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Brain-computer interface (BCI) technologies can potentially be used restore function in patients with 

severe motor disorders, however, BCI devices currently do not perform well enough to warrant the risk 

or expense relative to other treatments. This is due in part to limitations of current BCI architectures, 

which utilize signals from a relatively small portion of the cortex and exclusively rely on a fixed mapping 

between neural activity and the output device. In contrast, when executing native motor function, the 

nervous system invokes a sophisticated series of bottom-up and top-down modulators that dynamically 

change the relationship between cortical function and motor output, based on an individual’s capability, 

task demands, attentional focus and numerous other factors. Characterization of the neural correlates 

of these higher-order cognitive facets of BCI use is a critical first step in the development of such 

systems. The work below focuses on identifying the distributed neural correlates of BCI skill 

acquisition and goal-oriented task execution, and leveraging these signals to improve BCI 

performance.  
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We identified multiple cortical regions that become very active during novice BCI use, and are 

subsequently less active in the experienced user. Activity changes within these regions suggest 

distributed cortical processing, but could also be explained by nonspecific co-activation, so it was then 

necessary to show that these regions also interact in a meaningful way. To this end, we demonstrated 

that during BCI use there are high-frequency amplitude-amplitude interactions taking place on local 

spatial scales and non-linear low-frequency to high-frequency phase-phase interactions covering larger 

cortical distances. Lastly, we characterized neural correlates of a user’s intended action immediately 

before and during BCI use, and trained a machine learning-based system to identify these activity 

patterns and leverage them in a hierarchical BCI. 

These findings are directly applicable to BCI design. Next-generation BCI architectures will include 

signals from multiple cortical regions to allow for dynamic device control strategies. Furthermore, by 

leveraging BCI as a platform for scientific inquiry, we have been able to develop our understanding of 

the networks involved in acquisition and execution of the BCI skill, and the neural mechanisms of 

interaction enabling communication across these networks. Understanding these relationships is at the 

core of understanding the tremendous adaptive capability of the nervous system, and successfully 

translating brain activity into action. 
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3 Introduction 

There exist a number of neuromuscular disorders and physical impairments that impact an individual’s 

ability to perform motor functions. This impairment is manifest as a loss of ability to dexterously move 

about in or manipulate one’s environment, a loss of ability to communicate, or both. Because of ongoing 

advancements in robotics, machine learning, wearable computing, biosignal acquisition and processing 

and electrode design, the field of neural engineering has a tremendous opportunity to develop brain-

computer interface (BCI) technologies that can be used to restore these lost functions. However, BCI 

devices currently do not perform well enough to replace the current state of the art treatments. For BCI 

devices that are used to continuously control an end effector, such as a computer cursor or a robotic 

arm, this limitation is due in part to the ubiquitous primary motor cortex-centric BCI design patterns and 

an incomplete understanding of the distributed cortical processing that enables learning and execution 

of the neuroprosthetic skill. 

3.1 The clinical need 

Neuromuscular disorders are a broad class of ailments that cause loss of function through one or more 

of the following means: (1) by disrupting the central nervous system’s capability to generate an 

appropriate motor command, (2) by disrupting the flow of information from the central to the 

peripheral nervous system, or (3) by disrupting the peripheral nervous system’s ability to effectively 

carry out that motor command. In its advanced stages, amyotrophic lateral sclerosis (ALS) may be one of 

the most severe of these disorders, but there are numerous others including traumatic brain injury, 

stroke and spinal cord injury. These disorders affect nearly two million people in the United States, and 

many more worldwide (Murray & Lopez, 1996). Severity varies from patient to patient, ranging from 

mild impairment of motor function to complete loss of voluntary muscular control, an affliction that is 

referred to as locked-in syndrome (Smith & Delargy, 2005).  
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Current treatments for neuromuscular disorders vary widely in concordance with the severity of the 

ailment, but can be separated into two primary groups. In the event that limited muscular function 

remains (e.g., some cases of ischemic stroke), rehabilitative physical therapy (Pascual-Leone et al., 2005) 

is employed to restore as much of the lost function as is possible. Experimental enhancement of physical 

therapy via transcranial magnetic stimulation (TMS) (Harvey & Nudo, 2007; Plautz et al., 2003), 

transcranial direct-current stimulation (tDCS) (Schlaug et al., 2008), and direct cortical stimulation (DCS) 

(Adkins et al., 2006, 2008; Adkins-Muir & Jones, 2003; Huang et al., 2008; Levy et al., 2008; Plow et al., 

2009) is also being explored. 

In cases where rehabilitative therapies are not an option, such as in the advanced stages of ALS, other 

means have been explored to replace lost function such as eye-trackers, blink interfaces (Doble et al., 

2003), and assistant-mediated communication (Wu & Voda, 1985). Though these strategies are effective 

at providing patients with some portion of their original function, they leave much to be desired in 

terms of complete restoration. 

3.2 Brain-computer interfaces 

In response to this clinical need, over the past two decades, many researchers have been investigating 

direct interface to the nervous system as a means to create rehabilitative and assistive devices that 

provide patients with a significantly greater portion of their original function than the current standard 

of care (for review see Green & Kalaska, 2011; Moran, 2010; Wander & Rao, 2014; Wolpaw et al., 2002). 

Researchers are attempting to interface to the nervous system at a number of different levels, including 

the cerebral cortex, the spinal cord, and at the neuromuscular junction; the version of these devices that 

interface to the cortex are called BCIs or alternatively brain-machine interfaces. In the context of 

restoration of lost motor output, the proposed idea of an assistive BCI is that by recording neural activity 

‘upstream’ of where the ailment has impacted the nervous system, and decoding that activity to 
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determine the patient’s intended action, an external device can be driven to carry out that action. Three 

primary testbeds for BCI research are cursor control and communication in tetraplegic and locked-in 

patients (Hochberg et al., 2006; Kubler & Kotchoubey, 2001) and neural control of prosthetic arms 

(Carmena et al., 2003; Pfurtscheller et al., 2000; Velliste et al., 2008). This patient population has been 

concentrated on by many researchers as an appropriate short-term target as the prospect of restoration 

of capability to communicate to locked-in patients may soon outweigh the risk associated with the 

current invasiveness of many BCI electrode implantation procedures (Gilja et al., 2011; Moran, 2010). 

Though BCI is a non-specific term that can be applied to a variety of system architectures ranging from 

BCIs for motor control to deep brain stimulators for the treatment of clinical depression, in this section 

we provide a brief review of the state of the art of the former, as it is relevant to the clinical need 

described above. In discussing BCIs for motor control, we will consider only BCI architectures that 

leverage volitional modulation of neural activity for the manipulation of an end effector. 

In foundational work, Fetz and colleagues demonstrated that, when given feedback, the brain could 

learn to volitionally modulate the activity of single neurons (Fetz, 1969). In this experiment, the 

estimates of individual firing rates of a small number of cortical neurons were mapped directly to a 

simple visual feedback device, and the subject developed the capacity to modulate these firing rates, 

effectively controlling a simple, one-dimensional (1-D) BCI. A similar feat was accomplished a number of 

years later by Wolpaw and colleagues using a non-invasive approach, mapping spectral (mu-beta) 

changes recorded at the scalp to vertical control of a cursor on a computer monitor (Wolpaw et al., 

1991). Since these initial BCI experiments, the primary investigative and engineering push in the field has 

been to increase the dexterity, robustness, and clinical viability of these devices. The current state of the 

art for BCI depends greatly on the electrophysiological signal being used to run the BCI. Aggregate 

activity from large numbers of neurons (field potentials) have been used to control end effectors in up 

to 3 dimensions (McFarland et al., 2010; Wang et al., 2013) and the high-bar is currently set by Collinger 
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and colleagues who trained a human user to control a seven degree of freedom (DOF) robotic arm using 

neural signals recorded with a microelectrode implant (Collinger et al., 2013). Unfortunately, direct 

comparison across these and other experiments is extremely difficult because of inconsistencies in task 

paradigms and evaluation metrics (Thomas et al., 2013). 

There are a number of impediments to the long-term clinical deployment of brain-computer interfaces, 

including host-response to implanted electrodes, long-term power requirements, and wireless 

communication of neural signals to remote devices. One of the largest road-blocks in the development 

of these devices is simply that their performance relative to the current standard of care is not good 

enough to warrant the risk and cost to the patient (Gilja et al., 2011). 

As a result, there is a collective push in the field to increase BCI performance in applications that restore 

a patient’s ability to communicate or to control external devices. There are a number of approaches 

being investigated; the two most common being an increase of coverage density in motor cortex (i.e. 

higher number of input channels per unit area) and development of more sophisticated decoding 

algorithms (i.e. extracting more robust signals from the input channels). Recent work by the Schwartz 

(Wang et al., 2013) and Shenoy (Gilja et al., 2012) groups, respectively, provides examples of 

developments in these two directions. Other groups are working in a different, but potentially 

complimentary direction, constructing BCI systems that maximize the performance gains made possible 

by the tremendous adaptive capability of the brain (Orsborn et al., 2012). 

An important point to note is that the vast majority of BCIs harness signals recorded solely from the 

primary motor cortex (M1) or premotor cortex (PMv / PMd) (Blakely et al., 2009; Simeral et al., 2011; 

Wang et al., 2013; Wolpaw et al., 1991). A noteworthy exception to this is the line of research being 

pursued by Andersen and colleagues that utilizes activity patterns in posterior parietal cortex (PPC) 

(Mulliken et al., 2008), though this approach still utilizes firing rate changes in a single cortical area to 



14 
 

achieve BCI control. We know, however, from a vast body of electrophysiological and imaging motor 

studies, that the generation of dexterous, goal-directed movement is a coordinated effort on the part of 

multiple cortical areas, and that the functional roles being carried out in these areas are diverse. 

Correspondingly, we posit that BCI architectures may benefit significantly by incorporating multiple 

streams of task-relevant information from a variety of cortical sources. An example of this would be a 

BCI that simultaneously decodes both the higher-level goal an individual is trying to achieve from one 

set of cortical structures and the low-level BCI motor commands that they are using and utilizes both 

channels of information to improve BCI performance. This notion of hybrid BCI that employs control 

signals at multiple levels of abstraction has been implemented previously (Cheung et al., 2012; Shanechi 

et al., 2013), but has yet to reach its full potential. 

Controlling a BCI with volitional modulation of neural activity is intriguing in that it is arguably a non-

motor or quasi-motor task. When the BCI is being driven by signals recorded from M1, one might expect 

that the same cortical (Jenkins et al., 1994; Schlaug et al., 1994) and subcortical areas (Hikosaka et al., 

2002) that are involved in visuomotor tasks to be involved in the control of a BCI as well. However, the 

two tasks are significantly different in that, with the exception of visual feedback, the afferent activity 

that is critical to successful acquisition of traditional motor tasks is not present during the use of a BCI. 

Furthermore, it has been previously shown that humans can control a BCI using expressly non-motor 

imagery (Vansteensel et al., 2010) and non-human primates (NHPs) can do so using ‘arbitrary’ neurons 

(Fetz, 1969). Correspondingly, the first step in the process in the development of BCIs that leverage 

distributed activity patterns is to understand how the various areas in the brain work together to enable 

learning and continued execution of the neuroprosthetic skill.  
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3.3 Relevant motor physiology and neurophysiology 

An extensive review of neurophysiology and motor physiology is beyond the scope of this document. For 

additional information, the reader is encouraged to review the seminal text by Kandel and Schwartz 

(Kandel et al., 2012). However, in an effort to provide context for the experimental designs, results, and 

discussions that follow, we will provide a brief summary of the cortical structures relevant to BCI use, 

and the underlying neurophysiology that is leveraged in the electrophysiological recording models 

described below. 

3.3.1 Primary motor cortex 

The cerebral cortex is spatially organized into areas that have been linked with specific functions, initially 

through post-mortem lesion studies and electrical stimulation, and now through in vivo functional 

imaging and electrophysiology. When locating cortical areas associated with motor outputs from the 

body, one of the most important cortical landmarks to identify is the central sulcus, which starts at the 

lateral fissure and travels superiorly and posteriorly. It separates the frontal lobe and the parietal lobe. 

Canonically, the gyrus anterior to the central sulcus, called the pre-central gyrus, is referred to as M1, 

though cytoarchitectonic delineations specify that M1 comprises only the posterior half of the lateral 

portion of the pre-central gyrus (M1 corresponds to Brodmann Area [BA] 4). The majority of descending 

afferent motor tracts that carry neural activity that will eventually result in motor output originate in 

M1.  
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Figure 1 - Lateral view of the human brain, the central sulcus is highlighted in red. Image is public domain, 
source: http://commons.wikimedia.org 

As was determined in the 1930s (Penfield & Boldrey, 1937), motor cortex itself is somatotopically 

organized such that the motor outputs of the body are represented in an orderly fashion across M1. This 

can be seen in the image of the motor homunculus, below. Another feature of the motor representation 

on M1 that is important to the use of these neural populations for BCIs is that the amount of cortical 

area dedicated to a specific part of the body is related to the degree and precision of motor control 

executed in that part. Consequently, the motor cortical representation of face and hand movements is 

very large in humans and non-human primates (NHPs). 

This large representation of hand and face movement, combined with the somatotopic organization of 

M1 is one of the primary reasons that it is often selected as a target site for BCI, however there are 

other critical reasons that should also be noted. First, layer V of M1 contains the cell bodies of many 

large pyramidal neurons, from which extracellular recordings can be readily taken, and which (because 

of the orientation of their dendritic arbor and their columnar organization) generate relatively 

discernible cortical and scalp potentials. Second, an extensive foundation of motor electrophysiology 

studies has demonstrated strong directional tuning between M1 pyramidal neurons and position and 

velocity of distal limbs, allowing for BCI decoders to be seeded with parameters derived from neural 

recordings taken during overt motor movement. 
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3.3.2 Non-M1 frontal cortices 

Directly anterior to M1 and extending from the lateral sulcus to the superior frontal sulcus is the 

premotor cortex (BA 6), which is further divided into dorsal and ventral areas (PMd and PMv). Superior 

to this and wrapping around to the medial aspect of the brain, stopping at the cingulate sulcus is the 

supplementary motor area (SMA); coverage of this portion of the brain is exceedingly rare in an 

electrocorticographic (ECoG) epilepsy model and is thus not discussed extensively in the remainder of 

this document. Premotor areas, on the other hand, are commonly covered during epilepsy monitoring 

and thus provide an excellent first candidate region for BCI-relevant extra-M1 neural activity. 

PMv has been studied extensively in NHPs, and is traditionally held to be involved in preparatory motor 

activity related to hand motion (Rizzolatti & Luppino, 2001; Weinrich & Wise, 1982) , and during the 

movement for both reaching and grasping actions (Xiao et al., 2006). Additionally, so-named “mirror 

neurons” in PMv have been seen to respond to observation of relevant movements (Rizzolatti et al., 

1996). 

Though also active during preparation (Mauritz & Wise, 1986), PMd has been demonstrated previously 

to be more associated with trajectory planning and control of the more proximal musculature involved 

in reach motions (Pesaran et al., 2006). In an NHP model, cells have been found in PMd that respond to 

changes in characteristics of the target of a reach (Shen & Alexander, 1997), which, when taken with the 

above, implies a role for PMd in the translation of a reach target to a motor command through the use 

of internal models. 

Collectively, the area of brain anterior to the premotor areas is called prefrontal cortex (PFC), further 

subdivided into a number of regions that vary, to some degree depending on the body of literature in 

which they are being discussed. In general PFC is considered the cortical center for executive control 

(Fuster, 2000) and a critical region for orchestrating coordinated complex behaviors to achieve higher-
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level goals (Miller & Cohen, 2001). Various regions of the PFC have demonstrated involvement in 

complex, goal-driven behavior in both human (Rudorf & Hare, 2014) and NHP (Kobayashi et al., 2007) 

models. The dorsolateral PFC (dlPFC; BAs 8,9 & 46) is a specific sub-region of PFC of particular relevance 

to BCI control, based on previous demonstrations of involvement in higher order motor control (for 

review see Damasio et al., 1996) and spatial working memory (Barbey et al., 2013; Funahashi et al., 

1989; Goldman-Rakic, 1996). 

3.3.3 Parietal and temporal cortices 

Posterior to the central sulcus is primary somatosensory cortex (SC; BAs 1-3). Though it is not discussed 

extensively in the context of this document, it is one of the sensory processing areas – along with 

auditory and visual processing areas – that provides sensory information to its more caudal neighbor, 

the posterior parietal cortex (PPC; BAs 5 and 7). 

PPC is a group of cortical regions, located, as the name implies, in the posterior portion of the parietal 

lobe. It is bisected by the intraparietal sulcus (IPS) into the superior and inferior parietal lobules (SPL and 

IPL, respectively). The PPC on the whole is an associative cortical region implicated in planning and 

online control of visually guided movements (Buneo & Andersen, 2006a; Mulliken et al., 2008). A 

significant amount of work has gone into understanding the subregions of PPC and their particular 

functional roles in the variety of motor movements carried out by primates (reviewed in Vesia & 

Crawford, 2012). It is worth noting that the terminology between the two species differs and can be 

confusing. In NHPs, we commonly discuss three major regions the PPC: the parietal reach region (PRR), 

the lateral intraparietal area (LIP), and the anterior intraparietal area (AIP). These areas are classically 

associated with reaching, saccades, and grasping respectively (Rizzolatti et al., 1998). The human 

homologues are slightly less well defined, but they are the mid-posterior IPS (mIPS), mIPS and the 

parieto-occipatal sulcus (SPOC), and the anterior IPS (aIPS), respectively. Recent imaging studies have 
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begun to demonstrate similar roles for these regions, though the functional separations do not appear 

to be as strict (Gallivan et al., 2011, 2013) . 

Inferior to the IPL, surrounding the supramarginal gyrus, where the temporal and parietal lobes meet is 

a region called the temporoparietal junction (TPJ; BAs 22, 39 and 40). Though not explicitly involved in 

reach and grasp planning, the TPJ is implicated in a number of cognitive functions. Of particular interest 

to its potential role during BCI execution is evidence of involvement in bottom-up modulation of sensory 

inputs relevant for target selection (Geng & Mangun, 2011).  

Anterior and inferior to this is another cortical region of interest, namely the posterior portion of the 

superior temporal gyrus (STG). Classically thought to be involved primarily in emotional, social and 

language-related processing (Friederici & Rueschemeyer, 2003; Radua et al., 2010), the STG has recently 

been demonstrated to be involved in multiple cognitive processes that may be highly relevant to 

neuroprosthetic control. More specifically, the posterior portion of the STG has been demonstrated to 

be activated during selective processing of visual stimuli (Hopfinger et al., 2000) and during observation 

of geometric shapes that were following goal-directed trajectories (Schultz et al., 2004).  

3.3.4 Fronto-parietal connectivity 

The classical viewpoint on parieto-frontal networks is that in both areas different functions are spatially 

segregated and the pathways between parietal regions and their frontal counterparts are discrete and 

separate (Rizzolatti et al., 1998), an idea that was supported through the study of anatomical 

connectivity between frontal and parietal regions (Tanné-Gariépy et al., 2002; Wise & Boussaoud, 1997). 

In these studies the authors demonstrated two segregated structural pathways connecting fronto-

parietal networks; specifically noting pathways between PMv and AIP, and between PMd and more 

posterior parietal areas. This structural model supports Rizzolatti et al.’s functional model of area 

specific specialization, with PRR-to-PMd connectivity playing a role in reaching movements (Wise & 
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Boussaoud, 1997) and AIP-to-PMv connectivity playing a role in grasping (Rizzolatti & Luppino, 2001). 

Despite structural evidence for separate fronto-parietal networks, this notion has since given way, to 

some degree, to a more overlapping or even multi-functional model of parietal and frontal visuomotor 

processing (Davare et al., 2011). As ever-improving capability of functional MRI (fMRI) allows for study 

of the human correlates of macaque PPC areas, we now have evidence of end-effector independent 

activity changes in a number of frontal and parietal regions (Gallivan et al., 2011). Such findings are 

critical to future BCI study as the BCI end-effector represents a completely novel end effector to be used 

in spatial manipulation tasks; to be able to do so successfully, the brain will likely need to be capable of 

leveraging pre-existing visuomotor processing circuitry. For further information, the reader is referred to 

a number of excellent reviews of parietal processing and fronto-parietal networks (Buneo & Andersen, 

2006a; Rizzolatti et al., 1998; Vesia & Crawford, 2012). 

3.4 Electrophysiological models for BCI 

There are two primary classes of physiologic signals used to drive BCIs: electrophysiological recordings 

such as single-unit activity (Carmena et al., 2003; Jackson, Baker, et al., 2006; Lebedev et al., 2005; 

Moritz et al., 2008), local field potentials (LFP) (Moran, 2010), ECoG (Blakely et al., 2009; Felton et al., 

2007; Krusienski & Shih, 2010; Schalk et al., 2008), the electroencephalogram (EEG) (Moran, 2010), and 

the magnetoencephalogram (MEG) (Mellinger et al., 2007); hemodynamic responses such blood-oxygen 

level dependent (BOLD) changes as measured in fMRI (Sitaram et al., 2008) and functional near infra-red 

spectroscopy. There are alternatives (e.g., optogenetic and ultrasound-based imaging methods), though 

these are much less common. Instead, we will focus on the four common classes of electrophysiological 

recordings and provide a discussion of their relative merits and demerits in the context of real-time BCI 

for control of an end effector, leading to an explanation of why ECoG is the most appropriate signal 

modality for the work described below. 
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The methods used to acquire these signals range from very invasive (single unit activity and LFP) to 

minimally invasive (ECoG) to non-invasive (EEG). In general, there is a formidable sacrifice of spatial 

resolution, temporal resolution, or both as less invasive signal acquisition methods are used (Gilja et al., 

2011; Moran, 2010).  

The majority of BCI experiments as well as pre-clinical BCI applications (Birbaumer et al., 2000; Flor et 

al., 1995; McFarland et al., 1997; Pfurtscheller et al., 2000; Wolpaw & McFarland, 2004) use EEG as a 

signal source because it is non-invasive, healthy subjects are readily available, the necessary equipment 

is comparatively inexpensive, signal quality typically does not degrade over time, and the use of EEG in 

humans does not impose the same regulatory burdens as ECoG or microelectrode recordings. Within 

the EEG modality, BCIs have been constructed that use evoked potentials such as the visual evoked 

potentials in the P300 speller, volitional changes in slow cortical potentials, and volitional event-related 

desynchronization and/or synchronization of the sensorimotor rhythms (SMR) mu and beta (Wolpaw et 

al., 2002). Regrettably, there are a number of factors of EEG that currently make it poorly suited for 

clinical deployment and for the purposes of the study described below. First, the dura mater, 

cerebrospinal fluid (CSF), skull and scalp collectively act to spatially mix and low-pass filter the true 

cortical potentials, such that the potentials recorded at the surface of the scalp have lost tremendous 

spatial specificity and typically do not contain frequency content above approximately 60 Hz. Second, 

EEG is easily contaminated by surface electromyographic (EMG) potentials as well as ambient 

electromagnetic noise (e.g., 50/60 Hz line noise) resulting in a relatively poor signal to noise ratio (SNR). 

As a result, EEG-based BCI typically use classification-based decoder architectures (selecting from a 

discrete set of control parameters) as opposed to regression-based decoder architectures (mapping to a 

continuous space of control parameters), and require longer time intervals over which to average 

observations to collect a statistically robust assessment of the underlying neural activity. 
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At the other end of the spectrum are electrophysiological recordings made using invasive 

microelectrodes, such as the Utah electrode array (UEA), a microelectrode array consisting of 100, 1-1.5 

mm long electrodes configured in a 10x10 grid with an inter-electrode spacing of 300-400 μm. The 

electrodes themselves are shielded along the shank and conductive only at the tip. It is immediately 

apparent that there is a tremendous difference in spatial specificity between the UEA and an EEG 

system. However, it is important to note that the UEA itself records from an area of less than 13 square 

millimeters, making correct placement over anatomical areas a critical component of experimental 

design and execution; microelectrode recordings from distributed cortical sites require multiple 

implants. The UEA and other microelectrode recording devices are designed to record extracellular 

action potentials and LFPs from nearby cell bodies, thus they are typically placed such that the 

conductive tip sits as near to the layer V pyramidal neurons as possible. Action potentials recorded from 

these neurons provide an extremely high-fidelity signal that has been utilized in a BCI for continuous end 

effector control on numerous occasions (e.g., Fetz, 1969; Simeral et al., 2011). Though these signals 

provide excellent fidelity and have been demonstrated to be highly capable of adaptation to task 

requirements (Fetz & Baker, 1973; Fetz, 1969; Ganguly & Carmena, 2009; Ganguly et al., 2011), the long-

term recording of activity from single units is a difficult technical task that has yet to be solved 

completely. Though there are limited instances of microelectrode implants that can still record sufficient 

neural activity to control a BCI up to 3 years post-implant (Simeral et al., 2011), in most cases, either due 

to movement of the array or underlying physiological changes, intracortical implants are functionally 

limited to shorter operating time-frames (Kipke et al., 2008). 

A signal modality that strikes a compromise between these two is ECoG. ECoG is referred to as a 

minimally invasive recording technique as it still requires surgery to implant the necessary electrodes, 

but the electrodes sit on (instead of penetrating) the pial surface. ECoG has even been demonstrated to 

allow for successful acquisition of spectral components up to 200 Hz when recorded epidurally (Gomez-
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Rodriguez et al., 2010), potentially further lessening its invasiveness. ECoG signals are almost exclusively 

acquired in the context of clinical treatment for intractable epilepsy wherein patients undergo long-term 

monitoring (approx. 7d) of ECoG activity during ictal events for the identification and eventual resection 

of a seizure focus. 

Within the context of motor function and cognitive processing, there are two frequency ranges of the 

ECoG signal that have been focused on heavily in the literature. They are a band-limited, low frequency 

feature (12-25 Hz), which is the ECoG correlate of the mu-beta rhythm discussed in EEG literature, and a 

broadband, high frequency feature (70-200 Hz), referred to as high-gamma (HG). Changes in HG activity 

have been postulated to reflect changes in the overall firing rate and/or firing synchrony of underlying 

neural populations (Miller et al., 2007; Ray et al., 2008). 

Changes in HG activity are more spatially focal than changes in the mu/beta band (Miller et al., 2007), 

and have subsequently been concentrated on in research that uses the ECoG signal modality as a 

temporally and spatially local indicator of underlying cortical processing. This signal has been applied to 

a number of ECoG BCI paradigms, typically with changes in spectral estimates of HG power being 

directly mapped to end effector control parameters (Blakely et al., 2009; Schalk et al., 2008). 

3.4.1 ECoG BCI 

Ten years ago, ECoG cortical potentials were first leveraged as control signals for a BCI application 

(Leuthardt et al., 2004). Since that time, a number of subsequent studies have demonstrated not only 

that ECoG BCI users are capable of performing multiple simultaneous types of motor imagery to achieve 

multiple dimensions of control (Schalk et al., 2008; Wang et al., 2013), but also that ECoG BCI can be 

successfully used over multiple days without the need for classifier retraining (Blakely et al., 2009). ECoG 

BCIs are generally controlled through volitional modulation of HG activity at one or more electrodes; in 
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humans, initial execution of the task is done through the use of a motor (e.g., hand motor imagery) or 

cognitive (e.g., mental arithmetic) task that modulates activity in the controlling electrodes.  

Because clinical-scale ECoG grids typically cover approximately 64 cm2 of cortical tissue, and are only 

controlled by a subset of the electrodes in the grid, ECoG BCIs provide an excellent opportunity to probe 

the nervous system for additional physiological details relevant to BCI use. One example of this is a 

recent study demonstrating a spatially focal change in sleep spindle density correlated with training on 

BCI task, a finding suggestive of offline learning taking place in the brain after having the opportunity to 

perform the highly novel BCI task (Johnson et al., 2012). 

3.4.2 Disadvantages of ECoG BCI 

It is important to note that ECoG data are collected in an opportunistic recording model. With few 

exceptions, ECoG subjects are undergoing long-term monitoring for epileptic focus identification and 

resection. Depending on the etiology of their epilepsy, these subjects can have a host of neural 

complications, including but not limited to inter-ictal activity and cortical reorganization. The full extent 

of how epilepsy impacts the nervous system is still largely unknown and likely varies across individuals; 

conclusions drawn from studies based on this patient population must be accompanied by this 

consideration.  

In addition to this, the median duration of observation for epileptics undergoing this procedure is 7d. 

Typically subjects are neither able nor willing to participate in research studies until the third or fourth 

post-operative day, which limits the amount of training time a given subject can receive on the BCI to at 

most four days. Extensive studies on cortical adaptation associated with BCI (e.g. responses to 

perturbation after the user achieves a learned state) use are extremely difficult under these 

circumstances. 
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3.4.3 Advantages of ECoG BCI 

These caveats to the research use of ECoG recordings notwithstanding, ECoG-based BCIs possess several 

advantages relative to SUA and EEG-based BCIs that make them the appropriate tool for the inquiry 

discussed in this document. First, because the electrodes are not typically moved from day-to-day, and 

the cortical potentials are fairly stationary, ECoG BCIs allow for robust control over the course of 

multiple days without retraining of the classifier (Blakely et al., 2009). ECoG recordings easily remain 

consistent over multiple days, and have been shown to perform well for up to 30 days (Wang et al., 

2013) with daily classifier updates. 

Relative to scalp surface potentials, ECoG presents an excellent opportunity for BCI research because, as 

of yet, there are no robust computational algorithms for extracting spatially focal HG activity from EEG 

on a single trial basis. Work is being performed to construct an inverse model that will permit us to back 

project likely cortical sources of EEG data (Darvas et al., 2004, 2010), thus increasing SNR and potentially 

providing access to information in the HG range at the scalp, however, these techniques are still under 

development. 

As was mentioned above, ECoG provides an excellent compromise (relative to EEG and microelectrodes) 

of spatial distribution of coverage and signal fidelity, making it an appropriate tool for the investigation 

of activity patterns in diverse cortical areas during BCI use.  

3.5 Distributed cortical processing during BCI use 

As was outlined above, BCIs show great promise for changing how we interact with the world. The field 

of brain-computer interfacing has demonstrated the tremendous adaptive potential of brain and 

machine by showing BCIs can be based on activity from one to millions of neurons, with response 

latencies from tens to thousands of milliseconds. However, the performance of these devices is not 

currently sufficient to warrant the risk and expense to their target patient population. We posit that the 



26 
 

relative single-mindedness of current architectures is one significant obstacle to the performance 

improvements necessary to make these devices clinically viable. We propose the development of BCI 

architectures that recognize and leverage the spatially and temporally heterogeneous patterns of 

activity observable across the brain to overcome this obstacle. Though we have, as a field, repeatedly 

demonstrated the capability of the brain to develop control over these novel interfaces, we have done 

so with little attention to the adaptive processes taking place in neural populations that are not directly 

linked to control of the BCI. An important first step is to develop an understanding of which cortical 

structures are involved in BCI skill acquisition and task execution and to characterize the relationships 

between these regions. From there, specific relationships between neural activity and task demands can 

be extracted and provided to computational systems as additional channels of highly task-relevant 

information.  

In the studies described in the remainder of this document, we demonstrate two important points that 

advance our understanding of the way brain and machine interact during BCI use. First, we demonstrate 

that execution of neuroprosthetic control in a 1-D ECoG BCI is accompanied by changes in neural activity 

in a variety of functionally heterogeneous cortical structures, and that these distributed regions interact 

with M1 in meaningful ways that are indicative of underlying patterns of structural and functional 

connectivity. Second, we provide evidence for extra-M1 coding of the higher-level goal both 

immediately prior to and during BCI task execution, and validate a potential framework for leveraging 

these intentional signals. 
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4 General materials and methods 

Whether intended as a therapeutic device or as an experimental tool for fundamental research, many of 

the constituent components of a BCI are the same. Additionally, many of the neuroscientific methods 

associated with processing of the data that drive a BCI are common across different analyses. 

Accordingly, this section outlines the standard BCI architecture and a number of the experimental 

techniques and analytical tools that are used throughout the remainder of this document. 

4.1 The standard BCI model 

Though the implementation of the individual subunits vary widely from research group to research 

group, and are generally focused on engineering efforts to improve BCI performance, the typical 

architecture for all BCIs is the same. Systems include the following: a means of recording neural signals, 

a computational algorithm to extract features of interest from those signals, a decoder to transform 

those features into one or more control signals, and a device, virtual or realized, that carries out the 

actions dictated by the control signals and provides feedback to the user via one or more sensory 

modalities.  

4.1.1 Components of a BCI 

Data acquisition hardware. Research in the area of fully implantable data acquisition hardware is 

moving quickly and will be critical in the development of viable and dependable BCIs. For the time being, 

however, the majority of human BCI studies use general purpose biosignal amplification systems. Most 

common electrophysiological data acquisition systems record between 16 and 256 channels 

simultaneously, at sampling rates specific to the signal being recorded. ECoG signals are typically 

sampled at > 1000 Hz using either AC or DC coupled instrumentation amplifiers, depending on the 

intended use of the signals being recorded. 
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Feature selection algorithm. There exist a wide variety of methods to extract features of interest from 

neural signals. Many of these are highly specific to the type of signal being recorded, such as the 

isolation of action potentials from individual neurons using a window discriminator-based spike sorter, 

or the spatial unmixing of EEG signals using independent components analysis. Often, feature selection 

algorithms are chosen to effectively leverage the strengths of the decoder that will be fed the output of 

the feature selection algorithm, with specific attention to reducing or increasing the dimensionality of 

the feature set as appropriate. Typically feature selection also attempts transform the neural data in 

such a way that the neural signals being discriminated become linearly separable. Typically, real-time 

feature extraction in an ECoG BCI involves re-referencing one or more previously selected channels to 

reduce common mode signal, and using a spectral estimator to determine a time variant estimate of 

power in the HG range recorded from the electrodes of interest. 

Decoding. Decoding architecture options are as numerous as feature selection algorithms if not more 

so. Decoders are also typically highly application specific, based not only on the dimensionality and 

nature of the decoder outputs, but also on engineering tolerances specific to the application for which 

the BCI will be used. One trend in the field of BCI research has been toward building more intelligent 

decoders that are capable of robustly mapping motor-based neural features to BCI control, however the 

work discussed in this document provides an alternative view of decoder enhancement. We posit that 

decoders will benefit from additional channels of information that are more cognitive in nature. Such 

signals could provide decoders with an understanding of the user’s current state, their intended goal in a 

multi-step movement, or knowledge of when the decoder appears to be configured incorrectly and is in 

need of updating. 

Applications. BCI applications are highly specific to their intended use. They range from EEG-based 

consumer-grade fashion devices to deep brain stimulators and neurally-controlled robotic limbs. The 
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content of this document focuses specifically on the last of these due to their clinical relevance to the 

target population of patients with motor disorders. 

4.2 Data collection and signal processing 

ECoG Grids. In all studies described below, subjects were implanted with platinum sub-dural ECoG 

electrodes for the purpose of seizure focus localization at Harborview Medical Center and Children’s 

Hospital in Seattle, Washington. The physical makeup (number and arrangement of electrodes) and 

implant location of all grids were based on clinical indication. Arrays were either 8x8, 6x8, 4x8, or 2x8 

grids or 1x8, 1x6, or 1x4 strips with 2.4mm diameter exposed recording surface and a 1cm inter-

electrode distance. 

Institutional approval. Subjects provided informed consent in accordance with the Institutional Review 

Board’s direction and patient data were anonymized in accordance with HIPAA mandate. 

All procedures were carried out within the University of Washington Regional Epilepsy Center, either at 

Harborview Medical Center or Seattle Children’s Hospital after informed consent was obtained. For 

children under age 18 parental consent was obtained along with consent from the child (age 14 or 

above) or assent of the child (age 7-13). The protocol was approved by the Institutional Review Board at 

both institutes. 

Recordings. Experimental recordings were performed at the patient’s bedside without interrupting the 

clinical recording systems. Either Synamps2 (Neuroscan, El Paso, TX, USA) or g.USBamps (GugerTec, 

Graz, Austria) sampled at 1000 Hz and 1200 Hz respectively were used for recording. Cortical potentials 

referenced against a scalp electrode, and were digitized and processed using the BCI2000 software suite 

(Schalk et al., 2004) which provided real-time feedback to the user.  
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Motor screening. Prior to online control, subjects performed overt motor screening to determine 

candidate electrodes for BCI use. Depending on each subject’s coverage, they performed gross hand 

motor movements (of the hand contralateral to the implant site), mouth motor movements, or both. 

Visual cues were presented for 3 sec followed by a 3 sec inter-trial interval. This process was repeated 

10-30 times for each of the two motions. They were then asked to repeat this screening process but 

with imagined movement. Electrodes that demonstrated statistically significant change in HG power 

during activity as compared to rest in either or both of these tasks were chosen as candidate controlling 

electrodes. In cases where there was more than one candidate controlling electrode, the electrode used 

for online control was chosen based on the magnitude of change between activity and rest and/or 

neuroanatomical relevance. 

BCI Tasks. Both BCI paradigms were driven by spectral power changes in a portion of the HG frequency 

band of a single electrode determined to be modulated by motor imagery. Only a subset of the HG 

range was used during online control (approx. 75-100 Hz) for computational tractability and to eliminate 

the need for real-time notch filtering to reduce line noise harmonics. HG activity was chosen as the 

control feature as it has been previously postulated that HG activity is a correlate of underlying 

population level firing rates or coherence in firing (Ray et al., 2008).  

Right-justified box task. The standard right justified box task (RJB) (Wolpaw et al., 2003) is depicted in 

Figure 2. During execution of the BCI task, the subject is presented with one of two targets, occupying 

either the top half or the bottom half of the right-most edge of the screen. After a cue interval of two 

sec, the cursor appears on the left edge of the monitor and travels to the right at a constant horizontal 

velocity, such that the duration of the feedback period is fixed (typically 3 sec). The subject controls the 

vertical velocity of the cursor by modulating HG activity at the previously selected controlling electrode 

(CTL); performance of motor imagery causes the cursor to travel up and remaining at rest causes the 

cursor to travel down. Their objective is to complete each trial with the cursor in the specified target 
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area for that trial. HG activity recorded at CTL is mapped to vertical cursor velocity using a simple linear 

decoder that was trained in the first set of trials. The task consists of four phases: rest, cue, feedback, 

and reward. Throughout the remainder of this document – when discussing the RJB task – targets 

occupying the top half and bottom half of the screen are referred to as “up-targets” and “down-targets,” 

respectively. 

The cursor’s vertical velocity was updated every 40ms and controlled by changes in HG activity at the 

controlling electrode as calculated by an auto-regressive filter using the previous 500ms of data. This 

time-variant estimate of HG activity was z-normalized against 12 seconds of stored data (6 for each 

target type) and then mapped to cursor velocity. The normalizer was typically adapting (collecting 

reference data and updating normalization parameters) only during the first run (18 trials), however in 

cases where non-stationarity of the signals showed obvious bias, the normalizer was allowed to 

recalibrate. Subjects participated in the experiment over the course of multiple days; duration of the 

recording sessions was dictated by the subjects’ willingness and capability to participate. 

 

Figure 2 - Overview of the RJB task depicting the spatial scale of the ECoG grids, as well as the phases and 
timing of the task. Subjects were presented with a target occupying either the upper (up target; shown) or 
lower half (down target; not shown) of the right-most edge of the screen and had 3 sec to control the vertical 
position of the feedback cursor such that it ended the trial in the target area. 

Cortical reconstructions and anatomical labeling. Pre-operative magnetic resonance images (MRI) were 

co-registered with post-operative Computed Tomography (CT) scans using the Statistical Parametric 

Mapping software package (Penny et al., 2006). Three-dimensional reconstructions of the pial surface 

were generated using Freesurfer (freely available for download at http://surfer.nmr.mgh.harvard.edu/) 

and custom code implemented in Matlab (The MathWorks, Natick, MA). Electrode positions estimated 
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from post-operative CT were projected to the reconstructed pial surface using the method outlined by 

Hermes and colleagues (Hermes et al., 2010). MRI images and projected electrode locations were 

normalized to Talairach coordinates using Freesurfer. 

Anatomical labels were estimated using the Human Motor Area Template (HMAT) (Mayka et al., 2006), 

and the Talairach Daemon (Lancaster & Rainey, 1997; Lancaster et al., 2000). The HMAT atlas is based 

on the meta-analysis of 126 motor-based fMRI studies, thus it does not include posterior parietal cortex 

or prefrontal cortex, but does subdivide BA6 into PMv and PMd.  
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5 Distributed cortical activity patterns during BCI use 

The majority of subjects who attempt to learn control of a brain–computer interface (BCI) can do so with 

adequate training. Much like when one learns to type or ride a bicycle, BCI users report transitioning 

from a deliberate, cognitively-focused mindset to near automatic control as training progresses. What 

are the neural correlates of this process of BCI skill acquisition? Seven subjects were implanted with 

electrocorticography (ECoG) electrodes and had multiple opportunities to practice a 1-D BCI task. As 

subjects became proficient, strong initial task-related activation was followed by lessening of 

activation in pre-frontal cortex, dorsal pre-motor cortex, and posterior parietal cortex, areas that have 

previously been implicated in the cognitive phase of motor sequence learning and abstract task 

learning. These results demonstrate that though the use of a BCI only requires modulation of a local 

population of neurons, a distributed network of cortical areas is involved in the acquisition of BCI 

proficiency.  

5.1 Introduction and background 

Over the past 50 years, it has been demonstrated that, when given feedback, the brain can learn to 

volitionally modulate the activity of single neurons (Chapin et al., 1999; Fetz & Baker, 1973; Fetz, 1969; 

Kennedy & Bakay, 1998; Koralek et al., 2012) and populations of neurons (Fabiani et al., 2004; Leuthardt 

et al., 2004; Miller, Schalk, et al., 2010; Wolpaw et al., 1991). This modulation can occur in the absence 

of overt movement (Leuthardt et al., 2004; Miller, Schalk, et al., 2010), or even when overt movement is 

not possible (Hochberg et al., 2006; Kennedy & Bakay, 1998). The use of these signals to control external 

devices for restoration of lost function or as potential feedback signals for rehabilitation holds great 

promise for the future; however, our understanding of the underlying processes that drive this activity 

modulation is incomplete.  
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The ability to voluntarily modulate neural activity to control a BCI appears to be a learned skill, similar to 

learning to ride a bike or swing a golf club. Investigators have repeatedly documented that task 

performance typically increases over the course of practice (Carmena et al., 2003; Ganguly & Carmena, 

2009; Moritz et al., 2008; Schalk et al., 2008; Wolpaw & McFarland, 2004), which is indicative of a 

learning process taking place in the brain. In many cases, human BCI users have anecdotally reported 

transitioning from a very deliberate, cognitive approach to nearly automatic execution. Whereas they 

were initially focused on the cognitive task (e.g. motor imagery) that drives neural activity and in turn 

controls the end effector, after training, they report a goal-directed approach focused directly on the 

end effector itself. 

BCI use is interesting in that it shares characteristics with both concrete motor tasks as well as abstract 

cognitive tasks (Green & Kalaska, 2011). Users of BCIs are manipulating their physical environment, but 

doing so without necessarily moving their bodies, thus depriving their brains of the multiple modalities 

of sensory feedback that have been demonstrated to be vital to learning a motor skill (Wolpaw, 2007).  

The transition from a cognitive to an automatic phase, combined with the fact that the majority of 

single-unit and field-potential BCIs are driven by signals recorded from motor areas, suggests the 

hypothesis that BCI skill learning shares many commonalities with motor sequence learning. Indeed, in 

most cases, large initial gains in performance are followed by gradually diminishing improvements, 

congruent with Fitts’ well-known law of motor performance during skill learning (Fitts, 1954). Following 

results on neural activity patterns during motor skill learning (Doyon & Ungerleider, 2002; Mier et al., 

1998), one would therefore expect significant involvement of motor, prefrontal, and parietal cortical 

areas, as well as the striatum and cerebellum during the cognitive phase of BCI skill acquisition.  

To investigate the role of distributed cortical networks in BCI skill acquisition, we recorded population-

scale neural activity simultaneously from various locations across the cortex using ECoG while subjects 
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performed a BCI task. The task required subjects to modulate a sub range (approx. 70–100 Hz) of the 

high-gamma band (HG, 70–200 Hz) in ECoG surface potentials to control the position of a cursor on a 

computer monitor. HG activity was used because it has been previously shown to correspond to an 

increase in the firing rate and/or coherence of underlying local neural populations (Ray et al., 2008). In 

this chapter, we investigated two hypotheses: (a) that motor learning networks across the cortex 

participate in BCI learning even though the task only requires modulation of a localized neural 

population, and (b) that activity in these distributed cortical networks changes with increasing BCI 

task proficiency. 

5.2 Materials and methods  

Subjects. This study was completed as a retroactive analysis of previously recorded ECoG data. Inclusion 

criteria for subjects were as follows: (1) subjects needed to have participated in the 1-D, right justified 

box task; (2) activity changes in the controlling electrode needed to be driven by overt motor movement 

or motor imagery; (3) subjects needed to participate in 50 or more trials. Note that subjects were not 

chosen for specific electrode coverage (other than the motor coverage necessary to participate in the 

task), thus not all subjects had coverage in all areas discussed. Seven subjects (2 female, mean age 25.6 

[range 18–32]) met these inclusion criteria. Figure 3 summarizes the spectrum of coverage for the seven 

subjects. 

Table 1 - Demographic information for subjects included in the analysis of distributed cortical activity 
patterns during BCI use. Abbreviations: R right, L left, F frontal, P parietal, T temporal, O occipital, M Act 
refers to the motor task associated with the controlling electrode, M/MI motor/motor imagery. 

ID SID Gender Age M Act M/MI Type Coverage 

S1 fc9643 F 26 Tongue Overt R-F/P/T 

S2 26cb98 M 22 Tongue Imagined R-F/P/T 

S3 38e116 M 18 Hand Overt R-F/P/T 

S4 4568f4 M 27 Tongue Overt R-F/P/T 

S5 30052b M 29 Tongue Imagined R-F/T 

S6 mg M 32 Tongue Imagined L-F 

S7 04b3d5 F 25 Tongue Imagined L-F/P/T 
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Figure 3 - Spatial distribution of electrode coverage – Shows the differences in electrode coverage for the 7 
study subjects. Dashed lines forming a rectangle or square represent the approximate outlines of grids (8x8, 
6x8, 4x8, or 2x8). Single dashed lines represent the approximate centerline of strips (1x8, 1x6, 1x4). Left 
hemispheric coverage is translated to the right hemisphere to allow for direct comparison. 

Recordings. See section 4.2. 

BCI Task. All subjects in this study performed the RJB task. See section 4.2 for additional detail. 

Anatomical labeling. See section 4.2. 

Preprocessing. Signals were common average re-referenced by subtraction of the average signal 

recorded at all electrodes within an implanted grid or strip. This was done to eliminate any common 

noise introduced by activity recorded at the reference electrode. Re-referenced signals were band pass 

filtered for the HG range (70-200 Hz) using a fourth-order Butterworth filter and a time variant estimate 

of band-power was calculated using the square of the magnitude of the Hilbert transform. Data were 

then log transformed to become approximately normally distributed such that the assumptions made by 

statistical tests employed in further analyses would be met. To account for changes in recording 

characteristics from session to session the resulting log-power estimate was z-normalized with respect 

to rest samples only per channel and session. Throughout the remainder of this section, the signal 

resulting from the pre-processing steps will be referred to as HG activation. 
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Quantification of average responses. Trials were divided into four periods: rest, cue, feedback, and 

reward. These periods were 1, 2, 3, and 1 second, respectively, resulting in a trial length of 7 seconds. 

The HG activation for each of these periods was calculated by averaging all HG activation samples within 

a given period. Average activation for a given electrode across all trials of a given type was calculated as 

the mean HG activation during all feedback periods for trials of a given type minus the mean HG 

activation during all rest periods. 

Estimation of HG activation separability and learning states. In order to compare “unlearned” and 

“learned” states, it is necessary to define a trial or trials that delineate these two states. Alternatives 

exist, such as assuming a continuous learning process or selecting a portion of early trials and late trials 

to be representative of the learned and unlearned states. However, as performance increases in task 

learning typically follow asymptotic trends, and there is no guarantee that users of a task will learn at 

the same rate, we thought it necessary to use a data-driven approach to determine the transition trial. 

As behavioral performance on the RJB task saturates quickly, assessment of trends in activation patterns 

at the controlling electrode itself is a reasonable method for determining this transition trial. 

Our algorithm for determining the transition trial makes the following assumptions: (a) that there are in 

fact two states (this does not preclude the existence of more than two states, but our algorithm will only 

detect a single transition and will effectively group sub-states), and that (b) the two states can be 

differentiated by observing changes in a subject’s ability to differentially modulate activity at the 

controlling electrode for up targets as compared to down targets. 

The transition trial was determined as follows: 

(1) A running estimate of each subject’s ability to separate HG activation in up targets as compared 

to down targets was calculated.  
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a. The mean HG activations for up and down targets were separately smoothed using a 

Gaussian kernel (5 trials full width at half max [FWHM]).  

b. Because up and down targets were presented in random sequence, a running difference 

between smoothed up target and down target activations was calculated by linearly 

interpolating between observation points.  

c. From these operations, an estimate for the difference between activation in up targets 

and down targets as a function of trial number was established. 

(2) A model of two distinct Gaussian distributions was fit to the difference estimate such that the 

difference between these two distributions (measured using the statistic explained below) was 

maximized. The single free parameter in this model was the estimated transition trial.  

Distance between the distributions was calculated using the following equation to account not only for 

differences in the means of the two distributions but also for the variances of the two distributions.  

 
𝐷𝑒𝑙 =

(�̅� − 𝑙)̅
3

|�̅� − 𝑙|̅𝜎𝑒:𝑙
2

𝑁𝑒 − 𝑁𝑙

𝑁𝑒:𝑙
2  (1) 

where 𝐷𝑒𝑙 represents the separability of the early and late trials, 𝑒 and 𝑙 represent the early and late 

trials themselves, 𝑁𝑒  and 𝑁𝑙  represent the number of samples in each of these sets and 𝑒: 𝑙 represents 

the joint set of all trials. 

When comparing two distributions, this measure represents the proportion of the variance of the joint 

distribution that can be explained by the difference in the means of the two sub-distributions. It has 

been used previously in the assessment of ECoG signals (Blakely et al., 2009; Miller et al., 2007; Miller, 

Schalk, et al., 2010). 

Generation of time course activations. The average time course of HG activation for all trials of a given 

type  were constructed by averaging the time course of HG activation for a given target and smoothing 
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with a Gaussian kernel (250 ms FWHM). Standard errors were calculated before smoothing and were 

also smoothed using a Gaussian kernel (250 ms FWHM). Trial-by-trial progressions of the time course of 

HG activation were generated by aligning all trials into an MxT matrix where M was the number of trials 

of a given type and T was the length of a trial in samples. This matrix was then smoothed simultaneously 

in both dimensions using a 2-D Gaussian kernel (300 ms and 7 trials FWHM). 

Comparison of early and late activations. Shifts in activation from early to late learning states were 

calculated in much the same way that average responses were calculated except that instead of 

comparing activation during the feedback period to the activation during rest, activation during the 

feedback period of early trials was compared to activation during the feedback period of late trials.  

5.3 Results  

Behavioral performance. Overall performance, depicted in Figure 4, increased significantly as subjects 

gained experience with the task (p = 0.035; right-sided t-test, N = 7). Behavioral performance typically 

began above chance levels and saturated quickly. Cursor trajectories could potentially be used to infer 

non-saturating performance metrics, but would require an assumption be made regarding optimal 

trajectory (see below for further discussion). Thus, we used activity patterns at the controlling electrode 

to assess learning-related changes and define a transition from a learned to an unlearned state. 
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Figure 4 - Behavioral performance – (a) Mean task performance for all users. SEM shown in gray around 
trend line. Chance performance and the 95

th
 percentile of chance performance are shown as horizontal 

dashed and dotted lines, respectively. Note that mean performance was above chance beginning with the 
first run. The number of runs performed by each user varied, thus all seven users contributed to data for the 
first three runs, six users contributed through the first five runs, and four contributed to the sixth run. (b) 
Comparison of performance for the first and least runs performed by each subject. Significant differences (p 
< 0.05) denoted with an asterisk (‘*’). 

Behavioral results assuming an optimal cursor trajectory. The solution space for how a given subject 

could achieve success in the RJB is extremely large. Subjects were not asked to report their intended 

cursor trajectory. If one makes the assumption that the intended cursor trajectory is constant 

throughout all trials, and that the subject asymptotically approaches that trajectory, the intended 

trajectory can be approximately inferred by looking at the last few trials conducted by each subject. 

Each individual trial can then be compared to this inferred trajectory, giving an estimate of how well a 

given subject’s performance approached this intended trajectory as they gained experience with the 

task. In an effort to obtain an understanding of some of the behavioral parameters of the RJB, for the 

five of seven subjects for whom target trajectories were recorded, we performed this analysis. In three 

of these five subjects we saw a statistically significant decrease in mean-squared error (MSE) over the 

course of all trials performed, compared against an intended trajectory estimated from the last 20% of 

trials of a given target type. Individual results are shown in Figure 5. 

It is important to note that this method assumes that performance gains are made only by the subject 

improving their ability to precisely execute an indented trajectory, not by fine-tuning of the intended 
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trajectory itself. We find the assumptions made in this analysis less robust than those used in the 

primary analysis that uses power changes in the controlling electrode as an assessment of task 

performance, but they do provide insight in to the fact that as subjects gain task experience, and exhibit 

changes in dynamics of neural control, there are concomitant changes in some behavioral aspects of the 

task. 

 

Figure 5 - Behavioral analysis of cursor trajectories measured against inferred intended trajectories – (a) 
Recorded trajectories for individual subjects shown as cursor position as a function of time during the 
feedback phase of the task. Trajectories for up targets are shown in red and for down targets are shown in 
blue. Earlier and later trials are depicted in lighter and darker shades, respectively. The inferred intended 
trajectory is shown as a thick red or blue line. (b) MSE for each individual trial relative to the inferred 
intended up and down trajectories. Successful trials shown in dark gray and failed trials are shown in light 
gray. Up targets are notated with a diamond (◊) above each bar. To assess performance trends we performed 
logistic regression of MSE values as a function of trial number. Significant trends are shown as solid 
regression lines, non-significant trends are shown as dashed lines. 

Run-by-Run performance. During the feedback period, the cursor travelled from left to right across the 

screen over the course of 3 sec. In this time period, the subject was tasked with causing the cursor to 

‘hit’ the indicated target on the right side of the screen, meaning, that at the end of the 3 sec feedback 
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period, the cursor needed to be within the vertical area defined by that target. In terms of whether or 

not subjects were able to achieve this requirement, task performance quickly saturated, making 

assessment of improvement as a function of time impossible. Based on simulated, randomized replay of 

the task using previously recorded ECoG data that were phase scrambled and random target sequences 

(144 runs of 17 trials each, totaling 2448 trials), chance task performance for a given run was 48.8% with 

a 95th percentile of 64.7%. Accordingly, if actual performance for a given run exceeded the 95th 

percentile, then performance on that run can be considered above chance with statistical significance. 

Figure 6 shows individual performance trends for each subject on a run-by-run basis. Note that 5 of the 

7 subjects were performing above chance by the end of their first run and performance often saturated 

quickly, necessitating the use of alternative methods to assess changes in aptitude. 

 

Figure 6 - Run-by-Run task performance – Task performance for each user shown on a run-by-run basis. The 
95

th
 percentile of chance performance is represented in gray. Note that for five of the seven subjects task 

performance was above chance by the end of the first run, and for many subjects performance quickly 
saturated. 

Volitional modulation of activity at the controlling electrode. In six of seven subjects (all subjects 

except for 04b3d5), we found a statistically significant increase in HG activity during the feedback period 

of up-targets as compared to all rest periods (right-sided two-sample t-test, Bonferonni corrected, 27 < 

N1 < 98, 51 < N2 < 187; p < 0.0001). The seventh subject (N1 = 45, N2 = 85, p = 0.271) did not demonstrate 
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a significant difference between up-targets and rest; however, in this subject we found a statistically 

significant decrease in HG activity between down-targets and rest (left-sided two-sample t-test, 

Bonferonni corrected, N1 = 45, N2 = 85, p = 0.0028), suggesting that though activity suppression below 

baseline is generally not employed as a control strategy, it may have been the strategy used by this 

subject. These same activity decreases during down targets were not observed in the other six subjects 

(left-sided two-sample t-test, Bonferonni corrected, 27 < N1 < 100, 51 < N2 < 187; 0.075 < p < 1). See 

Table 2 for details. 

Table 2 - Summary of subject population, data collected, and basic statistical analysis. Abbreviations: SID, 
subject identifier; N number of trials performed; M/MI overt motor or motor imagery; CTL, controlling 

electrode; U, up; D, down; R, rest. 𝑫𝒆𝒍 is the separability metric, and 𝒑𝒆𝒍 is the p-value associated with 
separability of the two learning states. 

  Trials HG at CTL.    

ID SID N Up Down p U vs R p D vs R Trans. Trial 𝑫𝒆𝒍 𝒑𝒆𝒍 

S1 fc9643 108 54 54 < 0.0001 0.075 48 0.6422 < 0.0001 

S2 26cb98 90 45 45 < 0.0001 0.994 75 0.3403 < 0.0001 

S3 38e116 54 27 27 < 0.0001 1 22 0.8689 < 0.0001 

S4 4568f4 108 54 54 < 0.0001 0.983 53 0.6097 < 0.0001 

S5 30052b 198 98 100 < 0.0001 0.986 32 0.4076 < 0.0001 

S6 Mg 108 54 54 < 0.0001 1 20 0.2039 < 0.0001 

S7 04b3d5 90 45 45 0.271 0.0028 40 0.7695 < 0.0001 

 

Task-modulated activity throughout cortex. We recorded ECoG data from 652 electrodes across the 

seven subjects. Of these electrodes, 83 were excluded from analyses because they contained non-

physiologic artifacts (resulting from poor contact, placement over scar tissue, etc). In the remaining 569, 

we found 152 electrodes showing statistically significant increases in HG activity between feedback 

during up targets as compared to rest (right-sided two-sample t-test, Bonferroni corrected, 27 < N1 < 98, 

51 < N2 < 187; p < 8.787 x 10-5). Further, of that same 569 electrodes, we found 125 electrodes showing 
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statistically significant increases in HG activity between all targets and rest (right-sided two-sample t-

test, Bonferroni corrected, 54 < N1 < 198, 51 < N2 < 187; p < 8.787 x 10-5). Electrodes showing significant 

activity increase were concentrated in cortical areas previously known to be associated with motor 

learning: M1, primary somatosensory cortex, dlPFC, PMd, and PMv (Jenkins et al., 1994; Schlaug et al., 

1994). Additionally, electrodes showing increases were found in posterior parietal cortex (PPC), an area 

associated with sensorimotor tasks involving visual feedback (Buneo & Andersen, 2006a). Additional 

task-modulated electrodes were found in other cortical areas, such as the temporal parietal junction 

and the inferior temporal gyrus, though to a lesser extent. Task-modulated activity in SMA was noted in 

the only subject with SMA coverage, but this finding was not included in our analyses as it could not be 

verified in multiple subjects. Figure 7 illustrates the spatial distribution of electrodes showing significant 

activation for up targets relative to rest. 
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Figure 7 - Cortex-wide activity during BCI use and modeling of early vs. late activity patterns – (a) Activation 
during up targets for all lateral electrodes for all subjects (left coverage projected to right hemisphere) 
shown on the Talairach brain. Note widespread cortical activation including frontal, middle-parietal, and 
posterior-parietal areas. Controlling electrodes are circled in blue. (b) Activation for an example subject (S4 / 
4568f4) during each feedback period normalized against log HG power during rest. Each dot represents one 
trial, up and down targets are shown in red and blue, respectively. Thick red and blue lines represent mean 
activation for all trials, respectively. (c) Early-late trial division shown for subject S4. Separability of high-
gamma activity during up and down trials was used as a measurement of task proficiency. A separabililty 
measure (black dotted line) was modeled as two Gaussian distributions and fit to the data such that the 
distance between the distributions was maximized. 
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Determination of unlearned vs. learned states. Motor skill learning has been characterized as having 

multiple distinct learning phases: cognitive, associative, and autonomous (Fitts, 1954). These loosely 

correspond to understanding what actions a certain skill requires, optimization of performance at a skill 

through repeated action, and development of an automatic capacity to carry out the skill, respectively. 

Recent work has developed a neural model describing the involvement of various cortical and sub-

cortical structures during motor learning (Doyon & Benali, 2005; Doyon & Ungerleider, 2002). This 

model postulates involvement of pre-frontal and pre-motor as well as parietal areas during the initial, 

cognitive phase of motor sequence learning. 

With this motivation in mind we sought to capture differences in HG activity at the controlling electrode 

that changed with this transition from an “unlearned” to a “learned” state. We employed the data-

driven approach described above in the methods. In comparing unlearned and learned distributions, 

distance value magnitudes close to one implied that the majority of the variance in the joint distribution 

can be explained by the difference in the means of the two sub-distributions. The sign of the resulting 

distance measure demonstrates the direction of shift in the means of the two sub-distributions, where a 

positive value implies that the mean of the learned distribution is greater than the mean of the 

unlearned distribution. Within the context of this task, a large, positive distance value for a given 

transition trial implies that the subject’s ability to differentially modulate activity during up targets as 

compared to down targets was much greater after the transition trial as compared to before. 

Furthermore, a relatively large distance value implies that one of the solution strategies employed was 

to increase the difference in activity at the controlling electrode in up targets relative to down targets. 

This is compared to the alternative possibility that the user only reduces the variability of their control 

signal as they gain experience. Were this the case we would have observed relatively low distances 

between the unlearned and learned distributions.  
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In all seven subjects, relatively large distances between the distributions of power separation for learned 

and unlearned states demonstrated that the applied model effectively separated those two states 

(0.2039 < 𝐷𝑒𝑙 < 0.8689). Accordingly, the differences in distributions of power separation for unlearned 

and learned states were highly significant (both-sided two-sample t-test, Bonferonni corrected, p < 

0.0001, see Table 2 for detail). 

Cortex-wide changes in activation from unlearned to learned states. HG activation of all non-

controlling electrodes was visualized on a trial-by-trial basis to observe activity dynamics at these 

electrodes. Figure 8 shows example trial-by-trial plots for electrodes located throughout motor-learning-

associated cortical areas (see Figure 9 for similar plots separated by subject). M1/SC and PMd/PMv 

electrodes demonstrated activation primarily during up targets, and PFC and PPC demonstrated 

activation during both up and down targets. As can be seen these figures, changes in activation in these 

electrodes over the course of many trials were often, though not always, well aligned with the transition 

from unlearned to learned state as defined solely by HG power at the controlling electrode. It is notable 

that in some subjects, transitions in HG activity patterns were approximately temporally aligned with 

breaks in experimental sessions, suggestive that offline learning was taking place during these periods. 

This is complimentary to previous findings of increased sleep spindle density local to the controlling 

electrode correlated with training on an ECoG BCI (Johnson et al., 2012). 
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Figure 8 - Time-by-trial HG  activation – (a) Distribution of electrodes shown in (b-e) on the Talairach brain. 
The subject from which each electrode was taken is noted; not all subjects had coverage in all areas (see 
Figure 3). (b-e, subplot 1) average HG activation in a given electrode for all trials separated by up and down 
targets. Subject is specified in the subplot title. Phases of the task (ordered from L to R: rest, cue, feedback, 
reward) are separated by vertical bars. Dotted line represents SEM. (b-e, subplots 2 & 3) trial-by-trial HG 
activation for all trials, separated by up (subplot 2) and down (subplot 3) targets. Trial count is shown on the 
vertical axis. Breaks in the experimental session of more than 8 hours are denoted with an asterisk (*). Time, 
as described for subplot 1, is shown on the horizontal axis. The black horizontal bar represents the transition 
trial, and the early and late trials relative to this point are denoted with black arrows. (b) M1/SC electrode 
shows continued increase in activation for up targets, congruent with changes at the controlling electrode. 
(c) PFC electrode shows activation for both up and down targets, decreasing near the point of model 
separation. (d) PMd electrode shows activation for up targets, decreasing near the point of model separation. 
(e) PPC electrode shows subtle activation during up and down targets, decreasing near the point of model 
separation. 
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Figure 9 – Time-by-trial HG activation for individual subjects – (a) average HG activation for all trials 
separated by up and down targets. Phases of the task (ordered from L to R: rest, cue, feedback, reward) are 
separated by vertical bars. Dotted line represents SEM. Up and down target activations shown in red and 
blue respectively. (b & c) trial-by-trial high-gamma activation for all trials, separated by up (b) and down (c) 
targets. Trial count is shown on the vertical axis, time, as described for subplot 1 is shown on the horizontal 
axis. The black horizontal bar represents the model separation point derived solely from the controlling 
electrode. The pair of values in each subplot title denotes the minimal and maximal values represented by 
the heat map, where blue corresponds to the minimum and red the maximum. Plots surrounded in gray 
boxes are for electrodes that did not exhibit significant task-modulation. 

Dynamics of activity in remote electrodes were quantitatively evaluated by comparing mean activity 

during feedback in these electrodes in the unlearned and learned states. 67 electrodes showed a 

significant change in HG activity during all targets from the unlearned to learned states (both-sided two-

sample t-test, Bonferroni corrected, p < 8.787 x 10-5, 20 < N1 < 75, 15 < N2 < 166). A large portion of 

these changes corresponded to significant lessening in activation in the frontal cortex and posterior 

parietal cortex, as depicted in Figure 10a. A smaller portion corresponded to significant increases of 

activation in areas surrounding the controlling electrode. In order to determine anatomically relevant 

patterns of activity dynamics, electrodes were assigned to cortical areas using the HMAT atlas (Mayka et 

al., 2006) and the Talairach daemon (Lancaster & Rainey, 1997; Lancaster et al., 2000). Significant 
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lessening of activation was found in 31 electrodes corresponding to labels of PMd, PFC, and PPC, as 

shown in Figure 10b. M1/SC and PMv exhibited ambivalent trends in HG from early to late trials. 

 

Figure 10 - Cortex-wide activation changes  – (a) Spatial distribution of change in mean activation comparing 
early to late trials for all targets for all subjects. Activations for individual electrodes are normalized against 
rest periods from the same electrode for a given run. Activation change values are blurred using a 12cm 
FWHM Gaussian filter. Frontal areas and posterior parietal areas exhibited lessening in task-related 
activation over the course of BCI use. (b) Change in mean activation for all electrodes showing significant 
change from early to late trials, classified into approximate cortical areas. 

Evaluation of lower frequency cortical activity. HG is the range of frequencies that often receives the 

primary focus of attention in ECoG studies, partially because until recently (Darvas et al., 2010), it had 

not been demonstrated that high frequency signals could be obtained using non-invasive methods. 

However, the volitional modulation of lower frequency cortical rhythms such as the mu-beta rhythm 

(12-30 Hz) is often used as a control signal in non-invasive BCIs (Fabiani et al., 2004; Lemieux et al., 1997; 

McFarland et al., 1997; Wolpaw et al., 1991) and is thus worth discussing as a complementary analysis 

to that of HG activity. 

Of the 569 electrodes investigated from the seven subjects, we found 128 electrodes showing 

statistically significant decreases in mu-beta (12-30 Hz) activity between feedback during up targets as 

compared to rest (left-sided two-sample t-test, Bonferroni corrected, 27 < N1 < 98, 51 < N2 < 187; p < 

8.631 x 10-5). These findings are shown in Figure 11. Further, of that same 569 electrodes, we found 123 
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electrodes showing a statistically significant decrease in mu-beta activity between all targets and rest 

(left-sided two-sample t-test, Bonferroni corrected, 54 < N1 < 198, 51 < N2 < 187; p < 6.284 x 10-5). 

Electrodes showing significant activity decrease were again distributed throughout frontal and parietal 

cortices. This spatially diffuse, task-related decrease of mu-beta activity is consistent with previous 

findings that motor-related desynchronization of mu-beta activity is more spatially widespread than 

increases in HG activity (Miller et al., 2007). Trial-by-trial patterns showing this activity decrease can be 

seen in Figure 11. 

Using the transition trials defined by HG activity at the controlling electrode, we performed a similar 

analysis to assess whether activation patterns in the mu-beta range changed over the course of 

transitioning from a “learned” to an “unlearned” state. Though there were a few electrodes exhibiting 

significant changes between these two states, as is illustrated in Figure 11, these changes were less 

spatially organized and lower in magnitude than HG changes over a similar time period. 
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Figure 11 - Changes in mu-beta activity patterns – (a) Significant decreases (normalized mu-beta power) 
during up targets for all lateral electrodes for all subjects (left hemispheric coverage projected to right 
hemisphere) projected on to the Talairach brain. Note widespread cortical desychronization in frontal and 
parietal areas. (b - subplot 1) Average mu-beta activity patterns in a given electrode from a specific subject 
for all trials separated by up and down targets. Subject is specified in the subplot title. Phases of the task 
(ordered from L to R: rest, cue, feedback, reward) are separated by vertical bars. Dotted line represents SEM. 
(b - subplots 2 & 3) trial-by-trial mu-beta activity patterns for all trials, separated by up (subplot 2) and down 
(subplot 3) targets. Trial count is shown on the vertical axis, and breaks in the experimental session of more 
than 8 hours are denoted with an asterisk (*). Time, as described for subplot 1 is shown on the horizontal 
axis. The black horizontal bar represents the model separation point derived solely from HG activity in the 
controlling electrode. (c) Spatial distribution of change in mean mu-beta activation comparing early to late 
trials for all targets for all subjects. Activations for individual electrodes are normalized against rest periods 
from the same electrode for a given run to eliminate gain differences between electrodes and non-
stationarities within a given electrode over time. Activation change values are blurred using a 12cm FWHM 
Gaussian filter. (b) Change in mean mu-beta activation for all electrodes showing significant change from 
early to late trials, classified in to approximate cortical areas. 

Alternative methods for assessment of learning states. To assess the robustness of findings with 

respect to our method for determination of “early” and “late” learning states, we performed additional 

analyses of distributed changes in HG activity comparing the first 30% and the last 30% of all trials 
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recorded for each subject, an approach that has been used previously (Koralek et al., 2012). Other than 

the definition of the transition period, the method for these analyses was identical to what has been 

described previously in this chapter. As can be seen in Figure 12, we found similar spatial patterns 

showing less HG activation in PFC and PPC in the last 30% of trials as compared to the first 30%. This 

suggests that the observed spatiotemporal patterns in HG activity are robust to alternative methods of 

segmenting the data in to learning states. 

 

Figure 12 - Changes in HG activity patterns observed with alternative data segmentation method – (a,b) 
repetition of Figure 4, given for direct comparison with the subsequent two panels. (c) Spatial distribution of 
change in mean HG activation comparing the first 30% to the last 30% of all trials recorded for each subject. 
Note similar spatial patterns as compared to panel a. (d) Change in HG activation for all electrodes showing 
significant change from early to late trials, classified in to approximate cortical areas. 

5.4 Discussion 

Our results demonstrate that when learning a BCI cursor-control task based on signals recorded from a 

single electrode over motor cortex, there is a distributed network of cortical areas that is involved in 

acquisition of skill in the task. This network includes, but is not limited to surrounding sensorimotor and 
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visuomotor areas: PMd/PMv, PFC, and PPC. We further demonstrated that as a user develops 

proficiency with the BCI, activity in parts of this network (PMd, PFC, and PPC) decreases, a finding that is 

indicative of the mental shift from cognitive to automatic task execution often anecdotally reported in 

human BCI studies. 

In this study, we sought to investigate changes taking place in motor networks as users developed both 

their control strategy and execution proficiency. To do so, we employed a data-driven approach that 

relied solely on the signal that each subject was using to control the BCI. We found that dorsal 

premotor, prefrontal and posterior parietal cortices exhibited decreased task-modulated activity as 

users transitioned from a naive to more experienced state. This transition occurred quickly and was 

contemporaneous with changes taking place in the BCI control signal.  

It is interesting to note the patterns of distributed activity observed across multiple subjects. The time 

course of activation in pre-motor electrodes parallels tightly that of corresponding M1/SC electrodes. 

Further, premotor areas were primarily more activated for up targets than down targets, instances in 

which the controlling electrodes were required to exhibit the same activity. These observations suggest 

a direct relationship between premotor areas and the controlling electrode. This can be contrasted to 

activity patterns observed in prefrontal and posterior parietal areas, which exhibited fairly equivalent 

activation for both up and down targets. These activity patterns are a reflection of effort or engagement 

on the part of the subject, and correspondingly decrease as the subject gains task automaticity. 

In contrast to ECoG BCIs, non-invasive, EEG-based BCIs typically harness power changes occurring in 

lower frequencies to achieve control. When EEG subjects are performing motor imagery, the typical 

frequency band chosen is in the mu-beta range (12-30 Hz) as power changes in this band have been 

demonstrated to be  negatively correlated with movement and motor imagery (McFarland et al., 2000). 

When using the methods described above to assess whether similar changes were taking place in the 
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mu-beta range as subjects develop experience with an ECoG BCI, we found that though activity in the 

mu-beta band was strongly task-modulated, it did not undergo changes during learning to the same 

degree that we observed them in HG activity. It is important to note, however, that as the cursor was 

not being driven by mu-beta activity changes, the impact of this observation to non-invasive BCIs will 

require further investigation. 

A logical and necessary extension of these findings is to investigate the roles that subcortical networks 

play in this same learning process. Previous studies have demonstrated the vital and differential roles of 

the basal ganglia and cerebellum during motor sequence learning and motor adaptation (Doyon & 

Benali, 2005; Hikosaka et al., 2002), but the involvement of these sub-cortical networks in the process of 

BCI skill acquisition remains an open question, with implications for both fundamental neuroscience and 

the incremental improvement of BCI frameworks. Recent work performed by Koralek and colleagues 

(Koralek et al., 2012) has demonstrated that the striatum is involved in and critical to development of 

proficiency with a BCI in a rat model. A notable finding, given that effective use of the BCI in that study 

did not explicitly require recruitment of the motor system outside of motor cortex, yet task performance 

was degraded in subjects with impaired cortico-striatal interaction. Investigation of the role of these 

structures in humans will have to be left to other recording modalities, as ECoG provides information 

only regarding activity near the cortical surface, and is subject to spatial undersampling based on the 

distribution of electrodes. 

The distributed dynamics in cortical activity that we have demonstrated here have significant 

implications in development of co-adaptive BCI frameworks. BCI investigators have recognized the need 

for BCI architectures that accommodate the dynamic nature of the neural signals used as inputs 

(Vidaurre et al., 2010, 2011), but our findings suggest that a number of the most commonly used 

methods (e.g., common spatial patterns - Müller-Gerking et al., 1999) may require updating to handle 

both the spatial and temporal variability in input signals. 
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The ability to detect correlates of cognitive load during BCI task learning and execution holds great 

potential for expanding the current limitations of BCIs. Continuous control of a BCI has been 

demonstrated in two dimensions using ECoG (Schalk et al., 2008) and EEG (Wolpaw & McFarland, 2004), 

with degrading performance as users attempt control in more dimensions. Real-time monitoring of 

cognitive load during BCI skill acquisition would allow for titrated increases in task complexity, 

potentially facilitating an increase in the total number of dimensions that could be simultaneously 

controlled, thus allowing operation of more complex devices.  

Our results also demonstrate the potential that BCI holds as a technique for probing neural systems in 

vivo (Moran, 2010). By applying specific task requirements but allowing users to employ native learning 

strategies we observed that distributed cortical networks are involved in the cognitive phase of BCI skill 

acquisition, but the degree of involvement of these networks lessens as users transition to automatic 

execution of the task. Future work will allow us to probe whether activity in this network is renewed 

when task dynamics are perturbed and the user is required to adapt to novel task conditions. 
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6 Multi-site cortical interactions during BCI use 

Use of a brain-computer interface (BCI) has been demonstrated to be a learned skill that involves 

recruitment of neural populations that are directly linked to BCI control as well as those that are not. 

The nature of interactions between these populations, however, remains largely unknown. In this 

chapter, we employed a data-driven approach to assess the interaction between both local and remote 

cortical areas during the use of an electrocorticographic BCI. Comparing the controlling area with 

remote areas, we evaluated relationships between the amplitude envelopes of band limited powers as 

well as non-linear phase-phase interactions. We found amplitude-amplitude interactions in the high 

gamma (HG, 70-150 Hz) range that were primarily located in the posterior portion of the frontal lobe, 

near the controlling site, and non-linear phase-phase interactions involving multiple frequencies 

(cross-frequency coupling was observed between 8-11 Hz and 70-90 Hz) taking place over larger 

cortical distances. Further strength of the amplitude-amplitude interactions decreased with time, 

whereas the phase-phase interactions did not. These findings suggest multiple modes of cortical 

communication taking place during BCI use that are specialized for function and depend on 

interaction distance. 

6.1 Introduction and background 

Direct communication between brain and machine provides a powerful platform for both the 

development of clinical therapies and scientific inquiry. By providing the brain with a completely novel 

output pathway, experimentalists have an opportunity to observe the ways in which the brain responds 

to and develops control over this new output mechanism. A number of studies have demonstrated that 

the use of a brain-computer interface (BCI) is a learned skill (Carmena et al., 2003; Ganguly & Carmena, 

2009; Moritz et al., 2008; Schalk et al., 2008; Wolpaw & McFarland, 2004), and that the brain can learn 

this skill more effectively when the transformation that maps neural activity to BCI control is consistent 
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(Ganguly & Carmena, 2010). Further, it has been demonstrated that the nature of the neural signals 

being used to drive the BCI change with practice (Ganguly & Carmena, 2009) and that there are also 

changes in neural activity in populations that are not directly linked to BCI control [both local to the 

controlling site (Ganguly et al., 2011); and at more remote sites (see Chapter 5)]. The mechanisms 

underlying learning of BCI control have many similarities to those for learning motor control (Green & 

Kalaska, 2011). Repeated BCI training can have lasting effects on motor networks, altering functional 

connectivity in cortico-thalamic networks during execution of a finger-tapping task (Young et al., 2014). 

To date, there have been no systematic studies of cortico-cortical interaction during BCI use. Other than 

a recent study demonstrating the need for corticostriatal interaction during the BCI learning process in a 

rodent model (Koralek et al., 2012), we have little understanding of the networks involved in acquisition 

of the neuroprosthetic skill.  

The brain is a vastly distributed and parallelized system, requiring effective and efficient communication 

between both neighboring and distant neural populations (Buzsáki et al., 2013). Correspondingly, of 

equal interest to within-region changes in synchrony of neural activity are changes in interactivity 

between regions. Cortical, cortico-subcortical, and cortico-muscular coherence have all been observed 

in the mu range (8-12 Hz) during slow movements (Gross et al., 2002). Similar observations have been 

made regarding long-distance synchrony in the beta range, both in cortico-cortical interactions between 

M1, SC and PPC during a visual discrimination task (Brovelli et al., 2004). Another form of phase-phase 

synchrony, the phase locking value (PLV) (Lachaux et al., 1999) has been used to quantify linear 

interactions during execution of a cognitive task (Doesburg et al., 2008). While these examples are 

restricted to within-frequency phase-phase interactions, it has been suggested that cross-frequency (i.e. 

non-linear) interactions could reflect much richer cortical interactivity (Buzsáki & Draguhn, 2004).  

Interaction between neurons and neural populations encompasses a variety of neural mechanisms, 

including coordinated increases in firing rates, periodic synchrony, and complex feedback loops (see 
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Salinas & Sejnowski, 2001, for review). The link between these mechanisms and their corresponding 

signatures in population-based physiological signals is incompletely understood. Each of these 

mechanisms may manifest differently in population-scale neural recordings as anything from changes in 

raw covariances to detectable differences in the complex non-linear coupling of spectral components. It 

has been hypothesized that long-distance cortical communication is mediated by a relatively small 

number of direct connections, because direct connection of all communicating cells across these long 

distances would be biologically infeasible (Bullmore & Sporns, 2012; Buzsáki et al., 2004). Further, 

Buzsáki and colleagues argued that oscillatory activity is central to the maintenance of efficient cortical 

information flow within increasingly large and complex mammalian cortices (Buzsáki et al., 2013). Such a 

network model would be well served by the use of oscillatory synchrony, or rhythmic interactions, to 

allow for maximal efficiency in processing (Schnitzler & Gross, 2005).  

However, there are various ways in which cortical field potentials can be related. Whether these 

different relationships play differing roles in cortical processing, or whether they are indicative of a 

single underlying network of connectivity remains an open question. It has recently been shown that 

though high-frequency, amplitude-amplitude correlations in cortical field potentials are predictive of 

underlying local structural connectivity, this relationship deteriorates over longer distances (Keller et al., 

2014). Coupling this with the theory that oscillatory synchrony is critical to long-range cortical 

communication leads to a testable hypothesis of distance-specificity by interaction type: when observing 

simultaneous amplitude-amplitude and phase-phase interactions taking place during a cognitive task 

such as BCI use, the former will be observed over shorter distances and the latter over longer ones.  

In chapter 5, we demonstrated frontal and parietal regions that were active during the initial use of BCI 

using ECoG signals from motor cortex. These areas became less active with repeated use. Here, we 

examine the interactions between areas outside of the site used for BCI control with reference to the 

signal from this electrode. We hypothesized that there exist task-driven amplitude-amplitude and 
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phase-phase interactions observable in the ECoG field potential between the controlling electrode and 

remote cortical structures and that these two interaction types are present on differing spatial scales. 

6.2 Materials and methods 

Subjects and motor screening. Ten human subjects (1 female, mean age 26.9y) with intractable epilepsy 

were implanted with platinum sub-dural ECoG grids (AdTech, Racine, WI) for the clinical purpose of 

seizure focus localization and resection. These subjects were monitored for between four and ten days 

before removal of the arrays and surgical resection of the seizure focus. During this time the subjects 

participated in multiple recording sessions, spread over one to three days. 

This study was a retrospective analysis of previously collected ECoG data. To determine which subjects 

were eligible for inclusion in this study, the following criteria were applied: (1) subjects needed to have 

participated in the 1-D RJB task; and (2) subjects needed to perform the task above chance levels in 

order to demonstrate intentional control. Of the 11 subjects originally eligible per these inclusion 

criteria, one subject was eliminated from this study based on extreme cortical distortion due to a 

previously resected peri-central cavernous malformation. 

For detail on motor screening see section 4.2. For the remainder of this chapter, the single electrode 

selected during motor screening will subsequently be referred to as CTL. 
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Table 3 - Demographic information for subjects included in the analysis of multi-site cortical interactions 
observed during BCI use. Abbreviations: R right, L left, F frontal, P parietal, T temporal, O occipital, M Act 
refers to the motor task associated with the controlling electrode. Note, S9 was removed from the study due 
to extreme cortical distortion. 

ID SID Gender Age M Act Coverage 

S1 30052b M 29 Tongue R-F/T 

S2 4568f4 M 27 Tongue R-F/P/T 

S3 3745d1 M 14 Tongue L-F/T 

S4 26cb98 M 22 Tongue R-F/P/T 

S5 fc9643 F 26 Tongue R-F/P/T 

S6 58411c M 54 Hand L-T 

S7 0dd118 M 11 Hand L-F 

S8 7ee6bc M 29 Hand R-F/P/T 

S10 f83dbb M 19 Hand R-T 

S11 7662c2 M 38 Tongue R-F/T 

 

ECoG data collection and the BCI task. See section 4.2. 

Cortical reconstructions and anatomical labeling. See section 4.2. 

Evaluation of behavioral performance. Subjects’ individual performance levels were calculated as the 

fraction of completed trials wherein the subject successfully ended the trial in the target area. Though 

theoretical chance performance on this task is 0.5, the behavioral performance necessary to be 

significantly greater than chance was dependent on the number of trials performed and thus varied 

from subject to subject. Confidence intervals on chance performance were evaluated on an individual 

basis by characterizing the distribution of average task performance under the null hypothesis that 

success and failure were equally likely outcomes on any given trial. To synthesize chance performance 

data we drew N random samples from the binomial distribution where N was the number of trials 

conducted by each subject; the average of these samples was one sample of chance performance under 

the null hypothesis. The distribution of chance performance was characterized by repeating this process 

1000 times. 
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Data pre-processing. Data were first manually inspected for any channels or time periods that contained 

obvious non-physiologic artifact or substantial inter-ictal activity. For each subject, the data were re-

referenced by subtracting the common average among all good channels. Signals were then notch-

filtered to remove line noise using 4th-order Butterworth filters at 60 and 120 Hz. For the purposes of 

short-time windowed correlation (STWC) analyses, time-variant spectral estimates were extracted by 

bandpass filtering the signals using 4th-order Butterworth filters and then taking the magnitude of the 

Hilbert transform. Spectral estimates were derived for the canonical frequency bands, mu/alpha (𝜇/𝛼; 

8-12 Hz) and beta (𝛽; 12-24 Hz), as well as for the high-gamma range (HG; 70-150 Hz). These spectral 

estimates were then temporally smoothed using a 47 msec FWHM Gaussian window. Finally, for 

computational tractability of remaining analyses, signals were then resampled to 400 Hz. 

See Figure 13 for an overview of the post hoc signal processing pathway. 

 

Figure 13 - Post-hoc analysis workflow. Abbreviations: band-limited power (BLP), bi-phase locking value 
(bPLV), and short-time windowed covariance (STWC). 

Reaction-time estimation and trial realignment. Because of the potential for trial-to-trial variability in 

response time to the task, in addition to performing interaction analyses on trials aligned on cue 

presentation (cue-locked), we also performed these analyses on trials that were realigned based on 

initial onset of HG activity at CTL (response-locked). This allowed us to investigate both cue- and 

response-related interactions. Identification of this onset was performed as follows: First, each trial was 

temporally smoothed using a 470 msec FWHM Gaussian window. Then a pre-onset baseline value was 
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defined as the lowest value in the smoothed HG that occurred in the first second of the feedback period. 

The time at which this baseline value occurred was also noted. Next, the maximum value that occurred 

after the pre-onset baseline and before two seconds into the feedback period was also determined. The 

HG onset was defined as the first point after the pre-onset baseline when half the distance between the 

baseline and the maximum was crossed.  

It is noteworthy that this approach is only suitable when activity at the controlling electrode changes 

during feedback relative to rest. In the previous chapter we demonstrated that subjects typically only 

modulate HG above baseline for up-targets, thus all interaction analyses computed on response-locked 

trials are based solely on activity changes during up-target trials. 

STWC Analyses. Several methods exist to test for cross-frequency coupling: phase-amplitude coupling 

(PAC) (Canolty et al., 2006; Miller et al., 2012; Miller, Hermes, et al., 2010), bispectrum- and 

bicoherence-based measures (Nikias & Mendel, 1993; Nolte et al., 2004) which involve both phase and 

amplitude, pure phase-based measures (i.e. the bi-phase locking measure) (Darvas, Ojemann, et al., 

2009) and amplitude-amplitude coupled measures [e.g. dynamic causal modeling (Friston et al., 2003) 

and short-time windowed covariance (STWC) (Blakely et al., 2014)]. While all these methods interrogate 

neural data for some form of cross-frequency interaction, they are each sensitive to different 

mechanisms that produce this cross-frequency coupling. While PAC and bi-spectral/coherence have 

been extensively discussed in the literature, in this chapter we focused on pure phase- and pure 

amplitude-based measures, which can be seen as testing for large ensemble to large ensemble 

interaction (amplitude-amplitude) and highly synchronized ensemble to highly synchronized ensemble 

interaction (phase-phase), where the groups of neurons involved can be small. 

We assessed transient temporal amplitude-amplitude correlations in HG activity between CTL and 

remote electrodes using the normalized form of the STWC measure (Blakely, Ojemann, & Rao, 2014). 
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where 𝑡 ∈ [1, 𝑇] and 𝛿 ∈ [−Δ, Δ] and 𝑥 and 𝑦 are the two signals being considered, 𝜏 is the window size 

over which the correlation is being calculated, 𝑡 is the time (or sample) within the signal 𝑥, and 𝛿 is the 

lag of the window from 𝑦 with respect to the window from 𝑥. 𝜎𝑥,𝑡,𝜏 and 𝛿𝑦,𝑡+𝛿,𝜏 are the sample standard 

deviations from the two data windows. This method is specifically suited to teasing out amplitude-

amplitude interactions in neural signals that are not only transient (e.g., event-driven), but also 

potentially occur at slightly different points in time in each of the two signals. 

Individual STWC maps were calculated for each trial using a window width of 500 msec and a maximum 

lag of 300 msec. Average STWC maps were then generated separately for cue-locked and response-

locked trials. We evaluated HG-HG, HG-𝛽, and HG-𝜇/𝛼 interactions in order to observe both within-

frequency and cross-frequency amplitude-amplitude effects. 

To isolate interactions relevant to task execution, we only evaluated interactions occurring within the 

first second of the feedback period (cue-locked trials) or ± 500 msec from HG onset at CTL (response-

locked trials). 

From each significant interaction, we extracted both a maximal STWC coefficient from the average 

STWC map as well as the corresponding lag at which this coefficient occurred. The former provides 

information regarding the relative strength of the interaction whereas the latter provides information as 

to the relative timing of the activity changes between the two areas. 

Significance of STWC interactions was evaluated using a bootstrap approach on surrogate neural data. 

Using 100 iterations per channel pair, average STWC maps were calculated on trial-shuffled, phase-

randomized neural signals. Phase randomization was used to destroy any temporal interaction between 
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the two channels while preserving the individual power spectral characteristics of each channel. STWC 

maps were calculated as above and for each interaction the maximal coefficient from the average maps 

for all channel pairs was retained to characterize the multiple comparison-corrected distribution of 

maximal STWC coefficients one would expect to see under the null hypothesis of no interaction 

between electrodes. Only STWC coefficients greater than 95% of this distribution were considered 

significant; reported p values are the probability of seeing the observed STWC coefficient under the null 

hypothesis of no interaction. 

Bi-phase coupling. The bi-phase coupling value (bPLV) is a non-linear measure of cortical interaction. 

The bPLV can be computed from the time varying phase of the signal for a pair of frequencies as: 

 

𝐵𝑋𝑌𝑍(𝑡, 𝑓1, 𝑓2) = |
1

𝑁
∑ 𝑒𝑖(𝜙𝑋

𝑗 (𝑡, 𝑓1)+𝜙𝑌
𝑗 (𝑡,𝑓2)+𝜙𝑍

𝑗 (𝑡,𝑓1+𝑓2))

𝑁
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Here 𝜙𝑥
𝑗(𝑡, 𝑓1) is the phase of signal 𝑋 at frequency 𝑓1 and time 𝑡 for the jth trial, 𝜙𝑌

𝑗
(𝑡, 𝑓2) is the phase of 

signal 𝑌 at frequency 𝑓2 and 𝜙𝑍
𝑗
(𝑡, 𝑓1 + 𝑓2) is the phase of the coupled signal 𝑍(Darvas, Ojemann, et al., 

2009). The three signals (i.e. the sources X and Y and the target Z) can either be located in different 

positions, or in any combination be distributed across one to three electrodes. Here we choose a 

configuration, where the source signals, X and Y, reside in one location and the target is located at a 

different electrode. This configuration of the bPLV is similar to the one used in our earlier studies of bi-

phase coupling in the motor system (Darvas, Miller, et al., 2009) and allows for an interpretation of 

causal directionality in the Granger sense, as here the phase at the target location is predicted by the 

phases of the source location, but not vice versa. Similar to our earlier studies, we compute trial-wise 

phase coupling, but we limit the source signals X and Y in this study to CTL and test for interactions to all 

other electrodes in the montage.  
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For a single pair of electrodes, we compute a frequency by frequency by time bPLV map, for interaction 

frequencies limited to coupling from 7-25 Hz to 70-100 Hz to a resulting target frequency ranging from 

77 to 105 Hz. This range is motivated by our earlier studies (Darvas, Miller, et al., 2009), which found 

alpha/beta range coupling to high gamma frequencies during overt movement, as well as by the fact 

that this particular frequency range avoids the power line frequency at 60 Hz and its harmonics. 

We use the continuous complex Morlet wavelet to compute a time varying phase for each frequency 

pair and the corresponding interaction frequency with a frequency resolution of 1 Hz. The resulting bPLV 

map per pair thus contains 589 time series, each 2200 samples long, covering the time from -3 s prior to 

the beginning of BCI control to approx. 2.5 s post control onset, when the trial ends. Maps are computed 

for all subjects across all channels in the montage over all trials. 

We integrate the bPLV time series for each frequency pair from the onset of BCI control to 1 s post onset 

to test our hypothesis of a task specific increase in bPLV during execution of BCI control. 

Even after integrating the bPLV time series over a time interval, we are left with a large number of 

potential interactions and in the absence of a specific hypothesis about which frequencies and channel 

pairs should increase during BCI control, we use a statistical threshold to identify significant bPLV 

changes. While for individual bPLV values, an analytical expression for the null-distribution exists 

(Darvas, Ojemann, et al., 2009), we have no such description for the time integrated bPLV and thus must 

resort to non-parametric tests. We employed a similar maximum statistic approach as the one applied 

to STWC coefficients. We use trial shuffling (Lachaux et al., 1999) to generate new samples of the time 

integrated bPLV, where we randomly shift trials between the controlling electrode and the target 

electrode. Here we assume that there exists no coupling on the time scale of full trails (which last >5s) 

and thus this method will generate an appropriate null-hypothesis. We generate 10,000 resamples per 
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channel pair, but for each resample, after computing the integrated frequency by frequency map, we 

only retain the maximum value across all frequencies.  

We then compute a p-value by comparing the original time integrated bPLV against the histogram of 

maximum values. This way we avoid having to control for multiple comparisons across the whole 

frequency by frequency map, which has a variable resolution, which would in case of a simple 

Bonferroni correction lead to a too conservative threshold. 

Since channel pairs can be considered independent, we Bonferroni correct the resulting p-value from 

the maximum statistic by the total number of pairs examined. 

6.3 Results 

Behavioral performance. As is necessitated by our study inclusion criteria, all subjects performed above 

chance levels on the BCI task (N varies by subject, binomial test, p < 0.05). This is important to 

subsequent analyses as it serves to demonstrate that subjects had intentional control of the neural 

signal being used to control the BCI. Figure 14 shows that performance levels were above 95% chance 

performance confidence intervals for each subject; see Table 4 for additional detailed behavioral data. 

 

Figure 14 - Behavioral performance for all subjects included in interaction analysis. Chance task 
performance denoted as black horizontal line. 95% Confidence intervals on chance performance differ by 
subject and are shown as a dashed line. 
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Reaction time and trial realignment. For up trials, where HG onsets could be calculated, we determined 

the average reaction time across the ten subjects to be 775 msec (± 140 msec std). Though not 

statistically significant there was a subtle correlation between an individual subject’s reaction time and 

task performance (Pearson’s rho = -0.39, p = 0.26) that may have been related to attentional vigilance or 

other factors. Figure 15 shows response-locked HG activity from CTL for two subjects. Individual subject 

reaction times and standard deviations are reported in Table 4.  

 

Figure 15 - Exemplar plots (from two subjects S2 and S5) showing alignment of up trials by HG onset . Color-
coded normalized HG activity from the CTL electrode is shown for all trials. Trials were realigned based on 
onset of HG activity, such that HG onset occurs at t=0. Black dots denote the actual moment of cue 
presentation (beginning of the feedback period) for each trial. 
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Table 4 - Individual behavioral results. All represents the total number of valid BCI trials performed; 
performance is the fraction of those trials that were successful. In the second section we have listed the total 
number valid electrodes recorded from each subject. Lastly, response time is the mean time, in msec, 
between the start of the BCI trial and an increase in HG activity at CTL. 

 
BCI Trials Electrodes Response Time 

SID All Performance N Mean ± SD msec 

30052b 84 0.8 82 908 ± 471 

4568f4 108 0.78 85 753 ± 385 

3745d1 39 0.72 63 886 ± 500 

26cb98 97 0.74 44 743 ± 482 

fc9643 164 0.9 94 788 ± 469 

58411c 120 0.63 63 821 ± 412 

0dd118 68 0.76 63 733 ± 521 

7ee6bc 110 0.66 56 816 ± 484 

f83dbb 89 0.64 61 986 ± 480 

7662c2 50 0.78 82 596 ± 370 

 

STWC Interactions. When performing STWC interactions on response-locked trials, we identified 31 
total electrodes, from a total of 9 of the 10 subjects that exhibited significant STWC interactions with the 
CTL electrode (p < 0.05; see bootstrap methods for detail). Exemplar interactions are shown in Figure 16. 
 

 

Figure 16 - Exemplar response-locked STWC maps from four subjects with significant STWC interactions 
showing a remote electrode (a) coactivated with, (b) leading, (c) lagging, or (d) both leading and lagging the 
CTL electrode. Significant interactions are circled in a white boundary. The solid black horizontal line depicts 
a lag of zero and dashed horizontal and vertical lines intersect at the peak STWC coefficient that was 
extracted and used in subsequent analyses. 

We note that though the electrodes considered in the STWC analyses come from a large number of 

cortical areas, as is depicted in Figure 17b, and that there are a number of areas outside of traditional 

motor regions that are task-modulated during BCI, the areas interacting with the control electrode are 



70 
 

almost exclusively contained to the posterior portion of the frontal lobe. Nine of the 31 electrodes 

interacting with CTL were found in ventral PMv meaning that 29% of observed significant interactions 

occurred within PMv, though less than 5% of all electrodes considered were over that area. Further, the 

interactions between this area and CTL showed larger overall STWC coefficients (N1 = 9, N2 = 22, two-

sample t-test, p = 0.0017) and more of a tendency to lead CTL (N1 = 9, N2 = 22, two-sample t-test, p = 

0.027) than interactions involving other regions. We also identified significant interactions between CTL 

and M1, SC, PMd and a small number of extra-motor areas. 

 

Figure 17 - Spatial distribution of significant STWC interactions. Subplot (a) depicts the locations of all non-
CTL electrodes across all subjects whereas (b) shows the subset of these electrodes that were involved in 
significant response-locked STWC interactions. Note that the majority of significant interactions were seen in 
the posterior portion of the frontal lobe. Subplot (c) shows the frequency of interactions in various cortical 
regions as defined by the HMAT atlas. Subplots (d and e) show average STWC coefficients and lags 
(respectively) across those same regions. One star (‘*’) denotes p < 0.05 and two stars (‘**’) denote p < 0.01. 
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STWC Analyses on cue-locked trials. STWC analyses reported above were performed on trials that had 

been realigned based on the onset of HG activity at CTL. Additionally, in order to determine whether the 

observed effect was tightly bound to HG onset (and not to cue presentation), we re-performed STWC 

analyses on cue-locked trials. Other than the alignment of individual trials during creation of average 

STWC maps, the procedure for this was identical to what was used for response-locked trials. 

We identified 23 total electrodes, from a total of 7 of 10 subjects that exhibited significant interactions 

with the CTL electrode (p < 0.05; bootstrap approach described above). Again these electrodes were 

primarily located in the posterior portion of the frontal lobe; the spatial distribution of electrodes 

identified when applying STWC to unaligned trials is qualitatively similar to what was described for 

response-locked trials (See Figure 18). Though slight, the decreased number of significant interactions 

on cue-locked trials relative to aligned trials (23 significant interactions as opposed to 31), combined 

with the fact that on average, significant STWC peaks calculated on unaligned trials occurred 478 (± 36 

SEM) msec after cue presentation suggests that the observed amplitude-amplitude interactions are 

involved more with the execution of motor imagery than the immediate response to the cue. 

 

Figure 18 - Spatial comparison of non-CTL electrodes involved in HG STWC interactions for response-locked 
and cue-locked trials 
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In addition to performing STWC analyses on HG amplitude-amplitude interactions, we also calculated 

STWC maps for expressly non-linear (i.e. cross-frequency) amplitude-amplitude interactions using 

response-locked trials. For each electrode pair (including CTL and a single remote electrode – denoted 

with a subscript of R), we considered the following cross-frequency couplings: 𝐻𝐺𝐶𝑇𝐿 ↔ 𝛽𝑅, 𝐻𝐺𝐶𝑇𝐿 ↔

𝛼𝑅, 𝛽𝐶𝑇𝐿 ↔ 𝐻𝐺𝑅, and 𝛼𝐶𝑇𝐿 ↔ 𝐻𝐺𝑅. Across all comparisons, of which there were 2732, we found only 

two significant cross-frequency STWC interactions. We interpret this to indicate that there are minimal 

cross-frequency amplitude-amplitude interactions, and that phase-phase relationships better capture 

the interactions between these frequency bands. 

bPLV Coupling. We observed significant cue-locked bPLV interactions in 8 of the 10 subjects. All 

significant interactions were ‘outgoing’ from CTL, meaning that the phases of an alpha and HG 

frequency at CTL were predictive of the phase at the sum of those two frequencies at a remote site. 

Results of the grand average of the bPLV for individually significant alpha-HG interactions based on cue-

locked trials are shown in Figure 19. Since bPLV significance for individuals was computed as an 

integrated value over a time interval, and the bPLV measures phase synchrony on a time scale of <10 

ms, the individual time series over a scale of more than 5s can appear noisy and highly variable over 

time. However, on the group level, a stable trend emerges: an overall increase in bPLV between 0.5 s 

and 1 s post task onset, when comparing up vs. down targets, or up targets vs. baseline.  

We applied the same analysis (see methods) to response-locked trials, but under these conditions we 

observed no significant bi-phase coupling. Additionally, we evaluated linear phase-phase interactions 

from 1 to 200 Hz using the standard PLV, and observed no robust trends across subjects in within-

frequency coupling. 
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Figure 19 - Group-average of significant bPLV interactions for up and down targets . Dark is the average for 
up-targets, light for down targets. The shaded areas show the 84% confidence interval (1 standard deviation) 
of the group average. Vertical black bar at t=0 represents the onset of the feedback period. 

Changes in interactions across skill acquisition. In order to begin to understand whether either of these 

interactions are indicative of the skill acquisition process, or are present during task execution in 

general, we re-evaluated all significant STWC and bPLV interactions using subsets of the trials. 

Comparing interactions from early trials (the first half of trials executed by a subject) and late trials (the 

second half of trials executed by a subject) we saw no statistical difference in bPLV interactions between 

remote electrodes and the CTL electrode (see Figure 20). This is in contrast with STWC interactions 

where we saw a significant decrease in median (per subject) interaction strength (paired t-test, N=9, p = 

0.016) from early to late trials. 
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Figure 20 - Changes in STWC and bPLV interactions over time. (a) Depicts change in median (per subject) 
response-locked STWC coefficients from early to late trials across all significant interactions. (b) 
Demonstrates that there was no significant change in grand-average bPLV from early to late trials. Black 
vertical bar at t=0 represents the onset of the feedback period. The shaded areas show the 84% confidence 
interval (1 standard deviation) of the group average. One star (‘*’) denotes p < 0.05. 

One potential criticism of this finding is that though STWC is normalized for differences in amplitude, 

like any correlation measure, it is sensitive to changes in signal-to-noise (SNR). As we observed in 

chapter 5, a number of cortical areas exhibit significant changes in task-driven HG activity that may – 

assuming a stationary noise floor – impact STWC strength over the course of skill acquisition. To control 

for this possibility we calculated SNR for all electrodes over the early and late trial periods, and repeated 

the above analyses excluding all interactions that involved electrodes with a significant decrease in SNR 

from early to late trials. In this case we still observed a significant decrease in median STWC strength 

(N=8, p=0.001) from early to late trials.  

Comparison of spatial distribution of STWC and bPLV interactions. There are a number of 

electrophysiological studies that suggest that the very nature of amplitude-amplitude and phase-phase 

interactions are different (for review see Canolty & Knight, 2010; Schnitzler & Gross, 2005). Though both 

may be indicative of information flow between cortical areas, the spatial and/or temporal scales over 

which these interactions take place may be quite distinct. With respect to spatial extent, we found this 

to be the case. Though we considered interactions from all cortical areas with electrode coverage, we 
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primarily found significant STWC interactions close to primary motor cortex, often in PMv, or other 

nearby cortical regions. bPLV interactions, on the other hand, were much more spatially distributed, 

extending to PMd, the STG and prefrontal cortex. Considering the median STWC-to-CTL distance for 

each subject as a single observation to adjust for repeated measures within subjects, we found that the 

distance covered by STWC interactions was, on average, 23.22 mm, whereas the mean distance spanned 

by bPLV interactions was 38.35 mm, and that the distributions of these distances were significantly 

different (two-sample t-test, N1 = 9, N2 = 8, p = 0.04). Figure 21 provides additional detail as to the 

spatial distributions of these two interaction types. 

 

Figure 21 - Comparison of spatial distribution of significant STWC and bPLV interactions. (a) Shows all 
electrodes involved in significant STWC or bPLV interactions across all subjects. Note the spatial 
localization of electrodes participating in STWC interactions to the posterior portion of the frontal lobe, and 
the slightly broader distribution of bPLV electrodes. (b) Provides quantification of this effect, comparing 
median STWC-CTL distances (per subject) with bPLV distances. One star (‘*’) denotes p < 0.05. 

6.4 Discussion 

In this chapter we have demonstrated the presence of both HG amplitude-amplitude (STWC) and cross-

frequency phase-phase (bPLV) interactions between cortical areas during BCI use. Coupling this with the 

fact that a number of cortical and subcortical regions have been shown to be active during the BCI task 

(see chapter 5, as well as Koralek et al., 2012), it appears that execution of the neuroprosthetic skill is a 

coordinated effort involving multiple cortical areas. Additionally, we have demonstrated that cross-
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frequency phase-phase and within-frequency amplitude-amplitude interactions occur simultaneously 

during a cognitive task, but exhibit distinctly different spatial scales, which is indicative of at least two 

different modes of trans-cortical communication during BCI use. Lastly, we have demonstrated that the 

nature of these amplitude-amplitude interactions changes over the course of skill acquisition for a sub-

group of the communicating regions. Our findings suggest the presence of multiple mechanisms of 

cortico-cortical communication that may play differing roles in task execution. 

Though our analyses included every implanted electrode for each subject, we found that the vast 

majority of significant STWC interactions occurred in or near the posterior portion of the frontal lobe 

and cover relatively short cortical distances (~2 cm). This not only implicates these regions in successful 

execution of a BCI driven by M1-derived control signals, but speaks to the relative temporal consistency 

of interactions between these areas and the controlling area and the possibility that these regions are 

responsible for similar facets of task execution. Given the tendency of neural circuits to optimize with 

BCI training (Wodlinger et al., 2014), this may in part explain the observed decrease in STWC over the 

course of skill acquisition. Along those same lines, it is interesting to note the relative absence of 

significant STWC interactions between CTL and cortical areas further upstream in the action portion of 

the perception-action cycle (Fuster, 2000). It is noteworthy that the prefrontal cortex, which we 

demonstrated in chapter 5 to be active during BCI task execution, participated in relatively few 

significant STWC interactions with CTL. There are a few potential explanations for this: because there 

are few direct PFC-to-M1 connections (Miller & Cohen, 2001), there may be a lack of temporal 

consistency in interactions between these areas that would render them statistically insignificant in our 

model-free analytical approach. Additionally, it is very likely that the task-relevant information 

represented in PFC is more related to goal-direction (Kobayashi et al., 2007; Rudorf & Hare, 2014) and 

working memory (Barbey et al., 2013; Funahashi et al., 1989; Goldman-Rakic, 1996) than direct BCI 
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control, thus we would not necessarily expect to observe tight temporal correlations between PFC and 

M1. 

The question remains of what function STWC interactions are playing to assist in BCI task execution. The 

fact that we observed temporal structure in STWC interactions that both followed and that preceded 

activity in the control electrode speaks to a potential feedback role for these regions. Signals that 

followed the control electrode activity could carry information about just-completed task performance 

whereas activity that precedes control electrode performance could carry information about motor 

planning that might result in improved task performance, though these mechanistic interpretations 

remain speculative. 

Of particular interest is our observation that these high-frequency STWC interactions generally covered 

shorter cortical distances than bPLV interactions. This is in agreement with recent findings that inter-

area correlations in the low-pass filtered HG envelope are more predictive of local than distant 

structural connectivity (Keller et al., 2014) and consistent with previous hypotheses regarding phase-

phase interactions as an appropriate means for long-distance information transfer (Darvas, Miller, et al., 

2009; Schnitzler & Gross, 2005).  

Oscillatory cortical activity has been studied extensively at multiple spatial scales (Schnitzler & Gross, 

2005), and, as a field, we have resounding evidence demonstrating that specific cortical oscillations 

respond reliably sensorimotor and cognitive events (Kahana, 2006). One prevalent hypothesis about 

inter-area oscillatory coupling is that it facilitates communication between two regions, however, when 

such coupling is expressly linear (e.g. classical PLV), it comes at the expense of independent computation 

occurring in those two regions at those frequencies, which may be problematic for cortical areas 

responsible for different functions (i.e. distant cortical sites). Biphase coupling, on the other hand, is a 

proposed mechanism for information transfer between regions that preserves functional independence 
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between the two regions. We note, that though we observed significant bPLV coupling between a 

number of remote regions during the BCI task, no significant linear PLV was observed. 

Cortical hubs proposed by Buzsaki et al. (2004) and evidenced by Keller et al. (2014) are intrinsically 

tasked with selectively processing information that comes from multiple streams simultaneously, 

attending to relevant information and muting the rest. Low-frequency oscillatory synchrony is one 

proposed mechanism for this gating (Fries, 2005; van Elswijk et al., 2010; Womelsdorf et al., 2007). 

However, if two streams of information are being integrated that occur on intrinsically different 

timescales (e.g., response to a visual stimulus and internal motor imagery state) the mechanism of linear 

phase-phase coupling may be insufficient and cross-frequency coupling may be a viable alternative. 

Another possibility is that the role of information generated in one region may be different from its role 

in a distant region. If narrow-band HG changes are representative of selective activation of a 

subnetwork within an area (Canolty & Knight, 2010) then biphase coupling presents one potential 

mechanism for transferring information from one such network to another, either within or between 

cortical regions. This is conceptually similar to the hypothesized role of PAC: that it serves to transfer 

information across spatial and temporal scales, from distributed low-frequency oscillatory networks to 

local high-frequency ones (Canolty & Knight, 2010). 

As was described above, bPLV can readily be interpreted as a measure of effective (i.e. directed) 

functional connectivity. This is because the phases of the two multiplicative frequencies are predictive of 

the phase at the sum of their frequencies, but not vice versa. Whether STWC can be interpreted as a 

measure of functional (i.e. undirected) or effective connectivity depends, in part, on the lag at which 

correlative relationships occur. Though the potential existence of a hidden third source, exerting 

influence over the two visible nodes means that any conclusions as to causal influence of one of the 

visible nodes on the other must be tempered, at the very least, significant STWC coefficients at non-zero 
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lags are indicative of information flow of some kind. Our finding of significant STWC lag relationships 

indicates that we are not merely observing non-specific co-activation of neighboring neural populations. 

The fact that we observed PMv typically leading CTL in significant PMv-to-CTL interactions makes sense 

considering traditional models of pre-motor influence on M1, but we note that this finding was based on 

extraction of a single lag value from each interaction. In reality we expect that there is likely bi-

directional information flow between these and other cortical regions during BCI task execution.  

The presence of bPLV synchronization exclusively during cue-locked trials is potentially indicative of the 

role that this synchrony may play in distributed processing of the task demands and subsequent 

execution plan. It may be that widespread cortical synchrony is necessary to develop attentional focus 

or to create the appropriate state associated with task execution. The precise timing of task 

performance does not appear to impact bPLV measures: when the data were realigned to response 

times, the of bPLV change with the task largely vanished. The increase in bPLV lasted only over the initial 

portion of the task meaning that bPLV changes had largely returned to baseline by the time the task was 

completed. This further supports that the cortical synchronization indicated by bPLV changes represents 

coordinated information flow related to the anticipation and state related to task performance rather 

than execution of the task itself. 

Though there is evidence for cross-frequency coupling in both cortical (Canolty et al., 2006; Miller et al., 

2012) and cortico-subcortical networks (Belluscio et al. 2012), we have only limited data relating these 

oscillatory phenomena to activity changes in underlying neuronal networks (Murthy & Fetz, 1996). 

Regardless of whether or not synchrony in oscillatory components of field potentials are directly 

involved in neural computation or are simply epiphenomena of underlying activity patterns, through a 

better understanding of the mechanisms that generate them we will be able to extend our 

interpretations of these coupling motifs when they are observed. 
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From the simplest paired coupled oscillator model (Mirollo & Strogatz, 1990) to much more complex 

models if networks of interneurons (Buzsaki & Chrobak, 1995), periodic temporal structure in firing and, 

correspondingly, oscillatory behavior in extracellular field potentials, can be generated via activity in 

recurrently-connected networks. It has been argued that the complexity (i.e. number of neurons) and 

spatial extent of these networks give rise to their characteristic oscillatory frequency (Buzsáki & 

Draguhn, 2004), which leads to the resultant hypotheses that higher-frequency oscillatory phenomena 

are indicative of more local computation and that cross-frequency coupling may be a mechanism for 

communication between networks of different spatio-spectral scales. 

One could generate, then, a model of individual neurons to test this possibility. This model would 

include two separate oscillatory networks (see Figure 22), with varying population sizes and modeled 

axonal lengths to generate different (and physiologically feasible) oscillatory frequencies when driven at 

a basal input level. By then connecting these two sub-networks and varying both the strength of the 

connection between them and the strength of the respective inputs to each subnetwork, one would 

expect to see activity from each sub-network impact activity in the other. This would render not only in 

the local field potential, modeled as the sum of post-synaptic potentials between neurons in the sub-

network, but also in the timing of firing in individual neurons. 

In addition to probing a potential model for how cross-frequency coupling is generated in the brain, this 

would allow us to test whether a single mechanism could generate the bi-phase coupling observed 

above and previously (Darvas, Miller, et al., 2009) as well as phase entrainment of HG activity to lower-

frequency oscillatory activity (Canolty et al., 2006; Miller et al., 2012) – a distinct possibility based on the 

intrinsic link between phase and amplitude in narrow-band oscillatory signals (Aydore et al., 2013). 
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Figure 22 - Proposed linked-oscillator model to generate cross-frequency coupling. (a) Two externally-driven 
recurrent networks will oscillate at a frequency corresponding to the number of neurons in those networks 
and the modeled transmission time between them. (b) By coupling those networks, one can demonstrate the 
potential role of cross-frequency coupling to allow for information transfer between them. The spectral 
properties of activity in each separate sub-network will that of the other, both in terms of modeled field 
potentials around those networks and firing patterns of individual neurons within them. 

Structural interconnectivity and functional interactivity between populations of cortical neurons are at 

the core of human cognition. These interactions are dynamic and render in various ways in population-

level cortical signals. Though in this study we have simultaneously demonstrated two different 

interactions in the ECoG surface potential, studies such as this will benefit greatly from an increased 

understanding of the anatomical mechanisms and network architectures that underlie the various forms 

of interactions observed in electrophysiologic recordings. 
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7 Neural representation of intention during BCI use 

7.1 Introduction and background 

Traditional BCI paradigms have made great strides toward dexterous control of end-effectors such as 

robotic arms, allowing users manipulate devices with as many as ten DOF (Wodlinger et al., 2014). Direct 

control paradigms are limited, however, in that they require constant cognitive vigilance on the part of 

the user who is volitionally modulating the multiple neural signals required to directly control such a 

large number of degrees of freedom. An alternative to this methodology is to simultaneously extract 

higher-level goal-related information from remote cortical sites to provide the BCI with additional 

channels of task-relevant information that can enhance its ability to carry out the movement intended 

by the user. 

In this chapter, we address this end from two directions. First, we determine the existence of and 

quantify the neural representation of the higher-level goal in a pair of one-dimensional BCI tasks. 

Second, we evaluate a closed-loop, machine learning-based approach to including the inference of 

this higher-level goal in BCI task execution. 

Neural representation of intention during motor movement. When executing natural motor 

movements, the brain seamlessly and rapidly transforms sensory information into the motor plan 

necessary to achieve its goal (Buneo & Andersen, 2006a; Fuster, 2000). Astoundingly, this multi-stage 

process of sensory integration, goal identification, motor plan formulation and finally motor execution 

can occur in less than a second. As it is central to goal-driven behavior, numerous studies have 

investigated the neurophysiological correlates of this transformation and the subsequent motor 

execution (see Fuster, 2000 for review). 
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Single unit activity during movements (most often reach movements and saccades) has been correlated 

with a wide variety of movement parameters: target location in various reference frames, joint angles, 

force, velocity, and position (Evarts, 1968; Fetz & Cheney, 1980; Georgopoulos et al., 1982). These 

activity changes have been observed not only in M1, but also in premotor areas (Mushiake et al., 1991), 

SMA (Mushiake et al., 1991), and PPC (Mulliken et al., 2008).In addition, both behavioral (Prablanc & 

Martin, 1992) and neurophysiologic studies (discussed individually below) have demonstrated the 

presence of a significant feedback component in online motor execution, indicative of the fact that the 

brain is constantly updating an error signal that is representative of both the ongoing task state and the 

higher-level goal (Desmurget & Grafton, 2000). Mackay provided indirect evidence for this by showing 

that individual cell firing rates in NHP area 7a (near the IPS) changed over the course of reach execution 

(1992). The role of PPC in online reach error tracking was substantiated through the demonstration that 

interruption of PPC processing via TMS during a two-step reaching task resulted in increased correction 

errors (Desmurget et al., 1999).  

Motor execution is not instantaneous, thus correspondingly, there are also numerous studies that 

investigate representations of parameters of pending movement before that movement has been 

initiated (Batista et al., 1999; Gallivan et al., 2011, 2013; Scherberger et al., 2005). Of particular interest 

to the field of BCI research is the pre-movement neural representation of the higher-level goal that will 

be achieved by a particular movement because such a signal could be readily utilized in multi-stage BCI 

architectures. A number of cortical regions, primarily in fronto-parietal networks have been implicated 

in this process of goal formulation and storage.  

A thorough series of studies by Andersen and colleagues have demonstrated the role of PPC, specifically 

the parietal reach region (PRR) in transformation of visual input to an internal representation of the task 

involved in reach planning in monkeys (Batista et al., 1999; Buneo et al., 2002; Hwang et al., 2012; 

Mulliken et al., 2008; Scherberger et al., 2005). These patterns of activity are so robustly correlated with 
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kinematic parameters that they have been successfully used to reconstruct kinematics of the reaching 

motion (Scherberger et al., 2005). Human homologues of these regions are not as well understood, 

limited in-part by restriction to primarily non-invasive recording techniques. Recent imaging evidence 

supports specific participation of more dorsal portions of the posterior parietal cortex (specifically areas 

surrounding IPS) in both reach and saccade planning (Gallivan et al., 2011) as well as voluntary shifts in 

spatial attention (Yantis et al., 2002). This is in contrast to evidence for bottom-up attentional 

modulation of activity in the more ventral TPJ, where BOLD responses are elicited through the 

presentation of auditory or visual stimuli that are informative of a spatial target (Geng & Mangun, 2011). 

Current imaging evidence supports roles for both dorsal and ventral portions of the parietal cortex in 

spatial target discrimination (Gallivan et al., 2011; Geng & Mangun, 2011). 

Such signals are not at all exclusive to PPC, Additional work has demonstrated single unit activity in M1 

(Tanji & Evarts, 1976) and premotor cortices (Weinrich & Wise, 1982) immediately preceding movement 

onset. For the former of those two studies, differential activity patterns were observed preceding flexion 

and extension of the arm. Pellegrino and Wise (1993) expanded on this by demonstrating that firing 

changes in PMd reflected more than just sensory processing or resultant motor command but were 

additionally modulated by higher-level task-related factors. More recently, imaging studies performed in 

humans have corroborated these findings of encoding of task-relevant information in frontal cortical 

areas, demonstrating effector-independent (reach vs. saccade) changes in PMd BOLD activity that was 

sufficient for significant predictive cross-effector classification of movement direction. Additionally, they 

demonstrated changes, albeit weaker, in PMv BOLD signals only before reaching actions that were 

sufficient to allow for classification of pending movement direction (Gallivan et al., 2011).  

This finding is reasonable, as we classically consider fronto-parietal networks between and AIP to PMv to 

be involved in the formulation of grasping motions and hand postures and between PRR & LIP and PMd 

to be involved in reach and saccade processing (depending on whether the frontal eye fields are 
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considered as a part of or neighbor to PMd) (For review see Rizzolatti & Luppino, 2001; Wise & 

Boussaoud, 1997). However, more recent studies are beginning to question the historical distinction 

between reach and grasp areas (Davare et al., 2011), especially as we translate knowledge from primate 

elecrophysiological studies to human imaging work (Vesia & Crawford, 2012). This distinction may be 

particularly relevant for the field of invasive BCI because NHP SUA studies typically involve training 

animals and decoders during overt reaching motions (Carmena et al., 2003; Mulliken et al., 2008) 

whereas human field-potential-based studies often train subjects to utilize grasp-related imagery to 

develop control (Blakely et al., 2009; Leuthardt et al., 2004). 

Another candidate frontal region for encoding of higher-level spatial goals is dlPFC, traditionally thought 

to be involved in working memory processes (Barbey et al., 2013; Funahashi et al., 1989; Goldman-Rakic, 

1996) and goal-driven motor behavior (Kobayashi et al., 2007; Rudorf & Hare, 2014). In the same study 

discussed above, Gallivan et al. (2011) demonstrated sufficient coding of intent in dlPFC to perform 

classification of the pending reach direction.  

As a field, we have yet to see evidence on the same scale of spatial target coding in far-field potentials 

(ECoG/EEG) recorded in humans. A number of invasive (Gomez-Rodriguez et al., 2010; Wang et al., 

2012; Williams et al., 2013) and non-invasive (Kornhuber & Deecke, 1965; Lew et al., 2012; Salvaris & 

Haggard, 2014) studies have utilized cortical field potentials as an indicator of pending movement, 

without respect to movement direction, though instances of decoding pending movement direction are 

much more rare (Schalk et al., 2007; Wang et al., 2012). Interestingly, both of these studies cite low-

frequency voltage deviations (termed the local motor potential [LMP] in these studies) (Kornhuber & 

Deecke, 1965) as a primary predictor of movement direction, and neither (though this may be due to 

limited coverage of the area) cite PPC as a cortical region where movement direction is coded. The 

degree to which clinical scale ECoG can detect differential activity patterns related to goal-directed 

motor behavior in fronto-parietal networks remains an important an open question. This is the case, not 
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only for practical BCI research, but also in terms of our fundamental understanding of how these cortical 

regions interact to enable goal-driven motor behavior. 

Pre-trial and in-trial decoding of task demands in BCI. The notion of prescient inference of a higher-

level goal has been a subject of considerable interest in BCI research, as it this information can be 

utilized in a variety of ways. Firstly, when detecting higher-level goals, the most basic of these is whether 

to do anything at all (movement vs. rest). Though the mechanisms of inhibition are not completely 

understood, it is well established that motor cortical activity does not always result in motor outputs 

(Kaufman et al., 2014). The responsibility then falls, at least in part, on a BCI decoder to tell the 

difference between motor cortical activity that is intended to drive movement and that which is not. 

Since long before non-invasive neural signals were being thought of as a means to manipulate external 

devices, researchers have been using them as potential predictors of the intent to move (Gomez-

Rodriguez et al., 2010; Kornhuber & Deecke, 1965; Wang et al., 2012). One potential application of these 

signals to BCI systems is simply to treat them as a gating function, determining, moment to moment, 

whether neural activity is meant to be driving end-effector output. The ability to decode this higher-

level intent to move has been a significant focus of intent estimation in field potential-based BCIs (Lew 

et al., 2012; Williams et al., 2013), typically relying on changes in low-frequency oscillatory activity. 

On the other hand, if the signal modality and decoding architecture are sufficient to allow for inference 

as to specifically what the intended goal is, then there are two potential strategies for how to utilize this 

information. The first possibility is the direct execution of the inferred goal by an automated (i.e. 

robotic) system; this removes the cognitive load associated with direct control from the user, but also 

prevents any real-time adjustments to the execution strategy. This strategy has been employed in non-

invasive recording techniques (Bell et al., 2008; Cheung et al., 2012) due to their relatively low 

bandwidth that makes kinematic control of an end effector via sensorimotor activity changes more 

difficult, though robust evoked visual responses allow a user to quickly scan a space of potential goals 
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(Bell et al., 2008). It has also been demonstrated using invasive recordings from PPC (Musallam et al., 

2004) and PMd (Santhanam et al., 2006), where substantially higher data rates have been demonstrated 

(see Santhanam et al., 2006 for discussion).  

Alternatively the transform implemented by the decoder and/or the structure of the task could be 

modified to assist the user in achieving the inferred goal, while still granting the ability for online 

corrective action. This approach is technically challenging and correspondingly has been explored less 

thoroughly. During post-hoc analyses of a traditional (kinematic cursor control only) BCI, Mulliken et al. 

(2008) demonstrated the ability to recreate kinematic parameters of the cursor as well as target 

locations in two-dimensional space using a modified Kalman filter and microelectrode recordings from 

PPC in an NHP. Shanechi and colleagues then extended this work, constructing a BCI system that utilized 

information recorded from PMd and SMA about inferred target position from the cue period to bias 

control during the feedback period, demonstrating that this hybrid approach outperformed either 

approach separately (Shanechi et al., 2013).  

The purpose of this chapter is to demonstrate whether there exists a neural representation of similar 

intention signals in clinical-scale ECoG data before and/or during use of an abstract BCI, and to 

investigate whether single-trial estimation of intent can be leveraged to improve BCI performance in 

real time. 

7.2 Materials and methods 

This chapter of the dissertation is logically organized into two separate experiments: (1) analysis of the 

RJB dataset including quantification of pre-trial and in-trial indicators of intent and assessment of the 

predictive power of these activity patterns; and (2) collection and analysis of data using a novel BCI task, 

again investigating intent indicators, validating a potential real-time approach to use of these neural 
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signals, and examining neural activity patterns during closed-loop BCI execution. Both the methods and 

the following results section reflect this organization scheme. 

Because one may expect to see neural activity changes in so many cortical areas, and in the ECoG 

observation model we do not always have coverage of each of these areas, in the following studies, we 

opted for a purely data-driven approach to identification of goal-correlated neural activity patterns. This 

approach considers all channels recorded, regardless of their location on cortex, as candidate sources of 

information coding for intention during BCI execution. 

7.2.1 Retrospective RJB studies 

Subjects. As this was a retrospective analysis, principled selection of subjects to include in the study was 

done by selecting only subjects that met the following two inclusion criteria: (a) the subject must have 

performed at least three runs of the RJB task, and (b) the subject must have performed above chance 

levels. 

Table 5 - Demographic and behavioral information from the post-hoc intent analysis performed on RJB data. 
Abbreviations: R right, L left, F frontal, P parietal, T temporal, O occipital, M Act refers to the motor task 
associated with the controlling electrode. 

ID SID Gender Age M Act Coverage N Trials N Bad Hit rate Chance CI 

S1 7662c2 M 38 Hand R-F/T 51 1 78% 64% 

S2 30052b M 29 Tongue R-F/T 198 114 80% 61% 

S3 4568f4 M 27 Tongue R-F/P/T 117 9 78% 59% 

S4 3745d1 M 14 Tongue L-F/P 41 2 72% 67% 

S5 26cb98 M 22 Tongue R-F/P/T 126 26 74% 60% 

S6 fc9643 F 26 Tongue R-F/P/T 210 46 90% 57% 

S7 58411c M 54 Hand L-F/P/T 135 15 63% 59% 

S8 0dd118 M 11 Hand L-F/T 74 6 76% 62% 

S9 7ee6bc M 29 Hand R-F/P/T 128 18 66% 59% 

S10 38e116 M 18 Hand R-F/P 51 9 86% 64% 

S11 f83dbb M 19 Hand R-F/P/T 92 3 64% 61% 

 

Recordings. See section 4.2. 
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BCI Task. See section 4.2. 

Quantification of behavioral performance. Calculation of chance performance was identical to the 

approach outlined in section 6.2. 

Preprocessing. Preprocessing steps were similar to what has been used previously (See section 6.2), 

with a few exceptions. Correspondingly, they are listed out here completely as to prevent confusion and 

to allow for direct recreation of the analyses. Data were first manually inspected for any channels or 

time periods that contained obvious non-physiologic artifact or substantial inter-ictal activity. For each 

subject, the data were re-referenced by subtracting the common average among all good channels. 

Signals were then notch-filtered to remove line noise using 4th-order Butterworth filters at 60 and 120 

Hz. Time-variant spectral estimates were extracted by bandpass filtering the signals using 4th-order 

Butterworth filters and then taking the magnitude of the Hilbert transform and squaring it. Spectral 

estimates were derived for the canonical frequency bands, delta (𝛿; 1-4 Hz), theta (𝜃; 4-7 Hz), mu/alpha 

(𝜇/𝛼; 8-15 Hz) and beta (𝛽; 16-31 Hz), as well as for the high-gamma range (HG; 70-150 Hz) and the LMP 

(1-10 Hz). Finally, band-limited powers were resampled down to 100 Hz. 

Identification of spatial/temporal/spectral representation of intent. In order to understand the spatial, 

temporal, and spectral distribution of neural responses that correlate with intended movement 

direction, we evaluated, on a per-channel and per-frequency basis, the time course of statistically 

significant differences in average neural activity between the two target types. Because this requires a 

very large number of statistical comparisons, we further downsampled neural activity patterns under 

the assumption that spectral activity patterns would not vary greatly over relatively short timescales. 

Using a window width of 200 msec and a step size of 100 msec, we calculated the average value of each 

spectral feature (for a given channel and frequency) over successive windows. This resulted in an 

effective final sampling rate of 10 Hz. To control for differences between trials in baseline activity of 
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each feature, the mean value of each channel/spectral feature from the rest phase of each epoch was 

subtracted from all samples within that epoch. Next, we performed individual two-sample t-tests for 

each time/frequency/channel combination.  

To correct for the relatively large number of comparisons performed in this analysis, we utilized a 

spatio-temporal cluster size maximum statistic approach. Treating each frequency separately, one can 

conceptualize the resultant time-by-channel significance map as an image. In turn, respecting the spatial 

geometry of the grid (8x8 as opposed to 1x64), this significance map becomes a volume. Within each of 

these volumes, we calculated the sizes of all contiguous regions (clusters) of significant voxels, with the 

rationale of identifying regions that are larger than the largest region that would be expected by chance. 

To non-parametrically characterize the distribution of chance region sizes, we shuffled the label of trial 

types and recalculated the sizes of all significant regions within the randomized map. After recording the 

size of the largest significant region in this chance map, this process was repeated 100 times. The 95th 

percentile of this chance distribution represents a conservative estimate for the minimum number of 

contiguous voxels in a region from the true map necessary to deem that region significant. Because this 

approach leverages the spatial relationship between electrodes, these analyses were restricted only to 

electrodes from the primary grid. 

To compare the relative strength of the five spectral features, we then calculated the fraction of 

electrodes within each subject’s primary grid that exhibited a significant difference in a given spectral 

feature across the two target types as a function of time. Because the feedback period for subject 

58411c was 2s as opposed to 3s, their results on this and subsequent analyses in this chapter are 

presented individually, but not included in group averages. 

Classification analyses. These studies present an opportunity to understand the neural representation 

of higher-level goals during a BCI task. An important consideration for the utilization of these signals in a 
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BCI architecture is to understand whether these activity patterns can successfully be used to train a 

classifier capable of inferring the user’s goal. We specifically wanted to understand two questions: (1) 

whether neural activity from any particular moment during task execution allowed for particularly 

robust classification of intent, and (2) at what time point during the trial, if any, are the aggregate neural 

activity features from all previous time points in the trial sufficient to perform successful inference. To 

address these two questions, we utilized neural activity from consecutive 100 msec windows as 

predictive features and performed instantaneous and aggregate forms of our classification analyses. In 

the former, activity features from each time-step within the trial are considered separately. In the latter, 

all statistically meaningful features from previous time-steps are included as potential features in the 

training of the classifier for a given time-step. Other than the treatment of the features, the 

methodological approach to these two analyses is the same. In both cases, we performed 10-fold cross 

validation training and testing of a support vector machine (SVM) using a radial basis function (RBF) 

kernel to allow for non-linear relationships between predictors (Chang & Lin, 2011) (available for 

download from www.csie.ntu.edu.tw/~cjlin/libsvm). The two free parameters in this model, 𝐶 and 𝜆 

were fixed to 1 and 1/N, where N is the number of features used for training. Before training the SVM, 

feature selection was performed on training data from each fold using regularized least squares 

regression using the lasso algorithm (Tibshirani, 1996). To prevent over fitting to the training data, lasso 

was conducted using 4-fold cross validation and 10 monte-carlo repetitions per fold. The algorithm was 

configured to include no more than 10 non-zero weights in the final regression model. 

In the event that lasso identified a best model fit with no non-zero weights, we selected the three 

features with the highest pearson’s correlation coefficient (R2) for SVM training. 

Our classification analyses were computationally intensive. In order to maintain reasonable 

computational complexity and execution time, we restricted classification analyses to use only HG 

http://www.csie.ntu.edu.tw/~cjlin/libsvm
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activity from the six frequency bands extracted from the neural data. As can be seen below in section 

7.3.1, HG activity is the most robust indicator of both cue-phase and feedback-phase intention. 

Post-hoc trial performance biasing. We opted for an assistive approach to hierarchical BCI that modifies 

one or more task parameters on a per-trial basis in an effort to assist in task execution. In our post-hoc 

analysis of the RJB data, we modified the starting y-position (𝑦𝑜) of the cursor on the screen. Because a 

portion of our classification analyses utilized HG activity from the feedback phase of the trial, after the 

cursor would have already begun moving, this theoretical analysis violates the causality necessary for a 

real-time application. However, in an effort to characterize the full-time course of intent representation, 

we included neural activity from both the cue and feedback phases. 

In the case of the two-target RJB, the target can take one of two positions on the screen, as described 

previously. Assigning position values to those two targets as 𝑦𝑢𝑝 = 1 and 𝑦𝑑𝑜𝑤𝑛 = 0, and assuming that 

the target direction 𝐴 has already been classified as a specific direction 𝑎, the start position of the cursor 

was modified according to the following formula: 

 𝑦0
′ = (𝑦𝑎 − 𝑦0) ∗ 2𝛼(𝑝𝐴=𝑎|𝑿 − 0.5) + 𝑦0 (4) 

 

Where 𝑦𝑜
′ is the biased cursor start position, 𝑦𝑎 is the y-position of the target in the direction of 𝑎 from 

the origin, 𝑦0 is the original cursor start position, 𝛼 is a bias magnitude term ranging from 0 (no 

confidence in inference) to 1 (complete confidence), 𝑿 is the observed neural data and 𝑝𝐴=𝑎|𝑿 is the 

posterior probability of classification of the intended target direction being 𝑎 given the set of neural 

features 𝑿. 

We performed post-hoc biasing of RJB task execution using the results from the classification analyses at 

a spectrum of 𝛼 values from 0 to 1 in 0.01 unit steps. 
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7.2.2 GoalBCI studies 

Subjects. To be eligible to participate in this study, subjects needed coverage of the precentral gyrus, 

specifically with one or more electrodes that demonstrated significant activity correlated with hand or 

tongue movement. After the initial screening task, subjects were given the opportunity to perform the 

GoalBCI task as many times as they wanted, but the subjects had to complete at least 3 runs to be 

considered for subsequent analyses.  

Table 6 – GoalBCI Subject information and behavioral performance summary. Subjects performing 
significantly better than chance on either hit rate or ISE are shown in bold face. The asterisk (*) denotes a 
subject that was used as a purely visual control who was presented the visual stimuli associated with the 
task without being granted BCI control. Abbreviations: R right, L left, F frontal, P parietal, T temporal, O 
occipital, M Act refers to the motor task associated with the controlling electrode.  

ID SID Gender Age 
 

M Act Coverage 
N 

Trials 
N 

Bad 
Hit 

rate 

Chance 
(95% 

CI) ISE 

Chance 
(95% 

CI) 

S1 d6c834 M 25 Hand LR-F/P 129 10 18.4% 24.5% 1.31 1.36 

S2 6cc87c F 11 Hand L-F/P 134 1 45.4% 22.8% 0.704 1.35 

S3 ada1ab M 16 Tongue R-F/T/P 54 9 16.7% 20.5% 1.44 1.36 

S4 6b68ef F 50 Hand R-F/T/P 78 0 14.5% 19.3% 1.40 1.35 

S5 8adc5c F 42 Tongue R-F 49 2 22.5% 26.7% 1.69 1.56 

S6 5050b0 M 16 Hand R-P 63 0 17.9% 8.16% 1.25 1.26 

S7 a9952e F 13 Hand L-F 106 6 45.3% 25.8% 1.14 1.39 

S8 d5cd55 F 35 Hand L-F/T/P 112 1 25.9% 25.3% 1.50 1.57 

S9 9d10c8 M 13 Tongue L-F/T/P 125 17 38.4% 26.7% 1.20 1.46 

S10 979eab* M 20 N/A L-F/T/O 32 1 N/A N/A N/A N/A 

 

BCI Task. As an alternative to the RJB, the design of the GoalBCI task is tailored to allow us to 

simultaneously probe the cortex for representation higher-level intent while also providing a more 

behaviorally rich task that breaks the perfect correlation between direction of the target from the cursor 

starting position and correct direction of travel given the current cursor position. The task is a one-

dimensional variant of the center-out task that has been used in numerous invasive and non-invasive 

BCI studies (e.g., Simeral et al., 2011). Subjects are presented with the target for 2-3s (the ‘cue’ period), 

then the cursor appears and the subject must modulate neural activity of the controlling electrode to 
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move the cursor into the space defined by the target (the ‘feedback’ period). To succeed in any given 

trial, the subject must move the cursor into the space defined by the target and maintain it within that 

region for a specified dwell time (1s). If the cursor leaves the target before this dwell duration has 

completed, any subsequent entry into the target area will still be required to dwell for the entire 

duration of the dwell time. The dwell time requirement was chosen in conjunction with the overall 

control gain of the system such that the subject is unlikely to acquire a target simply by ‘drifting’ across 

it; instead they can overshoot and must subsequently correct for that error. As was the case with the 

RJB, the cursor’s vertical velocity was driven by spectral power changes in a sub-band (~75-100 Hz) of 

the HG range from the electrode determined during motor screening. Subjects were trained to 

modulate this activity feature using motor imagery; however there was no restriction on the subject 

continuing to explicitly use motor imagery as they developed task proficiency. Subjects were instructed 

not to preform overt movements to drive the cursor. 

Whereas the two-dimensional center-out task typically has four or eight target locations, all equidistant 

from the cursor origin and placed radially every 90° or 45°, respectively, the task used in this chapter 

restricts movement of the cursor to the vertical dimension and places targets along the vertical line that 

passes through the cursor origin. Also unlike the standard center-out task, targets in this task have 

properties other than location that are varied on each trial. The targets were placed either above or 

below the origin at one of two distances from the origin (20% or 35% of the total screen height). They 

were also one of two diameters (8% or 16% of total screen height). Task flow and target 

direction/distance/sizes are illustrated in Figure 23 and Figure 24. 

As was the case with the RJB, the cursor’s vertical velocity was updated every 40msec and controlled by 

changes in HG activity at the controlling electrode as calculated by an auto-regressive filter using the 

previous 500msec of data. This time-variant estimate of HG activity was normalized against six seconds 

of stored data for each target type and then mapped to cursor velocity. The normalizer was typically 



96 
 

allowed to adapt (collecting reference data and updating normalization parameters) only during the first 

run; however in cases where non-stationarity of the signals showed obvious decoder bias, it was 

recalibrated.  

We utilized a block-randomized trial design, to present the user with an approximately equal number of 

occurrences of each target type, even in runs that were aborted before completion, while controlling for 

potential order effects between trial types. Each block consisted of a single presentation of each of the 

eight potential targets. Each run consisted of three consecutive blocks. Depending on the subject’s 

capability, each run could last between 2.25 and 6.75 minutes. 

 

Figure 23 - Depiction of the GoalBCI task and block randomized design 
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Figure 24 - Depiction of the eight possible targets presented to the user during the GoalBCI task. Each target 
will be presented exactly once within a block. The order of target presentation within a block is randomized. 

Quantification of behavioral outcomes. Though success on a trial is formally defined as moving the 

cursor over the target and dwelling for the requisite dwell time (termed: a hit), the task was designed 

such that there were other behavioral metrics that can be extracted to facilitate statistical comparisons 

of performance. Additionally we assessed integrated squared error (ISE) of cursor position relative to 

the nearest edge of the target on each trial. 

Preprocessing for offline analysis. As the reader will see demonstrated in the results of the post-hoc 

analysis of the RJB task, HG activity is by far the most robust indicator of intent during BCI task 

execution, thus all preprocessing steps were as described above, with the exception that the sole 

spectral feature extracted from the raw ECoG signal was the HG power envelope (70-150 Hz). To 

maintain computational tractability and to allow for direct comparison of ongoing task state (cursor 

position, etc.), this spectral feature was downsampled to the update rate of the BCI2000 system 

(40msec / 25 Hz). 
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Identification of neural correlates of intended movement direction. Identification of HG activity 

patterns associated with different target directions was performed similarly to the approach described 

previously for the RJB data, with one notable difference. Instead of using the conservative maximum 

statistic approach to determine the significance threshold, we characterized the complete distribution of 

cluster sizes in the 100 randomized bootstrap repetitions. Given that subjects in this study did not 

participate in as many trials of the BCI task and did not expressly have the requirement of above chance 

task performance, this was done to minimize the risk of type II error. 

Classification of intended movement direction. Post hoc classification analyses were conducted on all 

nine subjects. The approach was conceptually similar to the RJB classification analyses performed earlier 

in this chapter, though there were a number of noteworthy differences, so the method is explained in 

full below. 

The neural activity features used in GoalBCI classification analyses were the average HG power in each 

recorded electrode during the cue phase. We performed 10-fold cross-validated training and testing 

again using an SVM with an RBF kernel. In an effort to maximize classifier performance on relatively little 

training data, in this analysis we added the additional step of performing a parameter sweep for 𝐶, the 

SVM penalty parameter and 𝛾, the single free parameter in the RBF kernel. 

 This was done using a standard train-test-validate approach, with a 2-stage iterative grid search for 

optimum values of 𝐶 and 𝛾. In the outer stage of this process candidate values of 𝐶 were 2𝑥 , 𝑥 ∈

[−5, −3, −1 … 15] and candidate values of 𝛾 were 2𝑥 , 𝑥 ∈ [−15, −13, −11 … 3]. In the second stage, 

given maximal exponents from stage one as 𝐶+ and 𝛾+ candidate values for both 𝐶 and 𝛾 were 

calculated as 2𝑥 , 𝑥 ∈ [𝑦 − 2, 𝑦 − 1.5, 𝑦 − 1 … 𝑦 + 2] where y is 𝐶+ and 𝛾+ as is appropriate.  

During the training phase of each fold, the training data were broken into nine additional folds (each 

containing 8/9th of the training data) that were used to train multiple SVMs across a spectrum of 
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parameter values. Each of these SVMs was then used to classify on the remaining 1/9th of data from that 

fold. From these classification results, the values for 𝐶 and 𝛾 that produced the best classification 

accuracy over all sub-folds were then used to train a single SVM on the entire set of training data. This 

single SVM was used to evaluate classification accuracy for that fold. The reader is referred to LIBSVM – 

A practical guide to SVM classification for additional methodological detail (unpublished, available freely 

for download at http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf). Because of the real-time 

requirement of low computational complexity, feature selection was performed on a per-fold basis 

using the computationally efficient mRMR feature selection algorithm (Peng et al., 2005), modified to be 

appropriate for continuous data (utilizing correlation as opposed to mutual information as the measure 

of relevance). The mRMR algorithm maximizes the relevance of all selected features while minimizing 

the redundancy of any two features in the retained feature set, and has a single free parameter of the 

number of features to be selected. This parameter was set to 10. 

Implementation of a real-time BCI using inferred intended movement direction. In addition to the 

post-hoc analyses, we developed a version of this pathway that could run in real-time in the BCI2000 

signal processing pathway. The feature and parameter selection portions of this pathway were 

conducted using custom Matlab software and were identical to what is described above. The final 

inference was not performed using a cross-validation approach, however, but instead was deployed as a 

real-time system. At the patient’s bedside, we collected data from approximately two full runs of the 

GoalBCI task and took a short break (< 2 minutes) to train the classifier that would be used for real-time 

biasing in subsequent runs.  

The classifier was configured to report the posterior probability of classification of intended movement 

direction, such that the starting position of the cursor can be dynamically changed on a trial-to-trial 

basis. During this closed-loop evaluation, one-half of the performed trials were catch trials where the 

http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf
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output of the classifier will not be used to bias the trial. This is done to allow for direct comparison of 

the added value of inclusion of goal inference in our BCI architecture. 

We biased the starting position of the cursor by moving it toward the mean position of all targets in a 

given direction, proportionally to the posterior probability of the estimation. Assuming that the target 

direction A, was classified as a specific direction a, the biasing of start position was be done according to 

the following equation: 

 𝑦0
′ =  (𝑦𝜇|𝑎  – 𝑦0) ∗ 2(𝑝𝐴=𝑎|𝑋 − 0.5) + 𝑦0 (5) 

Where 𝑦0
′  represents the biased cursor start position, 𝑦𝜇|𝑎 is the mean y-position of all targets in the 

direction of 𝑎 from the origin, 𝑦0 is the original cursor start position, 𝑿 is the observed neural data and 

𝑝𝐴=𝑎|𝑿 is the posterior probability of classification of the intended target direction being 𝑎 given the 

neural data 𝑿. Note that this is similar to equation 4 above, however, now targets can have one of 

multiple vertical positions and the confidence term 𝛼 has been set to one. 

Multiple regression model of ongoing representation of task state. All previous discussion of the neural 

representation of intention has treated intent as a static value (e.g. coding for target position) that could 

be inferred before or during task execution. In addition to this representation of intent, we wanted to 

consider the possibility that neural activity patterns during ongoing task execution could reveal 

information about both the higher-level goal being attempted by the subject and the closed-loop 

computation being carried out by the brain during the feedback period to achieve that goal. 

To that end, we employed a channel-wise lagged multiple regression analysis relating HG activity 

patterns to ongoing task state during the feedback period. Because the subject had direct control over 

cursor velocity and was expressly trying to minimize the distance between the cursor and the target, we 

chose these two quantities and their interaction as primary predictors of neural activity. Because we 

were simultaneously interested in higher-level goal signals, we included the position of the target in this 
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regression model, recognizing that it is not time variant within a given trial. The simple formulation of 

the regression model is then as follows: 

 x(𝑡) → 𝑣(𝑡) + 𝑒(𝑡) + 𝑣𝑒(𝑡) + 𝑝𝑡𝑎𝑟𝑔𝑒𝑡 + 𝜖 (6) 

where x(𝑡), the HG activity from a single ECoG channel, can be approximately modeled as a linear 

combination of cursor velocity [𝑣(𝑡)], the distance between the cursor and the target [𝑒(𝑡)], the 

interaction between the two [𝑣𝑒(𝑡)], and the position of the target [𝑝𝑡𝑎𝑟𝑔𝑒𝑡]. Respecting the fact that 

both the brain and the BCI decoder introduce delays between task state parameters and their 

corresponding neural representations, this model can then be expanded as follows: 

 x(𝑡) → 𝑣(𝑡 + 𝜏𝑣) + 𝑒(𝑡 + 𝜏𝑒) + 𝑣𝑒(𝑡 + 𝜏𝑣𝑒) + 𝑝𝑡𝑎𝑟𝑔𝑒𝑡 + 𝜖 (7) 

where each time-variant predictor now has a single lag that best captures the relationship between that 

predictor and the neural activity. 

After the preprocessing steps described above, the first step in this analysis is then to identify and 

remove all trials where the cursor became ‘stuck’ on the top or bottom of the workspace. In these cases, 

the nature of the relationship between task state and neural activity changes drastically (especially at 

the controlling electrode, where ECoG-to-velocity mapping is strictly defined). Then, on a channel-by-

channel basis, we selected the appropriate lags for each of the time-variant predictors. This was done 

using a cross-correlation approach, with a maximum lag between neural activity and a given predictor of 

𝑙𝑎𝑔 ∈ [−1, 1] seconds. Because task state (e.g. cursor velocity) is undefined outside of the feedback 

period, these regression analyses only included neural activity from time points where behavioral state 

was defined at all lags (from 1s after feedback begins to 1s before it ends). Lagged predictor matrices 

were generated by shifting predictor vectors by up to 1s in either direction (30 samples) and 

concatenating them, then dropping all time periods where the predictor was not defined. We then 

calculated correlation coefficients and corresponding p-values for each predictor-to-ECoG lag, and 
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Bonferonni corrected the p-values for the number of lags considered. The significant (post-correction) 

lag that resulted in the highest correlation coefficient was retained as the lag that best captured the 

relationship for that particular ECoG channel/predictor pair. In the case there were no significant 

correlations for that pair, that predictor was not included in subsequent regression analyses for that 

specific ECoG channel. 

 With lags for each channel/predictor pair in hand, we then performed channel-wise multiple regression 

analyses, relating the multiple factors of task state to the HG activity patterns recorded in each 

electrode. From this we extracted and subsequently Bonferonni corrected (based on the number of 

channels for a given subject) p-values indicating whether a given predictor (at its corresponding lag) was 

significantly predictive of HG neural activity for a given ECoG channel. 

7.3 Results 

7.3.1 Retrospective RJB studies 

Subject population and behavioral results. This study was performed on 11 individuals (1 female; Mean 

age 26.1 ± 12.0 std). The mean number of trials performed by each subject was 111 ± 57 (std). Average 

task performance, measured in terms of successful target acquisition was 75 ± 8.6% (std). Under the 

assumption of an equal probability of success or failure on any given trial, the 95% CI of chance 

performance varied across subjects, depending on the total number of trials performed by that subject. 

Correspondingly, individual trial counts, performance, and CI’s are included in Table 5. These results are 

summarized in Figure 25. 
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Figure 25 - Individual task performance in the retrospective analysis of the RJB data for the purposes of goal 
inference. Chance performance is at 50% for all subjects, and the 95% CI of chance performance (dotted line) 
varies from subject to subject. 

Spectro-temporal features correlated with intent. The primary goal of this analysis was to determine 

which spectral components from the ECoG signal are most predictive of the intended target of the 

subject and when during task execution they occur. 

Far and away, we found the strongest representation of the intended target in HG signals during the 

ongoing task execution; in 10 of 11 subjects we observed significant differences in HG activity across 

trial types (two-sample t-test, p < 0.05; cluster-size corrected), with mean t-statistic magnitudes 

(considered across all electrodes) of over 0.6 during the feedback period. Spectro-temporal significance 

maps are shown for each subject in Figure 27. HG was not the only frequency band in which information 

predictive of intent was coded. During the feedback period, we observed significant differences in beta, 

alpha, theta, and delta (in 9, 2, 3, and 3 of the 11 subjects, respectively) activity as a function of target 

direction. We also evaluated the LMP for predictive power but observed significant differences across 

trial types in only 1/11 subjects. Excluding the LMP, the relative strength of significant activity 

differences in the different frequency bands as a function of time within the trial is summarized in Figure 

26. As can be seen individually in these two figures, differences in HG activity most commonly occurred 

during the feedback period after approximately 500 msec, indicative of the fact that intent is most 
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strongly represented after a behavioral response latency and during ongoing task execution. Note that 

subject 58411c was excluded from Figure 26 because their feedback duration was only 2s. 

 

Figure 26 - Average Strength of intent representation in the RJB data set as a function of time, stratified 
across frequency. (a) Note markedly higher average absolute t-statistics for HG than the lower frequencies. 
(b-c) Individual time slices taken from (a). These serve to demonstrate the distributions and individual 
contributions of data points for each curve from the subjects. Thick horizontal bar represents the mean value 
of all data points at that given time for the specific frequency. Thin horizontal bars represent the SEM. 
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Figure 27 - Individual spectrotemporal significance maps for the RJB data set. Maps are shown for the four 

canonical oscillatory frequencies (𝜹, 𝜽, 𝜶 & 𝜷) as well as HG and the LMP. The legend provides axis and 
colormap labels. 
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Cue phase representation of intent. Though Figure 26 demonstrates that the majority of subjects only 

demonstrated intent representation during the feedback period, we note three subjects who had 

significant intent representation during the cue period as well: 30052b, fc9643, and 7ee6bc. This can be 

seen individually in each of their spectro-temporal feature maps, but is also readily apparent in Figure 

26b, which shows the individual contributions of each subject to the various curves at 𝑡 = 0 and 𝑡 = 1. 

These three subjects appear to account for most of the significant, goal-related HG activity during the 

cue phase. 

Looking specifically at the spatial representation of electrodes with strong target representation during 

the final second of the cue phase (−1.5 <  𝑡 <  0; abs. mean(t-statistic) > 1.96), we observe an 

interesting spatial distribution of electrodes. This is depicted in Figure 28. Specifically, in subject 30052b, 

we see representation in BAs 22 and 6, corresponding to the TPJ and PMd respectively. For fc9643, we 

see representation in BAs 4, 6, 10, and 43, corresponding to M1, PMv/d, PFC, and TPJ, respectively. 

Lastly, for subject 7ee6bc, we observe representation in BAs 4, 5, 6, and 40, corresponding to M1, PPC, 

PMd, and lateral parietal cortex. It appears, at least in this small sample size, that fronto-parietal 

networks play a role in pre-trial representation of intent in BCI task execution. Why we do not observe 

similar activity patterns in the other eight subjects is curious, and may be related to strategic or internal 

representation differences across users, neither of which were quantified in this study. 
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Figure 28 - Spatial distribution of electrodes showing significant representation of intent during the cue 
period. t-statistics were averaged over the majority of the cue period (-1 < t < 0), and thresholded to exclude 
all average values between -1.96 and 1.96. Note representation of intent in M1, PMv, PFC, TPJ, and PPC. 
Electrodes not exhibiting significant changes are shown as black dots to provide information about subject-
specific coverage. 

Inference of intent. Using the approach described above, we assessed the instantaneous and aggregate 

classification accuracy that could be achieved using HG activity features. In this case, aggregate 

classification gives a sense of the relative time/accuracy tradeoff for inference applications. 

The trend of relatively stronger representation of intent during the feedback period carried over to 

classification analyses, with mean instantaneous classification accuracies of 55.4 ± 2.0% (mean ± SEM 

typical throughout this paragraph) and 65.7 ± 3.2% during the cue (−1 <  𝑡 <  0) and feedback 

(0.5 <  𝑡 <  3) periods, respectively. Using the aggregate approach, predictive power roughly 

equivalent during both task phases with mean classification accuracies of 57.3 ± 3.3% and 71.4 ± 2.8%, 

again for cue and feedback periods, respectively. As an experimental control, we utilized the same 

neural activity and classification approach attempting to classify shuffled trial labels. In the control case 

we observed mean instantaneous classification accuracies of 50.8 ± 2.1% and 50.0 ± 2.1% (cue and 

feedback) and mean aggregate classification accuracies of 47.5 ± 2.7% and 45.0 ± 3.6% (cue and 

feedback). For the instantaneous classification approach, classification during the feedback phase 

(paired t-test, typical throughout this paragraph, p = 8.82 * 10-4) significantly outperformed the 

randomized control, but classification during the cue phase did not (p = 0.12). This same trend was 

observed in the aggregate case, where we observed significantly better performance relative to control 
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during the feedback phase (p = 4.66 * 10-4), but statistically equivalent performance during the cue 

phase (p = 0.061).  

 These results are summarized in Figure 29, with individual classification results included for each 

subject separately in Figure 30. Again we note that subject 58411c was not included in the group 

averages of classification accuracy because of a feedback period duration of only 2s. 

Looking at Figure 29, we note that average instantaneous classification accuracy increases drastically 

over the first 500 msec of task execution, consistent with our observation of an increased presence of 

HG features that code for differences in intended target over this same time period. 

 

Figure 29 - Average classification performance across all subjects for the instantaneous and aggregate goal 
inference approaches. Actual classifier performance is shown in red (dashed line represents ± 1 SEM) and a 
control using randomized target labels is shown in blue. Any time points where classification performance 
using true trial labels was significantly different from the control condition (paired t-test, FDR corrected) are 
notated with black dots. 
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Figure 30 - Individual classification performance for both the instantaneous (a) and aggregate (b) 
approaches. Classification based on true trial labels shown in red and for the randomized control condition 
shown in blue. 
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Task biasing. In a post-hoc fashion, we investigated whether utilization of goal inference during the task 

execution would have modified overall task performance. Because these experimental modifications 

were theoretical as opposed to being executed in real-time, we had the luxury of performing multiple 

instantiations of the modification, testing for the relative effect of inference weight (the 𝛼 value in 

equation 4. 

For instantaneous classification of intent, we observed weak behavioral performance increases when 

inference was done on neural data from the cue phase (up to 1.7% average performance increase across 

all subjects occurred at an alpha value of 0.21). This was specifically true for low 𝛼 values, below 

approximately 0.4. During the feedback period, performance increases were higher (up to 6.0%, alpha of 

0.57), and this enhancement was much less sensitive to changes in 𝛼. See Figure 31 for more detail. 

When comparing this to aggregate intent classification, the general trend is the same: better 

classification of intent when the learner has access to data from the feedback period as opposed to data 

only from the cue period. We observed peak average performance increases of only 0.9% (𝛼 = 0.13) 

during the cue phase, and performance increases of 5.7% during the feedback phase (𝛼 = 0.46).  
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Figure 31 - Summary of post-hoc trial biasing analyses. Subplots (a - instantaneous) and (d - aggregate) 
represent the average performance gains across all subjects (10 of 11) utilizing inference performed at each 
time point (x-axis) at various values of alpha (x-axis). Subplots (b) and (e) represent the same for the 
randomized control condition. Subplots (c) and (f) present the peak average change in behavioral 
performance as a function of alpha across the cue (-1.5 < t < 0) and feedback periods (0.5 < t < 3), in red and 
blue respectively. Corresponding control conditions are shown in dashed lines. 

7.3.2 GoalBCI Task 

In an effort to test the viability of the pre-trial goal inference approach in a real-time setting, and to 

overcome some of the behavioral shortcomings of the RJB task for dissociating low-level imagery-

related neural activity from high-level goal-related neural activity, we designed the GoalBCI task, as 

described above. 

Subject population and behavioral results. This task was performed by 9 subjects, all of whom were 

included in the analyses. Because there were no inclusion criteria, other than performance of the task, 

some subjects performed at chance levels and did not demonstrate adept control of the BCI. 

For the 9 subjects (5 female, mean age 25 ± 14y std), the mean number of trials (after eliminating 

corrupted data) performed by each subject was 89 ± 32 (std). Because this task was substantially more 

difficult than the RJB, task performance was measured using two metrics. The first and most 

straightforward performance metric (hit rate) was the fraction of trials in which subjects successfully 
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moved the cursor to the target and held it within the target for 1s, meeting the successful end condition 

for the trial. The average hit rate across the 9 subjects was 27.2 ± 12.5% (std). We also evaluated subject 

performance using ISE, calculated as the instantaneous distance between the cursor center and nearest 

target edge. ISE is normalized by the number of pixels across the vertical extent of the workspace such 

that the final units are screen-seconds. Average ISE across the 9 subjects was 1.3 ± 0.29 screen-seconds. 

Similar to the RJB, individual chance performance levels and 95% CI’s on those performance levels 

varied from subject to subject based on based on the number of trials performed and differences in 

cursor kinematics due to variability in the BCI decoder. In contrast to the RJB, however, neither hit rate 

nor ISE could be simulated with random draws from a known distribution. To characterize chance task 

performance under the null hypothesis that subjects did not have volitional cursor control, we replayed 

all recorded cursor trajectories with a randomized target location and recalculated hit rate and ISE. This 

process was repeated 1000 times per subject to characterize the distributions for hit rate and ISE under 

the null hypothesis.  

Demographic information, behavioral performance, and chance performance levels are given in detail in 

Table 6. Behavioral performance is also summarized in Figure 32. 
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Figure 32 - GoalBCI behavioral performance as measured by (a) hitrate and (b) ISE. Chance performance was 
calculated on a per-subject basis using synthetically recreated trajectories and random target locations. 
Mean chance performance shown as a solid horizontal bar, with the 95% CI (right-sided [a] / left-sided [b]) 
shown as a dashed horizontal bar. (c and d) Hit rate and ISE across different target types. One star ('*') 
signifies 0.01 < p < 0.05, two stars ('**') signifies 0.001 < p < 0.01, three stars ('***') signifies p < 0.001. 

In this task, we also took the opportunity to evaluate the relative influence of changes in target size and 

target distance from the origin on behavioral performance. Targets each possessed three characteristics 

that could be varied independently: direction, distance, and size. We found that direction (up vs. down) 

did not have a significant impact on hit rate (paired t-test, N=9, p = 0.28) nor ISE (p = 0.96). Targets that 

were farther away from the origin were significantly harder to hit, than those that were near, resulting 

in a significant impact on both hit rate (p = 0.01) and ISE (p < 0.001). Similarly, smaller targets were 

harder to hit than large ones, impacting both hit rate (p = 0.002) and ISE (p = 0.04). See Figure 32c and d 

for detail. 

Comparing the impact of these target characteristics on hit rate simultaneously using a two-way ANOVA 

with target size and distance from origin as factors, we see that through they both have significant 

effects, target size appears to have a stronger impact on this measure of behavioral performance 
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(F(1,32) = 14.68, p = 0.0006) than distance from the origin (F(1,32) = 5.48, p = 0.026). This suggests that 

it is easier for subjects to generate large cursor movements as compared to precise ones. 

HG representation of target direction. As was the case for the neural activity from the RJB task, we 

sought to understand the time-course of neural activity patterns that were representative of each 

subject’s higher-level goal. Specifically, it was of interest to known whether this goal was represented in 

HG activity during the cue phase and/or the feedback phase of task execution. We observed significant 

HG activity during each of these phases in seven of nine subjects, though we note that in general 

representation during the feedback phase was more consistent and stronger. In contrast to the similar 

results from the RJB task, we note that the strength of intent representation is not as strong for the 

GoalBCI subjects as compared to the RJB subjects. This is partially explainable by the fact that the 

GoalBCI task can require subjects to generate both positive and negative cursor velocities to reach 

either an up or down target, but is also possibly due to the fact that in the RJB studies we selected 

specifically for subjects that could perform the task at above chance levels, whereas in this study we did 

not. HG activity difference maps for the nine individual subjects are shown in Figure 33. 
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Figure 33 – Individual spectrotemporal significance maps for the GoalBCI data set. Maps were calculated for 
HG only. Red represents the maximum t-statistic on a given map and blue represents the minimum. See 
materials and methods for statistical thresholding approach. 

To understand at which time periods during task execution there was a robust HG indicator of intended 

movement direction across subjects, we calculated the average absolute value of the t-statistic shown in 

Figure 33. Looking at the population average for this measure in Figure 34, we see that once again, the 

strongest representation of intended movement direction occurs during the initial portion of the 

feedback phase, and can, at list partially simply be attributed to the performance of motor imagery. Two 

important exceptions to this are subjects 6b68ef and 5050b0, both of whom exhibited robust 

differences in HG activity across trial conditions; these activity differences occurred in the posterior 

temporal lobe, the medial and lateral parietal lobe, and the medial occipital lobe. These are areas that 

are rarely covered by ECoG electrodes in epileptic focus resection procedures so it may be that similar 

activity patterns occurred in other subjects, but by nature of the observation model, we did not have an 

opportunity to record them. 
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Figure 34 - time course of the strength of direction representation across all nine GoalBCI subjects during 
the late cue and early feedback phases. Note minimal cue-phase representation of intent is visible in the 

grand average. Again, the strongest representation of intent is visible after ~500 msec in to the feedback 
period. 

Inference of intent based on neural activity during the cue phase. Using the real-time system described 

above, we performed inference and subsequent trial biasing for a portion of the BCI trials performed by 

three of the BCI subjects (a9952e, d5cd55, and 9d10c8). We note that all three of these subjects 

naturally performed the BCI task at above chance levels, both in terms of hit rate and ISE). Classification 

accuracy on biased trials for these three subjects was at chance levels (58.4%, 43.75%, and 44.8% 

respectively). In general the approach previously applied to more invasive neural recordings (Mulliken et 

al., 2008; Shanechi et al., 2013) did not generalize to macro-scale ECoG. Hit rate was not significantly 

different in biased trials from catch trials (𝜒2 tests, p = 1, 1, and 0.33 for S7, S8, and S9, respectively) nor 

was ISE (two-sample t-tests, p=0.9, 0.35, 0.42). Correspondingly, behavioral outcomes were not 

significantly improved in biased trials relative to catch trials; see Figure 35 for detail. We do note, 

however that on the occasions when classification was correct, the biasing of the start position had a 

noteworthy impact on task performance for two of the three subjects (hit rate: p = 1, 0.06, 1; ISE: p = 

0.0071, 0.16, 0.08). This is shown in Figure 36 and indicates that the assistive approach to biasing may 

be viable in cases where inference of the goal is possible. 
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Figure 35 – Impact of real-time goal inference on Hit rate and ISE. Results for individual subjects are shown 
separately. Unbiased trials are shown in red, biased trials are shown in blue. Classification of intended target 
direction was at chance levels, thus overall performance trends were not significantly impacted. 

 

Figure 36 – Impact of classification correctness on behavioral outcomes in biased trials. Performance 
metrics in instances of incorrect intent classification are shown in red, and those of correct intent 
classification are shown in blue. Marked performance increases in two of three subjects suggest that cursor 
start position biasing would be a viable approach in cases where cue-phase inference was possible. Two 
asterisks (‘**’) denote p values of < 0.01 but > 0.001. 

We applied the same signal processing and inference pathway post-hoc, in a 10-fold cross-validation 

approach to see if, like the previous RJB results, pre-trial goal inference would be successful for a subset 

(N=3) of subjects. A priori we were specifically interested in subjects S4 (6b68ef) and S6 (5050b0) 

because of their strong pre-trial target-specific response. As one might expect from the relative 

strengths of cue phase direction representation, post-hoc classification for these two subjects was much 
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better (82.6% and 92.9%, respectively) as compared to the other seven subjects (54.1 ± 2.8% [SEM]) and 

a target-randomized experimental control (51.1±2.1 [SEM]). We note that S5 (8adc5c) also exhibited 

classification performance significantly above chance though they did not possess as strong of a cue-

phase intent representation. 

Figure 37 summarizes the individual post-hoc classification accuracies relative to chance classification 

performance (calculated from the binomial distribution), and also presents the spatial locations of the 

electrodes from subjects 6b68ef and 5050b0 that contributed features that were significantly correlated 

with classification labels after FDR correction. Again, we see the localization of these electrodes to the 

posterior temporal, lateral parietal, medial parietal and medial occipital lobes. 

 

Figure 37 – Classification results in 10-fold cross-validated post-hoc classification analyses. Chance 
classification performance for each subject is shown as a black horizontal line, with two-sided 95% CI’s 
shown as dashed lines. Classification based on true trial ordering is shown as a dark bar, and a control 
based on randomized trial ordering is shown as a light bar. (b and c) For two subjects with above chance 
classification, spatial distribution of contributing electrodes is shown. All electrodes with significant 
correlations (p < 0.05, FDR corrected) with target direction are shown on individual subject brains. 
Uncorrelated electrodes are shown as solid black dots. Though S5 had above chance classification 
accuracy, they had no electrodes with significant correlations after FDR correction. 

Visual control for cue phase representation. As a control to determine whether (a) significant visual 

representation of the target’s location in the workspace exists outside of primary and secondary visual 

cortices in the absence of task salience and (b) whether any representation under these circumstances 

were sufficient to classify the intended target direction, we presented all of the visual stimuli associated 
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with the BCI task to a novice user. During the false feedback period, the cursor did not move from the 

starting position, and the subject was not instructed to perform any behavioral task other than to 

observe the visual stimuli. After multiple comparison correction (FDR), we found no electrodes that 

exhibited significant correlations between target direction and mean HG activity during the cue phase 

(two-sample t-test). There were three electrodes in occipital (BA 19) and lateral parietal (BA 39) with 

correlations significant at an uncorrected significance threshold of p < 0.01, though this representation 

was not sufficient to allow for classification of target direction above chance levels (classification 

accuracy of 45.2%). This suggests that though representation of target location can be driven in visual 

processing areas in the absence of task salience, it is not sufficient to explain task-related activity 

changes seen in PPC (where the control subject also had coverage). See Figure 38 for detail. 

 

Figure 38 – Classification results in 10-fold cross-validated post-hoc classification analyses for the single 
visual control subject. All depicted values are as described in Figure 37. 

Regression analyses reveal ongoing representation of task demands. It is apparent that there is not a 

consistent, strong representation of intended movement direction during the cue phase of the two BCI 

tasks described above. However, in both cases, we observe consistent activity patterns across multiple 

subjects during the feedback period that are correlated with target direction. We utilized an electrode-
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wise multiple-regression analysis approach to determine how these activity changes relate to ongoing 

changes in the task state, specifically cursor kinematics, momentary error, and the overall goal. 

We found fairly widespread correlations between cursor velocity and HG activity. Significant correlations 

were observed between lagged velocity and HG in all nine subjects. Due to the nature of the task design 

itself (linking HG activity at the controlling channel to cursor velocity), we would expect to see a strong 

correlation in at least one channel for each subject, however we note that multiple electrodes from 

eight of nine subjects were significantly correlated with velocity. The distribution of weighted average 

lags (see methods) was significantly less than zero (-278 ± 88 msec, mean ± SEM; one-sample t-test, 

N=9, p = 0.014). We note that though the majority of lag relationships implied that HG activity was 

leading cursor velocity, there were significant relationships in many subjects in which changes in HG 

lagged changes in velocity. This implies that these regions are responding to the velocity of the cursor as 

it moves along the screen, and may play a potential role in feedback processing. Looking at Figure 39, 

we observe no particular spatial patterning associated with electrodes that lead or lag cursor velocity. 
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Figure 39 - Velocity results from multiple regression model. Subplots (a) and (b) depict the weights and lags 
of all significantly velocity-related electrodes, respectively. Both lateral and medial cortical surfaces are 
shown. For subjects with left-hemispheric coverage, electrode positions were projected onto the right 
hemisphere. Contributing subject ID’s are shown in each electrode. Color of each electrode depicts the t-
statistic (a) and lag (b) of the electrode-velocity relationship in the multiple regression analysis. Subplot (c) 
provides the same information, separated by subject. Bubble diameter and color are representative of the t-
statistic in the multiple regression analysis. Horizontal black bars represent the weighted means of lags, 
weighted by the absolute value of t-statistic. Bar plot on the far right represents the mean and SEM of these 
weighted means. One star (‘*’) denotes a p-value of < 0.05. 

The second predictor included in our regression model was the signed distance between the cursor and 

the target. Error was represented substantially less commonly than velocity, with significant 

relationships in eight of nine subjects, and a median occurrence in only two electrodes per subject. 
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Subject S2 (6cc87c) is a notable exception to this, as they exhibited significant correlations between HG 

and error in 34 electrodes. Figure 40 shows the spatial distribution of these error relationships, where 

the dominance of subject S2 in terms of this effect can be readily observed. Though the representation 

of error was somewhat less prevalent than velocity, the lag at which the significant HG-error 

relationships occurred was significantly greater than zero (443 ± 157 msec, mean ± SEM; one-sample t-

test, N=8, p = 0.039) indicating that neural activity in the regions demonstrating significant correlations 

is responding to the error state of the BCI, as opposed to predicting it.  
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Figure 40 – Error results from multiple regression model. All depicted values are as described in Figure 39. 

The interaction between error and velocity appeared to capture a more meaningful relationship 

between task state and neural activity. Again there were significant relationships observed in eight of 

nine subjects, however in this case, the median number of electrodes exhibiting significant relationships 

with the interaction term was 10. Similar to error, the lag at which the significant HG-interaction 

relationships occurred was significantly greater than zero (283 ± 113 msec, mean ± SEM; one-sample t-

test, N=8, p = 0.04) indicating that neural activity is primarily responding to this task state. Similar to the 
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observation of the velocity relationships, we note that in the majority of subjects (seven of nine) there 

are significant HG-interaction relationships at negative lags, suggesting that the brain may also be 

predicting the interaction between velocity and error during ongoing task execution. Spatial distribution 

of these relationships, as well as their strengths and lags are included in Figure 41. 

 

Figure 41 – Interaction (velocity x error) results from multiple regression model. All depicted values are as 
described in Figure 39. 

The final component in our regression model was the position of the target on the screen, which is 

assumed to be representative of the higher-level goal that the user is attempting to reach. One benefit 
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of the multiple regression model is that it allows us to dissociate changes in neural activity attributable 

to continuously variable task state (e.g. velocity) from changes in neural activity attributable to the 

higher-level goal. We found a significant representation of target position during the feedback period 

that was primarily located outside of M1 (BA 4). The strongest representations (see Figure 42) were 

found in premotor (BA 6) and frontopolar and dorsal prefrontal areas (BAs 10, 11, 46). 

 

Figure 42 – Target location results from multiple regression model. As target location is constant throughout 
each trial, lag is not meaningful and was not calculated. Correspondingly, only target location-related 
weights are shown. Both lateral and medial cortical surfaces are shown. For subjects with left-hemispheric 
coverage, electrode positions were projected onto the right hemisphere. Contributing subject ID’s are shown 
in each electrode. Color of each electrode depicts the t-statistic of the electrode-target location relationship 
in the multiple regression analysis. 
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Figure 43 - Representation of significant relationships in the multiple regression model by Brodmann area. 
Number of subjects for whom there was a significant relationship between the predictor and neural activity in 
a given region is shown in red. Number of subjects with coverage over that region is shown in blue. Any 
regions with coverage in multiple subjects, and an effect in at least half of those subjects are notated with a 
plus sign (‘+’). 

7.4 Discussion 

This chapter presents a series of analyses, all related to the idea of understanding how, when, and 

where the brain represents its higher-level goal during BCI task execution. We demonstrated in two 

separate data sets that while neural activity strongly correlated with higher-level goal during the 

feedback phase, its representation during the cue phase was more variable. We found that HG activity 

was the spectral feature that best coded for higher-level intent signals, which is interesting considering 

previous findings of robust low-frequency changes associated with movement intention (Schalk et al., 

2007; Wang et al., 2012). Further, using a multiple regression approach we began to disentangle HG 

activity patterns associated with higher-level intent from those associated with low-level execution, and 

demonstrated that the brain responds to both absolute error (distance from cursor to target) as well as 

the relationship between absolute error and current cursor kinematics. 
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In three of eleven subjects from the legacy RJB dataset, we observed significant representation of the 

intended movement direction during the cue phase. Electrode coverage across these subjects was 

variable, based on differing clinical indication, but we observed representation of intent in cortical areas 

classically associated reach/grasp planning (PPC, PMv), attention (TPJ), and executive control (PFC). In 

ten subjects we observed significant differences in HG activity during the feedback phase as a function 

of intended target. In the RJB task, however, intent and execution may be tightly coupled as there is 

perfect correlation between target direction relative to the cursor’s starting position and the correct 

direction of travel at any given time within the trial (see chapter 5 for additional discussion). Therefore, 

any activity changes observed during the feedback period could be attributable to either higher-level 

intention or low-level execution and dissociating the two is difficult. 

To address this shortcoming, we developed a more behaviorally rich 1-D BCI task that weakened this 

coupling. This task, termed the GoalBCI task, is the 1-D equivalent of the center-out task and allowed for 

subjects to overshoot the target, requiring subsequent trajectory correction to successfully hit it. 

Because we observed notable cue-phase representation of intent in a portion of the subjects from the 

RJB analysis, we constructed the GoalBCI task to evaluate the possibility of an ECoG-based real-time 

system that combined estimation of higher level intent and direct execution control, as had been 

demonstrated previously using single unit activity in NHP’s (Shanechi et al., 2013). Testing this 

hierarchical approach in three subjects, we found that it did not appear to generalize to a human ECoG 

model, though this negative finding could partially be explained by inopportune coverage, limited 

classifier training data, and or limited subject sample size. We expect that successful goal inference is 

possible using human ECoG given application-based electrode sizing/placement and longer training 

periods for both the subject and the decoder. To serve as a contrast, Shanechi et al. utilized recordings 

from PMd and SMA, the latter of which is rarely covered in clinical human ECoG studies and the 

inference model in these studies was trained on approximately 3 times as many trials. 
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To support this hypothesis, in a post-hoc analysis using the same classifier structure but a larger subject 

population (all nine instead of the three who attempted the real-time approach) and more training data 

(10-fold cross-validation allows for training on 90% of data recorded per subject) we could successfully 

predict intent in three of the nine subjects. Prediction in these subjects was primarily based in posterior 

parietal and posterior temporal areas, suggestive that it was based on evoked visual responses, 

trajectory planning in parietal regions or both. Though it would not generalize to the base case of 

control of a mechanical end-effector in diverse environments, a system that relies on visual responses 

for intent classification could provide tremendous performance gains for communication-based BCIs for 

severely motor-impaired individuals (Santhanam et al., 2006). As has been argued previously, this is 

arguably one of the specific domains where BCI will first reach clinical viability (Gilja et al., 2011; Moran, 

2010). 

It is important to consider our findings with respect to previous approaches to infer intentional signals 

during BCI control. As one putative source for such signals is PPC, the Andersen group has focused 

heavily on building BCI systems based on activity from single neuron recordings in this region (Mulliken 

et al., 2008). They report the ability to recreate cursor trajectories during manual (joystick-based) cursor 

control from PPC ensemble activity and to utilize BCI decoders trained during manual control for real-

time trajectory decoding. This work demonstrates directional tuning of PPC activity at a single-unit level, 

but whether the online control based on this activity is representative of successful inference of 

intention or direct operant conditioning is uncertain. As an extension to this, Shanechi and colleagues 

built a multi-stage BCI system that expressly incorporates firing activity before the feedback period as 

the prior for a Bayesian framework for trajectory decoding. They also report behavioral performance 

significantly above chance levels, and note that performance declines if the predictive portion of their 

decoder is not used. We note a few important distinctions between this study and the work described in 

this chapter that are valuable points of consideration when designing future ECoG-based attempts at 
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direct inference of higher-level intention signals. First, in both studies mentioned above, subjects were 

trained to perform a task that expressly involved reaching, a motor activity known to elicit activity 

changes in PMd and PPC (Pesaran et al., 2006; Rizzolatti et al., 1998), the two cortical regions where 

electrode arrays were placed. Neural activity patterns during true reaching movements were utilized to 

train decoding architectures. This is in contrast to the approach described in this document, where the 

BCI decoder was trained during the initial stages of BCI task execution and the cognitive task being 

conducted by the subject did not expressly involve reaching movements. It may be that training the 

subject and decoder using overt motor movements that expressly activate these two cortical regions 

provides more robust, directionally-tuned indicators of the higher-level goal. Second, there is a 

tremendous difference in spatial resolution of a intra-cortical micro array and clinical-scale ECoG. While 

small neuronal ensembles in PPC and PMd may exhibit directional tuning sufficient for classification of 

intended movement direction, these ensembles may overlap and become indistinguishable from each 

other at the spatial scale of macro-ECoG. Research-specific, µECoG arrays with inter-electrode spacing of 

1-3 mm may be necessary to resolve directionally-tuned far field potentials. 

Both studies found that there is a strong correlation between neural activity during the feedback phase 

and the position of the target that the subject was trying to reach. As we note above, this relationship 

(especially in the case of the RJB) may be partially attributable to the strong correlation between target 

position and the velocity command (and hence HG activity at the controlling electrode) necessary reach 

that target. In an effort to disentangle these phenomena, we employed an electrode-wise lagged 

multiple regression approach to characterizing the simultaneous relationships between neural activity 

and BCI control, feedback signals, and the higher-level goal. In these analyses we provided evidence that 

higher-level goal is represented during the feedback period primarily in premotor (BA6) prefrontal (BAs 

10, 11 and 46), parietal (BAs 5 and 7), and superior temporal (BAs 41 and 42) areas. Activation of fronto-

parietal networks during ongoing task execution is reasonable based on their demonstrated roles during 
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visuomotor task proessing (Buneo & Andersen, 2006b). Additionally, activation of more anterior frontal 

regions may be indicative of a putative role in goal formation (Kobayashi et al., 2007; Rudorf & Hare, 

2014) and working memory processes (Barbey et al., 2013; Funahashi et al., 1989; Goldman-Rakic, 

1996). The observed activity changes in the STG are more unexpected, but may be indicative of evoked 

activity in networks involved in attentional visual processing of goal-directed behavior (Schultz et al., 

2004), especially when considered in conjunction with the observation from the previous chapter of M1-

to-STG coupling during task execution. 

Inherent to all the studies described in this chapter is the underlying assumption that the roles carried 

out by various cortical structures during reaching and grasping motions will carry over to trajectory-

based control of a BCI. Gallivan and colleagues (2011) demonstrated effector-independent responses 

during reach and saccade planning in parietal subregions (superior parieto-occipital cortex and IPS), as 

well as dorsomedial PFC and M1. However, both of these end-effectors have well established places 

within an individual’s body schema; whether such a representation exists for a completely novel and 

disembodied end-effector (i.e. BCI) has not yet been demonstrated. If we consider the nervous system’s 

ability to forward-model reach trajectories and their corresponding errors (Desmurget & Grafton, 2000) 

as evidence for internal representation of embodied end-effectors, then our observation of changes in 

HG activity before errors occur during BCI task execution provides what may be initial observations of an 

internal representation of a virtual end-effector.  

Even if neural circuitry associated with reach and saccade planning can be quickly co-opted for 

trajectory planning of a BCI, we reiterate that BCI task execution is not expressly a motor task in nature. 

Both the biomechanics of the ‘movement’ and the non-visual feedback (or lack thereof) are quite 

different than what they would be during execution of a native motor task. BCI use can be likened as 

much to a cognitive task as a motor one; in some cases studies even cognitive strategies to generate 

activity changes in controlling areas (Friedrich et al., 2013; Vansteensel et al., 2010). Correspondingly, 
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the ‘goal’ may or may not be spatial, especially in human BCI studies, where the cognitive tool used to 

train the users is typically gross motor imagery (Blakely et al., 2009; Leuthardt et al., 2004) as opposed 

to the initially overt execution of a specific grasping or reaching motion, as is commonly used in primate 

studies (Carmena et al., 2003; Mulliken et al., 2008). In fact, for human users, the internal 

representation of the goal may not be spatial at all, it could be strategic – something more abstract. An 

interesting extension to the work above would be to build a BCI that could provide either auditory, 

tactile, or visual feedback, all presenting the same information to the user but in a variety of sensory 

domains (separately or simultaneously). One might expect then, that for a proficient BCI user, specific 

sensory association areas would be activated by the various feedback modalities, but information about 

task execution and intention would eventually converge, most likely in premotor areas.  

Once an estimate for the subject’s higher-level goal has been successfully inferred, there are two 

potential strategies for how to utilize that information. The first possibility is that generation and 

execution of the motor commands necessary to achieve that goal could be offloaded onto a 

robotic/automated system (Bell et al., 2008; Santhanam et al., 2006). Alternatively, the structure of the 

task could be modified to assist the user in achieving the inferred goal (Shanechi et al., 2013). In the 

studies above, we favored the latter approach, as it maintained direct participation by the BCI subject, 

however we recognize that as capability to perform inference improves, overall performance from the 

BCI system could be improved through direct execution. An interesting fusion of these two models is the 

concept of a hierarchical BCI (Cheung et al., 2012), that permits direct training of lower level ‘BCI motor 

primitives’ that can then be invoked through higher-level commands. System architectures like this 

show great long-term promise as capable and flexible BCI systems that maintain user agency, but also 

mitigate the requirement of constant cognitive vigilance currently necessary for successful direct BCI 

control. 
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[1] JD Wander, RPN Rao, JG Ojemann (2014). Multi-region goal inference improves performance in 

an invasive brain-computer interface task. 1st Annual Neurofutures conference, Seattle, WA, June, 

2014. 
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8 Conclusions 

Though BCI technology represents a powerful potential therapeutic tool for patients with severe motor 

disorders and, in the long-term, a potentially disruptive technology for how we interact with the world, 

systems based on this technology have not yet reached clinical viability. There are a number of 

impediments to this milestone, ranging from electrode rejection by the body to limitations in wireless 

power transmission. In this work, we addressed one limitation in particular: the lack of utilization of 

neural activity from a variety of functionally diverse cortical structures. Current BCI architectures utilize 

a constant and direct mapping between neural activity patterns and end-effector control. This activity is 

typically derived from a relatively small cortical area (e.g., M1). Such systems are relatively inflexible, 

require constant attentional vigilance on the part of the user, allow for little abstraction of function and 

do not leverage other potentially informative signals that can be extracted from elsewhere in the brain. 

Utilizing a human ECoG model, performing a 1-D BCI task, we initially demonstrated that multiple 

cortical regions are active during BCI task execution (M1, PMv, PMd, PPC), and that a portion of these 

regions (primarily PMd and PFC) exhibit less activity as subjects develop task proficiency. Interestingly, 

this finding is consistent with observed activity patterns (both in terms of areas activated and changes in 

activation over time) seen during execution of a true motor task (Chein & Schneider, 2005). This 

suggests that in an effort to develop neuroprosthetic control, the brain harnesses pre-existing cortical 

learning scaffolds and provides a potentially informative target for future co-adaptive BCI architectures 

that are ‘aware’ of the user’s learning process. 

We then extended these findings, utilizing the same dataset, by demonstrating meaningful transcortical 

interactions between a number of these remote areas and the portion of the brain directly involved in 

BCI control. Utilizing two distinct methods – namely STWC and bPLV – we found evidence for spatial 

selectivity by interaction type; amplitude-amplitude interactions occurred over significantly shorter 



134 
 

cortical distances than phase-phase interactions. This finding is consistent with recent work predicting 

structural connectivity based on amplitude correlations between regions (Keller et al., 2014), and taken 

together they provide evidence in favor of slightly more complicated models of long-distance cortical 

interactions (Buzsáki & Draguhn, 2004). 

Lastly, we provided evidence for functional heterogeneity of these cortical regions, demonstrating in 

two separate studies that activity in multiple cortical regions is representative of the intention of the BCI 

user, and that such intention signals are primarily present during ongoing task execution. In a subset of 

the study subjects, we implemented and validated a real-time system that attempted to utilize 

preparatory changes in HG activity to bias execution in order to improve task performance. Though 

these subjects did not demonstrate significant behavioral improvements, we showed in a post-hoc 

analysis on all subjects that behavioral improvement was possible in subjects with parieto-occipital 

coverage.  

Interestingly, though execution of our BCI task involves no true motor execution and lacks both 

somatosensory and proprioceptive feedback, we found that many regions traditionally involved in 

visuomotor skill execution were also involved in BCI use (Chein & Schneider, 2005), and tended to 

represent similar facets of task execution as they would during execution of a native motor task (e.g., 

target location in visual processing areas and PPC, initial task learning in PFC). This implies that even 

though execution of neuroprosthetic control is expressly non-motor in practice, and lacks the afferent 

feedback that is so critical to successful motor skill execution, the brain harnesses pre-existing networks 

for skill acquisition and execution. One opportunity for future BCI research will be to utilize it as a 

scientific tool for evaluating the functionality of motor-related networks in the absence of select 

feedback modalities, or with experimentally modified feedback (see Wander & Rao, 2014 for further 

discussion). 
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One higher-order question that this work helps us to address is: “Which areas are important to BCI 

control?” The series of studies described above provide, to our knowledge, the first evidence of 

widespread cortical task-modulation during BCI task execution. However, in contrast to local activity 

changes observed by Carmena and colleagues (Ganguly et al., 2011), the explanation of simple 

correlation with cursor dynamics appears insufficient. We observe strong task-related activity patterns 

in remote regions that do not simply mirror what is taking place in M1 (e.g., target direction non-specific 

activity changes in dlPFC). One potential model for the activity relationships observed across these 

regions is that during novice task execution, prefrontal areas play an active role in coordinating 

information flow from sensory integration to premotor areas (Miller & Cohen, 2001), helping to build a 

model that maps intended target direction to necessary motor plan. As subjects develop proficiency 

with the task, this cognitive approach to task execution gives way to a more automated one that does 

not require as much active participation by prefrontal areas. This would explain both the target non-

specific changes in PFC as well as the decrease in these activity patterns over the course of learning. 

Additionally, it could explain the lack of learning-related changes in PMv, as this region may continue to 

play a role in successful task execution. 

As it does in execution of native visuomotor tasks, PPC appears to be involved in this process of sensory 

integration and target localization during a BCI task. However, it is by no means the only cortical region 

that represents target-specific activity changes, which is consistent with fMRI-based findings in humans 

performing reach, grasp and saccade tasks where direction is represented in both parietal and frontal 

cortices (Gallivan et al., 2011, 2013). We found though, that coverage of PPC was not sufficient to 

guarantee an observable representation of higher-order goal. We pose two potential explanations of 

this: first, it may be that spatial scale of clinical-grade ECoG grids is not fine enough to differentiate 

populations of parietal neurons that respond to targets in specific portions of the visual field. Second, it 

is quite possible that an individual’s particular task execution strategy does not activate pre-existing 
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visuomotor networks. In future work, strong consideration should be given to how the neuroprosthetic 

skill is taught and what types of motor imagery are being utilized by individual subjects. 

This raises an interesting question about the teaching of the neuroprosthetic skill. As we described 

above, there is significant variability in how different research groups train study subjects to control a 

BCI (Lotte et al., 2013); in our studies alone subjects controlled the BCI based on either tongue or hand 

motor imagery, depending on their electrode coverage. Whether PMv, PMd or both are involved in a BCI 

task may depend largely on the way the individual was trained to perform the task. As an example, NHPs 

that are trained to perform a reaching task that is later converted to a BCI task (Mulliken et al., 2008) 

may preferentially involve PMd neurons, whereas human subjects that begin their BCI training with 

gross grasp performance (e.g., a power grip) (Blakely et al., 2009) may be more likely to recruit cortical 

networks involved in grasp control. 

When considering our results, it is important to consider the limitations inherent with human ECoG 

studies. The work discussed here exclusively involved humans with intractable epilepsy and study 

subjects were undergoing clinical treatment at the time of their participation in this study. The nature of 

this subject population should be kept in mind when making extensive cross-subject generalizations and 

generalizations to healthy populations. Electrode placement was driven by clinical need and thus not all 

subjects had coverage of all cortical areas that were discussed above, though in all cases where it was 

possible, we made efforts to evaluate effects in multiple subjects and restrict findings observed in single 

individuals. Additionally, epilepsy is a disease with widespread effects, the full extent of which is still 

largely unknown. Depending on the root cause of an individual’s epilepsy, they may have undergone 

significant cortical reorganization and cortical field potentials may be contaminated by inter-ictal 

activity. Findings from studies based on epileptic patients should bear in mind these considerations.  
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Use of a BCI was completely novel to the subjects in the above studies. Improved performance and 

accompanying changes in neural activity are to be expected throughout the entire duration of 

participation in the studies (approx. 1-3 d) and would probably continue long after if we had an 

opportunity to observe the subjects for longer time periods (Wodlinger et al., 2014). The development 

of robust, co-adaptive hierarchical BCI architectures will require opportunities to collect human data for 

long periods (weeks to months). Fortunately, with the recent advent of the Neuropace® device as a 

long-term ECoG-based treatment for refractory epilepsy, opportunities for truly long-term ECoG studies 

may be more feasible. 

Another limitation to consider is the likely lack of generalizability to the BCI systems described above; 

this consideration is of particular importance as it is endemic to nearly all BCI designs. The hospital 

environment where data collection takes place and the BCI tasks that subjects are conducting are both 

tremendously simplistic environments when compared to the eventual reality of a deployed BCI. As 

Blakely and colleagues noted, BCI decoding parameters could be held constant over a few days with no 

appreciable performance decrease on a simple BCI task (Blakely et al., 2009), but we have no evidence 

yet that a static mapping would suffice when confronted with varied task demands. Within the context 

of the goal inference studies described above, we only had the opportunity to present subjects with a 

small space of potential visual targets. It is reasonable to expect that systems trained on such limited 

data would likely not generalize well when confronted with different stimuli that evoke a similar higher-

level goal. To account for this, we believe it will be necessary to implement BCI systems that 

continuously adapt and retrain (over long time periods) to adjust for changes in device requirements as 

well as underlying patterns of neural activity related to intention and execution signals. 

The conclusions of this work must also be tempered by the fact that these are observational studies. The 

functional roles of each of these cortical areas are inferred based on correlative evidence. Interventional 

studies that either temporarily (e.g., electrical stimulation, neurotransmitter inhibition) or permanently 
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(e.g., lesion studies in appropriate models) disrupt function in select cortical areas will be necessary to 

confirm specific roles of regions and networks. In contrast, facilitation of activity in these cortical areas 

through enhancement of local plasticity during or between sessions may provide an opportunity to 

begin to translate previous studies in cortical plasticity (Jackson, Mavoori, et al., 2006) to clinically 

functional outcomes. 

In line with some of the criticisms described above, we think a highly relevant line of inquiry to be 

pursued in the future will be to further our understanding of how different cortical networks are 

selectively recruited in response to changes in the BCI paradigm and learning environment. One 

example of this that has been mentioned previously is to explicitly train human BCI subjects using grasp 

vs reach motor imagery to determine whether there is any selectivity (either initial or continuous) in 

recruitment of specific fronto-parietal networks. Such a study may be more appropriate for either 

simultaneous EEG-fMRI or micro-scale (2-3 mm inter-electrode spacing) human ECoG based on the small 

spatial scale of the specific subregions of PPC that one would want to observe. Furthermore, in the work 

above, we investigated cortical networks involved in learning of a BCI task de novo. Perturbation of this 

learned system, either through manipulation of the decoder or the specific rules of the task, will provide 

us an opportunity to investigate the role of carry-over learning and the BCI equivalent of motor-skill 

adaptation, both of which are of particular relevance to generalizable BCI frameworks. 

Though it was only touched on briefly in Chapter 7, neural representation of error has been well studied 

previously (Falkenstein et al., 2000; Gemba et al., 1986; Milekovic et al., 2012), even in the context of 

BCI task execution (Buttfield et al., 2006; Ferrez & Millán, 2008; Wander et al., 2013). In terms of the 

latter, event-related error potentials have been employed extensively as a means to perform quasi-

supervised BCI decoder co-adaptation (Buttfield et al., 2006; Ferrez & Millán, 2008; Gürel & Mehring, 

2012). Continuous error tracking, on the other hand, has not been explored as thoroughly and may be 
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an excellent candidate for an additional channel of information to pass to multi-level BCI architectures. 

At the very least, such a signal may be predictive of pending failure or even danger to a BCI user.  

While we are working toward the necessary advancements to make motor-based BCIs a clinically viable 

technology, it is important to keep in mind that the term BCI encompasses many different types of 

systems, ranging from stimulators for sensory substitution (e.g., cochlear implant) and symptomatic 

treatment (e.g., deep brain stimulation for Parkinson’s disease) to recording devices that will someday 

allow locked-in patients to communicate. Advances made in any one of these sub-domains can and 

should benefit ongoing investigation in the others, and at every step along the way where it is feasible, 

we should be leveraging BCI technology not only as a potential therapeutic medical device, but also as 

an enabling technology to better understand the inner workings of the nervous system. 

~ 

The primary contribution of the work described above is that it demonstrates the fact that volitional 

modulation of activity in a small portion of the brain to control a BCI is, in fact, a concerted effort on the 

part of multiple cortical structures. This, in and of itself, is a novel finding, however it is intended to 

serve as a springboard for a new way of thinking about BCI architectures. We hope that it will encourage 

future scientific inquiry and systems development that leverages signals from multiple cortical areas, on 

multiple spatial scales to develop highly functional, hierarchical BCI systems. 
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