results of using a single threshold (0.65) for removing the edges, and ‘Ours2’ shows results of
using different thresholds for each video sets (the thresholds are [0.65 0.86 0.45 0.65] for these
four video sets respectively.)

Video Set Ours1 Ours2 VCS [16] ICS [50]
Chicken&turtle 0.860 0.860 0.65 0.08
Zebra&lion 0.588 0.636 0.48 0.23
Giraffe&elephant 0.528 0.639 0.52 0.07
Tiger 0.336 0.336 0.30 0.30
Overall 0.578 0.617 0.49 0.17
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Figure 4.5: Advantages of the Proposed Video Co-Segmentation Method. Row 1 and row 2 show
sample frames from two videos respectively. Row 3 and 4 are the video co-segmentation results
of the proposed method for these two videos. Red regions correspond to the first object and green
regions correspond to the second object. Row 5 and 6 are the segmentation results of applying the
method separately to each video. Blue and dark red regions correspond to the first objects, and
pink and orange regions correspond to the second objects.
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4.5.1.3 Advantages of Video Co-Segmentation Method

Fig.4.5 shows how the Co-Segmentation framework helps the segmentation results for each video.

In this example, we have two videos, if the proposed method is simultaneously applied to these

two videos, the segmentation results are shown in row 3 and 4; if the proposed method is applied

separately for each video, the segmentation results are shown in row 5 and 6. It is quite clear that

the Co-Segmentation method not only helps to relate the object labels (red regions for the giraffe

in row 3 and 4), but also helps to get more accurate segmentation results (video 2 helps video 1 to

get better segments for giraffe in row 3; without video 2, it could only get poor segmentation of

giraffe in row 5).

4.5.1.4 Advantages over Single Video Object Segmentation Method

Fig.4.6 shows the comparisons between the proposed method (VOCS) and the state-of-the-art s-

ingle video object segmentation (SVOS) method ([134]). Results show that the proposed method

could segment objects by using information from other videos (row 2 and 5 in the figure), in con-

trast, single video object segmentation method mistakenly merges two objects together if they have

similar motions (row 3 and 6 in the figure). Also, the proposed method is able to handle occlusions

well (row 8 in the figure), while the single video object segmentation method generates wrong

labels when there are occlusions of the objects (row 9 in the figure). We compared video object

segmentation results quantitatively on MOViCS dataset in Table 4.2. We observe that, if there are

two or more objects appearing in the video, or there are occlusions (e.g. ‘elephant giraffe all2’)

of the objects, or the objects do not appear in all the frames (e.g. ‘lion zebra all1’ ), the pro-

posed method works much better than single video object segmentation method; if there is only

one object in the video, the single video object segmentation method sometimes works better (e.g.

‘tiger1 all8’ results).
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Figure 4.6: Comparison between the proposed method (VOCS) and Single Video Object Segmen-
tation (SVOS) method ([134]). Three groups of results are shown here. In each of them, the first
rows (row 1, 4 and 7) show sample frames from the videos; the second rows (row 2, 5 and 8)
show results of the proposed method; and the third rows (row 3, 6 and 9) show results of the s-
ingle video object segmentation method. For the results, the red regions correspond to the first
objects and green regions correspond to the second objects. Since the single video object segmen-
tation method only extract primary objects from the videos, only red regions could be shown in the
results.
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Table 4.2: Quantitative Comparison of Single Video Object Segmentation (SVOS) with Video
Object Co-Segmentation (VOCS)

Video Name (Object) SVOS ([134]) VOCS
ChickenNew (chicken) 0.740 0.857
Chicken on turtle (chicken) 0.306 0.823
Chicken on turtle (turtle) 0.563 0.807
Elephant giraffe all1 (giraffe) 0.570 0.680
Elephant giraffe all2 (giraffe) 0.122 0.557
Elephant giraffe all2 (elephant) 0.085 0.557
Lion zebra2 (lion) 0.254 0.817
Lion zebra2 (zebra) 0.510 0.619
Lion zebra all1 (lion) 0.391 0.727
Lion zebra all1 (zebra) 0.529 0.361
Lion zebra all2 (lion) 0.883 0.830
Lion zebra all2 (zebra) 0.000 0.547
Zebra grass (zebra) 0.403 0.508
Tiger1 all8 (tiger) 0.494 0.428
Tiger1 all9 (tiger) 0.841 0.522
Tiger1 all10 (tiger) 0.384 0.637

4.5.2 Safari Dataset

Since video object co-segmentation problem is new and there is only one publicly available dataset

with ground truth, we collected another challenging dataset (named ‘Safari dataset’1) by getting

new videos and also reusing some videos from MOViCS dataset. We annotated the key frames.

This Safari dataset is challenging, since the Safari contains 5 classes of animals and a total of 9

videos. For each animal class, Safari dataset has a video which only contains this class. Other

videos contain two of the animal classes. The goal is to input the 9 videos together and do co-

segmentation simultaneously for all of them. We show the ground truth and our co-segmentation

results in Fig.4.8 and show quantitative results in Table 4.3.

1http://crcv.ucf.edu/projects/video_object_cosegmentation/
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Figure 4.7: The structure of Safari dataset.

Table 4.3: Quantitative results on Safari dataset

Object: Buffalo Elephant Giraffe Lion Sheep
Baseline [16] 0.686 0.266 0.024 0.302 0.048
Ours 0.869 0.353 0.024 0.317 0.363
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Figure 4.8: The ground truth and our results on Safari dataset. Row 1 shows one frame from each
of the video. Row 2 shows the ground truth annotations, in which each object class is shown in
different color. And row 3 shows our results, in which each object class is also shown in different
color. Please note that, there is no relationship between the colors of row 2 and row 3.
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4.6 Summary

We formulated the video object discovery and co-segmentation problem into a Regulated Maxi-

mum Weight Clique (RMWC) Problem and solved it using a modified version of Bron-Kerbosch

Algorithm. The success of the proposed method relies on i) use of the objectness measure to obtain

spatially coherent region proposals, ii) tracking of region proposals, which selects proposals with

consistent appearance and smooth motion over time, and iii) using different weighting function-

s for within video and across video matching for graph construction, which results in improved

grouping. Experimental results shows that the method outperforms the state-of-the-art video co-

segmentation methods.

We presented solution for how to solve video object segmentation/co-segmentation problems in

Chapter 3 and this Chapter. Since human is the most important object class in videos, we explore

a different problem: human pose estimation in videos in next Chapter, to investigate if it is easy to

extend the spatiotemporal graph formulation to other Computer Vision problems.
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CHAPTER 5: SPATIOTEMPORAL GRAPHS FOR HUMAN POSE

ESTIMATION IN VIDEOS

5.1 Introduction

We have investigated the problem of video object segmentation and co-segmentation in the previ-

ous two Chapters. One of the most important object classes in the videos, both for online videos

and surveillance videos, is human. The knowledge of this specific object class (e.g. human poses

and skeleton) can be used in solving video object segmentation problem. Therefore, in this Chap-

ter, we explore the applications of spatiotemporal graphs for human pose estimation in videos.

Human pose estimation is crucial for many computer vision applications, including human com-

puter interaction, activity recognition and video surveillance. It is a very challenging problem due

to the large appearance variance, non-rigidity of the human body, different viewpoints, cluttered

background, self occlusion, etc.

One major issue for human pose estimation in videos is: How to exploit the spatial constraints

between the body parts in each frame and temporal consistency through frames to the greatest pos-

sible extent, with an efficient exact solution? Since the inference of a tree-based optimization prob-

lem has a polynomial time solution [130, 134], the issue becomes (please refer to Fig.5.1): How to

formulate the problem in order to model the useful spatial and temporal constraints between body

parts in the frames without inducing simple cycles? We propose two key ideas to tackle this issue,

which approximate the original fully connected model into a simplified tree-based model. The first

idea is Abstraction: in contrast to the standard tree representation of body parts, we introduce a

new concept, abstract body parts, to conceptually combine the symmetric body parts (please refer

to Fig.5.2, and details are introduced in Section 5.2). It takes advantage of the symmetric nature
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of the human body parts without inducing simple cycles into the formulation. The second idea is

Association, using which we generate optimal tracklets for each abstract body part to ensure the

temporal consistency. Since each abstract body part is processed separately, it does not induce any

temporal simple cycles into the graph.

Abstraction 

Association 

… ... … ... 
(a) 

(b) 

(c) 
(d) 

Figure 5.1: An abstract high-level illustration of the proposed method aiming at removing simple
cycles from the commonly employed graph optimization framework for video based human pose
estimation problem. All of the above graphs are relational graphs for the problems. In (a), a
few sample frames of a video are shown. (b) shows the spatiotemporal graph for human pose
estimation in videos. Each body part in each frame is represented by a node. Green and blue edges
represent relationships between different body parts in the same frame (green ones are commonly
used edges in the literature, and blue ones are new edges for symmetric parts we introduced in this
dissertation); red edges represent the consistency constraints for the same body part in adjacent
frames. Note that this is only an illustration and not all edges are shown. In the ‘Abstraction’
stage, symmetric parts are combined together, and the simple cycles within each single frame are
removed (shown in (c)); and in the ‘Association’ stage, the simple cycles between adjacent frames
are removed (shown in (d)).
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Real Body Parts  
Relational Graph 

Abstract Body Parts 
Relational Graph 

Figure 5.2: Real body parts vs. abstract body parts. The left side shows a commonly used body
part definitions in the literature, and we call these body parts (nodes) ‘real body parts’, and the
graph ‘real body part relational graph’. The right side shows the proposed new definition of body
parts, basically we combine a pair of symmetric body parts to be one body part, we call these body
parts (nodes) ‘abstract body parts’, since these parts are some abstract concepts of parts, not real
body parts, and the graph as ‘abstract body part graph’.

The proposed method is different from the state-of-the-art methods [85, 108, 15, 95] in the follow-

ing ways: [85] exploits the symmetric nature of body parts, however, the problem is formulated

as a multi-target tracking problem with mutual exclusions, which is NP-complete and only ap-

proximate solutions can be obtained by relaxation; the method in [108] is designed to remove the

temporal simple cycles from the graph shown in Fig.5.1(b) to track upper body parts, however, the

employed junction tree algorithm will have much higher computational complexity if applied to
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full-body pose estimation, since there are many more simple cycles induced by symmetric body

parts; compared to [15], the proposed method has no temporal simple cycles; and in contrast to

[95], the proposed method can model symmetric body part structure more accurately rather than

settling for the sub-models. Therefore, the proposed method ensures both spatial and temporal

constraints, without inducing any simple cycles into the formulation, and an exact solution can be

efficiently found by dynamic programming.
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Figure 5.3: An outline of the proposed method. (a) shows the original video frames; in (b), pose
hypotheses in each frame are generated by N-Best method [78] or DCNNGM [12]; in (c), by
using the results from (b), real body part hypotheses are generated for each body part in each
frame and propagated to the adjacent frames; in (d), real body parts are combined into abstract
body parts and the hypotheses are also combined accordingly in order to remove the intra-frame
simple cycles (i.e. the simple cycles with blue and green edges in Fig.5.1(b)); in (e), tracklets are
generated for abstract body parts (including single body parts and coupled body parts) using the
abstract body part hypotheses generated in (d); in (f), the pose hypotheses graph is built, each node
is a tracklet corresponding to the abstract body part, and the best pose estimation is obtained by
selecting the best hypotheses for the parts from the graph; and in (g), the correct limbs are inferred
by limb alignment and refinement schemes.

The organization of the rest of the Chapter is as follows. We formulate the video based human

pose estimation problem into a unified tree-based optimization framework, which can be solved

efficiently by dynamic programming. Please refer to Fig.5.3 for the major steps. The main steps
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of the method (as show in Fig.5.3 (b - g)) are: 1) for each frame, generate many pose hypotheses

by the N-Best method [78] or DCNNGM [12]; 2) based on step 1, generate hypotheses for each

real body part and prorogate them to adjacent frames (We use the term real body parts to represent

body parts which are commonly used in the literature, and abstract body parts as a new concept

which will be introduced later to facilitate the formulation of the proposed method); 3) combine

the symmetric real body part hypotheses and obtain the abstract body part hypotheses; 4) build the

tracklet hypotheses graph for each abstract body part and select the top trackles for each; 5) build

the pose hypotheses graph for the abstract body part tracklets and select the best pose configuration.

6) use limb alignment and refinement schemes to infer the correct limb configurations.

In next a few Sections, we discuss the new concept: ‘abstract body parts’ in comparison to ‘real

body parts’ in Section 5.2 and show how to generate body part hypotheses in each frame in Section

5.3; we introduce tracklets generation in Section 5.4 and 5.5; we show how to extract the optimal

poses in Section 5.6, and we introduce the limb alignment and refinement schemes in Section 5.7.

We present experimental results in Section 5.8.

5.2 Real Body Parts vs. Abstract Body Parts

We use the term real body parts to represent body parts which are commonly used in the literature.

And we use abstract body parts, which is a new concept introduced here to facilitate the formu-

lation of the proposed method (as shown in Fig.5.2). In contrast to the real body part definitions,

there are two types of the abstract body parts in this dissertation: single part and coupled part.

Single parts include HeadTop and HeadBottom. Coupled parts include Shoulder, Elbow, Hand,

Hip, Knee and Ankle. Note that, for coupled parts, we use one part to represent two symmetric

real body parts, for instance Ankle is employed to represent the abstract part, which is actually the

combination of the left and right ankles. The design of abstract body parts is to remove simple
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cycles for the body part relational graph, but keep the ability to model the symmetric body parts.

For example, in Fig.5.1(b), in each frame, the green and blue edges are designed to model the

body part relationships, but there are many simple cycles in a single frame. After introducing the

abstract body parts in Fig.5.1(c), the symmetric parts are combined, thus there is no simple cycle

anymore in each frame. There are still simple cycles between frames, which will be handled by

the abstract body part tracklets in Section 5.4 and 5.5.

5.3 Body Part Hypotheses in a Single Frame

There are several ways to generate body part hypotheses in each video frame. In [136], N-Best

method [78] is used to generate the hypotheses. In the proposed method, although N-Best method

[78] is still an essential step, we also explore generation of body part hypotheses by deep learning

method (to be specific, we are using deep convolutional neural networks with graphical model (D-

CNNGM) [12]), in our experiments. For the sake of completeness, we briefly explain hypotheses

generation using N-Best method [78] and DCNNGM method [12] in this Section.

5.3.1 N-Best Hypotheses

N-Best human pose estimation approach [78] combined appearance and structural constraints to

generate basic pose estimation. And it can generate a group of pose hypotheses for a single image,

which can be used to infer better pose configurations in videos. N-Best method is applied to each

video frame to generate N best full body pose hypotheses. N is usually a large number (normally

N > 300). And for each real body part, the body part hypotheses are body part locations extract-

ed from the N-best poses. The body part hypotheses are sampled by an iterative non-maximum

suppression (NMS) scheme based on the detection score map. Detection score is a combination of
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max-marginal [78] and foreground score,

Φs(p) = αΦM(p) + (1− α)ΦF (p), (5.1)

where Φs is the detection score, ΦM is the max-marginal derived from [78], ΦF is the foreground

score obtained by the background subtraction [20], and p is the location of the body part.

5.3.2 DCNNGM Hypotheses

Compared to N-Best method [78], deep learning methods for human pose estimation [111, 75, 12,

110] have shown better performance in single image pose estimation, and we want to take advan-

tage of this. In this Chapter, we employ the deep convolutional neural networks with graphical

model approach (DCNNGM) [12] to generate pose hypotheses. We chose this approach because

its code is available and it is one of the state-of-the-art deep learning methods for pose estimation,

however, we believe other state-of-the-art methods [111, 75, 110] can also get comparable, or even

better results. There are two problems to solve before we can employ DCNNGM in our frame-

work: 1) Although the method can process a small image in a reasonable amount of time, it is still

prohibitive to handle videos which have many frames and the frame sizes are relatively large (e.g.

1280× 720). 2) The method does not output multiple hypotheses for each frame.

We solve the first problem by a pre-processing step: N-Best method [78] is employed to estimate

the poses in each video frame, and the top estimations are used to infer the rough bounding boxes

of the people in each frame. The bounding boxes are cropped and input to DCNNGM to estimate

the poses and results are mapped back to the original video frames. N-Best method [78] is an

essential step here, but not the only option, and any other pose estimation method (e.g. [130]) or

human detection method (e.g. [24]) may be employed here with proper adjustments.
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Figure 5.4: An Illustration for DCNNGM Pose Hypotheses Generation. The top row shows the
pose estimation results using DCNNGM [12], and the bottom row shows the tracked “right ankle”
for the neighboring frames and the combined detection heat-map. In this example, in frame 44,
the right leg was not correctly localized; however, in some of its neighboring frames, the right leg
was localized correctly. Therefore, by tracking using neighboring frames, we can generate good
detection hypotheses for ’right ankle’ and thus a better detection map.

We solve the second problem by tracking the pose estimation from neighboring frames. This pro-

cess not only generates more pose hypotheses in each video frame, but also makes the estimation

more robust and consistent (please refer to Fig. 5.4 for an illustration). In every frame, each body

part is tracked backward and forward to neighboring frames by a simple NCC (normalized cross
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correlation) tracker. NCC tracker is employed here due to its simplicity and efficiency, and since

the parts are only tracked for a few frames. We decided not to employ heavy-weight trackers not to

overkill the problem, although it is possible that the results may be improved slightly by employing

some fancier tracker (e.g. [51, 120]).

In each frame and for every body part, by tracking poses from neighboring frames, the outcome

will be several candidate locations (one from the detection in the current frame, and others are from

the tracking results from other frames). A 2D Gaussian is applied to each location and a detection

heat-map is obtained (please refer to Fig.5.4). By sampling many locations from the detection

heat-map, several body part hypotheses are generated. The values of the detection heat-map are

used as ΦM(p) in Eqn.5.1.

5.3.3 Abstract Body Part Hypotheses

After generating the body part hypotheses, either using the method in Section 5.3.1 or Section

5.3.2, the abstract body part hypotheses are obtained: the abstract body part hypotheses for a

single part are the same as its corresponding real body part hypotheses. And the abstract body

part hypotheses for a coupled part are the permutation of its corresponding left and right body part

hypotheses.

5.4 Single Part Tracklets

Based on the abstract body part hypotheses generated in Section 5.3, we want to obtain several

best single part and coupled part tracklets through the video frames. The problem is how to select

one hypothesis from each frame ensuring that they have high detection scores and are consisten-

t throughout the frames. The relational graph for this problem is shown in Fig.5.5(a), and the

80



hypothesis graphs for single parts and coupled parts are shown in Fig.5.5 (b) and (c) respectively.

With the single part hypotheses, a single part tracklet hypothesis graph is built (Fig.5.5(b)) for

each single part (headTop and headBottom). Each node represents a single part hypothesis and

the detection score Φs(p) in Eqn.5.1 is used to assign the node an unary weight. Edges are added

between every pair of nodes from the adjacent frames. Binary weights are assigned to the edges

which represent similarities between hypotheses in adjacent frames. The binary weight is defined

as a combination of optical flow predicted spatial distance and Chi-square distance of HOG features

as follows:

Ψs(p
f , pf+1) = exp(−χ

2(Υ(pf ),Υ(pf+1) · ‖p̂f − pf+1‖22)
σ2

), (5.2)

where pf and pf+1 are two arbitrary hypotheses from frames f and f + 1, Υ(p) is the HOG feature

vector centered at location p, p̂f is the optical flow predicted location for pf in frame f + 1, and σ

is a parameter. The goal is to select one node from each frame to maximize the overall combined

unary and binary weights. Given an arbitrary selection of nodes from the graph ss = {sis|Fi=1} (F

is the number of frames), the objective function is given by

Ms(ss) =
F∑
i=1

Φs(s
i
s) + λs ·

F−1∑
i=1

Ψs(s
i
s, s

i+1
s ), (5.3)

where λs is the parameter for adjusting the binary and unary weights, and s∗s = arg maxss(M(ss))

gives the optimal solution. It is clear that the relational graph of this problem is a degenerated

tree (i.e. single branch tree, please see Fig.5.5(a)), and the problem can be solved using dynamic

programming efficiently. After the optimal solution is obtained, the selected nodes are removed

from the graph and the next optimal solution is obtained. This process is iterated for multiple times

in order to get several tracklets from the graph.
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Figure 5.5: Spatiotemporal Graph for Tracklet Generation. (a) Shows the relational graph for
the abstract body part tracklet generation. (b) Shows the tracklet hypothesis graph for single body
parts. Each node represents one hypothesis location of the body part in a specific frame, and edges
show the similarity between the connected body part hypotheses in adjacent frames. (c) Shows the
tracklet hypothesis graph for coupled parts. Each node represents a coupled body part hypothesis,
which is the combination of the corresponding symmetric body parts (that is why each node is
colored into two halves). The edges represent the similarities between connected coupled body
parts in adjacent frames. Note that, (b) and (c) are only illustrations, and for simplicity, not all
edges are shown.

5.5 Coupled Part Tracklets

The relational graph for the coupled part tracklets generation is the same as for the single part;

however, the nodes and edges are defined differently. In this case, each hypothesis node is com-
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posed of the locations of a pair of symmetric parts (e.g. left and right ankles). Fig.5.5(c) shows an

illustration of the graph. Such design aims to model the symmetric relationship between coupled

parts, including mutual location exclusions and appearance similarity in order to reduce double

counting. As discovered in previous research [85], double counting is a key issue which severely

hinders the pose estimation. Theoretically, tree based model [130] lacks the ability to model spatial

relationship of the coupled parts (e.g. left and right ankles). Furthermore, as discussed in Section

5.1, attempting to model such spatial relationship would inevitably induce simple cycles in the

graph which would severely increase the computational complexity. By introducing the coupled

parts, this dilemma could be effectively solved. In the coupled part tracklet hypothesis graph, each

node r = (p, q) represents a composition of a pair of symmetric parts p and q. Unary weights are

assigned to the nodes, which represent the detection confidence and the compatibility between the

two symmetric parts, is defined as:

Φc(r) =
(Φs(r.p) + Φs(r.q)) · (Λ(r.p)T · Λ(r.q)))

1 + e−|r.p−r.q|/θ
, (5.4)

where Φs is from Eqn.5.1, r.p and r.q respectively represent the left and right components of the

coupled part r, Λ(p) is the normalized color histogram of a local patch around p, the denominator

is the inverse of a sigmoid function which penalizes the overlap of symmetric parts, and θ is the

parameter that controls the penalty. The binary weights of the edges are computed as

Ψc(r
f , rf+1) = Ψs(r.p

f , r.pf+1) + Ψs(r.q
f , r.qf+1), (5.5)

where Ψs is from Eqn. 5.2.

Here, the goal is to select one node (which is a composition of a pair of symmetric parts) from each

frame to maximize the overall combined unary and binary weights. Given an arbitrary selection of
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nodes from the graph sc = {sic|Fi=1} (where F is the number of frames), the objective function is

Mc(sc) =
F∑
i=1

Φc(s
i
c) + λc ·

F−1∑
i=1

Ψc(s
i
c, s

i+1
c ), (5.6)

in which λc is the parameter to adjust the binary and unary weights, and s∗c = arg maxsc(M(sc))

gives the optimal solution. The problem can also be solved by dynamic programming efficiently,

and iterated for multiple times to get several tracklets.
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Figure 5.6: Spatiotemporal Graph for Pose Estimation in Videos. (a) is the pose relational
graph. Each node represents one abstract body part and edges represent the relationship between
the connected body parts. (b) is the pose hypothesis graph. Each node is a tracklet for the part, and
edges represent the spatial compatibility of connected nodes.
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5.6 Optimal Pose Estimation using Part Tracklets

Since the best tracklets for each abstract body parts are obtained by the methods introduced in

Section 5.4 and 5.5, the next step is to select the best ones which are compatible. The relational

graph, GT = (VT , ET ), for this final tracklet based optimal pose estimation is shown in Fig.5.6(a).

Each node represents an abstract body part, and the edges model the spatial relationships between

them.

Following the definitions of the abstract body parts and using the part tracklets generated for these

abstract body parts, a pose hypothesis graph can be built to get the optimal pose (as shown in

Fig.5.6(b)). In this graph, each node represents an abstract body part tracklet and edges represent

the spatial constraints. For each hypothesis tracklet node, s, depending on if it corresponds to

a single part or a coupled part, Es(s) from Eqn.5.3, or Ec(s) from Eqn.5.6 is used as its unary

weight ΦT (s). Let Ψd(pi, qj) = ωi,j · ψ(pi − qj) be the relative location score in [130] (ωi,j and ψ

are defined the same as in [130]), the binary weight between a pair of adjacent single part tracklet

nodes ss = {sis|Fi=1} and ts = {tis|Fi=1} is

ΨT (ss, ts) =
F∑
i=1

Ψd(s
i
s, t

i
s), (5.7)

the binary weight between a single part tracklet node ss = {sis|Fi=1} and an adjacent coupled part

tracklet node tc = {tic|Fi=1} is

ΨT (ss, tc) =
F∑
i=1

(Ψd(s
i
s, t

i
c.p) + Ψd(s

i
s, t

i
c.q)), (5.8)

and the binary weight between a pair of adjacent coupled tracklet part nodes sc = {sic|Fi=1} and
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tc = {tic|Fi=1} is

ΨT (sc, tc) =
F∑
i=1

(Ψd(s
i
c.p, t

i
c.p) + Ψd(s

i
c.q, t

i
c.q)). (5.9)

The problem is to select only one tracklet for each abstract body part in order to maximize the

combined unary (detection score) and binary (compatible score) weights. Given an arbitrary tree

selected from the hypothesis graph sT = {siT |
|VT |
i=1 }, the objective function is

MT (sT ) =
∑
viT∈VT

ΦT (siT ) + λT ·
∑

(viT ,v
j
T )∈ET

ΨT (siT , s
j
T ), (5.10)

where λT is a parameter for adjusting the binary and unary weights, and the optimal solution

s∗T = arg maxsT (M(sT )) can also be obtained by dynamic programming efficiently. The body

part locations in each frame are extracted from this final optimal solution.

5.7 Limb Alignment and Refinement

Most of the human pose estimation methods (e.g. [130, 78, 12]) do not infer the anatomical

left/right body parts (some exceptions: [42, 110]), which means that they only infer whether the

parts are “visually” left or right (we call this “visual left/right” body parts). Of course, this relies

on the training data annotations and theoretically there is nothing wrong with it; however, some-

times it is problematic. For instance, in Fig.5.8(C5), the anatomical left and right knees appear

“visually” right and left respectively in the frame, but the anatomical left and right ankles appear

“visually” left and right respectively in the frame. In this case, failing to infer which knees corre-

spond to which ankles will result in incorrect poses (e.g. Fig.5.8(A3),(B3) and (C3)). The proposed

framework, so far (until Section 5.6), does not have an effective mechanism to handle this issue,

therefore we deal with it in this section.
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Figure 5.7: An Illustration for Limb Alignment and Refinement. (b) is an illustration for matching
a single limb with its reference. J1, J2 are the two joints corresponding to the limb detection,
and J1∗, J2∗ are the two joints for the reference limb. (a) shows the limb alignment process: by
matching with the limb part configurations from DCNNGM results, the limb part configurations
(lower legs) can be inferred correctly. (c) shows the limb refinement process: by matching with
the limb configurations from neighboring frames, the wrong limb configuration (please see frame
10, lower legs) can be corrected.
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Here, we define limb inference problem as the problem to determine the left-right relationship

between adjacent coupled part pairs (e.g. to decide which knee matches with which ankle). Here

“limb” has a specific definition, which refers to “upper arms”, “lower legs”, and so on, not for

“full arms” or “full legs”. So far, we do not have an effective scheme for limb inference, thus

although each body part’s localization has improved, there are still some mismatches (please see

Fig.5.8). This is because during the previous steps, we have not exploited limb inference results

from image based pose estimation. We would like to utilize this information from DCNNGM [12]

results. Although the body part localization results from DCNNGM are not as good as obtained

by the proposed method, the limb inferences are much better and in most of the cases DCNNGM

method can infer them correctly.

5.7.1 Limb Alignment

Based on the assumption that the limb inferences of the DCNNGM are correct in most of the video

frames, we align our results with them. As illustrated in Fig.5.7 (b), a limb mismatching function

is defined based on the joint locations of the reference limb and estimated limb. The mismatch

score is defined as:

Ms(L,L) = (‖L(1)− L(1)‖22 + ‖L(2)− L(2)‖22), (5.11)

where L and L denote the detected limb and reference limb respectively (in this situation, L is the

results from DCNNGM [12]). L(1), L(2),L(1),L(2) are the two joint locations of the limbs.

For a pair of limbs (i.e. the left and right limbs), the mismatching score is defined as

Mp(L
l, Lr|Ll,Lr) = C(Ll, Lr|Ll,Lr) · (Ms(L

l,Ll) + Ms(L
r,Lr)), (5.12)

88



where C(Ll, Lr|Ll,Lr) is a limb intersection penalty function which is defined as

C(Ll, Lr|Ll,Lr) =


c Ll, Lr are compatible with Ll,Lr

1− c otherwise
(5.13)

where “compatible” means both Ll, Lr and Ll,Lr intersect each other, or both of them do not

intersect each other.

Using the mismatching function for each pair of limbs in each frame, the configuration which has

lower mismatching score is selected to be the correct limb inference. For instance in Fig.5.7(a),

compared to the DCNNGM reference, the bottom configuration of the lower legs has lower mis-

matching score, thus it is considered to be the correct limb inference for lower legs. It can be seen

from this example that the proposed method gives better joint localization results (i.e. for feet),

however potentially wrong limb inferences. Using DCNNGM limb inference results, the aligned

results are now better in both the joint localization and limb inferences.

5.7.2 Limb Refinement

The limb alignment can correct most of the mismatched limbs; however, sometimes DCNNGM

also makes wrong limb inference, therefore only relying on the limb alignment does not solve

the limb inference problem completely. Consequently, the limb inferences in neighboring frames

is utilized to refine the results. Similar to Eqn.5.12, a mismatching score is introduced for two

neighboring frames (frame f and f + 1):

Mn(Llf , L
l
f+1, L

r
f , L

r
f+1|Llf ,Llf+1,Lrf ,Lrf+1)

= C(Llf , Lrf |Llf ,Lrf ) · C(Llf+1, L
r
f+1|Llf+1,Lrf+1) · (Ms(L

l
f , L

l
f+1) +Ms(L

r
f , L

r
f+1)), (5.14)
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where Ms and C are defined similarly as in Eqn.5.11 and Eqn.5.13. The best configurations of

the limbs through all the video frames are obtained simultaneously by minimizing the sum of

mismatching scores of all consecutive frames in the video using simple dynamic programming.

DCNNGM Ours Initial Ours after 
Alignment 

Ours after 
Refinement 

A1 B1 C1 D1 

A2
 
  

B2 C2 D2 

A3 B3 C3 D3 

A4 B4 C4 D4 

A5 B5 C5 D5 

Figure 5.8: An Illustration for Limb Alignments and Refinements. “DCNNGM” shows the initial
pose estimation; “Ours Initial” shows the results after “Abstraction” and “Association”; “Ours after
Alignment” and “Ours after Refinement” show the results after these two steps respectively.
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Fig. 5.8 shows some results of the proposed limb alignment and refinement schemes. As can be

seen from the results, joints are much better localized (please see the feet in Fig.5.8(B4) and (B5)

compared to (A4) and (A5)); however, the limb inferences are not correct in some frames (e.g.

the lower legs in Fig.5.8(B1) and (B2)). After the limb alignment, most of the limb inferences

are corrected (e.g. the lower legs in Fig.5.8(B1) and (B2)), however some of them are still not

perfect (e.g. Fig.5.8(C3) and (C5)). After the limb refinement, these errors are corrected (e.g.

Fig.5.8(C3) and (C5)). Please note that the “limb alignment” sometimes deteriorate the results

(e.g. please compare Fig.5.8(C5) to (B5)), and this is because the DCNNGM made a wrong limb

inference (e.g. in Fig.5.8(A5)), which failed the limb alignment process. Nevertheless, the “limb

refinement” process corrected these errors and we achieve better performance (e.g. Fig.5.8(D3)

and (D5)).

5.8 Experiments

5.8.1 Datasets

We evaluated our method on three publicly available datasets:

Outdoor Pose Dataset: this dataset was collected by the authors of [85], which contains six video

sequences from outdoor scenes. There are a lot of self-occlusions of the body parts in this dataset.

Annotations of more than 1,000 frames are provided by the authors.

Human Eva-I: this dataset [100] contains human activities in indoor controlled conditions. The

activities are synchronized with a ground truth of 3D motion capture data, which can be converted

into 2D joint locations. In order to have a fair comparison with [85], we use 250 frames from the

sequences: S1 Walking, S1 Jog, S2 Jog captured by camera 1.
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N-Best Dataset, this dataset was collected by the authors of [78] and has four sequences in total.

As a fair comparison to [85], we also report results on sequences walkstraight and baseball.

5.8.2 Evaluation Metrics

Similar to [85], we use PCP and KLE to evaluate our results. Probability of a Correct Pose (PCP)

[26] is a standard evaluation metric, which measures the percentage of correctly localized body

parts within a threshold. Keypoint Localization Error (KLE) [85] measures the average Euclidean

distance from the ground truth to the estimated keypoints, normalized by the size of the head in

each frame.

5.8.3 Comparison of Results

We compare the proposed method with three state-of-the-art video based human pose estimation

methods: N-Best method [78], Symmetric Tracking method [85], Mixing Body-part method [15],

and a deep learning baseline method (i.e. DCNNGM [12]); we did not compare with some up-

per body pose estimation/tracking methods [95, 108], since they focus on the modeling of hand-

s/elbows using motion and appearance features but do not handle other body parts. Since [15]

was designed for upper-body pose estimation, we re-implemented its algorithm by reusing most of

their implementation but extended it to a full-body detection model. Quantitative results are shown

in Table 5.1, 5.2 and 5.3, and qualitative results are shown in Fig.5.9, 5.10, 5.11, 5.12, 5.13, 5.14,

5.15 and Fig.5.16. Note that the figures for Symmetric Tracking method are re-produced from

figures in [85] since the code is not publicly available.
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Table 5.1: Comparisons with the state-of-the-art methods and intermediate stages of the proposed
method, on Outdoor Dataset [85] . Note that PCP is an accuracy measure, so the larger the better,
with a max of 1; and KLE is an error measure, so the smaller the better. Please refer to Section
5.8.3 for a detailed discussion.

Outdoor Dataset [85]

Metric Method Head Torso U.L L.L U.A. L.A. Average

PCP

Sym-Trk [85] 0.99 0.86 0.95 0.96 0.86 0.52 0.86

N-Best [78] 0.99 0.83 0.92 0.86 0.79 0.52 0.82

Mix-Part [15] 0.87 0.97 0.68 0.89 0.78 0.52 0.79

DCNNGM [12] 1.00 1.00 0.98 0.94 0.94 0.85 0.95

Ours HPEV [136] (Baseline) 0.92 1.00 0.84 0.73 0.68 0.47 0.77

Ours HPEV [136] (Abt. Only) 0.99 1.00 0.89 0.77 0.72 0.53 0.82

Ours HPEV [136] (Asc. Only) 0.99 1.00 0.87 0.76 0.79 0.56 0.83

Ours HPEV [136] 0.99 1.00 1.00 0.97 0.91 0.66 0.92

Ours (HPEV [136] + DCNNGM) 1.00 1.00 0.96 0.93 0.81 0.77 0.91

Ours Final (HPEV [136] + DCNNGM + A.R.) 1.00 1.00 0.97 0.98 0.95 0.88 0.96

KLE

Sym-Trk[85] 0.39 0.58 0.48 0.48 0.88 1.42 0.71

N-Best [78] 0.44 0.58 0.55 0.69 1.03 1.65 0.82

Mix-Part [15] 0.31 0.72 0.91 0.36 0.44 0.72 0.58

DCNNGM [12] 0.18 0.15 0.28 0.32 0.27 0.34 0.26

Ours HPEV [136] (Baseline) 0.58 0.45 0.61 0.78 0.75 1.11 0.71

Ours HPEV [136] (Abt. Only) 0.16 0.23 0.48 0.69 0.55 0.78 0.48

Ours HPEV [136] (Asc. Only) 0.16 0.20 0.47 0.64 0.44 0.71 0.44

Ours HPEV [136] 0.19 0.22 0.35 0.37 0.41 0.61 0.36

Ours (HPEV [136] + DCNNGM) 0.18 0.15 0.38 0.36 0.38 0.38 0.30

Ours Final (HPEV [136] + DCNNGM + A.R.) 0.18 0.15 0.28 0.26 0.25 0.30 0.24
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Table 5.2: Comparisons with the state-of-the-art methods and intermediate stages of the proposed
method, on Human Eva-I Dataset [100]. Note that PCP is an accuracy measure, so the larger the
better, with a max of 1; and KLE is an error measure, so the smaller the better. Please refer to
Section 5.8.3 for a detailed discussion.

Human Eva-I Dataset [100]

Metric Method Head Torso U.L L.L U.A. L.A. Average

PCP

Sym-Trk[85] 0.99 1.00 0.99 0.98 0.99 0.53 0.91

N-Best [78] 0.97 0.97 0.97 0.90 0.83 0.48 0.85

Mix-Part [15] 0.99 1.00 0.90 0.89 0.96 0.62 0.89

DCNNGM [12] 1.00 1.00 1.00 0.93 0.98 0.74 0.94

Ours HPEV [136] (Baseline) 1.00 1.00 0.93 0.62 0.44 0.24 0.71

Ours HPEV [136] (Abt. Only) 1.00 1.00 0.98 0.66 0.43 0.30 0.73

Ours HPEV [136] (Asc. Only) 1.00 1.00 0.94 0.62 0.45 0.27 0.71

Ours HPEV [136] 1.00 1.00 1.00 0.94 0.93 0.67 0.92

Ours (HPEV [136] + DCNNGM) 1.00 1.00 1.00 0.96 0.63 0.67 0.88

Ours Final (HPEV [136] + DCNNGM + A.R.) 1.00 1.00 1.00 0.96 0.97 0.78 0.95

KLE

Sym-Trk [85] 0.27 0.48 0.13 0.22 1.14 1.07 0.55

N-Best [78] 0.23 0.52 0.24 0.35 1.10 1.18 0.60

Mix-Part [15] 0.13 0.40 0.23 0.16 0.14 0.24 0.22

DCNNGM [12] 0.19 0.42 0.15 0.17 0.17 0.22 0.22

Ours HPEV [136] (Baseline) 0.17 0.40 0.34 0.45 0.66 0.84 0.48

Ours HPEV [136] (Abt. Only) 0.17 0.41 0.29 0.41 0.66 0.75 0.45

Ours HPEV [136] (Asc. Only) 0.17 0.39 0.33 0.42 0.63 0.74 0.45

Ours HPEV [136] 0.16 0.42 0.13 0.15 0.20 0.24 0.22

Ours (HPEV [136] + DCNNGM) 0.19 0.42 0.17 0.17 0.29 0.26 0.25

Ours Final (HPEV [136] + DCNNGM + A.R.) 0.19 0.42 0.14 0.14 0.17 0.20 0.21
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Table 5.3: Comparisons with the state-of-the-art methods and intermediate stages of the proposed
method, on N-Best Dataset [78]. Note that PCP is an accuracy measure, so the larger the better,
with a max of 1; and KLE is an error measure, so the smaller the better. Please refer to Section
5.8.3 for a detailed discussion.

N-Best Dataset [78]

Metric Method Head Torso U.L L.L U.A. L.A. Average

PCP

Sym-Trk [85] 1.00 0.69 0.91 0.89 0.85 0.42 0.80

N-Best [78] 1.00 0.61 0.86 0.84 0.66 0.41 0.73

Mix-Part [15] 1.00 1.00 0.91 0.90 0.69 0.39 0.82

DCNNGM [12] 1.00 1.00 0.91 0.91 0.96 0.77 0.92

Ours HPEV [136] (Baseline) 1.00 1.00 0.92 0.87 0.87 0.52 0.86

Ours HPEV [136] (Abt. Only) 1.00 1.00 0.91 0.89 0.87 0.65 0.89

Ours HPEV [136] (Asc. Only) 1.00 1.00 0.93 0.91 0.87 0.55 0.88

Ours HPEV [136] 1.00 1.00 0.92 0.94 0.93 0.65 0.91

Ours (HPEV [136] + DCNNGM) 1.00 1.00 0.89 0.87 0.80 0.78 0.89

Ours Final (HPEV [136] + DCNNGM + A.R.) 1.00 1.00 0.92 0.92 0.97 0.87 0.95

KLE

Sym-Trk [85] 0.53 0.88 0.67 1.01 1.70 2.68 1.25

N-Best [78] 0.54 0.74 0.80 1.39 2.39 4.08 1.66

Mix-Part [15] 0.15 0.23 0.31 0.37 0.46 1.18 0.45

DCNNGM [12] 0.14 0.15 0.29 0.40 0.23 0.43 0.27

Ours HPEV [136] (Baseline) 0.15 0.19 0.36 0.49 0.32 0.84 0.39

Ours HPEV [136] (Abt. Only) 0.15 0.19 0.31 0.43 0.34 0.60 0.34

Ours HPEV [136] (Asc. Only) 0.15 0.17 0.27 0.42 0.29 0.68 0.33

Ours HPEV [136] 0.15 0.17 0.24 0.37 0.30 0.60 0.31

Ours (HPEV [136] + DCNNGM) 0.14 0.15 0.34 0.36 0.36 0.46 0.30

Ours Final (HPEV [136] + DCNNGM + A.R.) 0.14 0.15 0.26 0.29 0.23 0.34 0.24
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(a) 

(b) 

(c) 

(d) 

(e) 

Figure 5.9: Examples and Comparisons with the State-of-the-art Methods: (a) N-Best [78], (b)
Symmetric Tracking (Sym. Trk.) [85] , (c) HPEV [136], (d) DCNNGM [12] and (e) Ours. These
frames are from N-Best Dataset. Body parts are shown in different colors.
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(a) 

(b) 

(c) 

(d) 

(e) 

Figure 5.10: Examples and Comparisons with the State-of-the-art Methods: (a) N-Best [78], (b)
Symmetric Tracking (Sym. Trk.) [85] , (c) HPEV [136], (d) DCNNGM [12] and (e) Ours. These
frames are from N-Best Dataset. Body parts are shown in different colors.
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(a) 

(b) 

(c) 

(d) 

(e) 

Figure 5.11: Examples and Comparisons with the State-of-the-art Methods: (a) N-Best [78], (b)
Symmetric Tracking (Sym. Trk.) [85] , (c) HPEV [136], (d) DCNNGM [12] and (e) Ours. These
frames are from HumanEva I Dataset. Body parts are shown in different colors.
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(a) 

(b) 

(c) 

(d) 

(e) 

Figure 5.12: Examples and Comparisons with the State-of-the-art Methods: (a) N-Best [78], (b)
Symmetric Tracking (Sym. Trk.) [85] , (c) HPEV [136], (d) DCNNGM [12] and (e) Ours. These
frames are from Outdoor Dataset. Body parts are shown in different colors.
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(a) 

(b) 

(c) 

(d) 

(e) 

Figure 5.13: Examples and Comparisons with the State-of-the-art Methods: (a) N-Best [78], (b)
Symmetric Tracking (Sym. Trk.) [85] , (c) HPEV [136], (d) DCNNGM [12] and (e) Ours. These
frames are from Outdoor Dataset. Body parts are shown in different colors.

100



(a) 

(b) 

(c) 

(d) 

(e) 

Figure 5.14: Examples and Comparisons with the State-of-the-art Methods: (a) N-Best [78], (b)
Symmetric Tracking (Sym. Trk.) [85] , (c) HPEV [136], (d) DCNNGM [12] and (e) Ours. These
frames are from Outdoor Dataset. Body parts are shown in different colors.
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(a) 

(b) 

(c) 

(d) 

(e) 

Figure 5.15: Examples and Comparisons with the State-of-the-art Methods: (a) N-Best [78], (b)
Symmetric Tracking (Sym. Trk.) [85] , (c) HPEV [136], (d) DCNNGM [12] and (e) Ours. These
frames are from Outdoor Dataset. Body parts are shown in different colors.
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(a) 

(b) 

(c) 

(d) 

(e) 

Figure 5.16: Examples and Comparisons with the State-of-the-art Methods: (a) N-Best [78], (b)
Symmetric Tracking (Sym. Trk.) [85] , (c) HPEV [136], (d) DCNNGM [12] and (e) Ours. These
frames are from Outdoor Dataset. Body parts are shown in different colors.
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1 3 5 7 9 

11 13 15 17 19 

1 3 5 7 9 

11 13 15 17 19 

1 3 5 7 9 

11 13 15 17 19 

Figure 5.17: Detailed Comparisons of Results from a Video Sequence. Here we want to show the
consistency of the results for the proposed method. Please note the pose estimations for the legs:
the proposed method can localize the two ankles accurately and smoothly, while “HPEV” results
are also smooth but cannot localize the feet correctly in several frames, and “DCNNGM” results
are quite noisy and the performance vary a lot through the frames.

104



We also show detailed results to analyze the contributions of each step of the proposed method.

In Table 5.1, 5.2 and 5.3, “Ours HPEV (Baseline)” is the proposed method without using “Ab-

straction” or “Association”; “Ours HPEV (Abt. Only)” shows the results for only applying the

“Abstraction” step of our method; “Ours HPEV (Ass. Only)” shows the results for only using the

“Association” step of the proposed method; and “Ours HPEV” is the proposed method with “Ab-

straction” and “Association”. From these results we found that “Abstraction” is more important

than “Association” in the proposed method, due to the fact that it contributes more to the quan-

titative improvement. Furthermore, “Ours (HPEV + DCNNGM)” is the proposed method with

DCNNGM [12] detection + “Abstraction” + “Association”; and “Ours Final (HPEV + DCNNGM

+ A.R.)” shows the results with “Limb Alignment and Refinement” steps added to the system. As

we can see from the results, combining DCNNGM with our method does not necessarily improve

the results (actually results deteriorate slightly). This is due to the fact that our original method

[136] can not infer the limb configurations accurately (please see Fig.5.8); however, the proposed

method has better joint localization results (please see Fig.5.8). Although PCP and KLE do not

measure the joint localization accuracy, we can see the joint localization improvement from the

figure and also from the final results. Our method boosts the average PCP accuracy above 0.95

for all the datasets. Compared to the state-of-the-art methods,the average improvement in KLE is

more than 10%, for PCP we reduced the error by about 15%, which means the proposed method

can localize the body parts much more accurately.

From these results, a good question to ask is why there is more improvement in KLE compared to

PCP. We believe PCP is a relatively loose measure, and the state-of-the-art methods can already get

about 0.8, which means 80 percent of the parts could be localized correctly following the PCP cri-

teria. The possible improvement margin is only 0.2 and our improvement is 0.15. Another reason

is that, based on the definition of PCP [26], the parts would be considered ‘correctly’ localized if

the overlap ratio is below a threshold; however, KLE measures the distance between the body part
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and the ground truth. Therefore, sometimes it happens that a body part is considered ‘correctly’

localized by PCP but still it is relatively far from the ground truth. As shown in Fig.5.18, both body

parts shown in pink circles are ‘correctly’ localized following the PCP criteria, however it is clear

that our part estimations are much closer to the real locations of the body parts.

Sometimes the results are not fully reflected by the numbers. We show detailed results for some

consecutive frames (sampled every two frames) in Fig.5.17, and here we only compare our method

with two best performing methods. As we can see clearly that the proposed method performs much

better (please note the legs, in particular), and the poses are much consistent and all the body parts

are located quite precisely. However, when we look at the numbers, the PCP results are exactly the

same, and KLE numbers do not reflect the big improvement.

Implementation Details: We process 15 consecutive frames each time. For Eqn.5.3 and 5.6, we

normalized the unary and binary weights in each frame between 0 and 1. We use α = 0.5 in

Eqn.5.1, and λc = λs = λT = 1 for Eqn.5.3,5.6 and 5.10. For σ in Eqn.5.2 and θ in Eqn.5.4,

we use 10% of the median height (normally 15-30 pixels) of N-Best poses [78] obtained from the

step in Section 5.3. For each real body part (Section 5.3), we generate 20 hypotheses, and for each

abstract body part we select the top 10 tracklets (Section 5.4 and 5.5). In Eqn.5.13, we use c = 1/3

5.8.4 Computation Time

We performed experiments on a desktop computer with Intel Core i7-3960X CPU at 3.3GHz and

16GB RAM. On average, to process one frame (typical frame size: 600× 800, we resize the larger

frames), the Matlab implementation took 0.5s to generate the body part hypotheses and weights,

0.5s to build the graph and compute the tracklets, and it took 0.1s to build the pose hypothesis

graph (Section 5.6) and get the optimal solution. The limb alignment and refinement took less than

2s for 100 frames.
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Sym. Trk. Ours 

Figure 5.18: The Detailed Comparisons of the Results Obtained by Symmetric Tracking (Sym.
Trk. [85]) and the Proposed Method. This example shows that the body part location estimation
could be considered ‘correctly’ by PCP [26], but would induce larger error using KLE [85]. For
example, for the arms in the top figures and legs in the bottom figures, results for both methods
satisfy the PCP criteria; however, our method would have much smaller KLE since the estimated
body parts are much closer to the ground truth.

5.8.5 Limitations and Failure Cases

Although, the proposed method works quite well on the datasets, it still has some limitations and

possible failure cases (please refer to Figure 5.19). The main reason for the failure cases is that

the proposed method relies on the pose hypothesis generation (i.e. using N-Best method [78] or

DCNNGM [12]) to generate multiple hypotheses for each body parts in each frame. And if the

hypothesis generation method can not generate feasible body part hypotheses, the proposed method
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will fail. Figure 5.19 shows some failure cases (even though they may not be totally ’failed’ but

have larger errors) and they can be classified into three cases. 1) Occlusions (the left three images):

if the body parts are occluded, image based pose estimation methods [78, 12] can not predict the

exact locations for both the body parts accurately. 2) One or more body parts are far away from the

body center (the right three images): if the body parts are far away from the body center, they will

be penalized by the spatial constraints from the graphical model in [78, 12]. 3) The human pose in

the frame is very different from the poses in the training set (image 1). In the training set of pose

estimation model, most of the frames are captured from frontal views.

Figure 5.19: Failure Cases. Some of the failure cases are caused by occlusion (1-3), and some are
caused by failed detection of joints (4-6).
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5.9 Summary

We have proposed a tree-based optimization method for human pose estimation in videos. We have

demonstrated that, by using the temporal information within the frames of a video, the performance

of human pose estimation in videos can be significantly improved over the the image based pose

estimation methods (even for deep learning methods). Our main contribution is mostly focused on

reformulating the problem to remove the simple cycles from the graph at the same time maintaining

the useful connections at the greatest possible extent, in order to transform the original NP-hard

problem into a simpler tree based optimization problem, for which the exact solution exists and

can be solved efficiently. It is clear from the experiments that the proposed approach not only

elegantly formulates the problem, but also dramatically improves the human pose estimation results

in videos. The proposed formulation is general, it has a potential to be employed in solving some

other problems in computer vision.
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CHAPTER 6: CONCLUSION AND FUTURE WORK

6.1 Conclusion

We have demonstrated in this dissertation that by properly formulating the problems into spa-

tiotemporal graphs, three important video based problems can be solved efficiently and accurately.

Two of the algorithms (video object segmentation and pose estimation) introduced in this disserta-

tion can obtain exact solutions, which means that they do not get stuck into local maxima/minima.

Furthermore, we have demonstrated that the same dynamic programming solution can be applied

to above two problems.

In Chapter 3, we have proposed a novel and efficient directed acyclic graph (DAG) based approach

to segment the primary moving object in videos. The major contribution is that we formulate the

problem into a DAG, for which the inference can be efficiently performed by dynamic program-

ming. The results from the graph inference are consistent object proposals for all the video frames.

This approach also uses innovative mechanisms to compute the ‘objectness’ of a region and sim-

ilarity between object proposals across frames. A final step with GMM and MRF ensures an

accurate pixel-level video object segmentation. The proposed approach outperforms the existing

methods on the publicly available datasets.

In order to handle multiple videos, in Chapter 4, we have formulated the video object discovery

and co-segmentation problem into a Regulated Maximum Weight Clique (RMWC) Problem and

solved it using a modified version of Bron-Kerbosch Algorithm. The success of the proposed

method relies on: 1) use of the objectness measure to obtain spatially coherent region proposals, 2)

tracking of object proposals, which selects proposals with consistent appearance and smooth mo-

tion over time, and 3) use of different weighting functions for inter-video and intra-video matching
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for graph construction, which results in improved grouping. Experimental results have shown that

the method outperforms the state-of-the-art video co-segmentation methods.

Chapters 3 and 4 aim to segment generic objects from videos. However, human, as the most

important object class in videos, is deformable and which makes it very difficult to segment using

video object segmentation/co-segmentation methods. Therefore, in Chapter 5, we have proposed

a tree-based optimization method for human pose estimation in videos, which can be employed

to improve the human segmentation in videos. We have demonstrated that, by using the temporal

information within the video frames, the performance of human pose estimation in videos can be

significantly improved over the the image based pose estimation methods. Our main contribution

is mostly focused on reformulating the problem to remove the simple cycles from the graph at the

same time maintaining the useful connections at the greatest possible extent. By doing this, we

effectively transform the original NP-hard problem into a simpler tree based optimization problem,

for which the exact solution exists and can be solved efficiently. It is clear from the experiments that

the proposed approach not only elegantly formulates the problem, but also dramatically improves

the human pose estimation results in videos.

In summary, in this dissertation, we have investigated three problems in computer vision and em-

ployed spatiotemporal graphs to solve them. For each problem we have different formulations and

solutions, but all of them fall into the domain of spatiotemporal graphs. With the spatiotemporal

graph formulation, most of the algorithms employed in the dissertation can give us exact solutions.

We have compared our results with the state-of-the-art methods on publicly available datasets, and

for all of the three problems, we have dramatically improved the results.

111



6.2 Future Work

In this dissertation, we have shown the success of applications of spatiotemporal graphs in com-

puter vision problems and improved performances on publicly available datasets. However, this is

not the end of the research, and further improvements of the methods are needed. Also, inspired

by the work of this dissertation, more problems can be explored in a similar way by spatiotemporal

graph formulations, such as multi-object tracking, action co-localization, feature point matching,

etc. Since we have different formulations and solutions for each of the three problems we explored

in the dissertation, we will introduce the future works for each of the problems as follows.

For video object segmentation, the proposed method is highly dependant on the object proposal

methods, and cannot handle occlusions very well. Further research is needed to fuse the object

proposal methodology with the graph formulation. Also, more robust graph formulation is needed

to handle occlusions. Similar formulations and solutions can be extended to online multi-object

tracking. For this tracking problem, the objects can be represented by nodes and the spatial con-

straints between each pair of he objects can be represented by edges. The graph can be simplified

properly into a tree, and exact solutions can be obtained efficiently. This can also be applied to

crowd tracking in which many objects are moving and spatial constraints are crucial.

For video object co-segmentation, the performance still needs to be improved. Although the

method proposed in this dissertation outperforms the state-of-the-art methods, the accuracies are

still low. A major issue for the existing methods is that the features are not robust enough to cap-

ture the similarity for the objects in different videos, and deep learning methods can be employed

to solve this issue. The formulations and solutions can be extended to action co-localization, for

which the inputs are multiple videos which contain the same actions, and we want to localize

these actions simultaneously. Different features have to be used in this problem, but the graph

formulations can be very similar to those in video object co-segmentation.
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For human pose estimation in videos, a major drawback of the existing methods is that they rely

on the image-based pose estimation results. Motion information is important in videos to infer

the locations of body parts. Therefore, an important future research is how to combine the motion

information within the deep learning framework to further improve the joint localization accuracy.

Similarly, spatiotemporal graphs can be employed to solve the problem of feature point matching

and image registration in videos. Traditional methods handle each feature point separately; how-

ever, in videos, the spatiotemporal information is also important for feature point matching, since

nearby feature points usually have their matches within a small neighborhood. A matching score

can be assigned to each feature point. The spatiotemporal constraints can be applied to the neigh-

boring points. And the objective is to match the feature points while keeping their spatiotemporal

relationship.

Of course the future works are not limited to these mentioned above, and both theoretical and

practical aspects of the spatiotemporal graphs and their applications need further investigation.

Also, the applications of spatiotemporal graphs are not limited to computer vision, they can be

employed in other disciplines, such as civil engineering, weather forecasting, etc.
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