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Positron emission tomography (PET) is a commonly used imaging tool in the management of 

patients with lung cancer and is of considerable interest in quantitative imaging of the thorax. 

Mismatch of PET data with computed tomography (CT) attenuation correction (CTAC) due to 

respiratory motion is a known source of errors in PET imaging. In theory, this can be corrected by 

matching individual PET and CT phases which have been generated by respiratory-correlated PET 

and CT. However, due to the high variability of patient breathing patterns and the nature of the 

scanning time differences between PET and CT, current respiratory-gated CTAC protocols for the 

irregular breather may cause additional bias in the PET image values. A ten-fold extension of the 

CT scanning time duration helps reduce PET imaging bias, but leads to the higher radiation dose 

to the patient. Lowering the CT source flux level to reduce dose, however, leads to increased noise 



 

and bias. Here we test the possibility of using model based iterative reconstruction algorithms 

(MBIRs) for generating the sparse-view, ultra-low-dose (i.e. an order lower than current low-dose 

protocols) CTAC images for both phantom and patient PET data. We also propose a new variance 

estimation model, which considers statistical changes caused by the non-positivity correction 

process, for the MBIR algorithms. The model based iterative CT reconstruction approach does 

generate more accurate CTAC map compared to current approaches. However, since iterative 

reconstruction algorithms typically assume a normal distribution of the attenuation data, we tested 

if the assumption is still valid in the ultra-low-dose regime. The simulation and empirical ultra-

low-dose CT studies showed a skewed post-log likelihood distribution in certain ranges. The 

information delineates the estimation limits of model based iterative reconstruction approach on 

the ultra-low-dose CT imaging, and potentially helps guide scanning protocols customized for a 

lowest-reasonable radiation dose.    
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Chapter 1. MOTIVATIONS AND SIGNIFICANCE  

Both single-photon emission computed tomography (SPECT), and in particular positron emission 

tomography (PET), are unique in medical imaging for their high sensitivity and direct link to a 

physical quantity, i.e. radiotracer concentration. This gives PET and SPECT imaging unique 

capabilities for accurately monitoring disease activity for the purposes of clinical management or 

therapy development. However, to achieve a direct quantitative connection between the underlying 

radiotracer concentration and the reconstructed image values several confounding physical effects 

have to be estimated, notably photon attenuation and scatter. With the advent of dual-modality 

SPECT/CT (CT: computed tomography), PET/CT, and PET/MR (MR: magnetic resonance 

imaging) scanners, the complementary CT or MR image data can enable these corrections, 

although there are unique challenges for each combination. This chapter covers the basic physics 

underlying photon attenuation and scatter and summarizes technical considerations for multimodal 

imaging with particular regard to PET quantification and methods to address the challenges for 

each multimodal combination.  

 

1.1 WHAT IS HYBRID IMAGING  

PET and SPECT imaging have been used to contribute important functional information such as 

perfusion, tissue metabolism, receptor density, and other functional parameters regarding both 

oncologic and non-oncologic disease activity which is not easily obtained by other clinical 

methods. However, PET and SPECT often lack morphological information needed to localize the 

disease. The combination of both functional and morphological modalities into single devices, like 

PET/CT, SPECT/CT and PET/MR, provides a solution for offering both the functional and 
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morphological information in a single-study evaluation of patients in clinical practice1-4 (see 

Figure 1-1, Figure 1-2). The synergism of combining imaging modalities into a single device with 

shared mechanical components offers images with potentially less functional to morphologic 

alignment errors than multiple distinct systems that acquire images separately. Moreover, 

combining with anatomical imaging removes the need for additional time and cost for the 

transmission scan for the attenuation correction (AC)5-7. In other words, the synergism of CT or 

MRI with PET and SPECT not only provides the precise anatomical localization of regions 

identified by the uptake of radionuclide tracers, but also offers essential anatomical information 

for AC so that the uptake value can be correctly quantified. Herein, I review CT-based AC methods 

for PET and SPECT, and also MR-based AC methods for PET; starting with a brief explanation 

of the physics of attenuation of x-ray and nuclear medicine signals. Next, we discuss the 

advantages and disadvantages for doing AC. We summarize CT-based AC methods commonly 

used with PET and SPECT today and then discuss the evolving field of MR-based AC for PET.  

Finally, we review challenges for CT- and MR-based AC methods and possible approaches for 

future pursuit.  

 

Figure 1-1. Hybrid PET/CT imaging offers complimentary information in one scan 
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(A) CT image shows good anatomical detail but no functional information while (B) PET shows tracer 

uptake in lesions but with limited morphological information. 

 

 

Figure 1-2. PET/CT vs PET/MR images from a same patient4 

 
PET/CT imaging at approximately 1 h after injection of 15 mCi of 18F-FDG followed by PET/MR imaging 

at 1 h and 10 min after PET/CT imaging. 

1.2 WHY ATTENUATION CORRECTION 

In addition to the tasks of cancer detection and staging, PET and SPECT imaging are becoming 

more important as a quantitative indicator for individual treatment planning or response evaluation 

for therapy3. However, numerous corrections need to be performed before the measured signal can 

provide insight into the response to therapy. Physical effects like photon attenuation, scattered and 

random coincidences (PET), depth-dependent blur (SPECT), collimator effect (SPECT), variance 
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of the detector efficiency, and geometric dependent signal response can all perturb tracer uptake 

values in the image2,8-10. Of these, the most important effect in PET imaging is photon attenuation. 

In SPECT imaging, attenuation is also an important factor. As the emission photon from PET and 

SPECT tracers travel through the body it can be absorbed or scattered; the combination of these 

interactions is described as the linear attenuation of the photons. Essentially, all physical 

interactions that cause photons to deviate from a straight line contribute to linear attenuation.  The 

attenuation effect not only leads to underestimation of the uptake activity, it also causes 

inhomogeneous bias of activity’s distribution due to the different attenuation paths from the tracer 

source to detector. Some common artifacts such as enhanced activity in skin and in pulmonary 

regions (‘hot’ lungs) or negative tracer concentrations in mediastinal regions can be seen in 

uncorrected images11 (see Figure 1-3).   The lack of attenuation correction can also mask the 

presence of hot features, such as solid lesions with moderately elevated tracer uptake, or cold 

regions, such as mildly ischemic regions on cardiac perfusion exams6. However, reconstructing 

radionuclide images without AC can still provide complementary information, for example: to 

check for the presence of artifacts introduced by patient motion or mechanical misalignment 

occurring between the emission and attenuation maps (see Figure 1-4), or to check problems solely 

with the attenuation map. Therefore, for many applications, best practice dictates the review of 

images generated with and without attenuation correction6.  
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Figure 1-3. Accurate PET images require correction for photon attenuation 

 
(A) PET image without attenuation correction, showing several artifacts. (B) PET image with CT 

attenuation correction. (C) Corresponding CT image. 

 

 

Figure 1-4. Artifacts when a patient shifted between CT and PET scans 

 
(A) Elevated tracer uptake evident at one side of lung boundaries in the PET/CT fused image. (B) PET 

image with CT-based attenuation correction with increased uptake value at lung boundaries (arrows). (C) 

The PET image without attenuation correction does not show elevated uptake at same locations (arrows).   



 

 

6 

1.3 ATTENUATION AND ATTENUATION CORRECTION 

A photon’s probability of traveling along a straight line through material is an exponential function 

of the linear attenuation coefficient (LAC, µl , usually expressed in cm-1) of the absorber and the 

path length8,12. Under conditions of narrow-beam geometry, the transmission of a mono-energetic 

photon though an absorber can be expressed in the exponential equation: 

𝐼 𝑥 = 𝐼 0 𝑒&'()   [1] 

where I(x) is the photon intensity transmitted through the thickness (x) of the absorber. The 

quantity of µl linearly related with the absorber density (r). The mass attenuation coefficient (µm, 

usually expressed in cm2/g) for a specific material with a specific µl  can be expressed as: 

µ+ = 	µ- ∙ 𝜌   [2] 

For the range of photon energies in nuclear medicine and radiology, the attenuation is due to three 

potential interactions, where t represents photoelectric effect, s represents Compton scattering 

effect, and k stands for the pair production effect, resulting in: 

µ- 𝑍, 𝐸 = 	𝜏 + 	𝜎 + 𝜅   [3] 

The relative magnitude of t, s, and k varies with the atomic number (Z) of the absorber and the 

photon energy (E). Consequently, LAC varies in different transmitted materials (e.g. bone or 

muscle) and photon energies (e.g. 10 to 1000 keV). In Figure 1-513, as expected, total µm,bone is 

higher than total µm,muscle because the effect of atomic number’s difference. On the other hand, we 

could see the photoelectric effect (t) dominates the change of total µl for lower photon energy 

while Compton scattering (s) dominates the total µl value for photon energy higher than 100 keV 

(see Figure 1-5). We do not consider the pair production effect in the emission imaging here since 

it only occurs for the photon energies higher than 1.022 MeV. The density and Z dependent 

properties of LAC are reasons why an AC method incorporating knowledge of the non-uniform 
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morphology is preferred to simple uniform AC methods. The energy dependent property of LAC 

also explains why the LAC for x-ray (e.g. 50-80 keV mean energy for CT) needs to be carefully 

“scaled” for doing the CT-based attenuation correction of the emission data for g-rays (e.g. 140 

keV for 99mTc), and the annihilation photons (511 keV).  

 

Figure 1-5. Mass attenuation coefficients (µm) for bone and muscle  

The photoelectric absorption and Compton scattering components are also shown. The total 

attenuation coefficient accounts for all photon interactions, not just photoelectric absorption and 

Compton scattering 

 

The equation for SPECT and PET signal (R ) along each line of response (LOR) of the scanner, 

where r and q represent the LOR at radial location r with the projection angle of q is shown below. 

The signal is essentially the integral of activity, A, along the LOR, between the emission source 

location, s, and the detector location D.  The signal is attenuated based on the exponential 

relationship with the LAC and the attenuation path length, l’. Again, µ is the LAC of the LOR, and 

E is the emitted photon energy 
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 𝑝89:;< 𝑟, 𝜃 = 	 𝐴 𝑙 ∙ 𝑒𝑥𝑝 − µ(𝑙′; 𝐸)𝑑𝑙′G
H 𝑑𝑙G

H    [4a] 

𝑝9:< 𝑟, 𝜃 = 	 𝐴 𝑙 ∙ 𝑒𝑥𝑝 − µ 𝑙I; 𝐸 𝑑𝑙I
G

H
− µ 𝑙I; 𝐸 𝑑𝑙I

H

&G
𝑑𝑙

G

&G
 

=	 𝐴 𝑙 𝑑𝑙 ∙ 𝑒𝑥𝑝 − µ 𝑙I; 𝐸 𝑑𝑙IG
&G

G
&G    [4b] 

To correct for the effects of attenuation, one needs to know the inverse of the exponential signal 

loss in the above equation [4].  This correction term is called the attenuation correction factor 

(ACF).  For SPECT, this factor is a function of 𝑟, 𝜃, 𝑠.	  

𝑒. 𝑔. 	𝐴𝐶𝐹89:;< 𝑟, 𝜃, 𝑠 = 𝑒𝑥𝑝 µ(𝑙′; 𝐸)𝑑𝑙′G
H    [5a] 

For PET, this factor is only a function of 𝑟	𝑎𝑛𝑑	𝜃.	  

𝑒. 𝑔.		𝐴𝐶𝐹9:< 𝑟, 𝜃 = 𝑒𝑥𝑝 µ 𝑙I; 𝐸 𝑑𝑙IG
&G    [5b] 

 

In other words, in order to accurately compensate the effect from attenuation, one needs to know 

both LAC (µ) and the attenuation path length (s’) for each position in the scanning object. 

Considering that the PET signal comes from two photons leaving the radionuclide emitter in 

opposite directions, the attenuation path length is a fixed value for each LOR in PET no matter 

where along the LOR the photons originate (eq. [4b]).  In contrast, in SPECT, the signal originates 

from a single photon and the attenuation experienced by that photon depends on the location of 

the emission (eq. [4a]).  Consequently, it is slightly harder to correct for attenuation in SPECT.  

In SPECT imaging, Chang’s multiplicative method provides a relatively simple attenuation 

correction method 12,14. In this approach, an initial emission image f’ (x, y) is reconstructed and the 

boundary of it is delineated without any attenuation correction. For each pixel f (x, y) in the recon 

image, the attenuation path lengths (s’) of every projection angle (q) is then measured based on 
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the approximated boundary information. This approach is usually implemented with the 

assumption of identical LAC (µ) values throughout the scanning object leading to the ACF 

calculated by summing the impact of attenuation from all angles at each emission location12: 

𝐴𝐶𝐹 𝑥, 𝑦 = R
S
T UVW∙XY

ZT
Y[S

   [6a] 

Finally, the reconstructed image is corrected pixel-by-pixel multiplying with ACF: 

𝑓 𝑥, 𝑦 = 	𝑓′(𝑥, 𝑦) ∙ 𝐴𝐶𝐹(𝑥, 𝑦)   [6b] 

The attenuation correction based on Chang’s approach provides reasonable results especially for 

the brain and abdomen images where the assumption of uniform attenuation is reasonable. Many 

SPECT systems still offer this correction technique today; however, a more elaborate method for 

carefully considering the inhomogeneity of LAC distribution in the regions like the thorax and 

pelvic regions is needed.  

1.4 ATTENUATION CORRECTION FOR PET AND SPECT IMAGING BEFORE CT 

For both PET and SPECT imaging, accurate attenuation correction factors were originally 

estimated from a transmission scan at the same or similar photon energy. This approach used an 

additional radionuclide source to do a transmission scan on the scanning object. Rod, line or flood 

source containing a radionuclide, e.g. 123mTe (T1/2 = 120d, Eg = 159 keV) and 68Ge/68Ga (T1/2 = 

270d, Eannihilation = 511 keV), with similar photon energy but much longer half-life compared to the 

emission source were used to rotate around the object for 360 degrees to get a full set of projections. 

Often, these projections were acquired using the same detectors as the native emission detectors.  

The ACF for PET images can be easily estimated by dividing the reference scan (blank scan, I0) 

with transmission scan. 

𝐴𝐶𝐹 𝑟, 𝜃 = 		 ]^_`_^_ab_ c,d
]e^faXghXXhia c,d

= jk
jk∙lmn	{& ' +Z;: p+Z}r

Vr
   [7a] 
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𝑝stccUsuUp 𝑟, 𝜃 = 𝑝U-vHHvtw 𝑟, 𝜃 ∙ 𝐴𝐶𝐹 𝑟, 𝜃    [7b] 

 

For SPECT images, the attenuation correction factor must be estimated for each location in the 

object. With modern iterative methods, the emission image is estimated first without attenuation 

correction and the non-uniform ACF factors are applied to this image; With each iteration, the 

emission image becomes more accurate and the ACF factors converge to more accurate values.  

Initially, some drawbacks of the transmission scan-based attenuation correction method impeded 

its application in practice. There were active “To AC or Not to AC” debates in the nuclear medicine 

community15-17. In summary: (1) the transmission scan adds considerable scan time (~10-45mins) 

so that the patient throughput or the emission scan time is compromised; (2) the transmission scan 

is relatively noisy, and the noise will be propagated to the emission scan and further degrade the 

final image quality; (3) patient movements between the transmission and emission scan (both tens 

of minutes) lead to mis-registration of the attenuation correction map and artifacts; (4) the 

transmission scan signal could be contaminated by the injected radionuclide for the emission scan, 

and (5) an additional cost for periodically replacing and maintaining the transmission sources. 

 

Some variant of the transmission scan-based AC had been developed for coping with the image 

noise and the extended acquisition time. Instead of directly using the transmission map for AC, a 

segmented AC technique separates the transmission image into anatomic regions by multi-level 

thresholding into several specific LACs, e.g. lung, soft tissue, and bone18.  While this substantially 

reduces the noise in the transmission image, the drawback is that some tissue regions may have 

continuously varying densities that are not accurately represented by a discrete set of segmented 

values. 
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Simultaneous acquisition of emission and transmission image for SPECT can shorten the 

acquisition time and indirectly minimize the patient movement between scans.  This is performed 

in SPECT with a lower-energy gamma source for the transmission scan (e.g. 201Tl:75keV, 

241Am:60keV); considering these systems support acquisition of multiple energy windows,  the 

camera can simultaneously image the primary higher-energy emission photons (e.g. 99mTc:140 

keV) at the same time19,20. This approach, however, introduces cross-talk effects between the 

signals at the two spectrums. In addition, the transmission energy is not the same as the emission 

energy, requiring a conversion of the transmission scan attenuation values to the emission scan 

attenuation. 

1.5 CT-BASED ATTENUATION CORRECTION FOR PET AND SPECT IMAGING 

With the advent of dual-modality SPECT/CT and PET/CT imaging systems introduced in 1990’s 

5,8, the patient-specific LAC map now can be rapidly acquired with an integrated x-ray CT scanner. 

The simplified narrow-beam projection can be written as21 : 

𝑝;< 𝑟, 𝜃 = 	 𝐼x ∙ 𝑒𝑥𝑝 − Ω(𝐸)z{|
x µ 𝑙I; 𝐸 𝑑𝑙I𝑑𝐸G

x    [8] 

	

Where Ω represents the spectrum of the x-ray source from 0 to the peak energy (kVp). The 

common procedure of the CT-based attenuation correction generally is to do the CT transmission 

scan (30 s – 2 min) before the emission scan (5 – 45 minutes). The CT image, in Hounsfield unit, 

will then be down-sampled to SPECT or PET resolution and “transformed” to the LAC at emission 

energies. The translated image is then forward projected into the projection view for the ACF (r, q), 

and then the attenuation-corrected emission data, Pcorrected (r, q), are reconstructed for the final 
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image. In addition to the order of magnitude faster acquisition, the CT-based method offers 

advantages over previous radionuclide transmission methods in other aspects including: a) the 

statistical noise in a CT image is much lower than radionuclide transmission images leading to 

virtually noise-free attenuation maps, b) CT acquisitions avoid the signal contamination from 

SPECT or PET’s tracer, and c) it eliminates the cost of the periodic replacement of decayed 

transmission sources8. 

 

The poly-energetic nature of the CT energy spectrum and the “energy difference” between CT x-

rays and emission sources cause additional challenges. Beam-hardening effects arise from 

differential absorption of lower-energy photons as the poly-energetic x-rays are transmitted 

through the scanning object, and causes location-dependent LAC bias in the CT image.  Most CT 

scanners have beam-hardening correction methods that are effective for water-equivalent tissues, 

but these systems are generally still challenged by non-water equivalent regions such as bone and 

metal implants21. To account for the energy difference between x-ray and radionuclide tracers, the 

CT estimates of attenuation must be transformed to an estimate of the attenuation coefficients at 

the emission energy. However, there is no unique transformation from effective energies of x-ray 

to the emission photoenergy since to the relative contributions of photoelectric effect (t) and 

Compton scattering (s) are a function of energy (see Figure 1-5). In other words, two materials 

with similar CT values may have different attenuation coefficients at 511 keV, and conversely, it 

is possible for two distinct materials with the same value of attenuation coefficient at 511 keV to 

have different CT numbers. The bias in LAC map will cause an artifact in the final emission image 

and these localized errors will propagate to the same general location in the emission image. 
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Therefore, methods for accurately converting a CT image to attenuation coefficients at the higher 

energy need to be carefully considered6,8. 

 

Finally, we note that the (LAC) attenuation image, which are used for attenuation correction, also 

enable estimates of the amount and distribution of scattered coincidences. These estimates can 

then be used for scatter correction in PET and SPECT12. 

1.6 ATTENUATION CORRECTION FOR PET/MR IMAGING 

The motivation for combining the emission image with MRI is three fold10,22,23; (1) For certain applications, 

for instance neuroimaging and abdominal imaging, MRI is the preferred anatomic imaging modality to CT 

because of its superior soft tissue contrast. (2) The radiation dose of PET/MR is significantly lower than it 

is in PET/CT, and this could be particularly important for pediatric imaging or for a patient requiring 

multiple consecutive scans; (3) this hybrid system can further correlate PET imaging with MR-based 

functional measurements, for example, dynamic contrast-enhanced MRI, diffusion-weighted MRI, 

functional MRI, or MR spectroscopy. The first commercially available whole-body PET/MR (Biograph 

mMR, Siemens AG, Healthcare Sector, Erlangen, Germany) was introduced in 201024. While it has not 

been adopted as a routine clinical tool yet, a hybrid PET/MR system offers the potential for innovative 

research and clinical studies and there have been over fifty PET/MR systems installed for clinical use today 

25. The biggest challenge for integrating the MRI with emission detectors is that conventional PET or 

SPECT detectors can not be placed inside the MRI scanner primarily because they use photomultiplier 

tubes (PMT).  Furthermore, the moving components (collimators and gamma cameras) of SPECT scanner 

could be highly susceptible to magnetic fields. MR compatible detectors such avalanche photo diodes (APD) 

or silicon photomultipliers (SiPM) were used for the integration of PET/MR system; however, there is still 

no efficient or economic solution of making a whole-body SPECT/MR10.  



 

 

14 

Attenuation correction for PET without a CT-image or radionuclide transmission scan is another technical 

challenge for integrating emission imaging with MR26,27. Unlike the CT image, which measures the 

radiodensity of tissue, the MR signal correlates with the density of hydrogen nuclei and their relaxation 

properties. New approaches for AC based on MR (MRAC) rather than CT-based AC were required to 

estimate the attenuation coefficient map.  To date, these approaches can  be roughly categorized into three 

classes22,23,26: (1) Segmentation-based methods: segment the MR image into several classes to which 

uniform LACs are assigned. (2) Atlas-based methods: use a attenuation atlas templates from CT images or 

other knowledge and morph these onto the patient’s MR image in order to obtain a continuous attenuation 

maps from the MR data. (3) TOF-MLAA (time-of-flight maximum likelihood activity and attenuation 

estimation) method: the method exploits TOF PET emission data for jointly estimating the emission activity 

and the attenuation coefficients. 

1.6.1 Segmentation-based method 

Segmentation methods use both MR pulse sequence and image processing techniques to segment MR image 

data into different tissue classes and to assign the tissue compartments with known LACs at 511keV. For 

example, for a whole-body PET/MR scan, segmentation can be performed on a T1-weighted gradient echo 

image with proper Dixon-based water-fat separation to classify the MR image into air, lung, fat, and soft 

tissue compartments, and respectively, assigned with the 511keV LAC values of 0, 0.015-0.03, 0.086, and 

0.095 cm-1 28,29. However, a major problem with segmentation method of MRAC is the detection of bone 

tissue; both air and bone lack signal in MRI, but conversely, bone tissue requires the largest LAC (0.15-

0.17 cm-1) compared to other tissues. One approach to improve MR bone contrast is to use ultra-short 

echotime (UTE) sequences30; using fast acquisition techniques like radial (in k-space) imaging with 

nonselective or half pulse excitation, also with half-Fourier readout and ramp sampling, TE can be as short 

as a few microseconds. The UTE images themselves are heavily proton density-weighted, and by acquiring 

a second echo (milliseconds TE) and subtracted it from the UTE image, the subtracted image then highlights 

the short T2 tissues as bright structures against a darker surround27,31(see Figure 1-6). The UTE-based 
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protocols have been validated in the numerous head PET/MR imaging studies23 but not for the whole-body 

PET/MR. One current challenge with whole-body UTE MR is that it requires either a smaller FOV or a 

longer scan time (several minutes per bed position) that may cause a motion artifact that further reduces the 

accuracy of MRAC23. Until a more efficient bone-contrast enhanced MR sequence is developed, the 

following atlas-based MRAC seems a more applicable method for whole-body PET/MR acquisition for 

accurate bone imaging. To estimate LACs in lung is also a challenge for segmentation methods; Not only 

because the LACs of lung varies between patients, but also since visualizing lung parenchyma with MRI is 

challenging32. Studies have shown the relative error of uptake value in PET could be reduced from 12% to 

less than 5% by using a patient-specific lung LAC map instead of assigning a globally constant coefficient32.    

 

Figure 1-6. MR ultra-short echo time (UTE) acquisitions for showing the cortical bone image on a 

porcine shank phantom 

UTE1 being acquired during the free induction decay (FID) at time TE1, and UTE2 acquired at the first 

echo at time TE2. UTEdiff is relative difference image between two acquisitions, and it shows contrast of 

cortical bone similar tow the CT image. 
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1.6.2 Atlas-based method 

Most atlas-based methods first build an “averaged” atlas from a repository of CT images with known HU 

values.  Then for a given patient exam, the atlas image is morphed to the patient MR based on their shared 

anatomical features  through standard image registration, machine learning, or pattern recognition 

techniques7,33,34(see Figure 1-7). With atlas based methods one can retrospectively add bone information 

to a continuous scale LAC map with or without time-consuming UTE acquisitions. A weakness of this 

approach is that the LAC map registration process can be computationally intensive.  And, when a patient 

has a unique morphology,  pathology, or implants that are substantial anatomically different from the atlas, 

the morphed attenuation map will not represent the patient’s attenuation leading to bias in the emission 

image22.  

 

Figure 1-7. Image comparison of two MR-based pseudo-CTAC methods 

CT or Pseudo CT images were shown in the top row, and its corresponding PET images with attenuation 

correction were shown in the bottom row. In x-ray CT image, arrows indicate the position of metal implant. 

5 classes in the segmentation method are air, lungs, fat tissue fat-nonfat tissue mixture, and non-fat tissue. 
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1.6.3 MLAA-based method 

The time-of-flight maximum likelihood activity and attenuation estimation (MLAA) approach uses only 

the emission data to jointly estimate the activity distribution and attenuation of the PET image with a 

maximum likelihood reconstruction method 35. Based on the ideal Radon consistency conditions that noise-

free coincidence PET data after accurate attenuation correction can only come from a certain set location, 

in theory, the tracer’s activity and the attenuation coefficient can be derived at the same time solely using 

the emission data. However, the uncertainty of crosstalk between activity and attenuation effectly limits its 

application in practice. With advent of TOF PET, the activity distribution now can be constrained down to 

the sub-nanosecond (few centimeters) resolution; the TOF information adds another constraint enabling the 

attenuation map so that it can be more accurately determined 36,37. Recently, additions to MLAA have been 

proposed that further constrain the estimation by exploiting the edge of whole-body PET/MR images with 

(or without) using the segmented MR image as priori knowledge38-42.  Research groups continue to develop 

this approach and some combination of this method with methods discussed above will likely provide a 

viable technique for high fidelity MRAC for soft tissue and the challenging areas of bone and lung regions.   

 

1.7 GENERATING CTAC MAP FOR PET IMAGING 

Multi-linear scaling approaches are the basis for common CT attenuation correction methods 

currently in use in conventional PET and SPECT scanner. Since the attenuation values (in 

Hounsfield units) produced by CT are approximately linearly related to the physical LAC of the 

correspondent tissue type in emission energy, it is possible to simply multiply the entire CT image 

by the ratio of LAC of water (soft tissue) at the photon energy of CT and emission image43. 

However, this simple linear model will be inaccurate for the high Z absorbers like bone, since the 

photoelectric absorption to Compton scattering ratio changes differently for bone compared to the 



 

 

18 

soft tissue (Fig. 5). Therefore, bilinear models that separately depicted the LAC conversion ratio 

for air-and-water rich tissue (-1000≤H≤0) and water-and-bone rich tissue (H≥0, CT energy 

dependent) for both PET and SPECT imaging were proposed5,8,21,44-46: where CTH.U. means the 

value of CT number in the Hounsfield unit. µ with the subscript “E” represents the target translated 

emission energy, while “keVeff” represents the effective x-ray photoenergy.     

µ}vc~�}uUc,: =
;<�.�.∙{'�fe_^,�&'fh^,�}

Rxxx
  [9a] 

µ�}uUc~�twU,: = µ�}uUc,: +
;<�.�.∙'�fe_^,�_�_``∙{'�ia_,�V'�fe_^,�}

Rxxx∙{'�ia_,�_�_``&	'�fe_^,�_�_``}
 [9b] 

 

Furthermore, taking into consideration that the LAC of cortical bone tissue (~ 3000 HU) may be 

overestimated comparing to the cancellous bone tissue (~ 700 HU), a three-line model was 

suggested to more precisely convert the high CT number (H > 1000)47,48(see Figure 1-8).  



 

 

19 

 

Figure 1-8. Three-line model scaling method used to convert CT numbers to linear attenuation 

coefficient at 511 keV for different x-ray tube potentials47 

 

Dual-energy CT is a more accurate approach to convert CT images to LAC at emission energy. It 

can be achieved by collecting two scans generated with different peak energy (kVp)5,49-51. In 

practice, the multilinear scaling methods mentioned above have been shown to give reasonable 

results for low-Z biological materials. However, high-Z materials, such as contrast agents and 

implants, can introduce significant bias. Therefore, with the idea that the mass attenuation 

coefficient can be considered the composition of attenuation due to the photoelectric effect (t) and 

the attenuation due to the Compton scatter (s) effect (eq.[3]). The DECT approach can be 

understood by measuring the linear attenuation coefficient (µm) within both low and high (EL, EH) 

tube voltage as a weighted (at, as) sum of known photoelectric absorption (t) and Compton 

scattering (s) contribution at each energy21: 
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µ- 𝐸� = 	𝛼�𝜏 𝐸� + 𝛼�𝜎 𝐸�    [10a] 

µ- 𝐸� = 	𝛼�𝜏 𝐸� + 𝛼�𝜎 𝐸�    [10b] 

This simple system of equations includes two measurements (µm(E)) and two unknowns (a*). One 

can solve for at and as so that the mass attenuation coefficient can be converted to any emission 

energy with proper t (E) and s (E) constants. Several approaches have been proposed to acquire 

the dual energy measurements and to solve for the weights52. A potential disadvantage of this 

approach is that the solutions for the weights require essentially a generalized subtraction of the 

two separate CT scans. The noise in each scan will propagate into the weight images leading to 

noisier images than the original. Therefore, although dual-energy techniques theoretically offer the 

highest degree of accuracy, they also can have degraded SNR characteristics in comparison with 

attenuation maps calculated from a single CT scan. Another potential drawback of dual energy is 

the additional patient radiation dose required to acquire two separate energies6,53. 

1.8 CHALLENGES FOR CT-BASED ATTENUATION CORRECTION  

1.8.1 Motion compensation 

Misalignment of the emission data and the attenuation correction factors due to patient movement, cardiac 

contraction, and respiratory motion are known sources of quantitative error in radionuclide imaging54,55(see 

Figure 1-9). One basic solution to minimize gross patient movement is to give the patient some physical 

aids like arm or head holding devices to limit the movement 56. Other approaches such as automatic or semi-

automatic registration can be used for correcting misaligned images due to the patient movements, although 

all practical implementations are generally only effective at fixing rigid-body misalignments55.  

Considering PET and SPECT imaging is acquired over multiple respiratory and cardiac cycles and CT 

imaging is often acquired at essentially one or two locations in these cycles, there are commonly challenges 
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in aligning the CT-derived attenuation map57-60. For applications of myocardial perfusion and lung imaging, 

to improve AC, electrocardiogram (ECG)-gating and respiratory-gating techniques can be applied on both 

the emission and anatomical scans59. In theory, phase or displacement matching individual PET or SPECT 

gated images with the corresponding gated CT images for attenuation correction could effectively minimize 

attenuation misalignment.   

Numerous methods have been developed for improving the overall accuracy of 4D-CTAC.  Phase-based 

sorting methods are often the default method for 4D-gated acquisition due to their implementation 

simplicity. It has been shown that amplitude-based61-63 and anatomical similarity-based realignment64,65 

methods potentially provide higher accuracy than phase sorting, particularly for non-periodic motion with 

high inter-phase variations. Another approach to improve gating is to optimize the tradeoff between gating 

number and the emission image noise.  

In brief, finer temporal binning size generally provides  better tracking of motion at the expense of increased 

noise and methods that optimize this tradeoff are advantageous66,67. Considering that gated CT imaging 

(and gated emission imaging) can have native artifacts from poor respiratory signal measurement or in the 

presence of high respiratory variation, studies have shown that 4D phase-matched CTAC methods may 

cause more bias on the corresponding PET image than CTAC with less artifact-prone images such as phase-

averaged or phase-maximum intensity projected (MIP) methods68,69. In the presence of phase-to-phase 

motion variability, the average of extended cine duration CT acquisitions, across numerous cycles at each 

bed position from 6s to 10~14s, may be able to mitigate AC motion artifacts69,70. While CT can only be 

acquired sequentially either before or after the emission scan, some integrated PET/MR systems offer the 

potential for acquiring the anatomical image simultaneously with the emission image, minimizing or 

eliminating attenuation map misalignment issues71. 
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Figure 1-9. Respiratory motion artifact of CTAC 

(A) A suspicious tracer uptake/artifact at the base of lung area (arrow) in the PET image. (B) PET 

uptake is actually due to respiratory motion artifact in the CT image (arrow). 

 

1.8.2 Non-biological materials  

The multi-linear scaling methods for converting CT numbers to the LAC’s at emission energies 

generally work well for soft tissue and bone regions. However, CT contrast agents like iodine have 

a high LAC for CT photon energies but for 511keV photons the LAC is very similar to other soft 

tissues.  When contrast agents are present, the existing conversion factors may overestimate the 

emission LAC for iodine and cause the bias for the final activity uptake50.  Initial studies indicated 

that these contrast errors are likely not significant for diagnosis in a variety of cases72, but these 

AC errors will cause quantitative issues that will impact treatment evaluation and further treatment 

planning50. A simple solution that is available on several commercial systems is to use a different 
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set of conversion factors when CT contrast is present.  This will effectively lead to more accuracy 

in contrast present regions at the expense of reduced accuracy in other high-CT number regions 

(i.e., bone regions).  Metallic objects, such as implanted pacemaker or dental fillings, also 

complicate the use of CT-based attenuation correction73,74(see Figure 1-10). A general approach 

for metal artifact reduction is to use a threshold method to segment out the high CT number regions 

on the raw sinogram or reconstructed image.  After segmentation, a following algorithm can be 

used for regenerating the missing voxels 74,75. DECT is another approach for getting accurate 

emission attenuation information in the face of non-biologic media50,51,76 (see Figure 1-11); as 

described in the previous section, the mass attenuation coefficients from photoelectric effect and 

Compton scattering of the absorber can be decoupled and rescaled to the target emission energy. 

In consideration of increasing image noise and radiation dose of the DECT-AC process, several 

approaches have been proposed such as: to use a very-low-dose scan as a second CT image, to 

alternate x-ray energies on alternating slices in a single CT scan, or to suppress the signal noise 

with sinogram smoothing 51,53,76. 
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Figure 1-10. Representative CT and PET images illustrating artifacts from implanted 

pacemaker/implantable cardioverter defibrillator (ICD)73 

 
(A) Original CT image. (B) Down-sampled CT image for PET attenuation correction. (C) Fused 

PET/CT and (D) PET images using (CT) for attenuation correction, showing the biases in 

attenuation corrected PET uptake image due to implant (arrows).  
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Figure 1-11. Comparison of PET images using simulated DECT-based and single-kVp CT-based 

AC methods76 

The DECT-AC caused less bias for PET uptakes in ROI1 (contrast agent) compared to the uptake 

bias from single-keV CT-AC method (arrows in the third row). 

1.8.3 Truncation of the imaging field of view (FOV) 

Current CT fields of view (FOV) in commercial PET/CT systems are usually slightly smaller than 

it is for the emission image. Therefore, PET images may find no corresponding CT information 

when a large patient is in the bore or a patient is imaged with their arms at their side.  This lack of 

attenuation information at the edge of the PET FOV can lead to a FOV truncation artifact. Several 

techniques have been proposed to correct this 77,78. Most of the approaches use an extrapolation-

based algorithm to estimate the missing CT data based on the assumption that the total attenuation 

for each projection view should be a constant value79. 
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1.9 APPROACHES FOR ULTRA-LOW DOSE IMAGING  

In recent years, the radiation dose from CT scanning is a growing concern in both the medical 

community and the public. It is widely accepted that additional vigilance is required to ensure 

appropriate CT usage leading to numerous efforts to reduce CT radiation burden, both for the 

pediatric and adult populations80-82. If generating an AC map is the sole purpose for the CT 

acquisition, the dose levels can be reduced substantially below conventional acquisitions for 

diagnostic or anatomical localization. In 2002, Kamel et al. showed that there was no significant 

difference in terms of apparent FDG uptake or measured lesion size in PET when the tube current 

was lowered from 120mA to 10mA in 18 patients83. Today a standard PET/CT exam with a low-

dose CT for attenuation correction (e.g. 120kVp, 35 mAs ,pitch = 1) imparts a whole body effective 

dose of approximately 12 mSv (7 mSv from injection of 10mCi 18F-FDG84 and 5 mSv from the 

CT scan)85-87. Several approaches or combinations of approaches have been purposed to achieve 

ultra-low dose (sub-mSv) CT scans for attenuation correction. Some of these methods include the 

following.  Optimizing the beam energy spectrum with the proper kVp and filtration combination 

along with pre-log sinogram smoothing methods like adaptive trimmed mean filter (ATMF) have 

been shown effective in the recent studies88-90.  Methods proposing tube-pulsing to enable ultra 

low-dose CT acquisitions with fewer views but with the same number of total photons (or 

integrated signal) such that the effect of the electronic noise can be reduced91. After acquisition, 

images can be reconstructed from the reduced view data with compressed sensing-type methods92. 

At very low flux levels, the CT signal can suffer from extremely high noise measurements and 

photon starvation. In this regime, iterative reconstruction methods that more accurately model low-

flux signal statistics have been applied for achieving better image quality93. In the future, methods 
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that incorporate even better descriptions of photon statistics, like the compound-Poisson model or 

pre-log reconstruction algorithms, may allow for even lower dose CT for AC94,95.  
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Chapter 2. IMPACT OF CTAC METHOD ON QUANTITATIVE 

REPIRATORY-GATED PET/CT IMAGING  

2.1 MISALIGNMENT BETWEEN PET AND CT UNDER THE RESPIRATORY MOTION 

Positron emission tomography (PET) with 18F-fluorodeoxyglucose (FDG) is commonly used in 

the management of patients with lung cancer and is of considerable interest in quantitative imaging 

of the thorax. The addition of PET imaging is useful in staging of atelectasis and the mediastinal 

nodes96-98. The use of PET-guided segmentation may reduce inter-observer variability compared 

to CT-only guided segmentation and provide clinical benefit for radiotherapy target definition99-

101. FDG metrics have been shown to predict therapeutic outcome early in the course of chemo-

radiotherapy in non-small cell lung cancer. Dose escalation to metabolically active tumor sub-

volumes, so-called “dose painting”, has been proposed as a strategy to increase tumor control102,103.  

 

Mismatch of PET data with computed tomography attenuation correction (CTAC) due to 

respiratory motion in a known source of quantitative error in PET imaging6,104-106. In theory, this 

can be corrected by matching individual PET and CT phases which have been generated by 

respiratory-correlated PET (4DPET)107 and respiratory-correlated CT (4DCT)108-111. However, 

differences in the physics of image acquisition between PET and fast CT imaging lead to 

challenges for this approach. Namely, emission PET integrates motion over several minutes with 

large (i.e., 15 cm) axial fields-of-view, while fast helical or axial transmission CT has the effect of 

“freezing” motion over several seconds with smaller (i.e., 2 cm) axial fields-of-view. In practice, 

both imaging modalities are known to be susceptible to respiratory imaging artifacts. Therefore, it 
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is important to understand the quantitative impact of CTAC methods for respiratory-correlated 

PET imaging. 

2.2 A PHANTOM STUDY FOR COMPARING DIFFERENT CTAC METHOD FOR 4-D 

PET/CT 

A small body of prior work exists regarding choice of CTAC method for 4DPET quantification in 

the ground truth setting with anthropomorphic phantoms. Nagel et al found 4DPET with phase-

matched 4DCT attenuation correction was superior to 3DPET with helical CT attenuation 

correction under sinusoidal respiratory motion112. Ponisch et al and Park et al investigated 4DPET 

with phase-matched 4DCTAC and 4DPET with helical CTAC under sinusoidal motion and found 

superior recovery with phase-matched 4DCTAC113,114. Killoran et al investigated artifacts at the 

lung-diaphragm interface with helical CTAC, phase-averaged 4DCT, and phase-matched 4DCT 

attenuation correction under sinusoidal motion115. They noted minor improvements in 

quantification with phase-matched 4DCTAC versus phase-averaged 4DCTAC or helical CTAC in 

regions with lung-equivalent background density, but no advantage to using phase-matched 

4DCTAC at interfaces of similar tissue density.  

 

We present new work to comprehensively evaluate the accuracy of six CTAC methods for 4DPET 

imaging using measured data from a respiratory phantom. We report on 4DCT maximum intensity 

projection (4DMIP) attenuation correction, which has shown advantages in accuracy of cardiac 

PET116 but has not been previously investigated in thoracic PET. While prior phantom studies 

considered only sinusoidal motion cases, we investigate patient-specific respiratory waveforms, 

which more accurately represent clinical conditions and may be expected to increase CT and PET 

mismatch due to irregular respiratory patterns. Additionally, we report on the recovery of metrics 
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not previously investigated, including SUVpeak, which is recommended over SUVmax by PERCIST 

guidelines117, and SUVmean, which is commonly used in the literature. Finally, comparisons of 

accuracy between 3D and 4D PET are evaluated in context of CTAC method. These results may 

be useful to guide the implementation, analysis, and development of respiratory-correlated thoracic 

PET/CT in the radiation oncology and diagnostic settings. 

2.3 METHODS 

2.3.1 Phantom design 

A programmable respiratory motion phantom consisting of the Quasar™ Multipurpose Torso 

Phantom and Respiratory Motion Assembly (Modus Medical Devices Inc., ON, Canada) was used 

for this study (see Figure 2-1). A custom movable insert was designed to emulate a lung lesion 

(2.2 cm fillable NEMA sphere) and lung tissue (fillable chamber with polystyrene beads to mimic 

lung tissue density). A static control insert was similarly designed with a 3.7 cm NEMA sphere 

and fillable chamber with polystyrene beads. Phantom spheres and lung-equivalent backgrounds 

were filled with 18F-FDG solutions at nominal activity concentrations of 1.0 and 0.125 MBq/ml, 

respectively.  

 

The moving insert was driven by one of 5 waveforms: two sinusoidal waveforms or three patient-

specific respiratory waveforms. The sinusoidal waveforms had 1.5 cm and 3.0 cm peak-to-peak 

amplitude and 4 s period. The patient-specific waveforms were supplied by the vendor and had the 

following parameters as depicted in Figure 2-1: 3.0 cm peak-to-peak amplitude; mean amplitude 

1.86±0.27, 2.00±0.42, and 2.16±0.31 cm; mean period 4.2±0.7, 4.5±0.7, 4.9±0.7 sec, respectively. 

The Quasar phantom drives a platform which is suitable for mounting a real-time position 
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management (RPM) marker (Varian Medical Systems, Palo Alto, CA), which moves 

proportionally to the insert. 

 

Figure 2-1. Respiratory phantom and patient-specific respiratory waveforms 

 
Left: Programmable respiratory phantom with custom anthropomorphic PET inserts. Right: 

Patient-specific respiratory waveforms under investigation, representing regular, irregular, and 

intermediate respiratory waveforms. Two sinusoidal waveforms were also investigated. 

 

2.3.2 Image acquisition and reconstruction 

PET/CT images were acquired on a Discovery STE PET/CT scanner (GE Healthcare, Waukesha, 

WI) at a single 15 cm axial field of view in 3D mode. PET emission data were acquired for 5 

minutes under the no-motion condition to define the reference case. Then, PET data were acquired 

under the 5 motion conditions with matched numbers of emission coincidence counts to the 

reference case (261.5 million events; typical whole-body FDG fully 3D PET acquisitions acquire 

200-300 million prompt events for each bed position).  Phantom motion waveforms were captured 

in real-time with the RPM infrared camera system and PET emission data were in-line tagged at 

peak inspiration during list mode acquisition to enable 4D data sorting. 



 

 

32 

 

Figure 2-2. Schematic representation of 4DPET and 4DCT phase range versus phantom 

displacement for each of the patient-specific respiratory waveforms. 

 
Phase range for the 4DCT is depicted with the grey shading and centered within PET bins. Phase 

range for the 4DPET is depicted with vertical dashed lines. 

 

Following PET acquisition, CT images were acquired. A static helical CT (3DHEL) analogous to 

an idealized breath-hold CT was used as the reference CTAC dataset. Then, CT images were 

acquired for each respiratory waveform, including a helical CT under respiratory motion 

(3DMOT) analogous to a free-breathing CT and a cine CT series for 4DCT reconstruction. For 

4DCT acquisitions, the cine duration parameter was defined as the breathing period plus 1 second 

and the time between cine images parameter was defined as the respiratory period in seconds 

divided by 10. All CT imaging was acquired with 512x512x176 voxels, 0.0977x0.0977x0.25 

cm/voxel at 120 kV and auto mAs. 

 

For 4DCT reconstruction, RPM traces were visually reviewed for accuracy of peak fitting 

retrospectively in the RPM software. RPM traces were used to phase-define the cine CT data in 

Advantage 4D (GE Healthcare). Five 4DCT phase-defined images were selected with 10% phase 

shift for phase-matched CTAC reconstruction (4DMATCH) so that 4DCT phases would be 

centered on 4DPET phases in the respiratory cycle (see Figure 2-2). Additionally, 4DCT phase-
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binned images were reformatted into average intensity projection (4DAVG) and maximum 

intensity projection (4DMIP) CT images, and the 4DCT phase image that corresponded to the end-

exhale phase was identified as 4DEXH. The protocols are summarized in Table 2-1.  

Table 2-1. Summary of investigated PET and CTAC methods. 
PET PET acquired 

under motion? 

CTAC CTAC acquired 

under motion? 

Description 

3DPET No 3DHEL No Motion-free 3DPET with motion-free helical CTAC (reference case) 

3DPET Yes 3DHEL No 3DPET with motion-free helical CTAC (representing idealized breath hold) 

3DPET Yes 3DMOT Yes 3DPET with helical CTAC (representing free breathing helical CT) 

3DPET Yes 4DAVG Yes 3DPET with average intensity projection 4DCTAC 

3DPET Yes 4DMIP Yes 3DPET with maximum intensity projection 4DCTAC 

4DPET Yes 3DHEL No 4DPET with motion-free helical CTAC (representing idealized breath hold) 

4DPET Yes 3DMOT Yes 4DPET with helical CTAC (representing free-breathing helical CT) 

4DPET Yes 4DAVG Yes 4DPET with average intensity projection 4DCTAC 

4DPET Yes 4DMIP Yes 4DPET with maximum intensity projection 4DCTAC 

4DPET Yes 4DMATCH Yes 4DPET with phase-matched 4DCTAC 

4DPET Yes 4DEXH Yes End-exhale phase 4DPET with end-exhale phase 4DCTAC 

 

CT data were then transferred from the Advantage workstation to the PET/CT console for 

attenuation correction of PET data. The static PET with static helical CTAC was used to define 

the reference case. For the five motion cases, all PET data was reconstructed in both 3D mode, 

and 4D mode with 5 equal phase bins unlisted from the tagged emission data (see Figure 2-2). The 

choice of 5 phase bins was based on Park et al, who found 5 bins to provide superior image 

quantification versus 10 or 20 bins114, in addition to the clinical practicality of this approach. CT 

attenuation correction was applied to both the 3D and to each phase of the 4D PET data with 

3DHEL, 3DMOT, 4DAVG, 4DMIP, and 4DMATCH CTAC methods, and to the end-exhale phase 

of the 4DPET data with 4DEXH (see Figure 2-3). For the 4DMATCH reconstruction, visual 

inspection of image phases was required to assure optimal matching between 4DPET and 4DCT 

images (ie, PET bin 1 might best match the CT bin located between 10-30% phase or 90-10% 
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phase). Note that in our naming convention, 3DPET refers to non-respiratory-correlated PET in 

3D mode, 4DPET refers to respiratory-correlated PET, 3DCT refers to non-respiratory-correlated 

helical CT, and 4DCT refers to respiratory-correlated cine CT. 

 

In total, 24 3DPET and 125 4DPET images were reconstructed over all motion cases. All PET 

images were reconstructed with an ordered-subsets-expectation-maximization (OSEM) algorithm 

(4 iterations, 28 subsets) using 128x128x47 voxels, 0.547x0.547x0.327 cm/voxel, 0.8 cm full-

width at half-maximum filtration, and standard Z filtering.  

 

Figure 2-3. Examples all CTAC and PET acquisitions for a typical patient-specific 

respiratory waveform 

3DHEL: Static helical “breath hold” CTAC. 3DMOT: Helical “free breathing” CTAC under 

motion. 4DMIP: 4D maximum intensity projection CTAC. 4DAVG: 4D average intensity 

projection CTAC. 4DEXH: 4D end-exhale phase CTAC. 4DMATCH: 4D phase-matched CTAC (1 

of 5 phases shown). 3D PET: Non-respiratory-correlated PET. 4D PET: respiratory correlated 

PET (1 of 5 phases shown) 

 

2.3.3 Image analysis 

Quantitative accuracy was evaluated with ratios between the motion case and the reference case 

for the following metrics: SUVmax, SUVpeak, SUVmean, and fixed threshold volume segmentation. 
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Two reference methods were defined. In reference method I, activity of the 2.2 cm sphere under 

respiratory motion was compared to the activity measured from the 2.2 cm sphere in the static 

reference scan. For method II, activity of the 2.2 cm sphere under respiratory motion was 

normalized to the activity of the static 3.7 cm sphere in the same scan. Results reported are for 

method I unless otherwise indicated.  

 

Activity and volume recovery coefficients, defined as the ratio of uptake or segmented volume 

between the moving sphere and the reference sphere, were calculated. Change in recovery 

coefficients of maximum, mean, and peak activity and segmented volume were defined as RCmax, 

RCpeak, RCmean, and RCvol; for example, RCmax was defined as the ratio of the voxel with maximum 

activity in the moving sphere divided by the voxel with maximum activity in the reference sphere 

minus 1. The lesion volume of interest was formed by threshold segmentation (see Figure 2-4). 

The segmentation threshold was defined on the no-motion reference PET image to correspond to 

the internal volume of the 2.2 cm diameter sphere. The threshold corresponded to 45.5% of 

maximum activity (320 kBq/mL). To test the impact of threshold choice on segmentation results, 

threshold segmentation with 10% change in magnitude to 40.5% and 49.5% was also investigated, 

which is in line with prior phantom studies. The segmentation thresholds were subsequently 

applied to the cases under motion following decay correction. RCpeak was defined as the ratio of 

the mean activity of a 1 cm diameter sphere that is placed such that it encompasses the greatest 

integral activity in the respective images. RCmean was defined as the ratio of mean uptake in the 

threshold segmentation volumes defined above. For 4DPET analysis, recovery coefficients were 

averaged across all phase bins unless explicitly noted. 
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Figure 2-4. Segmented volumes of interest in the reference case of no motion and the case of 

3.0 cm sinusoidal motion 

The reference volume (left inner contour) was defined by taking the percent threshold 

segmentation that yielded the known object volume on the reference PET/CT. Then, the same 

percent threshold segmentation was applied to the object under motion (right inner contour). To 

investigate the effects of CTAC in the vicinity of the lesion, a 2 cm isotropic expansion was applied 

to the reference case (left outer contour) and the same contour was used for all motion cases (right 

outer contour). 

 

To investigate effects of CTAC on the warm background region surrounding the lesion, a 2-cm 

isotropic expansion was performed around the reference segmentation volume on the static scan. 

Then, the segmented lesion volume on each scan was subtracted from this expansion to form a 

background volume of interest for each scan (see Figure 2-4). Ratios of activity between the 

motion case and the static reference case were evaluated. 

 

Image analysis was done in MIM v.6.2.5 (MIM Software Inc., Cleveland, OH).  To ensure 

robustness against non-normal distributions, statistical testing was performed with non-parametric 

paired Wilcoxon tests. To correct for the effect of multiple sampling with repeated hypothesis 

testing, Bonferroni’s correction was applied such that the threshold of significance was set at 
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α=0.002. To evaluate trends across multiple variables, non-parametric Kruskal-Wallis ANOVA 

was used. 

2.4 RESULTS 

Recovery of maximum, mean, and peak activity and segmented volume are shown as RCmax, 

RCpeak, RCmean, and RCvol in Table 2-2 and 

 

 
Table 2-3. for patient-specific and sinusoidal motion, respectively. Perfect recovery of activity 

under motion relative to the reference case would result in percent difference of zero. Box plots of 

recovery for 4DPET results as a function of CTAC method and image metric are shown in Figure 

2-5. 

2.4.1 3D vs 4D PET 

Activity and volume recovery was improved through the use of phase-binned (4D) PET versus 

non-binned (3D) PET, especially for cases with large motion. In the worst case of the 3.0 cm peak-

to-peak sinusoidal waveform with the helical CTAC under motion (3DMOT), errors on the order 

of 40-50% were observed (-40.8%, -41.9%, -23.2%, -52.1% for RCmax, RCpeak, RCmean, and RCvol, 

respectively). The best results for 3DPET reconstruction of the 3.0 cm peak-to-peak sinusoidal 
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waveform were obtained with the 4D maximum intensity projection (4DMIP) CTAC, but errors 

on the order of 30-40% persisted (-33.5%, -34.5%, -17.1%, -40.9%). For the 4DPET 

reconstruction, errors were reduced to 10-15% for the 3DMOT CTAC case (-9.0±3.0%, -

11.2±3.7%, -8.1±2.8%, -13.5±2.7%) and to less than 5% for the 4DMIP CTAC case (2.3±2.3%, -

0.3±4.2%, -2.3±3.9%, 3.1±3.0%). Smaller differences were measured between 3D and 4D PET 

under patient-specific motion and the 1.5 cm sinusoidal motion, on the order of 10% and 5% 

respectively (see Table 2-2  

 

Table 2-3). 

 

Table 2-2. Percent difference of recovery of SUV and volume metrics as a function of PET 

reconstruction and CTAC under patient-specific respiratory motion versus the no-motion reference 
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case (recovery coefficients and standard deviations are calculated across waveforms and image 

phases). 

 

 
Table 2-3. Percent difference of recovery of SUV and volume metrics as a function of PET 

reconstruction and CTAC under sinusoidal respiratory motion versus the no-motion reference case 

(recovery coefficients and standard deviations are calculated across image phases). 
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Figure 2-5. Box plots depicting 4DPET activity recovery over all investigated respiratory 

motion waveforms as a function of CTAC 

4DMIP CTAC produced significantly more accurate recovery coefficients. The end-exhale case of 

4DEXH demonstrated the least variability; however, note that 4DEXH (depicted in grey) 

represents only a single PET/CT image phase, versus five image phases for the other CTAC 

methods. Similar trends were seen between metrics. Box represents median and interquartile 

range of distribution; x represents mean; hash marks represent minimum and maximum. 
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2.4.2 Impact of CTAC on 4D PET 

For 4DPET imaging, the maximum intensity projection (4DMIP) CTAC produced significantly 

more accurate recovery coefficients than all other CTAC methods (p<0.0001 over all metrics; see  

Figure 2-5). Over all waveforms, ratios of 4DMIP CTAC recovery were 0.2±5.4, -1.8±6.5, -

3.2±5.0, and 3.0±5.9 for RCmax, RCpeak, RCmean, and RCvol. In comparison, recovery coefficients 

for phase-matched CTAC (4DMATCH) were -8.4±5.3, -10.5±6.2, -7.6±5.0, -13.0±7.7 for RCmax, 

RCpeak, RCmean, and RCvol., 4DMATCH CTAC recovery was significantly more accurate than 

3DMOT, the “free breathing” helical CTAC when evaluating RCmax (p=0.001), but not 

significantly more accurate than other CTAC methods or when evaluating other image metrics. 

When considering only the subset of 4DMATCH images that corresponded to the end-exhale 

image phase, 4DEXH, mean and interquartile range was similar to 4DMATCH but variability was 

considerably reduced. 

 

When evaluating the distribution of recovery coeffecients between RCmax, RCmean, RCpeak, and 

RCvol in Kruskal-Wallis ANOVA, significant differences between recovery was found between 

the different metrics (p=0.001). These trends were characterized by increased variability in the 

distribution of RCvol recovery and decreased variability with RCmean recovery; however, trends in 

mean and median recovery were similar between metrics. 
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Figure 2-6. 4DPET/CT images with phase-matched CT attenuation correction for two 

representative patient-specific respiratory motion cases 

 
While good agreement is generally seen at end-exhale phases (middle panel), phase mismatch is 

evident at other phases. CT phase number indicates center of phase bin.  

 

2.4.3 4DPET recovery as a function of phase  

Visual inspection of 4DPET/CT with 4DMATCH reconstruction revealed mismatch between PET 

and CT images phases (see Figure 2-6). When testing differences between phases over all CTAC 

methods and waveforms with Kruskal-Wallis ANOVA, significant differences between phases 

were revealed (p=0.005). However, these differences were driven by the patient-specific 

respiratory waveforms; when testing patient and sinusoidal waveforms separately with Kruskal-

Wallis ANOVA, patient waveforms were significantly different between phases (p<0.0001) while 

the sinusoidal waveforms were not significantly different (p=0.98). The 70% and 90% phases, 

which correspond to the inhale phases where motion is typically greatest in a patient’s respiratory 

cycle, demonstrated poorest accuracy and greatest variability in recovery coefficients (see Figure 

2-7). 
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Figure 2-7. 4DPET recovery coefficients for maximum uptake as a function of respiratory 

phase and CTAC method 

Patient-specific respiratory waveforms result in reduced accuracy and increased variability 
versus sinusoidal waveforms in the 70-90% phase range, which corresponds to inhale phases. 
 

2.4.4 Lesion periphery and threshold sensitivity  

The effect of CTAC choice on peripheral enhancement of RCmax and RCmean was measured within 

an isotropic 2 cm expansion of the lesion (see Figure 2-4). For RCmax, a uniform elevation of 

peripheral uptake for the motion case versus the static case was observed, but no significant 

differences were measured between CTAC types (see Figure 2-8). For RCmean, a significant 

increase in background uptake in the vicinity of the lesion was measured for 4DMIP CTAC versus 

other CTAC methods on the order of 10% (p<0.0001). 
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Figure 2-8. Effect of CTAC on background enhancement within a 2-cm volumetric 

expansion of the lesion 

No significant differences in maximum uptake were measured. For RCmean, 4DMIP CTAC 
resulted in higher uptake within the 2-cm expansion. Box represents median and interquartile 
range of distribution; x represents mean; hash marks represent minimum and maximum. 
 
 

The effect of variance in segmentation threshold on RCvol was also investigated by scaling the 

threshold obtained from the ground truth comparison of sphere volume. Changes in threshold 

setting led to proportional changes in recovered volume (see Figure 2-9). For example, recovered 

volume for 4DMIP was 5.05+0.40 mL for 49.5% of maximum, 5.72+0.33 mL for 45.5% of 

maximum, and 6.45+0.32 mL for 40.5% of maximum. As a consequence, while 4DMIP 

demonstrated highest accuracy of the six methods for thresholds of 45.5% (derived from the 

ground truth comparison) and 49.5%, it showed lowest accuracy for the 40.5% threshold 

segmentation.  
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Figure 2-9. Volume recovery coefficients as a function of CTAC method and threshold 

segmentation method 

Volume recovery scaled proportionally as a function of percent maximum threshold. 
 

2.5 DISCUSSION 

CT attenuation correction method is an important consideration for thoracic PET quantification in 

the presence of respiratory motion. In this study, we have investigated the impact of six CTAC 

methods on PET image quantification in the presence of simulated patient-specific and sinusoidal 

respiratory motion. In contrast to previously published work, minimal advantage from the use of 

phase-matched (4DMATCH) CTAC was shown versus other methods such as helical CTAC. 

Here, strong advantages in accuracy of SUV metrics and thresholded volumes were demonstrated 

with the use of the maximum intensity projection (4DMIP). These results indicate that though 

respiratory phase-matched CTAC should in theory provide optimal corrections, image artifacts 

and differences in implementation of 4DCT and 4DPET sorting can reduce the benefits of this 

approach.  
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Despite the theoretical advantages of the phase-matched CTAC method, this study noted 

significant advantages over other methods in only a single case (significant improvement in RCmax 

compared to helical CTAC in the presence of motion). No significant differences were detected 

for RCpeak, RCmean, or RCvol or versus other CTAC methods. This result for RCmax was similarly 

reported in the literature by Ponisch et al113, though their work showed a substantially greater 

improvement in accuracy, and also an advantage in thresholded volumes, which was not observed 

here. One distinction between this work and the prior work is the investigation of five motion 

conditions, including three patient-specific respiratory waveforms. By comparison, the prior work 

investigated only a single eccentric sinusoidal waveform. The use of patient-specific waveforms 

is hypothesized to lead to increased CTAC artifacts due to changes in motion patterns over time 

(see Figure 2-2). Additionally, the present work used a lung-equivalent background, which leads 

to more substantial and realistic 4DCT and 4DPET artifacts than the homogeneous background 

used by the prior work. Killoran et al investigated four sinusoidal waveforms with heterogeneous 

background and noted mixed results in comparisons of phase-matched, phase-averaged CTAC, 

and helical CTAC115, which agrees more closely with our results. More investigation is required 

as differences in experimental design, including design of phantom, respiratory correlation 

techniques, scanner vendor, commercial or in-house reconstruction software, 2D or 3D PET 

acquisition, and reconstruction settings will affect image quantification. However, it is clear that 

4DPET/CT accuracy is limited by the difference in respiratory sampling during image acquisition: 

long acquisition time of respiratory-correlated PET integrates motion over many respiratory cycles 

per phase bin, while the short acquisition time of respiratory-correlated CT integrates motion over 

only 1-2 respiratory cycles per phase bin, which in turn contributes to phase mismatch of CT and 
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PET images. These effects should be investigated before implementing phase-matched 4DPET 

workflows for clinical use. 

 

The 4DMIP CTAC showed the highest accuracy in quantitative applications in this phantom study, 

and has similarly been shown to be advantageous in cardiac PET. However, other factors could 

lead to reduced accuracy depending upon the application. One concern could be overcorrection at 

the periphery of the lesion, though the results presented here suggest this is a minor effect. The 

maximum uptake in the periphery was not increased while the mean uptake in the periphery was 

elevated on the order of 10%. This suggest modest enhancement of uptake in the voxels closest to 

the object in motion; however, this enhancement remains below the lesion activity. Furthermore, 

many of the specific applications of thoracic FDG PET, such as SUVmax or SUVpeak assessment 

for treatment response, may be unaffected by minor enhancement in the lesion periphery. Another 

factor that this experiment is incapable of evaluating is the effect of the maximum intensity 

projection on the external patient contour, which may appear larger under respiratory motion and 

lead to overcorrection of photon attenuation and thus uniformly escalated SUV values. Again, for 

response evaluation, this effect may be reduced in importance assuming general consistency in 

body habitus and respiration between scans. Despite these limitations, these results motivate 

further study of the application of the maximum intensity projection CT for thoracic PET/CT 

attenuation correction. 

 

While the use of a physical respiratory phantom offered the benefit of a controlled experimental 

design, there are additional limitations with this phantom. Considering that the moving feature was 

surrounded by lung equivalent material, the presented results may be specific to PET imaging of 
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lesions in low-density regions. Likewise, the hot sphere/tumor was filled through a stem that 

retained modest amounts of residual activity (approximately 10% of the sphere activity) and 

translated during motion in and out of the tumor position.  While this may bias results, the fillable 

area of the stem is roughly 0.2 cm in diameter compared to the 2.2 cm sphere and should have 

minimal impact on results. Similarly, the effects of tumor heterogeneity or tracer kinetics in the 

patient could bias the results versus the uniform sphere used here and cannot be evaluated. 

Furthermore, we evaluated only a fixed count density and the standard caveats apply that results 

may vary as a function of lesion-to-background ratio, count density, and noise levels. However, 

the previous investigation by Park et al of three different tumor-to-background ratios suggests that 

contrast does not strongly affect 4DPET recovery, and thus the corresponding fractional changes 

as a function of CTAC method are likely to be small114. Counts for 4DPET acquisition were 

matched to the reference 3DPET acquisition per scan, not per bin, which most closely reflects 

clinical practice, but could bias the results. However, an analysis of normalizing activities to 

reference objects defined on 3DPET or 4DPET with corresponding differences in count levels 

suggests this is not a significant effect. 

 

When considering 4DEXH, which consists of only the end-exhale phase of the 4DMATCH 

dataset, considerably reduced variability was seen with similar accuracy profiles to 4DMATCH. 

While accuracy remained lower than 4DMIP, 4DEXH may be an appropriate strategy for response 

assessment, where reduced variability may be of higher importance than small gains in accuracy, 

and relative response rates may wash out absolute bias. However, as 4DEXH only represents 20% 

of the entire respiratory waveform, it would not be appropriate for applications where it is desired 

to encompass motion, such as radiotherapy target definition in the free-breathing setting. 
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Limitations of 4DCT image quality in the presence of respiratory motion appeared to be a limiting 

factor in the performance of various 4DCTAC approaches. Various methods have been proposed 

to improve robustness and reduce artifacts in respiratory-correlated imaging, including long 

duration scanning with low dose CT88 and various mathematical approaches such as amplitude-

based sorting, deformable interpolation, and respiratory modeling through principle component 

analysis. Similarly, new developments are underway for 4DPET. The use of linear surrogates such 

as the camera-based or pressure belt-based systems have been criticized for various reasons, 

including lack of correlation to tumor motion at depth, and alternative methods under investigation 

include marker-less tracking and full surface tracking118.  

 

In this study, we evaluated four common PET image metrics. However, these metrics may not 

evaluate the impact of attenuation correction methods on other important image characteristics that 

are used for diagnosis or target definition. As an example, the effect of CTAC on lesion shape, 

uniformity, heterogeneity, or textural features was not evaluated. Similarly, the limitations of fixed 

threshold segmentation are well-known; for example, the seminal work of Nestle et al119. While 

other advanced segmentation techniques such as adaptive thresholding, gradient methods, or 

statistical modeling may provide more accurate lesion segmentation120-122, the purpose of this study 

was not to define the optimal segmentation method, but to evaluate the quantitative impact of 

CTAC choice on threshold segmentation because it is the most commonly-used volume metric in 

the literature. In this study, changes in threshold setting on the order of 10% led to proportional 

changes in volume recovery, with the magnitude of recovery between CTAC methods remaining 

roughly constant in proportion to each other. As a result, the 4DMIP CTAC showed poorest 
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accuracy at the 40.5% percent maximum threshold despite greatest accuracy for all other threshold 

settings and SUV metrics. This reinforces the challenges of defining an optimal threshold setting 

outside of a ground truth phantom study, such as for patient data in the clinical setting. 

Unfortunately, no consensus exists on more optimal segmentation techniques and they are not yet 

widely available in the clinical environment. Further investigation is warranted on this topic.  

2.6 CONCLUSION 

CT attenuation correction method is an important consideration for thoracic PET quantification in 

the presence of respiratory motion. While respiratory phase-matched CTAC should in theory 

provide optimal corrections, image artifacts and differences in implementation of 4DCT and 

4DPET sorting can degrade the benefit of this approach. Comparative advantages in accuracy and 

precision of SUV metrics and thresholded volumes were demonstrated with the use of the 

maximum intensity projection and end-exhale CT attenuation correction. These results may be 

useful to guide the implementation, analysis, and development of respiratory-correlated thoracic 

PET/CT in the radiation oncology and diagnostic settings. 
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Chapter 3. EXTENDED DURATION FOR RESPIRATORY-GATED 

PET/CT 

3.1 WHY EXTENDED DURATION? 

Positron emission tomography/computed tomography (PET/CT) imaging has emerged as a 

standard component for cancer staging and treatment. However, PET/CT imaging of the lung and 

abdomen is usually compromised by respiratory motion, of which the attenuation correction error 

caused by mismatch between PET and CT images is one of the major reasons. To reduce the 

mismatch, cine CT, which acquires multiple axial scans over time at a single bed position, has 

been adopted to provide phase-matched respiratory-gated CT data for respiratory-gated PET 

attenuation correction. However, due to a broad variability of intra-scan motion and inter-PET-CT 

motion in practice123, traditional short-duration cine CT may be inadequate to match PET scan 

data and consequently compromise the quality of attenuation correction69. Thus, in this work, we 

propose to use long-duration cine CT with the cine duration 10 times as long as the traditional 

short-duration cine CT. We note that extending the duration by a factor or 10 requires an equal 

reduction in patient dose per unit time to keep the total dose constant, and we are addressing that 

separately88,124. The goal of this study is to determine if extending the cine CT duration will reduce 

the mismatch between PET and CT motions and therefore improve the accuracy of attenuation 

correction and thus the PET images.  

3.2 METHOD 

We simulated FDG-PET/CT scans with the 4D extended Cardiac-Torso (XCAT) phantom125 to 

generate 3D distributions of radiotracers and linear attenuation coefficients of the patient body, 
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with two 1.5 cm diameter spherical objects added to simulate lung tumors. We used Varian Real-

time Position Management (RPM) traces from 11 patient PET/CT scans to drive the rendering of 

XCAT images with simulated tumors, with amplitudes of anterior-posterior expansion in XCAT 

images matching amplitudes of RPM displacements. For each respiratory motion trace, we first 

simulated PET acquisition over 4 minutes for 1 bed position covering 16 cm axially, and then we 

simulated cine CT images for 4 consecutive bed positions, each covering 4 cm. Note that there 

was no overlap in RPM traces between PET and CT simulations. We used the retrospective phase-

gating strategy in our simulation. For a given respiratory cycle determined from the RPM trace, 

we generated 10 equally spaced frames, with each corresponding to 1 of 10 respiratory phases. For 

each cycle, the PET frames were generated using percentage binning with each frame covering 

1/10 time of the cycle, while the cine CT frames were generated with each frame covering one full 

rotation (0.5 second). Each final phase is then generated by averaging over all frames 

corresponding to the same phase over multiple breathing cycles. This method ensures phase 

matching between PET and associated cine CT images.  

To simulate PET acquisition of a free breathing patient, we first created a 4D XCAT emission 

phantom dataset by generating 50 3D XCAT emission phantoms with anterior-posterior expansion 

sampled over a 5-mm amplitude. Each 3D XCAT emission phantom was then forward projected 

with the matched attenuation map to generate 50 emission sinograms. We used a method126 to 

form noisy motion-blurred sinograms according to a given RPM trace. That is, for each respiratory 

phase, the 50 emission sinograms were weighted according to the histogram of the RPM 

displacements corresponding to this particular phase, and then summed and normalized to form a 

phase-gated motion- blurred sinogram. All the resultant sinograms were convolved with a spatially 

variant PSF model measured from the GE D690 scanner to simulate the detection blurring effect. 
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Poisson noise, scatter events, and random events were also added to the emission sinograms.  

We compared the traditional short-duration cine CT (5 seconds cine time) with the proposed long-

duration cine CT (50 seconds cine time). More specifically, we simulated 5-second cine CT and 

50-second cine CT both starting at the same time point. For performance evaluation, we simulated 

the phase-gated average attenuation anatomy image as a benchmark, which represents the CT 

image that would be obtained if one performed the respiratory-gated CT scan simultaneously with 

the PET scan and would therefore produce arguably the most accurate attenuation correction for 

PET images. Thus, the resultant PET reconstruction using average anatomy images for CT 

attenuation correction (CTAC) is considered to be the most accurate reconstruction as we can 

possibly have in this experiment and will therefore be used as a reference.  

We reconstructed each phase-gated PET sinogram data with a voxel size of 2.73 x 2.73 x 3.27 

mm3 using the ordered- subset expectation-maximization (OS-EM) reconstruction algorithm with 

3 iterations and 32 subsets. A Gaussian post- filter with 6 mm full-width-at-half-maximum 

(FWHM) and a heavy axial filter were applied to the reconstructed images. The noisy emission 

data was reconstructed with three different CTAC factors converted from the abovementioned CT 

images. Each reconstructed activity image was normalized using the lung background activity 

measured on the same image.  

For comparison, we calculated the root-mean-square-error (RMSE) between gated average 

attenuation anatomy images and associated cine CT images for each phase, which reveals the 

mismatch between PET and CT acquisition. We also computed the RMSE between reference 

reconstruction using average anatomy as CTAC and reconstructions using subsequent cine CT 

images as CTAC, which indicates the accuracy of using cine CT images for PET attenuation 
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correction. Note that the RMSE was evaluated within the support of the XCAT phantom with all 

surrounding air pixels excluded.  

3.3 RESULTS 

3.3.1 Results for an irregular, medium amplitude breathing pattern patient 

Figure 3-1 shows that the 50-second cine CT eliminates the artifact on the diaphragm in the 5-

second cine CT image caused by mismatch between adjacent bed positions, and thus prevents the 

propagation of the CT artifact at the diaphragm into PET reconstruction via attenuation correction.  

 

Figure 3-1. Representative 4-D gated CT and PET images of different cine acquisition time  

 

3.3.2 Results for all patients in this study   

The 50-second cine CT also produces more accurate reconstruction of the overall activity than the 

5-second cine CT on average for almost all patients. Table 3-1 presents the average RMSE 

evaluated over all phases and patients. It shows that, among all patients in our study, extending the 

cine CT duration from 5 seconds to 50 seconds reduces the mismatch between PET and CT by 

roughly 41%, and also results in a roughly 42% improvement in overall PET reconstruction 
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accuracy.  

Table 3-1. Average RMSE over all respiratory phases and patients in attenuation maps and 
normalized reconstructed activity images for different cine CT durations.  

Average RMSE over all patients Attenuation maps (HU) Normalized activity images (a.u.) 

5-sec cine CT 61 ± 20.8 0.072 ± 0.042 

50-sec cine CT 36.6 ± 15.5 0.042 ± 0.032 
 
 

3.4 CONCLUSION 

In this work, we propose to use a long-duration cine CT for respiratory-gated PET/CT, whose cine 

acquisition time is ten times longer than a traditional short-duration cine CT. The results of 

phantom simulation with real respiratory traces show that, the long-duration cine CT reduces the 

mismatch between PET and cine CT by 41% and improves the overall reconstruction accuracy by 

42% on average, as compared to the traditional short-duration cine CT. The long-duration cine CT 

also reduces artifacts in PET images as caused by misalignment and mismatch between adjacent 

slices in phase- gated CT images. The improvement in data matching by extending the cine 

duration depends on the patient, with potentially greater benefits for patients with irregular 

breathing pattern and larger diaphragm movement. Future work includes experimenting with more 

respiratory traces with a wide variability of breathing patterns and evaluating local activity for 

individual lesion.  
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Chapter 4. POST-LOG APPROACHES FOR THE LOW DOSE 

IMAGING 

4.1 ULTRA-LOW DOSE CTAC FOR PET/CT: ANALYSIS OF SPARSE VIEW DATA 

ACQUISITION AND RECONSTRUCTION ALGORITHMS124  

4.1.1 Introduction 

As introduced in Chapter 3, extended duration of CT acquisitions over multiple respiratory cycles 

could help compensate for respiratory motion induced artifacts. On the other hand, extended 

scanning time also means increased the total radiation dose. In the previous publication, with 

proper settings of voltage and x-ray spectra, we had shown that low dose CTAC for PET is 

clinically feasible88. For ultra-low dose CT imaging, due to the photon starvation effect, streak 

artifacts and HU bias could compromise the accuracy of CT-based attenuation correction for PET. 

One way to reduce the bias is reducing the projection view number so that the relative electronic 

noise could be lower while total number of detected photon remains127,128; however, it also lead to 

aliasing artifacts. Therefore, in this research, seven sparse-view acquisition protocol were tested -

- 984, 328, 123, 41, 24, 12, and 8 views. Two different sparse-view simulations were tested: 

continuous exposure averaging approach and the tube pulsing approach. On the other hand, two 

CT reconstruction algorithms, FBP and MBIR, were used for generating the CT image for AC of 

PET. Dose scheme were varies from 0.35 mAs to 0.04375 mAs. Though comparing the 

quantitative information on the CTAC PET image, we are able to determine the optimal ULDCT 

acquisition protocol in order to achieve the relative best PET image accuracy.  



 

 

57 

Table 4-1. Acquisition protocols for the sparse-view ultra-low dose CT imaging   

 

4.1.2 Method 

We used the Computer Assisted Tomography Simulator (CatSIM129) for the simulation of the x-

ray CT imaging. A 140 kVp polychromatic x-ray spectrum was used in our simulation. The x-ray 

photons reaching the detector at each energy bin is modeled as a Poisson process and are converted 

to a signal proportional to the sum of energies. Electronic noise is modeled as Gaussian noise (see 

Chapter 6.3.6, page 91, for similar simulation details). Continuous exposure mode was simulated 

by summarizing sub views between neighboring views prior to log conversion. To simulate the 

tube pulsing data which is acquired by turning on the tube at desired location, we performed the 

simulation with all 984 views then dropped the views which are not needed. In this way, the 

exposure time for each view remains unchanged. In the tube pulsing data acquisition mode, the 

mA level is increased to maintain the equal dose level. Details for the MBIR algorithm can be seen 

in the section 5.2.3. 

 

3D PET geometry of the GE Discovery 600 scanner was simulated in this report, but used a single 

block ring consisting of 6 axial detectors resulting in 31 direct and oblique planes. The simulated 

system geometry has 339 radial bins, 256 angular bins, a FOV diameter of 700 mm and 40 mm 

longitudinal coverage per bed position. The resulting PET simulation data had 10 million counts 

including true and scattered coincidence events. Random coincidence events, detector blurring, 
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and normalization were not modeled as our study focused on investigating the effects of 

attenuation correction with CT images on PET quantitation. 20 i.i.d. Poisson noise realizations of 

the PET sinogram data were generated. A bilinear transformation was used to convert the CT 

reconstructed images to attenuation coefficients at 511 keV and used for PET reconstruction. PET 

images were reconstructed with 2 iterations, 28 subsets of OSEM using attenuation estimates from 

ultra-low dose CT.  

 

4.1.3 Result and discussion  

Table 2-2 and  

 

Table 2-3 shows the ensemble RMSE of the PET uptake value comparing to the regular-dose 

CTAC PET image. The simulation demonstrated that ULDCT-based attenuation correction can be 

achieved at dose levels on the order of 0.044 mAs with little impact on accuracy of PET uptake 

value. Highly sparse 41- or 24- view ULDCT scans are feasible for PET attenuation correction, 

providing the best tradeoff between electronic noise and view aliasing artifacts. The continuous 

exposure acquisition mode could potentially be implemented in current commercially available 
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scanners, thus enabling sparse view data acquisition without requiring x-ray tubes capable of 

operating in a pulsing mode. On the other hand, pulsing mode also showed marginal improvement 

in the uptake accuracy, which imply it could be a potential approach for more accurate ultra-low 

dose CT when pulse CT acquisition mode is available on the PET/CT scanner.   

 
Table 4-2. Ensemble RMSE of PET images from CT-based attenuation correction for 

continuous exposure technique124 
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Table 4-3. Ensemble RMSE of PET images from CT-based attenuation correction for tube 

pulsing technique124 

 
 

4.2 VARIANCE ESTIMATION FOR ITERATIVE RECONSTRUCTION OF EXTREMELY 

LOW-DOSE CT DATA 

4.2.1 Introduction 

In ultra-low dose protocols, the CT images suffer from the increased bias and noise in 

measurements. There are numerous efforts to improve the image quality for low-dose acquisitions, 

and here we focus on post-log reconstruction excluding the additional low dose techniques such 

as sparse view recovery 127,130,131 or penalty functions132. One inherent limitation of post-log 

reconstruction is how to treat the non-positive sinogram values prior to logarithm operation. We 

investigated the impact of the mean preserving filter (MPF)133 for the variance of the CT data, and 

we proposed a new variance expression including the effect of non-positive correction in the 

intensity domain to make WLS (weight-least squared) reconstruction more accurate in estimate 
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for the variance (weight). In this report, we compared two different weight estimation models: 

quantum and electronic noise model (WSQE)93 and the proposed advanced variance estimation 

model (WAQE) for the MPF-operated ultra-low dose CT data in the PWLS algorithm.  Through 

analyzing the bias of final reconstructed CT images, we would like to show that the statistical 

distribution (here: variance) change by the non-positivity correction should also be considered in 

the iterative reconstruction process, and that could benefit the overall accuracy in the ultra-low 

dose CT image.   

4.2.2 Method 

Thibault et al. proposed a combined Poisson quantum and Gaussian electronic noise (Gaussian 

variance: 𝜎U�) model93. The approximate weight: 

 

    (1) 

 

However, both noise models, quantum only and combined quantum and electronic variance 

models, do not consider the effect of pre-corrections performed prior to log conversion of the 

measured data. Here, we chose MPF (see section 6.3.7) for non-positivity correction in the 

variance model analysis. We extended Thibault’s weight estimation including the effect of two 

successive steps, positivity enforcing and error dispersion, in MPF. Since 𝛌 is a function of a 

random vector 𝐗, which is a sum of offset-subtracted pre-log (𝐗) and error dispersion (𝐄) random 

vectors, the variance of 𝛌 in denominator of (1) can be approximated by Taylor expansion for the 

first and second moments of the function as follows 
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  (2) 

 

The mean and variance of 𝐗 = 𝐗 + 𝐄 are 

 

              (3) 

 

  (4) 

 

The inverted and first derivative forms of MPF function are 

 

    (5) 

 

     (6) 

 

Each element of error dispersion random vector (𝐄) is computed as weighted sum of the changes 

of neighbors (Ni) of i-th sinogram bin to go previously through MPF function as follows 

 

   (7) 
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Assuming independent error random variables, 𝛆w , of neighbors, the variance of 𝐄v  is 

approximated as follows, σ:h
� ≜ 

 

     (8) 

 

The variance of each neighbor, 𝛆w is  

  
(9) 

 

The covariance term in (9) is derived as follows 

 

 
(10) 

 

Using (4), (9) and (10), the variance of 𝐗v can be practically computed as 
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    (11) 

with the approximation of 	𝑚� ≅ 𝑋 = 𝑋 − 𝐸. 

Thus the variance of pre-corrected pre-log data in the denominator of (9) can be changed for the 

advanced weight matrix as follows 

  (12) 

 

CT simulations with GE VCT scanner’s settings were performed of the NCAT chest phantom 

using the CatSim simulator129, which generates sinograms (984 views x 888 channel) wih poly-

energetic compound Poisson data (0.5 & 10 mAs and 80 kVp) and Gaussian electronic noise 

(𝑚U = 897, 𝜎U� = 15�) contributions (see section 6.3.5). For MPF non-positivity correction (see 

section 6.3.7), the parameter α was set at 20. Twenty iterations with optimized penalized terms 

were used for each ICD-PWLS CT (512 x 512 pixels) reconstruction134.   

4.2.3 Result and discussion  

Figure 4-1 and Figure 4-2 shows the reconstructed CT images comparing between FBP and SQE 

and AQE method for PWLS weight estimation. For both low dose and ultra-low dose images, 

PWLS reconstruction shows improved RMSE and bias than the FBP reconstruction. For the 

comparison between SQE and AQE, some improvements could be seen for the bias value (see 

Table 4-4). 
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Figure 4-1. Comparison of reconstructed 10 mAs NCAT CT images 

(A) 400 mAs FBP reconstruction as the positive control, 10 mAs (B) FBP reconstruction with 

MPF20 non-positivity correction, (C) PWLS reconstruction with MPF20 non-positivity correction 

and SQE weight estimation, and (D) PWLS reconstruction with MPF20 non-positivity correction 

and AQE weight estimation     

 

 
Figure 4-2. Comparison of reconstructed 0.5 mAs NCAT CT images 

(A) 400 mAs FBP reconstruction as the positive control, 0.5 mAs (B) FBP reconstruction with 

MPF20 non-positivity correction, (C) PWLS reconstruction with MPF20 non-positivity correction 

and SQE weight estimation, and (D) PWLS reconstruction with MPF20 non-positivity correction 

and AQE weight estimation     
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Table 4-4. Ensemble RMSE and BIAS of CT images for different acquisition and 

reconstruction protocols, unit:1/mm   

 
 
For the simulated image of 80kVp, 10 and 0.5 mAs of a chest phantom, compared to the 

conventional FBP reconstruction methods, the iterative reconstruction method did reduce the 

image bias for the low-dose and ultra-low dose image up to 8 times. With practical estimates of 

weights for WLS, there was improvement with the advanced variance estimates (WAQE) 

considering electronic noise and the effect of pre-processing on variance change.  But there is an 

inherent limitation on image quality improvement of WLS reconstruction based on Gaussian post-

log distribution for extremely low-dose CT imaging.  

4.3 COMPARISON BETWEEN PRE-LOG AND POST-LOG STATISTICAL MODELS IN 

ULTRA-LOW-DOSE CT RECONSTRUCTION 

4.3.1 Introduction 

In chapter 4.1 and 4.2, we introduced applying the model-based iterative reconstruction method 

(MBIR) on the ultra-low dose data. However, in previous two sections, we only considered the 

case of reconstructing post-log sinograms, where the x-ray transmission data had already been pre-

corrected for detector non-uniformity, tube current fluctuation, non-positivity signals, scatters, etc. 

Then the pre-corrected data are logarithmically transformed to the integral values and then 

processing for the following model-based image reconstruction. On the other hand, since 

algorithms in the pre-log category include Beer’s law in the forward model and directly reconstruct 
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images from the transmission measurements without taking the log operation, there are few 

possible advantages for the pre-log approaches. First, the bias caused from the non-positivity 

correction process in order to dealing with DAS electronic noise could be prevented. Second, the 

bias in the weight estimation process due to the noisy data and the non-positivity correction (see 

section 4.2) could be further prevented too. Thirdly, the bias caused by the logarithm itself could 

be avoided. Despite certain theoretical advantages of the pre-log approach, both pre-log and post-

log models are simplified approximations. It is still an open question whether the pre-log model 

could notably improve image quality over the post-log model for reconstructing the CT image 

under the ultra-low-dose level. Therefore, this report quantitatively compares several commonly 

used pre-log and post-log approaches for the ULDCT data.     

4.3.2 Method 

Here we showed the experimental setup for the ULDCT patient data. The dataset was acquired on 

a GE Discovery CT750 HD scanner (GE Healthcare, Waukesha, WI) with 64-row collimation, 

helical pitch of 0.516, 80 kVp, 10 mA, and 0.5 s rotation. This was an ultra-low-dose dataset 

acquired with the lowest possible setting on the scanner. A standard-dose reference scan was also 

acquired with 120 kVp, 310 mA, with other settings kept the same. Images were reconstructed on 

a grid of 512x512 with an in-plane pixel size of 0.98 mm2 and a slice thickness of 0.625 mm. We 

compared five statistical options for this patient dataset, with the same definition as the phantom 

study: 

1. Post-log. 

2. Post-log with denoised data (3x3). 

3. Post-log with denoised data (6x6). 
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4. Pre-log Poisson. 

5. Pre-log shifted Poisson. 

The regularization strength in option 4 was manually increased to approximately match image 

roughness of other reconstructions. For denoised data, a locally adaptive linear minimum mean 

squared error (LLMMSE) filter was applied135. Please refer to the full publication for the detail 

settings for the statistic model and the reconstruction algorithms136.    

4.3.3 Result and discussion 

Figure 4-3 shows reconstructed images produced by different MBIR options from the ultra-low-

dose patient dataset of chest. The standard-dose FBP image (a) demonstrates large mass in the left 

chest wall along with two right lung nodules. The ultra-low-dose FBP reconstructions (b) and (c) 

are extremely noisy even with a soft kernel and pre-denoising of the data. These images nearly 

obsure the large mass in the left chest wall. Post-log MBIR (d) contains much less noise but shows 

strong negative bias and precludes evaluation of lung and chest wall images. Application of pre-

denoising to post-log MBIR (e) substantially reduces the bias, but even with aggressive denoising 

(f), substantial bias remains relative to the high-dose reference image. These images enable 

evaluation of both lung and left chest wall lesions. The pre-log Poisson algorithm (g) shows 

remarkable improvement of HU accuracy relative to all post-log options, almost fully removing 

the dark shading in the image, and the HU level as well as appearance of lung and left chest wall 

lesions are comparable to the high dose reference image. Further incorporating electronic noise 

model in the pre-log shifted Poisson MBIR (h) reduces some streaks and further reduces noise, but 

doing this also introduces some slight shading artifacts. The appearance of the abnormalities on 

image (h) is similar to image (g). Overall, modeling of electronic noise in pre-log MBIR did not 
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show a definite benefit in this patient dataset. Overall, the negative bias in post-log MBIR is 

reduced by incorporating pre-denoising filters, and further reduced by pre-log MBIR. Pre-log 

MBIR with Poisson and shifted Poisson model shows a comparable level of HU accuracy.  

 

Figure 4-3.Images reconstructed by different algorithms from the same ultra-low-dose 

(0.5mAs) patient data set136.  

A: Control image, high dose FBP, B: ULDCT FBP, C: ULDCT with denoised data (6x6), D: 

ULDCT post-log, E: ULDCT post-log with denoised data (3x3), F: ULDCT post-log with denoised 

data (6x6), G: ULDCT pre-log Poisson, and H: ULDCT pre-log shifted Poisson. HU window [-

210, 390]        

 

We presented that the pre-log MBIR is the ability to directly accommodate non-positive 

transmission measurements in the presence of electronic noise, and reduce the reconstruction bias 

that would otherwise be caused by clipping of non-positive data. Our results show that pre-log 

MBIR can achieve notably better quantitative accuracy than post-log MBIR in ultra-low-dose CT, 

while post-log MBIR without pre-reconstruction denoising shows substantial reconstruction bias 
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and appears not suitable for photon-starved situations. Overall, pre-log MBIR and electronic noise 

modeling could play an important role in emerging ultra-low-dose CT applications. 
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Chapter 5. ULD-CTAC IN PHANTOM AND PATIENTS  

5.1 INTRODUCTION 

When CT images are used for PET attenuation correction, the images do not need to satisfy the 

requirement for diagnostic CT images, which are typically high-resolution images with high 

contrast and low noise. In fact, to match the PET resolution, smoothing filters are typically used 

to reduce the resolution and noise of the CT images. This allows a further reduction of the CT scan 

dose beyond the low dose limit of current CT protocols. On the other hand, PET reconstruction 

has its own specific requirement for the CT attenuation correction (CTAC) images. The artifacts 

and bias in the CTAC images can easily propagate to PET reconstruction images and results in 

errors on the PET images. Since the quantitative assessment of the tracer uptake is very important 

for the clinical diagnostic, the tolerant for artifacts and bias on the CTAC images are typically low. 

We have conducted a series of simulation studies to explore the opportunity of using ultra-low 

dose CT images for PET attenuation correction while preserve the quantitative accuracy for the 

PET images. It has been shown that by combining different techniques such as CT sinogram 

smoothing, CT spectrum optimization, sparse view data acquisition and iterative reconstruction, it 

is possible to use ultra-low dose CT scans for PET attenuation correction88,124. On the other hand, 

iterative reconstruction methods are effective in reducing noise and suppressing streaking artifacts, 

especially for low dose scans compared to the traditional FDK-based analytical reconstruction 

algorithms93. Therefore, we also adopted the model based iterative reconstruction algorithm 

(MBIR) to further reduce the dose of the CT scan.  

 

In this study, we aim to apply the techniques that have been demonstrated in simulation to patient 

data acquired from a clinical PET/CT scanner at the lowest possible CT radiation dose. The 
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quantitative accuracy of the PET images is evaluated using the attenuation map generated based 

on CT images reconstructed using model based iterative reconstruction (MBIR) and analytical 

reconstruction. The preliminary results for the torso phantom and a patient study are included in 

this chapter. 

5.2 METHODS 

5.2.1 Phantom PET/CT scan  

A RSD torso phantom (Radiology Support Device, CA) was used in the study, as shown in Figure 

5-1. A chest PET scan with corresponding CT scans were performed for this phantom using a GE 

Discovery STE scanner. For the CT scans, we used a diagnostic CT protocol and an Ultra-Low 

Dose (ULD) CT protocol: 

1. Diagnostic CT protocol: 80 kVp, 200 mA, 0.5 sec (100 mAs).  

2. ULD CT protocol 80 kVp, 10 mA, 0.5 sec (5 mAs).  

Axial scans for 2-cm thick coverage (16 x 1.25mm) at 8 bed positions were acquired. The CT 

images were reconstructed using FDK-based reconstruction and MBIR as described below to 

generate the attenuation correction map for PET image reconstruction. For the PET scan, 2.38 mCi 

F-18 was injected to the center cavity (around 8.3 liters) of the RSD torso phantom at one hour 

before a 10-minute 3D PET acquisition.  
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Figure 5-1. RSD torso phantom and its CT images 

Image (A) shows the RSD torso phantom used in this study. The yellow rectangle in the dash line 
indicates the scan range. Image (B) and (C) show the coronal view of the CT scan images acquired 
at ultra-low dose and normal diagnostic dose. The red dash line indicates the center slice position. 
 

5.2.2 Patient PET/CT scan  

Patients were scanned by department of radiology, University of Washington using a GE 

Discovery STE scanner. In this chapter, we report results from two female patients.  

 

A. Patient 1 – ULDCT in axial mode, sparse-view:  

The reference CT images which server as ground truth for comparison is taken at 120 kVp. Helical 

mode is used for the reference CT scan with 60 mA, 0.917 s rotation time. An ultra-low-dose 

(ULD) CT scan was taken at 80 kVp for the same patient. The ULD CT scans were performed at 

axial mode at 5 mAs. Whole body PET/CT scans were taken for the patient. In the results presented 

here, we focus on the chest region.  

 

To further lower the dose, we sparsely sampled the data acquired at three different protocols: a 

total of 41, 24 and 12 views. The 41 views data set was created by selecting 41 views from the 984 

fully sample views uniformly. The same procedure was used to generate the 24 and 12 view data 
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set. Since the original scan was taken at 5 mAs, after dropping the views, the effective dose for the 

sparse sampled data set were 0.21 mAs, 0.12 mAs, 0.06 mAs for the 41-view, 24-view and 12-

view data set. The fully sampled and sparsely sampled data sets were reconstructed using FDK-

based reconstruction and MBIR as described below to generate the attenuation correction map for 

PET image reconstruction.  

 

For the PET scan, 10.55 mCi F-18 FDG was injected to the patient (82 kg) at one hour before a 

15-minute, 3 bed positions 3D PET acquisition. 

 

B. Patient 2 – ULDCT in helical mode:  

The reference CT images which server as ground truth for comparison is taken at 120 kVp. Helical 

mode is used for the reference CT scan with 375 mA, 0.917 s rotation time. An ultra-low-dose 

(ULD) CT scan was taken at 120 kVp for the same patient. The ULD CT scans were performed at 

helical mode at 9 mAs. Whole body PET/CT scans were taken for the patient. For the PET scan, 

10.69 mCi F-18 FDG was injected to the patient (168 kg) at one hour before a 35-minute, 7 bed 

positions 3D PET acquisition. Since the patient had suspicious endometrial adenocarcinoma; in 

the results presented here, we focus on lesions in the pelvic region (see red arrows in Figure 5-2). 
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Figure 5-2. Representative PET and PET/CT images of a suspicious uterine cancer patient 

(Patient 2) 

5.2.3 CT image reconstruction  

The CT scan data were reconstructed using both FDK-based and MBIR. For MBIR, we used a 

penalized weighted least square (PWLS) cost function:  

𝒙 = min
𝒙
𝑓(𝒙) 

𝑓 𝒙 =
1
2
𝒚 − 𝑨𝒙 <𝑾 𝒚 − 𝑨𝒙 + 𝛽𝑈 𝒙 , 

where 𝒙 represents the object volume, 𝒚 represents the sinogram, 𝑨 is the system matrix, 𝑾 is the 

statistical weighting, 𝑈(𝒙)  is the prior term and 𝛽  is the scalar regularization strength. A 

hyperbolic potential function 𝑈(𝑡) was used as the regularization function:  

𝑈 𝑡 = 𝛿�( 1 +
𝑡
𝛿

�
− 1)) 

where 𝛿 controls the shape of the prior function. We used 𝛿 = 0.02	𝑚𝑚&R to approximate the 

quadratic prior function. To solve the optimization problem, OS-SPS method was used with 30 
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OS iterations and 41 subsets137. The CT images were reconstructed with a 700 mm in-plane field-

of-view (FOV) and a 2.5 mm slice thickness.  

5.2.4 PET data reconstruction and quantification  

All 3D-PET data with attenuation corrections were reconstructed using the OSEM algorithm (4 

iterations, 28 subsets). A large ROI was drawn at the middle part of the center slice to calculate 

the activity in the center region, and a smaller ROI was drawn to represent the non-uptake lung 

region (see Figure 5-3Figure 5-7). Maximum, mean, standard deviation (STDEV), and coefficient 

of variance (CV) values were measured through the OsiriX viewer v. 7.0 (Geneva, Switzerland). 

The recovery coefficient (RC) was defined by comparing the measured activity to the control PET 

image with high-dose (200mAs, 120kvp for the phantom and Patient 2 studies, and 80kVp for 

Patient 1 study) CT-image attenuation correction.      

5.3 RESULTS 

5.3.1 Phantom study 

The representative CT images reconstructed using both FDK-based algorithm and MBIR are 

shown in Figure 5-1. The CT image acquired with diagnostic CT protocol is also shown in Figure 

5-3 for reference. As expected, the CT images reconstructed using FDK-based algorithm with 

ultra-low dose data suffers from high noise and also significant bias due to the low-signal 

correction. The CT images reconstructed using MBIR show the advantage at this dose level by 

significantly suppressing the noise and reducing the bias on the reconstructed images. With the 

improvement of the CT images, improved PET image quality could be expected. 
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Figure 5-3. The center-slice CT images from the phantom study reconstructed from the ultra-

low dose measurement 

Control images A (80 kVp, 200 mAs) and B (80 kVp, 5 mAs) are reconstructed images from FDK-
based reconstruction. Image C (80 kVp, 5 mAs) are reconstructed with MBIR. The display window 
for the images is [-800, 400] HU. The blue-color circle, center ROI, is mainly composited by water 
equivalent material, and magenta-color (lung ROI) circle represents the air.   
 
 

 

Figure 5-4. The correspondent PET images from the phantom study  

with the ultra-low dose CTAC 

A. 80 kVp, 200 mAs, FBP-CT recon; B. 80 kVp, 5 mAs, FBP-CT recon; C. 80 kVp, 5mAs, MBIR-
CT recon are reconstructed using OSEM. The display window for the images is set from zero to 
14.5 kBq/ml. The blue-color circle represents the higher-uptake center ROI, and magenta-color 
circle represents the non-uptake lung ROI. 
 
 
The corresponding PET images (see Figure 5-4) show a more uniform uptake in the MBIR-based 

CT-AC images than for the FBP-based CT-AC images. The bias in the PET images was -25% 

using the ULD-FBP-CT image, and -11% for the ULD-MBIR-CT image. The std. dev. for the PET 

image ROI was 529, 659, and 610 Bq/ml when using the FBP-CT, ULD-FBP-CT, and ULD-

MBIR-CT images. The quantification results are shown in Table 5-1. 
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Table 5-1. PET quantification results of the phantom with three different CT attenuation 

corrections. 

 
 

5.3.2 Patient 1 Study (axial, sparse-view) 

The reconstructed CT images are shown in Figure 5-5. The data sets are sampled at 984 views, 41 

views, 24 views and 12 views. Both FDK and MBIR were used to reconstruct the CT images for 

PET attenuation correction map. It is obvious the CT images reconstructed using MBIR (ULD-

MBIR) at ultra-low-dose has less noise compared to the CT images reconstructed using FDK 

(ULD-FDK). For the sparsely sampled data set, the ULD-FDK CT images has obviously more 

aliasing artifacts compared to the ULD-MBIR CT images. As the number of sampled views 

reduces, the equivalent dose for the data set also reduces. Therefore, the ULD-FDK images have 

significantly higher noise compared to the ULD-MBIR images.  

 

The corresponding PET images are shown in Figure 5-6. When the view number of CT data set 

reduces, there are obvious artifacts on the PET images reconstructed using the ULD-FDK CT 

images. For example, for the 12-view CT data set, the PET images reconstructed using ULD-FDK 

CTAC map has significant bias in the heart region, and dark streaks. The quantitative measurement 
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on the ROIs are shown in Table 5-2. for both CT and PET images. The noise on the ULD-FDK 

CT images are very high compared to that on the ULD-MBIR CT images. Especially for the 

sparsely sampled images, the standard deviation of the measurement is 10 times the mean 

measurement. The standard deviation measured for the ULD-MBIR CT images is much lower 

compared to that measured on FDK CT images. For the central ROI located on the heart region, 

the PET images reconstructed using ULD-MBIR based CTAC map and ULD-FDK based CTAC 

map shows similar max and mean uptake for the fully sampled data set. When the number of 

sampling goes down, the bias of the max and mean uptake compared to the control images rises 

quickly for ULD-FDK based PET recon images (from 17.7 % for 41 views to 90% for 12 views). 

 

Figure 5-5. The CT images from the patient study used for  

PET attenuation correction map generation. 

Data were sampled at 984, 41, 24, 12 views. Both FDK (top row) and MBIR (bottom row) are 
used for the PET reconstructions 
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Figure 5-6. The corresponding PET images from the patient study reconstructed using the 

attenuation map generated from CT images 

The CT data were sampled at 984, 41, 24, 12 views. The top row PET images were reconstructed 
using the correspondent FDK-CTAC images. The bottom row PET images were reconstructed 
using the correspondent MBIR-CTAC images.  
 

On the other hand, the bias for ULD-MBIR based PET recon images rises slowly and is much 

smaller (from 0.8% for 41 views to -17.9%). Similar results can be observed for the lung ROI. 

However, the bias in the lung region is higher than the heart region. It appears, for this patient data 

set, the ULD scan dose might be too low for CTAC. The lung ROI measurement for the mean 

uptake is higher than 15% compared to the control images with full sampling. The bias is much 

higher for the sparsely sampled data set. Even though MBIR has the advantage in suppressing the 

noise and bias, the absolute bias is still high for Lung ROI. 

                          

Figure 5-7 The reference CT and PET images for patient ROIs 
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The display window for CT image was set to [-160, 240] HU. The square indicate the ROI used 
for the following quantitative analysis. 
 

Table 5-2. The quantitative measurement for the ROIs selected on CT and PET images from 

patient 1 

 
 

5.3.3 Patient 2 Study (helical) 

The representative CT images of Patient 2 reconstructed using both FDK-based algorithm and 

MBIR are shown in Figure 5-8. As expected, the CT images reconstructed using FDK-based 

algorithm with low dose data (9 mAs) is much nosier and more bias than the image using MBIR 

algorithm. The corresponding PET images (see Figure 5-8) show a similar uptake in the MBIR-

based CT-AC images and the FBP-based CT-AC images. The bias in the suspected PET lesion #2 

images was -12% using the ULD-FBP-CT image, and 5% for using the ULD-MBIR-CT image. 

The bias of the mean uptake for the liver ROI was -31% and -29% when using the ULD-FBP-CT, 

and ULD-MBIR-CT images. The quantification results are shown in Table 5-3. 
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Figure 5-8. High and low-dose CT images and their correspondent PET images from the 

Patient 2 study 

The window level for all CT images were set on [-500, 700] HU (top row). The window level for 

all PET images were set on 6 SUV with the size of 12 (bottom row).   

 

 
Figure 5-9. Representative ROI positions for patient 2 in Table 5-3 
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Table 5-3. The quantitative measurement for the ROIs selected on CT and PET images from 

patient 2 

 
 

5.4 DISCUSSION  

We acquired PET/CT scans of an enhanced RSD torso phantom using a diagnostic CT protocol 

(80 kVp 200 mAs) and an ULD protocol (80 kVp 5 mAs, lowest possible CT dose). FDK-based 

analytical reconstruction and MBIR are used to reconstruct the images. All three CT images were 

used for attenuation correction of the PET data which were reconstructed using OSEM. The FBP-

CT and OSEM-PET images for the diagnostic CT protocol (80 kVp 200 mAs) were non-

remarkable, while for the ULD protocol (80 kVp 5 mAs) artifacts were evident in the FBP-CT and 

OSEM-PET images. For the MBIR-CT and OSEM-PET images from the ULD protocol data, 

artifacts in the CT and PET images were suppressed but not removed entirely. For a large central 

region of interest (ROI), the bias in the PET images was -25% using the ULD-FBP-CT image, and 

-11% for the ULD-MBIR-CT image. The std. dev. for the PET image ROI was 529, 659, and 610 

Bq/ml when using the FBP-CT, ULD-FBP-CT. For the ultra-low dose acquisition, the noise and 
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bias in the CT image can propagate to the PET image through the attenuation correction step. In 

this phantom study, we showed that using MBIR for ULD CT data reduces bias and noise in the 

corresponding PET image. This approach has the potential to enable extended-duration CT 

scanning for matching respiratory-gated CT attenuation correction. 

 

Likewise, the low dose limit of the CT scans for PET attenuation correction purpose is evaluated 

on two patient data sets. For the Patient 1 study, a CT scan at 54 mAs was used as the reference 

image for comparison. An ultra-low-dose CT scan at 5 mAs was also performed for the same 

patient. We further lowered the dose by reducing the sampling of the fully sampled data set to 

generate three sparsely sampled data sets at 0.21 mAs, 0.12 mAs, 0.06 mAs. FDK and MBIR are 

used to reconstruct the CT images used for CTAC. Quantitative measurement on the selected ROIs 

are performed on both CT and PET images. At ultra-low-dose, MBIR shows great advantage in 

terms of reducing the noising and suppressing the aliasing artifacts due to sparse sampling. The 

quantitative measurement on both the central heart region and lung region confirms this. However, 

the dose might still be too low to ensure the quantitative accuracy of the PET images for this 

patient, especially for the lung region, the bias is more than 15% for both MBIR and FDK based 

CTAC. These results are still very useful in terms of determining the possible practical ultra-low-

dose scans for patient.  

 

For the Patient 2 study, similar approaches were used for comparing the PET uptake value in the 

suspected uterine cancer lesion. Again, we could find a big improvement for the accuracy of CT 

ROIs when comparing the low-dose FDK CT image and the MBIR CT image to the reference high 

dose image in lesion #2 (bias: 3579% vs. -1091%). However, this improvement did not fully reflect 
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on the accuracy of the correspondent PET image (bias: -12% vs. 5%). The possible explanation 

for it could be the ‘truncated field of view’ in the CT image lead by an oversize patient (BMI = 

61.7). The Figure 5-10 shows the CTAC (PIFA, PET images for attenuation) images from the 

scanner, and we can see that all attenuation maps, especially for ULD images, were abruptly 

cropped due to the limited field of view of the bowtie. Lesion #1 was not included in the discussion 

is because of that an obvious white streak artifact across the lesion #1 is observed in the PET 

image, and it may affect the accuracy in its uptake (see streak artifact in Figure 5-8 PET images).             

 

Figure 5-10. CTAC images (PIFA) for Patient 2 reconstruction 

5.5 CONCLUSION 

We explore the opportunity of using ultra-low dose CT images for PET attenuation correction 

while preserve the quantitative accuracy for the PET images. Although iterative reconstruction 

methods, model based iterative reconstruction (MBIR) in this study, are effective in reducing 

noise, suppressing streaking artifacts, and recovering the accuracy of the HU for low dose scans 

compared to the traditional FDK-based analytical reconstruction algorithms, there is still a dose 

boundary required in order to overcome the statistical bias. Besides, the truncated-FOV artifact is 

a critical bias factor especially for the ULD CTAC.   
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Chapter 6. LIMITS OF ESTIMATION FOR ULD-CT  

6.1 MOTIVATION 

Low-dose CT imaging is typically constrained to be diagnostic. However, there are applications 

for even lower-dose CT imaging, including image registration across multi-frame CT images and 

attenuation correction for PET/CT imaging. We define the ultra-low-dose (ULD) CT regime as a 

dose of a factor of 10 lower than current low-dose (~ 10mAs) CT dose levels. In the ULD regime 

it is desirable to use statistically-principled iterative reconstruction methods that make full use of 

the raw data information. Since most statistical-based reconstruction methods assume that noise 

distribution in projection images (post log) is nearly Poisson or Gaussian, our goal is to understand 

the statistical distribution shape of ULD CT data, and to determine the conditions that enable 

iterative reconstruction methods for attenuation correction in PET/CT imaging. Results indicate 

three general regimes for noise distribution in ULD CT projections: (1) Normal statistics, where 

post-log data are well modeled by normal distribution. (2) Skew statistics, where normal 

distribution remains a reasonable approximation and statistically-principled methods have an 

advantage. (3) An electronic-noise regime that is photon-starved and the quadratic approximation 

is no longer effective. For instance, a total integral attenuation of 4.8 (~24 cm of water) is the 

maximum post-log value where a definitive maximum likelihood value could be found for ULD 

projections using one particular X-ray technique, and it also indicate the fundamental dose limit in 

reconstructing ULD CT data when using standard data processing methods. 
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6.2 MODEL-BASED ITERATIVE RECONSTRUCTION WITH ASSUMPTION OF GAUSSIAN 

AND POISSON NOISE DISTRIBUTION 

Concerns with CT dose have led to lower dose scanning protocols, often using statistically-

principled (i.e. iterative) image reconstruction methods to suppress the effects of increased 

quantum noise138. These low-dose methods often assume that the projection data after the 

logarithm transform follow a Poisson or Gaussian distribution93,134,139,140. However, there are 

applications for even lower-dose CT imaging, including multi-frame (cine acquisition) CT image 

registration and attenuation correction for PET/CT88,141. Therefore, the aims of this study are 

twofold: 1) to determine whether ULD CT sinograms are normally distributed and how the 

different non-positivity corrections affect the distribution, and 2) to further determine the lowest 

radiation dose level that can reasonably be used so that normal-distribution-based iterative 

methods can be applied. The result may be informative for setting the minimum dose level for 

ULD CT scans and for estimating the HU bias in iterative reconstruction. 

6.3 METHOD  

We analyzed projection data obtained in the four experiments summarized below and described in 

more detail in sections 6.3.1 through 6.3.4. Simulation process for the data statistical distribution 

is summarized in Figure 6-1, and details of the simulation are described in sections 6.3.5 through 

6.3.7. 

 

Figure 6-1. Flow chart of the simulation process 
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We used the results of Experiments 1 and 2 with aluminum phantom to evaluate our poly-energetic 

cascade noise model and to compare different non-positivity correction methods; we then used the 

result of Experiment 3 and 4 with water phantom to simulate the signal distribution of projection 

data from different doses. 

A. Experiment 1: Empirical projection data after attenuation by an aluminum 

phantom. Three-dimensional (3-D) data were acquired in the form of multiple frames of two-

dimensional (2-D) detector data using a clinical CT scanner and an aluminum phantom. X-ray 

techniques: 80 kVp; 50, 10, and 6 mAs. 

B. Experiment 2: Simulated projection data after attenuation by an aluminum 

phantom. One-dimensional (1-D) data were acquired in the form of multiple realizations of data 

from a single detector pixel by modeling the same clinical CT scanner, aluminum phantom, and 

X-ray techniques as used in Experiment 1. 

C. Experiment 3: Simulated projection data after attenuation by a water phantom. 

One-dimensional (1-D) data were acquired in the form of multiple realizations of data from a 

single-center detector pixel by modeling a water phantom scanned in the same clinical CT scanner 

as used in Experiment 1. X-ray techniques: 120 kVp; 200, 10, and 0.5 mAs. 

D. Experiment 4: Simulated projection data after attenuation by a water phantom, with 

reconstruction. Two-dimensional (2-D) data were acquired in the form of multiple frames of 1-D 

detector data (a single row of detector pixels) simulated by modeling a water phantom scanned in 

the same clinical CT scanner as used in Experiment 1. X-ray techniques: 120 kVp; 400, 50, 20, 

10, 5.0, 3.5, 2.0, 1.0, 0.7, and 0.5 mAs. 
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6.3.1 Experiment 1: Empirical projection data by an aluminum phantom  

This experiment was performed using a LightSpeedTM VCT scanner (GE Healthcare, Chicago, IL). 

Using an X-ray tube voltage of 80 kVp, data were acquired using tube currents of 50 mA, 10 mA, 

and 6 mA; for each acquisition, 1640 projections were acquired over 1 second with no gantry 

rotation. We first acquired air data for each of the tube current settings, and then acquired data 

with a 7.18-cm-thick stack of aluminum plates placed in the center of the scanner. For each 

acquisition, we discarded the first 50 projections and included 8 center detector rows and 8 center 

detector columns for each of the remaining projections; hence, 101,760 realizations (1590 

projections x 8 detector rows x 8 detector columns) of measured data were used from each 

acquisition. 

6.3.2 Experiment 2: Simulated projection data by an aluminum phantom 

Using the methods described in section 6.3.6, we simulated 1-D projection data for the same 

number of realizations that were generated in Experiment 1, using the same tube voltage and 

currents as for Experiment 1, transmission through air and through a 7.18-cm-thick aluminum 

phantom, and detected by a 1-pixel detector. 

6.3.3 Experiment 3: Simulated projection data by a water phantom 

Using the methods described in section 6.3.6, we simulated 1-D projection data for 20,000 

realizations, using diagnostic-level (200 mAs), low-dose (10 mAs), and ultra-low dose (0.5 mAs) 

flux and various path lengths of water (1000 different thickness from 5 to 75 cm). 
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6.3.4 Experiment 4: Simulated projection data by a water phantom, with reconstruction 

Using the methods described in section 6.3.6, we simulated 2-D sinograms (888 detector columns 

and 984 projected angles) using a 35-cm-diameter circular cylindrical water phantom at the center 

of the field of view. The “large” bowtie filter was included in the simulation. We simulated ten 

different dose levels: X-ray tube potential of 120 kVp; tube currents of 1.0, 1.4, 2.0, 4.0, 7.0, 10, 

20, 40, 100, 800 mA, at 0.5-s rotation time. 

 

Sinograms were then reconstructed into a 512 pixel x 512 pixel matrix using the iterative 

coordinate decent (ICD)–WLS method142,143 for 10 iterations with 580-mm field of view. The 

highest-dose image (from the 400-mAs simulation) was used as a control for calculating the bias 

in the other, lower-dose images. Four combinations of electronic noise (𝜎 = 5, 15) and weight 

estimation (WQ, WQ+E) methods were applied to all images, and only the water part of the 

reconstructed images were included in the region of interest for bias calculation; the thresholding 

was decided by Otsu’s method144 on the 400 mAs control.  

6.3.5 Simulation environment 

For all simulations, we used CatSim (ver. 5.6, GE Global Research, Niskayuna, NY) 129; we 

modeled the scanner used in Experiment 1 above and we simulated projection data after attenuation 

by the phantoms described in Experiment 2 and Experiment 3 above. The X-ray spectra were 

generated using XSPECT (ver. 3.5c) and incorporated into CatSim. We used a 0.5 keV bin size 

for all spectra and attenuation simulations, with the peak energies of 80 or 120 keV. Source-to-

detector and source-to-isocenter distance are 949.075 and 541.0 mm. Row and column size of the 

detector are set as 1.25 and 1.024 mm. Scatter was not included in our simulations, and beam 

hardening was not considered in Experiment 2. 
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6.3.6 Poly-energetic cascade noise model 

A poly-energetic cascade noise model was used to simulate the CT signal distribution in this 

study94,129. The pre-log detector signal, s, was defined as: 

𝑠	 = 𝐺 ∙ { 𝑃(
«¬mzU{

:x.®zU{

𝐶(𝐸)) ∙ 𝑊(𝐸)} + 𝑁(0, 𝜎�) 

where P is the Poisson function with the mean as the 'detected counts' (C, number of photons) 

integrated over the 0.5-keV-wide energy range centered on each energy E (keV), in 0.5 keV steps 

up to the peak energy of the spectrum. The weighting term (W) was set equal to the value of sub-

energy for the energy-integrating detector. The gain factor (G) for converting photon counts to 

detector units was set to 0.0195 based on our previous results145, the Gaussian electronic noise was 

set to a mean of 0 and a standard deviation of 15. The post-log 𝑝v value in the attenuation domain 

was then calculated as 𝑝v = − log(𝐹(𝑠)/𝐴), where A is the air scan value and F is the non-

positivity correction function which will be described in the following section.  

6.3.7 Non-positivity corrections 

For negative values in the pre-log projection data, three non-positivity correction methods were 

tested in this study: the flip method, the threshold (truncation) method, and part of the mean 

preserving filter (MPF) method. For the flip method, non-positive values of the pre-log signal were 

converted by simply taking the absolute value, and adding a small positive value to 0 values: 

𝐹 𝑠 =
𝑠, 	𝑠 > 0

𝜀 = 10&·, 𝑠 = 0
−𝑠, 𝑠 < 0
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For the threshold method, all non-positive values are replaced by a minimal value, e, which is 

determined by calculating the attenuated intensity after passing through a possible maximum path 

length, Lmax, (75 cm of water in this study). 

𝐹 𝑠 = 𝑠, 	𝑠 > 0
	𝜀 = 𝐼x ∙ 𝑒𝑥𝑝 −𝜇�}uUc ∙ 𝐿-}) , 	𝑠 ≤ 0 

 

The mean preserving filter (MPF) consists of two successive steps to enforce positive values by 

computing a new value through a function133: a non-linear converting process follow by an error 

dispersion process to distribute errors over two dimensions in the projection images. The 𝛼 is set 

at 20 based on the previous study146. Since Experiments 1 through 3 are 1-D statistical distribution 

studies, we can only consider the first non-linear transform part of the MPF process and therefore 

we designate this method as MPF’. 

𝐹 𝑠, 𝛼 =
𝑠, 	𝑠 > 𝛼�

𝛼 ∙ log 𝑒𝑥𝑝
𝑠
𝛼

+ 1 , 𝑠 ≤ 𝛼�  

6.3.8 Normality test: Kolmogorov-Smirnov statistic 

The Kolmogorov–Smirnov (K–S) distance (Dmax) describes a normalized distance (from 0 to 1) 

between a given sample distribution and a reference normal distribution as a metric for describing 

the normality147. If the sample data is normally distributed, Dmax will be close to zero. For a given 

cumulative distribution function (CDF) of 𝑝v  , Dmax is: 

 

𝐷-}) = 𝑀𝐴𝑋 𝐶𝐷𝐹[log(𝐿 𝑝v 𝑝v )] − 𝐶𝐷𝐹[𝑁 𝑚𝑒𝑎𝑛 𝑝v , 𝜎 𝑝v � ]  
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where MAX is the maximum value of the set of distances. 𝑝v represents the estimated attenuation 

for a measured 𝑝v, and N is the normal function. All calculations for Dmax value were performed 

using Python-3 with the SciPy library (SciPy.Org, ver.0.16.0). 

6.3.9 Quadratic approximation and WLS reconstruction 

To understand how non-normal likelihood distributions could bias the statistical-based 

reconstruction process, we compared log-likelihood profiles simulated with the poly-energetic 

cascade model to the weight-least square (WLS)-based log-likelihood profiles134,142 in a simple 

quadratic approximation form: 

log 𝐿(𝑝v|𝑝v ) = −
1
2
𝑊 𝑝v − 𝑝v � 

 

The W term is the weight for estimating the inverse variance of the post-log signal: 

𝑊 𝑝v =
1

𝑉𝑎𝑟 𝑝v
 

Using a first-order Taylor expansion, the variance of the post-log signal can be approximated in 

the form of pre-log signal intensity 𝑠v	as138: 

𝑉𝑎𝑟 𝑝v ≈
1
𝑠Ã � 𝑉𝑎𝑟 𝑠v  

 

When assumed quantum noise (Poisson distribution) is the dominant factor in estimating the 

variance, and since 𝑉𝑎𝑟 𝑠v = 	 𝑠v for a Poisson distribution, the 𝑊 𝑝v  can be simplified as: 134  

𝑊� 𝑝v = 	 𝑠v 
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Thibault et al. proposed a combined quantum and electronic noise model when electronic noise 

(𝜎U) cannot be neglected133: 

𝑊�~: 𝑝v = 	
𝑠v�

𝑠v + 𝜎U�
 

 

We also compared the simulated likelihood variance as the best variance estimation which a WLS 

model could get: 

𝑊ÄUHu 𝑝v = 	
1

𝑉𝑎𝑟 𝑝v|𝑝v
 

6.4 RESULT  

6.4.1 Experiments 1 and 2: Distribution of projection data after attenuation by an aluminum 

phantom, empirical and simulated results  

In Experiments 1 and 2, as the X-ray tube current decreased from 50 mAs to 10 mAs and 6 mAs, 

for both empirical data (see Figure 6-2, colored histograms) and simulated data (see Figure 6-2, 

black lines), we found that as the dose was reduced, not only did the signal variance or bias 

increase, but also the shape of distributions gradually deviated more from a normal distribution, 

regardless of which non-positivity correction method was applied. The data from Experiment 2 

(simulated using the cascade noise model) showed very similar distributions compared to the 

empirically obtained data from Experiment 1; hence, we will use this simulation model for 

Experiments 3 and 4. The true (with no noise) 𝑝v in Experiment 2 is 5.77. 
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Figure 6-2. Histograms of post-log measurements by an aluminum phantom for empirical 

and simulated date 

Histograms of 101,760 realizations of post-log measurements after attenuation by an aluminum 

phantom for empirical data (in colored regions) and simulated data (in black lines) at three 

different flux levels (tube currents of 50, 10, and 6 mAs) when using three non-positivity correction 

methods: (top) Flip method, (middle) Threshold method, and (bottom) Mean preserving filter 

without error dispersion process (MPF’). All histograms were generated with 1,000 bins from 𝑝v 

= 2.0 to 𝑝v = 14.0. 

6.4.2 Experiments 3 (water phantom simulation) results 

By combining histograms of simulated values including noise (𝑝v) for true attenuation 𝑝v, useful 

2-D histograms can be generated. In the 2-D histograms of Figure 2A, vertical profiles are 

distributions of 20,000 simulated 𝑝v values for each of the 1,000 true 𝑝v values that were modeled, 

and horizontal profiles represent the likelihood function for each 𝑝v. Comparing vertical profiles 

in the 2-D histogram, we found that the shape of distribution starts to deviate from the ideal normal 

histogram when 𝑝v is greater than a certain attenuation level; for example, in Figure 6-3A, 0.5 

mAs, the vertical profile of 𝑝v  = 2 looks very different from the vertical profile of 𝑝v  = 4. 

Furthermore, we found that 𝑝v  profiles become constant after passing a certain 𝑝v  value; for 
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example, profiles of 0.5 mAs in Figure 6-3A stabilize when 𝑝v is greater than approximately 5. 

Figure 6-3B shows the likelihood profiles of the same post-log data for measured 𝑝v = 6 acquired 

at three different dose levels. We found that the probability function becomes broader when the 

tube current decreases from 200 mAs to 10 mAs, but the maximum likelihood value remains 

constant at 𝑝v = 6. Furthermore, we found that in the ULD CT regime (e.g. 0.5mAs), there is no 

peak value in the likelihood profile. 

 

Figure 6-3. Two-dimensional histograms and representative likelihood profiles 

(A) 2-D histograms of post-log signal (measured 𝑝v) as a function of true	𝑝v for diagnostic, low-

dose, and ultra-low dose regimes. The horizontal axes are a function of the water thickness and 

the vertical axes are the distributions of simulated post-log attenuation values from 20,000 

realizations for each plot. Histogram counts were normalized to the sum of realizations for each 

true	𝑝v and shown on a log10 scale. (B) Likelihood profiles for a measured post-log attenuation of 

6.0 (as indicated with dashed lines in part A) at diagnostic, low-dose, and ultra-low dose levels 

with ‘Flip’ non-positivity correction. 
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6.4.3 Experiments 3: Estimation bias of WLS quadratic approximation 

Figure 6-4A shows likelihood profiles with 0.5 mAs tube current over the true 𝑝v range of 2.0 to 

5.0. The shape of profiles changes from a narrow, symmetrical, normal-like distribution (in red) 

to broader and increasingly skewed distributions (in green and blue). As the measured 𝑝v 

increases, like the observation shown in the Figure 6-3B, the profile shows a “likelihood plateau” 

which for no maximum likelihood value can be found (in magenta). The estimation bias of WLS 

quadratic approximation is presented by overlapping the log likelihood profiles in Figure 6-4B (in 

orange) with quadratic approximated profiles, which are described in section 6.3.9. All three 

quadratic approximation approaches give very good estimation for likelihood functions when 

measured 𝑝v  is relatively small (e.g. 2.0). The quantum noise model (in blue) shows an 

underestimation in variance of the likelihood function when the measured 𝑝v increased to 3.0. All 

three approaches (in blue, green, and magenta) greatly deviated from the simulation profiles when 

measured 𝑝v  is greater than 4. By repeating the same analysis with different 𝑝v  numbers and 

subtracting the simulation data with quadratic estimations, we can get 2-D difference maps for 

showing log-likelihood bias of WLS approaches (see Figure 6-5A~C). Figure 4D shows three 

relative weight estimations which were used in this approach. 

 
Figure 6-4. Log-likelihood profiles for measured attenuation 
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(A) Log-likelihood profiles for measured attenuation 𝑝v of 2.0, 3.0, 4.0, and 5.0 in 0.5-mAs ULD 

data with ‘flip’ non-positivity correction. (B) Profiles of measured post-log signal (in orange) as 

described in (A), measured 𝑝v = 2 ~ 5, with correspondent quadratic approximations (in dotted 

line). Three estimated weights were tested here: quantum noise-only estimation (WQ, in blue), 

quantum and electronic noise estimation (WQ+E, in green), and the true measured variance (WBest, 

in magenta). 

 

Figure 6-5. 2-D Histograms of log-likelihood differences 

Log-likelihood differences between quadratic approximations (A: WQ, B: WQ+E, C: WBest) and 

poly-energetic cascade noise model simulated data for 0.5mAs ULD levels with ‘flip’ non-

positivity correction. The red color indicates overestimation and the blue color indicates 

underestimation of the log-likelihood function by the quadratic approximation approaches. (D) 

Estimated and simulated weights (WQ in blue, WQ+E in green, and WBest in magenta) as a function 

of measured post-log 𝑝v, with data normalized at 𝑝v = 1.25. 

 

6.4.4 Experiments 3: Limitation of likelihood estimation 

Knowing that the likelihood distribution evolves from a normal distribution to a skewed 

distribution to a plateau distribution as the attenuation value becomes greater, we can delineate the 

maximum normal-distributed 𝑝v and the maximum estimable 𝑝v through a normality test and ML 

value analysis. The deviation to the normal distribution for different measured 𝑝v  could be 

monitored through measuring the Dmax value by the K-S test (see Figure 6-6A). We assumed that 

a steep rise in the Dmax value represents the regime where the likelihood function of measured 𝑝v 

starts greatly deviating from the normal distribution, and thus implies a possible bias when using 
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the quadratic approximation. Besides, the high Dmax value at around 𝑝v = 1.5 are the boundary 

effect where the histogram binning process in the cascade noise simulation didn't fully cover the 

lower end of the distribution, and it will not affect locating the normality deviation point here. A 

decrease of the Dmax values could be seen after the value has peaked, and this is because the K-S 

statistics fails when the distribution is no longer in a closed form (see blue and magenta lines in 

Figure 6-4A). On the other hand, a maximum estimable 𝑝v could be defined by locating a 𝑝v value 

where the maximum likelihood value could no longer be found and reach a “likelihood plateau” 

as we described in the previous section. In Figure 6-6B, by putting all maximum likelihood values 

of measured 𝑝v  together, the measured 𝑝v where its maximum likelihood value is not a random 

value could be pointed out (red arrow). By smoothing and finding the highest 1st derivative, the 

maximum normally-distributed and estimable measured 𝑝v  boundaries could be delineated by 

repeating the same analysis in different flux levels and with different non-positivity correction 

methods as shown in Figure 6-7A~C. Figure 6-7D gives the information of the equivalent water 

thickness for the ideal measured 𝑝v.  

 

Figure 6-6. Normality and maximum likelihood estimation as function of the noisy signal 

Normality and maximum likelihood estimation as function of the noisy 𝑝v for ‘flip’ non-positivity 

correction and ultra-low dose level (120kVp, 0.5mAs). (A) CDF maximum distance (Dmax) of 
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Kolmogorov-Smirnov statistic as a function of noisy 𝑝v . (B) Maximum likelihood 𝑝vvalue as a 

function of measured 𝑝v values. The red arrow labels huge gradient 𝑝v point for the change of 

normality and maximum likelihood values.     

 

Figure 6-7. Maximum estimable attenuation and the maximum normality deviation point 

Maximum estimable 𝑝v (upper line) and normality deviation point (lower line) for measured 𝑝v of 

center element in the detector as a function of source intensity shown in the log10 scale; sinogram 

levels could be segmented into three regimes: electronic noise regime (in blue), skewed 

distribution statistics regime (in red) and normal distribution statistics regime (in green). Noisy 

signal was pre-processed with (A) Flip, (B) Threshold, and (C) MPF’ non-positivity corrections. 

(D) The noisy attenuation (𝑝v) and its correspondent ideal water thickness with 120 kVp radiation 

source. 

 

6.4.5 Experiments 4: Parameterize bias with abnormality 

From previous results, we learned that the likelihood distribution could greatly deviate from the 

normal distribution, and we expected it could also lead bias in the reconstructed image. With 

considering the bowtie conformation for calculating the skew and plateau statistics boundaries for 

detector unit (as shown in Figure 6-8), in Figure 6-9, normalized biases of iterative reconstructed 

image were shown in the function of source flux level (mAs) and non-Gaussian fraction (%) with 

different settings of electronic noise (s = 5, 15), non-positivity correction (Flip, Threshold, MPF’) 

and weight estimation method (WQ, WQ+E). Overall, bias increased as the source intensity 
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decreased, and the trend of bias changed as different settings were applied. However, the trends 

became very similar when biases were shown with non-Gaussian fractions for all cases tested in 

this study. The bias increased sharply when around 55% of sinogram pixel values were in the skew 

distribution statistics or electronic noise regimes. 

 

Figure 6-8. Maximum estimable attenuation and the maximum normality deviation point 

with considering the bowtie filter 

Maximum estimable 𝑝v (upper line) and normality deviation point (lower line) for measured 𝑝v of 

center element in the detector as a function of channel number; sinogram levels could be 

segmented into three regimes: electronic noise regime (in blue), skewed distribution statistics 

regime (in red) and normal distribution statistics regime (in green). Noisy signal was pre-

processed with Flip non-positivity correction under 120 kVp, 5mAs of the radiation source. 
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Figure 6-9. Bias of weight-least-squared reconstructed image of 35-cm water phantom 

Bias of weight-least-squared reconstructed image of 35-cm water phantom as a function of source 

flux level and sinogram pixel skew fraction. (A) For two different electronic noise levels (dotted 

line: s = 5, solid line: s = 15) and two weight estimation settings (Blue: Wq, Green: Wq+e). ‘Flip’ 

non-positivity corrections were applied. (B) For three different non-positivity correction methods 

and two weight estimation settings. The electronic noise level (s) was set as 15. 

 

6.5 DISCUSSION  

In this study, measured data showed that the post-log attenuation distribution is skewed when using 

a low-dose (6 mAs) protocol, and the multi-energetic cascade noise model simulation also showed 

similar skew-distribution shapes. The mismatch in Figure 6-2 could partly cause by “data 

discretization”, which means low intensity values in the pre-log detector measurements were 

limited by quantization precision determined by the least significant bit in the detector’s analog-
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to-digital converter. In addition, the difference could be also caused by scatter or the imperfect 

estimation for detector’s gain factor and efficiency.  

 

For an even lower dose protocol (<1 mAs), 1-D simulated distribution of the post-log data of 

various water thicknesses were used for likelihood analysis. As measured integral attenuation 

increased, its likelihood distribution changed from a narrow normal distribution, to a positive 

skewed distribution, then to a steady plateau. A similar “likelihood plateau” could also be observed 

in previous mono-energetic noise model simulations135,148; also, the same trend of  distribution 

change could be seen in all three non-positivity correction methods tested in the study. Mismatches 

between simulated log-likelihood data and WLS data suggested that iterative reconstruction 

algorithms based on WLS may not be optimal for ULD imaging even if the ‘true’ likelihood 

variance (Wbest) was used for estimating the weight. The quadratic approximation approach may 

cause bias on ULD data because it cannot reflect the skewed and plateau distributions in the log-

likelihood function. For ULD CT imaging, in addition to pursuing better weight estimation 

methods, the mismatch on the 2-D histogram here implies that the distribution shape change in 

ULD data also needs to be addressed.      

 

The limits for normal-distributed estimation and for ML estimability can be derived by measuring 

the change of Dmax and ML values on the likelihood function: for diagnostic dose level (200 mAs), 

almost all tested data, for water thickness smaller than 50 cm, were normally distributed. For low-

dose scans (10 mAs), data were skewed when noisy 𝑝v  > 5.5 (~27 cm of equivalent water 

thickness) applied; a maximum-likelihood (ML) method could still find the peak value although 

the likelihood bias starts to show. The likelihood function will be further dominated by electronic 
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noise when the noisy 𝑝v is larger than 7.6 (~40 cm of equivalent water thickness). In even lower 

ULD scans (0.5 mAs), data were skewed when 𝑝v > 3.4 (~15cm of equivalent water thickness), 

and with 𝑝v over 4.8 (~ 24 cm of equivalent water thickness), distributions were determined solely 

by electronic noise where likelihood distribution reached a plateau and no ML value could be 

found. The normality and ML boundaries further explained the reason why normal-based iterative 

approaches will not work on most of the ULD CT imaging. More importantly, it could be used as 

a look-up table for determining the limit of radiation dose level for the scan to avoid abnormal 

statistics in the reconstruction process. 

 

The 1-D nature of the simulation model used here limits its application on the 2-D sinogram 

directly, and also restricts it from analyzing other more complicated non-positivity correction 

techniques, which require neighboring information, like adaptive trimmed mean filter (ATMF)90; 

however, considering the attenuation from the bow-tie filter, it is possible to approximately 

evaluate the non-Gaussian level on the sinogram and to compare it to the corresponding WLS 

reconstructed image. Bias increases sharply as about 55% of sinogram values were above the skew 

statistics line, therefore, the result further demonstrated that the skew and plateau likelihood 

statistics in the ULD acquisitions is one critical factor that causes the bias in the current statistical-

based reconstruction approach. For future application, we expect that a more accurate iterative 

reconstruction method for ULD CT data could be achieved if the skewed and plateau likelihood 

distribution could be considered.         

6.6 CONCLUSION 

Low-dose CT projection data distributions can deviate substantially from a normal distribution in 

the low-dose regime and especially in the ultra-low dose regime, leading to a practical limit for 
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most statistical-based approaches when applied to ULD imaging. Furthermore, we identified 

integral attenuation values that lead to skewed and plateau likelihood distributions for a current 

clinical scanner, these limits represent water thicknesses where, at the X-ray techniques evaluated, 

bias in image-domain becomes evident and where the image noise begins to be dominated by 

electronic noise rather than quantum noise. These findings might assist researchers in selecting the 

lowest reasonable dose level for ultra-low dose CT scans for applications such as PET-CT 

attenuation correction, and they might also be useful for developing new reconstruction approaches 

that are more suitable for conditions when CT projection data contain non-Gaussian statistics. 

6.7 SUPPLEMENTARY DATA 

6.7.1 Statistical distributions at different processing steps  

Figure 6-10 shows the distributions for 20K realizations for 35 cm of water. The data in the 

intensity domain are symmetric with a mean close to the truth. After non-positivity transformation, 

asymmetry is evident in the low-dose and ultra-low dose regimes. After the log transformation, 

both the low dose and ultra-low dose settings have skewed distributions, and the latter also display 

a large bias from the truth. The diagnostic regime data behaves as expected. 
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Figure 6-10. Histogram of 20,000 realizations of 1D-single detector model at three 

processing stages 

top pre-log raw signal in intensity domain (detector unit), middle pre-log raw signal with non-

positivity correction, and bottom after taking logarithm with air-scan in attenuation domain. 

Ideal values were indicated with vertical line. 

6.7.2 K-S statistics at different processing steps  

Figure 6-11 shows the K-S distance DMAX but now as function of the water attenuation thickness. 

Distributions without non-positivity correction in the intensity domain are all very close to zero 

(<0.01) DMAX indicating a normal distribution. With the non-positivity correction, DMAX increases 

rapidly at approximately 20, 35, and 51 cm of water attenuation for the ultra-low-dose, low-dose, 

and diagnostic regimes. After the log transformation, the increase in DMAX occurs for thinner layers 

of water, but with a more gradual transition. 
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Figure 6-11. K-S statistics as a function of water thickness at three processing stages  

Kolmogorov–Smirnov distance DMAX as a function of water thickness in the 1D-single detector 

model (20,000 realizations) with the ultra-low-dose, low-dose, and diagnostic regimes and three 

processing stages: top pre-log raw signal in intensity domain (detector unit), middle pre-log raw 

signal with “flip” non-positivity correction, and bottom after taking logarithm with air-scan in 

attenuation domain. 

6.7.3 Bias of signal distribution in three dose levels  

By comparing the true 𝑝v with the measured 𝑝v of the distributions (Figure 6-12), one can see the 

bias starts to show around Pi = 4, 7, and 10 (water thicknesses of 20, 35, and 52 cm). Splitting 

mode, median and mean values also imply that the distribution of measurements are skew.  

 

Figure 6-12. Bias of signal distribution in three flux levels 
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The black line represents the ideal (unbiased) correlation between true attenuation and the 

measured attenuations. The mean, median, and mode values, are shown in blue, green, and 

magenta color lines   

6.7.4 Distribution profiles of ultra-low dose signals   

The distribution profiles (Figure 6-13) for the ultra-low dose regime (0.5 mAs) reveal that a 

positive skewness starts to appear between 15.5 and 22.5 cm of the water thickness. 

 

Figure 6-13. Distribution profiles of 0.5 mAs flux setting with different water thickness 

Left to right, top to bottom: 8.5, 15.5, 22.5, 29.5, 36.5, 43.5, 50.5, 57.5cm. The cyan line represents 

the normalized histogram, and the red line shows the least-square normal fitting for the profile. 

The black vertical line indicates the ideal attenuation value. 

6.7.5 Likelihood profiles of ultra-low dose signals   

The horizontal profiles in Figure 6-3 correspond to likelihood functions. Figure 6-14 shows 

likelihood distributions for the ultra-low dose (0.5 mAs) regime, and the ability to find a maximum 

likelihood disappears between measured attenuation = 4.5 ~ 5.8.  
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Figure 6-14. Likelihood profiles of 0.5 mAs flux for different measured attenuation 

Left to right, top to bottom: measured attenuation = 1.7, 3.1, 4.5, 5.8, 7.1, 8.4, 9.7, 11.0. The cyan 
line is the likelihood profile of the measured attenuation and the red line shows least-square 
fittings to the normal distribution. 
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Chapter 7. POTENTIAL FUTURE DIRECTIONS  

7.1 ADD THE SKEW LIKELIHOOD CORRECTION TERM IN THE IMAGE 

RECONSTRUCTION ALGORITHM  

7.1.1 Methods  

In Chapter 6, data showed the log likelihood distribution could gradually deviate from the Gaussian 

distribution and then reach a likelihood plateau as source flux level kept decreasing. Moreover, in 

section 6.4.3 we showed that the weight-least-square approximation approach, which is commonly 

used in the model-based iterative reconstruction algorithm, may cause certain level of bias since it 

doesn’t consider the shape change of the likelihood distribution in its approximation. Therefore, 

the next question will be: is it possible to add the ‘skew-shape’ correction term into the 

reconstruction algorithm?  

 

Here I use the ICD-WLS reconstruction algorithm without the penalized term for showing the 

example143,146, again, the cost function is defined as:  

Eq. 1 

 

And iterative coordinate descent (ICD) approach (as in Eq. 2) is applied for the optimization 

through Newton-Raphson method (as in Eq. 3, Eq. 4): 

Eq. 2 

  
µ j
(n+1) = argmin

µ j
(n+1)≥0

C µ1
(n+1),,µ j−1

(n+1),µ j
(n+1),µ j+1

(n),,µJ
(n)( )
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Eq. 3 

  

  

 

So that we can get the updated image pixel value in iterations: 

Eq. 4 
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And the updated sinogram value in iterations as: 

Eq. 5 

  

where µ is the linear attenuation coefficient on the image, p is the attenuation value on the sinogram, 

F is the system matrix, W is the weight term, l is the pixel-based forward projector, n is the iteration 

number, and i and j represent index number on the sinogram and the image domain.    

 

The objective for this modification is to add a correction term in Eq. 4 for showing the positive-

skew likelihood distribution in the reconstruction process. For convenience, here we called the 

correction term as skew-likelihood correction (SLC) term, a, and it could be defined as: 

Eq. 6 
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𝛼v 𝑚 < 1, 𝜀, 𝑝v, 𝑝v
(w)

= 	
𝜀 𝑖, 𝑝v ∈ 𝑒𝑙𝑒𝑡𝑟𝑜𝑛𝑖𝑐	𝑛𝑜𝑖𝑠𝑒	𝑟𝑒𝑔𝑖𝑚𝑒 ∩ 𝑝v −	𝑝v

(w) < 0 → 𝛼v = 𝑚

𝜀 𝑖, 𝑝v ∈ 𝑠𝑘𝑒𝑤	𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑠	𝑟𝑒𝑔𝑖𝑚𝑒 ∩ 𝑝v −	𝑝v
(w) 	< 0 → 𝛼v = 1	~	𝑚

𝑒𝑙𝑠𝑒	 → 𝛼v = 	1	

 

where e is the sinogram index-dependent function as shown in Figure 6-8 for categorizing the 

statistical regime of the measured 𝑝v if  𝑝v −	𝑝v
(w) < 0; m is the maximum correction value, which 

is always smaller than 1 (e.g. 0.5). a will be interpolated between 1 and m by the distance between 

measured 𝑝vand two boundary values if 𝜀 𝑖, 𝑝v  is in the skew statistics regime. With SLC term a, 

the Eq. 4 could be adapted as: 

Eq. 7 
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Figure 7-1. Representative image for the skew-likelihood correction with maximum a = 0.5 

The regimes of normal statistics, skew statistics, and e-noise were determined based on the 
measured Pi, source flux level and the corresponding detector channel number 
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On the other hand, the simulated log-likelihood variance could also be used as a look-up table (see 

Figure 6-7 D) for the estimated weighted term in the Eq. 7. In theory, the variance from the look-

up table is the best variance estimation we could achieve, therefore, here I labeled WBest for the 

look-up table weight estimation approach.  

 

Four penalized weight least squared reconstruction (PWLS) image approaches were compared: 

1. PWLS with quantum and electronic noise variance model (WQ+E)   

2. PWLS with simulated likelihood variance model (WBest) 

3. PWLS with quantum and electronic noise variance model (WQ+E) and skew-likelihood 

correction term (SLC) 

4. PWLS with simulated likelihood variance model (WBest) and skew-likelihood correction 

term (SLC) 

 

CT simulations with GE VCT scanner’s settings were performed of the NCAT chest phantom 

using the CatSim simulator129, which generates sinograms (984 views x 888 channel) with poly-

energetic compound Poisson data (0.5 & 10 mAs and 120 kVp) and Gaussian electronic noise 

(𝜎U� = 15�) contributions. Only “Flip” non-positivity correction was evaluated. Ten iterations with 

optimized penalized terms (penalized constant was set at 10-5) were used for each ICD-PWLS CT 

(512 x 512 pixels) reconstruction134. FBP image with 400 mAs flux level was used as the control 

group for calculating the bias.  
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7.1.2 Preliminary results 

 
Figure 7-2. Skew-likelihood corrected (SLC) PWLS reconstruction of 10 mAs NCAT 

phantom simulation 
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Figure 7-3. Skew-likelihood corrected (SLC) PWLS reconstruction of 0.5 mAs NCAT 

phantom simulation 

 
Table 7-1. RMSE and mean bias of skew-likelihood-corrected PWLS NCAT reconstructions  

 
 

7.2 TO CUSTOMIZE THE ULTRA-LOW-DOSE CT SCANNING PROTOCOL 

In section 6.4.4, the data showed that the statistical distribution of the attenuation value (measured 

water thickness) in the sinogram could be categorized into three regimes for every given source 

flux level. In section 6.4.5, data further showed a strong correlation between the RMSE of the 
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reconstructed image and the non-Gaussian statistic percentage on the sinogram data. Therefore, 

one potential direction for this research is to use above information to create a customized ULDCT 

protocol for every patient in order to achieve the lowest but also reasonable dose deposition. With 

proper estimation of the attenuation path length for bone and lung tissues plus a prior information 

of the patient size from the CT scout scan or simply by measuring the chest circumference, a 

physician could potentially determine the most efficient low-dose protocol (in terms of HU 

accuracy) for each individual. In addition to the result in the section 6.4.5, we can also correlate 

the non-Gaussian statistic percentage to the 511-kev attenuation map so that the information could 

be directly used for determining the lowest CT flux level for generating the accurate attenuation 

correction map for the PET image. 

7.3 THE TUBE PULSING APPROACH FOR THE ULD-CT ATTENUATION CORRECTION 

FOR PET 

In section 4.1.3 and 5.3.2, researches had shown promising preliminary results of using the low-

dose sparse-view CT images for producing the attenuation correction map for PET. This approach 

retains the total radiation dosage on the patient as the continues exposure approach by decreasing 

the acquisition view number while alleviating the electronic noise by increasing the source level 

at each view acquisition. However, one restriction for the technique is that the fast-switching (on 

and off x-ray source) scanning mode is not available on the current PET/CT scanner. The fast-kVp 

switching scanning mode (~50 microsecond) has been supported in some protocols for the dual-

energy (80 and 140 kVp) CT imaging on some models149. Therefore, if we can keep increasing the 

public awareness on the issue of ULD-CTAC for the respiratory-gated PET, the manufacturer may 

consider equipping the fast-switching CT source which enables the tube-pulsing acquisition mode 

on the next-generation’s PET/CT scanner.  
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Chapter 8. ORIGINAL CONTRIBUTIONS 

This chapter summarizes original contributions in this thesis: 

 

Comparison of different CT attenuation correction methods for the respiratory-gated PET68 

– With current clinical setups and the data processing stream, I compared six commonly-used 3D 

and 4D CT attenuation correction methods for the PET imaging under the respiratory motion. The 

phantom data showed that, for irregular breathers, the 4D-matched CT attenuation correction 

approach for the respiratory-gated PET is not the most accurate correction approach compares to 

4D-MIP and 4D-EXH (end-exhale phase) attenuation correction method. The result indicates that 

the phase-mismatched artifact between the respiratory-gated PET/CT of the irregular breathers 

may cause the bias and it couldn’t be solved by current phase-gating protocols (see details in 

Chapter 2).      

 

Evaluation of a newly-proposed variance estimation model for reconstructing the ULDCT 

image146 – Studies had shown that the model based iterative reconstruction method has many 

advantages for reconstructing the low-dose CT image in terms of noise and the bias. However, 

most of iterative reconstruction approach didn't consider the data variance change from the process 

of non-positivity corrections. Since negative values on the pre-log sinogram domain will be much 

more prominent in the ultra-low dose image, my colleague had proposed a new variance estimation 

model which took considering the statistical distribution change lead by the mean-preserving-filter 

non-positivity correction method. I applied it on the real-scale simulation data and showed that the 

new model could lower the bias in the low-dose CT image. (see details in Chapter 4.2)     

 



 

 

119 

Phantom and patient studies of the ULDCT attenuation correction for PET – Previous 

publications from our lab and collaborators had shown the feasibility of using ULDCT and sparse-

view CT imaging for the attenuation correction for PET88,124. I further extended the idea to the real 

phantom and the patient data. By applying the model-based iterative reconstruction algorithms on 

the low-dose CT image, the result showed that the PET uptake bias in the patient lesion improved 

from -12% to 5% when comparing to the product FBP image. In addition, phantom data also shows 

the similar improvement. We expect to see that the PET accuracy from ULDCT attenuation 

correction could be further elevated when the CT tube-pulsing technique is available on the 

commercialized PET/CT scanner. (see details in Chapter 5) 

 

Skew likelihood distribution and limits of estimation for the ULDCT imaging150 – Previous 

works of mine were focused either on how to lower the phase-mismatch bias between CT and PET 

under the respiratory motion or on how to achieve the ULDCT attenuation correction for PET. In 

this part, on the other hand, we are asking the question about the limit on applying model-based 

iterative reconstruction method on the ULDCT image. And also, we would like to answer what 

factor did cause the limit and then where is the lowest dose boundary. With simulation and 

empirical data, I am able to show that the statistical distribution of post-log attenuation data was 

gradually skew and finally reach a likelihood plateau when source flux kept decreasing. The skew 

and plateau likelihood distributions contradict the assumption of normal distribution which is 

commonly used in the model based iterative reconstruction algorithm. We further applied the 

normality test and the maximum likelihood test on the attenuation values as a function of source 

flux so that we can categorized the data distribution into three regimes: normal statistic regime, 

skew statistic regime, and the electronic noise regime. The information could be used as a lookup 



 

 

120 

table for determining the ‘reasonable lowest’ source flux level for the patient in the future clinical 

use. (see details in Chapter 6)          

 

Accuracy comparison between the respiratory-gated CT and the respiratory-gated cone-

beam CT151 – In Chapter 2 we showed how the phase-mismatch artifacts from the respiratory 

motion between CT and PET did cause the bias in the final PET uptake value. On the other hand, 

similar mismatch effect exists between respiratory-gated fan-beam and cone-beam CT imaging. 

The fan-beam CT modality was a known tool for measuring the lesion size and location in the 

treatment planning process; however, the cone-beam CT modality is more commonly used on the 

radiotherapy modality for guiding the high-energy source for the treatment. I used the respiratory 

motion phantom for comparing the measured volume of the same target lesion between the fan-

beam and the cone-beam CT scanner, and we found that the average volume difference between 

two modalities could be up to 20%. This is first result quantitatively reveals a volume mismatch 

between two CT modalities, and we believe it could a useful information on defining more precise 

treatment margins for patients of radiotherapy. (see details in Appendix A)   
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APPENDIX A: ACCURACY COMPARISON OF 4-D CT AND 4-D 

CONE BEAM CT 

ABSTRACT 

The ability of respiratory-correlated fan beam CT (4DCT) and respiratory-correlated cone beam 

CT (4DCBCT) to accurately estimate tumor volume is critical to accurate dosimetry and treatment 

verification for lung stereotactic body radiation therapy (SBRT) and other motion-managed 

therapies. However, it is known that 4DCT and 4DCBCT differ in aspects of image acquisition 

and reconstruction that may lead to discrepancies between the two modalities. To evaluate 

quantitative differences between 4DCT and 4DCBCT imaging under respiratory motion, we 

performed a phantom study in the ground truth setting. A programmable respiratory motion 

phantom was used to simulate the 1D S-I position of a known-size lesion. Ten sinusoidal and 

twenty patient-specific breathing waveforms were applied to drive lesion motion during the 4DCT 

and 4DCBCT acquisitions. The difference in lesion volume acquired between the two imaging 

modalities was as high as 34.4% and 18.4% for sinusoidal and patient-specific breathing motions, 

respectively. When compared to the true volume, 4DCT measurement often underestimated the 

lesion size whereas 4DCBCT overestimated the lesion volume in most of the cases. 4DCBCT gave 

more accurate recovery of the volume than 4DCT for most settings tested in this study. These 

findings may be helpful for improving the definition of internal target and planning target volume 

margins, and extracting quantitative information from on-board treatment verification imaging.  

 

I. INTRODUCTION 

Accurate computed tomography (CT) studies under the presence of respiratory motion are 

necessary for treatment planning, treatment verification, and adaptive radiotherapy in many 
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cancers, most commonly for cancers of the lung, liver, and abdomen58,106,152-154. 4DCT imaging may 

be used for respiratory motion assessment and creating an external beam radiation treatment plan 

for a free-breathing patient155,156. Radiotherapy image-guided verification is commonly performed 

by comparing lesion position and motion estimated in the treatment room with cone beam CT 

(CBCT), CT on rails, megavoltage CT (MVCT) or other methods to the primary planning CT 

study acquired at the time of treatment simulation. Beyond the critical role of verification imaging 

in patient setup, changes in CT volumes have been used as indications for adaptive re-planning 

and modeled to extract radiobiological parameters157,158.  

 

It is known that respiratory motion leads to significant imaging artifacts which may lead to 

incorrect treatment planning volumes, lesion localization, or inference of change in tumor volume 

over time. Respiratory-correlated computed tomography (4DCT) using external respiratory 

surrogates was first proposed as solution for this problem108-111 and has rapidly become a standard 

of care for radiotherapy simulation in the presence of respiratory motion159,160. In the intervening 

years, cone beam computed tomography (CBCT) technology has proliferated on linear 

accelerators to provide image guidance for radiotherapy verification, and recently, respiratory-

correlated cone beam CT (4DCBCT) has become clinically available161-163. Sonke et al. investigated 

4DCBCT versus 3DCBCT and fluoroscopy and found motion artifacts in 4D dataset were 

substantially reduced compared to a 3D scan162. Sweeney et al. investigated inter-observer 

variability of target localization for 4DCBCT and 3DCBCT imaging with patient data and found 

significantly reduced variability with 4DCBCT164. Lee et al. and Iramina et al. further examined 

the impact of scanning parameters and motion sorting methods related to the accuracy of 4DCBCT 

images165,166.  
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However, clinical investigation of comparisons of 4DCBCT and 4DCT imaging for tumor motion 

assessment have indicated significant differences in some patients167. 4DCT and 4DCBCT imaging 

differs in numerous aspects in terms of image acquisition, hardware geometry, and binning 

techniques168,169. These differences include smaller x-ray beam volumetric coverage in CT versus 

much larger coverage in CBCT for a single rotation, scan time on the order of seconds in 4DCT 

versus minutes in 4DCBCT, arc detector versus flat panel detector geometry employed with 

different anti-scatter setups, and external surrogates in 4DCT versus internal tracking in 4DCBCT 

of respiratory motion. To date, investigations of accuracy of respiratory-correlated fan beam versus 

cone beam CT imaging in the presence of respiratory motion in the ground truth setting have been 

limited. Researchers have compared 3DCBCT image to the 4DCT maximum intensity projection 

(MIP) reconstructed image of anthropomorphic respiratory phantoms and found contradictory 

results170,171. Nevertheless, the relative accuracy of 4DCBCT and 4DCT in the ground truth setting 

is unknown.  

 

We had shown the uptake accuracy in 4D phased-match CT attenuation corrected 4DPET could 

be significantly compromised due to patient’s irregular breathing pattern and the nature of 

acquisition time difference between two modalities68. In this work, we will focus on the impact of 

respiratory motion on CT acquisition by comparing the accuracy of 4DCT and 4DCBCT in the 

ground truth setting with an anthropomorphic respiratory phantom. These results may be 

informative for treatment planning, treatment verification, longitudinal response assessment, and 

adaptive radiotherapy for thoracic and abdominal cancers. 

 

II. METHODS 
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A. Anthropomorphic phantom 

The Quasar programmable respiratory motion phantom (Modus Medical Devices Inc., ON, 

Canada) was used for this study. A custom insert was designed, consisting of a water-filled 24 mm 

outer-diameter sphere simulating a lung lesion, surrounded by polystyrene pellets comparable to 

the density of lung. The Quasar phantom has a mount for an infrared marker which moves at a 1:1 

ratio to the phantom insert. The motion of the infrared marker was captured with an RPM camera 

(RPM, Varian Medical Systems, Palo Alto, CA). An image of the phantom is shown in figure 1. 

The motion of the Quasar phantom is one dimensional (superior-inferior) and can be programmed 

using sinusoidal breathing traces or representative patient traces distributed with the phantom.  

 
Fig. 1. On left, programmable respiratory phantom with custom anthropomorphic insert. The mount for the infrared 
marker cubic is indicated with a red arrow. On right, representative CT slice of phantom geometry  
 

B. Phantom motion 

To evaluate the fidelity of the 4DCT and 4DCBCT studies, the water sphere was driven by 10 

sinusoidal respiratory waveforms (period 3, 4, 5, 6, 7 seconds, 15 and 30 mm amplitude) and 20 

patient-derived respiratory waveforms provided by the Quasar software (10 patient waveforms 

with period 4.2±0.7—6.6±1.6 seconds, nominal 15 and 30 mm peak-to-peak amplitude, mean 

9.9±1.2—19.8±2.3 mm amplitude). It should be noted that the patient-specific respiratory 

waveforms are denoted by their nominal peak to peak amplitudes, however, the mean amplitudes 

are less in magnitude due to baseline drift in respiration.  
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C. CT studies 

Reference images were acquired of the phantom under static conditions for both CT and CBCT 

studies. A helical CT scan was acquired using a GE LightSpeed RT16 CT scanner (120 kVp, 320 

mAs, 2.5 mm slice thickness, 1.375 pitch factor).  For CBCT, the static phantom case was acquired 

using the Chest M20 F1 preset in Elekta XVI (120 kVp, M20 medium offset field of view with F1 

bowtie filter, 40 mA, 40 ms, 660 projections). The water sphere was contoured using threshold 

segmentation in MIM 6.2.5 (MIM Software, Cleveland, OH) using the known volume of the 

sphere as ground truth to define segmentation settings. The sphere has a stem which is used to fill 

the sphere with water; this stem was manually excluded from the contoured volume.  

 

Then, 4DCT and 4DCBCT images were acquired for each motion case, resulting in 30 4D imaging 

studies (10 sinusoidal, 20 patient-derived). For the 4DCT studies, the cine duration was set as the 

breathing period plus 1 second. The duration between cine images was set as the respiratory period 

in seconds divided by 10. All cine CT images were acquired at 120 kVp, 8 mAs, with the same 

voxel size used in the static study (0.977 mm × 0.977 mm × 2.5 mm). All 4DCBCT images were 

acquired with the Symmetry 4D preset on an Elekta Synergy linear accelerator (Stockholm, 

Sweden) with M20 field of view, F1 bowtie filter, 120 kVp tube voltage, 20 mA tube current, and 

16 ms x-ray pulse length. 1320 projections were acquired over a 360-degree gantry rotation for 

one CBCT scan. 

 

4DCT studies were phase-sorted into 10 phase images in Advantage 4D (GE Healthcare, 

Waukesha, WI). The 4DCBCT studies were reconstructed in the XVI software suite (X-ray 

Volume Imaging ver.4.5, Elekta, Stockholm, Sweden), in ten phases at 128x205x205 voxels and 

2.0 x 2.0 x 2.0 mm/voxel. At the time of data analysis, DICOM export of 4DCBCT data was not 
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possible from the XVI software. Native format 4DCBCT images were reduced in dimensionality 

from raw 4D data to 10 3D matrices representing individual image phases in ANALYZE format 

(Biomedical Imaging Resource, Mayo Foundation, Rochester, MN) with VV, a 4D Slicer172. 

Images were then batch converted from ANALYZE to DICOM in AMIDE173. 4DCT and 4DCBCT 

DICOM images were imported into MIM 6.2.5 for image analysis. Object volumes were defined 

on CT and CBCT images via threshold segmentation, applying the identical threshold as used for 

the static imaging task. Contours were visually assessed for conformality. 

 

The water sphere was contoured on individual phase images via threshold segmentation on every 

4D study. In total 300 4DCT and 300 4DCBCT phase images were analyzed. Differences in the 

water sphere volumes (compared to the reference volumes) were evaluated. The averages across 

studies were evaluated, along with the volumes as a function of the phase.  

 

III. RESULTS 

A. Segmented volume bias for 4DCT and 4DCBCT imaging 

Representative 4DCT and 4DCBCT images are shown in Figure 2. The tabulated percent 

differences between segmented volumes under motion and the reference volume are shown for 

4DCT and 4DCBCT images in Table 1. 

Table 1. Segmented volume and percent difference relative to the reference volume as a function of imaging modality, 
respiratory waveform, and motion amplitude. End-phase volume and difference represent the matrices measured with 
only maximum inspiration and expiration phases. 
 

Control 
Volume  
7.65 ml 

Nominal 
Amplitude 

(mm) 

Mean 
Amplitude 

(mm) 

4DCT 4DCBCT 

Volume 
(mL) 

Difference 
(%) 

End-
phase 

Volume 
(mL) 

End-
phase 

Difference 
(%) 

Volume 
(mL) 

Difference 
(%) 

End-
phase 

Volume 
(mL) 

End-
phase 

Difference 
(%) 

Sinusoid 15 15 6.69±0.82 - 12.8 7.27± 0.14 -5.0 8.28±0.28 8.0 8.28± 0.32 8.2 
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30 30 5.54±1.36 -27.1 7.07± 0.40 -7.6 8.21±0.23 7.3 8.32± 0.16 8.8 

Patient 
waveforms 

15 9.90±1.17 7.16±0.60 -6.4 7.16± 0.44 -6.4 8.16±0.16 6.7 8.11± 0.16 6.0 

30 19.80±2.34 6.51±1.51 -14.9 6.76± 1.13 -11.6 7.92±0.26 3.5 7.98± 0.18 4.3 

 

The threshold segmentation of the water sphere resulted in a volume of 7.65 mL, 6% greater than 

the calculated volume of 7.28 mL. With sinusoidal motion of amplitude 15 mm, the threshold 

volume of the water sphere was found to be underestimated at 6.69±0.82 mL using 4DCT, 

compared to an overestimation of similar magnitude of 8.28±0.28 mL using 4DCBCT. However, 

when the amplitude was increased to 30 mm, the magnitude of underestimation was greater for 

4DCT at 5.58 ± 1.36 mL, while average volumes measured by 4DCBCT were not greatly changed 

at 8.21 ± 0.23 mL. Furthermore 4DCBCT volumes were characterized by greater variability over 

the sinusoidal dataset as measured by standard deviation. 

 
Fig. 2. Representative 4DCT and 4DCBCT phase images for inhale (0%), exhale (50%), and intermediate (20%, 70%) 
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respiratory phases. For respiratory conditions which correspond to high velocity (low period) or high amplitude, 4DCT 
images exhibit phase-specific image quality characterized by artifacting and motion blur at intermediate phases. While 
4DCBCT images are characterized by increased noise, minimal artifacting at intermediate phases and greatly reduced 
variability between image phases is seen. 
 

For the patient-derived waveforms of amplitude 15 mm, trends were similar to the sinusoidal case. 

The threshold volume of the water sphere was found to be 7.16 ± 0.60 mL using 4DCT, compared 

to 8.16 ± 0.16 mL using 4DCBCT. Again, when the amplitude of the waveforms was increased to 

30 mm, greater change in the average volume of the water sphere was found with 4DCBCT 

(6.51±1.51 mL), compared to 7.92±0.26 mL using 4DCBCT. Three of 20 4DCT patient 

waveforms, all 15-mm peak-to-peak amplitude with irregular respiration, could not be phase-

sorted in Advantage 4D and were excluded from analysis. All 4DCBCT images sets could be phase 

sorted.  

 

Over all studies, the volumes from the 4DCBCT studies were more accurate than volumes defined 

on 4DCT images for all motion cases except for the nominal 15 mm patient-specific traces. For 

sinusoidal waveforms with 30 mm peak-to-peak amplitude, 4DCT image measurements 

underestimated lesion volume by 27.1% on average (5.54±1.36 mm, range 1.53 – 7.42 mm). 

Images segmented on 4DCBCT were more accurate, overestimating lesion volume by 7.3% on 

average (8.21±0.23, range 7.27—8.56). Similar results were seen for sinusoidal waveforms with 

15 mm peak-to-peak amplitude and patient waveforms with 30 mm nominal: images segmented 

on 4DCT average underestimated lesion volume by 12.8% and 14.9% on average while images 

segmented on 4DCBCT were more accurate, overestimating lesion volume by 8.0% and 3.5% on 

average. For the patient waveforms with 15 mm nominal amplitude the trends reversed, with 4DCT 

underestimating by 6.4% and 4DCBCT overestimating by 6.7%. In this scenario, it should be noted 

that the 4DCT data set was smaller than the 4DCBCT data set as three patient traces could not be 
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used for 4D reconstruction as noted in the results section. For all studies, the accuracy was 

proportional to respiratory amplitude, with greater amplitudes resulting in lower accuracy. 

 

B. Segmented volume for 4DCT and 4DCBCT imaging as a function of respiratory 

waveform and phase 

Graphs depicting accuracy of 4DCT and 4DCBCT imaging as a function of respiratory waveform 

and image phase are depicted in Figure 3.  

 
Fig. 3. Segmented volume for 4DCT and 4DCBCT imaging as a function of respiratory waveform and phase. For 
sinusoidal motion, 4DCT exhibits period-dependent trends where volume recovery decreases with shorter period 
(greater velocity). Additionally, 4DCT imaging demonstrates phase-dependent trends where volume recovery 
decreases at intermediate respiratory phases. For patient-specific respiratory motion, phase-specific trends are less 
pronounced but greatest accuracy is still seen at end-exhale phases. Three waveforms could not be reconstructed in 
Advantage 4D and were excluded. No strong trends as a function of respiratory waveform or phase are observed for 
CBCT imaging. Dashed line indicates reference volume. 
 

When evaluating 4DCT images of sinusoidal waveforms as a function of respiratory period, 

segmented volumes showed reduced accuracy (smaller volumes) with shorter periods (greater 

velocity). This was observed for the 30 mm amplitude traces, likely due to the fact that greater 

amplitudes result in greater sphere velocities. For 15 mm sine waveforms, volume recovery 
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appeared to reach a threshold at periods of approximately 5-6 seconds, above which no benefit 

was achieved. For 30 mm sine waveforms, no threshold was reached over the range of periods 

studied (3-7 s). 4DCBCT images showed trends in the opposite direction where longer periods 

corresponded to smaller volumes, though this trend was smaller in magnitude than that observed 

for 4DCT imaging.  

 

The variability of volume measured over all 4DCT image phases was large (range 1.50—10.96 

mL). Specifically, image phases corresponding to end-inhale and end-exhale phases of the 

respiratory cycle (0% max. inspiration and 50% max. inspiration) were more accurate than phases 

corresponding to intermediate portions of the respiratory cycle (see Table 1), with this effect being 

larger for 30 mm sine waveforms than 15 mm sine waveforms. However, volumetric differences 

from only end-phase imaging between two modalities were still prominent in all combinations of 

waveform and amplitude (13.2% 16.4%, 12.4%, and 15.9% for 15-mm sinusoid, 30-mm sinusoid, 

15-mm patient waveform, and 30-mm patient waveforms, respectively). Differences were not 

found between end phases and intermediate phases for 4DCBCT imaging. 

 

IV. DISCUSSION 

4DCT and 4DCBCT are routinely used in external beam radiation therapy, with 4DCT used at the 

time of patient simulation and treatment planning and 4DCBCT used at the time of patient 

treatment. The volume, shape, and position of these two studies are often compared, with the 

assumption that the differences between the studies are only related to the image quality (e.g. noise, 

HU bias, spatial resolution) and that volumetric differences are due to anatomic differences alone 

(e.g. tumor progression or response to therapy). We investigated the volume accuracy and 

difference of 4DCT and 4DCBCT imaging under the common clinical settings in the ground truth 
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setting with a respiratory phantom. We found that systematic volume differences could be 

observed where no volume differences should exist in both sinusoid and patient scans, and 

4DCBCT measurement was closer to the truth in most of cases. These volumetric differences 

between two modalities could be mitigated to a certain extent by choosing end-inhale and end-

exhale phases to compare (where the lesion velocity is minimized) and by understanding where 

discrepancies in volume increase (large amplitude breaths, short breathing cycle). These findings 

have implications for clinical practice, including verification that treatment planning margins 

sufficiently encompass tumor motion, construction of maximum intensity and average intensity 

projections for treatment planning, assessment of longitudinal dose accumulation, or decision to 

adaptively re-plan based on CBCT imaging. 

 

While both imaging modalities produced artifacts that limited their accuracy, 4DCBCT yielded 

image-defined target volumes closer to ground truth than 4DCT for all but one of the scenarios 

tested (15 mm amplitude, patient-derived waveforms). While the use of broad x-ray beams and 

flat panel detectors inherent to CBCT has led to criticism of image quality due to artifacts caused 

by scatter and differences in x-ray energy spectrum across the panel, this technology appears well-

suited for motion assessment. The modest overestimation of imaging volume was likely due to 

motion blur, as subjectively 4DCBCT can contain motion blurring artifacts while 4DCT is seen to 

“freeze” object motion, as well as greater scatter with the broad beam geometry. Beyond lower 

overall accuracy for 4DCT imaging, object volume measured on the individual phases of the 4DCT 

varied widely, with the most accurate volume definition being end phases, where the sphere 

velocity was minimized. Results suggest that 4DCT simulation may underestimate tumor motion, 

especially in patients with large motion amplitudes. 
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One limitation of our study is that the respiratory phantom used to simulate the lesion movement 

had motion only in the S-I direction and respiratory motion naturally occurs in three dimensions. 

Our finding of inaccuracy in intermediate respiratory phases might lead to greater motion 

discrepancies in the common case of “c-shaped” respiratory motion. Although we showed the 

measured volumes between two modalities could also be very different in patient-waveform scans, 

even if end-phase volume measurements were only phases to be considered, other important 

matrices for the image-guided radiation treatment (IGRT) process like the bias of tumor motion 

between CT and CBCT is not reported here because it could not be fairly evaluated with our 1-D 

phantom motion setup. Previous studies have reported on similar differences in respiratory motion 

in patients; e.g. Purdie et al.167 reported that two out of twelve patients showed significant tumor 

motion differences (distance between end-inhale and end-exhale phases of tumor position) 

between 4DCT and 4DCBCT measurements. 

 

The difference in 4DCT and 4DCBCT can be explained in part through the physics of image 

acquisition, notably differences in cone-angle coverage and in acquisition time. While CBCT 

images were acquired with a large flat-panel detector, CT images were acquired with a regular 16-

row detector (around 2.0 cm in z-direction). The consequence of this is that tumor motion is in the 

imaging field of view for the entire acquisition for CBCT imaging, but only for several image 

slices for the CT acquisition. Additionally, the tumor is in the imaging field of view for a shorter 

period of time for 4DCT (~5-10 sec vs. 3.5-4 min in 4DCBCT) which may cause bias in patients 

with irregular respiratory motion because only a small portion of the breathing motion range was 

covered during the short CT scan68,123,174. Another challenge is that threshold segmentation settings 
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of ROI were defined on static CT acquisitions. Threshold segmentation has known limitations with 

reproducibility across scanners and acquisition settings. In this study acquisitions-specific 

threshold settings were determined from the ground truth case. However, for the 4DCT scan, image 

noise and HU bias are expected to be higher in the low-dose cine acquisition than the helical scan. 

For CBCT, there were differences in mAs and acquired projections between the 3D and 4D scan. 

We chose the default manufacturer acquisition profiles for these scans because CBCT parameters 

are not routinely changed by Elekta XVI users. However, discrepancies in image noise due to 

photon starvation could be confounding factors in measuring the volume.  

 

The above limitations in terms of image quality imply that conventional protocols used in the 

4DCT and 4DCBCT imaging process may not be able to reflect the true anatomic differences from 

tumor progression or treatment response at this time. To address these challenges, a large body of 

research is being performed to improve image accuracy under respiratory motion. For 4DCT, 

optimized low-dose CT protocols88,136,150,175, scatter corrections176,177, approaches regarding the 

acquisition time174, motion modeling178, and more advanced motion gating techniques63,179,180 are 

being investigated. For 4DCBCT, reconstruction and motion binning techniques181,182 are being 

developed. Evaluating improvements from these methods so that the lesion volume under the 

respiratory motion can be more accurately estimated by both 4DCT and 4DCBCT is a direction 

for future work.  

 

V. CONCLUSION 

Respiratory-correlated CT and CBCT imaging is critical for radiation treatment in thoracic 

cancers. In this study using a dynamic respiratory motion phantom to study the accuracy of 4DCT 

and 4DCBCT imaging in the ground truth setting, some advantages were seen in both modalities, 
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but 4DCBCT images were generally more accurate and reproducible than those measurements 

derived from 4DCT images due to the reduced presence of respiratory motion artifacts. These 

results may be relevant to radiation oncology in the areas of target volume definition, verification 

imaging, longitudinal response assessment, and adaptive re-planning. 
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