
 
 
 
 
 

 
Elevated Phosphate-Induced Cell Signaling through Phosphate Transporter PiT-1 in 

Vascular Smooth Muscle Cells 
 
 
 
 

Nicholas W. Chavkin 
 
 
 
 
 

A dissertation submitted in partial fulfillment of the requirements for the degree of 
 
 

Doctor of Philosophy 
 
 
 

University of Washington 
 

2016 
 

Chair 
Cecilia Giachelli 

 
Committee Members 

Deok-Ho Kim 
Suzie Pun 

Marta Scatena 
 
 

Program Authorized to Offer Degree 
Bioengineering 

	



©Copyright 2016 

Nicholas W. Chavkin 

  



University of Washington 

 

Abstract 
 

Elevated Phosphate-Induced Cell Signaling through Phosphate Transporter PiT-1 in Vascular 

Smooth Muscle Cells 

 

Nicholas W. Chavkin 

 

Chairperson of the Supervisory Committee: 

Professor Cecilia M. Giachelli 

Department of Bioengineering 

 

 

Vascular calcification (VC) is prevalent in chronic kidney disease and elevated serum inorganic 

phosphate (Pi) is a recognized risk factor.  The type III sodium-dependent phosphate transporter, 

PiT-1, is required for elevated Pi-induced osteochondrogenic differentiation and matrix 

mineralization in vascular smooth muscle cells (VSMCs).  However, the molecular 

mechanism(s) by which PiT-1 promotes these processes is unclear.  The research presented in 

this thesis addresses the role of PiT-1 in vascular calcification mechanisms.  First, the Pi 

concentration required to induce osteochondrogenic differentiation and matrix mineralization of 

mouse VSMCs was found to be much greater than that required for maximal Pi uptake, 

suggesting a signaling function of PiT-1 that was independent of Pi transport.  Next, Pi transport-

independent functions of PiT-1 were found to promote responses to elevated Pi in VSMCs, 

including ERK1/2 phosphorylation, osteochondrogenic differentiation, and matrix 

mineralization.  Finally, elevated Pi was found to induce binding between PiT-1 and RapGEF1 in 

VSMCs, and RapGEF1 was required for elevated Pi-induced ERK1/2 phosphorylation through a 

Rap1/B-Raf/Mek1/2 pathway that promotes VSMC phenotype change.  Together, the data 

presented here shows that elevated Pi promotes PiT-1 binding to RapGEF1 and ERK1/2 



phosphorylation through Rap1/B-Raf/Mek1/2, which induces osteochondrogenic differentiation 

and matrix mineralization of VSMCs. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Clinical Significance 

 

Vascular Calcification 

Vascular calcification is the inappropriate deposition of bone mineral in the form of calcium 

phosphate crystals into the soft tissue of the vasculature, which disrupts normal vascular 

function.  Prevalence of vascular calcification in the United States is extremely high and 

increases with age, with coronary artery calcium present in 9.6% of adults aged 33-45 and 50% 

of adults aged 45-84 [1,2].  Healthy vascular tissue is elastic and can respond to pressure 

differences from each heartbeat.  However, normal elastic function is disrupted with 

calcification, which decreases tissue function and compliance leading to increased pulse wave 

velocity [3,4], valve regurgitation [5], and plaque instability [6,7].  All of these outcomes are 

correlated with an increased risk of cardiovascular morbidity and mortality [8–14]. 

 

There are three main locations where vascular calcification occurs: heart valves, arterial intimal 

layers, and arterial medial layers.  Calcification of heart valves causes irreversible valve failure 

that blocks heart valves from properly opening and closing, leading to increased risk of death 

[9,15].  Arterial intimal calcification is mineral in the lumen of an artery, and this occurs mainly 

in atherosclerotic plaques.  Classical risk factors for intimal calcification include old age, 

diabetes, smoking, high cholesterol diets, hypertension, and chronic kidney disease [16,17].  
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Mineralization of atherosclerotic plaques has been positively correlated with increased plaque 

instability [18,19], which leads to plaque rupture, thrombosis, and possible embolism associated 

with myocardial infarction or stroke.  Arterial medial calcification occurs in the medial layer of 

the arterial wall and is associated with old age, diabetes, and chronic kidney disease [20,21].  

Although initially believed to be non-detrimental, medial calcification is now positively 

correlated with increased pulse wave velocity and cardiovascular morbidity and mortality [22–

25].  All three of these types of vascular calcification will inhibit vascular tissue function and 

lead to an increased risk of death. 

 

Chronic Kidney Disease 

Both arterial intimal calcification and arterial medial calcification are highly prevalent in patients 

with Chronic Kidney Disease (CKD).  In normal kidney function, specific small molecules are 

filtered from the blood to the kidneys through glomeruli and into nephrons, where some of the 

small molecules are re-absorbed back into the blood and others are excreted as urine.  CKD is a 

disease of the kidneys where the Glomerular Filtration Rate (GFR) is reduced, which leads to 

less filtration of the blood and more blood toxins present.  CKD progresses from Stage 1 to Stage 

5 as defined by a patient’s reduction in GFR, and by Stage 5 the patient is in End Stage Renal 

Disease (ESRD) and will require hemodialysis to replace the kidney filtration function.  

Interestingly, arterial calcification is extremely prevalent in patients with pre-dialysis CKD and 

end-stage renal disease requiring dialysis [26,27].  This increase in arterial calcification 

prevalence is also correlated with an increase in cardiovascular mortality.  Cardiovascular 

mortality is 10-30 times greater in CKD patients than age-matched controls [28,29].  Patients 

with CKD are more likely to die from cardiovascular disease than start dialysis [30].  Even on 
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dialysis, arterial calcification strongly predicts mortality.  One clinical study following patients in 

ESRD showed that presence of arterial medial calcification or arterial intimal calcification 

reduced 5-year patient survival to 50% and 23%, respectively, compared to a 5-year survival of 

90% for patients in ESRD with no arterial calcification [31].  Patients with CKD also show a 

decrease in bone density, prompting the American Society of Nephrology to re-classify CKD as 

Chronic Kidney Disease-Mineral Bone Disorder (CKD-MBD) [32], which more accurately 

describes the effects of kidney disease on bone mineral. 

 

Hyperphosphatemia 

Vascular calcification in CKD-MBD is associated with hyperphosphatemia, which is the 

increased concentration of inorganic phosphate (Pi) in patient blood serum and highly prevalent 

in CKD-MBD.  Pi is an essential molecule that is the backbone of DNA, RNA, and plasma 

membrane lipids.  Pi is required for the ability of ATP to store energy, and addition of Pi to 

proteins can promote cell signaling cascades and change enzyme activity.  Along with calcium, 

Pi also makes up hydroxyapatite, which is the mineral found in vascular calcification and bone.  

Most of the inorganic phosphate in the body is in the bone (85%), with some in other tissues 

(14%) and a very small portion in extracellular fluid (1%) [33].  Since Pi is so important to many 

biological functions, Pi concentration in blood is strictly regulated by the intestines and the 

kidneys.  People eat around 900mg of Pi per day in a western diet through the intestines, and 

healthy kidneys filter out enough of the ingested Pi to keep a stable blood serum Pi concentration 

of 1.0 mM Pi [32,34–37].  However, increase in serum Pi concentration is associated with 

vascular calcification.  In patients with CKD-MBD, serum Pi concentration was directly 

correlated to degree of vascular calcification [38–41].  These clinical studies have been 
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reproduced in a mouse model where a 5/6 nephrectomy surgery causes uremia, a high Pi diet 

causes hyperphosphatemia, and arterial medial calcification is present [42].  Additionally, 

hyperphosphatemia in the general population have been associated with higher risk for vascular 

calcification [43–45]. 

 

Patients with CKD-MBD are at high risk of hyperphosphatemia due to declining kidney 

function.  Multiple studies on Pi concentration and Pi homeostasis hormones have elucidated the 

complicated mechanism leading to hyperphosphatemia in CKD-MBD.  In early-stage CKD-

MBD, kidney filtration is slightly reduced, leading to decreased Pi filtration into the nephrons.  

However, Pi homeostasis hormones are upregulated to counteract this possible imbalance.  

Fibroblast Growth Factor 23 (FGF-23) and Parathyroid Hormone (PTH) are upregulated, which 

internalizes and inhibits the function of the type II sodium-dependent Pi transporter, NaPi-IIa, 

that would normally transport Pi back into the blood [46,47].  Down-regulation of 1,25-

dihydroxyvitamin D will inhibit intestinal absorption of Pi by blocking the intestinal type II 

sodium-dependent Pi transporter, NaPi-IIb [48].  With less Pi re-absorption in nephrons, more Pi 

is excreted in urine and Pi levels are maintained in the normal range.  As CKD-MBD progresses 

to later stages, further hormonal imbalances occur.  The hormone Klotho, which is normally a 

required co-factor for FGF-23 activation, is down-regulated in late-stage CKD and promotes 

renal Pi retention and increased serum Pi [49].  High levels of FGF-23 also promote bone 

remodeling, which brings Pi from bone crystal into the blood and further promotes elevated 

serum Pi [47].  Eventually, Pi hormones cannot compensate for the reduction in kidney filtration, 

and the result is hyperphosphatemia.  Indeed, hyperphosphatemia is a strong predictor of 

cardiovascular morbidity and mortality in the CKD-MBD population [50–52]. 



5 
 

 

 

Current Treatments 

Although current treatments for treating CKD-MBD target kidney disease progression and 

hyperphosphatemia, these treatments lack efficacy to prevent vascular calcification.  One method 

is to limit the progression of CKD, which will sustain kidney function to maintain Pi 

homeostasis.  Hypertension-controlling drugs, such as angiotensin-converting enzyme inhibitors 

(ACEi), have been used at the onset of CKD to limit kidney damage from high blood pressure 

[53].  However, recent studies have called this treatment into question [54,55], and current 

clinical trials are ongoing to re-evaluate ACEi treatment in CKD patients [56].  Sodium 

thiosulfate is another vasodilator that can bind calcium and has been shown to inhibit vascular 

calcification in an animal model, but this also caused low bone density of the animals and 

clinical trials are proceeding cautiously [57,58].  Another method of eliminating elevated Pi from 

the blood is hemodialysis, but hemodialysis does not block vascular calcification.  Removal of Pi 

by hemodialysis is not very efficient since Pi binds tightly to H2O and inhibits its movement 

through dialysis membranes [59], and  hemodialysis also promotes vascular calcification through 

induction of vascular smooth muscle cell apoptosis [60].  Pi binders can be prescribed to CKD 

patients to limit hyperphosphatemia.  Pi binders work by binding Pi in the intestinal tract so that 

it cannot be ingested into the blood [61].  There are two current types of Pi binders: calcium 

containing Pi binders and non-calcium containing Pi binders.  Unfortunately, calcium containing 

Pi binders, such as Calcium acetate, promote coronary artery calcification, and non-calcium 

containing Pi binders, such as Sevelamer, have not consistently inhibited the progression of 

vascular calcification [62].  The last resort for end-stage renal disease patients is for a kidney 

transplant to increase kidney filtration, but cardiovascular mortality is still 2-5 times more 
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prevalent in kidney transplants patients compared to the general population [29].  Therefore, 

there is a strong need for a treatment that can target progression of vascular calcification on a 

cellular level. 

 

 

1.2 Vascular smooth muscle cells 

 

 

Vascular smooth muscle cell biology 

The main type of cell in arteries and arterioles is a vascular smooth muscle cell (VSMC).  The 

medial layer of arteries and arterioles is comprised of VSMCs and extracellular matrix 

components, mainly elastin and collagen.  The primary function of VSMCs is to control vascular 

lumen size through sustained muscle contraction.  VSMCs can contract through smooth muscle-

specific myosin and actin interactions induced by calcium binding to calmodulin, which creates a 

weaker but sustained muscle contraction when compared to striated skeletal muscle [63].  

Greater contraction will decrease lumen size (vasoconstriction) and less contraction will increase 

lumen size (vasodilation).  Vasoconstriction and vasodilation are controlled by the renin 

angiotensin system, where the kidneys respond to low or high blood pressure by secreting more 

or less of the enzyme renin, which converts angiotensinogen to angiotensin I that is converted to 

angiotensin II and promotes constriction of VSMCs [64].  The lumen size will regulate blood 

flow through the vasculature, and both blood pressure and tissue blood flow can be controlled 

through VSMC contraction [65].  In addition to lumen size, VSMCs assist in maintaining 

vascular elasticity.  The extracellular matrix in arteries and arterioles is made up of elastin fibers 

that expand with pressure and collagen fibers that maintain structural stability between the 

extracellular matrix and the VSMCs [66].  Strong interactions between VSMCs, elastin, and 
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collagen are required for vascular tissue compliance, which is essential in dampening the pulse 

wave velocity from each heartbeat [4].  

 

Role of vascular smooth muscle cells in vascular calcification 

Vascular calcification is now understood to be an active mineral deposition process regulated, in 

part, by VSMCs.  In patients with arterial medial calcification, the mineral deposits appear in the 

extracellular matrix adjacent to VSMCs [67].  Around the mineral deposits, elastic lamina is 

degraded [42,68] and apoptotic cell bodies are present [69].  Upregulation of bone- and cartilage-

related transcription factors and proteins is observed in VSMCs before mineral deposition occurs 

and is hypothesized to be one mechanism of mineral deposition [60].  Both bone and cartilage 

are often found in vascular calcification [70,71].  Together, these clinical data suggest that active 

cellular mechanisms promote mineral formation in arteries.  Through many in vitro and in vivo 

studies in mineralization environments, the process in which VSMCs promote mineralization is 

now better understood. 

 

One proposed mechanism in which VSMCs promote mineralization is through 

osteochondrogenic phenotype change.  In multiple arterial diseases, VSMCs have shown 

plasticity and are able to differentiate from a ‘contractile’ state to a ‘synthetic’ state [72].  

Healthy arteries consist of contractile, quiescent VSMCs that function to maintain vascular tone, 

but diseases vasculature can have synthetic VSMCs that can proliferate, migrate, degrade 

extracellular matrix, and promote mineralization [73].  Consistent in all VSMC phenotype 

change is a decrease in smooth muscle-specific genes, such as smooth muscle 22 alpha (SM22α), 

smooth muscle myosin heavy chain (SM-MHC), and smooth muscle alpha actin (SMα-actin) 
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[73].  Specifically in VSMCs that promote mineralization, osteochondrogenic-specific 

transcription factors and genes are up-regulated, such as runt-related transcription factor 2 

(Runx2), alkaline phosphatase (ALP), osteopontin (OPN), osteocalcin (OCN), and osterix (OSX) 

[74].  This was nicely shown by Speer et al. in a murine lineage tracing study that used SM22α-

specific Cre recombinase expression with an in vivo model of arterial medial calcification to 

identify aortic VSMCs in areas of mineralization that had lost smooth muscle-specific genes and 

gained osteochondrogenic-specific genes [75].  Down-regulation of smooth muscle-specific 

genes and up-regulation of osteochondrogenic-related genes is consistent with 

osteochondrogenic differentiation of VSMCs. 

 

Cell signaling through ERK1/2 in VSMCs and matrix mineralization 

Cell signaling through extracellular signal-related kinase 1 and 2 (ERK1 and ERK2) promote 

osteochondrogenic differentiation in VSMCs.  ERK1 and ERK2 are cell signal transduction 

kinases in the mitogen-activated protein kinase (MAPK) family [76].  They are activated by 

phosphorylation from the mitogen-activated protein kinase kinases Mek1 and Mek2 [76], and 

can phosphorylate many different down-stream transcription factors, including ETS domain-

containing protein (Elk-1) and the osteochondrogenic transcript factor Runx2 [77,78].  

Phosphorylated Elk-1 binds to the smooth muscle promoter, myocardin, and blocks the promoter 

complex of myocardin and serum response factor (SRF) from binding to the smooth muscle 

DNA promotor sequence, effectively inhibiting smooth muscle-specific gene transcription [79].  

Phosphorylated Runx2 binds to the osteochondrogenic DNA promotor sequence, OSE-2, which 

results in up-regulation of osteochondrogenic genes [80].  Indeed, in calcifying VSMCs, ERK1 

and ERK2 phosphorylation is increased, and inhibition of ERK1 and ERK2 phosphorylation 
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with a small molecule inhibitor will decrease Runx2 phosphorylation, Elk-1 phosphorylation, 

and down-stream osteochondrogenic differentiation in calcifying VSMCs [74].  These data 

suggest that ERK1 and ERK2 are required for osteochondrogenic differentiation of VSMCs.   

 

One mechanism in which osteochondrogenic differentiation of VSMCs promotes active 

mineralization is through secretion of calcification-competent matrix vesicles.  Normally, 

VSMCs secrete matrix vesicles through the exosome pathway that contain calcification 

inhibitors, such as Fetuin-A and Matrix Gla Protein (MGP), and lack calcification promotors 

[81,82].  However, osteochondrogenic differentiation of VSMCs leads to a change in the protein 

contents of these matrix vesicles.  These calcification-competent matrix vesicles lack 

calcification inhibitors and contain calcification promotors, such as ALP [82].  Calcification-

competent matrix vesicles initiate calcification before secretion by creating small nucleation sites 

of calcium-phosphate mineral [83].  Once secreted, ALP hydrolyzes the potent calcification 

inhibitor pyrophosphate, which will promote mineral growth from the nucleation sites [84].  

Also, these mineralization-competent matrix vesicles can initiate mineralization with Annexin-V 

nucleation sites on the outside of the membranes [82].  Once VSMCs are induced to an 

osteochondrogenic phenotype, secretion of calcification-competent matrix vesicles leads to 

vascular calcification. 

 

Effects of elevated Pi VSMC phenotype and matrix mineralization 

Elevated Pi induces VSMC osteochondrogenic differentiation and matrix mineralization.  As 

shown in multiple in vitro studies, culturing VSMCs in elevated Pi media (greater than 2.2 mM 

Pi) will induce matrix mineralization compared to VSMCs cultured in normal Pi (1.0 mM Pi) 
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[85].  Additionally, VSMCs in elevated Pi media have increased Erk1/2 phosphorylation, 

undergo osteochondrogenic differentiation [74], and secrete mineralization-competent matrix 

vesicles [86].  These results have also been shown through in vivo murine models of chronic 

kidney disease.  C57BL/6 mice given uremia through a 5/6 nephrectomy procedure and fed a 

high Pi diet show increased serum Pi and robust arterial medial calcification [42].  Arterial 

VSMCs in this model also undergo osteochondrogenic differentiation.  Taken with clinical data, 

these results strongly suggest that hyperphosphatemia drives arterial medial calcification by 

induction of VSMC osteochondrogenic differentiation and active matrix mineralization. 

 

 

1.3 Phosphate transporters 

 

 

Type III sodium-dependent phosphate transporters 

Pi is primarily moved through cell membranes through sodium-dependent Pi transporters.  In 

order to have a larger concentration of intracellular Pi over extracellular Pi, all sodium-dependent 

Pi transporters use the inward sodium gradient created by the sodium-potassium ATPase to co-

transport sodium and Pi ions [87].   The sodium-potassium ATPase pumps out three sodium ions 

per ATP used, so the sodium-dependent Pi transporters are indirect active transporters to move 

Pi against the concentration gradient.   

 

Mammals have three types of sodium-dependent Pi transporters, labeled types I, II, and III.  The 

type I transporters are of the SLC17 family, and they are mainly expressed in the proximal tubule 

of the kidney and the sinusoidal membrane of the liver [88].  The type II transporters are of the 

SLC34 family, and their main functionality is in the intestines for Pi ingestion and in the kidneys 
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for Pi re-absorption [89].  The type III transporters are SLC20A1 (PiT-1) and SLC20A2 (PiT-2).  

PiT-1 and PiT-2 are thought to play a more general role in intracellular Pi homeostasis [89].  The 

PiT proteins are described as high-affinity low-capacity transporters, meaning that rate of Pi 

transport is maximal at a low Pi concentration.  Functionally, this results in Pi being transported 

through the PiT proteins as quickly as possible at normal Pi concentrations. 

 

PiT-1 and PiT-2 also play important roles in embryonic development, and knock out mice have 

revealed tissue specific roles.  The PiT-1 knock-out mouse was generated through a Lox/Cre 

recombinase strategy where pLox DNA sites were inserted into introns around exons 3 and 4 of 

the PiT-1 gene, and expression of Cre recombinase will delete exons 3 and 4 to generate an early 

stop codon [90].  The transgenic PiT-1 global knock-out phenotype is embryonically lethal in 

mice due to a defect in vascular maturation [90].  PiT-1 global deletion was also found to inhibit 

terminal B-cell differentiation and lead to severe anemia [91].  The PiT-2 global knock-out is 

sub-viable with smaller litter sizes probably due in part to placentation defects [92].  Placental 

vascular calcification is associated with maternal morbidity and a pre-eclampsia phenotype in 

these mice [92].  The PiT-2 global knockout mice that do survive show devere brain 

calcification, hydrocephalus, and have reduced bone mineral density [93].  The underlying 

mechanism for this phenotype is currently being investigated. 

 

PiT-1 required for mineralization 

The type III Pi transporter PiT-1 is required for elevated Pi-induced matrix mineralization in 

VSMCs.  Li et al. used a short hairpin RNA approach to silence PiT-1 mRNA in an 

immortalized human newborn vascular smooth muscle cell line [94].  Silencing of PiT-1 mRNA 
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reduced protein and decreased sodium-dependent Pi uptake in the human VSMCs by about 50%.  

The results showed that human VSMCs lacking PiT-1 expression deposited around 50% less 

mineral after incubation in elevated Pi for 7, 10, and 14 days compared to scramble controls.  

Additionally, overexpression of mouse PiT-1 mRNA in the PiT-1 knock-down human VSMCs 

rescued the decrease in elevated Pi-induced mineralization.  Upstream of mineralization, PiT-1 

silencing inhibited osteochondrogenic differentiation as measured by a reduction in both Runx2 

and OPN mRNA.  These data suggest that PiT-1 plays a critical role in elevated Pi-induced 

transcriptional changes in VSMCs that leads to phenotype switching and eventual matrix 

mineralization.  However, the mechanism for PiT-1 mediated osteochondrogenic differentiation 

and matrix mineralization was not elucidated in this study.  PiT-1 silencing did not affect 

apoptosis and blocking apoptosis with the chemical inhibitor zVAD did not affect elevated Pi-

induced mineralization, suggesting that apoptosis was not the mechanism for increased matrix 

mineralization.  The research goals and results presented in this dissertation aim to elucidate the 

mechanism of PiT-1 mediated promotion of matrix mineralization and VSMC phenotype change. 

 

1.4 Summary of Background and Significance 

 

In conclusion, growing evidence suggest that hyperphosphatemia in chronic kidney disease 

patients induces arterial medial calcification through active mineral deposition by VSMCs.  

Elevated Pi causes osteochondrogenic differentiation in cultured VSMCs through the ERK1/2 

cell signaling pathway and eventually leads to promotion of matrix mineralization.  PiT-1 is 

required for elevated Pi-induced osteochondrogenic differentiation and matrix mineralization in 

cultured VSMC.  However, the mechanism in which PiT-1 signals ERK1/2 phosphorylation in 
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response to elevated Pi and promotes VSMC matrix mineralization is unclear.  A better 

understanding of this pathway could lead to therapeutics that inhibit vascular calcification by 

blocking the VSMC response to Pi. 

 

1.5 Hypothesis and Specific Aims of Dissertation 

 

The main purpose of this project was to elucidate the role of PiT-1 in elevated Pi-induced cell 

signaling, osteochondrogenic differentiation, and matrix mineralization in VSMCs.  The 

hypothesis was that PiT-1 promotes elevated Pi-induced matrix mineralization in VSMCs 

through both Pi uptake-dependent function and Pi uptake-independent function.  

Independent of Pi uptake, elevated Pi promotes PiT-1 binding to RapGEF1, leading to 

downstream ERK1/2 activation and VSMC phenotype change.  Three specific aims were 

completed to test this hypothesis.  In specific aim #1, the Pi concentration dependence for matrix 

mineralization versus Pi uptake in VSMCs was investigated.  In specific aim #2, Pi transport-

independent function of PiT-1 was investigated to determine a role in elevated Pi-induced 

ERK1/2 cell signaling, osteochondrogenic differentiation, and matrix mineralization.  In specific 

aim #3, adaptor proteins in the elevated Pi-induced cell signaling pathway from PiT-1 to ERK1/2 

were investigated. 

 

1.6 Outline of Dissertation Content 

 

The following chapters detail the research goals, methods, and results of each specific aim 

individually.  Chapter 2 describes that the Pi concentration required to promote ERK1/2 
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phosphorylation, osteochondrogenic differentiation, and matrix mineralization is much larger 

than the Pi concentration with maximal Pi uptake into VSMCs.  Pi transport through PiT-1 alone 

cannot explain the role of PiT-1 in VSMC mineralization.  Chapter 3 then identifies that Pi 

uptake-independent functions of PiT-1 can promote ERK1/2 phosphorylation leading to 

osteochondrogenic differentiation.  Both Pi uptake-dependent and uptake-independent functions 

of PiT-1 promote mineralization.  Chapter 4 further elucidates the PiT-1 cell signaling function 

leading to ERK1/2 activation through interacting partner RapGEF1 and down-stream adaptor 

proteins Rap1, B-Raf, and Mek1/2.  Chapter 5 outlines the conclusions of this research and 

future directions of interest. 
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CHAPTER 2 

 

SEPARATION BETWEEN PI CONCENTRATIONS REQUIRED FOR PIT-1 

TRANSPORT AND ELEVATED PI-INDUCED EFFECTS ON VSMCS 

 

Chapter published in similar form as part of:  “Phosphate uptake-independent signaling 

functions of the type III sodium-dependent phosphate transporter, PiT-1, in vascular smooth 

muscle cells.” Chavkin NW, Chia J, Crouthamel MH, Giachelli CM. Experimental Cell 

Research. 2015 Apr 10;333(1):39-48. 

 

2.1 Introduction 

 

The functions of PiT-1 that promote elevated Pi-induced mineralization are unclear.  One well-

understood function of PiT-1 is Pi uptake, which is required for elevated Pi-induced 

mineralization.  However, studies have presented data suggesting that the kinetics of Pi uptake 

do not explain the elevated Pi-induced effects on VSMCs.  Villa-Bellosta et al. showed that 

sodium-dependent Pi uptake did not change when rat aortic VSMCs were induced to calcify with 

PDGF, TNF-α, or Pi [1].  Other studies have also characterized Pi uptake kinetics of PiT-1 and 

questioned the role of Pi uptake in VSMC matrix mineralization [2].  A separation between Pi 

uptake into VSMCs and Pi required for VSMC mineralization would suggest a role of PiT-1 in 

mineralization that is not dependent on Pi transport. 
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Pi-uptake independent functions of PiT-1 have recently been discovered and show that other 

functions of PiT-1 may exist.  A PiT-1 protein with a single point mutation that does not 

transport Pi has been shown to promote cellular proliferation in HeLa cells [3].  A PiT-1 protein 

with a different point mutation that still inhibited Pi transport could inhibit apoptosis induced by 

tumor necrosis factor α (TNF-α) [4].  Also supporting the hypothesis of Pi uptake-independent 

PiT-1 function, B-cells that had a differentiation defect in PiT-1 null mice did not show a 

difference in Pi uptake [5].  Other studies suggest that PiT-1 may play a role in ERK1/2 

phosphorylation.  Knock-down of PiT-1 mRNA with siRNA in proliferating chondrocytes 

showed a reduction in elevated Pi-induced ERK1/2 phosphorylation, and knock-down of PiT-2 

mRNA did not show the same result [6].  A cell signaling function of PiT-1 may play a role in 

mineralization. 

 

These results suggest that PiT-1 may have a role in cell functions independent of Pi uptake, and 

that these functions may be a result of an ERK1/2 cell signaling pathway.  The present aim will 

test the hypothesis that Pi concentrations required for ERK1/2 phosphorylation, 

osteochondrogenic differentiation, and matrix mineralization are well above the Michaelis-

Menten rate constant of sodium-dependent Pi uptake in VSMCs.  To test this, sodium-

dependent Pi uptake kinetic parameters in VSMCs will be determined.  Varying Pi 

concentrations will be tested to induce matrix mineralization and osteochondrogenic 

differentiation, and compared to Pi uptake kinetics.  Finally, elevated Pi-induced ERK1/2 

phosphorylation will be tested in control and PiT-1-deficient VSMCs to see whether PiT-1 is 

required for elevated Pi-induced ERK1/2 phosphorylation.   

 



29 
 

 

2.2 Materials and Methods 

 

Cell isolation and maintenance 

Primary medial VSMCs were isolated from aortas of wild-type C57BL/6 (WT VSMC), PiT-1 

flox/flox C57BL/6 (PiT-1 fl/fl VSMC), and PiT-1 flox/flox SM22αCre C57BL/6 (PiT-1 ΔSM 

VSMC) mice as previously described [7].  Briefly, aortas were removed from 4-5 week old mice, 

the medial layer was isolated and digested in collagen and elastin, and the primary (P0) VSMCs 

were incubated in T-25 flasks at 37O C and 5% CO2 with Dulbecco’s Modified Eagle Medium 

(DMEM, Life Technologies, 11995) supplemented with 20% Fetal Bovine Serum (FBS, 

HyClone), 1% antibiotic/antimycotic, 1% glutamine, and 1% non-essential amino acids (Life 

Technologies).  VSMCs were passaged and maintained at 37O C and 5% CO2 in normal growth 

media DMEM supplemented with 10% FBS and 1% antibiotic/antimycotic. 

 

Pi uptake assay 

Pi uptake was measured as previously described [8].  Briefly, VSMCs were seeded into 12-well 

tissue culture plates and incubated with radiolabeled H333PO4 (Perkin Elmer) and un-labeled 

potassium phosphate in either sodium-containing Earle’s Balanced Salt Solution (EBSS) or 

sodium-free, choline-containing EBSS.  VSMCs were incubated for 20 minutes, lysate was 

collected, and radioactive counts were recorded in OptiFluor (Perkin Elmer) using a LS 6500 

Beckman liquid scintillation counter.  Sodium- dependent Pi uptake was calculated by 

subtracting uptake in choline containing media from total uptake in sodium containing media, 

and normalized to incubation time and protein concentration of the cell lysate, quantified by 
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Bicinchoninic Acid assay (Thermo Scientific).  Michaelis-Menten kinetic parameters were 

determined by non-linear regression.   

 

Calcification assay 

Calcification was determined as previously described [8].  Briefly, VSMCs were grown in 6-well 

tissue culture plates in normal growth media until 70-80% confluent, then VSMCs were 

incubated with DMEM supplemented with 5% FBS, 1% antibiotic/antimycotic, and 

Na2PO4/NaPO4 (pH = 7.4) to varying Pi concentrations.  After 8 days, calcium was extracted 

with 0.6 N HCl at 4oC overnight.  Calcium concentration was determined by the O-

Cresolphthalein method using the Calcium Reagent Set (Teco Diagnostics).  Protein lysate was 

collected in 0.2 N NaOH.  Protein concentration was determined by Bicinchoninic Acid assay.  

Calcium data was normalized to protein data. 

 

Real-time quantitative PCR 

Collection of mRNA was performed with RNeasy Mini Kit (Qiagen) following manufacturer’s 

protocol.  Real-time quantitative PCR (Q-PCR) was performed with primers listed (Table 1).  All 

Q-PCR gene counts were normalized to 18S gene counts and quantified using the quantitative 

ΔΔCt method. 

 

Quantification of Pi-induced phosphorylated ERK1/2 

VSMCs were grown in 6-well tissue culture plates in normal growth media.  At 70-80% 

confluence, cells were washed twice with PBS and incubated in Pi-free DMEM (Life 

Technologies, 11971) supplemented with 1% FBS and 1% antibiotic/antimycotic.  After 24 
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hours, media was aspirated and VSMCs were incubated in Pi-free DMEM supplemented with 

1% FBS, 1% antibiotic/antimycotic, and Na2PO4/NaPO4 (pH = 7.4) to varying Pi 

concentrations.  After 5 or 15 minutes of incubation, VSMCs were washed three times with ice-

cold PBS, and cell lysate was collected using lysate buffer (0.1 mM Tris pH 6.8 2% SDS) with 

added protease inhibitors and phosphatase inhibitors.  Protein was loaded at 10ug/lane into 10% 

SDS-PAGE gels, transferred to PVDF membranes, and analyzed by immunoblot.  Primary 

phosphorylated ERK1/2 and total ERK1/2 antibodies (Cell Signaling Technology) and secondary 

HRP-conjugated goat anti-rabbit antibody (Jackson ImmunoResearch) were used with Western 

Lighting (ECL) substrate to expose the protein signal.  ImageJ software (NIH, Bethesda, MD) 

was used to quantify the densitometry of the bands. 

 

Statistical analysis 

SPSS software v16.0 (SPSS, Chicago, IL) was used to perform Student t-tests to compare means 

of two individual groups, and one-way ANOVA with post-hoc Tukey test to compare means of 

three or more individual groups.  Linear regression to determine variable correlation and 

nonlinear regression to determine Michaelis-Menten parameters were performed using STATA 

version 12 (StataCorp).  A p-value of less than 0.05 was considered statistically significant. 

 

2.3 Results 

 

Michaelis-Menten kinetic parameters of Pi uptake in VSMCs 

To determine the concentration-dependent effects of Pi on wild-type mouse aortic VSMCs, we 

examined sodium-dependent Pi uptake over a range of Pi concentrations.  Similar to previous 
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findings [2,7,9], the rate of sodium dependent Pi uptake in wild-type VSMCs increased at Pi 

concentrations between 0.03 mM to 0.1 mM, and saturated at 0.5 mM, consistent with high-

affinity low-capacity Pi transport (Fig. 2.1).  Michaelis-Menten parameters Vmax (maximal 

velocity of Pi uptake) and Km (Pi concentration at half of Vmax velocity) were calculated by 

non-linear regression.  Sodium-dependent Pi uptake of primary wild-type VSMCs showed a 

Vmax of 0.369±0.035 pmol Pi/(ug Protein*min) and Km of 0.113±0.032 mM.  .  These values 

are also consistent with high-affinity low-capacity Pi transport and suggest that velocity of Pi 

uptake through PiT-1 is maximal below 0.5mM Pi.   

 

Pi concentrations required to induce matrix mineralization are well above Pi uptake Km 

Elevated Pi induces VSMCs to mineralize, but the concentrations required for mineralization are 

not well characterized.  A large difference between Pi concentrations required for mineralization 

and the Pi uptake kinetics calculated above may suggest a different regulatory mechanism for 

mineralization.  Primary wild-type VSMCs were cultured in different Pi concentrations for 8 

days, and calcification of the matrix was quantified in each Pi concentration.  Significant VSMC 

matrix mineralization was observed only at Pi concentrations at or above 2.4 mM compared to 

negligible amounts of calcification at 1.0mM Pi (Fig. 2.2).  The Pi concentration required for 

mineralization is much higher than 0.5mM Pi, where Pi uptake through PiT-1 is maximal.   

 

Elevated Pi well above Pi transport Km is required for phenotype change 

Elevated Pi-induced matrix mineralization is initiated and promoted through osteochondrogenic 

differentiation.  However, the Pi concentration required to induce osteochondrogenic 

differentiation is unclear.  To assess this, primary wild-type VSMCs were incubated in varying 
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concentrations of Pi, RNA was collected at day 4, and osteochondrogenic differentiation was 

assessed by a decrease in SM22α mRNA and an increase in OPN mRNA.  In VSMCs, OPN 

mRNA expression was significantly increased and SM22α mRNA expression was significantly 

decreased at a Pi concentration of 2.6 mM compared to 1.0 mM (Fig. 2.3A and 2.3B).  

Importantly, PiT-1 mRNA levels were not significantly increased across the same range of Pi 

concentrations (Fig. 2.3C), suggesting that an increase in the amount of PiT-1 made by VSMCs 

was not responsible for the Pi concentration dependence observed for VSMC calcification and 

osteochondrogenic phenotype change. 

 

PiT-1 deficiency eliminates Pi-induced ERK1/2 phosphorylation in VSMCs 

ERK1/2 phosphorylation was previously shown to be important for elevated Pi-induced 

osteochondrogenic differentiation of VSMCs [20].  To investigate the concentration of Pi 

required to induce ERK1/2 phosphorylation and the role of PiT-1 in elevated Pi-induced ERK1/2 

phosphorylation in VSMCs, control primary VSMCs (PiT-1 fl/fl VSMCs) and VSMCs lacking 

PiT-1 expression (PiT-1 ΔSM VSMCs) were isolated, induced with varying Pi concentrations, 

and ERK1/2 phosphorylation was assessed.  Elevated Pi induced ERK1/2 phosphorylation in 

PiT-1 fl/fl VSMCs in a dose- and time-dependent manner (Fig 2.4).  A 2-fold increase in 

ERK1/2 phosphorylation was observed in VSMCs treated with 3.0 mM for 15 min compared to 

1.0 mM Pi treatment.  Elevated sodium sulfate did not induce ERK1/2 phosphorylation in 

VSMCs, suggesting that this response was specific to elevated Pi and not a generalized response 

to increased anions.  In contrast, Pi-induced ERK1/2 phosphorylation at 3.0 mM Pi was greatly 

diminished in VSMCs from PiT-1 ΔSM, and no induction between 3.0 mM and 1.0 mM Pi was 

observed (Figure 2).  Finally, there was no difference between ERK1/2 phosphorylation in 
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response to either 0.5 mM or 1.0 mM Pi in either cell line.  These data suggest Pi concentrations 

around 3.0mM Pi are required for elevated Pi-induced ERK1/2 phosphorylation, and that PiT-1 

is required for elevated Pi-induced ERK1/2 phosphorylation.  Additionally, Pi concentrations 

around maximal Pi uptake (0.5mM and 1.0mM Pi) had no difference in ERK1/2 

phosphorylation. 

 

2.4 Discussion 

 

The data presented support a large separation between sodium-dependent Pi uptake through PiT-

1 and elevated Pi-induced effects on VSMCs.  Pi uptake has the most variation between Pi 

concentrations of 0.03mM and 0.1mM, but by 0.5mM Pi the velocity of Pi uptake into VSMCs 

has reached maximum potential.  This is in contrast to the concentration of Pi required for matrix 

mineralization in VSMCs, which is 2.4mM Pi or greater to show significant mineralization.  

Additionally, a Pi concentration of 2.6mM was required for significant osteochondrogenic 

differentiation as measured by decreased SM22α and increased OPN, which suggested a 

signaling function responsible for elevated Pi-induced effects.  ERK1/2 phosphorylation was 

increased at 3.0mM Pi, but not 1.0mM Pi or 0.5mM Pi, in VSMCs.  As PiT-1 had not previously 

been linked to ERK1/2 phosphorylation in VSMCs, it was very interesting to find that PiT-1 

deletion in VSMCs eliminated elevated Pi-induced ERK1/2 phosphorylation.  Together, the data 

suggest that a Pi uptake-independent mechanism through PiT-1 may be responsible for ERK1/2 

phosphorylation, osteochondrogenic differentiation, and matrix mineralization.   
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PiT-1 has been identified as a potential Pi sensor in previous studies and review articles.  These 

findings were mainly performed while studying bone formation, as Pi transport has been 

suggested to play an important role in hydroxyapatite formation in bone tissue [10].  

Proliferating chondrocytes were found to induce ERK1/2 phosphorylation in the presence of 

elevated Pi, and PiT-1 siRNA eliminated this ERK1/2 induction [6].  The authors of this study 

suggested that PiT-1 may play a role in Pi sensing because of this link to ERK1/2 

phosphorylation in proliferating chondrocytes.  A review article published in 2010 shows support 

for a possible Pi sensing mechanism involving PiT-1 and ERK1/2 that could relay systemic, 

local, and cellular signals to promote bone formation [11].  However, none of these articles 

suggest a specific mechanism or a cell signaling pathway that could support the hypothesis that 

PiT-1 is a Pi sensor.  The data do support a possible connection between PiT-1 and ERK1/2. 

 

There are also multiple functional similarities between PiT-1 and ERK1/2.  Beck et al. showed 

that PiT-1 silencing reduced cell proliferation, and that overexpression of a Pi uptake-deficient 

PiT-1 mutant could rescue this process in HeLa cells [3].  Also, Salaun et al. showed that a Pi 

uptake-deficient PiT-1 mutant reduced the rate of apoptosis in HeLa cells treated with Tumor 

Necrosis Factor-α [4].  Finally, PiT-1 regulation of hematopoietic stem cell differentiation was 

found to be Pi uptake-independent [5,12].  However, none of those studies identified the cell 

signaling pathway required for transport-independent PiT-1 functions.  Our findings suggest that 

ERK1/2 cell signaling is required for the PiT-1 response to elevated Pi, and further studies are 

warranted to confirm Pi uptake-independent functions and investigate adaptor proteins that are 

responsible for PiT-1 signaling through ERK1/2.  Since ERK kinases have been implicated in 

control of proliferation, apoptosis, and differentiation [13–15], it is interesting to speculate that 
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the PiT-1 driven ERK1/2 signaling pathway that we have identified here might be involved in 

these processes as well. 

 

In conclusion, Pi uptake-independent PiT-1 functions that promote ERK1/2 phosphorylation may 

lead to osteochondrogenic differentiation and matrix mineralization and Pi concentrations well 

above maximal Pi uptake.  This hypothesis would help explain the separation between Pi 

concentrations required for Pi uptake and matrix mineralization. 
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Gene Primer Sequence (5’ to 3’) Accession Number 

OPN F: TGAGGTCAAAGTCTAGGAGTTTCC 

R: TTAGACTCACCGCTCTTCATGTG 

P: FAM–TTCTGATGAACAGTATCCTG–MGB 

NM_009263 

SM22α F: GACTGACATGTTCCAGACTGTTGAC 

R: CAAACTGCCCAAAGCCATTAG 

P: FAM–TGAAGGTAAGGATATGGCAGC–MGB 

NM_011526 

PiT-1 F:TTCCTTGTTCGTGCGTTCATC 

R:AATTGGTAAAGCTCGTAAGCCATT 

P:FAM-CCGTAAGGCAGATCC-MGB 

NM_015747 

PiT-2 F:GACCGTGGAAACGCTAATGG 

R: CTCAGGAAGGACGCGATCAA 

P:FAM-CATGGTTGGTTCAGCTG-MGB 

NM_011394 

 

Table 2.1.  Real-time Q-PCR primers and probes.  Primers and probes used in Q-PCR are 

listed here with the gene name and accession number.  Q-PCR probes are FAM-reporters with 

MGB quenchers.  F = Forward primer; R = Reverse primer; P = Probe. 
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Figure 2.1.  Pi uptake in WT VSMCs.  Sodium-dependent Pi uptake was measured at different 

Pi concentrations (0.03 mM to 0.5 mM Pi) in VSMCs isolated from wild-type C57BL/6 mice 

(WT VSMCs) and normalized to protein concentration for each sample and assay time. 
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Figure 2.2.  Calcification of WT VSMCs in varying Pi concentrations.  Calcium deposition 

of WT VSMCs was quantified after 8 days of incubated in various Pi concentrations.  

Statistically significant differences from 1.0 mM Pi data are indicated by * = P<0.05 as measured 

by One-way ANOVA post-hoc Tukey analysis. 
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Figure 2.3.  Osteochondrogenic differentiation of WT VSMCs in varying Pi concentrations.  
RNA lysate of WT VSMCs was collected after 6 days of Pi induction, and then (A) OPN and (B) 

SM22α were quantified by Q-PCR.  Data are presented as mean ± standard deviation (S.D.), n = 

3 for all data points.  Statistically significant differences from 1.0 mM Pi data are indicated by * 

= P<0.05 as measured by One-way ANOVA post-hoc Tukey analysis. 
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Figure 2.4.  PiT-1 is required for Pi-induced ERK1/2 phosphorylation in VSMCs.  (A) Pi 

induction of p-ERK1/2 and total ERK1/2 were visualized by Western blot analysis by incubating 

PiT-1 fl/fl and PiT-1 ΔSM VSMCs in 0.5 mM Pi, 1.0 mM Pi, 3.0 mM Pi, or 3.0 mM Sodium 

sulfate for 5 or 15 minutes.  (B) Densitometry was used to quantify the immunoblot images and 

shown as the ratio of P-ERK1/2 to Total ERK1/2.  Western blot is representative of three 

experiments with similar results, and quantification is represented as mean ± S.D., n = 3 for all 

data points.  Statistically significant differences from all other data from the same cell line is 

indicated by * = P<0.05 as measured by One-way ANOVA post-hoc Tukey analysis. 
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CHAPTER 3 

 

PHOSPHATE UPTAKE-INDEPENDENT PIT-1 FUNCTIONS PROMOTE ELEVATED 

PHOSPHATE INDUCED ERK1/2 PHOSPHORYLATION, PHENOTYPE CHANGE, 

AND MATRIX MINERALIZATION IN VSMCS 

 

Chapter published in similar form as part of:  “Phosphate uptake-independent signaling 

functions of the type III sodium-dependent phosphate transporter, PiT-1, in vascular smooth 

muscle cells.” Chavkin NW, Chia JJ, Crouthamel MH, Giachelli CM. Experimental Cell 

Research. 2015 Apr 10;333(1):39-48. 

 

3.1 Introduction 

 

PiT-1 has been the key focus of many other studies looking at functions other than phosphate 

transport.  The first known function of PiT-1 was as a membrane receptor for the Gibbon ape 

leukemia virus, which gave the first name for PiT-1 as the gibbon ape leukemia virus receptor 1 

(GLVR-1) [1].  The phosphate transport function of PiT-1 was published in 1996 [2].  As PiT-1 

RNA was found in all tissues, PiT-1 was thought to be responsible for intracellular phosphate 

homeostasis.  This is in contrast to other sodium-dependent phosphate transporters which have 

specific expression patterns and play more specific roles in the intestines and kidneys.   

 

Although it is clear that elevated Pi directly induces VSMC calcification through PiT-1, the 

molecular mechanisms by which PiT-1 facilitates this process are still unclear.  Furthermore, as 
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described in Chapter 2, the concentration of Pi that induces matrix calcification (>2mM) in 

VSMCs is much higher than that required for maximal Pi uptake by PiT-1 in VSMCs (~0.5mM).  

Previous literature also describes Pi uptake-independent functions of PiT-1.  This suggests that 

PiT-1 might have a signaling function independent of Pi uptake that promotes elevated Pi-

induced effects.  We hypothesize that Pi uptake-independent functions of PiT-1 promote 

elevated Pi-induced ERK1/2 phosphorylation, osteochondrogenic differentiation, and 

matrix mineralization.  To address this possibility, effects of elevated Pi were carefully 

examined in VSMC expressing wild-type and transport-deficient PiT-1 mutants.  Our findings 

indicate that PiT-1 has both phosphate uptake-dependent and phosphate uptake-independent 

functions in VSMC related to VC.  

 

3.2 Materials and Methods 

 

Site-directed mutagenesis of mouse PiT-1 cDNA 

A pLXIN vector containing wild-type mouse PiT-1 cDNA (PiT-1 WT), that was previously 

created [3], was used as the template for site-directed mutagenesis (QuikChange, Agilent 

Technologies).  Primers were designed (QuikChange Primer Design Program, Agilent 

Technologies) to create Pi uptake deficient mutants (PiT-1-E74K, PiT-1-S132A, PiT-1-S623A) 

as shown in Table 3.1.  Sequencing by the University of Washington Sequencing Center 

confirmed gene sequence. 

 

Retroviral infection of primary mouse VSMCs 
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PiT-1 ΔSM VSMCs were transduced as previously described [3] with pLXIN vectors containing 

wild-type, Pi uptake-deficient PiT-1 mutants, or control (vector alone).  Briefly, the pLXIN 

vectors were transfected into Ecotropic Phoenix Packaging Cell Lines (ATCC, SD 3444) with 

Lipofectamine 2000 (Life Technologies) to create retrovirus-conditioned media, which was used 

to infect  PiT-1 ΔSM VSMCs.  VSMCs were selected and maintained in 200 ug/mL G418 

(Sigma).   

 

Real-time quantitative PCR 

Collection of mRNA was performed with RNeasy Mini Kit (Qiagen) following manufacturer’s 

protocol.  Real-time quantitative PCR (Q-PCR) was performed with primers listed (Table 2.1).  

All Q-PCR gene counts were normalized to 18S gene counts and quantified using the 

quantitative ΔΔCt method. 

 

Immunocytochemistry of PiT-1 ΔSM VSMCs expressing PiT-1 constructs 

PiT-1 ΔSM VSMCs transduced as described above were grown in Nunc Lab-Tek Permanox 4-

well chamber slides (Sigma) in growth media until 70-80% confluent.  VSMCs were washed 

with PBS and fixed with 100% MeOH at -20
0 

C for 20 minutes.  Fixed cells were washed with 

PBS and probed for PiT-1 with a rabbit anti-mouse PiT-1 antibody primary (lab generated 

serum) and DyLight 549-Conjugated AffiniPure Donkey Anti-Rabbit IgG secondary (Jackson 

ImmunoResearch, final 1.5 μg/mL concentration).  Cells were counterstained with DAPI at 

1μg/mL for 5 minutes, mounted with ProLong Gold Antifade (Life Technologies), and imaged 

with a Nikon E800 Upright Microscope.   
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Pi uptake assay 

Pi uptake was measured as previously described [4].  Briefly, VSMCs were seeded into 12-well 

tissue culture plates and incubated with radiolabeled H333PO4 (Perkin Elmer) and un-labeled 

potassium phosphate in either sodium-containing Earle’s Balanced Salt Solution (EBSS) or 

sodium-free, choline-containing EBSS.  VSMCs were incubated for 20 minutes, lysate was 

collected, and radioactive counts were recorded in OptiFluor (Perkin Elmer) using a LS 6500 

Beckman liquid scintillation counter.  Sodium- dependent Pi uptake was calculated by 

subtracting uptake in choline containing media from total uptake in sodium containing media, 

and normalized to incubation time and protein concentration of the cell lysate, quantified by 

Bicinchoninic Acid assay (Thermo Scientific).  Michaelis-Menten kinetic parameters were 

determined by non-linear regression.   

 

Quantification of Pi-induced phosphorylated ERK1/2 

VSMCs were grown in 6-well tissue culture plates in normal growth media.  At 70-80% 

confluence, cells were washed twice with PBS and incubated in Pi-free DMEM (Life 

Technologies, 11971) supplemented with 1% FBS and 1% antibiotic/antimycotic.  After 24 

hours, media was aspirated and VSMCs were incubated in Pi-free DMEM supplemented with 

1% FBS, 1% antibiotic/antimycotic, and Na2PO4/NaPO4 (pH = 7.4) to varying Pi concentrations.  

After 5 or 15 minutes of incubation, VSMCs were washed three times with ice-cold PBS, and 

cell lysate was collected using lysate buffer (0.1 mM Tris pH 6.8 2% SDS) with added protease 

inhibitors and phosphatase inhibitors.  Protein was loaded at 10ug/lane into 10% SDS-PAGE 

gels, transferred to PVDF membranes, and analyzed by immunoblot.  Primary phosphorylated 

ERK1/2 and total ERK1/2 antibodies (Cell Signaling Technology) and secondary HRP-
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conjugated goat anti-rabbit antibody (Jackson ImmunoResearch) were used with Western 

Lighting (ECL) substrate to expose the protein signal.  ImageJ software (NIH, Bethesda, MD) 

was used to quantify the densitometry of the bands. 

 

Calcification assay 

Calcification was determined as previously described [4].  Briefly, VSMCs were grown in 6-well 

tissue culture plates in normal growth media until 70-80% confluent, then VSMCs were 

incubated with DMEM supplemented with 5% FBS, 1% antibiotic/antimycotic, and 

Na2PO4/NaPO4 (pH = 7.4) to varying Pi concentrations.  After 8 days, calcium was extracted 

with 0.6 N HCl at 4
o
C overnight.  Calcium concentration was determined by the O-

Cresolphthalein method using the Calcium Reagent Set (Teco Diagnostics).  Protein lysate was 

collected in 0.2 N NaOH.  Protein concentration was determined by Bicinchoninic Acid assay.  

Calcium data was normalized to protein data. 

 

Apoptosis assay 

Apoptosis was determined through FITC-conjugated Annexin V flow cytometry using the FITC 

Annexin V Apoptosis Detection Kit (BD Pharmagen), following manufacturer’s protocol.  

Briefly, VSMCs were gently trypsinized with 0.05% trypsin in versene for 5 minutes, and the 

FITC-conjugated Annexin V antibody and Propidium iodide were used to stain the suspended 

VSMCs.  VSMCs undergoing apoptosis was defined as Annexin V positive and PI negative. 

 

Statistical analysis 
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SPSS software v16.0 (SPSS, Chicago, IL) was used to perform Student t-tests to compare means 

of two individual groups, and one-way ANOVA with post-hoc Tukey test to compare means of 

three or more individual groups.  Linear regression to determine variable correlation and 

nonlinear regression to determine Michaelis-Menten parameters were performed using STATA 

version 12 (StataCorp).  A p-value of less than 0.05 was considered statistically significant. 

 

3.3 Results 

 

Generation and characterization of Pi uptake deficient PiT-1 mutants 

Since Pi concentrations that induced matrix mineralization, osteochondrogenic differentiation, 

and ERK1/2 phosphorylation were well above the Km of Pi uptake by PiT-1, we considered that 

PiT-1 may be involved in cell signaling through a Pi uptake-independent pathway.  To separate 

Pi uptake-dependent function from Pi uptake-independent function of PiT-1, transport deficient 

PiT-1 mutants were generated.  Previous studies on human PiT-1 identified three amino acids 

critical to Pi uptake: E70, S128, S621 [5–7].  Point mutations of these amino acids inhibited Pi 

uptake through PiT-1 without affecting membrane localization [5–7].  Therefore, we generated 

the corresponding point mutations in mouse PiT-1: E74K, S132A, and S623A (Table 3.2). 

PiT-1 WT, PiT-1 transport-defective mutants (PiT-1-E74K, PiT-1-S132A, and PiT-1-S623A), 

and vector alone were expressed in VSMCs lacking PiT-1 (PiT-1 ΔSM VSMCs).  Over-

expression of these constructs in PiT-1 ΔSM VSMCs was confirmed by Q-PCR (Fig. 3.1A).  

Immunofluorescent histochemistry established that PiT-1 WT and mutant constructs were 

appropriately localized to the plasma membrane of transduced VSMCs (Fig. 3.1B).  Since recent 

studies revealed an up-regulation of the related family member, PiT-2, when PiT-1 was deleted 
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from osteoblast or smooth muscle cells in vivo [8,9], PiT-2 RNA expression was examined in the 

engineered cell lines.  PiT-1 overexpression in cultured primary VSMCs did not significantly 

alter PiT-2 mRNA expression levels (Fig. 3.1C). 

 

Reduced Pi uptake kinetics of PiT-1 ΔSM VSMCs overexpressing PiT-1 transport deficient 

mutants 

Rate of sodium-dependent Pi uptake was measured across a range of Pi concentrations in PiT-1 

ΔSM VSMCs expressing either vector control, PiT-1 WT, or the mutant constructs PiT-1-E74K, 

PiT-1-S132A, or PiT-1-S623A (Fig. 3.2).  As expected, overexpression of PiT-1 WT 

significantly increased the rate of sodium-dependent Pi uptake compared to vector control 

VSMCs at all Pi concentrations tested.  The PiT-1-E74K mutant did not increase the rate of 

sodium-dependent Pi uptake compared to vector control, and VSMC containing this construct 

had the lowest Pi uptake rate of the three PiT-1 mutants.  The PiT-1-S132A and PiT-1-S623A 

mutations had intermediate effects; Pi uptake rate was significantly less than VSMCs 

overexpressing PiT-1 WT at lower Pi concentrations, but similar to PiT-1 WT at higher Pi 

concentrations.  These findings are consistent with calculated Pi uptake kinetic parameters of 

each cell line (Table 3.3).  Maximal velocity (Vmax) of Pi uptake into the VSMCs expressing 

PiT-1 WT, PiT-1-S132A, and PiT-1-S623A were 0.881, 0.736, 0.950 pmol Pi/ug/min, 

respectively, and were two- to three-fold higher than cells expressing vector control or PiT-1-

E74K (0.408, 0.290 pmol Pi/ug/min, respectively).  Furthermore, sodium-independent Pi uptake 

was not different between the cell lines containing the different PiT-1 mutants (data not shown).  

Subsequent experiments utilized the PiT-1-E74K mutant since it showed the least ability to 

transport Pi among the PiT-1 mutant constructs tested. 
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Both PiT-1-WT and PiT-1-E74K promote elevated Pi-induced ERK1/2 phosphorylation 

Pi-induced ERK1/2 phosphorylation mediated by PiT-1 is Pi uptake-independent 

Since we found that PiT-1 was required for Pi-induced ERK1/2 phosphorylation in VSMCs, we 

investigated whether Pi transport by PiT-1 was required for this process.  PiT-1 ΔSM VSMCs 

expressing vector control, PiT-1 WT, or PiT-1-E74K were treated with either normal (1.0 mM) 

or elevated (3.0 mM) Pi, and ERK1/2 phosphorylation was measured.  As shown in Fig. 3.3, 

VSMCs expressing PiT-1 WT and PiT-1-E74K, but not vector control, both showed an increase 

in ERK1/2 phosphorylation in response to elevated Pi treatment.  Incubation in 3.0 mM Pi 

increased ERK1/2 phosphorylation by 34% in PiT-1 WT and 30% in PiT-1-E74K VSMCs 

compared to 1.0 mM Pi treatment.  This result suggests that ERK1/2 signaling mediated by 

elevated Pi through PiT-1 was Pi uptake-independent. 

 

Pi uptake-independent PiT-1 function promotes Pi-induced osteochondrogenic differentiation. 

Both PiT-1-WT and PiT-1-E74K promote elevated Pi-induced osteochondrogenic differentiation 

Pi uptake-independent PiT-1 function promotes Pi-induced osteochondrogenic differentiation 

In VSMCs, ERK1/2 phosphorylation is required for osteochondrogenic differentiation in 

response to elevated Pi [10].  To determine if Pi uptake-independent PiT-1 functions promote 

VSMC phenotype change via ERK1/2 phosphorylation, we examined RNA expression of the 

osteochondrogenic lineage marker, OPN, and smooth muscle lineage marker, SM22α, in VSMCs 

expressing vector control, PiT-1 WT, or PiT-1-E74K.  Expression of either PiT-1 WT or PiT-1-

E74K greatly reduced SM22α mRNA levels compared to vector control (Fig. 3.4A).  This effect 

was observed even under normal Pi conditions, suggesting that increased PiT-1 expression, 
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independent of extracellular Pi levels, promotes down-regulation of SM22α.  Furthermore, as 

shown in Figure 6, OPN was induced to a greater extent in VSMCs expressing PiT-1 WT and 

PiT-1-E74K compared to vector control (Fig. 3.4B).  Down-regulation of SM22α and up-

regulation of OPN is consistent with increased VSMC osteochondrogenic differentiation in 

VSMCs expressing PiT-1 WT or PiT-1-E74K. 

 

PiT-1 promotes VSMC matrix mineralization via Pi uptake-dependent and Pi uptake-

independent processes 

PiT-1 expression has previously been shown to be required for elevated Pi-induced VSMC 

matrix mineralization [3], but whether Pi uptake through PiT-1 was required for this activity has 

not been determined.  To address this, VSMCs expressing vector control, PiT-1 WT, or PiT-1-

E74K were induced to mineralize with elevated Pi.  Elevated Pi (2.6 mM) promoted calcification 

of all three VSMC lines compared to normal Pi conditions (1.0 mM).  To rule out potential 

effects of PiT-1 on cell death in response to elevated Pi, apoptosis rates in vector control, PiT-1 

WT, and PiT-1-E74K expressing VSMCs in normal and elevated Pi conditions were measured.  

Rates of apoptosis were less than 5% in all conditions tested, and elevated Pi did not induce 

apoptosis compared to normal Pi conditions (Fig. 3.5C). 

 

While VSMCs expressing PiT-1 WT showed the greatest induction, PiT-1-E74K expressing 

VSMCs also showed significantly greater mineralization than vector control VSMCs (Fig. 3.5A).  

Furthermore, VSMCs expressing PiT-1-S132A and PiT-1-S623A (mutants with intermediate 

phosphate uptake properties) mineralized more than VSMC expressing PiT-1-E74K (Fig. 3.5B).  

Though statistically significant, matrix mineralization in VSMCs was poorly correlated with 
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calculated Vmax values of VSMC Pi uptake (R2 = 0.25) (Fig. 3.5D), suggesting that PiT-1 

functions besides phosphate uptake contribute to maximal VSMC matrix mineralization. 

 

3.4 Discussion 

 

The present study addressed the hypothesis that PiT-1 mediates both phosphate uptake-

dependent and -independent functions important for Pi-induced calcification in VSMC.  

Transduction with both WT and transport deficient PiT-1 mutants restored Pi-inducible ERK1/2 

phosphorylation in PiT-1 deficient VSMC.  Moreover, VSMC osteochondrogenic differentiation 

was similar in VSMC expressing WT and transport deficient PiT-1 mutants.  Finally, Pi 

transport-deficient mutants enhanced VSMC calcification, though at lower levels than PiT-1 

WT.  These data suggest that PiT-1 signaling through ERK1/2 and downstream regulation of 

osteochondrogenic gene expression occurs via a Pi uptake-independent pathway, and that both Pi 

uptake-dependent and -independent processes play a role in promoting Pi-induced calcification. 

 

The importance of ERK1/2 phosphorylation in osteochondrogenic differentiation and matrix 

mineralization of VSMCs in response to elevated Pi has been previously established [10–12].  In 

the present study, we extended these findings by determining that PiT-1 was required for Pi-

induced ERK1/2 phosphorylation in VSMC.  These results are consistent with findings in 

chondrocytes and HEK293 cells that showed decreased Pi-induced ERK1/2 phosphorylation 

following PiT-1 knock-down by siRNA [11,12].  Furthermore, our studies are the first to show 

that PiT-1 induction of ERK1/2 phosphorylation in VSMC in response to elevated Pi can occur 

in the absence of Pi uptake through PiT-1. 
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In addition to ERK1/2 phosphorylation, Pi-induced regulation of genes downstream of ERK1/2 

signaling, including SM22α and OPN, was supported by both WT and transport-defective PiT-1.  

Additionally, we observed that overexpression of either PiT-1-WT or PiT-1-E74K caused down-

regulation of SM22α in normal Pi conditions, suggesting that the PiT-1 signaling pathway might 

be active under normal Pi conditions when PiT-1 density is very high.  Our findings of a 

signaling function for PiT-1 are consistent with growing evidence in several other cell types for 

transport-independent functions of PiT-1.   

 

Although transport defective PiT-1 was able to support elevated Pi-induced ERK1/2 

phosphorylation and osteochondrogenic differentiation at levels similar to WT PiT-1, this was 

not the case for VSMC matrix mineralization.  Both Pi uptake-dependent and Pi uptake-

independent functions of PiT-1 were required to promote maximal VSMC matrix mineralization.  

These findings suggest that Pi uptake-dependent and -independent mechanisms regulate distinct 

cellular functions in VSMCs that work in concert to promote matrix mineralization depending on 

the level of extracellular Pi.  One possibility is that at normal ambient Pi of 1.0 mM, the Pi 

transport function of PiT-1 predominates, and allows Pi entry into VSMC for essential cell 

functions with excess Pi shed from the cell via efflux transporters or matrix vesicles [13–15].  In 

contrast, at high ambient Pi (>2.0 mM), PiT-1 activates ERK1/2 and drives osteochondrogenic 

phenotype change, thereby promoting the loading of matrix vesicles not only with Pi, but also 

with pro-calcific cargo making them “calcification competent”.  The importance of Pi-loaded 

matrix vesicles in initiating VSMC mineralization has been extensively studied, and 

osteochondrogenic differentiation of VSMC has been shown to enhance formation of 
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calcification competent matrix vesicles by loading  them with pro-calcific molecules such as 

alkaline phosphatase, and removing calcium mineral inhibitors including matrix GLA protein 

and Fetuin-A [14,15].  Clearly, further investigations are required to test these exciting 

possibilities, and to determine the molecular mechanism by which PiT-1 senses extracellular Pi 

levels. 

 

In conclusion, our findings suggest that at extracellular Pi concentrations above physiological 

levels, PiT-1 acts as a phosphate sensor with cell signaling functions that regulate ERK kinase 

activity, VSMC osteochondrogenic differentiation, and calcification.  This possibility would help 

explain the strikingly different Pi-dependence of phosphate uptake (maximal 0.5 mM) versus 

VSMC differentiation and calcification (occurring above 2.0 mM).  Further studies to delineate 

the mechanisms by which PiT-1 acts as a Pi sensor are warranted, and will help identify new 

therapeutic targets for treatment of VC. 
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Gene Primer Sequence (5’ to 3’) 

PiT-1-E74K F: CTTAGCTAGCATCTTCAAAACTGTGGGCTCCGC 

R: GCGGAGCCCACAGTTTTGAAGATGCTAGCTAAG 

PiT-1-S132A F: GCTTCGTTTTTGAAGCTTCCGATTGCTGGGACCCATTG 

R: CAATGGGTCCCAGCAATCGGAAGCTTCAAAAACGAAGC 

PiT-1-S623A F: ACATTGGCCTTCCCATCGCCACAACACATTGCAAA 

R: TTTGCAATGTGTTGTGGCGATGGGAAGGCCAATGT 

 

Table 3.1.  Site-directed mutagenesis primers.  Primers and probes used in site-directed are 

listed here with the gene name.  Primers used in site-directed mutagenesis have the desired 

mutation underlined.   
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Human PiT-1 Mouse PiT-1 Mutation 

Glu70 (E70) Glu74 (E74) Glutamic acid  Lysine (E74K) [5] 

Ser128 (S128) Ser132 (S132) Serine  Alanine (S132A) [6] 

Ser621 (S621) Ser623 (S623) Serine  Alanine (S623A) [7] 

 

Table 3.2.  Essential PiT-1 amino acids and mutations that affect Pi transport.  Mutations in 

human PiT-1 that were described in previous studies to be essential for Pi transport are listed 

with the corresponding amino acid in mouse PiT-1.  The mutation described that inhibited Pi 

transport is listed with the annotation describing the mouse PiT-1 mutation.  
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Figure 3.1.  PiT-1 constructs transduced into PiT-1 ΔSM VSMCs are expressed and did not 

alter PiT-2 mRNA levels.  (A) Q-PCR quantification of PiT-1 mRNA expression of PiT-1 ΔSM 

VSMCs transduced with vector control, PiT-1 WT, PiT-1-E74K, PiT-1-S132A, or PiT-1-S623A 

confirmed stable expression.  (B) Immunocytochemical analysis of PiT-1 ΔSM VSMCs 

expressing Vector Control, PiT-1-WT, PiT-1-E74K, PiT-1-S132A, or PiT-1-S623A with primary 

PiT-1 antibody (red) and DAPI counterstain (blue) show expression of the PiT-1 WT, PiT-1-

E74K, PiT-1-S132A, and PiT-1-S623A proteins, scale bar is 25 μm.  (C) PiT-2 mRNA 

quantification by Q-PCR confirmed no significant effects on PiT-2 mRNA expression in any cell 

line.  Data presented as mean ± S.D. (A,C) or representative images (B).   
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Figure 3.2.  PiT-1 point mutations impair sodium-dependent Pi uptake in VSMCs.  Sodium-

dependent Pi uptake was quantified over a range of Pi concentrations in VSMCs expressing 

vector control, PiT-1 WT, PiT-1-E74K, PiT-1-S132A, or PiT-1-S623A.  VSMC Pi uptake was 

measured over 20 minutes and normalized to time and VSMC protein content.  Dashed 

connecting lines signify PiT-1 point mutation constructs.  Data presented as mean ± S.D., n = 3 

for all data points.  Statistically significant differences between Vector Control and each PiT-1 

construct at the same Pi concentration are indicated by * = P<0.05 as measured by One-way 

ANOVA post-hoc Tukey analysis. 
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Cell Line Vmax (pmol/μg/min) ± S.E. Km (mM) ± S.E. 

Wild-type VSMC 0.369 ± 0.035 0.113 ± 0.032 

Vector Control 0.408 ± 0.030 0.066 ± 0.024 

PiT-1 WT 0.881 ± 0.035 0.102 ± 0.016 

PiT-1-E74K 0.290 ± 0.032 0.097 ± 0.042 

PiT-1-S132A 0.736 ± 0.031 0.303 ± 0.035 

PiT-1-S623A 0.950 ± 0.008 0.308 ± 0.072 

 

Table 3.3.  Michaelis-Menten kinetic values of PiT-1 mutants.  Kinetic values Vmax and Km 

were calculated based on Pi uptake data obtained for each VSMC line.  Non-linear regression 

was performed and standard error was obtained using MATLAB software.  Data is presented as 

mean ± S.E. 
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Figure 3.3.  Elevated Pi induced ERK1/2 phosphorylation through Pi transport-

independent PiT-1 function.  (A) ERK1/2 phosphorylation was induced in PiT-1 ΔSM VSMCs 

expressing vector control, PiT-1 WT, or PiT-1-E74K with incubation in 1.0 mM or 3.0 mM Pi 

for 15 minutes.  P-ERK1/2 and total ERK1/2 were visualized by western blot analysis.  (B) 

Densitometry quantification of three independent experiments shows the ratio of P-ERK1/2 to 

Total ERK1/2.  Data presented as a representative image (A) or mean ± S.D., n = 3 for all data 

points (B).  Statistically significant differences between two independent means are indicated by 

* = P<0.05 as measured by student t-test. 
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Figure 3.4.  PiT-1 promotion of VSMC osteochondrogenic differentiation does not require 

Pi uptake.  (A) SM22α RNA expression in PiT-1 ΔSM VSMCs expressing vector control, PiT-1 

WT, or PiT-1-E74K was quantified by Q-PCR after incubation in 1.0 mM Pi for 4 days.  (B) 

OPN RNA expression is presented as fold-induction of 2.6 mM Pi over 1.0 mM Pi after 4 days 

of incubation.  Data presented as mean ± S.D., n = 3 for all data points.  Statistically significant 

differences of means compared to vector control are indicated by * = P<0.05 as measured by 

One-way ANOVA post-hoc Tukey analysis.   
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Figure 3.5.  PiT-1 promotes VSMC matrix mineralization through both Pi uptake-

dependent and -independent functions.  (A) Matrix calcium content was quantified from PiT-1 

ΔSM VSMCs expressing vector control, PiT-1 WT, or PiT-1-E74K that were induced to 

mineralize in normal Pi (1.0 mM) or elevated Pi (2.6 mM) for 8 days.  (B) Rate of apoptosis was 

determined after incubation in normal or elevated Pi for 2 or 5 days.  (C) Calcification was 

quantified of PiT-1 ΔSM VSMCs expressing vector control, PiT-1 WT, PiT-1-E74K, PiT-1-

S132A, or PiT-1-S623A, and data is presented as  fold-induction over vector control for each 

experiment by cell line.  (D) Correlation analysis between calcification and calculated sodium-

dependent Pi uptake Vmax parameter for each cell line is presented.  Data is presented as mean ± 

S.D. (A-C), or as single points for linear regression (D).  Statistically significant differences 

between indicated means (A) or compared to vector control (C) are indicated by * = P<0.05, 

determined by One-way ANOVA post-hoc Tukey analysis. 
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CHAPTER 4 

 

ELEVATED PHOSPHATE-INDUCED CELL SIGNALING THROUGH PIT-1 

REQUIRES RAPGEF1 

 

Chapter to be published in similar form as:  “Rap1 guanine nucleotide exchange factor, 

RapGEF1, is required for sodium-dependent phosphate transporter PiT-1 mediated phosphate 

signaling through ERK1/2 and inhibition of smooth muscle 22 alpha in vascular smooth muscle 

cells.” Chavkin NW, Brooks KE, Lund SM, Soberg EM, Wallingford MC, Giachelli CM.  In 

preparation. 

 

4.1 Introduction 

 

Inorganic phosphate (Pi) is an essential molecule required almost every cellular function, 

including membrane stability, nucleic acid polymerization, and enzyme activation.   Pi is also a 

main component of hydroxyapatite crystal in bone mineral [1].  Systemic phosphate homeostasis 

maintains serum Pi concentration around 1.0mM through a balance of Pi intake through the 

intestines and Pi excretion through the kidneys, with the hormones FGF-23, Vitamin D, PTH, 

and Klotho playing an important role in regulating Pi homeostasis [2,3].  Pathologies that 

dysregulate systemic Pi homeostasis can affect bone mineral deposition.  Patients with late-stage 

chronic kidney disease have hyperphosphatemia (concentrations greater than 1.46mM Pi) that 

leads to arterial medial calcification and have a greatly increased risk of cardiovascular 

morbidity and mortality [4–6].  Elevated serum Pi in hyperphosphatemia promotes active 
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mineral deposition by vascular smooth muscle cells (VSMCs), leading to matrix mineralization 

in the medial layer of arteries [2].  This process is initiated by elevated Pi-induced ERK1/2 

phosphorylation that leads to down-regulation of VSMC genes such as smooth muscle 22 alpha 

(SM22α), consistent with VSMC phenotype change [7,8].  However, the mechanism in which 

elevated Pi promotes VSMC phenotype change is unclear. 

 

The main phosphate transporters in VSMCs are SLC20A1 (PiT-1) and SLC20A2 (PiT-2) [9].  

PiT-1 and PiT-2 are type III sodium-dependent phosphate co-transporters that use the inward 

sodium gradient to transport two sodium ions for every one inorganic phosphate ion into the cell 

[10].  These transporters are thought to play a role in intracellular Pi homeostasis [10].  In 

VSMCs, PiT-1 has been shown to be required for elevated Pi-induced matrix mineralization and 

VSMC phenotype change [9].  However, PiT-1 is a high-affinity low-capacity transporter, and 

the concentration of Pi required to induce matrix mineralization is well above the concentration 

with maximal Pi uptake [11,12].  In a previous study, we had shown that a Pi uptake-independent 

function of PiT-1 was required for elevated Pi-induced ERK1/2 phosphorylation that leads to 

VSMC phenotype change [12].  These results suggested a cell signaling pathway from PiT-1 to 

ERK1/2 that is induced by elevated Pi and leads to down-regulation of smooth muscle genes.   

 

A potential adaptor protein that binds to PiT-1 is Rap1 guanine nucleotide exchange factor 

(RapGEF1).  A previous study investigated protein interactions in human liver lysates by a high-

throughput yeast-two-hybrid assay and found that PiT-1 and RapGEF1 are interacting partners, 

however this was not tested in a low-throughput method [13].  RapGEF1 is an activator of the 

small GTPase Rap1 [14].  RapGEF1 is required for ERK1/2 phosphorylation in specific 
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pathways involving Rap1 activation and down-stream B-Raf and MEK1/2 phosphorylation 

[14,15].  That same cell pathway resulted in phosphorylation of Elk-1 [15], which is a 

transcription factor that inhibits the smooth muscle cell promoting transcription factor, 

Myocardin, from binding to smooth muscle-specific promoter regions and therefore inhibiting 

smooth muscle genes [16,17].  Together, these data suggest that RapGEF1 may play a role in 

PiT-1 mediated ERK1/2 phosphorylation and VSMC phenotype change.  The research 

presented here tests the hypothesis that RapGEF1 binds to PiT-1 in VSMCs and is 

required for elevated Pi-induced ERK1/2 phosphorylation and down-regulation of smooth 

muscle genes.  In order to test this hypothesis, RapGEF1 and PiT-1 protein binding was 

investigated and siRNA directed towards RapGEF1 was used to examine effects of RapGEF1 

mRNA knock-down in VSMCs. 

 

4.2 Materials and Methods 

 

Cell culture and maintenance 

Human new-born VSMCs (HNBSMCs) used in experiments were previously published [9].  

HNBSMCs were passaged and maintained in Dulbecco’s Modified Eagle Medium (DMEM, 

Gibco Life Technologies, Cat#11995) supplemented with 15% Fetal Bovine Serum (FBS, 

HyClone), 1% penicillin/1% streptomycin (Life Technologies).  Primary medial VSMCs were 

isolated from aortas of wild-type C57BL/6 mice (WT VSMC) as previously described [12].  

Briefly, aortas were removed from 4-5 week old mice, the medial layer was isolated and digested 

in collagen and elastin, and the primary (P0) VSMCs were incubated in DMEM supplemented 

with 20% FBS, 1% antibiotic/antimycotic, 1% glutamine, and 1% non-essential amino acids 
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(Life Technologies).  VSMCs were passaged and maintained in DMEM supplemented with 10% 

FBS and 1% antibiotic/antimycotic.  Experiments used primary VSMCs between P5 and P9.  

 

Co-immunoprecipitation 

Co-immunoprecipitation experiments were performed with the Pierce Crosslink Magnetic IP/Co-

IP Kit (Pierce), according to the protocol.  Briefly, HNBSMCs were cultured in 6-well plates and 

incubated for 15 minutes in NH buffer (20mM HEPES pH 7.5, 150mM NaCl) with phosphate 

(Na2PO4/NaPO4 pH = 7.4) supplemented to either 1.0mM or 3.0mM, then cells were washed in 

NH buffer with either 1.0mM Pi or 3.0mM Pi and lysed in NH Lysate buffer (20mM HEPES pH 

7.5, 150mM NaCl, 0.1% Triton-X100).  Then, 5 μg of antibody against RapGEF1 (Rabbit 

polyclonal IgG anti-Rapgef1 C-19, Santa Cruz Biotechnologies) or IgG control (IgG from rabbit 

serum Cat#I5006, Sigma-Aldrich) were bound to magnetic beads, the antibody-bound beads 

were incubated with 100 μg of protein from HNBSMC lysate for 1 hour at room-temperature, 

then bound protein was eluted.  Protein elution was run on a western blot and probed with an 

anti-PiT-1 antibody (Chicken anti-PiT-1, gift from Dr. Moshe Levi, UC Boulder). 

 

RapGEF1 RNA silencing 

WT VSMCs were seeded at 2.5x10
4
 cells per well in 6-well plates.  24 hours after seeding, 

siRNA directed towards RapGEF1 (Silencer Select s98950, Thermo Fischer Scientific) was 

administered as described in the Lipofectamine RNAiMAX protocol (Life Technologies).  

Briefly, 5 μL of 1mM siRNA was added to 250 μL Opti-MEM (Gibco Life Technologies, 

Cat#31985), 1.5 μL of RNAiMAX was added to another 250 μL Opti-MEM, these dilutions 

were mixed and incubated for 5 minutes, VSMCs were refed with 10% FBS DMEM containing 
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no antibiotics, and the 500 μL Opti-MEM dilution of siRNA and RNAiMAX was added to the 

VSMCs. 

 

Quantitative PCR 

RNA was quantified by Q-PCR.  Specific genes were quantified using primers and probes 

directed towards RapGEF1 (TaqMan Cat#4331182, Thermo Fischer Scientific) or SM22α 

(forward: 5’-GACTGACATGTTCCAGACTGTTGAC-3’, reverse: 5’-

CAAACTGCCCAAAGCCATTAG-3’, probe: FAM-5’-TGAAGGTAAGGATATGGCAGC-3’-

MGB).   Relative gene values were normalized to 18s ribosomal control values in each sample 

(Applied Biosystems), then normalized to control values in a delta-delta-18s method. 

 

Fluorescent immunocytochemistry 

Immunocytochemistry was performed by culturing either HNBSMCs or WT VSMCs on glass 

slides coated with poly-D-lysine.  Cells were fixed with 4% paraformaldehyde and 

permeabilized with PBS containing 0.25% Triton-X100.  Fixed cells were blocked with PBS-T 

containing 0.25% bovine serum albumin (BSA, Sigma-Aldrich) and 4% donkey serum (Jackson 

ImmunoResearch).  Primary antibodies against RapGEF1 (Rabbit polyclonal IgG anti-Rapgef1 

C-19, Santa Cruz Biotechnologies) or PiT-1 (Chicken anti-PiT-1, gift from Dr. Moshe Levi, UC 

Boulder) and fluorescent secondary antibodies against Rabbit IgG (Alexa 488-conjugated 

Donkey anti-Rabbit IgG, Jackson ImmunoResearch) or Chicken IgY (TRITC-conjugated Rabbit 

anti-Chicken IgY Novex, Life Technologies) were diluted in PBS-T containing 0.25% BSA and 

2% donkey serum.  Antibodies were incubated in succession to avoid cross signals.  Slides were 

mounted with Prolong Gold Anti-fade Mountant (Prolong Thermo Fischer Scientific).  Imaging 
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was performed with either a Nikon E800 Upright Microscope or a Leica SP8X Confocal 

Microscope.   

 

Elevated Pi-induced ERK1/2 phosphorylation assay 

ERK1/2 phosphorylation assay was performed as previously described [12].  Briefly, WT 

VSMCs were incubated in Pi-free DMEM (Gibco Life Technologies Cat#11971) supplemented 

with 1% FBS for 16 hours, then refed with Pi-free DMEM containing different concentrations of 

Pi, FBS, or NaSO4 (Sigma-Aldrich).  If inhibitors were used, then the inhibitors were either 

added during the first Pi-free DMEM with 1% FBS refeed or in Pi-free DMEM with 1% FBS at 

1 hour before induction with different Pi concentrations.  Cells were lysed after 15 minutes in 

Lysate Buffer (0.1 M Tris pH = 6.8, 2% SDS) with Protease Inhibitor Cocktail (Roche), PMSF 

(Sigma-Aldrich), and Halt Phosphatase Inhibitor Cocktail (Thermo Scientific).  Lysates were run 

on a western blot with antibodies against phosphorylated ERK1/2 or total ERK1/2 (Cell 

Signaling Technologies).  Protein bands were quantified by ImageJ densitometry analysis, and 

phosphorylated ERK1/2 was normalized to total ERK1/2 for each sample.  ERK1/2 

phosphorylation was also quantified by the Thermo Scientific Pierce ERK1/2 Colorimetric In-

Cell ELISA Kit (Thermo Fischer).  VSMCs were seeded in 96-well plates in growth media, refed 

with Pi-free DMEM with 1% FBS and incubated for 16 hours, refed with Pi-free DMEM with 

1% FBS with added inhibitor and incubated for 1 hour, then refed with Pi-free DMEM 

containing added inhibitor and different concentrations of Pi, FBS, or NaSO4.  After different 

times, cells were fixed with 4% paraformaldehyde and the In-Cell ELISA Kit protocol was 

followed to obtain absorbance readings corresponding to amount of phosphorylated ERK1/2. 
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Statistical Analysis 

SPSS software v16.0 (SPSS, Chicago, IL) was used to perform Student t-tests to compare means 

of two individual groups, and one-way ANOVA with post-hoc Tukey test to compare means of 

three or more individual groups.  Linear regression to determine variable correlation and 

nonlinear regression to determine Michaelis-Menten parameters were performed using STATA 

version 12 (StataCorp).  A p-value of less than 0.05 was considered statistically significant. 

 

4.3 Results 

 

Interaction between RapGEF1 and PiT-1 proteins in VSMCs increase with elevated Pi. 

A previously published study had observed that PiT-1 and RapGEF1 could bind in a yeast-two-

hybrid assay, but this binding had not been confirmed in mammalian cells.  To investigate 

whether PiT-1 and RapGEF1 interact in VSMCs, fluorescent immunocytochemistry and co-

immunoprecipitation were performed on PiT-1 and RapGEF1 proteins (Fig. 1).  

Immunocytochemistry on HNBSMCs was performed to visualize PiT-1 and RapGEF1 

localization (Fig. 1A and 1B).  DAPI staining was also performed to visualize nuclei (Fig. 1C).  

Both PiT-1 and RapGEF1 are expressed in cultured HNBSMCs with similar membrane and 

cytosol localization patterns.  An overlay of PiT-1, RapGEF1, and DAPI staining shows possible 

co-staining locations throughout the cell (Fig. 1D).  To confirm protein interactions between PiT-

1 and RapGEF1 and to assess the effect of elevated Pi on these interactions, HNBSMCs were 

incubated in either normal 1.0mM Pi or elevated 3.0mM Pi for 15 minutes and co-

immunoprecipitation was performed with a capture antibody against RapGEF1 and probing for 

PiT-1 by western blot (Fig 1E).  A PiT-1 band was observed in both the 1.0mM Pi and 3.0mM Pi 
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after RapGEF1 capture, and no band was observed in the IgG capture negative control.  

Quantification of the PiT-1 band from three independent samples shows that more PiT-1 protein 

is present in 3.0mM Pi compared to 1.0mM Pi after co-immunoprecipitation with the RapGEF1 

capture antibody (Fig. 1F).  These data show that elevated Pi increases binding of RapGEF1 and 

PiT-1.   

 

RNA silencing of RapGEF1 eliminates elevated Pi-induced ERK1/2 phosphorylation. 

Pi uptake-independent function of PiT-1 is required for elevated Pi-induced ERK1/2 

phosphorylation in VSMCs [12].  To investigate the role of RapGEF1 in elevated Pi-induced 

ERK1/2 phosphorylation, small interfering RNA was used to silence RapGEF1 mRNA 

(siRapGEF1), and then the effect of elevated Pi on phosphorylated ERK1/2 was assessed.  

Primary murine VSMCs transfected with siRapGEF1 showed a greater than 95% reduction in 

RapGEF1 mRNA compared to negative control siRNA (siNegative) at 2, 3, and 4 days after 

siRNA transfection (Fig. 2A).  Protein reduction was also visible through fluorescent 

immunocytochemistry of RapGEF1 protein in siNegative and siRapGEF1 VSMCs (Fig. 2B and 

2C).  ERK1/2 phosphorylation was visualized by western blot in siNegative and siRapGEF1 

VSMCs after induction with either 0.5mM, 1.0mM, or 3.0mM Pi (Fig. 2D).  Densitometry 

quantification showed that ERK1/2 phosphorylation in siNegative VSMCs was increased 1.5-

fold in 3.0mM Pi media over 1.0mM Pi media, but RapGEF1 siRNA eliminated this effect (Fig. 

2E).  Together, these data show that silencing RapGEF1 mRNA and protein eliminates elevated 

Pi-induced ERK1/2 phosphorylation in VSMCs.   
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Small molecule inhibitors against Rap1, B-Raf, or Mek1/2 eliminate elevated Pi-induced ERK1/2 

phosphorylation. 

RapGEF1 can lead to ERK1/2 phosphorylation through a Rap1/B-Raf/Mek1/2 cell signaling 

cascade [15].  To test this pathway in RapGEF1 mediated cell signaling through PiT-1 to 

ERK1/2, each step was inhibited and elevated Pi-induced ERK1/2 phosphorylation was assessed.  

Rap1, B-Raf, and Mek1/2 have small molecule inhibitors that can block activation of each one 

individually (GGTI298, GDC0879, and U0126, respectively).  Serial dilutions of these inhibitors 

were tested (starting at 20μM GGTI298, 10μM GDC0879, and 20μM U0126) in the elevated Pi-

induced ERK1/2 phosphorylation assay with primary murine VSMCs (Fig. 3A).  VSMCs were 

incubated in Pi-free DMEM with each inhibitor (or 0.5% DMSO control) for 16 hours before 

elevated Pi induction.  3.0mM Pi induced ERK1/2 phosphorylation in the control treatment, but 

the highest concentrations of each inhibitor all blocked ERK1/2 phosphorylation.  As the 

inhibitor was diluted, ERK1/2 phosphorylation increased to resemble the 3.0mM Pi control 

induction.  The concentration of each inhibitor that blocked elevated Pi-induced ERK1/2 

phosphorylation was tested with a 1 hour pre-incubation before elevated Pi induction (Fig. 3B).  

ERK1/2 phosphorylation was reduced in all of the inhibitor cases compared 3.0mM Pi induction 

in control treated VSMCs.  Inhibitors against Rap1, B-Raf, and Mek1/2 all individually inhibit 

elevated Pi-induced ERK1/2 phosphorylation in VSMCs. 

 

RNA silencing of RapGEF1 up-regulates mRNA SM22-alpha and eliminates elevated Pi-induced 

inhibition of SM22-alpha mRNA. 

Downstream of ERK1/2 phosphorylation, PiT-1 mediated cell signaling inhibits SM22α 

expression in VSMCs consistent with VSMC phenotype change [12].  Therefore, changes in 
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SM22 α mRNA expression were investigated with RapGEF1 siRNA to assess the role of 

RapGEF1 in VSMC phenotype change.  First, SM22α mRNA expression was quantified in 

growth media (DMEM with 10% FBS) in VSMCs treated with siNegative control or 

siRapGEF1.  SM22α mRNA expression was increased by 5-fold 2 days after siRNA treatment 

and by 9-fold 3 days after siRNA treatment, but was reduced to control amount by day 4 (Fig 

4A).  Next, the role of RapGEF1 in SM22α mRNA inhibition by elevated Pi was assessed.  

SM22α mRNA expression was reduced in siNegative VSMCs after 4 days of incubation in 

2.6mM Pi media (DMEM with 3% FBS) compared to 1.0mM Pi media, but siRapGEF1 

eliminated SM22α reduction.  RNA silencing of RapGEF1 eliminates PiT-1 mediated inhibition 

of SM22α expression. 

 

4.4 Discussion 

 

The results presented here show that RapGEF1 interacts with PiT-1 in VSMCs, and that PiT-1 

mediated ERK1/2 cell signaling and VSMC phenotype change in response to elevated Pi 

requires RapGEF1.  This signaling pathway goes through a Rap1/B-Raf/Mek1/2 cascade.  

Overall, the data suggest that elevated Pi initiates protein binding between PiT-1 and RapGEF1, 

which requires Rap1, B-Raf, and Mek1/2 to phosphorylate ERK1/2 and down-regulate smooth 

muscle-specific genes.   

 

RapGEF1 has several known functions and mechanisms of activation.  In mice, global deletion 

of RapGEF1 is embryonically lethal at E7.5 due to decreased cell adhesion of embryonic 

fibroblasts and decreased embryogenesis [18].  Other studies have also implicated RapGEF1-
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meditated activation of Rap1 on cell adhesion function and ERK1/2 phosphorylation [15,19,20].  

Most interesting to the results of this study, RapGEF1 was found to be required for vascular 

maturation of embryos [21].  That study found that transgenic mice hypomorphic for RapGEF1 

died in embryo at age E11.5 due to vascular integrity defects, which is a strikingly similar 

phenotype to the PiT-1 global deletion mouse that is embryonically lethal at E14.5 and had 

vascular defects starting at E11.5 [22].  The signaling pathway and down-stream regulation of 

smooth muscle cell genes presented in the results may help explain the role of RapGEF1 in 

vascular maturation.    

 

RapGEF1 localization also seems to play a large role in the activation of Rap1 and down-stream 

signaling proteins.  A membrane localization signal attached to RapGEF1 was sufficient to 

activate Rap1 [14].  Furthermore, a previous study found that although Epac1 (a different Rap1 

activator) does not normally lead to ERK1/2 phosphorylation, adding a membrane localization 

signal to Epac1 does lead to down-stream ERK1/2 phosphorylation after Rap1 activation [23].  

Membrane localization of RapGEF1 could be the initiation mechanism for the cell signaling 

response to elevated Pi.  RapGEF1 binding to PiT-1 on the cell membrane may be enough to 

initiate the cell signaling response to elevated Pi through ERK1/2 phosphorylation.  This 

underlying mechanism could also suggest a role for PiT-1 and RapGEF1 signaling in 

mammalian cell Pi sensing. 

 

In conclusion, the data presented here suggest that elevated Pi induces PiT-1 to bind to 

RapGEF1, initiating a cell signaling pathway through Rap1, B-Raf, and Mek1/2 to increase 

ERK1/2 phosphorylation and inhibit smooth muscle cell gene expression in VSMCs.    
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Figure 4.1.  Visualization and quantification of RapGEF1 and PiT-1 interactions.  
Fluorescent immunocytochemistry of cultured HNBSMCs probing for A) PiT-1, B) RapGEF1, 

and combining the images with DAPI staining in D) as an overlay was performed.  D) 

HNBSMCs incubated in either 1.0mM Pi or 3.0mM Pi  for 15 minutes were lysed, co-

immunoprecipitation was performed using a capture antibody against RapGEF1 or IgG control, 

and elution was run on a western blot and probed for PiT-1.  A representative western blot of 

three independent samples is shown.  E) The three independent samples were quantified by 

densitometry analysis.  (* = p<0.05 by t-test). 
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Figure 4.2 RapGEF1 silencing eliminates elevated Pi-induced ERK1/2 phosphorylation.  
Primary murine VSMCs were transfected with either RapGEF1 siRNA (siRapGEF1) or negative 

control siRNA (siNegative).  A) RapGEF1 RNA was quantified with qRT-PCR on day 2, 3, and 

4 after siRNA transfection.  Immunocytochemistry probing for RapGEF1 (green) and staining 

for DAPI (blue) was used to visualize RapGEF1 protein in B) siNegative and C) siRapGEF1 

VSMCs.  D) Both siNegative and siRapGEF1 VSMCs were incubated in media containing either 

0.5mM, 1.0mM, or 3.0mM Pi for 15 minutes ERK1/2 phosphorylation was visualized by western 

blot (representative image shown).  E) Quantification of six independent samples was performed 

by densitometry analysis.  (* = p < 0.05)  
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Figure 4.3.  Inhibitors against Rap1, B-Raf, and Mek1/2 eliminate elevated Pi-induced 

ERK1/2 phosphorylation.  Elevated Pi-induced ERK1/2 phosphorylation was assessed with 

small molecule inhibitors against activation of Rap1 (GGTI298), B-Raf (GDC0879), and Mek1/2 

(U0126).  A) Primary murine VSMCs were incubated in Pi-free DMEM with varying inhibitor 

concentrations for 16 hours starting at 20μM GGTI298, 10μM GDC0879, or 20μM U0126 and 

diluted serially with a dilution factor of 10, then induced with 3.0mM Pi (or given controls), and 

phosphorylated ERK1/2 was quantified by western blot.  B)  VSMCs were incubated in Pi-free 

DMEM overnight, then Pi-free DMEM with varying concentrations of inhibitors (20μM 

GGTI298, 10μM GDC0879, or 20μM U0126) for 1 hour, and induced with either 1.0mM or 

3.0mM Pi, then ERK1/2 was visualized by western blot and quantified by In-Cell ELISA assay.  
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Figure 4.4.  RapGEF1 silencing increases SM22α mRNA and eliminates elevated Pi-

induced SM22α mRNA inhibition.  A) SM22α mRNA expression was quantified at day 2, 3, 

and 4 post transfection with either siNegative or siRapGEF1.  B) VSMCs were treated with 

either siNegative or siRapGEF1 and incubated for 4 days in 1.0mM Pi or 2.6mM Pi media and 

SM22α mRNA was quantified.  (* = p<0.05) 
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CHAPTER 5 

CONCLUSIONS AND FUTURE STUDIES 

 

5.1 Conclusions 

 

In this dissertation, I provide evidence that PiT-1 promotes elevated Pi-induced ERK1/2 

phosphorylation, osteochondrogenic differentiation, and matrix mineralization in VSMCs 

through Pi uptake-independent cell signaling functions initiated by binding with RapGEF1, 

causing a signaling cascade through Rap1/B-Raf/Mek1/2 that phosphorylates ERK1/2 and 

promotes VSMC phenotype change (Fig. 5.1).   

 

These results suggest that PiT-1 may potentially play a role in Pi sensing in mammalian cells.  Pi 

sensing has been described in E. coli and S. cerevisiae [1,2], but the exact mammalian cell Pi 

sensing pathway has not been discovered.  However, elevated Pi causes both very quick and 

long-term changes to cells, suggesting that a Pi sensing and response mechanism exists and has 

not been accurately defined.  Other investigators have suggested that PiT-1 may be important in 

Pi sensing in bone formation and phosphate homeostasis.  Bergwitz et al. reviewed literature on 

Pi induction of ERK1/2 in different cell types and concluded that PiT-1 may be an important 

protein in Pi sensing in mammalian cells [3], but a mechanism was not presented.  Miyamoto et 

al. also concluded in a review that PiT-1 and PiT-2 may play a role in Pi sensing related to bone 

formation and vascular calcification [4], but again a mechanism was not presented.  One study 

also suggested that sodium-dependent Pi transporters could be responsible for Pi sensing in renal 

epithelial cells [5].  It is unclear if the pathway outlined in this dissertation is a specific response 



86 
 

 

in VSMCs to smooth muscle-specific genes, or if it could also affect osteoblasts, osteocytes, or 

chondrocytes.  It is also unclear if these in vitro studies will translate to in vivo mechanism.  A 

more ubiquitous function of this pathway and confirmation of this cell signaling pathway in vivo 

would suggest that PiT-1 is part of the mammalian cellular Pi sensing and response mechanism. 

 

The response to elevated Pi through PiT-1 that promotes osteochondrogenic differentiation could 

be targeted with therapeutics in order to block the response to elevated Pi in VSMCs and inhibit 

vascular calcification.  If this signaling pathway can be observed in vivo, then potential 

therapeutics could target this pathway to block vascular calcification.  This is a very exciting 

proposal, as there are currently no drugs that can directly target vascular calcification.  An ideal 

drug that targets vascular calcification would also be specific to VSMCs without adverse effects 

on bone formation, and this pathway may satisfy these criteria as it seems to be directed towards 

down-regulation of smooth muscle-specific genes.  Additionally, there are other diseases that are 

initiated or progressed by down-regulation of smooth muscle-specific genes in VSMCs, such as 

atherosclerosis and restenosis [6,7].  These diseases may be inhibited by a drug that can promote 

smooth muscle-specific genes in VSMCs.   

 

5.2 Future studies 

 

Possible future studies extended from this project include investigating the specific mechanism 

in which PiT-1 responds to elevated Pi, possible drug targets, and testing therapies in vivo.  

These studies are outlined in this section. 
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One possible mechanism for PiT-1 response to elevated Pi is through monomerization.  The data 

suggest that PiT-1 can sense and respond to elevated Pi, and this response would require a fast 

response.  Previous studies show that the related phosphate transporter PiT-2 can oligomerize, 

and that elevated phosphate reduces this oligomerization [8].  The amino acid sequence of mouse 

PiT-2 is 65% identical to that of mouse PiT-1 by BLAST, suggesting that these proteins can 

function in similar manners in response to elevated extracellular Pi.  An oligomerization 

response to different concentrations of Pi could be a fast response to changes in Pi required for 

initial Pi sensing.  We hypothesize that elevated Pi induces PiT-1 monomers, which reveals an 

active binding site and initiates a signaling cascade through ERK1/2.  This mechanism would 

work as a novel Pi sensor initiating a conformational change in PiT-1 that induces a cell 

signaling response.   

 

A possible future study would be to test this hypothesis through protein interaction studies.  

Fluorescence-Lifetime Imaging Microscopy (FLIM) to quantitate Fluorescence Resonance 

Energy Transfer (FRET) would be used to visualize and quantitate PiT-1 dimerization in live 

cells.  The FLIM-FRET method described in Dr. Levi’s previously published work would be 

used to visualize and quantify PiT-1 dimerization [9,10].  Briefly, chromophore-conjugated PiT-

1 protein would be overexpressed in PiT-1 ΔSM VSMCs and dimerization of the conjugated 

PiT-1 protein would be visualized by confocal fluorescent microscopy.  This assay would be 

performed after incubation in a range of Pi concentrations (0 mM to 10 mM) for 60 minutes to 

determine the ability for elevated Pi to affect PiT-1 dimerization.  This study would show if 

changing Pi concentration could change PiT-1 oligomerization state and suggest a mechanism 

for elevated Pi sensing in VSMCs.    
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Beyond mechanistic studies, future directions could also include testing different siRNA and 

small molecule inhibitors on the elevated Pi-induced ERK1/2 phosphorylation pathway to 

discover more drug targets and therapeutics.  In order to investigate the inorganic phosphate 

signaling pathway to ERK1/2 in vascular smooth muscle cells, we have optimized an InCell 

ELISA assay (Pierce Biotechnology) that uses elevated inorganic phosphate to induce ERK1/2 

phosphorylation in vascular smooth muscle cells.  Briefly, mouse primary aortic vascular smooth 

muscle cells are grown and seeded into TC dishes.  48 hours after cell seeding, the cells are refed 

with phosphate-free culture media supplemented with 1% fetal bovine serum.  24 hours after this 

refeed, the cells are refed with the same media supplemented with experimental additions 

(different concentrations of sodium phosphate, positive control fetal bovine serum, or negative 

control sodium sulfate).  In a 96-well plate, we have optimized this assay to detect differences in 

ERK1/2 phosphorylation between 0 mM phosphate and 0.5 mM phosphate, and a 6-fold increase 

between 1.0 mM phosphate and 3.0 mM Pi.  We are most interested in the difference between 

1.0 mM Pi and 3.0 mM Pi, as these concentrations are physiologically normal (1.0 mM) and 

hyperphosphatemic (3.0 mM) in patients.  A high-throughput screen could test different siRNA 

or small molecule inhibitors on a much larger scale than presented in this project.   

 

Positive siRNA and compounds would be confirmed and tested in elevated phosphate induction 

assays that have been well established in the Giachelli lab.  First, the positives would be 

confirmed in a large format elevated phosphate-induced ERK1/2 phosphorylation assay that has 

been well characterized in lab.  After these positives have been confirmed, we would use them to 

test their effectiveness in inhibition of vascular smooth muscle cell mineralization.  To further 
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understand mechanistic changes driving mineralization, we would additionally investigate 

osteochondrogenic differentiation of VSMCs with the given siRNA or compound.  Compounds 

or siRNA that inhibit elevated phosphate-induced ERK1/2 phosphorylation, osteochondrogenic 

differentiation, and matrix mineralization will be extremely valuable targets both in 

understanding vascular calcification and potential therapeutics for patients at risk for vascular 

calcification. 

 

Currently, there are no drugs that can inhibit vascular calcification in patients.  A compound or 

siRNA that can inhibit elevated Pi-induced ERK1/2 phosphorylation, osteochondrogenic 

differentiation, and matrix mineralization is an exemplary target to inhibit vascular calcification.  

Through this knowledge, we can plan follow-up in vivo studies using a mouse model with 

vascular calcification induced by renal ablation.  The Giachelli lab has pioneered the renal 

ablation model to study CKD-induced arterial medial calcification [11].  This in vivo model is 

well characterized by our lab and has been used in paradigm-shifting investigations in vascular 

calcification mechanisms.  A positive mechanism for inhibition of vascular calcification in this in 

vivo model would be a possible drug or lead to a possible drug that could inhibit vascular 

calcification in patients. 
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Figure 5.1.  Visual conclusions.  
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