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Protein design is still in its infancy, yet there have been many impressive

examples of success in designing proteins to fold into a predictable structure

[6, 4], to catalyse enzymatic reactions [10, 13], or to bind a specific protein [16],

DNA sequence [17, 11], or small molecule target [8]. Each of these successes

in the field is a major milestone, but protein design still lacks a generalized

solution for reliably repeating these successes on future targets. The design

of proteins capable of binding small molecules is particularly challenging due

to the necessity to accurately understand and computationally model atomic

scale physiochemical principles. We work towards this goal because being able

to reliably design small molecule binders would allow for faster, and more ef-

ficient creation of detection elements for biosensors, sequestration proteins to

aid in dialysis, and orthogonal binding tags for use in biotechnology applica-

tions. Even a modest advantage gained through computational design would

allow for faster results when using more traditional directed evolution search

methods. Since control of molecular specificity at the atomic level is essential
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for diagnostic applications in which multiple similar molecules are present and

require discrimination from each other, computational modelling can be espe-

cially useful because the desired molecular specificity can be explicitly incorpo-

rated into the design. Such cases exist with the detection of tetrahydrocannabi-

nol (THC) from the non-psychoactive cannabidiol and downstream metabolites

present in users of marijuana, and in the detection of 25-hydroxycholecaliferol

from 25-hydroxyergocalciferol, a clinically important distinction of vitamin D3

metabolites where the two compounds differ by a single methyl group. With

this particular goal in mind, we have developed a computational protocol, using

the Rosetta software package, capable of designing protein models with good

shape complementarity, favorable chemical environments, and designed molec-

ular specificity for a target protein-ligand interaction. This protocol was opti-

mized over many iterations and incremental successes into a final revision that

is capable of creating protein binders for the ligands 25-hydroxycholecaliferol,

the hormonally active form of vitamin D3, and tetrahydrocannabinol, the pri-

mary psychoactive ingredient in cannabis. In addition to learning how to make

successful protein binding designs, we also attempted to recover non-functional

designs through stabilization. Using an algorithm for inserting proline substi-

tutions into failed designs, we believe we have identified a lack of stability as

one potential cause for failed binding protein designs. The protocol improve-

ments learned from both our successful and recovered function binders should

move us towards a more generalizable and reliable method for designing future

protein-ligand interactions.
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0.1 Terminology, definitions, and abbreviations

Cholecalciferol: Vitamin D3.

Ergocalciferol: Vitamin D2.

25-hydroxycholecalciferol: The 25-hydroxylated form of vitamin D3 which is

hormonally active.

25-hydroxyergocalciferol: The 25-hydroxylated form of vitamin D2.

THC: Tetrahydrocannabinol, the primary psychoactive ingredient in cannabis.

CBD: Cannabidiol, a chemical found in cannabis known for its potential health

effects, related to THC but not psychoactive.

PDB: Protein Data Bank

Rotamer: One confirmation of an amino acid side chain.

”Functional” or ”Binds”: A protein that is referred to as functional or that

binds its target is defined as showing a PE signal at least 2x greater than a neg-

ative control of identical cells incubated for equal time with no labelled ligand

when assayed using flow cytometry and yeast surface display as described in

the methods section of chapter 2. The concentration this assay is performed at

varies depending on the availability of the labelled ligand target, but typically

is the equivalent to between 1-20uM of non-avid ligand.

”Non-functional”: A protein that is referred to as non-functional is defined

as showing a PE signal less than 2x greater than a negative control of identical

cells incubated for equal time with no labelled ligand when assayed using flow

cytometry and yeast surface display. When a biotinylated ligand is not avail-

able, a BSA-Biotin conjugate is used in its place. The concentration this assay

is performed at varies depending on the availability of the labelled ligand target

and is the same as a positive or unknown binder it is being compared to.
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”Recovered” or ”Restored function” Binders: A protein that is designed to

bind a target ligand but only gained function after incorporation of one or more

mutations from either directed evolution or another computational method.

”Serendipitous” Binders: Proteins that were designed to bind a target ligand

but experimentally bound an off-target ligand.

”Successful” Designs: Proteins that were designed to bind a target ligand

and successfully did so without additional modification to the design.
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Chapter 1: Introduction and Background

Small molecules are ubiquitous and critically important in biological processes

due to their ability to cross membranes [52] and their natural use in energy

storage and cell signalling. [85] They comprise both beneficial and harmful

substances such as drugs, antibiotics, nutrients, toxins, pollutants, preservatives,

and carcinogens. [87, 62] The importance of small molecules is undisputed and

so the ability to measure concentrations or sequester small molecule targets

in environmental or biological settings is crucial to further our understanding

of basic biology, to aid in the creation of new therapeutics, and to protect

ourselves from dangerous substances. Of critical importance to the quality of

any application involving molecular detection is the affinity and specificity.

In all applications, the concentration of the target molecule in the unpro-

cessed sample will determine what affinity a sensing protein must have in order

to be useful. In the example of vitamin d3, concentrations in human blood

are typically in the low nanomolar range [82], meaning that a binding protein

must have a Kd in the same range in order to be useful. For oral fluid testing

of THC, the concentration range can vary greatly. At 12 hours after smoking,

the concentration of THC can be approximately 3nM, whereas 15 minutes after

smoking oral fluids can contain as much as 18uM. [27] In other applications

such as with creating tags for biotechnology applications, the ability to bind

tightly and conditionally, such as in a certain pH range or temperature, may

additionally be useful.

Existing technologies used to create sensing elements for small molecules,

such as generating antibodies, selecting for RNA/DNA aptamers, or creating

molecularly imprinted polymers, have advantages and disadvantages depending

on the setting in which they are used. Our approach for creating high quality

sensing elements is through the use of computationally designed proteins us-
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ing the software package Rosetta. Proteins can be explicitly engineered with

an environmental setting and application in mind and are readily evolvable to

function in a wide variety of situations. Engineered proteins have the potential

to provide solutions where other sensing elements cannot, and understanding

that benefit in its context of competing technologies is important in knowing

how and when computational design techniques hold the advantage.

1.1 Existing Molecular Recognition Elements

1.1.1 SELEX: DNA/RNA Aptamers

Systematic evolution of ligands by exponential enrichment, or SELEX, is a tech-

nique that can be used to isolate RNA or DNA aptamers capable of binding a

desired target, such as a small molecule, protein, or cell surfaces. [78] In this

technique, one starts with a large pool of randomized DNA sequences, puts them

through repeated rounds of selection for binding against an immobilized target

substrate, and PCR amplifies the enriched sequences. In this way, aptamers

have been identified that are able to distinguish between individual functional

groups on ligands, and in one example, with up to 10000 fold selectivity for a

single methyl group. [67] Aptamers can also be very tight, capable of binding

their targets with low nanomolar to picomolar affinities. [39, 45, 22] Aptamers

can be chemically stable in more environments than proteins are due to their

simple structural components and a strong evolutionary pressure for DNA to

be chemically stable, but their structure is highly dependent on solution con-

ditions. Additionally, binding of an aptamer to a target often results in large

conformational changes, which may be a useful characteristic for using them

in sensing applications, but also presents a potential unknown variable in an

application setting since such movements are difficult to predict. [78]

Since RNA and DNA are easily degraded in blood, aptamers can suffer from
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unwanted persistence issues if used in an in vivo setting. Aptamers often have a

hard time with binding small molecules, although this is not necessarily a unique

issue to aptamers. [55] Less than a quarter of existing apatmers, as of 2012,

target small molecules, and the majority bind to larger targets such as proteins

or cells. [76] Because aptamers are made up of nucleotide subunits, they have

relatively similar shape and chemical properties when compared to amino acids.

This limits the possible number of solutions for functional binding sequences

and may result in it being more difficult to find binders of an adequate affinity

or specificity. Additionally, RNA/DNA is negatively charged because they are

linked by phosphate groups, which may not be well suited for binding certain

classes of negatively charged targets. For example, fewer solutions may exist in

RNA/DNA structure space for binding a non-polar molecule that will optimally

require a very hydrophobic environment, due to the charged and polar nature

of nucleotide subunits.

1.1.2 Molecular Imprinted Polymers

Molecular imprinted polymers (MIPS) are created by co-polymerizing the target

analyte in the presence of the cross-linking monomers. This essentially creates

an ”imprint” of the target molecule in the polymer matrix. After the analyte

is removed, a pocket remains that is capable of rebinding the target with very

high specificity. [61] MIPS are unaffected by heat or pH to a much higher

degree than biomolecule based binders. [47] Relative to most other methods

for creating biomolecule sensing elements, creating MIPS binders are almost

guaranteed because the process is so simple and straight forward. [48]

MIPS, however, often have high cross-reactivity and aren’t readily amenable

to chemical modifications. [68] The use of a homogeneous polymer matrix the-

oretically limits the diversity in the types of interactions that can be made to

a particular ligand and in turn may limit the types of molecules that are able
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to be bound at a needed affinity. This homogeneous matrix may additionally

present specificity problems for ligands of certain shape or large size, such as

large, flat ligands with few functional groups.

1.1.3 Antibodies

Antibodies are proteins naturally produced by plasma cells and are used by the

immune system to bind and neutralize foreign substances. They are the most

widely used binding protein in commercial applications and have been used for

sensing applications since 1959. [21, 70] There is so much infrastructure set

up to raise an antibody against a specific target that companies often need a

very good reason to choose an alternative method when in need of a sensing or

neutralizing compound. Some of the best antibodies can achieve dissociation

constants in the femtomolar range [54] and are able to discriminate between

single functional groups and chiral compounds. [83]. Of great benefit for in

vivo applications, it is often much easier to go from inception to clinical trials

with antibody products because of humanization technologies.

Antibodies arise through a selection mechanism within a host organism,

and as a result, the desired specificity against a particular functional group of a

target molecule isn’t guaranteed. In fact, antibodies often cross react with many

proteins other than the target it was raised against. [73] Additionally, because

raising antibodies relies on the host animal’s immune system, it is sometimes

not even possible to raise immunogenic derivatives for all potential analytes.

[81, 66] Antibodies often times have undesirable biophysical properties, such

as poor stability or a high propensity for aggregation, which can limit where

they can be used. [25, 46, 5, 38] Stability issues are usually more prevalent

when using human antibody fragments, which can be a problem for therapeutic

applications, but can sometimes be mitigated through considerable amounts

of engineering and directed evolution. Antibodies are difficult to produce in
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prokaryotic systems due in part to their complex folding requirements and post

translational modifications. This can lead to difficulty in using them as the

sensing element in in vivo detection systems.

1.1.4 Peptide Binders

Peptides are defined differently from proteins because of their relatively small

amino acid length and inherently disordered structure. They’re very interesting

in that they can form various tertiary structures that can interact with many

types of targets, almost acting like disembodied binding loop regions of antibod-

ies. Because the binding of a peptide to a target is less affected by the need for

a well defined structure, peptides can be exceptionally stable under a variety of

conditions where antibodies, RNA, or other larger proteins would not be, such

as in detection of soil samples treated with organic solvents. [3] Using selection

techniques, such as phage display, one can fairly easily select for peptides that

bind a target of choice from randomized, synthesized libraries in a process much

less involved and less costly than antibody production. Additionally, peptides

have relatively high biocompatibility and low immunogenicity. [84]

Peptides are by definition small, and so their potential is limited based on the

maximum available surface area for potential interaction with a target. Being

amino acid based, peptides may also be susceptible to proteases in the envi-

ronment, as opposed to MIPS or DNA/RNA. Peptides generally aren’t good

at penetrating cells either, except for very specific sequences. [84] Additionally,

any application where a defined three dimensional structure would be beneficial

or required, such as in the detection of small molecules in high temperature

settings where peptide flexibility may be amplified beyond acceptable limits.
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1.1.5 Protein Binders

Protein binders are, for the purpose of this comparison, defined separately from

antibodies. Even though antibodies consist of amino acids and are amenable

to similar design-ability as other proteins, they are relatively restricted in their

composition and biophysical characteristics. This restriction results in signif-

icantly different optimal use cases for antibodies when compared with other

designed proteins, as described by the limitations of antibodies mentioned pre-

viously.

Proteins are used in nature to sense environmental conditions, utilize nu-

trients, are involved in metabolism, and are very amenable to evolution due to

their high diversity and potential for chemical modification. Proteins can func-

tion in extreme environments and in blood [20], be very specific for their targets

[8], and bind with femtomolar affinity [69]. This gives designed proteins an ad-

vantage for in vivo applications over aptamers, which often cannot survive well

in blood, and antibodies, which are often generally unstable. [25] Proteins are

the natural choice for small molecule sensing applications in biological systems.

Many techniques have been developed to screen large protein or peptide

libraries for a desired activity such as biopanning [35], FACS [77], or in vivo

survival assays. [17] All of these techniques share the commonality that they

can be improved by smarter sequence sampling and library generation because

of the large combinatorial search space. The aspect of using computational de-

sign methods to guide library creation adds value to using proteins as sensing

elements. Random protein screening methods can therefore be viewed not as

competition to computational protein design, but as a complement. As compu-

tational methods improve, the resources needed for these selection techniques

will become less, saving time, money, and resources.

Computational protein design brings with it the advantage of exquisite con-
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trol over specificity. Discrimination between similar small molecules can be

explicitly designed from the onset to guarantee the specificity needed for a par-

ticular application. Designed binders can also be tailored for a specific binding

application, as opposed to using or re-purposing a naturally occurring protein,

which may have had alternative or less relevant evolutionary pressures dictat-

ing its function and specificity. Similar to SELEX and MIPS, designed proteins

can target molecules that are non-immunogenic, toxic, or target very specific

sub-regions that may be difficult to target using antibodies, due to the inherent

epitopes an animal immune system may already contain. [55] However, one

of the primary disadvantages of using proteins as a sensing element is that it

requires an aqueous environment.

Having a design repertoire of 20 amino acids allows for high chemical diver-

sity and the potential to create sequences with high complexity. An analysis on

aptamer based small molecule binders found that more bits of information, as

measured by Shannon Entropy [74], may be needed to bind smaller ligands,

or ligands with higher entropy by measure of degrees of freedom, with the

same affinity as their equivalent larger ligands. It suggests a sort of trade off

between affinity, ligand entropy, and information content in aptamer binders,

where higher information content is needed in order to obtain tighter binders for

smaller ligands. [55] Because proteins have 20 amino acids in their repertoire,

it can follow that proteins may encode information to a higher density than

aptamers per subunit. If this trade-off holds for protein sequences as well, it

suggests that proteins may be better suited to successfully bind smaller ligands

at higher affinities than RNA/DNA based aptamers.
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1.2 Rosetta

Rosetta is a software program that is being developed by many labs worldwide,

but originated in the lab of David Baker at the University of Washington. [9]

Rosetta is the primary software package used for our design and modelling ef-

forts. Rosetta provides a framework for representing and manipulating protein

structure and identity. It also contains many potential functions for computing

interaction energies within and between represented macromolecules. Because

the problem of predicting protein structure is NP-Complete [79], Rosetta also in-

cludes non-linear optimization methods for finding low energy configurations in

many situations. Rosetta has already been successfully applied to many design

problems including structure prediction, enzyme design, endonuclease design,

RNA-folding, limited ligand-protein interactions and protein-protein interface

design. [10, 13, 15, 7, 12, 6, 8]

The Rosetta score function is a metric used to approximate the free energy

of macromolecule interactions. The score function consists of a Lennard-Jones

potential that favors tightly packed residues, the Lazaridis-Karplus implicit sol-

vation model [58] that favors hydrophobic amino acids in the interior of the

protein and polar amino acids on the surface of the protein, an orientation

dependent hydrogen bonding term [32], and torsion potentials derived from

structures in the PDB. [26] There are also knowledge based terms such as the

probability of observing a sequence given the structure and a weak electrostatics

term that takes into account the probability of seeing two amino acid types near

each other in native structures. [75]

There are assumptions made in order to simplify the calculation of the score

function. These include scoring of specific protein states, rather than scoring

through simulation via molecular dynamics, treating the solvent as a contin-

uum, and using discrete, backbone dependent rotamer libraries. [26] Some of
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the limitations to the score function includes an incomplete representation of

entropy, simplified electrostatic terms due to induced polarization effects and

pairwise calculations [14], and limited modelling of backbone movement.

1.3 Difficulty in Designing Protein Ligand Interactions

One of the primary driving forces in molecular recognition is the hydrophobic

effect, a rationalization of the insolubility of hydrophobic molecules in aqueous

solution. Although the mechanism of the hydrophobic effect isn’t completely

understood, [50, 40, 31, 63] it is thought to involve a gain in entropy by displac-

ing ordered water molecules from hydrophobic surfaces at the binding interface

and a favorable enthalpic change due to stronger hydrogen bonds made be-

tween water molecules in the bound state compared with the apo-state, as well

as direct polar interactions between the ligand-protein complex. [80] The de-

sign approach we are adopting, follows the ”lock and key” notion in which the

hydrophobic effect is satisfied. In Rosetta, the hydrophobic effect is modelled

through the use of an implicit solvation model that favors solvent exposed polar

atoms and tightly packed hydrophobic atoms. [58] Entropic terms are partially

incorporated via this solvation model and also through knowledge based score

terms. Enthalpic effects are captured through hydrogen bonding scores [32] and

approximated electrostatic calculations. [75]

Even knowing partially what drives the protein ligand interaction, protein

design in general still suffers from a vast combinatorial search space. The de-

sign of protein-ligand interactions suffers from an incomplete understanding of

the physical principles underlying molecular recognition as each small molecule

target has unique chemical properties. The creation of proteins that bind small

molecule targets is especially challenging compared with targeting proteins or

cells, as evident by the limited success in both directed evolution experiments
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[76] and computational design methods [8], when compared with binders for

larger substances. [16, 18] [55, 43].

One theory as to why small molecules are difficult to bind relative to larger

molecules, cells, or proteins, is in part because there is less surface area available

for favorable interactions. In contrast, relatively large protein-protein interfaces

can effectively sum together their interactions to create a very energetically fa-

vorable interface without the explicit need for any one individual interaction

to be extremely strong. Binding a smaller target with the same specificity and

affinity as a larger target would require that each interaction be energetically

more favorable on average than the interactions in a larger interface. A random

interaction between two compounds will more likely than not be a weak, non-

specific interaction since if the opposite were true, we would instead have more

difficulty in creating weak, non-specific interactions, which we do not see in

practice. It follows that there must be fewer solutions in protein sequence space

for high affinity, specific interactions than for weak, non-specific interactions.

With fewer possible high affinity configurations available for protein-ligand in-

teractions, the probability of finding such an interaction in a random library

is therefore lower than for a larger molecule. This relates to difficulty in com-

putational design efforts in that there is less room for error. The interactions

made to a small target must be near perfect and any error will likely not be

tolerated. Compounding this problem is the relative lack of information on

ligand-protein interactions. Plenty of data is available in multiple databases

related to protein-protein interactions, as those interactions essentially make up

the core of all proteins. Protein-ligand interactions, however, have far fewer ex-

amples, but also the chemical diversity for small molecules is effectively infinite,

making general interaction rules difficult to come by.
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Chapter 2: Computational Methods for Design-

ing Small Molecule Binding Proteins

The following protocol is given as a generalized procedure that can be applied

to any ligand types and is the basis protocol that protocols discussed in later

chapters will be compared with.

Figure 1: A schematic overview of the final iteration of the small molecule binder
design protocol.
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2.1 Ligand Model Preparation

PDB models for the target ligands are generated using Avogadro [51] and con-

formers are generated using Omega Openeye [49]. Our experimental assays

require a PEG-Biotin linker attached to the target molecule, however, because

of the flexibility of such a linker and the large number of additional degrees of

freedom it would introduce into the model, a truncated form of the PEG-Biotin

linker is generally modelled instead that consists of the first five atoms of the

linker.

2.2 Scaffold Selection and Ligand Placement

In order to identify scaffolds with native binding pockets of appropriate size

and chemical environment for our target ligands, we iterate twice through our

scaffold selection protocol. The scaffolds used for iteration one are taken from

the PDB based on the criteria below, with the purpose of identifying relatively

well behaved proteins with appropriately sized native binding pockets, as well

as characteristics that will aid in experimental validation of function.

1) The presence of native ligands with similar structural motifs as our target

ligands, or the presence of native ligands of size within %40 of the target ligand

by atomic weight.

2) An X-Ray structure resolution of below 2.5 Angstroms.

3) Consists of a single protein chain in its biological assembly.
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4) Has been previously expressed in E. Coli.

5) Has a chain length of no more than 350 amino acids.

Scaffolds which have been previously shown in our lab to be capable of

binding other ligands and that behave well when expressed are also included,

as well as scaffolds in the same Pfam [2] family. These scaffolds include 1Z1S,

1OHO, 3FKA, 3HX8, and 3AKR. Additionally, all scaffolds in the MOAD [23]

are also included. The approximate number for this initial set is generally in

the many thousands, depending on which update of the PDB scaffolds you use.

This large set of scaffolds is expanded to include variants with all residues

changed to alanine without mutating high structural residues such as aromatics,

cysteine, proline, or glycine residues. This is done in order to ensure that scaf-

folds are searched based on a general pocket shape, instead of whatever shape

the native functional residues bias them towards. These variants are then put

through the Patchdock [71] procedure using the single lowest energy ligand con-

former, or with a hand selected conformer that is chosen based on low energy

as well as an extended configuration that maximizes the potential interaction

area of the ligand with the protein. Pathdock will dock the target ligand into a

scaffold using a fast geometry-based algorithm. The goal of this algorithm is to

quickly identify scaffolds that offer good shape-complimentary towards our tar-

get ligands. Patchdock uses a Connolly dot surface representation [28] to divide

up the protein and ligand into concave, convex, or flat patches. The surfaces
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are then matched together in order to generate favorable ligand positions. The

docked models are then filtered using the following three criteria.

1) The secondary structure content of the 8Åshell around the ligand must be

greater than %80.

2) The direction of the vector between the last two atoms in the linker point

away from the center of mass of the protein.

3) A temporarily modelled linker from the last two atoms of the linker model is

able to extrapolate out 10Åand not come within 3.5Åof an atom of a secondary

structure element in the scaffold protein.

4) A modified measure of solvent accessible surface area (mSASA) of the ligand

in the docked model is greater then 0.6.

This mSASA extrapolates all outward facing, 3Åvectors to all corners and

center-faces of a cube centered around all user defined atoms in the ligand

and calculates the percentage of these points that are within 2Åof any atom in

the protein. Docked models that pass all of these filters are ranked by mSASA

and the top 2000 are used for a second Patchdock iteration that significantly

increases the sampling. One of the primary differences is that the second iter-

ation involves expanding each scaffold into eight variants instead of two. The

types of modifications for each variant are described below.

Unless explicitly stated, native TRP, PHE, TYR, PRO, and GLY residues

are kept the same.

Variant 1) Native scaffold.

Variant 2) Native with charged residues trimmed to closest non-charged

22



residue by approximate shape: Residues are native with the following changes.

GLU/ASP/ LYS /ARG

Changed to:

GLN/ASN/MET/GLN

Variant 3) Minimally sized residues with hydrophobic bias: Residues are

native with the following changes.

GLN/SER/GLU/ASP/ARG/TYR/THR/HIS /ASN/MET/ILE /LYS/LEU

Changed to:

ALA/ALA/ALA/ALA/ALA/PHE/VAL/VAL/ALA/ALA/VAL/ALA/ALA

Variant 4) Minimally sized residues with hydrophilic bias: Residues are na-

tive with the following changes.

GLN/ALA/GLU/ASP/ARG/VAL/HIS/ASN/MET/ILE /LYS/LEU

Changed to:

SER/SER/SER/SER/SER/THR/THR/SER/SER/THR/SER/SER

Variant 5) Residues are changed to their closest hydrophobic equivalent:

Residues are native with the following changes.

GLN / SER/ GLU/ ASP /ARG/TYR/THR/ HIS / ASN /LYS

Changed to:

MET/ALA/MET/LEU or MET/MET/PHE/VAL/PHE or ILE/MET or LEU/MET

Variant 6) Residues are changed to their closest hydrophilic equivalent:

Residues are native with the following changes.

ALA/ARG/VAL/ HIS / MET /ILE/ LYS/ LEU

Changed to:
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SER/GLN/THR/TYR or THR/GLN or GLU or LYS/THR/GLN/ASN or ASP

Variant 7) All residues are changed to alanine, including aromatics.

Variant 8) All residues are changed to alanine except for aromatics which

are kept native.

The second important difference between the first and second Patchdock it-

erations is that the top 10-20 low energy ligand conformers, instead of just one

or two, are each docked using the Patchdock protocol. After Patchdock, the

models are again filtered using the same criteria for iteration 1 as mentioned

previously. These models are then used as inputs for Ligand Perturbation Ex-

pansion.

2.3 Ligand Perturbation Expansion

The Ligand Perturbation Expansion protocol takes in a ligand-protein model

and generates variants with slight translational and rotational perturbations to

the ligand position. The amplitude of perturbation and density of sampling is

varied depending on the stage of design. A more coarse grain sampling pro-

cedure is used initially and consists of three rotational perturbations starting

from 0 degrees with 15 degree increments and two translational perturbations

starting from 0Åwith 0.75Åincrements. In subsequent rounds, this sampling

is increased to twenty rotational perturbations starting from 0 degrees with 2

degree increments and two translational perturbations starting from 0Åwith

0.25Åincrements. These perturbation variants are then each designed using an

implementation of Rosetta Design achieved through the Rosetta Scripts inter-
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face. [41] This design step uses alternating rounds of minimization, sequence

redesign, and filtering based on a shape complementarity cut-off of 0.6, a solvent

accessible surface area cut-off of 0.7, the presence of an appropriate number of

hydrogen bonds being made to the ligand, and a Rosetta protein-ligand inter-

face score of less than approximately -6 Rosetta energy units (REU), although

this last metric varies depending on the size of the ligand and the -6 example

was used for ligands THC and D3-OH. All of these filter metrics are meant to

be rather lenient, only selecting against very bad designs. The shape comple-

mentarity is the only metric that is relatively difficult to pass and is effectively

the more stringent selection criteria. The goal of this stage of design is to iden-

tify sequences that minimize the predicted energy between the ligand and the

protein.

Figure 2: Simplified representation of the ligand perturbation protocol. A-C) Three
selected perturbations where slight ligand movements results in discrete sequence
changes after Rosetta design.

2.4 Filtering

After Rosetta Design, models are filtered based on criteria that can vary de-

pending on the type of ligand being targeted. For THC and 25-D3, primarily

hydrophobic ligands with one possible hydrogen bond, the primary criteria used

is mSASA, the Rosetta interface score, shape complementarity, and the presence

of an appropriate hydrogen bonding residue. For more hydrophobic ligands, this

light filtering is generally sufficient to create designs that will at least show a

binding signal. The challenge for hydrophobic ligands has been guaranteeing
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that there is appropriate specificity, since hydrophobic interactions can be very

general and therefore many ligand binding modes may exist since we do not

currently include multi-state negative design against alternative ligand confor-

mations.

For more hydrophilic ligands, such as biotin, with more than two poten-

tial hydrogen bonds, the filter for an appropriate number of hydrogen bonds is

typically turned off and hydrogen bonds are instead designed in a semi-manual

manner. Rosetta will often inaccurately model polar atoms and will conser-

vatively place a hydrophobic residue near a polar group during design. With

hydrophilic ligands, many examples where, say, an alanine or a valine can be

changed manually to make a hydrogen bond with a serine or threonine substitu-

tion are seen and many designs can be saved by making these changes manually.

In addition to more manual insertion of hydrogen bonding residues, more in-

volved scoring metrics are used for design and filtering of hydrogen bonds and

are described below.

2.4.1 Boltzmann Electrostatics Design

The Poisson-Boltzmann equation, described by Lu et al, [59] is used to calculate

the electrostatic forces between molecules in ionic solutions. We implemented

this model to calculate the electrostatic interactions between the surfaces of our

ligand and the protein binding site for more hydrophilic ligands, like biotin, that

can make 4 or more hydrogen bonding interactions. The electrostatics model

calculates an all-body electrostatic field, as opposed to the standard pairwise

calculation previously used through Rosetta. Our implementation does a scan

of all residues within the binding pocket to find substitutions that stabilize

the bound state based on the electrostatics score, the ∆∆G, a measure of the

difference in Gibbs free energy between bound and unbound ligand states, and
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the total Rosetta score, but also does not destabilize the protein in the absence

of the ligand.

2.4.2 Pareto Optimization

In an additional round of Rosetta design, we score each design based on several

score metrics and select designs that are Pareto efficient, that is, on a multidi-

mensional surface where each score metric is a separate dimension, all designs

along a the leading edge of that multidimensional surface are considered effi-

cient. Each design is evaluated by total Rosetta score, the solvent accessible

surface area, hydrogen bonding scores, shape complementarity of the ligand,

the Rosetta Holes packing score, and the interface energy. Designs that are de-

termined to be Pareto efficient are kept. These designs are further filtered based

on a very strict rotamer score cut-off, such that only near native configurations

of individual side chains are allowed.

2.4.3 RosettaDock

RosettaDock is a protocol that allows us to computationally validate our de-

signs by performing protein-ligand docking that explicitly models full side-chain,

backbone, and ligand flexibility. [36, 37] Monte Carlo sampling is used to explore

all associated degrees of freedom. Five thousand runs of this protocol for each

of our designs allows us to generate a ”docking funnel”. This is a plot of how

much our ligand has moved from it’s starting point versus the Rosetta energy

of the complex. In the cases where Rosetta finds a global minimum of energy

and the ligand shows little to no movement from our initial model, we should

see a ”funnel” of data points in a plot of Rosetta energy vs RMSD from our

initial dock positioning that will show that the lowest energy configuration is

the one near the designed positioning. Native small molecule binders have this

funnel character, as well as the well known example of the bioti-streptavidin
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interaction. If our designs show a similar funnel without alternative low en-

ergy minima, then we can conclude that the design has successfully passed the

docking validation criteria.

2.4.4 Molecular Dynamics

Our Rosetta design procedures use a fixed backbone approach and are therefore

unable to realize changes in protein structure or solvent accessibility that occur

from backbone motions. In order to partially account for this type of information

in our final designs, and to get an idea if our protein-ligand complexes are

stable after we make our functional mutations, we used the molecular dynamics

package AMBER for simulations [34]. For each model, the protein is immersed

in a box of up to 16,600 explicit water molecules and simulated for approximately

20ns at constant pressure with a periodic-boundary. Data collected from these

runs include pair wise distance distributions, hydrogen bond directionalities,

solvent accessibility, and root-mean-square displacements (RMSDs) relative to

the original Rosetta design position. The molecular dynamics data is used to

inform design mutations with the goal of stabilizing fluctuations of the entire

protein or of the ligand in the binding pocket.

2.4.5 Manual inspection

Filtered designs are then inspected manually using Pymol [72] and FoldIt [29].

FoldIt can be thought of as a graphical interface for the Rosetta score function,

design, and minimization. During this step, we filter out designs with obvious

problems, such as when ligands are placed in non-native binding pockets, when

ligand positions do not allow adequate space for a biotin conjugated linker to

reach the solvent, and when voids around the ligand position are of insufficient

volume to accommodate a discrete water molecule. During this step, we attempt

to use our chemical intuition and experience looking at native binders to ensure
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that there is nothing unexpected in what our automated design procedures have

generated.

The most common type of manual changes are made for polar groups on

ligands, as mentioned previously. Partly due to an incomplete electrostatics

and solvent model, polar atoms are very difficult for Rosetta to design properly.

Often designs will either not contain any hydrogen bonds to a polar ligand, even

when upon manual inspection it can be accommodated with minor minimiza-

tion. In other instances, a polar residue will be placed and will be making an

interaction with the target ligand, but the residue will not be backed up by any

other interactions in the protein. These unsatisfied polar groups are a problem

because they are usually not present in native structures, but because we use

an implicit solvent model, Rosetta may think there is enough room for a water

molecule to make an interaction to satisfy a polar group even when there isn’t,

essentially creating a vacuum in the predicted model, a very unfavorable feature

in a design.

2.5 In Silico Directed Evolution

Another strategy that has been implemented approximates a genetic algorithm

type optimization. The designs are put through successive rounds of Ligand Per-

turbation and Rosetta design using progressively finer perturbations and score

cut-offs during each progressive iteration. Each iteration essentially removed

all but the top %20 of designs based on shape complementarity [60], Rosetta

ligand-protein interface score, and solvent accessible surface area, although any

set of weighted score metrics can be used. The remaining designs are then used

for the next ligand perturbation expansion and Rosetta design iteration. After

several iterations, designs are then manually inspected again and the top de-

signs are selected. This type of iterative procedure generally results in designs
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that have better selected score metrics. This procedure can often result in very

subtle amino acid substitutions that wouldn’t have been found with a coarse

search protocol.

2.6 Revert to Native

Once we are satisfied with our designs and scores, we apply a reversion proto-

col that will revert any residue back to native so long as it doesn’t negatively

affect the score attributed to the protein-ligand interaction. Often our design

procedure will mutate surface residues or positions that are not critical to the

designed interaction. Due to the potential error or instability Rosetta sugges-

tions may introduce, we opt to remove these extraneous mutations by reverting

them back to their native residues. A final manual inspection is done after this

step to ensure no key designed residues were reverted unintentionally.

2.7 Order Preparation

The final designs are converted into DNA sequences that are optimized for E.

Coli codon expression by using DNAworks [57] and outsourced for synthesis.

2.8 Experimental Validation

2.8.1 Yeast Surface Display and FACS

Yeast surface display is a widely used method for maturation of antibody affin-

ity, specificity, and stability. [24] This surface display system consists of the

yeast agglutinin protein Aga2p, which is attached to the yeast cell wall through

disulfide bonds to Aga1p. Aga2p is fused to the target design, which is also

fused to a C-terminal c-Myc tag. The average number of surface complexes

per cell is approximately 50,000. Cell-surface expression is accomplished by in-

cluding the fusion protein encoded within a modified version of the pCTCON2
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plasmid via a galactose-inducible promoter. Design plasmids are transformed

into yeast strain EBY100 according to the Benatuil protocol. [19] A schematic

of the labelled surface complex is shown below in figure 8.

Figure 3: A schematic of the surface display complex for testing a biotin binding
design. Biotin-XX-PE is the fluorescent molecule phycoerythrin that is conjugated to
approximately 12 biotin molecules. This biotinylated label can be extended to other
ligands through the use of a biotinylated target ligand conjugated with streptavidin-
PE, which is commercially available. The terminal c-Myc tag is labelled with an
anti-myc FITC conjugate and reads out as a surface expression level.

Cell-surface expression of the design is monitored by labelling the cells with

a fluorophore that is attached to an anti-c-Myc antibody. Binding is detected

by labeling with the target ligand attached to a second fluorophore. In the case

of biotin, we use fluorescein isothiocynate (FITC) conjugated to an anti c-Myc

antibody and a biotinylated phycoerythrin (PE) fluorophore, but the biotin-PE

fluorophore can be exchanged for another biotinylated ligand target conjugated

to streptavidin-PE. The FITC signal corresponds to the expression of the entire

surface complex and the phycoerythrin signal corresponds to the binding of the

design to the biotinylated label. For an example plot, see figure 15.

When testing our designs, we insert them into a pCTCON2 yeast surface

display vector, transform into yeast strain EBY100 as mentioned previously. We

culture and express the proteins in yeast according to the Wittrup protocol [24]
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using an induction time of 24 hours at 30◦C. This induction temperature can

vary depending on the type of sort we are aiming to do. For early sorts where

we are trying to detect a binding signal from new designs or from a library

where there is no initial binder, we incubate at 4◦C in order to potentially save

less stable, but functional binders. In later sorts where we aim to optimize the

binding signal, we increase the temperature up to 50◦C in order to select against

less stable variants. The buffer used in all the cell incubations is phosphate

buffered saline at pH 7.5 with 1% bovine serum albumin and 100mM PEG 200

(PBSFP). PEG200 is included in our buffers in order to help complete with

interactions against the PEG linker attached to our biotinylated target labels.

For avid labelling conditions, either a ligand-biotin-BSA conjugate or a dextran

conjugate is used are their compositions are described below.

For the ligand THC, a BSA conjugate is commercially available (Fitzgeral,

US Biological). The commercially available BSA conjugate is biotinylated using

EZ-Link Sulfo-NHS-Biotin (Thermo Fisher). The reaction is carried out in PBS

at pH 8 using a ligand conjugated BSA concentration of 2mg/ml and adding

14.3ul of 10mM EZ-Link Sulfo-NHS-Biotin. The reaction is allowed to proceed

for 2 hours on ice. The reaction is then dialysed and used for labelling with

streptavidin PE as described previously.

A dextran conjugate can be prepared for all ligands for which a ligand-biotin

conjugate is available by mixing 2.18ul of 20uM biotinylated ligand with 2.5ul

6.92uM 70K Biotin Dextran (Life Technologies). 3.82ul of 1mg/ml streptavidin

PE (Invitrogen) is added to this mixture, mixed via vortexing, then allow to sit

on ice for 1 minute. 1ul of anti-myc FITC antibody (ICLLAB) is added and

PBSFP is added to a final volume of 26ul. This dextran conjugated label is

then incubated with the designs for 2 hours at 4◦C on a tube inverter. The cells

are then spun down at 3000rpm for 3 minutes, washed twice with 1ml PBSFP,
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re-suspended to a maximum of 5 million cells per ml in PBSFP and read on

an a BD Accuri C6 flow cytometer. This dextran conjugate provides an avid

label, and variants where 2 to 4 times the amount of biotinylated label are also

used to increase avidity. The equivalent concentration of a non-avid label for

the base dextran conjugate setup is about 30-50uM.

For affinity maturation using a non-avid label, the designs are incubated

with biotin conjugated ligands for 2 hours at 4◦C on a tube inverter. The

cells are spun down at 3000rpm for 3 minutes and washed twice with PBSFP.

The cells are then labeled for 1 minute using a mixture of PBSFP with 1:10 of

1mg/ml streptavidin PE and 1:20 of Anti-Myc FITC antibody in a volume of

20ul for 1 minute on ice. The cells are washed again with 1ml of PBSFP, then

re-suspended in PBSFP to a density of about 5 million cells per ml. These cells

are either sorted using a Sony SH800 Cell Sorter or BD Influx, or read on a BD

Accuri C6 flow cytometer.

Designs are first typically tested with a high concentration of avid label be-

fore being evolved using lower concentrations and higher temperature conditions

with a non-avid label. Library construction strategies such as error prone mu-

tagenesis, combinatorial libraries based on Rosetta design suggested mutations,

site saturation mutagenesis libraries, and guided combinatorial libraries based

on Miseq data, using a Illumina Miseq desktop sequencer, for site saturation

libraries are performed using yeast surface display and FACS sorting to increase

the affinity and specificity of these initial binders. For specificity selection, an

excess of the small molecules we aim to evolve specificity against is included

in the incubation buffers. Kd approximation is done initially via yeast surface

display as described by Wittrup et al. [24] Because of the slightly avid labelling

conditions due to the streptavidin tetramer, and because the yeast surface can

often be non-specifically sticky against the linker or PE fluorophore, more ac-
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curate Kd measurement is needed. To obtain this, we purify the best variants

to do either isothermal titration calorimetry or fluorescence polarization.

2.8.2 Protein Purification

The top designs from the library sorts are isolated and cloned into pET21(+)

expression vectors. They are then transformed into E. Coli strain BL21, grown

in TB at 37◦ (Fisher) until an OD600 of 1.2 is reached, and induced with 1ml

1uM IPTG. The protein is further purified using his-tag column purification

and HPLC using a Superdex 200 column (GE Healthcare Life Sciences).

2.8.3 Equilibrium Fluorescence Polarization

Fluorescence polarization (FP) is a technique that relies on the fact that the

degree of polarization of a fluorophore is inversely related to its molecular ro-

tation. A measurement made in a solution of the difference in emission light

intensity parallel and perpendicular to the excitation light plane, normalized

by the total fluorescence emission intensity, can be related to the ability of the

fluorophore to rotate. By using a ligand target conjugated fluorophore, we can

get a measure of the difference in rotation due to the binding of the fluorophore

conjugated target ligand to a target protein. [56] This difference can be used to

generate a binding curve and approximate a Kd.

Fluorescence polarization is the preferred method for very hydrophobic lig-

ands such as 25-hydroxycholecalciferol because of the unmodified ligand’s low

solubility in aqueous solutions. 25-Cholecalcifediol-TMR, a fluorophore conju-

gate, was provided to us by a collaborator from Kai Johnsson’s lab at the École

Polytechnique Fédérale de Lausanne (EPFL). To perform the assay, dilutions

of purified protein in 40ul volumes are set up in flat bottom black polystyrene

plates (Corning), and fluorophore-conjugate is added to a final concentration

of 1uM. The mixture is allowed to mix on a plate shaker for 5 minutes before
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measurements are made using a SpectraMax M5e(Molecular Devices) with an

excitation of 540nm, emission of 580nm, and cut-off of 570nm. The average

anisotropy measurements are analysed according to the method by Rossi et al.

[30].

2.8.4 Isothermal Titration Calorimetry

Isothermal Titration Calorimetry (ITC) is a technique that can be used to quan-

titatively determine binding affinity and enthalpy changes. The technique di-

rectly measures the energy associated with a reaction when two chemical species

are mixed together. In an experiment, one titrates one component into the other.

This reaction is typically exothermic for a small molecule binding interactions

with a protein. This energy can be related to the Gibbs free energy change and

ultimately can be de-constructed into the entropic and enthanpic contributions

via the standard thermodynamic expression delta G = -RT ln(Ka). [42] In our

experiments, ligands which are soluble enough at the estimated Kd as measured

by yeast surface display are used for Kd determination via ITC, as it is one of

the most accurate methods.

2.8.5 Crystal Structure Determination

Protein is sent for crystal structure determination through a collaboration with

Barry Stoddard’s lab at the Fred Hutchinson research center.

35



Chapter 3: Computational Design of a 25-hydroxycholecalciferol

Binding Protein with Low Nanomolar

Affinity

3.1 Introduction

Cholecalciferol, more commonly known as Vitamin D3, is one of the most often

prescribed diagnostics in medicine today. The standard method of measure-

ment is done by taking a blood sample, sending it to a laboratory, and doing

HPLC/mass spectroscopy to determine concentrations of the hormonally ac-

tive form of vitamin D3, a hydroxylated version of vitamin D3 known as 25-

hydroxycholecalciferol. This particular form is difficult to detect specifically

because there often also exists cholecalciferol, which differs by one hydroxyl

group, and ergocalciferol (vitamin D2), which differs by one methyl group from

D3 and are also present in the blood sample. Antibody based measurement

assays exist commercially, but often suffer from specificity issues due to these

alternative forms of cholecalciferol and the difficulty in raising an antibody that

recognizes all of the appropriate subtle differences. There currently exists a

demand for a highly specific binder for 25-hydroxycholecalciferol that is able to

distinguish between ergocalciferol, 25-hydroxyergocalciferol, and cholecalciferol,

for incorporation into a commercial detection assay.

During our design efforts we created many designs that simply failed to show

any binding signal on yeast surface display and flow cytometry. We created error

prone libraries based on many of the more promising designs in an attempt to

recover function and to hopefully learn why our designs were failing. This led

us to a recovered design 2063.

Also in our early design attempts, we made a model named 4424, which was

intended to bind the ligand tetrahydrocannabinol (THC). Testing of designs
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against off target ligands was done in order to verify specificity for the designed

ligand. In the case of 4424, the design did not bind the intended target of THC-

BSA as shown using yeast surface display and flow cytometry, however, it did

show a surprisingly strong signal for the target 25-hydroxycholecalciferol. Cross

reactivity is generally expected, especially for chemically similar ligands such

as these, but what was surprising was that after only one round of error prone

evolution and one point mutation made from the 4424 initial design, we were able

to isolate a variant with low micromolar affinity and approximately two orders

of magnitude of specificity for 25-hydroxycholecalciferol over cholecalciferol, a

difference of one hydroxyl group. Because of the excellent initial specificity of

this design, we decided to follow up with further rounds of directed evolution

and Rosetta aided design in order to create a binder with the appropriate Kd

and specificity for application as a biosensor.

In addition to having this fairly good serendipitously discovered binder fall

into our laps, we were also able to learn from this event, as well as failed designs

and rescued binders, in order to improve our computational protocols. The

design protocol improvements we worked out allowed us to create many addi-

tional, initially working binders with a success rate of approximately %25 for

25-hydroxycholecalciferol, as shown by yeast surface display and flow cytometry.

3.2 Methods

The failed, rescued, and serendipitous binders were all created using the previ-

ous protocol iteration that is slightly modified from the final protocol described

in chapter 2. These differences are:

1) In the scaffold selection stage, the previous iteration screened PDBs based

on the criteria mentioned in chapter 2 and used for Patchdock. In the final
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iteration, scaffolds are screened multiple times and scaffold classes are identified

in the first round so that sampling can be biased towards native scaffolds with

more favorable chemical environments for the target ligand.

2) In the Patchdock step, the previous iteration used only the most energetically

favorable ligand conformation is used during Patchdock into a native scaffold.

In the final iteration, many more ligand conformations are used for the Patch-

dock step, only limited by computational resources. Native scaffolds are also

expanded into many variants and each ligand conformation is docked into each

scaffold variant to increase sampling.

3) The previous protocol iteration did not perform grid design whereas the

final iteration is where the grid design protocol was first used.

4) In the previous iteration, design was performed with a minimal amino acid

set that excludes charged residues, prolines, tryptophans, and glycines and al-

lows for mutation of all amino acids excluding prolines or glycines. A procedure

is used to design the binding pocket residues that greedily optimizes a metric

based on a weighted combination of shape complementarity ( 10x), the Rosetta

score packStat ( 5x), number and Rosetta energy of hydrogen bonds ( 5x), and

Rosetta ligand interface energy by ( 2.5x). At most two iterations of Rosetta

design and manual inspection were performed. In the final iteration, the de-

sign protocol no longer restricts the use of charged amino acids or aromatics

and does not allow a change from a native aromatic residue to a non-aromatic.

The greedy optimization protocol is removed in favor of lenient score cut-off

that increases in stringency gradually over the iterations of grid design, manual

inspection, and Rosetta design that gradually increase stringency of the score
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cut-offs.

These improvements changed our success rate from near zero to approximately

%25.

3.3 Results

3.3.1 Recovered Activity 25-Hydroxycholecalciferol Binders

Multiple designs targeting the ligand 25-hydroxycholecalciferol, in a scaffold

with PDB ID 1WUB, were tested and found to be non-functional. Two of

these designs are known as 2063 and 2064. Their sequences are located in

appendix B. These two designs underwent error prone mutagenesis and selection

in order to try and recover functional variants from these designs. This effort

was was successful in finding two functional sequences with mutations: 1) R139P

relative to design 2063 and 2) S48C, M126T, A131T, D141V, G153C relative to

design 2064. A total of three rounds of directed evolution were done at ligand

concentrations ranging from 21nM in the first round to 1nM in the final round.

Only designs from base design 2063+R139P were enriched after the first round

of directed evolution from a pool containing both error prone libraries.
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Formula: y ~ FP_binding(Af, Ab, Kd, x)

Parameters:
     Estimate Std. Error t value Pr(>|t|)    
Af −5.198e−03  1.546e−03  −3.363 0.002946 ** 
Ab  4.480e−02  1.942e−03  23.069  < 2e−16 ***
Kd  2.409e+03  5.214e+02   4.619 0.000148 ***
−−−
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.004295 on 21 degrees of freedom

Number of iterations to convergence: 8 
Achieved convergence tolerance: 4.425e−06

Figure 4: Equilibrium fluorescence anisotropy of 25-Cholecalcifediol-TMR mixed
with purified 2063+R139P. The approximate Kd based on the non-linear fit is 2.4uM.
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Figure 5: SDS PAGE gel comparing the levels of protein in the soluble fraction of
the initial 2063 design and the 2063+R139P variant.

The second round of directed evolution was done at 21nM of vitamin D3. The

mutations common among the final sort of error prone round 2 include: V24G,

V170A, A101V. The third round of directed evolution was done based on the

previous converged sequence from error prone round 2. The converged variant

among the final sort of error prone round 3 include mutations: K15E, Y65H,

S100N. During the third error prone screening, a selection was done to isolate

designs that caused the evolved 1WUB variant to lose function. These mutations

primarily occurred in the range of residues 50-57 and 141-145, both regions

contain non-structured loop regions. A site saturation mutagenesis library based

on variant 2063+R139P +V24G +V170A +A101V +K15E +Y65H +S100N

was created and sorted at a concentration of 1nM for 2 rounds. The final

variant from all this selection resulted in the following mutations relative to

2063: A4L, L11F, M18V, V23G, L27M, R34V, S45A, A47V, G63D, L79S, Q85L,

I96V, F100V, A109V, G111V, M125T, M128V, V130A, M132A, R138P, L143M,

V160M, F162M, A164L, A166I, L168A, V169A. The amino acid sequence for
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this variant is located in appendix B and is named CM1-13 AD28.

3.3.2 Serendipitous 25-hydroxycholecalciferol Binder

A designed named 4424 in scaffold 3HX8, originally designed to bind the ligand

THC, was also tested for binding against 25-Hydroxycholecalciferol and showed

binding on yeast surface display. It’s sequence is located in appendix B. This

design did not bind the biotinylated form of the target ligand, THC, tested via

yeast surface display and flow cytometry. Design 4424 was used as the basis for

error prone directed evolution to bind 25-Hydroxycholecalciferol. After the first

round, a glutamate was introduced in the binding pocket with mutation V106E.

This mutation alone increased the specificity of 25-Hydroxycholecalciferol over

cholecalciferol by approximately two orders of magnitude on yeast surface dis-

play and brought down the apparent Kd on yeast to the low micromolar range.

Figure 6: Titration data using yeast surface display and flow cytometry for design
4424 +V106E demonstrating the specificity between 25-Hydroxycholecalciferol and
cholecalciferol.
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Rosetta was used to create designs based on 4424+V106E that would fur-

ther optimize the pocket for 25-Hydroxycholecalciferol. These Rosetta designs

include the following variants:

4424 +V106E +T121A +S123A +V100M

4424 +V106E +T121A +S123 +V100I

4424 +V106E +T121V +S123 +V100I

4424 +V106E +V100I +S123A.

Two error prone libraries were created, one based upon the initial evolved vari-

ant 4424+V106E, and another based on the Rosetta improved variants. The

best variant that converged from the two libraries was based on design 4424

+V106E +V100I +S123A, with final mutations 4424 +V106E +V100I +S123A

+A36P +L66P +A80P.

Figure 7: Equilibrium fluorescence anisotropy of 25-Hydroxycholecalciferol-TMR
mixed with purified 4424 +V106E +V100I +S123A +A36P +L66P +A80P. The ap-
proximate Kd based on the non-linear fit is 140nM.

The next round of error prone yielded additional sequences with similar Kd

43



to 4424 +V106E +V100I +S123A +A36P +L66P +A80P. These mutants are

named HH24, HH35.1, W19.1, and their sequences are located in appendix B.

Figure 8: Equilibrium fluorescence anisotropy of 25-Hydroxycholecalciferol-TMR
mixed with purified 4424 evolved variants HH24, HH35.1, W19.1 (Appendix B). The
approximate Kd based on the non-linear fit is 110nM.

From these evolution variants, two crystal structures were solved of HH35.1

and W19.1, however they are very similar structurally and differ only by one or

two surface residues. The structure for HH35.1 is shown below.
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Figure 9: An overlay of the crystal structure for design HH35.1 with the best docked
model. The RMS is calculated at 1.434Å. The pink model is the crystal structure and
the tan model is the predicted dock design.

A site saturation mutagenesis library was created based on variant HH35.1.

This library was sorted for 2 rounds at 1nM and sequenced using next generation

sequencing technology. (Illumina Miseq) A heat map was generated to show

enrichment of individual point mutations.

Figure 10: Heat map for the second sort at 1nM of a site saturation mutagenesis
library where every position in design HH35.1 was mutated to every other position
using NNK primers. The white colored positions represent substitutions where not
enough data was gathered from the miseq run, possibly because the number of reads
was insufficient or because the position was not present in the sample to a high enough
degree.

The top give most enriched positions were combined to create a combinato-

rial library, which was sorted to convergence. The final sequence is named J1c-

16, and contains the following mutations relative to the original 4424 design.

G1D, A18V, R44P, L66P, L68F, D72N, E75K, D99G, V100I, K103I, V106E,
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S123A, D126G. The final sequence is located in appendix B.

Figure 11: Yeast surface titrations were done on the J1c-16 and N3X-1 AD4. N3X-
1 AD4 is another binder that is mentioned below. Both designs show specificity
for 25-hydroxycholecalciferol over cholecalciferol, however J1C-16 is significantly more
specific, likely due to its glutamate making the hydroxyl interaction, as opposed to a
serine in N3X-1 AD4.

3.4 Successful 25-hydroxycholecalciferol Binders

Several designs were successfully created using the protocol outlined in chapter

2 to bind the ligand 25-Hydroxycholecalciferol, without modification, as shown

by yeast surface expression and flow cytometry.
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Table 1: Designations and sequence changes for designed and functional 25-
Hydroxycholecalciferol binders. Full sequences are in Appendix B.

Design Native PDB Mutations from Native

6269 3ROB W26F, L27V, L49Y, C65A, A76M, A78V, L96V, A115I, D132A

A133Y, N134A

6326 1OHO V19M, Y31F, N39L, Y56F, G59M, A67M, V87A, M89Y, D102A

M115S, W119F

6218 1DMM M12A, Y15M, V19L, V37L, D39A, M83A, M89T, D102S, M104S

M115T, W119Y

6348 3NHX Y13F, L17M, D37C, Y54F, S57A, L62V, V83A, N98A, M111S

A113C

6264 3HX8 A37M, I63A, L66V, L68I, L88A, A90V, A100I

6344 3HX8 N12T, I63A, L66A, L68A, V106A, D121L

6220 1E3R Y15L, Y31F, N39A, Y56F, V87I, D102S, M104I, I112V, W119F

L124M

6234 1Z1S S21A, L25V, W33F, L43M, W52Y, V75I, Y112F, Y126S, D128I

6258 3HX8 Y31F, W55F, A58S, I63A, L66V, L68M, L88A, A100W, L118M,

L121S, W123F

6261 3HX8 Y31F, W55F, I63A, L66A, L88A

6333 2WC5 M6E, 9VM, I53L, I54L, M56A, S57A, M63L, D66N, V67N, R68A,

H70N, Y77F,I78T, M91Q, H96A, E99A, D103A, E105V, D108A,

R111A, V112A
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Figure 12: Yeast surface display and flow cytometry data for the designed, func-
tional 25-Hydroxycholecalciferol binders. PE fluorescence represents binding to the
target ligand and FITC fluorescence represents surface expression of the design
on the yeast surface. The approximate concentration is 30uM of biotinylated 25-
Hydroxycholecalciferol.

All of these initial binders were pooled and an error prone library screening

was done to identify the tightest binder for further evolution and characteriza-

tion. That selection converged to the design 6234 with additional mutations:

S2N, S5R, P46S, H72P, G140V. This sequence is known as N3X-1 in appendix

B. The yeast surface titration for this design is shown above in figure 11.
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3.5 Discussion

3.5.1 Recovered Function Binder 2063

The design 2063 was recovered with an error prone library, yielding two func-

tional sequences. 1) R139P relative to design 2063 and 2) S48C, M126T, A131T,

D141V, G153C. Analysis of computationally generated scores can be insightful,

but ultimately aren’t reliable without crystal structure data. For this example,

we found it interesting that the proline mutation found to recover activity is

near the far side of the protein relative to the designed binding pocket. Proline

residues are often associated with decreased flexibility and increased stability

due to their restricted phi/psi angles. [64] When you consider the effect of this

single proline mutation on the solubility or expression of E. Coli produced pro-

tein, the significantly increased levels of protein in the soluble fraction helps to

support the idea that the protein is being stabilized and is regaining function as

a result. (See figure 5) Additionally, the negative sort information collected dur-

ing the second error prone library sort showed that the overwhelming majority

of mutations that reduced binding existed in loops also on the ”back side” of the

scaffold, near this proline mutation. This also suggests that these loop regions

are important to the stability of the protein, and that the protein itself may be

marginally stable in its native form and requiring stabilization in order to gain

function after our Rosetta design efforts add primarily functional mutations.

The final variant for this 2063 based design did not show as good of affinity

or specificity for 25-hydroxycholecalciferol over cholecalciferol, and so it was

not followed up on because the 3HX8 based serendipitous binder showed much

better characteristics for eventual use in a biosensor application. Additionally,

all the mutations that accumulated in design 2063 suggest that our initial design

configuration is likely not what is actually taking place. Docking runs show that

the ligand can enter from either end of the protein and mutations don’t make a
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clear distinction as to the orientation of the 25-hydroxycholecalciferol molecule.

This may also suggest that the nature of this 1WUB scaffold makes it very

amenable to binding long hydrophobic ligands, like it’s native target, and that

specificity in such situations is very difficult because there may be so many

alternative, favorable conformations.

3.5.2 Serendipitous Binder 4424

The serendipitous binder 4424 was originally designed to bind the ligand tetrahy-

drocannabinol, but was tested against 25-hydroxycholecalciferol to test its cross

reactivity. The two ligands are chemically similar because they both contain a

long alkyl chain and are mostly hydrophobic. The fact that a designed protein

can bind an off target ligand so readily without any positive design exemplifies

to us that affinity is easier to obtain than specificity. The fact that we also

gained very good specificity for the hydroxylated form of vitamin D3 with the

V106E mutation is very fortunate, but that 3HX8 scaffold was included when

designing our 25-hydroxycholecalciferol binders, so why weren’t we able to come

up with it? This is a very important piece of information we need to analyze

and learn from.

The first lesson we learned is that the scaffold type may be playing a very

important role, much more than we had previously realized. The native chemical

environment in a designed scaffold may be determining the ability to bind certain

ligand types and we should be taking advantage of this idea in order to gain an

advantage. In previous design attempts with steroids [8], successful binders were

easily obtained when using native scaffolds whose family type is known to bind

other steroid molecules. In our example, the crystal structure of 3HX8 shows

a tetraethylene glycol molecule binding in the pocket. This small molecule has

a very similar chemical group compared to both vitamin d3 and THC and so

should provide an advantage if used for designing binders to those molecules,
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and also makes the cross reactivity of our design less surprising. This idea was

known when creating our initial protocols, however, the extent may not have

been fully appreciated due to our relatively even distribution of sampling spread

across many different scaffolds. Diversity in protein folds was viewed by us as a

good thing that was supposed to give us a higher chance of creating successful

designs in case one scaffold type is generally unstable. That may not be a bad

idea still, but scaffold bias for well expressing scaffolds with chemically similar

ligand types is something that we have learned to take advantage of in our

new protocols through the use of multiple Patchdock iterations as described in

chapter 2.

So we learned that scaffold selection is much more important, but in this

particular case, we did have the 3HX8 used in our design pipeline, so then why

did we miss the functional design? After re-running our protocols, we found

that we weren’t sampling enough ligand conformers during the Patchdock step.

The long alkyl chain of 25-hydroxycholecalciferol introduces many degrees of

freedom into the ligand and we only choose to dock the most energetically

favorable configuration because of limits on computational resources. The 25-

hydroxycholecalciferol docked 4424 model found that a different conformer than

the one we used during our Patchdock steps was the best fit. The 4422+V106E

mutation should have been even easier to arrive at had we docked the ligand

with the appropriate conformer. However, our previous protocol iteration ex-

cluded charged residues from design consideration due to the inability of Rosetta

to properly weight the necessity for satisfying these charged residues, especially

deep in a protein pocket. Additionally, when trying to allow Rosetta to design in

the V106E mutation into design 4424, the proper rotamer was not found, under-

lining the fact that we still lack accurate modelling of electrostatic interactions,

which is the initial reason we chose to omit charged residues. However, since
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manual inspection is typically performed at some point during our protocols, it

is not unreasonable to think that had we found the properly docked initial 4424

design, the V106E variant would have likely been created and ordered.

There is one final, important question that arises when analysing recovered,

and serendipitous 25-hydroxycholecalciferol designs. What information can be

learned and how can it be applied or generalized for creating initially functional

binding designs? In light of all this information, we modified our protocol into

the final iteration by including an additional Patchdock step that first casts a

wide net on many diverse scaffold types at a lower resolution, before identifying

those scaffolds with chemically favorable chemical environments and biasing the

subsequent sampling steps towards them. The amount of sampling could also

be increased since we would then be working with a smaller, more targeted set

of scaffolds. We expanded each scaffold to include variants with different types

of substitutions in order to provide additional starting points for the Patchdock

search, and we also expanded the number of ligand conformers which are used

in each Patchdock run up to the capacity of our computational resources.

Suggested by the 2063 recovered binder information, stability may be playing

a role in the ability of our designs to function properly. To try an learn from this,

we introduced additional restrictions during the scaffold variation generation

steps and Rosetta design steps that would conserve aromatic, CYS, and PRO

residues. These residues are often responsible for core packing and secondary

structure, so by removing the potential instability resulting from changing such

residues, we would be decreasing our changes of causing unwanted backbone

movement in our final designs that may be resulting in non-functional designs.

Additionally, this points to the need to explore orthogonal methods of stabi-

lization, such as the design of disulfide bonds or stabilization through proline

inclusion. A separate experiment was done in order to test these techniques and
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is described in more detail in chapter 6.

By including these learned protocol modifications, we came up with our final

protocol iteration which is the basis for chapter 2. This protocol allowed us to

create create many

25-hydroxycholecalciferol designs that bound the intended ligand in two different

scaffold families without any additional modification, providing evidence that

our protocol improvements may have been partially solving systematic design

problems.

In addition to specificity between the two hydroxyl variants of vitamin D3

and vitamin D2, the real test of specificity will be in the context of where the

binder will be used in any potential application. This brings up a concern

with non-specific binding, since in human blood or serum, there may be many

large hydrophobic molecules that would be competing with vitamin D3 for the

binding pocket. Until we are able to test all of the known, common cross reactive

components, simply doing selection in human serum may be the best way to

both guide any future evolution away from non-specific components, and to test

the ultimate specificity of the vitamin D3 binders.
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Chapter 4: Computational Design of Tetrahydro-

cannabinol and Cannabidiol Binding

Proteins

4.1 Introduction

Tetrahydrocannabinol (THC) is the primary psychoactive compound found in

marijuana and cannabidiol (CBD) is another non-psychoactive compound that

is thought to play a role in mediating the effects of THC. THC is used for

both recreation and medicine, whereas CBD seems to have primarily interesting

medicinal properties. CBD has been referenced as a neuroprotective antioxidant

[86], is known to affect the effects produced by THC [53], and has been studied

for anti psychotic effects [88].

As more local governments consider legalization of marijuana use, there is

a growing interest in being able to quantify the amount of THC and CBD in a

sold product, or to conduct DUI type testing for cannabinoid compounds and

metabolites that may affect one’s ability to drive. The first step for any type of

sensor is to have a recognition element, such as a protein, that is able to detect

THC specifically from CBD and other metabolites. As mentioned previously,

a useful sensor for THC would need to operate in the 3nM to 18uM range [27]

for oral fluid detection. Using the protocols laid out in chapter 2, we have been

able to successfully create binders in this range.

4.2 Methods

The design protocol used is exactly as it is presented in the chapter 2 outline.
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4.3 Results

4.3.1 Recovered Activity THC Binders

Multiple designs targeting the ligand tetrahydrocannabinol were created in mul-

tiple scaffolds. Two designs, one referred to as 4423 in PDB ID 2Z77, and 4572

in PDB ID 3HX8 were non functional for THC binding, but after an error prone

library selection, showed binding.
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Figure 13: Flow cytometry results for recovered binders based on THC designs 4572
and 4423. The restorative mutation was S83R for design 4572, and D46G and V105A
for design 4423. The negative control in both cases is a biotin-BSA label, as opposed
to the THC-BSA-Biotin label in the positive tests. The 4423 based design shows off
target binding against biotin in this assay, although the positive signal is approximately
six times higher for the intended THC target.

4.3.2 Serendipitous THC Binders

Since THC and 25-hydroxycholecalciferol share similar structural and chemical

characteristics, we also tested many 25-hydroxycholecalciferol binders against

THC in order to discover additional starting points. This is a lesson we learned
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from our serendipitous 25-hydroxycholecalciferol binder. The 25-hydroxycholecalciferol

binder 6234 in scaffold 1Z1S appeared to bind THC fairly well, and so a site

saturation mutagenesis library was created based on 6234 in order to see if we

could evolve the initial design into specific 25-hydroxycholecalciferol, THC, or

CBD binders. The best variant for THC binding that came from this selection

is named NTH1 and has the following mutations from the original 6234 design:

S2N, S5R, P46S, P50G, H72P, S126I, G140V.

Figure 14: Yeast surface display and flow cytometry data for the designs NAL1 and
NTH1. Both designs show a specificity preference for THC over CBD, although the
design NTH1 doesn’t bind CBD at all in the concentration ranges tested and thus has
much higher specificity than the arguably tighter binder NAL1.

4.3.3 Successful THC Binders

Several designs were created using the protocol outlined in chapter 2 to bind the

ligand tetrahydrocannabinol, and did so successfully, as shown by yeast surface

expression and flow cytometry using a BSA conjugated THC label.
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Table 2: Designations and sequence changes for designed and functional Tetrahydro-
cannabinol binders

Name Native PDB Mutations from Native

6285 2BVV 5YF, Q7L, N35A, V37A, F69Y, Y80F, R112M, S117A

I118A, D119N, D120S, A165S, R172I

6290 2OVD L33I, V36I, T53F, V66A, T68F, R70V, Y83F, L94N, R100Q

H104I, V105A, L118V, L120T, L129Q, Y131F

6304 3AKR S16L, Y17F, N44L, V46I, E86A, Y88F, R122A, I128M, Q136M

Y171F, E177G

6314 4F6B Q44V, K47Q, T48Q, T49F, D51A, Y52F, A62F, L65A, R68A

H69S, R72L, V74I, I102V, I105V

Figure 15: Yeast surface display and flow cytometry data for the designed, functional
tetrahydrocannabinol binders labeled with a Biotin-THC-BSA conjugate. PE fluores-
cence represents binding to the target ligand and FITC fluorescence represents surface
expression of the design on the yeast surface. The negative control is the design 6304
with no THC-BSA added during labeling.

All of these initial binding hits were pooled and an error prone library screen-

58



ing was done to identify the tightest binder for further evolution and charac-

terization. This evolution was done using a non-avid biotin conjugated THC

molecule. The selection converged to the design 6304 with additional mutations,

N124A. A combinatorial library using design variant 6304 +N124A as the base

was generated and resulted in a variant named NAL1 with the following mu-

tations from the original design 6034: D20H, N69Y, I85F, M128I, M136I. This

amino acid sequence is located in appendix B.

4.4 Discussion

4.4.1 Serendipitous THC Binders

The design NTH1 came from a design that initially bound 25-hydroxycholecalciferol.

Without any prior knowledge, one would likely think that a protein designed

for a particular target molecule would provide a better starting point than one

found serendipitously. In the case of the 3HX8 D3-OH binder, this was not

the case, as all successful designed binders for 25-hydroxycholecalciferol showed

lower affinity and specificity so far. In this case, however, the best success-

fully designed THC binder in scaffold 6034 shows the higher affinity for THC,

with slight preference for THC over CBD. The serendipitous THC binder NTH1

doesn’t show as high of affinity for THC, but it’s specificity over CBD is much

better in the concentration ranges we measured. It seems that serendipitous

binders have just as good of a chance to have excellent affinity as designed

binders do. There may be a slight advantage in specificity seeing as all of the

THC designs tested have a slight preference for THC over CBD. Knowing this,

it may seem that we still do not know how to predict the evolve-ability for op-

timal affinity of an initial binder. We may be able to provide a slight specificity

preference, but seeing now NTH1 shows better specificity without having been

designed for it flies in the face of our computational design methods. I would
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argue, however, that we simply have incomplete information on how to predict

the evolve-ability of an initial binding protein, and so the more important factor

in creating a useful binding protein is the number of starting points. With an

approximately %17 success rate, we at least seem to do better than randomly

screening proteins. (Unpublished data)
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Chapter 5: Computational Design of a Biotin Bind-

ing Protein

5.1 Introduction

The first small molecule target we explored making binders for was biotin. The

biotin molecule consists of a polar tetrahydroimidizalone ring fused to a rel-

atively non-polar tetrahydrothiophene ring with an attached valeric acid sub-

stituent. Binding of biotin to the streptavidin tetramer is mediated by an ex-

tensive hydrogen bonding network, as well as Van Der Waals interactions. The

interaction at the ureido oxygen is polarized enough that it gives the carbonyl

group SP3 character, allowing it to form three hydrogen bonds. Additionally,

when biotin forms a complex with streptavidin, two disordered loop regions be-

come ordered. Mutational studies have demonstrated, and we have verified in

our assays, that there is still detectable binding even when two out of the five

head group hydrogen bonds are removed and an unfavorable polar interaction

is introduced at the ureido oxygen. [65]

Biotin was chosen as our first target because of it’s well known interaction

with streptavidin. [69] The biotin streptavidin interaction is very well studied

and high resolution crystal structures of native and mutant variants are readily

available. Since we know exactly what interactions were needed to create a

femtomolar interaction, we thought it might be relatively easy to essentially

graft that binding site into another scaffold and get a binder. We thought wrong.

It turns out this is extremely difficult because of the very unique, specific, and

complex interactions biotin has with streptavidin.

Nonetheless, we learned about many limitations in our design protocol and

were able to improve it significantly after attempting many, many years of design

work on biotin. Ultimately, we were able to create a biotin binder, as shown on
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yeast surface display and flow cytometry, but the binder was extremely weak

and only showed a signal when using a highly avid label.

5.2 Methods

Designs to bind biotin were created very early on in our protocol development

and what we learned from these attempts helped to inform improvements. Rel-

ative to the protocol described in chapter 2, the biotin design protocol varied

in the following ways:

1) In the scaffold selection step, the biotin design protocol only used scaffolds

found in the binding MOAD (mother of all databases) [23], which is a database

containing high-quality examples of ligand-protein binding models. We then

selected PDB files that are monomers, have a similar ligand size to the target

ligand, have been expressed in E. coli, have binding pockets that consist pri-

marily of α-helices and β-sheets, have ligands that are at least partially solvent

accessible to accommodate the linker used in experimental validation, and do

not contain structural metal ions. After filtering for these criteria, we then

searched the protein database for structural homologs of those structures that

passed the filters and added them to our set. This filtering process leaves us

with several thousand starting scaffolds in the case of the biotin ligand. In the

final protocol, a much less filtered set of scaffolds are screened multiple times

and scaffold classes are identified in the first round so that sampling can be

biased towards native scaffolds with more favorable chemical environments for

the target ligand in subsequent rounds.

2) In the ligand placement step, the biotin design protocol used both Rosetta

Match and Patchdock were the primary protocol used for generating initial
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placements of the biotin ligand into the scaffold pocket. For more information

on Rosetta Match, see appendix A. In the final protocol, Patchdock is used ex-

clusively and initial scaffolds are expanded into many variants and each ligand

conformation is docked into to increase sampling.

3) The biotin design protocol did not use grid design whereas the final pro-

tocol did.

4) In the Rosetta Design step, the biotin design protocol used a wide variety of

filters and variations on their strictness and how they were applied. These ad-

ditional filters are described more in depth in appendix A. The primary method

of applying these filters was in a weighted greedy optimization step where all

residues within approximately 6Åof the ligand is mutated to every other residue

and scored using many weighted score terms. These score terms were derived

from native binder examples in the Community Structure-Activity Resource

(CSAR) and the Cambridge Crystallographic Data Centre (CCDC). [? 1] From

these collections, we extracted crystal structures for a diverse set of protein-

ligand complexes, many of which have measured Kd values. These examples of

native binding proteins are hand curated by us to select structures with only

one ligand in the binding pocket, structures in which the ligand binding site is

not at the interface between two subunits or two proteins, and structures with

no metal ions or water molecules that participate in the binding interaction.

These criteria are used to avoid scoring complications and to make the results

more directly meaningful to our design cases. All of these native scaffolds are

subjected to a Rosetta minimization protocol to alleviate any clashes and are

then scored by all available metrics. The size of this benchmark set is 49 and

the scores are shown in table 3.
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Metric Average Std Dev Median
Interface Energy (IE) (REU) -10.962 7.633 -9.537

Interface Area (IA) (Å2) 528.027 251.06378 548.112

IE / IA (REU/Å2) -0.0208 0.843
Fractional SASA 0.854 0.130 0.896
Rosetta Holes 0.690 0.046 0.679
Shape Complementarity 0.743 0.083 0.743
Ave. H-bond Energy (REU) -0.651 0.606 0.607

Table 3: Score Metrics of Native Binding Proteins: Interface energy is a score defined
by the sum of Rosetta energy terms over all pair-wise interactions between the ligand
and protein. Because the interface energy scales with the size of the ligand, it must
be normalized by the interface area for comparison between ligands. The fractional
solvent accessible surface area (SASA) is a zero-to-one measure of how exposed the
ligand is where zero is completely exposed and one is completely buried. Rosetta
Holes is a zero-to-one measure of empty space in the non-solvent exposed portions of
the protein, where zero is completely devoid of atoms and one is completely packed.
Shape complementarity is a zero-to-one measure of how well the contours of the ligand
match up geometrically with the scaffold along the protein-ligand interface, where zero
is un-complementary and one is perfectly complementary. The hydrogen bond energy
is determined by the distance and orientation between the acceptor and donor atoms.
It typically ranges from zero to negative two.

Metric Average Std Dev Median
Interface Energy (IE) (REU) -9.173 1.854 -9.766

Interface Area (IA) (Å2) 389.75 94.077 404.812

IE / IA (REU/Å2) -0.0235 0.314
Fractional SASA 0.899 0.100 0.899
Rosetta Holes 0.643 0.058 0.066
Shape Complementarity 0.698 0.077 0.722
Ave. H-bond Energy (REU) -1.120 0.599 -1.215

Table 4: Example of Score Metrics of Designed Proteins

Another difference between the biotin design protocol and the final proto-

col is that the biotin design protocols allowed for mutation from and to all

residues. In the final protocol, residues are restricted to leave residues that may

contribute to scaffold stability as native, such as glycines, prolines, aromatics,

and cysteines, untouched during design. The final protocol also got rid of the

majority of complicated score terms and relied more on manual inspection of

designs to inform the in silico evolution steps.
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5.3 Results

5.3.1 UM 37 Recovered Binder

The designs created using the first protocol iteration described previously did

not yield any functional biotin binders. It did, however, result in one error

prone recovered design named UM 37 in scaffold 1OHO and its evolved variant

WBD1-V3. The sequence changes between the two are: V62W, V64I, C77R,

Y82W, A94C. Sequences for these two variants are located in appendix B.

Figure 16: Flow cytometry data for controls and the successful biotin binding design
UM 37 found via library selection. The Y-axis represents binding to our biotinylated
fluorophore and the X-axis represents cell surface expression. All samples are incu-
bated with 16.6µM Biotin-XX-PE in 40µL at 4 C for 3 hrs and washed once with
200µL PBSF immediately before reading. A) This negative control is an orthogonal
gp120-based library available in the Baker lab (S2). B) Streptavidin positive control.
C) Biotin binding design named UM 37 in scaffold 1OHO. D) Same design in (C) but
with >100-fold molar excess of free biotin.

65



Figure 17: Structures of the original design model of UM 37 and the minimized
model with mutations found from library screening. The sequence found from library
screening shows binding activity, whereas the original model does not.

Figure 18: The Y-axis represents the binding of the a UM 37 mutant to our biotiny-
lated fluorophore, phycoerythrin. It is calculated by measuring the mean PE signal in
the expressing yeast population and subtracting the PE signal from the non-expressing
population. All mutations that increase the size of position 20 or remove potential
hydrogen bonding residues knock out binding activity.
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Figure 19: The Y-axis represents the binding of the a UM 37 mutant to our bi-
otinylated fluorophore, phycoerythrin. It is calculated by measuring the mean PE
signal in the expressing yeast population and subtracting the PE signal from the non-
expressing population. Every mutation that involves changing lysine 37 to either a
valine or methionine knocks out binding activity.

Figure 20: A model of re-docked UM that best matches the sequence of the binder
found after library screening. The residues in purple show positions where the ac-
tive site changes from the initial non-binding model to the successful binding design
obtained through library screening.

67



To try and find additional mutations that improve binding affinity and to

better explore the new docked model’s sequence space, we created and screened

an NNK library that will exhaustively sample all positions near the active site for

each amino acid non-combinatorially. We identify two point mutations, A97C

and Y82W, that show enhanced binding. A titration curve for this comparison

is shown in figure 21.

Figure 21: The Y-axis represents the binding of the a UM 37 mutant to our biotiny-
lated fluorophore, phycoerythrin. It is calculated by measuring the mean PE signal in
the expressing yeast population and subtracting the PE signal from the non-expressing
population. Concentrations of our label were not sufficient to achieve saturation, how-
ever, this figure suggests that the A97C change results in the mutant with the highest
relative affinity. Both mutants show increased binding over the original UM 37 design
found in the initial library screen.

A combination mutant that contains both of these mutations is created and

shows a binding signal via flow cytometry. Although it has not had its relative

affinities measured compared to the single A97C and Y82W point mutants. (See

figure 22.)
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Figure 22: The image shows the structure of the UM 37 + A97C + Y82W mutant.
The mutations from our original unsuccessful model to this optimized successful binder
are V37K, N116H, Y82W, A97C, W112C, V20A.

5.3.2 2082 Successful Biotin Binder

A successful binder was made after protocol modifications and is named 2082.

The evolved variant of 2082 is named P2 and contains the mutations S5G,

M59V, and E67G. The amino acid sequence for both 2082 and P2 are located

in appendix B.
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Figure 23: Equilibrium fluorescence anisotropy of Biotin-FITC mixed with purified
P2. The Kd cannot be reasonably determined from this data because the binder does
not saturate at 1mM concentration of Biotin-FITC, suggesting that the label is binding
non-specifically to the protein, or the binder has a Kd of greater than 500uM.

In addition to these two binders, we were able to pull out many others from

a large set of designs that underwent error prone mutagenesis. These following

binders were not followed up on because the docked models looked and scored

like non native binders, suggesting that all of these binders were likely not

binding in any way similar to our predicted designs.

5.4 Discussion

5.4.1 UM 37 Recovered Binder

The knock-out mutants for recovered variant UM 37 suggest that the orientation

of biotin in our original model is incorrect. Although the loss of activity by

mutating serine 103 to alanine seems reasonable, the mutation at position 116

from an asparagine to a histidine requires an unfavourable histidine rotamer to

maintain a direct hydrogen bond to biotin in our model.

The sequence of the successful UM 37 binder recovered from the library has
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several mutations in the binding site compared to our original model, so we

proceeded to verify if the ligand was still binding in the originally predicted

orientation. We created single point mutations with the goal of testing the

proximity of the ligand to position 20 and the importance of positions 116 and

103 to binding. The mutation of position 37 from a valine to a lysine seemed

unfavourable according to our original model so we attempted to revert residue

37 back to a hydrophobic valine or methionine residue. These results are shown

in figures 18 and 19.

Minimizing biotin in the library recovered sequence design results in a model

with a void near position 20 because of the introduced V20A mutation. Point

mutants shown in figure 18 were made to try and fill this void by substituting

in a larger isoleucine, valine, or leucine residue. All of these mutants showed no

binding activity, suggesting that these mutants are causing steric clashes with

biotin, which is much closer to position 20 than our original model predicts.

Residue 37 changes from a non-interacting valine in our original model to

a charged lysine residue in the library recovered binding sequence. This lysine

residue seems to be unfavourable and not able to make a hydrogen bond to

biotin, so we create many mutants in which residue 37 is changed to either the

original valine or a methionine residue. All of these mutants show complete loss

of binding and suggest that this lysine is actually making a critical interaction

with biotin. These results are shown in figure 19.

Because of the inconsistency of our model with these mutational data, we

computationally re-dock biotin in the new sequence with a much higher sampling

rate and more extensive backbone minimization. This results in a model that

is more consistent with the mutational data because the biotin ligand re-orients

the ureido oxygen towards lysine 37, making a hydrogen bond, and the ligand

moves closer to position 20. This re-docked model is shown in figure 20.
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The point mutation A97C introduces a potential disulphide bond with C112.

The addition of a disulphide bond is possibly stabilizing a flexible loop that

interacts with the biotin linker and may be telling us that there are subtle

backbone movements playing a role in binding. The A97C mutation alone gives

the greatest increase in affinity among the NNK library mutants. The second

best mutation is Y82W, which increases the packing against the ligand, and

suggests that Rosetta may be under packing our initial designs.

It is interesting to note that a histidine residue is not predicted to be partic-

ipating in the biotin binding interaction. We tested binding for pH dependence,

as such a product may be commercially interesting, however, no pH dependent

binding was seen, suggesting that even our current model may not be accurate.

Due to the nebulous nature of this binder, we decided to move on to making

new designs based on an improved protocol.

5.4.2 2082 Successful Biotin Binder

Many of the early biotin binding designs were created overwhelmingly through

human intuition and non-repeatable design procedures. Emphasis was put on

hydrogen bonding interactions and initial ligand placement was done only using

Rosetta Match with native or idealized hydrogen bonding constraints. This led

us to designs that were very polar in nature and often sacrificed good packing

and shape complementarity interactions in order to create numerous, but un-

realistic and relatively high energy hydrogen bonding networks. Learning from

these mistakes, we created the biotin design protocol described above, which

put a much stronger emphasis on hydrophobic interactions and shape comple-

mentarity by utilizing the Patchdock protocol for initial ligand placement and

by requiring fewer hydrogen bonds be made to our ligand during early rounds

design. In addition to these major changes, many minor changes were made,

for example, the final biotin design protocol introduced automated scripts for
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filtering out ligand placements that are too buried and result in mutation of

structurally important core hydrophobic residues, and we have created filters

that look for unrealistic threading of our ligand linker through secondary struc-

ture elements to solvent instead of through native cavities.

It wasn’t until these changes were made to the protocol that we were able

to achieve any binding signal for a biotin design. The major changes changes

were:

1) We switched to using Patchdock as the primary ligand placement method.

2) Design was stripped down to only use non charged residues and aromatic

residues were not allowed to mutate.

3) Manual inspection was used to make minor changes and to introduce hydro-

gen bonds into the designs. (ALA to SER, PHE to TYR, VAL to THR).

After applying these changes, the successful 2082 binder was made in scaffold

3FKA.
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Chapter 6: Functional Recovery of Computation-

ally Designed Small Molecule Bind-

ing Proteins via Proline Stabilization

6.1 Introduction

The majority of the small molecule binder designs are non-functional. This is

a troublesome issue because often times it isn’t obvious why a certain design

will not work as intended. Sometimes the reason may be obvious, such as the

decision to order both variants of a possibly questionable mutation during man-

ual inspection. Other times, it may be a Rosetta favored mutation that passes

through the filters because of an assumption made by the Rosetta software,

such as assuming a fixed backbone, the use of discrete rotamers, implicit sol-

vent, score terms based on empirical crystal structure data, or the simplified,

pairwise electrostatics model. These assumptions may cause mutations and

designs to appear favorable by Rosetta score when in reality they should not

be. Detecting these kinds of problems would require very meticulous manual

inspection and are not always found before ordering designs.

Several other reasons for designs failing to function may include inherently

unstable native scaffolds, destabilized scaffolds or unpredicted backbone move-

ment due to inserting designed mutations, or our expression system may not be

optimized or have the correct chaperones to handle a particular protein fold.

Because of limited resources, the difficulty in solving crystal structures of non-

functional designs of potentially low significance and because it is very difficult

to extract any predictive structural information based on yeast binding assay

data alone, it must be pointed out that much of the analysis to follow is highly

speculative, but nonetheless interesting.

That being said, one theory as to why some of our designs are non-functional
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is based on the fact that most proteins in nature are marginally stable. [44] In

other words, it seems that functional mutations often come at the cost of overall

protein stability. If a protein is not globally stable enough, it may become disor-

dered, unfolded, or badly behaved. Our design methods to date have only dealt

with functional mutations, often only modifying amino acids in the proposed

binding pocket. We hypothesized that by doing this, we may be destabilizing

our native scaffold starting points so much that they become distorted and no

longer capable of folding into the predicted functional design. In order to test

this hypothesis, we took all designs from our latest design round that did not

show a significant signal using yeast surface display and flow cytometry and

attempted to stabilize them to regain or improve function. If stability is indeed

an issue in a subset of our designs, then by including prolines at these positions,

we would either restore function or significantly improve the ability of those

designs to bind the target ligand.

6.2 Methods

The design protocol used is exactly as it is presented in the chapter 2 outline but

then applied a round of proline stabilization design. To do this, we considered

combinations of proline substitutions at all positions that fall into the ”proline

rule”.[64] These are the i + 1 position of type I and II beta-turns and position i

in type II beta-turns. It was shown that the addition of prolines at these posi-

tions in many examples improved stability of the protein, so we computationally

modelled all of these proline substitutions combinatorially. Combinations that

showed a decrease in global Rosetta energy after proline substitution, minimiza-

tion, and backbone relaxation, were ordered and tested for binding improvement

or recovered function.
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6.3 Results

The scores associated with all computationally modelled proline substitutions

are plotted in the following histogram.

Figure 24: A histogram showing the distribution of percentages of Rosetta scores for
all un-stabilized and stabilized 25-Hydroxycholecalciferol binders that failed to show
a significant signal initially on flow cytometry. There are 15 original un-stabilized
designs and 792 stabilized variants.

Of these proline variants, three initial designs were found that had a signif-

icantly improved binding signal due to one or more proline substitutions.

These designs that showed improved function with proline substitutions are

named CS1, CS3, and CS4. CS1 and CS3 are in scaffold 3HX8 and CS4 is in

scaffold 2WC5. CS1 is based on initial design 6258. CS3 is based on initial

design 6261, and CS4 is based on initial design 6333. The sequences for all of

these variants are located in appendix B. The proline substitution positions for

CS1 are K93P and Q112P. The substitution positions for CS3 are also K93P and

Q112P, although this design has a different initial design for the same scaffold.

The substitution position for CS4 is H70P only.
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Figure 25: Yeast surface display and flow cytometry data for proline stabilized vari-
ants and their initial designs. CS1 is a proline variant of 6258. CS3 is a proline
stabilized variant of design 6261, and CS4 is a proline stabilized variant of design
6333.
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Figure 26: Mean PE fluorescence as shown by yeast surface display and flow cytom-
etry for proline stabilized variants and their initial designs. CS1 is a proline variant of
6258. CS3 is a proline stabilized variant of design 6261, and CS4 is a proline stabilized
variant of design 6333. All three of these variants increased the mean PE fluorescence
signal over their non-proline stabilized variants. In the case of CS4 and 6333, the
design went from undetectable binding to detectable.

6.4 Discussion

We have seen several cases during our directed evolution that mutations in the

binding site are often either accompanied, or followed up in the next evolution

round, by mutations located well outside of the binding site. An example we

encountered was with design 2063+R139P. The native design 2063 alone did not

show any binding activity for 25-D3OH, but after the introduction of one proline

mutation on the opposite side of the designed binding site, binding activity was

restored. Another design from the same error prone round and scaffold that

had restored function was 2064 +S48C +M126T +A131T +D141V +G153C.

Several of these mutations occurred in the designed binding site for 25-D3OH,

suggesting that the ligand is located near the designed binding site and not

near the R139P position. The R139P mutation is likely contributing to the

restoration of binding function either through a long range backbone movement
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that modifies the designed active site, or through some contribution to global

stabilization that restored the protein from an unstable, non-functional state.

We saw another example with the serendipitous binder for 25-D3OH model

4424. After the first round of directed evolution, Rosetta was used in an at-

tempt to rationally design mutations into the active site that would contribute

to better binding function, without any regard to global stability. All of these

design attempts resulted in designs that showed a lower signal on yeast than

the initial starting point, 4424+V106E. This initial starting point had, in the

previous evolution round, introduced a charged acid at position 106, which is in

the protein core. As charged residues are not usually favorable in such a deep

position, and since we know from crystal structure data that this acid does in

fact interact with 25-D3OH and is critical for contributing both an increased

affinity and specificity towards the ligand, it is most likely a primarily functional

mutation. In the context of the marginally stable protein theory, it seems that

the Rosetta improved designs based on 4424+V106E were pushing the protein

towards instability, which may have been reflected in reduced activity when

tested on yeast. In the round of error prone selection based on these potentially

destabilized designs, as well as the initial 4424+V106E variant, the protein with

the highest activity found was based on one of the Rosetta modified designs, and

contained a three proline mutations: A36P + L66P + A80P. These positions

didn’t agree with the positions for increasing protein stability predicted by Fu

et al. [64], however prolines in general tend to restrict the number of degrees

of freedom due to its having relatively restricted dihedral angles, which may be

contributing to increasing the global stability of the protein. It is interesting to

note that the best sequences were all based on Rosetta designs that showed a

lower initial signal than other starting points in the library. The library screen-

ing is not a complete sampling, but the results support the idea that Rosetta
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may have potentially introduced functional mutations accurately, but required

stabilizing mutations to accompany them in order to make their modelled con-

tribution to binding. These potentially stabilizing mutations may be a critical

complement to the functional Rosetta predicted mutations in many of our de-

signs. These results, although with relatively low statistical significance, led us

to the proline stabilization experiment mentioned in the introduction to this

chapter.

When we scored proline variants of existing non-functional designs, we no-

ticed that the majority of them seemed to make the Rosetta energy worse.

Figure 24 shows this, suggesting that the types of proline mutations that we

are able to score well are only the subset of substitutions that only require min-

imal backbone movement in order to improve the Rosetta score. This might

seem restricting, but if larger changes to the backbone are expected as a result

of substitutions, the scaffolds may be more stable, but may also be unable to

maintain the designed overall structure in the original model, so this restriction

may actually be considered a feature in our computational screening method.
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Alexandre Zanghellini Jasmine L. Gallaher Jamie L. Betker Fujie Tanaka Carlos F. Bar-

bas III Donald Hilvert Kendall N. Houk Barry L. Stoddard David Baker. De novo

computational design of retro-aldol enzymes. Science, 319(5868):1387–1391, 2008.

[14] Ora Schueler-Furman Chu Wang Phil Bradley Kira Misura David Baker. Progress in

modeling of protein structures and interactions. Science, 310(5748):638, 2005.

[15] Paul M. Murphy Jill M. Bolduc Jasmine L. Gallahere Barry L. Stoddard David Baker.

Alteration of enzyme specificity by computational loop remodeling and design. PNAS,

106(23):9215–9220, 2009.

[16] Sarel J. Fleishman Timothy A. Whitehead Damian C. Ekiert Cyrille Dreyfus Jacob E.

Corn Eva-Maria Strauch Ian A. Wilson David Baker. Computational design of proteins

targeting the conserved stem region of influenza hemagglutinin. Science, 332(6031):816–

821, 2011.

[17] Summer B. Thyme Jordan Jarjour Ryo Takeuchi James J. Havranek Justin Ashworth

Andrew M. Scharenberg Barry L. Stoddard David Baker. Exploitation of binding energy

for catalysis and design. Nature, 461:1300–1304, 2009.

[18] Timothy A Whitehead Aaron Chevalier Yifan Song Cyrille Dreyfus Sarel J Fleishman Ce-

cilia De Mattos Chris A Myers Hetunandan Kamisetty Patrick Blair Ian A Wilson David

Baker. Optimization of affinity, specificity and function of designed influenza inhibitors

using deep sequencing. Nature Biotechnology, 30:543–548, 2012.

[19] J. M. Belk J. Hsieh C. M. Benatuil, L. Perez. An improved yeast transformation method

for the generation of very large human antibody libraries. Protein Eng Des Sel, 23(4):155–

9, 2010.
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Chapter 8: Appendices

8.1 Appendix A: Alternative Methods and Filters

8.1.1 Scaffold Selection: Rosetta Match

The Rosetta Match algorithm [33] is another method for placing the ligand into

our target scaffolds. Rosetta Match searches a set of scaffolds for a pre-defined

configuration of binding residues. We have used three different approaches for

matching: Matching for side chains that recapitulate the geometries observed in

native ligand binding sites, matching for side chains that make idealized bond-

ing interactions according to hybridization theory and/or maximized computed

van der Waals interactions, and matching for side chain positions obtained by

computationally placing disembodied amino acids near the ligand and minimiz-

ing the system. Iterative side chain placement and six-dimensional geometric

hashing techniques are used to search the scaffold for these side chain config-

urations in linear time. In a variation of this approach, we also perform a

Patchdock run prior to matching in order to pre-define a smaller search area

within the shape-complimentary scaffolds. This latter approach enables higher

density sampling.

8.1.2 Design: Rosetta Scripts

Rosetta Scripts is a implementation of Rosetta that uses an XML-like syntax

for specifying modelling protocols. [41] Previous to Rosetta Scripts, one would

only have access to individual protocols, such as docking, sequence redesign,

interface design, etc... one at a time. Rosetta Scripts allows the user to mix and

match these protocols, easily create variations, apply filters, and do fast testing

and optimization of procedures without having to recompile. Using Rosetta

Scripts, we have created a ligand binding design algorithm that involves multiple
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rounds of minimization and sequence redesign with alternating hard and soft

repulsive van der Waals penalties. The goal of this stage is to identify sequences

within the identified binding sites that maximize affinity between the ligand

and the protein. We use multi-stage filtering to stop bad trajectories early and

save computation time. We also use a multi-criterion optimization procedure

based on shape complementarity, ligand interface energy, Rosetta Holes packing

measures, solvent accessible surface area, and hydrogen bond score terms.

8.1.3 Design: Boltzmann Electrostatics

The Poisson-Boltzmann equation, described by Lu et al, [59] is used to calculate

the electrostatic forces between molecules in ionic solutions. We are implement-

ing this model to calculate the electrostatic interactions between the surfaces

of our ligand and the protein binding site. The model calculates an all-body

electrostatic field, as opposed to the standard pairwise calculation previously

used through Rosetta. Our implementation does a scan of all residues within

the binding pocket to find substitutions that stabilize the bound state based

on the electrostatics score, the ∆∆G, a measure of the difference in Gibbs free

energy between bound and unbound ligand states, and the total Rosetta score,

but also do not destabilize the protein in the absence of the ligand.

8.1.4 Validation: RosettaDock

RosettaDock is a protocol that allows us to computationally validate our de-

signs by performing protein-ligand docking that explicitly models full side-chain,

backbone, and ligand flexibility. [36, 37] Monte Carlo sampling is used to explore

all associated degrees of freedom. Five thousand runs of this protocol for each

of our designs allows us to generate a ”docking funnel”. This is a plot of how

much our ligand has moved from it’s starting point versus the Rosetta energy

of the complex. In the cases where Rosetta finds a global minimum of energy
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and the ligand shows little to no movement from our initial model, we should

see a ”funnel” of data points leading to that low energy configuration. Native

small molecule binders have this funnel character, as well as streptavidin. If

our designs show a similar funnel without alternative low energy minima, then

we can conclude that the design has successfully passed the docking validation

criteria.

8.2 Appendix B: Sequence Data for Referenced Binders

2064: MKWNLDPSHTSFDFKVRHMGIASVRGSMKILSGSVETDEAGRP

IQAEAVFDAASIATGEPQRDGHLRSADFLHAEQYPESRFVSTQIEPLGG

NRYRVQGNATIRDITKPVTVEAEVSAPIKDPWGMQRVAASASGQINRKD

WNMTWNQVLELGALLVGEEMKMNLEIEAVAPAPVAAQ

2065: MKWNLDPSHTSFDFKVRHMGIASVRGSLKILSGSVETDEAGRP

IQAESVIDAASIATGEPQRDGHLRSADFLHAEQYPEIRFVSTQIEPLGG

NRYRVQGNLTIRDITKPVTIEAESSAPIKDPWGMQRAAASASGQINRKD

WNLTWNQVLELGALLVGEEVKFNAEIEAVAPAPVAAQ

4574: MTQTTQSPALIASQSLWRCAQAHDREGFLALMADDVVIELPIG

KSVSNPDGSGIKGKEAVGAFFDTAIAANRLTVTCEETFPSSSPDEIAHI

LVLHVEFDGGFTIEVRGVFTYRVNKAGLITNMRGYWNLDMMTFGNQE

4424: GQSAKEAIEAALADFVKAYNSKDAAGVASKYMDDAAIFPLDMA

RVDGRQNIQKLWQGLMDMGVSELKLTTLDVQESGDFAFESGSFSLKGPG

KDSKLVDVAGKYVVVWRKGQDGGWKLYRTISNLDPAK

HH24: GQSAKEAIEAALADFVKAYNSKDAAGVASKYMDDAAIFPLDMA
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PVDGRQNIQKLWQGLMDMGVSEPKFTTLNVQESGDFAFESGSFSLKGPG

KDSKLVDIAGIYVEVWRKGQDGGWKLYRTIANLDPAK

HH35.1: DQSAKEAIEAALADFVKVYNSKDAAGVASKYMDDAAIFPLD

MAPVDGRQNIQKLWQGLMDMGVSEPKFTTLNVQKSGDFAFESGSFSLKG

PGKDSKLVDIAGIYVEVWRKGQDGGWKLYRTIANLDPAK

W19.1: LPTAHEAIEAALADFVKVYNSKDAAGVASKYMDDAVIFPLDM

ARVDGRQNIQKLWQGLMDMGVSEPKFTTLNVQESGDFAFESGSFSLKGP

GKDSKLVDIAGIYVEVWRKGQDGGWKLYRTIANLDPAR

6218: NLPTAQEVQGLAARMIELLDVGDIEAIVQMYADDATLEAPFGQ

PPIHGREQIAAFFRQGLGGGKVRACLTGPVRASHNGCGAAPFRVETVWN

GQPCALDVISVSRFDEHGRIQTTQAYYSEVNLSVREPQ

6220: NLPTAQEVQGLMARLIELVDVGDIEAIVQMFADDATVEAPFGQ

PPIHGREQIAAFFRQGLGGGKVRACLTGPVRASHNGCGAMPFRIEMVWN

GQPCALDVISVIRFDEHGRVQTMQAYFSEVNMSVREPQ

6234: GSSSSGREQGHMNAKEILVHALRLVENGDARGFCDLFHPEGVM

EFPYAPPGYKTRFEGRETIWAHMRLFPEHLTIRFTDVQFYETADPDLAI

GEFHGDGVATVSGGKLAQDFISVLRTRDGQILLSRIFWNPLRHLEALGG

VEAAAKIVQGA

6264: GQSAKEAIEAANADFVKAYNSKDAAGVASKYMDDAAMFPPDMA

RVDGRQNIQKLFQGSMDMGASEVKITTLDVQESGDFAFESGSFSAKVPG

KDSKLVDIAGKYVVVWRKGQDGGWKLYRDIFNSDPAK
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6269: SNAMSGNVGAGRHADELAIRTVQYRFVEATRKFDRQVLSSLMT

DDVVFYTPGRLPFGKEEFLAAAEQNDQRVIIEMSVTFEEIVIVEPMAYT

RTHVHIKVTPRSGGAVRELAGHIMSIFRRSMFGEWQLARAYALVVPI

6326: NLPTAQEVQGLMARFIELMDVGDIEAIVQMFADDATVELPFGQ

PPIHGREQIAAFFRQMLGGGKVRMCLTGPVRASHNGCGAMPFRAEYVWN

GQPCALDVIAVMRFDEHGRIQTSQAYFSEVNLSVREPQ

6344: GQSAKEAIEAATADFVKAYNSKDAAGVASKFMDDAAAFPPDMA

RVDGRQNIQKLWQGAMDMGASEAKATTLDVQESGDFAFESGSFSLKAPG

KDSKLVDAAGKYVAVWRKGQDGGWKIYRLIFNSDPAK

6348: NTPEHMTAVVQRFVAAMNAGDLDGIVALFADDATVECPVGSEP

RSGTAAIREFFANALKLPVAVELTQEVRAVANEAAFAFTASFEYQGRKT

VVAPIAHFRFNGAGKVVSSRCLFGEKNIHAGA

P2: MTTGEHIAALTALVETYVMALTRGDRPALERIFFGKASSVGHYEG

ELLWNSRDAFIAVCEDAADAGTDPFWAISSVSVQGDIAMLHVELDWAGM

RFDVFLTVLLHEGSWRIVSSVYRIR

2082: MTTSEHIAALTALVETYVMALTRGDRPALERIFFGKASSVGHY

EGELLWNSRDAFIAMCEDAADAETDPFWAISSVSVQGDIAMLHVELDWA

GMRFDVFLTVLLHEGSWRIVSSVYRIR

UM 37: NLPTAQEVQGLMARYIELADVGDIEAIVQMYADDATKELPF

GQPPIHGREQIAAYFRAGGKVRVCLTGPVRASHNGCGAMPYRSETVWNG
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QPAAVDAISVMRFDEHGRIQTHQIYCTAVKVSV

WBD1-V3: NLPTAQEVQGLMARYIELADVGDIEAIVQMYADDATKELP

FGQPPIHGREQIAAYFRAGGKWRICLTGPVRASHNGRGAMPWRSETVWN

GQPAAVDCISVMRFDEHGRIQTHQIYCTAVKVSV

N3X-1: GNSSRGREQGHMNAKEILVHALRLVENGDARGFCDLFHPEGV

MEFSYAPPGYKTRFEGRETIWAHMRLFPEPLTIRFTDVQFYETADPDLA

IGEFHGDGVATVSGGKLAQDFISVLRTRDGQILLSRIFWNPLRHLEALV

GVEAAAKIVQGA

CM1-13 AD28: KWNLDPSHTSFDFKVRHVGIASGRGSMKILSGSVET

DEAGRPIQAEVVFDAASIATGEPQRDDHLRSADFLHAEQYPESRFVSTL

IEPLGGNRYRVQGNVTIRDITKPVTVEAEVSAPIKDPWGTQRVAASASG

QINPKDWNMTWNQVLELGALLVGEEMKMNLEIEAAAPAPVAAQ

J1c-16: DQSAKEAIEAALADFVKVYNSKDAAGVASKYMDDAAIFPL

DMAPVDGRQNIQKLWQGLMDMGVSEPKFTTLNVQKSGDFAFESGSFSL

KGPGKDSKLVGIAGIYVEVWRKGQDGGWKLYRTIANLGPAK

NAL1: ETIQPGTGYNNGYFYLFWNHGHGGVTYTNGPGGQFSVNWSNS

GLFIGGKGWQPGTKNKVINFSGSYNPYGNSYLSVYGWSRNPLFAYFIV

ENFGTYNPSTGATKLGEVTSDGSVYDIYRTQAVNQPSIIGTATFYIYW

SVRRNHRSSGSVNTANHFNAWAQQGLTLGTMDFQIVAVGGYFSSGSAS

ITVS

CS1:GQSAKEAIEAANADFVKAYNSKDAAGVASKFMDDAAAFPPDMAR

96



VDGRQNIQKLFQGSMDMGASEVKMTTLDVQESGDFAFESGSFSAKAPG

PDSKLVDWAGKYVVVWRKGPDGGWKMYRSIFNSDPAK

CS3:GQSAKEAIEAANADFVKAYNSKDAAGVASKFMDDAAAFPPDMAR

VDGRQNIQKLFQGAMDMGASEAKLTTLDVQESGDFAFESGSFSAKAPG

PDSKLVDAAGKYVVVWRKGPDGGWKLYRDIWNSDPAK

CS4:TAEVESHMTAHFGKTLEECREESGLSVDILDEFKHFWSDDFDVV

HRELGCALLCAANKFSLLDPNNAMNPVNMDEFTKSFPNGQVLAEKQVK

LIANCAKQFATVTDACTAAVKVAACFKEDSRKEGIAPEVAMVEAVIEK

Y

6258:GQSAKEAIEAANADFVKAYNSKDAAGVASKFMDDAAAFPPDMA

RVDGRQNIQKLFQGSMDMGASEVKMTTLDVQESGDFAFESGSFSAKAP

GKDSKLVDWAGKYVVVWRKGQDGGWKMYRSIFNSDPAK

6261:GQSAKEAIEAANADFVKAYNSKDAAGVASKFMDDAAAFPPDMA

RVDGRQNIQKLFQGAMDMGASEAKLTTLDVQESGDFAFESGSFSAKAP

GKDSKLVDAAGKYVVVWRKGQDGGWKLYRDIWNSDPAK

6333:TAEVESHMTAHFGKTLEECREESGLSVDILDEFKHFWSDDFDV

VHRELGCALLCAANKFSLLDDNNAMNHVNMDEFTKSFPNGQVLAEKQV

KLIANCAKQFATVTDACTAAVKVAACFKEDSRKEGIAPEVAMVEAVIE

KY
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