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ABSTRACT

The Java Modeling Language (JML) describes the functional behavior of Java classes and methods

using pre- and postconditions. However, standard pre- and postcondition specifications cannot ver-

ify calls to higher order methods (HOMs). JML uses model program specifications to reason about

HOMs. This thesis describes the implementation of model programs in the OpenJML tool. The

implementation includes parsing, type checking, and matching of model program specifications

against the code.
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CHAPTER 1: INTRODUCTION

The Java Modeling Language (JML) is a behavioral interface specific language (BISL) [2] which

is designed to specify Java modules. It is based on Design by Contract (DBC) approach, which was

proposed by Bertrand Meyer and also based on the model-based specification approach of Larch

family of interface specification languages [17] and the refinement calculus [16]. The main idea

behind DBC is that a class and its clients have a contract with each other. The client must guarantee

certain conditions before calling a method defined by the class, and in return the class guarantees

certain properties that will hold after the call. The use of such pre- and postconditions to specify

software dates back to Hoare’s paper on formal verification [14]. These pre- and postconditions are

expressed as structured Java comments or Java annotations that use Java-like logical expressions by

using OpenJML - a tool set for JML, built on the OpenJDK framework for Java. But standard pre-

and postconditions cannot verify calls to higher order methods (HOMs) - methods which makes

mandatory calls using dynamic dispatch.

So in JML, model program specifications are used to reason about HOMs. The model program

specifications are described in Shaner, Leavens and Naumann’s paper [1]. Model programs are

used to write specifications of HOMs, which exposes information about the method’s mandatory

calls, while hiding some details. This is achieved by checking that HOMs implement a model

program specification, using refining statements. But a practical implementation of refining state-

ments and verification of calls to HOMs in OpenJML does not exist. This thesis will explain the

implementation of refining statements in OpenJML and first step of verification of calls to HOMs.
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The Problem

The practical implementation of refining statements and verification of calls to HOMs are exist-

ing problems in OpenJML. Implementation of refining statements is very important as it helps

in reasoning about the HOMs, which are the methods that makes calls to methods that are either

dynamically dispatched or have weak specifications. Reasoning about HOMs through refining

statements is done by dynamically checking that HOMs implement model program specifications.

To understand what is involved in the implementation of JML model programs, consider an HOM

example as noted in Shaner et al [1, p.2] : “As shown in Figure 1.1, the bump() method

in the Counter class makes a mandatory call to the actionPerformed() method in the

Listener() interface. The specifications of the actionPerformed() method are weak be-

cause it has no pre- and postconditions. The only constraint on its actions is given by the specifica-

tion’s assignable clause. This clause names this.objectState, which is a datagroup defined

for class Object. A datagroup is a declared set of fields that can be added to in subtypes [15],

thus making bump() method as a HOM. To reason about the bump() method, model program

specifications are written as shown in Figure 1.2. The keyword model_program introduces

the model program. Its body contains a statement sequence consisting of a specification state-

ment followed by an if-statement. The specification statement starts with normal_behavior

and includes the assignable and ensures clauses. Specification statements can also have a requires

clause, which would give a precondition; in this example the precondition defaults to true. A

specification statement describes the effect of a piece of code that would be used at that place in

an implementation. Such a piece of code can assume the specification statement’s precondition

and must establish its postcondition, assigning only to the datagroups permitted by its assignable

clause. Thus specification statements can hide implementation details and make the model pro-

gram more abstract. Although the example uses a specification statement in a trivial way, they can
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be used to abstract arbitrary pieces of code, and have been used to do so in the refinement calculus

[16].”

Figure 1.1: Java Class with JML specifications (quoted from [1])
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In the implementation of model programs1, there are two steps after parsing: matching and verifi-

cation of refining statements. The first step in the implementation is matching the code against the

model program, which yields a set of verification conditions for parts of the code that implement

the model program’s specification statements and also whether the code has the form specified

by the model program. The matching is done by verifying that the code is exactly matched with

the model program except the specification statements. The specification statements in the model

program are matched against the refining statements in the code. In the example shown in figure

1.3,the bump()’s method code refining statements match the model program specifications in the

figure 1.2 and the code that calls to actionPerformed() method matches the code in the

model program. Therefore, the bump() method code matches the model program. The second

step in the implementation is verification of refining statements which is done by proving that the

refining statement implements its specifications.

Figure 1.2: Model Program for the bump() method (quoted from [1])

1This discussion is adapted from Shaner et al’s work[1, p.5]
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Figure 1.3: Code matching model program specification (quoted from [1])

Related Work

Shaner, Leavens and Naumann [1] proposed the model program syntax and semantics in JML for

verification of higher order methods. Their idea for reasoning about HOMs is adapted from Büchi

and Weck’s grey-box approach [3] , [4] , [5], which was the original work about the specification

and verification of such HOMs. In the work of Shaner et al., the verification of HOM is prescribed

as two tasks, the first task is to verify the HOM implements the model program specification and

the second task is to copy rule which copies the model program to call site. It also uses copy

rule to verify the calls to HOMs at client side. In the copy rule the body of the model program is

substituted for the HOM call at client with appropriate substitutions. But they did not implemented

their idea of verification of calls to HOMs, which is done by this thesis.
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Outline of Thesis

The next chapter gives details about the background of JML and model program. Chapter Three

discuss about the parsing, verification of HOM with model program specification and testing of

model program implementation in OpenJML. Discussion about the future work is discussed in

Chapter Four and the conclusion is presented in Chapter Five.
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CHAPTER 2: BACKGROUND ON JML AND MODEL PROGRAMS

Background on JML

JML is a formal behavioral interface specification language for Java, which is based on design by

contract (DBC). Before calling a method the client has to guarantee certain conditions and once

the method is called, the class in return assures certain properties. These contracts are achieved by

specifying the method with preconditions and its postconditions.

These JML specifications are written in comment style. Special JML comments start with at-signs

(@). If they have single line specification then it is written by starting //@ and if the specifications

are of multiple lines, then they are enclosed by /*@ ...@*/. As the specifications are written

as comments, so these are ignored by a Java compiler whereas a JML compiler understands them

and checks the behavior of the methods against these specifications, and if the behavior of the

method does not align with these specifications, then it throws an error. Sample code with single

and multiple lines of JML specifications are shown in Figure 2.1
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Figure 2.1: Pre- and Postconditions of sqrt() method (quoted from [12])

As shown in Figure 2.1, the precondtion is x>=0.0, which means that before calling the sqrt()

method the argument, x, must be non-negative. So any client calling the sqrt() method has to

satisfy this preconditions. In return the sqrt() method ensures that its postconditions are true

after the end of the method. These postconditions are further classified into normal postconditions

and exceptional postconditions. Normal postconditions ensure that they are true when method

executes and terminates normally without any exception being thrown. The normal postcondition

of sqrt() method is shown in figure 2.2, where these are true when no exception occurs.
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Figure 2.2: Normal postconditions of sqrt() method (quoted from [12])

The second category of postconditions are exceptional postconditions, which are specified by using

the signals clause. In general Java allows a class or a method to throw run time exceptions but

JML only allows a method to throw runtime exceptions only when it is either specified in a method

throws clause or specified in a signals_only clause. By default the signals_only clause

allows the exceptions that are mentioned in method’s throws clause. As shown in figure 2.1,

the sqrt() method doesn’t have any throw clause so it doesn’t allow any exception to be thrown.

An example of an exceptional postconditions is shown in figure 2.3, where it is shown that the

specifications are true when the method throws an IllegalArgument exception. This prior

knowledge on two categories of postconditions helps an user in writing the postconditions in the

model program specifications and in the refining statements.
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Figure 2.3: Exceptional postconditions example (quoted from [13])

Model Programs

Model programs are special types of method specifications which are designed to verify calls to

higher order methods. HOMs are methods that makes calls to mandatory methods. Mandatory

methods are ones that are either dynamically dispatched when called or that have weak specifi-

cation. A dynamically dispatched method is one that is always called using dynamic dispatch;

examples are abstract methods and methods defined in an interface.

An example of a method with a weak specification is shown in figure 2.4, where the Listener’s

actionPerformed() method only has an assignable clause, which specifies that the data-
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group that belongs to objectState can be assigned. But it does not describes the pre- and

postconditions of the methods, which makes it difficult to reason about its behavior. Such methods

are known as mandatory methods and the ones which makes calls to such methods will be known

as HOMs. In order to reason about calls to HOMs, a model program specifications are used. The

idea of the model program specifications are adapted from Shaner et al’s work[1].

Figure 2.4: An example of a method with a weak specifications (quoted from [1])

Model Programs are method specifications that expose an abstract version of HOM’s code to

clients. But a model program does not expose the complete code of the HOM, it exposes only about

the information of the calls to mandatory methods while hiding rest of the code implementation.

Model programs are introduced into a JML specifications with the keyword model_program.

An example of the model program is shown in Figure 2.5, where the body of the model program

starts with the specification statements that start with the keyword normal_behavior. The

specification statement’s requires clause describes its preconditions, the ensures clause de-

scribes its postconditions and the assignable clause describes the set of datagroups that are

permitted to be assigned. By using specification statements the implementation details of the code

are hidden and rest of the body exposes only the code that calls the mandatory methods as shown

in figure 2.5.
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Figure 2.5: Model program (quoted from [1])
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CHAPTER 3: SOLUTION APPROACH

This chapter details the implementation of refining statements in OpenJML and also the verification

of calls to HOMs by matching the code against model program specification. The First section

gives details about how refining statements are parsed in OpenJML. The second section gives

details about matching the code against model program specifications. The third section gives

details about testing different scenarios to check that the implementation of refining statements

and the first step in verification of calls to HOMs is done properly.

Parsing

In a compiler construction, initially the code is scanned by a lexical analyzer and it is converted into

meaningful tokens. These tokens are analyzed against a context-free grammar (set of production

rules in a formal language) and then a syntax tree is constructed. This process is known as “pars-

ing” and a program which does parsing is known as a “parser”. In OpenJML, JMLParser.java

is the file which parses both Java and JML specifications. In order to parse the refining statements

in HOMs, first the parseStatement() method in JMLParser.java is used, because the

refining statements are kinds of statements. So in the parseStatement() method, when the

current token (obtained by using the jmlTokenKind() method) is equal to “refining”, then the

refining statements abstract tree is constructed, as shown in Figure 3.1.

In order to form a refining statement abstract tree, first obtain its access modifiers (which specify

the scope of the object) of the current method using the modifiersOpt() method; these are

stored in the field named mods. Then the mods are passed as an argument to the parseMethod-

Specs() method to obtain the method specifications. Once the specifications are obtained, they

13



are stored in the field named specs. After obtaining the specifications, each a case in the speci-

fication is checked if they has correct structure or not by using the isNone() method. Then the

immediate statement followed by the specifications is parsed using the parseStatement()

method and stored in the field named stmt.

Figure 3.1: Refining Statements Semantic Tree Representation

Then construct the refining statement tree using JMLTree’s method called JmlRefiningSta-

tement()method, as shown in the figure 3.3. This method creates an object of the JmlRefinin-

gStatement() class. The fields in the JmlRefiningStatement class are specs, which

contains the specification statements in the refining statements, stmt, which holds the statement,

jt, which holds the jml token (which is refining), and refiningSpecs, which is used to hold

the current context during walking through the parse tree for type checking (see the Type Checking

section). The field refiningSpecs is made static in order to get the context without creating

14



the object for the JmlRefiningStatement class. JmlRefiningStatement’s accept()

method is used for traversals in the Visitor pattern. For traversing through refining statement we use

JMLTreeScanner’s visitJmlRefiningStatement() method, as shown in figure 3.4.

Once the refining statement tree is created, it is attached to JML parse tree using jmlF at beginning

position of current token using pos (which in turn calls the pos() method). The source code for

parsing the refining statements are shown in figure 3.2

In order to print refining statements, JMLPretty’s visitJmlRefiningStatement()meth-

od which is shown in figure 3.5 is used. In this method the specifications of the refining statement

are printed by starting with the JML annotation comment style /*@ and then print the statement

of the refining statement and then end with the @*/.

Verification of HOM implementation with model program specifications

After parsing the refining statements, the next step is to verify if the HOM’s implementation sat-

isfies the model program specification. To verify that, the first step is matching which is done in

two parts. In the first part, specifications in the model program are matched with the specifications

in the refining statements. In the second part, the model program’s code that calls the manda-

tory method is matched with the code that calls the same mandatory method in the body of the

HOM. This is done through JMLAttr’s visitJmlModelProgramStatement()method by

traversing through a parse tree. When the tree traversal enters the model program statement, the in-

stance of refining statements of the current method are obtained by using the JmlRefiningStat-

ement’s getRefiningStatements()method. Once the refining statement are obtained, tra-

verse through the specifications of the refining statements and compare it with the model program

specifications. If they do not match then an error is thrown stating that the specs statements in the

15



refining and the model program do not match each other, if they match, then the HOM have imple-

mented the specifications in the model program. Once the specifications of the model program and

the refining statements are matched, then the code that calls to a mandatory method in the model

program is matched with the code that calls the same mandatory method in the body of the HOM

by using JMLAttr’s visitMethodDef() method which is shown in figure 3.7.

Testing

Once parsing and the verification of HOM are done, the next step is testing the code with different

scenarios. For testing JUnit is used. For testing TCBase’s helpTC method (shown in Figure

3.8) is used. The different test scenarios are as follows:

The first test case is shown in Figure 3.9, in which Counter’s bump() method is an example of

HOM, as it calls the actionPerformed() method which has weak specifications(no pre- and

post conditions). To reason about the verification of calls to the bump() method, the bump()’s

code is checked to know if the code has the form specified by the model program. In our example,

bump()’s code matches the model program. This is because the refining statement in the code

matches the specification statement in the model program, and the call to actionPerformed()

in the code matches the same mandatory call in the model program. Thus each piece of the code

matches a corresponding piece of the model program. The second test case is similar to first test

case except that the second test case has two HOMs namely bump() and bump2().

For the third test case as shown in Figure 3.12, different specifications for the model program and

the refining statements are written. The program throws an error stating that specs in the model

program and the refining statements do not match, which is mentioned by the user. As both the

errors matches with user defined errors, the test case is passed. For the fourth test case as shown

16



@Override
public JCStatement parseStatement() {

JCStatement st;
String reason = null;
JmlTokenKind jtoken = jmlTokenKind();
if (token.kind == CUSTOM) {

boolean needSemi = true;
if (jtoken != JmlTokenKind.ENDJMLCOMMENT) {

int pos = pos();
JmlSpecificationCase spc;
if (jtoken != null)

reason = jtoken.internedName() + " statement";
}
........
........
........
}else if (jtoken == JmlTokenKind.REFINING) {

nextToken();
JCModifiers mods = modifiersOpt();
JmlMethodSpecs specs = parseMethodSpecs(mods);
for (JmlSpecificationCase c : specs.cases) {

if (!isNone(c.modifiers)) {
jmlerror(c.modifiers.getStartPosition(),

getEndPos(c.modifiers),
"jml.no.mods.in.refining");

}
}
JCStatement stmt = parseStatement();
st = jmlF.at(pos).JmlRefiningStatement(REFINING,specs,stmt

);
storeEnd(st, getEndPos(specs));
needSemi = false;

Figure 3.2: Source code for refining statements and model programs in JMLParser.java

in Figure 3.13 the code that calls dynamically-dispatched method by HOM is missed in model

program, which causes an error that is mentioned by the user.

17



@Override
public JmlRefiningStatement JmlRefiningStatement(JmlTokenKind jt,

JmlMethodSpecs specs, JCStatement stmt) {
return new JmlRefiningStatement(pos,jt,specs,stmt);

}

/** This class represents Refining statement

*/
public static class JmlRefiningStatement extends JmlAbstractStatement {

public JmlMethodSpecs specs;
public JCStatement stmt;
public JmlTokenKind jt;
public static JmlRefiningStatement refiningSpecs;

protected JmlRefiningStatement(int pos,JmlTokenKind jt ,JmlMethodSpecs
specs, JCStatement stmt) {
this.pos = pos;
this.specs = specs;
this.stmt = stmt;
this.jt = jt;

}

public static JmlRefiningStatement getRefiningStatements(){
return refiningSpecs;

}

@Override
public void accept(Visitor v) {

if (v instanceof IJmlVisitor) {
((IJmlVisitor)v).visitJmlRefiningStatement(this);
refiningSpecs = this;

}

}

@Override
public <R,D> R accept(TreeVisitor<R,D> v, D d) {

return specs.accept(v,d);
}

}

Figure 3.3: Source code for refining statements in JMLTree.java

18



//Refining block
public void visitJmlRefiningStatement(JmlRefiningStatement that) {

scan(that.specs);
scan(that.stmt);

}

Figure 3.4: Source code for traversing the refining statements tree in JmlTreeScanner.java

//Refining statement
public void visitJmlRefiningStatement(JmlRefiningStatement that) {

try{
print("/*@\n\t");
print(that.jt.toString().toLowerCase()+" ");
JmlSpecificationCase spcCase = null;
List<JmlSpecificationCase> spcCases = that.specs.cases;
for(int i=0;i<spcCases.length();i++) {

spcCase = spcCases.get(i);
if(i==0)

print(spcCase+"\n");
else

print("\t"+spcCase+"\n");
}

print("\t*/\n");
that.stmt.accept(this);

} catch (IOException e) { perr(that,e); }
}

Figure 3.5: Source code for printing the refining statements in JmlPretty.java
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public void visitJmlModelProgramStatement(JmlModelProgramStatement that) {

JmlSpecificationCase modelProgramTree = (JmlSpecificationCase) that.
getItem();

List<JmlMethodClause> modelProgramclauses = modelProgramTree.clauses;

JmlRefiningStatement refiningTree = JmlRefiningStatement.
getRefiningStatements();

for (List<? extends JmlSpecificationCase> l = refiningTree.specs.
cases; l.nonEmpty(); l = l.tail){
List<JmlMethodClause> refiningClauses = l.head.clauses;
int i=0;
for(JmlMethodClause spcCase : refiningClauses){

if(spcCase.toString().compareToIgnoreCase(
modelProgramclauses.get(i).toString())==0){
i++;

}else{
log.error(that.pos,"jml.mismatch.arguments.in.refining.

modelprogram");
}

}

}
}

Figure 3.6: Source code for matching the specifications of the model program and the refining
statements in JMLAttr.java
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@Override
public void visitMethodDef(JCMethodDecl m) {

.......

.......

.......

if(jmethod.cases!=null){
if(jmethod.cases.cases.head.token == JmlTokenKind.MODEL_PROGRAM){

List<JCStatement> methodBodyStatements = jmethod.body.stats.tail
;

List<JCStatement> modelBodyStatements = jmethod.cases.cases.head.
block.stats.tail;

if(methodBodyStatements.size()==modelBodyStatements.size()){
for(JCStatement methodBodyStatement : methodBodyStatements){

for(JCStatement modelBodyStatement : modelBodyStatements)
{
if(methodBodyStatement.toString().compareTo(

modelBodyStatement.toString())!=0){
log.error(m.pos, "jml.mismatch.refining");

}
}

}
}else{

log.error(m.pos, "jml.mismatch.refining");
}

}
}
.......
.......
.......

}

Figure 3.7: Source code for matching the code that calls mandatory method in the model program
and in the body of HOMs in JMLAttr.java
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package org.jmlspecs.openjmltest.testcases;

import org.junit.Test;

import com.sun.org.apache.xpath.internal.axes.WalkerFactory;
import com.sun.tools.javac.comp.JmlAttr;
import com.sun.tools.javac.comp.JmlEnter;
import com.sun.tools.javac.tree.JCTree;
import com.sun.tools.javac.util.List;
import com.sun.tools.javac.util.Log;

import javax.tools.Diagnostic;
import javax.tools.JavaFileObject;

import org.jmlspecs.openjml.*;
import org.jmlspecs.openjmltest.TCBase;
import org.jmlspecs.openjmltest.TestJavaFileObject;
import org.jmlspecs.openjmltest.ParseBase;

import com.sun.tools.javac.parser.JmlScanner;
import com.sun.tools.javac.parser.Parser;
import static org.junit.Assert.fail;

public class TestRefiningStatements extends TCBase{

@Override
public void setUp() throws Exception {

super.setUp();
print = false;

}

Figure 3.8: Source code for testing - part a
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@Test
public void testModelProgramWithOneMethod(){

helpTC(" class Counter { \n"
+" private /*@ spec_public @*/ int count = 0; \n"
+ " private /*@ spec_public @*/ Listener lstnr = null; \n"
+ " /*@ assignable this.lstnr; \n"
+ " @ ensures this.lstnr == lnr; \n"
+ " @*/ \n"
+ " public void register(Listener lnr){ \n"
+ " this.lstnr = lnr; \n"
+ " } \n"
+" /*@ public model_program { \n"
+" @ normal_behavior \n"
+" @ assignable this.count; \n"
+" @ ensures this.count == \\old(this.count+1); \

n"
+ " @ if (this.lstnr==null) { \n"
+ " @ this.lstnr.actionPerformed(this.

count); \n"
+ " @ }\n"
+" @ } \n"
+" @*/ \n"
+" public void bump(){\n"
+" /*@ refining normal_behavior \n"
+" @ assignable this.count; \n"
+" @ ensures this.count == \\old(this.count+1); \

n"
+" @*/ \n"
+ " this.count = this.count+1; \n"
+ " if (this.lstnr==null) { \n"
+ " this.lstnr.actionPerformed(this.count)

; \n"
+ " }\n"
+" } \n"
+"} \n"
+ "interface Listener{ \n"
+ " void actionPerformed(int x); \n"
+ "} \n"
);

}

Figure 3.9: Source code for testing - part b
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@Test
public void testModelProgramWithTwoMethods(){

helpTC(" class Counter { \n"
+" private /*@ spec_public @*/ int count = 0; \n"
+ " private /*@ spec_public @*/ Listener lstnr = null; \n"
+ " /*@ assignable this.lstnr; \n"
+ " @ ensures this.lstnr == lnr; \n"
+ " @*/ \n"
+ " public void register(Listener lnr){ \n"
+ " this.lstnr = lnr; \n"
+ " } \n"
+" /*@ public model_program { \n"
+" @ normal_behavior \n"
+" @ assignable this.count; \n"
+" @ ensures this.count == \\old(this.count+1); \

n"
+ " @ if (this.lstnr==null) { \n"
+ " @ this.lstnr.actionPerformed(this.

count); \n"
+ " @ }\n"
+" @ } \n"
+" @*/ \n"
+" public void bump(){\n"
+" /*@ refining normal_behavior \n"
+" @ assignable this.count; \n"
+" @ ensures this.count == \\old(this.count+1); \

n"
+" @*/ \n"
+ " this.count = this.count+1; \n"
+ " if (this.lstnr==null) { \n"
+ " this.lstnr.actionPerformed(this.count)

; \n"
+ " }\n"
+" } \n"
+" /*@ public model_program { \n"
+" @ normal_behavior \n"
+" @ assignable this.count; \n"
+" @ ensures this.count == \\old(this.count-1); \

n"
+ " @ if (this.lstnr==null) { \n"
+ " @ this.lstnr.actionPerformed(this.

count); \n"
+ " @ }\n"
+" @ } \n"
+" @*/ \n"

Figure 3.10: Source code for testing - part c
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+" public void bump2(){\n"
+" /*@ refining normal_behavior \n"
+" @ assignable this.count; \n"
+" @ ensures this.count == \\old(this.count-1); \

n"
+" @*/ \n"
+ " this.count = this.count+1; \n"
+ " if (this.lstnr==null) { \n"
+ " this.lstnr.actionPerformed(this.count)

; \n"
+ " }\n"
+" } \n"
+"} \n"
+ "interface Listener{ \n"
+ " void actionPerformed(int x); \n"
+ "} \n"
);

}

Figure 3.11: Source code for testing - part d
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@Test
public void testUnMatchedModelAndRefiningSpecifications(){

helpTC(" class Counter { \n"
+" private /*@ spec_public @*/ int count = 0; \n"
+ " private /*@ spec_public @*/ Listener lstnr = null; \n"
+ " /*@ assignable this.lstnr; \n"
+ " @ ensures this.lstnr == lnr; \n"
+ " @*/ \n"
+ " public void register(Listener lnr){ \n"
+ " this.lstnr = lnr; \n"
+ " } \n"
+" /*@ public model_program { \n"
+" @ normal_behavior \n"
+" @ assignable this.count; \n"
+" @ ensures this.count == \\old(this.count-1); \

n"
+ " @ if (this.lstnr==null) { \n"
+ " @ this.lstnr.actionPerformed(this.

count); \n"
+ " @ }\n"
+" @ } \n"
+" @*/ \n"
+" public void bump(){\n"
+" /*@ refining normal_behavior \n"
+" @ assignable this.count; \n"
+" @ ensures this.count == \\old(this.count+1); \

n"
+" @*/ \n"
+ " this.count = this.count+1; \n"
+ " if (this.lstnr==null) { \n"
+ " this.lstnr.actionPerformed(this.count)

; \n"
+ " }\n"
+" } \n"
+"} \n"
+ "interface Listener{ \n"
+ " void actionPerformed(int x); \n"
+ "} \n"
,"/TEST.java:11: Specification statements in Refining and

Model Program do not match",19
);

}

Figure 3.12: Source code for testing - part e
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@Test
public void testModelProgramWithMissingCodeInRefiningBlock(){

helpTC(" class Counter { \n"
+" private /*@ spec_public @*/ int count = 0; \n"
+ " private /*@ spec_public @*/ Listener lstnr = null; \n"
+ " /*@ assignable this.lstnr; \n"
+ " @ ensures this.lstnr == lnr; \n"
+ " @*/ \n"
+ " public void register(Listener lnr){ \n"
+ " this.lstnr = lnr; \n"
+ " } \n"
+" /*@ public model_program { \n"
+" @ normal_behavior \n"
+" @ assignable this.count; \n"
+" @ ensures this.count == \\old(this.count+1); \

n"
+" @ } \n"
+" @*/ \n"
+" public void bump(){\n"
+" /*@ refining normal_behavior \n"
+" @ assignable this.count; \n"
+" @ ensures this.count == \\old(this.count+1); \

n"
+" @*/ \n"
+ " this.count = this.count+1; \n"
+ " if (this.lstnr==null) { \n"
+ " this.lstnr.actionPerformed(this.count)

; \n"
+ " }\n"
+" } \n"
+"} \n"
+ "interface Listener{ \n"
+ " void actionPerformed(int x); \n"
+ "} \n"
,"/TEST.java:16: Mandatory call in model program and in method

body do not match",21
);

}

}

Figure 3.13: Source code for testing - part f
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CHAPTER 4: DISCUSSION

OpenJML Control Flow

This section discusses the control flow of OpenJML, which is in the form of a flow chart shown

in figure 4.1. This may be helpful for someone who wants to contribute to OpenJML’s source

code. The flow chart gives details about each and every method and class that is part of the JML

compiler.

Future Work

The implementation of refining statements in OpenJML is the first step in the verification of calls

to HOMs, which is matching the code with the model program specifications, has been achieved

in this thesis. This work can be completed by achieving the second step in verification of calls to

HOMs, which is checking if the body of each refining statements implements its specification.
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Figure 4.1: Control Flow of JML compiler construction
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CHAPTER 5: CONCLUSION

The implementation of refining statements in OpenJML helps to verify HOMs with model program

specifications. During reasoning about the behavior of HOMs, refining statements in the imple-

mentation help to hide the implementation’s code details and expose only the specification of the

code. In this thesis I have implemented the refining statements in the OpenJML tool and verified

HOM implementation with model program specifications.
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